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Abstract: We calculate, using our recently proposed semiclassical framework, the quan-

tum state of the Hawking pairs that are produced during the evaporation of a black hole

(BH). Our framework adheres to the standard rules of quantum mechanics and incor-

porates the quantum fluctuations of the collapsing shell spacetime in Hawking’s original

calculation, while accounting for back-reaction effects. We argue that the negative-energy

Hawking modes need to be regularly integrated out; and so these are effectively subsumed

by the BH and, as a result, the number of coherent negative-energy modes Ncoh at any

given time is parametrically smaller than the total number of the Hawking particles Ntotal

emitted during the lifetime of the BH. We find that Ncoh is determined by the width of the

BH wavefunction and scales as the square root of the BH entropy. We also find that the

coherent negative-energy modes are strongly entangled with their positive-energy partners.

Previously, we have found that Ncoh is also the number of coherent outgoing particles and

that information can be continually transferred to the outgoing radiation at a rate set by

Ncoh. Our current results show that, while the BH is semiclassical, information can be

released without jeopardizing the nearly maximal inside-out entanglement and imply that

the state of matter near the horizon is approximately the vacuum. The BH firewall pro-

posal, on the other hand, is that the state of matter near the horizon deviates substantially

from the vacuum, starting at the Page time. We find that, under the usual assumptions

for justifying the formation of a firewall, one does indeed form at the Page time. However,

the possible loophole lies in the implicit assumption that the number of strongly entangled

pairs can be of the same order of Ntotal.
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1 Introduction

That a black hole (BH) emits thermal radiation [1, 2] presents the following puzzle: How

does an initially pure state of matter evolve into a mixed state of radiation without violating

the principles of quantum mechanics? This is, in a nutshell, the BH information-loss

paradox. (See [3] for Hawking’s seminal discussion and [4–8] for reviews.)

Although this puzzle is regarded by many as an open question, most of the recent

attention in this context has gone to a related issue that is known as the “firewall” para-

dox [9]. Also see [6–8, 10–12] for earlier versions of the same idea and [13–36] for what is

just a sample of the ensuing discussion. From this new perspective, one assumes that the

radiation does purify eventually and then asks what are the consequences to the standard

picture of an observer falling harmlessly through the horizon. From an inspection of the

literature, one finds that the answers range from nothing at all to the observer being set a

blaze in a sea of high-energy quanta. Obviously, controversy abounds.

A simplified account of the firewall problem goes as follows: Let us parse the BH ra-

diation into three subsystems; the “early” Hawking particles, the “late” Hawking particles

and the interior “partners” of the late Hawking modes. Early and late in this context
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means before or after the so-called Page time [37, 38], which is the midway point of en-

tropy transfer. Following many, let us call the subsystems A, B and C respectively. Now,

for the radiation to purify, A and B must be highly entangled. However, for an observer

to fall through the horizon without trauma, B must be close to maximally entangled with

C. But this is a contradiction because of the monogamy-of-entanglement rule; no system

can be simultaneously highly entangled with two different systems. And so, given that

the purification of the radiation is true, B and C cannot be maximally entangled. Hence,

the state of the near-horizon radiation differs substantially from the vacuum st ate and,

therefore, the horizon must be a highly excited region that is filled with non-partnered

quanta. As a consequence, the free-falling observer can expect to burn up on route or, put

metaphorically, encounter a firewall.

See [32, 33] for a recent clarification of the proposal and for an additional discussion

on monogamy of entanglement and purity in this context.

There has been a variety proposals for circumventing the firewall paradox, many of

which have focused on the explicit assumptions in [9], which are based on the proposed

tenets [39] of BH complementarity [40] and have already been countered by the original

authors [26, 31]. A relatively new development is the issue of state dependence in some of

the proposed complementarity maps; see [32–35] in particular.

We would like to point out an implicit assumption that is being made by both the

original paper and in many subsequent articles: Namely, that the number of paired Hawking

modes is about the same as the total number of emitted Hawking particles up until (at least)

the Page time. This assumption was made by Page in his original quantum-information

treatment of a radiating system [37, 38] and is also made in all models for which the Page

time is the moment when information becomes accessible. However, we will argue that, for

an evaporating BH, this assumption is not necessarily correct and its consequences should

therefore be reconsidered.

The firewall argument relies on the standard description of BH evaporation as de-

veloped by Hawking [1–3]. The positive-energy Hawking modes and their negative-energy

partners are created continuously throughout the evaporation process and accumulate near

the horizon; just outside and just inside the horizon, respectively. The positive-energy

modes escape to infinity, where they are observed as a thermal flux of radiation. The ther-

mal nature of this radiation was established by Hawking from a direct calculation of the

density matrix for the outgoing modes and does not require any knowledge about the in-

going partners. However, from the pair-production perspective, the thermal nature results

from tracing over the negative-energy members of the maximally entangled pairs. The

pairs are in a thermofield-double state; however, each of the pairs is produced in a process

that is independent of the production of all the others, so that the pairs themselves are

incohe rent.

Hawking’s setup treats the BH as a strictly classical geometry. In [41], it was pro-

posed that the BH information paradox originates from this assumption. (See [42–47] for

overlapping ideas.) On the basis of [48, 49], it was also proposed in [41] that the leading

semiclassical corrections resulting from quantum fluctuations of the background geometry

should be taken into account by assigning a wavefunction to the BH. The parameter that
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controls the strength of the semiclassical corrections was identified as the ratio of the Comp-

ton wavelength of the BH λBH = ~/MBH to its radial (Schwarzschild) size RS . In [50],

we have proposed a concrete scheme for evaluating the semiclassical corrections using the

wavefunction of [41, 48]. The parameter that controls the strength of the semiclassical cor-

rections was denoted by CBH and calibrated more precisely, CBH = λBH
2π /RS = 1/SBH

(SBH is the Bekenstein–Hawking entropy). This parameter can be viewed as a dimension-

less ~ that is controlling quantum corrections.

We have, in two recent articles [51, 52], gone on to apply this idea to the calculation

of the Hawking radiation. There, Hawking’s calculation was repeated by replacing the

classical collapsing shell of matter (i.e., the incipient BH) with a semiclassical one that is

endowed with a Gaussian wavefunction. The wavefunction introduces a new scale into the

problem via its quantum width. The Bohr correspondence principle has been invoked to

show that this width should be Planckian [41, 48].

We have recalculated the density matrix of the outgoing particles and obtained a

picture that is similar to Hawking’s in the limit CBH = 0. But, for a finite value of CBH

(albeit, a very small one), our picture differs significantly from that found by Hawking.

The Hawking density matrix for the BH radiation is strictly diagonal, whereas our matrix

contains small off-diagonal elements of order
√
CBH in the same basis. The effect of these

elements on the eigenvalues of the matrix is initially small; however, as the number N of

emitted particles grows, so does the changes to the eigenvalues.

Another important distinction is the degree of coherence of the radiating particles.

In Hawking’s case, the emitted particles are incoherent at any time. In our picture, the

number of coherent particles at any given moment is finite and set by a scale that we

refer to as the radiation coherence time tcoh. Typically, tcoh = R2
S/lp (where lp is the

Planck length) and the number of coherent Hawking particles Ncoh is equal to the number

of particles that are emitted over this time scale, Ncoh = 1/
√
CBH =

√
SBH . These

estimates are accurate during most of the lifetime of the BH and become inaccurate only

at the last stages of evaporation.

The appearance of a coherence time scale in our formalism is quite natural because

of the following reasoning: The back-reaction of the emitted particles on the collapsing

shell of matter leads to a time-dependent wavefunction. Let us then consider the time

required for this wavefunction to change significantly. An inspection of its formal expression

(see eq. (2.2)) indicates that this happens when the Schwarzschild radius shrinks by an

amount ∆RS ∼ √
CBHRS ∼ lp . Then, since ∆RS = ∂RS

∂t ∆t ∼ − l2p
R2

S
∆t , it follows

that ∆t ∼ R2
S
lp

= tcoh . Hence, the coherence time originates as the interval for which the

overlap of the wavefunction at different times becomes small. The fact that Ncoh ≪ SBH

(equivalently, tcoh ≪ τBH , where τBH is the BH lifetime) is a consequence of the width

of the wavefunction being much smaller than the Schwarzschild radius. This hierarchy of

scales can be attributed to the BH being semiclassical, CBH ≪ 1.

Both differences are directly related to treating the BH as a semiclassical quantum state

rather than a classical geometry. The strength of the off-diagonal terms is the dimensionless

width of the wavefunction
√
CBH and the coherence scale is related to the overlap of
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the wavefunction at different times. Thus, our explicit calculations strengthen the ideas

expressed in [41] that treating the BH as a semiclassical state is an essential element in

resolving many of the issues surrounding BH physics.

