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ABSTRACT: We investigate orbifold and smooth Calabi-Yau compactifications of the non-
supersymmetric heterotic SO(16)xSO(16) string. We focus on such Calabi-Yau back-
grounds in order to recycle commonly employed techniques, like index theorems and coho-
mology theory, to determine both the fermionic and bosonic 4D spectra. We argue that
the N=0 theory never leads to tachyons on smooth Calabi-Yaus in the large volume ap-
proximation. As twisted tachyons may arise on certain singular orbifolds, we conjecture
that such tachyonic states are lifted in the full blow-up. We perform model searches on
selected orbifold geometries. In particular, we construct an explicit example of a Standard
Model-like theory with three generations and a single Higgs field.
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1 Introduction

The central emphasis in the heterotic string phenomenology community during the last 20
years or so has been on the construction of supersymmetric Standard Model(MSSM)-like
models from string theory. Heterotic model building on smooth Calabi-Yau spaces with
non-Abelian vector bundles [1] has resulted in MSSM-like models [2] with possible super-
symmetry breaking built in [3-5]. More recently, similar models have been constructed
using line bundles instead [6-8]. Heterotic orbifolds [9-12] may also be used to construct
MSSM-like models, see e.g. [13, 14]. In refs. [15-18] MSSM-like models have been assem-
bled on the toroidal Zg 11 orbifold. Similar searches have been performed on the Zo X Z4



orbifold [19], Z;2-1 orbifold [20, 21] and Zg orbifolds [22]. For a comprehensive overview of
model building on various orbifold geometries see [23]. Essentially all these orbifold mod-
els break the EgxEg gauge group of the heterotic string directly down to the SM gauge
group. To avoid that the hypercharge will be broken if such models are fully resolved [24],
one may break the SU(5) Grand Unified (GUT) gauge group by a non-local freely acting
Wilson line [25, 26].

In this work we investigate the construction of non-supersymmetric models in string
theory. The main motivation for this work is that so far the LHC or any other experiment
has not found any hint for the existence of supersymmetry in particle physics. Currently,
the bound on the supersymmetry breaking is of the order of 1 TeV [27]. This means that
one of the initial motivations for supersymmetry, namely to solve the hierarchy problem,
becomes less convincing as one is still left with a sizable hierarchy between the Higgs mass
and the supersymmetry breaking scale. Moreover, the MSSM has over 120 free parameters
most of which are associated with soft-supersymmetry breaking masses and couplings.
The present work originated from the following questions:! suppose that the world is not
supersymmetric up to the Planck scale or beyond, can we still use string theory as a
framework to study particle physics? If so, how close could we get to the Standard Model?
In this scenario, we take the most extreme point of view: we assume that target space
supersymmetry does not even exist at the Planck / string scale.

When one considers non-supersymmetric models from string theory there are various
potentially problematic issues. The most prominent ones are the following:

i.) The spectrum might contain level-matched tachyons.

ii.) One loses practical computational control since one now has to study compactifications
on generic six dimensional internal manifolds.

iii.) The Higgs mass will be quadratically dependent on the high scale.
iv.) In general one expects a cosmological constant of the order of the string scale.

v.) Associated with the cosmological constant, a destabilizing dilaton tadpole is gener-
ated.

In this work we will only aim to investigate the first two problems in detail. Even though
the latter issues are very serious, they are only considered in the outlook at the end of
this work, where the main hurdles and some previous efforts to tackle them are discussed.
It is nonetheless important to stress that solving them is a crucial challenge not only
for non-supersymmetric string constructions, but also for field-theoretical descriptions of
physics beyond the Standard Model, where e.g. the cosmological constant even including
supersymmetry requires more compelling explanations.

In the past there have been various works addressing non-supersymmetric models from
string theory. Dienes [28, 29] performs some statistical scan of non-supersymmetric free-
fermion models [30] to give some idea of the scattering of the value of the cosmological

nspired by a discussion with Brent Nelson at ICTP.



Fields Space-time interpretation

Gy, Bun,® | Graviton, Kalb-Ramond 2-form, Dilaton

Ay SO(16)xSO(16) Gauge fields
v, Spinors in the (128,1) + (1,128)
v_ Cospinors in the (16, 16)

Table 1. Massless spectrum of the ten-dimensional N=0, SO(16)xSO(16) heterotic theory. Bosons
and fermions are indicated with gray and white background, respectively, in this and most subse-
quent tables.

constant. The connection between non-supersymmetric free fermionic models [31], the
Hotava-Witten model and other dualities have been studied in [32, 33]. A large set of
non-supersymmetric models in four dimensions were constructed using a covariant lat-
tice approach [34, 35]. A strategy based on the inclusion of NS5-branes was applied
to obtain a class of non-supersymmetric heterotic flux vacua with torsion [36]. Finally,
non-supersymmetric tachyon-free type-I/II orientifold models [37—43] have also been con-
structed as rational conformal field theories [44, 45].

In order to better understand the four-dimensional non-supersymmetric theories
emerging from string theory, we take as our starting point the ten dimensional non-
supersymmetric SO(16)xSO(16) theory [10, 46, 47]; its low energy spectrum is given in
table 1. We use two formulations of this theory: one which is inspired by a fermionic
description with non-trivial torsion phases between the three spin structures, while the
other uses a Zy orbifolding of a lattice formulation of the heterotic string. Narain com-
pactification [48, 49] of this theory has been considered in refs. [50, 51]. More general
compactifications of this theory were investigated in ref. [52] implementing the Fischler-
Susskind mechanism [53, 54]. In this work we compactify this non-supersymmetric theory
on Calabi- Yau spaces, such as orbifolds [9] and smooth Calabi-Yau manifolds [1] with (a dis-
crete subgroup of) SU(3) holonomy. To the best of our knowledge, on non-supersymmetric
(a)symmetric orbifolds have been considered in the past in refs. [55-58].

Given that we are investigating non-supersymmetric models, there seems to be no need
to consider string backgrounds that would preserve some supersymmetry in principle. How-
ever, we think it is advantageous to nevertheless consider — would be — supersymmetry-
preserving geometries for various reasons. Firstly, in the fermionic formulation without
further torsion phases mixing the orbifold and spin structures, one finds the restriction
to supersymmetric twists. Secondly, we shall be able to recycle many of the techniques
developed for smooth Calabi-Yau manifolds, to compute the four dimensional spectra of
both fermions and bosons obtained from the compactification of the non-supersymmetric
theory. Finally, even just using the standard embedding we find an SO(10) GUT theory
with fermions living in the spinor 16 representation and scalars in the 10, which may be
considered as a sign of the phenomenological potential of these string constructions.