Our framework, as described in [52], incorporates the back-reaction of the emitted par-

ticles on the collapsing shell in addition to the shell’s wavefunction. What we have found is

that Hawking was correct in dismissing the effect of the back-reaction when the background

is strictly classical. However, for our semi-classical framework, the back-reaction on the

shell does become important.

In this paper, we extend our previous calculations to the negative-energy modes and

try to learn about the implications of our semiclassical framework on the pair-production

perspective of BH evaporation.

From the pair-production perspective, it is appropriate to integrate out the shell of

matter [3]. This amounts to replacing the shell by an eternal BH geometry with specific

boundary conditions for matter fields in this geometry. In Hawking’s model, this replace-

ment is approximately valid for all times. From the pair-production point of view, it looks

as if the negative-energy modes are concurrently being subsumed into and annihilating

with the BH. Consequently, the mass of the BH is decaying with time at a rate dictated

by the thermal emission of the BH. When combined, these observations suggest a picture

of the negative-energy modes being continually recycled at some approximately constant

rate while the total number of positive-energy Hawking particles is steadily growing at a

rate that is set by the thermal emission of the BH.

In our framework, the replacement of the collapsing shell with the eternal BH geometry

has limited validity. The identity of the negative-energy modes is not well defined and is

sensitive to the decrease of the BH mass and radius due to the back-reaction. To resolve

this issue of mode identities, we propose that, at regular intervals whose duration is one

interval of coherence time, the shell spacetime has to be replaced by an eternal BH of

smaller mass and smaller horizon radius.

The repetition of the process of integrating out the shell requires us to reassign the

wavefunction to the BH and to redefine the pair basis accordingly. It follows that the

negative-energy modes should be traced over at these regular intervals. The positive-

energy partners of the negative-energy modes that have been traced over then become part

of the state of the external radiation.

It may appear that the process of regularly tracing over the negative-energy modes

will lead to information loss. However, these anti-particles have actually been absorbed

into the interior matter, and so the information about these modes is not lost but rather

stored inside the BH. In subsection 7.3, we recall a qualitative discussion whose aim is

to explain how the information could nevertheless be retrieved towards the end of the

evaporation. For now, let us discuss an alternative point of view that will be elaborated

on, quantitatively, in an upcoming article [53]: As the state of the BH is the purifier

for the outgoing Hawking radiation, someone who is continuously monitoring the external

radiation would know about the state of the BH, including the subsumed anti-particles, as

it evolves in time. Such an observer would then conclude that the radiation is monotonically

purifying as the evaporation proceeds.
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The main objective of the current paper is to substantiate in a quantitative way the

above description of BH evaporation in terms of the Hawking pairs. We calculate the

quantum state of the in-out sector and show that the relevant pairs are in a state of nearly

maximal entanglement, at least until the late stages of the evaporation process. But this is

all that is needed because we have already shown that the early and late Hawking modes

attain almost full entanglement but only at a similarly late time [51, 52].

The plan for the rest of the paper goes as follows: The subsequent section begins with

a brief review of our previous results [51, 52]. In section 3, we reformulate our semiclassical

density matrix for external radiation into a quantum state that describes the Hawking

in-out modes. Next, in section 4, we elaborate on the above ideas about modeling the

back-reaction and the need to trace out the negative-energy modes at regular intervals.

The consequences of this model for the BH Hilbert space in the pair basis is the topic

of section 5. We then construct a multi-pair density matrix in section 6 as a prelude to

determining the entanglement entropy of the in-out sector. The latter calculation is carried

out in section 7. The paper concludes with a brief summary and discussion in section 8.

1.1 The case against firewalls

Before proceeding, let us give a brief account of why our framework is able to evade the

firewall problem without invoking changes to the standard rules of quantum mechanics.

As already mentioned, there is a hidden assumption in the current literature on fire-

walls that almost all of the produced in-modes are strongly entangled with their out-mode

partners up until (at least) the Page time. After this, the external radiation is entropi-

cally dominant over the interior subsystem, which consists of the BH interior including the

negative-energy modes; and so the status of these in-modes becomes a moot point. This

is quite clear from the analysis of Page [37, 38] (also see [54]). In the total BH-radiation

system, the larger of the two subsystems holds most of the system’s entanglement in the

form of internal correlations, rather than as a mutual entanglement with the smaller one.

This is the significance of the Page time; the moment that the interior region and exterior

particles exchange their previous roles as the dominant and submissive subsystem.

One can now see why a firewall is inevitable for the orthodox picture of evaporation.

After the Page time, most of the entanglement is necessarily stored in correlations between

early and late Hawking particles, these being the constituents of the dominant exterior

subsystem. The now “unpartnered” in-modes will make the horizon a dangerous place.

But one can also recognize a possible loophole for evading the firewall problem. First

consider that semiclassical deviations from maximal entanglement of the in-out pairs are

controlled by the number of entangled in-out pairs. The deviations of the near-horizon state

from the vacuum must therefore be controlled by this same number. Now suppose that

the number of pairs is parametrically smaller than the total number of emitted Hawking

particles. If so, then both the rate of information release and the degree of in-out entan-

glement will be controlled by the number of pairs rather than the size of the subsystems.

What we have found is that the number of entangled pairs is equal to Ncoh, which is indeed

parametrically smaller than the total number of emitted particles. If this possibility is re-

alized, then there must be another component that purifies the outgoing radiation during
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most the lifetime of the BH, otherwise unitarity will not be preserved. In our model, this

component is the collapsed matter as represented by the shell and its wavefunction.

Because information is being released as the outgoing radiation purifies, there will come

a time when the rate of information release is too large for the (nearly) maximal in-out

entanglement to be maintained. At this point, assuming standard quantum mechanics,

one could expect some large deviation of the near-horizon state from the vacuum and

for the associated firewall to appear. What we find is that the new tipping point occurs

parametrically close to the end of the evaporation, one interval of the coherence time

before the BH totally evaporates. In [52], this is what we have called the transparency

time ttrans. So that the Page time has, in effect, been moved to a time ttrans that is late

in the evaporation process. But, by this time, the BH can no longer be considered as

semiclassical and there is no longer any good reason to expect its horizon to be a serene

place (see below). How different is this late-time near-horizon state from the va cuum and

what are its properties are interesting questions that we intend to answer in the future [55].

Let us explain why, at times t > ttrans, the BH can no longer be considered semiclassical

even though it can still be macroscopically large with a near-horizon curvature that is

small in Planck units. Our basic claim is that, for t > ttrans, an evaporating BH lacks

a semiclassical description, irrespective of its size or the smallness of the curvature. The

essential point is that the transparency time coincides with the time when NcohCBH ≃
1 [52], meaning that Ncoh ≃ SBH . Then, the number of negative-energy particles in the

near-horizon region that are about to fall into the BH is about SBH . It follows that their

total energy is equal in magnitude to the energy of the remaining BH. Such a situation does

not correspond anymore to the standard semiclassical picture of a large BH being weakly

perturbed by a small number of negative-energy modes. Rather, back-reaction effects from

the in-falling modes become large and significant, and so the notion of a nearly classical

geometry for the BH is no longer tenable.

2 Review of semiclassical black holes and the radiation density matrix

Here, we review the results from our previous semiclassical model of the outgoing BH

radiation. The framework was initially constructed in [51] and later improved upon in [52]

by accounting for time-dependent and back-reaction effects.

2.1 Conventions

Our conventions are the same as in [52] and repeated here for completeness.

Our units are such that Planck’s constant ~, Newton’s constant G or the combination

lp =
√
~G are explicit and all other fundamental constants are set to unity.

We assume a four-dimensional Schwarzschild BH (generalizations to higher dimen-

sions are straightforward) of large but finite mass MBH ≫
√
~/G , with the metric

ds2 = −
(
1− RS

r

)
dt2 +

(
1− RS

r

)−1
dr2 + r2dΩ2

2 , where RS = 2GMBH is the hori-

zon radius. We use the dimensionless advanced-time coordinate v = 1
RS

(t+ r∗) , where

r∗ =
∫ r

dr
√
−gttgrr = r + RS ln(r − RS) . Our frequencies or ω’s are also dimensionless

and measured in units of 1/RS .
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The Hawking temperature TH and Bekenstein-Hawking entropy SBH of the BH are

given by TH = ~

4πRS
and SBH =

πR2
S

~G .

All classically evolving quantities (i.e., all functions of RS = RS(t) ) should be re-

garded as time dependent.

2.2 Time-dependent semiclassical radiation density matrix

The meaning of the semiclassical density matrix, ρSC = ρH +∆ρSC , is the following:

ρSC(ω, ω̃ ;CBH) = 〈Ψshell(vshell)|ρ(ω, ω̃)|Ψshell(vshell)〉 , (2.1)

where Ψshell(vshell) is the wavefunction for the collapsing shell of matter. The diagonal

Hawking density matrix ρH picks up a correction ∆ρSC ∼ √
CBH that introduces an

off-diagonal modification.

We find Ψshell(vshell) by starting with the wavefunction for the S-mode of a

Schwarzschild BH in Einstein gravity [41, 48, 50] and then assume that this describes

the wavefunction of the shell in the limit of horizon formation, Rshell → RS (Rshell is the

shell’s radius). This leads to

Ψshell(Rshell)|Rshell→RS
= N−1/2e

−
(Rshell−RS)

2

2CBHR2
S , (2.2)

where N is a normalization constant and CBH = S−1
BH is the aforementioned classicality

parameter. During most of the lifetime of the BH, when CBH ≪ 1 , the spacetime can be

treated as classical up to corrections going as a power series in CBH . The correction ∆ρSC
contains a factor C

1/2
BH and so is suppressed relative to ρH . The classicality parameter CBH

increases slowly and monotonically throughout the lifetime of the BH and trends to order

unity when the size of the BH approaches the Planck scale.

Our prescription for calculating expectation values is

〈Ô(vshell)〉 =
4π

N

∞∫

−∞

dvshell R
2
shell(vshell) e

−
(vshell−v0)

2

CBH O(vshell) , (2.3)

where v0 is the classical value of v at horizon crossing, Ô is a generic operator and we have

used that v0 − v ≃ R−RS in the near-horizon limit.

Our later analysis in [52] entailed a time-dependent calculation that accounted for the

different shell-crossing times of the Hawking modes and for the effect of the back-reaction

on the shell. The number of emitted particles was found to be a good time coordinate, and

eq. (2.1) gets corrected to

ρSC(ω, ω̃;NT ;N
′, N ′′) =

v0∫

−∞

dv

∞∫

0

dω′

∞∫

0

dω′′ 1

2π
eiv(ω

′−ω′′)

× eiω
′(vshell(NT )−vshell(N

′))e−iω′′(vshell(NT )−vshell(N
′′))

× 〈Ψshell(vshell(NT ))|β∗
ω′ω, SC(NT )βω′′ω̃, SC(NT )|Ψshell(vshell(NT ))〉 . (2.4)
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where NT is the “time” since the BH formed, N and N ′ are the respective shell-crossing

times of a given pair of particles and the β’s are Bogolubov coefficients. The subscript SC

on the β’s indicates that these have been suitably reformulated in terms of the fluctuating

parameter vshell.

What we have found is that, after all integrations have been performed, the off-diagonal

elements of the semiclassical density matrix pick up a time-dependent “suppression” factor

D(NT , N
′, N ′′),

∆ρSC(NT , N
′, N ′′) = D(NT , N

′, N ′′)∆ρSC(CBH(NT )) . (2.5)

where

D(NT ;N
′, N ′′) ≡ 1

2

[
e
− 1

4

[CBH (N′)(NT−N′)]2

CBH (NT ) + e
− 1

4

[CBH (N′′)(NT−N′′)]2

CBH (NT )

]
. (2.6)

An important consequence of this factor is that our perturbative treatment — which for-

merly broke down at best by the Page time, NT = 1
2SBH(0) — can now be continued

until much later in the process; essentially, until there are only S
1/3
BH(0) particles remaining

to be emitted (this being the transparency time).

The same suppression factor is obtained in the upcoming in-out treatment. It is still

irrelevant to the Hawking part of the matrix, which already carries the implicit suppression

δ(N ′−N
′′

) because, in this case, the in- and out-modes emerge as perfectly entangled pairs.

The suppression is insignificant when ∆N ≡ NT −N ≤ Ncoh(NT ;N) , for which

Ncoh(NT ;N) ≡
√

CBH(NT )

CBH(N)
. (2.7)

We call this the coherence time because, for ∆N > Ncoh(NT ;N) , the density matrix

elements and, therefore, the particle correlations become highly suppressed. For most of

the lifetime of the BH, CBH(N) ≃ CBH(NT ) , so that Ncoh(NT ;N) ≃ C
−1/2
BH (NT ) ≃√

SBH(NT ) . At late times, however, this distinction can become important, as CBH(NT )

is monotonically growing as ∂NT
CBH = C2

BH and reaches unity for a Planck-sized BH.

3 Semiclassical state of the Hawking pairs

Before proceeding with the calculation of the pair semiclassical state, let us describe Hawk-

ing’s pair-production picture and remark on some caveats.

Hawking’s original choice of basis is that of the collapsing-shell model [1, 2]. For this

choice, the negative-energy modes defy an obvious particle interpretation because, as far

as an external observer is concerned, the separation between positive and negative energies

becomes ambiguous inside of the shell’s horizon. This ambiguity motivated Hawking to

choose a different basis in his subsequent information-loss article [3]. This latter setup

assumes an analytically continued Schwarzschild spacetime (i.e., an eternal BH geometry),

for which such a separation can be made without ambiguity. In effect, to discuss the

negative-energy modes, the shell is integrated out and replaced by an eternal BH geometry

with a particular choice of boundary conditions for the matter fields. So that, in this model,

the vicinity of the horizon is devoid of any matter.
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In principle, to calculate the semiclassical state for the pair-production model, we

would need to know the wavefunction of the BH from an in-falling observer’s perspective

and then proceed along the lines of subsection 2.2. However, as explained below, we bypass

this difficulty by exploiting a relationship between the in- and out-modes that allows us to

use the external observer’s wavefunction.

Hawking chose to work with the wω and yω basis of section 4 in [3], rather than the

qω and pω basis of [1, 2]. The w’s are defined to have zero Cauchy data on I− and on

the portion of the past horizon outside the future horizon. They represent particles that

are always inside the future horizon. The y’s are defined to have zero Cauchy data on I−

and on the portion of the past horizon inside the future horizon, as well as having positive

energy with respect to the retarded time u on the portion of the past horizon outside the

future horizon. Hawking also showed that, as far as their action on the initial vacuum is

concerned, the yω’s are equivalent to pω’s and the wω’s are equivalent to p†ω’s.

The initial vacuum is defined at I− and the past horizon for the w–y basis but only

at I− for the p–q basis. However, this distinction is irrelevant to the geometry of interest,

the interior and exterior regions of the future horizon.

Hawking’s choice of the w–y basis corresponds to a partial tracing over some of the

negative-energy modes (see below). We rather need to begin with modes that correspond to

the complete “untraced” negative-energy modes. The complete horizon modes are denoted

by Hawking as f
(3)
ω and f

(4)
ω . They are defined as having zero Cauchy data on I− and, on

the whole of the past horizon, they have time dependence of the form e±iωu, respectively.

The operator forms of f
(3)
ω and f

(4)
ω are given in eq. (4.16) of [3] (re-expressed here in our

notation),

f̂ (3)
ω =

1√
1− c2ω

[
ŷω − cω ŵ†

−ω

]
, (3.1)

f̂ (4)
ω =

1√
1− c2ω

[
ŵ−ω − cω ŷ†ω

]
, (3.2)

where cω ≡ e−2πω .

This discussion highlights the fact that the pair-production picture has limited validity

and is particularly sensitive to back-reaction induced deviations away from the eternal BH

geometry. This sensitivity will be essential in the following.

Our eventual task is to calculate the entanglement between the out-modes — the

incipient Hawking particles — and the in-modes — their negative-energy partners. For

this calculation, we will first require the matrix elements for the final vacuum |0+〉 and

then the expectation value of this matrix with respect to the initial vacuum |0−〉. To

this end, we will calculate the in-out analog of the out-out density matrix of our previous

studies [51, 52]. However, the resulting matrix ρin−out should not be viewed as a density

matrix but as the coefficients of the terms of an entangled state,

Ψpair(ωout,−ω̃in) =
1

Z

∫
dω dω̃ ρin−out(ωout,−ω̃in)|ωout〉|ω̃in〉 , (3.3)

where Z is a normalization factor.
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The one-pair matrix that we have in mind is then the in-out analog of the following

(with the expectation value implied on the left-hand side):

ρout−out(ω, ω̃) = 〈0−|
(
F̂ †
ω + F̂ω

)
|0+〉〈0+|

(
F̂ †
ω̃ + F̂ω̃

)
|0−〉 . (3.4)

Here, our notation is such that F̂ω = Fω (u) âω(F ) includes both the wavefunction of

the out-mode as a function of retarded time u = u(v) and the annihilation operator.