Paper overview. In section 2 we review two descriptions of the non-supersymmetric
heterotic SO(16)xSO(16) string. Next, we consider compactification of this theory on
orbifolds that would themselves preserve N=1 supersymmetry in section 3. We illustrate
such orbifold constructions by some specific tachyon-free Zs orbifold models and discuss a
tachyonic Zg.1 model. In section 4 we exploit that our backgrounds still preserve supersym-
metry to compute the spectra of both fermionic and bosonic zero modes. We argue that
no tachyons arise on smooth Calabi-Yau manifolds and illustrate this fact by considering
the blow-up of a tachyonic Zg.; model. Section 5 is devoted to model scans and searches
for non-supersymmetric Standard Model-like models. Finally, in section 6 we recapitulate
our main findings and give an outlook on open issues. Appendix A gives details of the
partition functions and lattices used in the text.

2 Non-supersymmetric heterotic string

2.1 The standard N=1 supersymmetric EgxEg string

The N=1 supersymmetric 10D heterotic EgxEg string theory [59, 60] has three Zy twists
Yio+1) =i yi(o), Mo+1) =2 (o), Me+1)=e"EN(©), (21)

in the fermionic construction. Here 4%, i = 0,1,2,3, are complex right-moving fermions
and )\{,2, I =1,...8, two sets of complex left-moving fermions. At the one-loop level we
have similar boundary conditions for ¢ — ¢ — 7 which we label by s’,#',4/. In total this
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leads to = 64 terms in the one-loop partition function
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where the sum is over all spin structures s,s’,¢,t',u,u’ = 0,1. (The sign in front of
this expression ensures that target space bosons / fermions give a positive / negative
contribution to the full partition function.) The bosonic and fermionic partition functions,
Z7, and Zd, are defined in (A.4) and (A.8) of appendix A. This partition function is modular
invariant and leads to a tachyon-free spectrum. At the massless level one finds the well-
known spectrum of N=1 supergravity coupled to EgxEg super Yang-Mills theory in ten
dimensions.

2.2 Non-supersymmetric generalized torsion phases

Modular invariance and absence of tachyons do not fix the theory with three Zo twists
uniquely [47]: one can introduce various modular invariant phases in the partition func-
tion above. Most of them lead to trivial flippings of the chiralities of the various spinor
representations. However, up to such equivalences there is one further modular invariant
and tachyon-free partition function:

Zor (7,7) = —fZT 73 (. 7) - Zu L J (7)28[:2,68](7)-28{



obtained from the EgxEg partition function by introducing a generalized torsion phase
Tiorsion given by T' = Tiorsion * Tehiral With
Thorsion = (_)st’—s’t(_)su’—s’u(_)tu’—t’u7 Topiva] = _(_)s’s+s’+s(_)t’t+t’+t(_)u’u+u’+u )
(2.4)
In addition, we have introduced the phase Tcpira1 which simply interchanges the spinor with
cospinor lattices for later convenience.

The partition function (2.3) encodes a fundamentally different theory from the super-
symmetric EgxEg theory. In particular, it is not supersymmetric as the massless spectrum,
given in table 1, clearly shows: it contains the bosonic states of the supergravity multiplet,
but not its gravitino and dilatino. The gauge group is SO(16)xSO(16) rather than EgxEg,
but without gauginos corresponding to this gauge group. Instead, we encounter ten dimen-
sional chiral fermions in the spinor representations of both of these SO(16) gauge groups,
and a chiral fermion of the opposite chirality in the bi-fundamental representation of both.

Supersymmetry is neither present at the massless level nor in the full tower of string
excitations. To see this very clearly it is instructive to write the full fermionic partition func-
tion in a lattice formulation. For each of the eight sectors (s,t,u = 0, 1) one can determine
to which lattice it is associated. In table 2 we have listed the lattices for these eight sectors
for both the supersymmetric EgxEg theory and the non-supersymmetric SO(16)xSO(16)
theory. Here we see a couple of crucial differences between the two theories: in the super-
symmetric theory only a restricted set of lattices appears. Concretely, on the right-moving
side we either encounter the spinor S, or vectorVy lattices, while on the left-moving side
only the SO(16) root Rg and spinor Sg lattices. In the non-supersymmetric theory all four
possible lattices appear on both the left- and right-moving side. Moreover, the direct sum
of all eight lattices in the supersymmetric case can be factorized as I'y @ Eg ® Eg (using the
definitions in table 11) which reflects at all mass levels that the theory is supersymmetric
and has the EgxEg symmetry structure. Clearly, such a factorization is impossible for the
non-supersymmetric theory.

2.3 Lattice formulation of the non-supersymmetric heterotic string

In the so-called bosonic or lattice formulation, the supersymmetric EgxEg string can be
written as

Zyp(1,7) = Z§(7,7) - Tu(7) - T16(7) , (2.5)

using the lattice partition functions defined in (A.12) and (A.13). The N=0 theory can be
obtained by considering a (freely acting) Zso orbifold of the supersymmetric theory [10, 46]
with twist vy and shift V{y conveniently chosen as

v =(0,1%), Vo= (1,07)(-1,07) . (2.6)

Even though this corresponds to a trivial 27 space-time twist on three R? planes simulta-
neously, it does not act trivially on the fermions of the theory [61]. The modular invariant
partition function associated to this orbifolding reads

Bus(r.7) = 3 5 28 T || ()T [ 0] (). (27)

7 l'vo U'Vp



Sector Lattices in the theory

(s,t,u) N=1, EgxEg N=0, SO(16)xSO(16)
(1,1,1) | V42 Rg ® Rg V,; ® Rg ® Rg
(1,0,0) | V4 ® Sg ® Sg V, ® Sg ® Sg
(1,0,1) V4 ® Ss ® Rg Ry ® Cs ® Vg
(1,1,0) | V4 ® Rg ® Sg Ry ® Vg ® Cs
(0,0,1) S; ® Sg ® Rg S; ® Sg ® Rg
(0,1,0) S; ® Rg ® Sg S; ® Rg ® Sg
(0,1,1) S; ® Rg ® Rg Cys® Vg ® Vg
(0,0,0) Ss ® Sg ® Sy C; ® Cs ® Cg

Table 2. The different lattices that occur in the eight different sectors of the supersymmetric Eg X Eg
and the non-symmetric SO(16)xSO(16) heterotic string theories. The white / gray background
entries in the last column correspond to the untwisted / twisted sectors of the supersymmetry
breaking twist. (The definition of the lattices can be found in table 11 in appendix A.)