Analogous forms for other hatted modes are used below. We are currently considering a

fixed value of advanced time v, but this coordinate is later integrated out.

It is a difficult task to calculate ρin−out directly. As already stated, we would need

to know the wavefunction of the horizon from an in-falling observer’s perspective in the

eternal BH geometry. Rather than doing this, we will express the in-modes in terms of a

linear combination of the out-modes. We will then evaluate the corresponding ρout−out and

use the result to find ρin−out.

For the out-out case, one finds that the only relevant contribution of the four terms is

F̂ †
ωF̂ω̃, which leads to

ρout−out(ω, ω̃) =
∑

ω′,ω′′

fω′(v)β∗
ω′,ωβω′′,ω̃ f∗

ω′′(v) , (3.5)

where the β’s are the “negative-energy” Bogolubov coefficients and fω′(v) is a basis function

for the initial vacuum. The “positive-energy” Bogolubov coefficients or α’s enter through

the other terms and could contribute in principle. However, as explained in subsection 2.4

of [51], these end up to be irrelevant for particle production for our semiclassical analysis

just like in Hawking’s treatment [1, 2].

Our out-modes are related to Hawking’s modes in [3] as follows:

F̂ω = tωŷω + rω ẑω , (3.6)

where tω and rω are the transmission and reflection coefficients, respectively. The mode

ẑω is irrelevant for the pair-production process. Hence, for the purpose of calculating the

in-out matrix, we can equate

ŷω =
1

tω
F̂ω . (3.7)

To obtain the correct set of in- and out-modes for current purposes, we recall the

following identity from [3]:

ŵ†
−ω|0−〉 = c−1

ω ŷω|0−〉 , (3.8)

where all frequencies are assigned according to the perspective of an external observer

(i.e., ω > 0 in all cases). In other words, the creation of a negative-energy excitation is

equivalent to the annihilation of a positive-energy one with the same magnitude of energy.

We propose that the correct definition for a complete horizon mode is as follows:

Ŵω =
1

2

[
f̂ (3)
ω + (f̂ (3)

ω )† + f̂ (4)
ω + (f̂ (4)

ω )†
]
, (3.9)
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where it is understood that only its negative-energy component contributes to the in-out

density matrix as depicted in eq. (3.11) below. Then, using eqs. (3.1), (3.2) as well as

eq. (3.8) to trade off ŵω’s for ŷω’s, we can express Ŵω in terms of the out-mode ŷω,

Ŵω =
1

2

1√
1− c2ω

(1− cω)

(
1 +

1

cω

)[
ŷω + ŷ†ω

]

=
1

2

√
1− c2ω
cω

[
ŷω + ŷ†ω

]
. (3.10)

The in-out matrix has now been expressed entirely in terms of out-modes,

ρin−out(ω,−ω̃) =
1

2
〈0−|(ŷ†ω + ŷω)|0+〉〈0+|(Ŵ †

ω̃ + Ŵω̃)|0−〉

=

√
1− c2ω̃

cω̃
〈0−|(ŷ†ω + ŷω)|0+〉〈0+|(ŷω̃ + ŷ†ω̃)|0−〉 (3.11)

=

√
1− c2ω̃

cω̃
〈0−|(

1

t∗ω
F̂ †
ω +

1

tω
F̂ω)|0+〉〈0+|

(
1

tω̃
F̂ω̃ +

1

t∗ω̃
F̂ †
ω̃

)
|0−〉 .

Here, the operator F̂ †
ω should be regarded as an excitation of a horizon mode and not that

of an asymptotic Hawking particle.

Now, just as for the out-out case, the only contribution to the density matrix comes

from the pair F̂ †
ωF̂ω̃, as the rest have either rapidly oscillating phases or represent irrelevant

non-propagating modes. It follows that

ρin−out(ω,−ω̃) =

√
1− c2ω̃

cω̃
〈0−|

1

t∗ω
F̂ †
ω|0+〉〈0+|

1

tω̃
F̂ω̃|0−〉 . (3.12)

Next, expanding the matrix in terms of the basis kets |fω′〉, we obtain

ρin−out(ω,−ω̃) =
1

t∗ωtω̃

√
1− c2ω̃

cω̃

∑

ω′,ω′′

〈0−|fω′〉〈fω′ |F̂ †
ω|0+〉〈0+|F̂ω̃|fω′′〉〈fω′′ |0−〉

=
1

t∗ωtω̃

√
1− c2ω̃

cω̃

∑

ω′,ω′′

fω′(v)〈fω′ |Fω〉〈Fω̃|fω′′〉f∗
ω′′(v) , (3.13)

where |Fω〉 means a one-particle ket.

It is the amplitudes in the last line that describe the overlap between particle modes and

basis vectors and, therefore, represent the Bogolubov coefficients. Because the right-hand

side of eq. (3.13) involves only out-modes, these coefficients are the same as those obtained

in the out-out case. Hence, 〈fω′ |Fω〉 = β∗
ω′,ω , 〈Fω̃|fω′′〉 = βω′′,ω̃ and, consequently,

ρin−out(ω,−ω̃) =
1

t∗ωtω̃

√
1− c2ω̃

cω̃

∑

ω′,ω′′

fω′(v)β∗
ω′,ωβω′′,ω̃f

∗
ω′′(v) . (3.14)
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We have then ended up with a matrix that is similar in form to the matrix for the

out-out case. Again, there is the Hawking classical-background contribution, except that

it is now describing maximally entangled pure state of pairs and will lead to a thermal

reduced density matrix, as explained below. It differs from the usual form by a factor

which will turn out to be very significant,

[ρin−out(ω,−ω̃)]H =

√
1− c2ω
cω

1

e
~ω
TH − 1

δ(ω − ω̃) , (3.15)

where TH/~ = (4π)−1 is the dimensionless Hawking temperature.

One formal difference between eq. (3.15) and Hawking’s out-out matrix is that the

transmission amplitudes of the out-modes through the gravitational barrier no longer ap-

pear. This is sensible because these are horizon modes and not the asymptotically trans-

mitted Hawking particles.

A more important distinction is, however, the extra factor of

√
1− c2ω
cω

=

√
1− e−4πω

e−2πω
=

√
e4πω − 1 =

√
e

~ω
TH − 1 . (3.16)

In this way, we actually end up with the “square root” of the Hawking thermal form,

[ρin−out(ω,−ω̃)]H = ρ
1/2
H (ω,−ω̃) ≡ 1√

e
~ω
TH − 1

δ(ω − ω̃) . (3.17)

Despite appearances, the matrix in eq. (3.17) is not a density matrix but, rather,

represents a pure state. The state is a superposition of pairs with weights 1√
e

~ω
TH −1

and,

therefore, a thermofield-double state for the pairs of positive- and negative-energy modes,

|Ψpair, H(ωout,−ω̃in)〉 =
1

Z

∫
dω

1√
e

~ω
TH − 1

|ωout〉|ωin〉 . (3.18)

Here, |ωout〉 denotes a positive-energy out-mode with frequency ω and |ωin〉, a negative-

energy in-mode with frequency ω. The normalization factor Z will be specified later on.

The full Hawking density matrix is given by

ρpair ,H(ωout,−ω̃in, ω
′
out,−ω̃′

in) = |Ψpair ,H(ωout,−ω̃in)〉〈Ψpair ,H(ω′
out,−ω̃′

in)| . (3.19)

The reduced matrix for the out-modes is obtained by tracing over the in-modes. So that, as

standard for a thermofield-double state, the reduced matrix goes as the square of eq. (3.17)

and the correct thermal matrix is indeed obtained.

Meanwhile, the same lengthy calculation as in [51, 52] will lead us to the semiclassical

correction to the Hawking state,

∆ρSC(ω,−ω̃;NT ;N
′, N ′′) = D(NT ;N

′, N ′′) C
1/2
BH(NT )∆ρOD(ω,−ω̃ ;NT ) , (3.20)

– 12 –



J
H
E
P
0
6
(
2
0
1
4
)
0
5
7

with

∆ρOD(ω,−ω̃ ;NT ) =
1

(2π)3
2

(ωω̃)1/2

(
CBH(NT )

4

)+2i(ω−ω̃)

×
√
e4πω − 1 +

√
e4πω̃ − 1

2
Γ (1 + 2iω) Γ(1− 2iω̃) e−π(ω+ω̃) Γ

(
1

2
− i(ω − ω̃)

)

×
{
Γ (2i(ω − ω̃))

[
Γ
(
1
2 + 2iω̃

)

Γ
(
1
2 + 2iω

) +
Γ
(
1
2 − 2iω

)

Γ
(
1
2 − 2iω̃

)
]
+

i

ω − ω̃

}
, (3.21)

where we have symmetrized over the frequencies and have subtracted off a diagonal piece

with the understanding that this acts as a small correction to the Hawking part of the

matrix. The total number of so-far produced pairs NT is now keeping track of the evolution

time and N ′, N ′′ are the pair-production times.