Since both vy and Vj are vectors that only contain integers, they can be removed from
the powers of ¢ and ¢ by shifting the internal summation vectors ny € Z* and ng, ng € 78
in these lattice partition functions (A.12) and (A.13) with (A.3) over appropriate integral
vectors. However, this gives rise to additional phases from the factors that implement
the Zoy orbifold projection. Hence, the Zs summation variables only appear in such phase
factors. The sum over I’ implements a projection, which leads to a unique solution for
the other summation variable [. After some algebra one can indeed rewrite this partition
function in the same form as in (2.3) with the torsion phases (2.4).2

In table 2 we have indicated the effects of the Zy twist on the lattices which define the
supersymmetric EgxEg theory: the entries with gray background in the second column of
this table indicate the lattices which are projected out by this Zy twist. The remaining en-
tries with white background thus define the untwisted sectors in the N=0, SO(16)xSO(16)
theory. The twisted sector lattices, which replace the projected out lattices of the N=1
theory, are indicated by the gray entries in the last column. To summarize, the white/gray
background entries in the last column of table 2 correspond to the untwisted /twisted sectors
(I =0,1) of the supersymmetry breaking twist (2.6).

3 Orbifold compactifications

In the previous section we recalled two equivalent descriptions of the non-supersymmetric
heterotic SO(16)xSO(16) string in ten dimensions. In this section we investigate orbifold
compactifications [9, 10, 62, 63] of this non-supersymmetric theory. (For related work see

2Applying an analogous twist to the supersymmetric Spin(32)/Z theory instead, the same non-
supersymmetric heterotic theory can be obtained [46].



e.g. refs. [55-58].) To have an exact string description, we will extend either of these formu-
lations to include the effects of orbifolding, i.e. the orbifold projection and the introduction
of twisted states. Even though the theory in ten dimensions is non-supersymmetric, we will
consider its compactification on Calabi-Yau orbifolds only. In the general description we
present here we will only focus on T /Zy orbifolds; extensions to Zys X Zy are possible and
will be considered in the model searches we discuss later in this work. We first describe non-
compact orbifolds for simplicity. The extension to toroidal orbifolds with possible Wilson
lines that distinguish various fixed points is in principle straightforward though notationally
tedious; in subsection 3.3 we quote the results relevant for spectra computations.

3.1 Non-supersymmetric orbifolds in the generalized-torsion formalism

The Zy orbifold action is encoded in the following boundary conditions

Xi(o+1) = 74 Xi(o), 4i(o +1) = 2GR (0), N (o +1) = RN (o),
(3.1)
with a = 1,2 (¢; = t,ts = u when comparing with (2.1)), I =1,...,8 and k=0,...N — 1
labels the various orbifold sectors. Here X*, i =0, 1,2, 3, are complexified coordinates and
1" their supersymmetric partners. The index i = 0 refers to the two light-cone uncompact-
ified Minkowski directions. The action of the orbifold in the internal space is defined by v,
whereas the shift V = (Vl; Vg) encodes its embedding into the gauge degrees of freedom.
We restrict ourselves to twists that would preserve at least N=1 supersymmetry in
compactifications of the N=1 heterotic strings, i.e. we take?

v = (’1)1,’[)2,—1)1—?)2), Nvi=Nwv =0, (3.2)

such that the sum of the entries of v is identically zero. (= means equal modulo integers.)
For now we assume that the orbifold twist acts non-trivially on all three complex internal
directions simultaneously, i.e. vq2,v1 4+ v2 # 0 modulo integers.

Partition function. The full partition function for the orbifolded SO(16)xSO(16) the-
ory can be determined from the representation of the partition function given in (2.3) by
including the appropriate shifts of the characteristics to incorporate the modified boundary
conditions due to the orbifolding. A choice for the orbifolded partition function is given by

— 1 _ kv = Seq+kv ~ ta eg+kV,
Ziern (7, 7) == 2T+ Z3(7.7) - L [k} (r, T)-z4[§e4+klv] (n)- I 2s [t,jeng } ().
a=1,2 2 a

(3.3)
for (k, k") # 0. The partition function in the (k, k") = 0 sector is just 1/N times (2.3).
By construction, this orbifold partition function is modular invariant. However, we

need to ensure that the partition function respects the periodicities of the various labels,
ie. s ~s+2 tg ~tys+2 and k ~ kK + N and their primed versions. Because the
additional torsion phase T of the N=0 theory respects these periodicities, the conditions

3We do not indicate the component of v in the four dimensional Minkowskian directions as it is simply
Z€ro.



on the orbifold boundaries encoded in v and V' = (Vj; V3) are the same as for orbifolds of
the supersymmetric EgxEg theory. In detail, the three periodicities of the spin-structures
are respected provided that

1 1 1
5 elv= 5 el = 5 eV =0. (3.4a)
For the periodicity of k£ one must require that
N N N N
Ze{vzzegmzzengo, 5(1}2—‘/2)50. (3.4b)

Mass spectrum. Given the partition function for the various sectors, it is straightfor-
ward to determine the mass spectrum of the theory and in particular the massless states.
One reads off the right- or left-moving masses Mz /R by making the g or ¢ expansion of the
partition function. The right-moving mass is given by

1 5 1 s—1

M,%:ipsh—§+5ck+NR, P =n+—5

es+ kv, neZ'. (3.5)
Here d¢;, is the familiar vacuum shift
1 ~T ~
deg, = 50k (€4 — Tg) (3.6)

with ¥ = kv such that all the entries fulfill 0 < (9); < 1. Furthermore, the right-moving
number operator N encodes possible right-moving oscillator excitations. The left-moving
mass reads

tqo—1

M? es+kVy, ng€Z8, (3.7)

1
=5 P3—1+46c+Ny, Py = (P;P), P,=ne+
where N, denotes possible left-moving oscillators.

Only (massless) states that survive all generalized GSO and orbifold projections are
part of the spectrum. The GSO projections are modified in the N=0 theory:

1 - 1

§€4n:§(t1—|—t2—1), (38)
and
1 1 k 1 1 k
ieBTmE§(s+t1+t2+568TV1—1>, iegn255<s+t1+t2+§eg‘/§—l). (3.9)

In particular we see that in this description the GSO projections depend on the sectors
of the non-symmetric theory one is considering. Because of the constraints on the input
parameters given in (3.4a) these are indeed Zy projection conditions. Finally, the orbifold

projection is the conventional one:

VTPsh - vash

t t
(v? = V?) - —168TV1 — feng . (3.10)



3.2 Non-supersymmetric orbifolds in the lattice formulation

Alternatively, one can describe orbifoldings of the N=0 theory in the lattice formulation.

Partition function. In this language the orbifolded version of the partition func-
tion (2.7) becomes

kv

1
Zlatt(Ta ?) = ﬁ Z ZQQC(Ta ?) ’ Zé( |:k’v

l'vo+kv U'Vo+k'V

}(TaT)'IA‘zL[

l k =~ IVo+kV
vo+v](7_).r6[ o+

] (1), (3.11)

using the notation defined in (A.14), where [ = 0,1 and as usual k =0,..., N — 1. In this
formulation the conditions for modular invariance and proper orbifold and GSO projec-

tions read N
NV,cEs, a=1,2, 5(1/2—@2)5‘/0.1/50. (3.12)

These conditions are different and generically weaker than those we obtained in the other
description. This can be understood as follows: in the lattice formulation the projections
that define the space-time lattice I'y and gauge lattice I'1g are not modified. Hence, one
does not have to impose additional constraints to ensure that these projections are well-
defined. Even though these two descriptions are not equivalent, they are related to each
other by additional generalized discrete torsion phase

Trormeslatt = e2mi %efv(ks’fk’s) e~ 2mi ieng(kt’fk’t) e~ 2mi %eng(ku’fk’u) e2mi kelyv ) (313)
Clearly, these phases only define proper Zs GSO and Zy orbifold projections and the last
factor drops out when the conditions (3.4) are fulfilled.

Since the conditions in the lattice formulation are weaker, we will primarily use the
lattice formulation for our model searches. In the cases where both formulations are equiv-
alent, the fermionic formulation provides important consistency checks.

Mass spectrum. An additional advantage of the lattice formulation is that the equa-
tions that define the massless spectra are essentially the same as those in orbifolds of the
supersymmetric theory. Concretely, the right- and left-moving mass are given by

1 1 1
Mézipgh—§+5c+NR, M§:§P§1—1+5c+NL, (3.14)
where
s—1
Psh =N+ eq + vy, vg=1lvg+ kv, (3.15a)
to — 1
Py = (Pi;P), Po=mn,+ es + Vya s Vo=1Vo+kV, (3.15b)

where the label g = (I, k) refers to the (I, k)-sector of the string state. The integral vectors

n € Z* and n, € 78 are constrained by the standard GSO projections: %nTe4 =

S
2

%naTeg = 0. This spectrum is subject to the projection conditions:
T, _vTp _ Ll 107 T, _vTp _ Ly 1log
vy Psh — Vg Pan = 5 vy Vg 5 Vo Vg, v psh — VP = 5 v vy 5 Viwg . (3.16)



3.3 Extension to toroidal orbifolds with Wilson lines

The mass equations (3.14) and projection conditions (3.16) can be readily extended to
compact toroidal orbifolds including Wilson lines: as described above in detail the non-
supersymmetric theory can be thought of as a specific Zs orbifold and the extension of
non-compact to compact orbifolds is well-known, see e.g. [10]. Therefore, we only quote
the crucial modifications here.

In the presence of Wilson lines A“, the states localized at the different fixed points,
labeled by the integers m,,, are still characterized by solutions to the mass equations (3.14)
but with the Vj in the shifted momenta Py, in (3.15b) modified to V; = I Vo +k V +mq A%,
where the label g = (I, k, my) now also indicates at which fixed point (labeled by my)
the state is localized. The orbifold projection conditions for each constructed state can be
compactly stated as

1
UZ;/ DPsh — V;; P, = 3 v§ Vg 5 ng; Vg s (3.17)

where the label ¢’ = (I',¥',m],) adopts some adequate integer values for projection con-

ditions (for a detailed explanation, see e.g. [64]). In addition, we amend (3.12) with the
standard modular invariance conditions between the various Wilson lines, as well as

Vo-Aa =0, a=1,...,6. (3.18)
We will use these expressions in the model searches discussed in section 5.

Example: tachyon-free T®/Z3 orbifold models. We consider simple models from
T°/Z3 Calabi-Yau orbifold of the N=0 theory to illustrate the general features of orbifolds
of the non-supersymmetric theory. The Zs orbifold has twist v = %(1, 1,—2), leading to
the modular invariance condition

V2 (3.19)

DO o
Il
M| o
S]

[\o}

I
_

In table 3 we note some sample models resulting from solutions to this equation. In
this table we give the emerging gauge group and the bosonic and fermionic spectrum. The
fermionic component of these spectra are free of non-Abelian anomalies and there is always
a single anomalous U(1) which is universal, i.e. it satisfies [65]

1 5 1
— tr = —1tr = —
24 Qanom Gtgnom anom 2tj2

tr (QanomQ?’) =tr (g(Gz) Qanom) y (320)
where Qanom = tl,om Hr is the anomalous U(1), Q; = tJI- Hp possible additional U(1)
generators, and ¢(G;) is the Dynkin index of the corresponding representations w.r.t. the
non-Abelian gauge group factor G;.* We use this equation as a consistency check for all
the non-supersymmetric four dimensional models we generate in this work.

4Our conventions are such that £ = 1/2 for the fundamental representation of G; = SU(N).

,10,



Orbifold shift V' Massless spectrum on orbifold:

Gauge group G chiral fermions / = complex bosons
1(0,1%, -2,0%) (0%) 3(3,1;16)+3(3,16;1)+27(1,16;1)+(1,16;1)+(1,16;1)
+(1;128)+(1,10;16)+27(1;16)
U(3)xS0(10)xSO(16)’ 81(3,1;1)+3(3,1;1)+3(3,10;1)+-27(1;1)+27(1,10; 1)
1(1°,0%)(1%,0%) 3(6,2-;1)4+3(1;6,2_)+3(15,24;1)+3(1;15,2,)+3(6,1;6,1)+

3(1,4;6,1)+3(6,1;1,4)+(20,2_;1)+(1;20,2_)+(1,4;1,4)+
29(1;1,24)+29(1,24;1)4+(6,1;6,1)+(6,1;6,1)+27(1,2_;1,2_)
U(6)xSO(4)xU(6)’xSO(4)’ | 3(15,1;1)+3(1;15,1)+3(6,4;1)+3(1;6,4)+27(1,24;1,24)+27(1;1)

1(1%)(1*,0") 3(8;1,8.)+3(1;1,85)+3(1;4,8,)+3(28;1)+3(8;4,1)+(70; 1)
+(1;6,8,)+27(1;1,6)+81(1;1)+3(1;1)+(8;4,1)+(8;4,1)
U(8)xU(4)’xSO(8)’ 3(28;1)+3(1;6,1)+3(1;4,8.)+27(1;1,8,)+27(1; 1)

Table 3. Massless spectra of some T°/Zs sample orbifold models with N=0. We use the no-
tation 2,  to indicate the fundamental representations of the two SU(2) factors in SO(4) =
SU(2)+xSU(2)—_. Further, (1;1) denotes a singlet under all non-Abelian gauge factors.