Equation (3.20) should be interpreted as a correction to the thermofield-double state

of eq. (3.18). The correction means that the positive- and negative-energy modes are not

exactly maximally entangled, with C
1/2
BH controlling the deviation from maximal entangle-

ment. This will be discussed in detail in section 6.

4 Model of semiclassical back-reaction

In the previous section, we have highlighted the fact that the particle-pair picture requires

one to integrate out the collapsing shell and use the geometry of the eternal BH with

appropriate boundary conditions for matter fields. We have also emphasized that, as a

consequence, the pair-production picture has limited validity and is particularly sensitive

to deviations away from the eternal BH spacetime. We would now like to discuss this issue

of validity in a more quantitative way and, in particular, determine the duration for which

the eternal BH geometry is a good approximation to the collapsing-shell model. We will

argue that this duration is tcoh.

The issue of validity of the pair-production picture was not discussed in a meaningful

way by Hawking because, in his calculation, the coherence time scale did not appear. Each

pair emission was considered to be completely independent of the previous pairs. Hence,

Hawking’s choice of the eternal BH geometry had an exponentially small effect.

In the Introduction, we have briefly outlined a simple model for the back-reaction of

the emitted particles when considering the pair-production picture. The basic idea is that

the negative-energy members of the pairs should be regularly traced out as the mass of the

BH decreases with time at a rate dictated by the thermal emission. This simple model can

be made more precise as follows.

Let us consider the perspective of an external, stationary observer. Then, during one

coherence time tcoh, the BH emits Ncoh ∼ S
1/2
BH Hawking particles and its energy decreases

by ∆Eshell ∼ NcohTH ∼ Mp , where Mp = l−1
p is the Planck mass. The radius of the BH

will then shrink by lp, and its wavefunction becomes much different than it was at earlier

times. This restricts considerations to time intervals of duration ∆t < tcoh .

Over this time interval, the BH and the pair-produced particles, both positive- and

negative-energy ones, are coherent. But, for time intervals in excess of tcoh, the negative-
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energy particles should be traced over (see below), leaving an almost thermal (reduced)

density matrix for a block of Ncoh positive-energy particles with some small corrections

of order
√
~. After their negative-energy partners have disappeared, these should be re-

garded as emitted Hawking particles and, as such, will become part of the out-out radiation

density matrix.

Our model for the back-reaction is quite simple and still needs to be improved by

providing a more precise description of the interaction of the negative-energy modes with

the BH. However, even at the current level of precision, it is already clear that the negative-

energy particles cannot keep their identity after an elapse of time tcoh. This can be seen

from the following argument.

Let us first recall of the form of the out-mode wavefunctions (with ω, u,

v dimensionless),

Fω(u(v)) ∼ eiωu ∼ eiω ln (v0−v) , (4.1)

and similarly for the in-modes but with the argument in the logarithm reversed. Now

consider that the positive-energy particles accumulate near the horizon but only on the

outside, whereas the negative-energy particles accumulate on the inside. In Hawking’s

description, it is not stated how close these modes are to the horizon, so that the distance

∆v = v0 − v remains unspecified. But our case is different because of the uncertainty

due to the quantum width of the wavefunction. The wavefunction has Planckian width,

which implies that the width of either particle layer is about ∆v = lp/RS (or lp in

dimensional units). Our model also keeps track of the shrinking of the Schwarzschild

radius or, equivalently, the decreasing value of v0. After one coherence time, v0 decreases

by an amount of the same order, ∆v0 ∼ lp/RS .

For a time interval ∆t > tcoh , v0 will have changed by an amount that is greater in

magnitude than the width of the particle layers, ∆v0 > ∆v . At this point, the argument

of the logarithm in eq. (4.1) and its in-mode analogue are likely to change sign. When such

a sign flip does occur, it essentially exchanges the meaning of the mode from a positive

to a negative-energy excitation (or vice versa). This is just like what would happen if a

Rindler mode is switched from the right wedge to the left wedge of Rindler space. Time

flows in the opposite direction in the left wedge, and so positive energies become negative.

Meaning that, after the elapse of a coherence time, the splitting into positive and negative

energies becomes ill defined and the identity of the near-horizon modes becomes uncertain.

To resolve this issue of mode identities, we propose that, after each coherence time,

the eternal BH spacetime should be reset to a new eternal BH spacetime corresponding

to the updated Schwarzschild radius RS(t + tcoh) ≃ RS(t) − lp . The pair basis has to

be redefined accordingly and the whole process repeats itself after the elapse of the next

interval of coherent time.

In general, this limitation on the use of the eternal BH geometry should be imposed

when the back-reaction is taken into account, irrespective of whether the geometry is

treated as classical or semiclassical. The only situation in which the negative-energy par-

ticles can preserve their identity is for a truly eternal BH geometry. However, if the
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coherence time vanishes (as it does for Hawking’s model), it is not important that these

modes preserve their identity for the purpose of calculating the in-out density matrix.

5 The black hole Hilbert space

Let us now discuss how our previous model for the back-reaction is relevant to the structure

of the BH Hilbert space HBH in the pair basis.

The Hilbert space of an evaporating BH will approximately factorize into two Hilbert

spaces, HBH ∼ Hint ⊗ Hrad . Here, Hint describes the state of the collapsed matter

plus the anti-particles and Hrad describes the outgoing Hawking radiation. The radiation

in-out entangled sector is then the boundary or overlap between these two sub-Hilbert

spaces, Hin−out = Hint
⋂Hrad . We know from the analysis of Page that this overlap is

small compared to SBH because most of the entanglement is stored as internal correlations

within the subsystems and not as correlations between the subsystems. But how small?

Our formalism suggests a definitive answer to this last question. As we now know, it is

necessary to trace over the negative-energy modes after a time scale of tcoh or Ncoh ≃ S
1/2
BH

in units of either number of emitted particles or number of produced pairs. Our explanation

is that this effect is a consequence of the wavefunction decohering over the same extent

of time. The coherence scale is then the span of time over which it still makes sense

to talk about entangled partners; meaning that Ncoh ≃ S
1/2
BH is the typical lifetime of

a partnership. This leads to a revision of the orthodox picture: Partnerships are being

regularly dissolved and recycled as the Hawking process of mode creation goes on [1, 2],

with the total number of entangled partners scaling as Ncoh. In short, we are arguing that

dim [Hin−out] = Ncoh .

This recycling process, over the time scale Ncoh ≪ SBH , provides the means for

maintaining the in-out entanglement while information is flowing out of the BH. That the

entanglement is maintained will be clarified in the upcoming analysis, but then what is

the mechanism for information transfer? It is the wavefunction ΨBH that plays the role

of conduit. As the in-modes are traced out and effectively subsumed into the BH interior,

the Schwarzschild radius RS = RS(NT ) decreases and, in turn, induces an evolving value

for the coherence scale Ncoh = Ncoh(NT ;N) .

An external stationary observer has direct access to Hrad, whereas a free-falling ob-

server is able to probe Hint but at the cost of relinquishing knowledge about the exterior

system Hrad. If such observers wish to compare measurements, their only common ground

is that of the boundary region Hin−out. We would like to suggest that this could be a

starting point for a definition of BH complementarity [39, 40] that can survive the fire-

wall paradox.

6 Multi-pair density matrix

To monitor the entanglement of the produced pairs — which is the subject of section 7

— it is first necessary to construct a multi-pair density matrix for the in-out sector. In

light of the previous two sections, it is clear that the multi-pair matrix should involve
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Ncoh pairs of particles. Then, following our earlier investigations [51, 52], the multi-

pair matrix is a 2Ncoh × 2Ncoh matrix such that each entry is a block with the same

dimensionality in frequency space as the one-pair matrix, ρSC(ω,−ω̃ ;NT ;N
′, N ′′) =

ρ
1/2
H (ω,−ω̃) + ∆ρSC(ω,−ω̃ ;NT ;N

′, N ′′) . Recall that ρ
1/2
H (ω,−ω̃) is defined in eq. (3.17)

and the correction in eqs. (3.20)–(3.21). The suppression factor D(NT ;N
′, N ′′) that ap-

pears in ∆ρSC is defined in eq. (2.6) and can be re-expressed in a convenient way,

D(NT ;N
′, N ′′) =

1

2

[
e
− 1

4

(NT−N′)2

N2
coh

(NT ;N′) + e
− 1

4

(NT−N′′)2

N2
coh

(NT ;N′′)

]
. (6.1)

As discussed in [51, 52], one can expect each entry to pick up a phase factor eiθN′,N′′

( θN ′,N ′′ = −θN ′,N ′′ ). But these phases are not relevant to our treatment and will be

ignored.

We can express the multi-particle (MP) state ΨMP
SC (NT ;N

′, N ′′) in Dirac notation

(with frequency labels now suppressed),

|ΨMP
SC (NT ;N

′, N ′′)〉 =
1

n∗
ρ
1/2
H δN ′,N ′′ |N ′〉|N ′′〉 (6.2)

+
C

1/2
BH(NT )

n∗
∆ρOD D(NT ;N

′, N ′′)
[
1− δN ′,N ′′

]
|N ′〉|N ′′〉 ,

where NT −Ncoh . N ′, N ′′ ≤ NT . The normalization n∗ will be determined later on by

the requirement that the reduced out-out density matrix be correctly normalized.

The density matrix ρMP
SC corresponding to |ΨMP

SC 〉 is given by the standard expression,

ρMP
SC (NT ;N

′, N ′′, N ′′′, N ′′′′) = |ΨMP
SC (NT ;N

′, N ′′)〉〈ΨMP
SC (NT ;N

′′′, N ′′′′)| . (6.3)

To obtain a reduced density matrix for the out-modes, we need to re-express the density
matrix on the product space |No〉 ⊗ |Ni〉. Then, ρSC,o⊗i = ρSC,o⊗i(NT ;N

′
o, N

′
i , N

′′
o , N

′′
i ) ,

where the subscripts i and o respectively label in- and out-modes. This matrix takes the
form

ρSC,o⊗i(NT ;N
′
o, N

′
i , N

′′
o , N

′′
i ) =

1

n2
∗

ρ
1/2
H ⊗ ρ

1/2
H |N ′

o〉|N ′
i〉〈N ′′

o |〈N ′′
i |

[
δN ′

o
,N ′

i
δN ′′

o
,N ′′

i
+ δN ′

o
,N ′′

i
δN ′

o
,N ′′

i

]

+
CBH(NT )

n2
∗

∆ρOD ⊗ (∆ρOD)
† ×

{

D(NT ;N
′
o, N

′
i)D(NT ;N

′′
o , N

′′
i )|N ′

o〉|N ′
i〉〈N ′′

o |〈N ′′
i |(N ′

o
6=N ′

i
, N ′′

o
6=N ′′

i
)

+ D(NT ;N
′
o, N

′′
i )D(NT ;N

′′
o , N

′
i)|N ′

o〉|N ′
i〉〈N ′′

o |〈N ′′
i |(N ′

o
6=N ′′

i
, N ′′

o
6=N ′

i
)

}

+
C

1/2
BH(NT )

n2
∗

1

2

[
∆ρOD ⊗ ρ

1/2
H + ρ

1/2
H ⊗ (∆ρOD)

†
]
×

{

D(NT ;N
′
o, N

′
i)δN ′′

o
,N ′′

i
|N ′

o〉|N ′
i〉〈N ′′

o |〈N ′′
i |N ′

o
6=N ′

i

+ D(NT ;N
′
o, N

′′
i )δN ′′

o
,N ′

i
|N ′

o〉|N ′
i〉〈N ′′

o |〈N ′′
i |N ′

o
6=N ′′

i

+ D(NT ;N
′′
o , N

′
i)δN ′

o
,N ′′

i
|N ′

o〉|N ′
i〉〈N ′′

o |〈N ′′
i |N ′′

o
6=N ′

i

+ D(NT ;N
′′
o , N

′′
i )δN ′

o
,N ′

i
|N ′

o〉|N ′
i〉〈N ′′

o |〈N ′′
i |N ′′

o
6=N ′′

i

}
, (6.4)

where ρ
1/2
H ⊗ ρ

1/2
H denotes, respectively, ρ

1/2
H (ωo′ ,−ω̃i′) ⊗ ρ

1/2
H (ωo′′ ,−ω̃i′′),

ρ
1/2
H (ωo′ ,−ω̃i′′) ⊗ ρ

1/2
H (ωo′′ ,−ω̃i′) and ∆ρOD ⊗ (∆ρOD)

† denotes, respectively,
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1
2

[
∆ρOD(ωo′ ,−ω̃i′)⊗∆ρ†OD(ωo′′ ,−ω̃i′′) + ∆ρOD(ωo′′ ,−ω̃i′′)⊗∆ρ†OD(ωo′ ,−ω̃i′)

]
,

1
2

[
∆ρOD(ωo′ ,−ω̃i′′)⊗∆ρ†OD(ωo′′ ,−ω̃i′) + ∆ρOD(ωo′′ ,−ω̃i′)⊗∆ρ†OD(ωo′ ,−ω̃i′′)

]
. The

expression 1
2

[
∆ρOD ⊗ ρ

1/2
H + ρ

1/2
H ⊗ (∆ρOD)

†
]

denotes, respectively, the follow-

ing: 1
2

[
∆ρOD(ωo′ ,−ω̃i′)⊗ ρ

1/2
H (ωo′′ ,−ω̃i′′) + ρ

1/2
H (ωo′′ ,−ω̃i′′)⊗∆ρ†OD(ωo′ ,−ω̃i′)

]
,

1
2

[
∆ρOD(ωo′ ,−ω̃i′′)⊗ ρ

1/2
H (ωo′′ ,−ω̃i′) + ρ

1/2
H (ωo′′ ,−ω̃i′)⊗∆ρ†OD(ωo′ ,−ω̃i′′)

]
,

1
2

[
∆ρOD(ωo′′ ,−ω̃i′)⊗ ρ

1/2
H (ωo′ ,−ω̃i′′) + ρ

1/2
H (ωo′ ,−ω̃i′′)⊗∆ρ†OD(ωo′′ ,−ω̃i′)

]
,

1
2

[
∆ρOD(ωo′′ ,−ω̃i′′)⊗ ρ

1/2
H (ωo′ ,−ω̃i′) + ρ

1/2
H (ωo′ ,−ω̃i′)⊗∆ρ†OD(ωo′′ ,−ω̃i′′)

]
.

The out-particle reduced density matrix is obtained by tracing over the frequencies and

particle numbers of the in-mode Hilbert space, ρSC,out = TrinρSC,o⊗i. This is a straight-

forward calculation for the Hawking part of the matrix. For the correction, it entails

computing the integral

Ib =
NT∫

NT−Ncoh(NT )

dNie
− 1

4
b

(NT−Ni)
2

N2
coh

(NT ;Ni) , (6.5)

where Ncoh(NT ;Ni) ≫ 1 allows us to treat the discrete sum as continuous and b is either

0, 1 or 2. For the terms of order C
1/2
BH , then b is 0 or 1 and, for the terms of order CBH ,

then b depends on which of the four different products of exponents is being considered in

the product of suppression factors,

1

4

[
e
− 1

4

(NT−N′

o)
2

N2
coh

(NT ;N′
o) + e

− 1
4

(NT−Ni)
2

N2
coh

(NT ;Ni)

]
×
[
e
− 1

4

(NT−N′′

o )2

N2
coh

(NT ;N′′
o ) + e

− 1
4

(NT−Ni)
2

N2
coh

(NT ;Ni)

]
. (6.6)

We will consider, for the most part, “typical” times t such that tcoh < t < τBH − tcoh.

Then the dependence on the second argument in Ncoh(NT ;Ni) is weak, Ncoh(NT ;Ni) ≃
Ncoh(NT ) ≡ Ncoh(NT ;NT ) for the relevant values of Ni. This is made clear in the next

paragraph.

It is obvious that Ib=0 = Ncoh(NT ). For b = 1, 2, we note that CBH(NT ) is ap-

proximately constant over one interval of coherence time. This is because CBH(NT ) ≃
[SBH(0)−NT ]

−1 [51], from which it follows that the change of CBH over a coherence time

is small, ∆CBH ≃ ∂CBH
∂NT

Ncoh ≃ C2
BHNcoh ≪ 1. Consequently, the integrand in Ib=1,2 is

approximately unity over the range of integration. It can be concluded that Ib ≃ Ncoh(NT )

for b = 0, 1, 2.