3.4 Tachyons in twisted sectors

In the ten dimensional theories the right-mover could become tachyonic if its weight comes
from the root lattice. In the N=0 theory this happens in the Zo twisted sectors, but
the left-mover side does not allow to level-match this tachyon as its underlying lattice is
Vs ® Cg @ Cg ® Vg which leads only to massive states. However, when we compactify on
toroidal orbifolds, this is no longer the case, i.e. there can be shift vectors which shift the
lattice of the left-movers such that tachyonic level-matching can be achieved.

Let us develop some criterion to determine from which sector tachyonic levels for the
right movers could arise in a given geometry. Since the untwisted sectors are obtained
by projections on the ten-dimensional spectrum, they are guaranteed to be free of level-
matched tachyons. Hence, tachyons can only arise in twisted sectors. We consider a
twisted sector N 5 k # 0 where the twist has the form provided in (3.2) except that now
we allow for zero entries. In the sectors where pg, comes from the shifted vector, spinor
or cospinor lattice, the mass equation (3.5) implies that the lightest states are precisely
massless. However, if the shifted momentum comes from the 10D root lattice, tachyonic
right movers may appear. The properties of these tachyons is determined by the shortest
weight pg solving (3.5) for some negative value of M3. This pg, can be identified by first
noting that we can always rearrange the components so that pg, = (w1, w2, —w1 — we) with
0 €w Sw < %, by adding some root lattice vector to kv. Then, substituting this
into (3.5), we find

1
M}%:w1+w2—§ with w=Fkv+¢q, ¢€SO(8)y (3.21)
in the absence of right-moving oscillators, i.e. Np = 0. In each sector there is at most one

Psh to satisfy (3.21) with negative M]%. The CPT conjugates of these tachyonic states come
from the N — k sectors as usual with ps, — —psh.
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Orbifold Twist Tachyons Orbifold Twist Tachyons
T%)75 $(1,1,-2) | forbidden || T/Zy x Zy | £(1,-1,0); (0,1, —1) | forbidden
17%/7,4 1(1,1,-2) | forbidden || T6/Zy x Z4 | (1,—1,0); 1(0,1,—1) | possible
T®/Ze1 | §(1,1,-2) | possible ||T®/Zy x Zgy | 5(1,—1,0); £(1,1,—2) | possible
T®/Zen | ¢(1,2,-3) | possible || T®/Zy x Zg.11 | 5(1,—1,0); £(0,1,—1) | possible
)7, 1(1,2,-3) | possible ||T¢/Zsx Zs |1(1,—1,0); £(0,1,—1) | possible
T®/Zs1 | §(1,2,-3) | possible || T/Z3 x Zs |%(1,-1,0); £(0,1,—1) | possible
T®/Zsn | $(1,3,—4) | possible ||T%/ZyxZ4 |%5(1,-1,0); 1(0,1,—1) | possible
T®/Z121 | 15(1,4,—5) | possible || T9/Zg x Zs | (1,—1,0); £(0,1,—1) | possible
TC/Z10m1 %(1, 5,—6) | possible

Table 4. This table indicates for which Abelian Calabi-Yau orbifolds twisted ground state tachyons
are possible or strictly forbidden when used for compactification of the non-supersymmetric het-
erotic SO(16) xSO(16) theory. The grey background entries flag orbifolds in which additional excited
right-moving tachyons might appear in some sectors.

In table 4 we indicate which orbifolds with supersymmetric geometries have twisted
right-moving tachyons. In these cases also states with right-moving oscillators contribute
to the massless spectrum unlike in compactifications of the N=1 theory. The orbifolds
T6 /71011, T/ 7o x Zg11, T®/Z3 x Zg and T®/Zg x Zg even have tachyonic states with
right-moving oscillators.

Example: tachyonic T6/Zg_1 orbifold. We consider a Zg| orbifold on the factorized
SU(3)? lattice of the N=0 theory, with shift vector

V= é( —2,-16,-14,-2,2,6,3,11)( — 2, -5,—6,—2,6, —13,—1,19) (3.22)
and no Wilson lines. This leads to a non-Abelian gauge group SU(5)xSU(4)’xSO(4)’x
SU(2)’ together with six U(1) factors. The full spectrum is shown in table 5. The shift
allows to level-match the right moving tachyon from the (s,t,u)=(1,0, 1) sector, cf. table 2.
More precisely, this tachyon comes with multiplicity three from the three Zg 1 fixed points,
and transforms as a (1;1,1,2). This tachyon potentially leads to an instability of the
theory which would drive it away from the orbifold point and at the same time it would
break parts of the gauge group. In section 4.3 we will discuss how the blow-up of this model
removes the tachyon, showing that to lowest order in perturbation theory and o/-expansion
this model could have a stable vacuum.

4 Smooth compactifications

In the previous section we have considered compactifications of the N=0, SO(16)xSO(16)
theory on orbifolds which themselves would preserve N=1 supersymmetry when used to
compactify N=1 string theories. Motivated by these results, we now consider compactifica-
tion of the low-energy N=0 theory given in table 1 on a smooth Calabi-Yau manifold MS.
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States Gauge representations of the spectrum of a tachyonic Zg_1 orbifold
Bosonic tachyons 3(1;1,1,2)

Massless 4(10;1) + (10;1) +6(5;1) +3(5;1) + (5;1,4,1) + 2(5;1,1,2) + (5;1,1,2)
chiral fermions | +2(5;4,1,1) +12(1;4,1,1) + 18(1;4,1,1) +2(1;4,2_,2) + 2(1;4,2,,1)
+(1;6,2_,1) + (1;6,2,,1) + 12(1;1,2,,2) + 4(1;1,4,1) 4+ 36(1;1,2_,1)
+30(1;1,2,,1) +11(1;1,1,2) + 53(1; 1)

Massless 9(5;1) +2(5;1) + (10;1) + (1;1,4,2) +30(1;1,2_,1) + 12(1;6,1,1)
complex scalars +2(1;4,1,2) +2(1,4,4,1) +22(1;1,2,,1) + 10(1;1,2_,2) + 46(1;1)

Table 5. Spectrum of the Zg1 orbifold model defined by shift (3.22). This spectrum contains a
tachyon in a non-trivial representation of the gauge group.

Like for Calabi-Yau compactification of heterotic supergravity, we assume that we can at
least topologically characterize the compactification manifold by its curvature two-form
class Ry and a vector bundle corresponding to a two-form field strength F», which satisfy
the integrated Bianchi identities

/ {tt R —tr 75} =0, (4.1)
c4

for any closed four-cycle C* ¢ M°® (see e.g. [1, 66]).

4D fermionic spectrum. To compute the four dimensional chiral fermionic spectrum
on this background we can rely on conventional techniques to determine the zero modes
of the Dirac operator. In particular, for line bundle backgrounds we may employ the

multiplicity operator [67, 68]

.7-"2 1 F Ro2
L7, (Ray?) 2
N/{ 27r 2197 "\ og (4.2)
which can be thought of as a representation-dependent index. For non-Abelian embed-
dings, one has to take the trace over the resulting representations of the internal group
in which F, takes its values. More elaborate techniques using cohomology theory (see
e.g. [1-3, 69-71]) can also be applied. Compared to the conventional computation of spec-

tra in heterotic supergravity, there are two novel issues one should keep in mind in the case
of the N=0 theory:

i.) The charged chiral fermions, ¥, and ¥_ come in both ten dimensional chiralities.

ii.) These charged fermions do not come from the adjoint representation of the gauge
group in ten dimensions, but rather lie in the (128,1) + (1,128) and (16,16) for ¥
and W_, respectively.

4D bosonic spectrum. In compactifications that preserve at least N=1 supersymme-
try in four dimensions, we do not need to do any work to determine the massless scalars,
because they are always paired up with the chiral fermions in chiral multiplets. For generic
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non-supersymmetric theories, it is much more difficult to get access to the number and
properties of the massless scalars as one has to determine the zero modes of the corre-
sponding Laplace operators. However, in our case we are considering the compactification
of a non-supersymmetric theory on a Calabi-Yau manifold, which by itself does preserve
N=1 supersymmetry. This we can exploit to determine the spectrum of massless scalars
for the Calabi-Yau compactification of the N=0 theory.

Because the background we consider can preserve N=1 supersymmetry, the multiplic-
ities and representations of zero modes of the bosonic fields in ten dimensions are the
same as those one would obtain if one would consider their — non-existing — superpart-
ners on this background. For these fermionic superpartners, which are the projected out
SO(16)xSO(16) gauginos (and gravitino and dilatino), one can apply the known techniques
to compute their Dirac operator, like the representation-dependent index mentioned above.

More generally, at the lowest order in o/ and g5 expansion which we are only consid-
ering here, the complete structure of the theory of the bosons in four dimensions is as if
they were part of a supersymmetric theory. In particular, couplings are restricted and the
scalar potential is determined by hypothetical D- and F-terms which arise from a hypo-
thetical superpotential W. Hence, we expect that a lot of phenomenological aspects of such
compactifications beyond the zero mode spectra can be exploited by known techniques of
Calabi-Yau compactification.

Moreover, based on this we can argue that we will never encounter tachyons on smooth
Calabi-Yau compactifications of the N=0 theory when all curves, divisors and the manifold
as a whole are large. The Laplacian for gauge fields on a Calabi-Yau background is equal
to the Dirac operator of the corresponding gauginos squared [66]. Consequently, the eigen-
values of this Laplacian are non-negative and no tachyonic states are possible. However,
tachyons could arise for generic non-supersymmetric or singular backgrounds. In particular,
tachyonic masses may be generated by non-perturbative effects in generic Calabi-Yau com-
pactifications when volumes of certain cycles become small. Hence, this suggests that all
the tachyons encountered in certain orbifold theories should be understood as such artifects
of the blow-down limit. To illustrate and test these techniques we consider the N=0 theory
on the resolution of 7%/Z3 orbifold, Calabi-Yau standard embeddings and the resolution
of a T /7.1 orbifold model that possesses tachyons as examples in the subsections below.

4.1 Line bundle models on the resolution of T6/Z3

The resolution of the T /Z3 orbifold has been discussed in various works [67, 72, 73], hence
we only quote the necessary results briefly here. The resolution is characterized by the
following irreducible set of divisors [74—76]: inherited divisors Rj, Ra, R3 corresponding to
the three two-tori which define 7%, and exceptional divisors E.py with o, 8,7 = 1,2,3
labeling the 27 fixed points of this orbifold. Their non-vanish intersection ring is given by

E}s, = RiRyR3 =9 . (4.3)

A generic line bundle background can be expanded as

]:2 I
o = Z Waﬁ'y EOéﬂW Hr, (4'4)
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Line bundle vector W Massless spectrum in blow-up:
Gauge group G chiral fermions / = complex bosons
1(0,2%,0%)(0%) 3(3,1;16)2 4 3(3,16;1); +27(1,16;1)-3
U(3)xSO(10)xSO(16)’ 78(3,1;1)4 + 3(3,10;1)-
£(1°%,0%)(1°,0%) 3(6,2_;1)-2+3(1;6,2_)2+3(15,24;1);1+3(1;15,24 )1 +3(6,1;6,1)-
+3(6,1;1,4)-1 4+ 3(1,4;6,1) 1 +27(1,24;1) 3 +27(1; 1,24 ) =3
U(6)xSO(4)xU(6)’xSO(4)’ 3(15,1;1)2 + 3(1;15,1)2 + 3(6,4;1) -1 + 3(1;6,4) -1
1(1%)(1*,0%) 3(8;1,8,)-1 +3(1;1,8,) -2 +3(1;4,8.)1 + 3(28;1) -2
+3(8;4,1)2 + 78(1;1) -4
U(8)xU(4)’xSO(8)’ 3(28;1)2 +3(1;6,1)2 + 3(1;4,8,) -1

Table 6. Samples of line bundle models on the resolution of the T6/Zs orbifold. The complete
massless spectra of both the chiral fermions and complex bosons are given. The U(1) charge
indicated here is identified by the line bundle vector W,g, = W and relevant for the multiplicities
determined by the multiplicity operator in eq. (4.6).

where the line bundle vectors which characterize the embedding on the Cartan of the
SO(16)xSO(16) gauge group (generated by Hj), must be quantized as 1/3 times only
integers or half-integers such that the integrated Bianchi identities are satisfied, i.e.