It is now straightforward to evaluate the reduced density matrix,

ρSC, out(NT ;N
′
o, N

′′
o ) =

2Ncoh(NT )

n2
∗

Trin[ρH ]|N ′
o〉〈N ′′

o |δN ′

o,N
′′

o
(6.7)

+ CBH(NT )
Ncoh(NT )

2n2
∗

Trin[|∆ρOD|2] D̃(NT ;N
′
o, N

′′
o )|N ′

o〉〈N ′′
o |

+ C
1/2
BH(NT )

Ncoh(NT )

n2
∗

Trin[∆ρOD] D(NT ;N
′
o, N

′′
o )|N ′

o〉〈N ′′
o |N ′

o 6=N ′′

o
,
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where

D̃(NT ;N
′, N ′′) ≡

[
1 + e

− 1
4

[CBH (N′)(NT−N′)]2

CBH (NT )

]
×
[
1 + e

− 1
4

[CBH (N′′)(NT−N′′)]2

CBH (NT )

]
, (6.8)

D(NT ;N
′, N ′′) ≡ e

− 1
4

[CBH (N′)(NT−N′)]2

CBH (NT ) + 2 + e
− 1

4

[CBH (N′′)(NT−N′′)]2

CBH (NT ) , (6.9)

∆ρOD =
1

2

[
∆ρOD ⊗ ρ

1/2
H + ρ

1/2
H ⊗ (∆ρOD)

†
]

(6.10)

and Trin
[
ρ(ωo′ ,−ω̃i′)ρ

†(ωo′′ ,−ω̃i′′)
]

=
∞∫
0

dxρ(ωo′ ,−x)ρ†(ωo′′ ,−x). Here, ρ means any

single-pair matrix and Trin

[
ρ
1/2
H ρ

1/2
H

]
= Trin[ρH ] has been used.

To fix the normalization constant n∗ in eq. (6.7), we need to calculate the trace of

ρSC, out. We will assume the convention that the full trace over the single-pair Hawking

matrix gives unity, TroutTrin[ρH ] = 1, thus absorbing the implicit correction of order C
1/2
BH

for the diagonal (N ′ = N ′′) terms into the normalization.

The trace of the first term in ρSC, out is given by

2Ncoh(NT )

n2
∗

Trout
[
Trin[ρH ]|N ′

o〉〈N ′′
o |δN ′

o,N
′′

o

]
=

2N2
coh(NT )

n2
∗

. (6.11)

For the calculation of the trace of the correction, the relevant integral is

J =

NT∫

NT−Ncoh(NT )

dN D̃(NT ;N ;N) . (6.12)

This integral has four contributions, each of which is of the same form as Ib in eq. (6.5).

Then, by the same reasoning, J ≃ 4Ncoh. Hence,

CBH(NT )
Ncoh(NT )

2n2
∗

Trout

[
Trin[∆ρ2OD]D̃(NT ;N

′
o, N

′′
o )|N ′

o〉〈N ′′
o |
]
= γCBH(NT )

2N2
coh(NT )

n2
∗

,

(6.13)

whereby

γ ≡ TroutTrin[|∆ρOD|2] , (6.14)

with γ being a number of order unity.

Then, as the full trace of the density matrix should be unity, it follows that

n2
∗ = 2N2

coh(NT ) [1 + γCBH(NT )] . (6.15)

Our starting point for the next section is the reduced density matrix for the out-modes

with correct normalization (up to order CBH),

ρSC, out(NT ;N
′
o, N

′′
o ) =

1

Ncoh(NT )
[1− γ CBH(NT )] Trin[ρH ]|N ′

o〉〈N ′′
o |δN ′

o,N
′′

o

+
CBH(NT )

4Ncoh(NT )
Trin[|∆ρOD|2] D̃(NT ;N

′
o, N

′′
o )|N ′

o〉〈N ′′
o |

+
C

1/2
BH(NT )

2Ncoh(NT )
Trin[∆ρOD] D(NT ;N

′
o, N

′′
o )|N ′

o〉〈N ′′
o |N ′

o 6=N ′′

o

(6.16)
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7 In-Out entanglement

To determine the entanglement entropy for an approximately pure state, it is appropriate

to use the von Neumann entropy formula. Then the entanglement entropy per particle is1

Sent

Npart
= −Tr[ρ̂ ln ρ̂] , (7.1)

where, in our case, Npart = Ncoh.

For the Hawking part alone,

[Sent]H = − [1− γ CBH(NT )] TroutTrin [ρH ln ρH ]Ncoh(NT ) , (7.2)

where we have eliminated a factor of ln(Ncoh) by correcting for Gibbs’ paradox for indis-

tinguishable particles. The leading-order outcome is, of course, the expected result for a

total of Ncoh maximally entangled pairs.

7.1 In-Out entanglement for t < ttrans

What is left to resolve is the effect of the correction. Let us recall that we are considering

a “typical” BH for tcoh < t < ttrans. The extreme cases will be addressed further along.

For a matrix of the form of that in eq. (6.16), the effective perturbation parameter

is CBHNcoh ∼ C
1/2
BH ≪ 1 [52]. This is because the corrections of order C

1/2
BH are strictly

off-diagonal and so can only appear at quadratic order in tracing operations. Hence, we

can evaluate the correction to the entanglement perturbatively.

Then, to proceed, we expand out the logarithm in the von Neumann formula to linear

order in CBH and use the approximation J ≃ 4Ncoh (and its D analogue) as discussed

above. The result (again after accounting for Gibbs’ paradox) is

Sent = −TroutTrin [ρH ln ρH ]Ncoh(NT )
(
1− (γ + 1)CBH(NT )

−TroutTrin [ρH ln ρH ]

)
. (7.3)

One can observe that the entanglement of the in-out sector is still parametrically close to

maximal, Sent(NT ) ∼ Ncoh(NT ).

7.2 Qualitative analysis of the in-out entanglement for t > ttrans

Let us now remove the constraint of typicality on the age of the BH. Early times in the

evolution (t < tcoh) are well understood and need not concern us, but what about late in

the process? From the analysis in [52], we have observed that the BH evolves in typical

fashion until about one interval of coherence time before the end of evaporation. At this

point, which is what we call the transparency time ttrans, CBH starts growing rapidly from

a value of CBH(ttrans) ∼ S
−2/3
BH (0) to its value of unity for a Planck-sized BH. Moreover,

the information I begins to rapidly emerge from the BH, dI
dNT

∣∣∣
ttrans

∼ 1.

Since CBH is becoming large at such late times, it is evident that our previous per-

turbative treatment is no longer applicable. In fact, as made clear in [52], our treat-

ments already begins to break down at the transparency time. However, by this time,

1The von Neumann formula only gives the total entanglement if the particles had first been symmetrized.
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at least [NT ]max − Ncoh(ttrans) ≃ SBH(0) − Ncoh(ttrans) particles have already been ra-

diated away. So the number of Hawking particles which are yet to be emitted is about

Ncoh(ttrans) ≃ S
1/2
BH(ttrans) ∼ S

1/3
BH(0). This means that, from ttrans until the BH evaporates

completely, at most S
1/3
BH(0) entangled pairs can be created. It is quite possible that these

remaining pairs are no longer maximally entangled. However, the BH is now within the

final stage of evaporation and there is no compelling reason to believe that the late-time

horizon is cold. Any chance of forming a firewall is delayed at least until a parametrically

smal l time before the BH has finally evaporated.

Let us now consider in more detailed way the evolution of the entanglement for t >

ttrans. As already remarked upon, we cannot make precise statements as to what transpires

at times later than ttrans. In particular (and as discussed in [52]), we do not know the precise

expression for the coherence scale Ncoh(NT ;N
′) in this regime.

On the other hand, contrary to our previous out-out analysis, the precise value of

the coherence scale is not particularly relevant to the in-out sector at late times. This

is because the number of remaining coherent pairs Npairs cannot be larger than the total

number of Hawking particles remaining to be emitted, and so Npairs is no longer set by the

coherence scale but rather Npairs(NT ) = [NT ]max−NT . We find this number to be smaller

than the coherence scale, Npairs(NT ) < Ncoh(NT ;N
′), for t > ttrans. This follows from the

qualitative estimates in [52], where Ncoh(NT ;N
′) was found to be a monotonically growing

quantity after the transparency time. The only exception being N ′ ≃ NT ≃ Ntrans; in

which case, Ncoh and Npairs are parametrically similar.

During these late times, CBH(NT ) is becoming large and will eventually approach unity

as the BH tends toward Planckian dimensions. As a consequence, any of the exponential

suppression factors (e.g., the first one in eq. (6.8)) becomes like a theta or Heaviside func-

tion, as the numerator of the exponent [CBH(N ′)(NT −N ′)]2 is a number of order unity

for all choices of N ′ when NT is approaching its maximum value.

In light of the above, the reduced density matrix for the out-modes simplifies at

late times,

ρSC, out(NT ;N
′
o, N

′′
o ) =

1

Npairs(NT )
Trin[ρH ]|N ′

o〉〈N ′′
o |δN ′

o,N
′′

o

+
2

Npairs(NT )
C

1/2
BH(NT )Trin[∆ρOD]|N ′

o〉〈N ′′
o |N ′′

o 6=N ′

o

+O[CBH ] , (7.4)

with CBH now regarded as a number that is still small (relative to unity) but large enough

to satisfy CBH ≫ N−1
coh.