4
for each «a, 3,7 = 1, 2,3 separately. And the multiplicity operator reads
1 2
N = 3 Z (- 3Hjy,, +1)Hw,,, (4.6)

a,Byy

where Hyy,, = WO{BWHI'

In table 6 we give the resulting gauge group and fermionic and bosonic spectrum
when we take the same line bundle vector for all exceptional cycles, i.e. W,3, = W, for
the orbifold models given in table 3. It is not difficult to confirm that all irreducible
anomalies which the chiral fermions could induce cancel out. Like for the resolutions of
supersymmetric models, we see that the spectra on the resolution and orbifold can be
matched, provided that one takes into account the consequences of the VEVs of the blow-
up modes. These blow-up modes are easily identified in the orbifold spectrum: they are
complete singlets under the non-Abelian part of the gauge group and have multiplicity of
27 due to the 27 fixed points on the T°/Z3 orbifold. The chiral fermion states can be
paired up by mass terms that involve Yukawa couplings with the blow-up modes. For the
complex scalars one can in principle always write down mass terms. However, we see that
precisely the Yukawa couplings, that would show up in the superpotential, give rise to
F-term potentials involving the blow-up modes and the states that disappeared from the
orbifold spectrum in blow-up.
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Multiplicity Complex bosons Chiral fermions
1 - (16;1)3 + (16;1)_3 + (1;128), + (10;16),
bt (105 1) + (1;1) 4 (16;1)-1 + (1;16)
h'? (10;1) 2 + (1;1), (16;1); + (1;16)3
I (End(V)) (1;1)o -

Table 7. Bosonic and fermionic spectra in Calabi-Yau compactification with standard embedding
of the N=0 theory. Right chiral fermions in four dimensions are counted as left-chiral fermions with
opposite gauge charge.

4.2 The standard embedding on Calabi-Yaus

In general Calabi-Yau compactifications of heterotic supergravity, the most prominent tech-
nique to obtain four dimensional spectra is to compute the cohomology groups of the vector
bundle in the various representations. After decomposing the ten dimensional representa-
tions into the bundle structure group and its commutant, the dimensions of the cohomology
groups are the multiplicities in four dimensions. In N=0 language, the cohomology dimen-
sions count, on the one hand, the number of complex scalar bosons which result from a
ten dimensional vector field and, on the other hand, the number of left-chiral fermions
coming from a left-chiral ten dimensional Majorana fermion. The same applies also to the
right-chiral fermions since the Calabi-Yau only cares about the “internal chirality”.

This equal treatment of vectors and left- and right-chiral spinors allows us to ap-
ply the same techniques to the charged spectrum in Calabi-Yau compactifications of the
SO(16)xSO(16) theory. For the standard embedding, the four dimensional gauge group, as
commutant of the bundle structure group SU(3), is SO(10)xU(1)xSO(16)’. The bosonic
and fermionic spectra are shown in table 7 (which can be found in [58]).

Using this spectrum we take a look at the anomalies that can arise. The SO(2N)
factors are anomaly free, so the only non-vanishing anomalies are of the form U(1)—G?
with G =U(1), SO(10), SO(16) and gravity. Furthermore, in table 7 the first universal
row is vector-like and as a result all anomalies are proportional to the Euler number of
the Calabi-Yau. In addition we find that the coefficients satisfy the anomaly universality
condition (3.20). Thus the total anomaly is always canceled by the universal axion and the
U(1) gauge factor becomes massive. It is phenomenologically very appealing that already
just using the standard embedding one gets very close to an SO(10) GUT with bosonic
10-plets as potential Higgses and fermionic 16-plets for the standard model matter families.

4.3 Resolution of a tachyonic T°/Zg.1 orbifold

From the compactification of heterotic supergravity on smooth Calabi-Yaus we know that
the tree-level scalar potential, which results from the kinetic term of ten dimensional vector
bosons is equal to a sum of positive definite terms to lowest order in o/. It furthermore
has the property that its minimum is obtained when all fields have zero VEVs. Since this
applies to the Calabi-Yau compactification of any ten dimensional Yang-Mills theory, we
expect that the N=0 theory has no tachyons in this approximation. However, in section 3.4,
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we gave an example of an orbifold model with a tree-level tachyon. The question arises if
this can be matched with a blow-up model and what happens to that tachyon.

To set up the resolution model we first give the relevant divisors and their intersec-
tions [74]. There are three exceptional divisors E , from the Zg sectors, 15 exceptional
divisors Fj ,, from the Zj3 sectors and six exceptional divisors 3, from Zs sectors, where
v =123, 4 =2,...,5and v = 2,...,6. As usual, there are inherited divisors Ry,
a =1,2,3. The non-vanishing intersection numbers are

RiRyR3 = 18, RsE3| = By B3 = —F; Fy1y=—2, R3E;, =6, (4.7)
Ei'y = Eg,l’y = Eg,l =38, Eg’,u'y =9, El,"{E%,l'y =—4.
We make the following ansatz for the bundle vectors
f
5= (Wlf Z By, + WS Z By + W4 Z Eg,y) Hr, (4.9)
gl Y v

which treats all fixed points in the same way. Then the Bianchi identities simplify to

3 4 1
Wf:W:f:i, W22:§, Wi Wy =Wo- Wy =2 (4.10)

The multiplicity operator takes the form
3 3, 4.3 2 2 2 1
N =4H] + 22H3 + §H3 +3H{Hy —6HH; — 3HHy — Hy — THy — gHg, (4.11)

with H; = W/ Hj.
In order to obtain the bundle vectors from the twisted scalar bosons, we choose the
bundle vectors

Wi = 1(1,-1,1,1,-1,-3,0,2) (1,-2,-3,1,3,2,2, ~2) ,
Wy =1(-1,1,-1,-1,1,3,-3,1)( - 1,-1,-3,-1,3,1,1, -1), (4.12)
ws = 1(0,0,0,0,0,0,-1,1)(0,1,0,0,0,1,1,1) .

They correspond to the shifted momenta of twisted scalar fields. The blow-up modes in the
6! and 62 sectors transform in the (1;1,2_,1) representations and the # blow-up mode
is a (1;6,1,1). This breaks the orbifold gauge group down to SU(5)xSO(4)'xSO(4)’. Let
us stress one important point for later reference: the blow-up mode in the 62 sector is
uniquely identified.

In table 8 we give the massless spectrum as determined by the multiplicity opera-
tor (4.11). A more detailed analysis, including the U(1) charges, shows that for all mass-
less fields we find perfect agreement with the orbifold spectrum in table 5, up to field
redefinitions and decoupling of vector-like states as explained in [77]. Whereas in previous
supersymmetric compactifications such matchings were performed on the level of chiral su-
perfields, here we extend them to the bosonic and fermionic spectra separately. Moreover,
the fermions remember if they stem from ten dimensional spinor or cospinor representations
although the four dimensional chiralities of spinors can be changed by complex conjugation.
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States Non-Abelian representations of a blown-up tachyonic orbifold model
Bosonic tachyons none
Massless 3(10;1)+3(5;1)+6(5;1)+2(5;1,24)+2(5;2_,1)+2(5;21,1) + (5;1,2_)
chiral fermions 2(1;4,1) +2(1;1,4) +2(1;24,24) +4(1;24,2-) + 2(1;2_,24)
4(1;2-,2_)+6(1;24,1)+8(1;2_,1)+34(1; 1,24 )+11(1;1,2_)+53(1;1)
Massless (10;1) +9(5;1) + 2(5;1) +2(1;4,1) +2(1;1,4)
complex scalars 4(1;24,20) +2(1;24,2-) +4(1;2-,24) + 2(1;2_,2_) + 43(1;1)

Table 8. Spectrum of the full resolution of the tachyonic orbifold model given in table 5. The
model has been resolved using the line bundles specified in (4.12). Note that the tachyonic state of
that table is absent in the full blown-up model.