The “correction” part of the matrix seems to become more important and eventually

would seem dominate the diagonal part. This is because the Hawking part is diagonal with

Npairs entries, whereas the correction is a nearly uniform matrix with N2
pairs − Npairs ≫

Npairs entries. However, notice that the off-diagonal part can only appear quadratically

when a trace of some operator is evaluated. And so the correction it makes to the entropy

or other physical quantities is actually suppressed by a power of CBH < 1 with respect

to the diagonal contribution until such time as the BH approaches Planckian dimensions.

– 20 –



J
H
E
P
0
6
(
2
0
1
4
)
0
5
7

Hence, we can expect the previous (early-time) calculation to remain roughly valid at least

until the BH has shrunk past its regime of semiclassical validity. We can then conclude

that, even at late times, Sent ∼ Npairs and the in-out entanglement remains parametrically

close to maximal, while monotonically decreasing in time in the same way that Npairs does.

As already emphasized, these arguments are qualitative. It is, however, worthwhile to

remember that the late-time horizon region can not necessarily be expected to be similar

to the vacuum, contrary to our expectations at earlier times. Hence, our overall argument

does not hinge on the exact fate of the in-out sector at these final stages.

7.3 Summary of the evolution of entanglement entropy and released informa-

tion

Let us summarize the dependence of the in-out entanglement on time. For t < tcoh the

entanglement entropy increases linearly with the number of emitted Hawking particles.

For tcoh < t < ttrans, the entanglement entropy is equal to Ncoh, which is a very slowly

decreasing function of the number of emitted particles and can then be approximated by

a constant. After ttrans, the entanglement entropy decreases to zero. We have argued that

this decrease is linear in the number of particles that are yet to be emitted.

The following equation summarizes the different dependencies of the entanglement

entropy:

Sent(NT ) ∼





NT 0 ≤ NT ≤ Ncoh

Ncoh ∼ √
N −NT Ncoh ≤ NT ≤ N −N2/3

N −NT N −N2/3 ≤ NT ≤ N .

(7.5)

Here, we have denoted by N the total number of Hawking particles emitted during the

lifetime of the BH, N = [NT ]max ≃ SBH(0). (This N should not to be confused with the

argument of Ncoh.)

For comparison, we also recall how Sent evolves for the Page model [37, 38],

SPage
ent (NT ) ∼

{
NT 0 ≤ NT ≤ N/2

N −NT N/2 ≤ NT ≤ N .
(7.6)

Let us further recall how the released information I depends on the number of emitted

particles, as calculated in [52],

I(NT ) ∼





NT
1

(N−NT )1/2
NT ≪ N −N2/3

NT
N

(N−NT )3/2
NT . N −N2/3

(7.7)

and
dI

dNT
∼ 1 NT ∼ N −N2/3 . (7.8)

For comparison, the evolution of the released information for the Page model goes as

IPage(NT ) ∼
{
0 0 ≤ NT ≤ N/2

2(NT −N/2) N/2 ≤ NT ≤ N .
(7.9)
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N
N

2
N -N2�3

N

NT

N

N

2

Sent

Figure 1. Entanglement entropy Sent of the Hawking pairs, as a function of the number of emitted

Hawking particles NT . This is shown both for the Page model (thin, blue) and ours (thick, red).

The units are arbitrary. The main difference is the maximal value of the entanglement entropy,

which scales as NT for the Page model and as
√
NT for ours. The decrease in Sent starts when

dI/dNT ∼ 1.

The dependence of Sent on the number of emitted particles is shown in figure 1.

It should be emphasized that we are only considering the entanglement between Hawk-

ing modes and their negative-energy partners and not the entanglement between the Hawk-

ing modes and the rest of the interior of the BH. This is the reason that the graph in figure 1

takes the flattened form that it does. This distinction between partners and the interior

of the BH is of no consequence to Page because of his indifference to the horizon. It does,

however, make a difference for us because our framework is such that it limits the number

of negative-energy partners at any given time to Ncoh ∼ S
1/2
BH ; which necessarily limits the

amount of entanglement in the same way. Physically, the semiclassical horizon is acting to

shield all but a fraction Ncoh of the matter modes.

On the other hand, the breakdown of the semiclassical picture at late times (see sub-

section 1.1 for a discussion) suggests that all the information can still be released once

the (quantum) horizon is no longer acting as a causal barrier. Some qualtitative estimates

in [52] along with eq. (7.8) are in support of this argument. We do, however, expect to put

this claim on a more rigorous level at a later time [53].

The most significant physical difference between our model and the Page model is the

incorporation (or not) of a horizon. Page basically disregards the presence of a horizon and

treats the BH evaporation in purely information-theoretic terms. He assumes that the off-

diagonal elements of the density matrix are distributed randomly, with strength controlled

by the dimensionality of the entire BH Hilbert space. On the other hand, our framework

is based on the presence of a semiclassical horizon. Had we treated the horizon classically,

there would be no off-diagonal elements as is the case in Hawking’s calculation. But,

because our horizon is semiclassical, not all the off-diagonal elements are vanishing. The

number of non-vanishing off-diagonal elements is controlled by the wavefunction of the BH;

specifically, the width of the Gaussian. The density matrix and its physical consequences
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then follows. This leads us to a density matrix with many zeroes, which would be viewed

by Page as a very atypical matrix.

Because Page essentially ignores the horizon, the distinction between partners and

interior matter is of no consequence to his model. It does, however, make a difference for

us because our framework is such that it limits the number of negative-energy partners at

any given time to Ncoh ∼ S
1/2
BH , which necessarily limits the amount of entanglement in the

same way. This upper bound on the entanglement explains the flattening of the red curve

in figure 1. Physically, the semiclassical horizon is acting to shield all but a fraction Ncoh

of the matter modes. This being a consequence of our choice of BH wavefunction, which

determines the transparency of the horizon.

8 Discussion

We have shown that the in-out sector of the BH radiation is close to maximally entangled;

at least until the transparency time, when our perturbative analysis begins to break down.

Additionally, the entanglement between in- and out-modes is limited to a maximal value

of Ncoh ≃ √
SBH that is parametrically smaller than the total number of emitted Hawking

particles. This limitation can be attributed to the regular recycling of partnered modes over

a time scale that is set by the quantum width of the wavefunction for the evaporating BH.

The limited dimensionality of the boundary region between the interior and exterior

Hilbert spaces is central. This restriction can be attributed to incorporating both the

wavefunction for the BH geometry and the back-reaction on the BH due to the emitted

particles. When t < ttrans, the semiclassical corrections to the in-out density matrix are

insignificant — the Hawking pairs are highly entangled with or without them. On the other

hand, these corrections enable information to be transferred to the outgoing radiation via

the off-diagonal corrections to the Hawking matrix. Their presence follows from treating

the BH consistently as a quantum object.

Let us recall [52], where qualitative considerations were used to conclude that the

outgoing radiation starts to purify at the same late time when the entanglement entropy is

beginning to decrease. The implication for our framework is that, for times earlier than the

transparency time, any duplication of entanglement or purity [32, 33] is avoided without

the need to modify the rules of quantum mechanics. Hence, our framework is immune

against the formation of firewalls and horizons are cold, at least until one coherence time

before the end of evaporation.

Let us reconsider the Page model and its associated firewall. The implicit assumption

in this model is that the number of strongly entangled pairs becomes of order SBH by the

Page time [37, 38]. But this is also supposed to be the time when information begins to

rapidly emerge from the BH, and one encounters the inevitable conflict of interests. The

transfer of information means the transfer of entanglement from the partnered pairs to

the late-early radiation. One is then faced with the prospect of a firewall or, otherwise, a

means for circumventing the rule about monogamy of entanglement. As just mentioned,

in our model of BH evaporation, this issue is postponed until a much later time, when the

BH stops being semiclassical. In our model, the interior system that purifies the outgoing
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radiation has an additional component, the BH wavefunction. This additional component

is likely representing the collapsed matter from an in-falling observer’s perspective.

Furthermore, even for our model, the in-out entanglement does stray from its maximal

value by small amounts. This result suggests the interesting possibility that some part

of the firewall idea still survives. Very old BHs do seem to have different properties than

younger ones. The question then arises: How much of a deviation is needed before a firewall

forms? A related question is how strongly did our conclusions depend on the precise choice

for the wavefunction and on our model of back-reaction. We hope to make these questions

more precise and provide quantitative answers in a future article [55].
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