As expected from the general theory developed above, there are no tachyons when the
orbifold has been fully resolved to a smooth Calabi-Yau manifold. Therefore, one may
wonder what happened to the twisted tachyons of the T%/Zg1 orbifold model given in
subsection 3.4. To figure this out, we focus on the following bosonic fields suppressing the
fixed point multiplicities:

State Sector | Representation
Tachyon t o' (1;1,1,2)
Blow-up mode b 62 (1;1,2_,1)
Complex scalar ¢ 63 (1;1,2_,2)

On general field theoretical grounds we expect that the effective potential for the tachyon
t contains the terms

Ve = —mi [t* + [N o [t* + ..., (4.13)

where m? is the tachyonic mass. Hence, when the blow-up mode takes a sufficiently large
VEV, the tachyon becomes massive, assuming that the sign in front of the coupling constant
|A|? is positive. This may be motivated as follows:

We argued above that the scalar potential in such Calabi-Yau compactifications looks
like in a supersymmetric theory to lowest order approximation. If we suppose that this
also applies to the effective theory with tachyons, then such coupling should arise from
some superpotential. Indeed, if the theory was supersymmetric, all orbifold selection rules
would allow for a superpotential coupling W D AXT'BC, where the capital letters correspond
to hypothetical chiral superfield extensions of the bosons. The second term in (4.13)
corresponds then to |F¢|? where Fg is the auxiliary-field component associated to the
superfield containing the complex scalar c.

The crucial point here is that since the blow-up mode b is unique, any full blow-up
of this model turns the tachyon into a massive state. From the smooth compactification
perspective such a coupling comes from a worldsheet instanton.

In this example we have confirmed that the tachyonic state most likely gets decoupled
from the low-energy spectrum by a superpotential-like effective scalar potential. However,
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it should be stressed that the dynamics of the tachyon at the orbifold point would drive
it down the potential to an unknown ground state rather than perform the blow-up. Nev-
ertheless, we showed that there is a flat direction in the effective potential connecting the
orbifold and blow-up theories which explains the disappearance of the tachyon. Given that
on general grounds we know that no tachyons appear on smooth Calabi-Yau manifolds, we
expect similar mechanisms will be at work for any orbifold of the N=0 theory containing
twisted tachyons.

5 Model searches on Abelian orbifolds

In this section, we report on model scans for Calabi-Yau orbifold compactifications of the
N=0 SO(16) xSO(16) string. The essential objectives of this study are the following:

e To have highly frequent and non-trivial cross-checks on our construction.

e To obtain some relative estimate on how abundant the tachyonic models are on
orbifolds with twists that in principle allow for twisted tachyons.

e To show that it is possible to obtain tachyon-free Standard Model-like models and
give some conservative estimate of how many such models arise on the various orbifold
geometries.

e To obtain some first indications on the issues one has to deal with, to go from
Standard-Model-like string models to more realistic constructions.

5.1 Automatization of the construction of non-supersymmetric models

Given that this approach to non-supersymmetric heterotic model building in four dimen-
sions is considered for the first time,” we had to develop new computer codes or heavily
modify existing ones, like the “Orbifolder” [78]. In order to have some cross-checks on the
results we used three codes to determine orbifold spectra:

1.) A mathematica code that implements the orbifold model construction on the level of
partition functions using the fermionic formulation (3.3).

2.) A modification of the “Orbifolder” code that implements the combination of lattices
as dictated by table 2.

3.) A modification of the “Orbifolder” code that implements the N=0 theory as a Zo
orbifold of the supersymmetric EgxEg theory (3.11).

The modified “Orbifolder” codes work for compact toroidal orbifolds with Wilson lines.
When comparing the results of these different algorithms for the purpose of cross-checks,
one should keep the following issues in mind. Ignoring the generalized discrete torsion
phases, these constructions are not fully equivalent: as we saw in egs. (3.4) and (3.12), the

®The only other extensive scan [29] for non-supersymmetric models in the heterotic context, which we
are aware of, used the free fermionic formulation.
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constraints on the input data differ substantially and certain phases may lead to a complex
conjugation of the spectra. Hence, only the models with input data that satisfy the stronger
constraint %egVa = 0 can be directly compared. Further important consistency checks on
the four dimensional fermionic spectra are the absence of non-Abelian gauge anomalies and
universality (3.20) of at most a single anomalous U(1). These checks are implemented in
the “Orbifolder” code on the level of chiral superfields [78]. Therefore, we modified this in
order to consider the actual chiral fermions arising in the N=0 theory taking the opposite
ten dimensional chiralities of W1 (see e.g. table 1) into account.

Anomaly considerations provide stringent checks on the fermionic spectra, unfortu-
nately such checks do not exist for scalars, hence in particular here having various of
procedures to determine the scalar (tachyonic) spectra is very important. After a direct
comparison of the two implementations 2.) and 3.) of modifications of the “Orbifolder”
code, we cross-checked the results by two independent methods: i.) we expanded the full
partition functions implemented in the mathematica code 1.) to read off the tachyonic and
massless scalar spectrum; ii.) as mentioned in section 4, we investigated the resolutions of
certain orbifold models using line bundles and compared the bosonic and fermionic spectra
before and after the blow-up. Even though the various cross-checks mentioned here do not
fully ensure that all computed spectra are correct, they certainly ensure that many possible
simple or more systematic mistakes have been avoided.

5.2 Non-supersymmetric “Orbifolder” model scans

To set up a scan for non-supersymmetric models on various Calabi-Yau orbifolds, with
orbifold twists listed in the first column of table 9, we have chosen to work using the
implementation 3.) of the list above, because this description has the weakest conditions
on the input data of the model. A given orbifold twist corresponds to a number of orbifold
geometries depending on the number of lattices compatible with this twist; the number
of such compatible geometries is indicated in parentheses next to the corresponding twist
in table 9. We follow the classification of such Abelian orbifolds as in ref. [79] which
completed the partial classification of refs. [13, 80]. For a given orbifold geometry we
randomly generate the input data, i.e. shift(s) and Wilson lines, to construct orbifold
models. We have only collected models which are considered to be inequivalent in the
following sense: two orbifold models on the same orbifold geometry are equivalent when
they have identical massless bosonic and fermionic and possibly tachyonic spectra up to
charges under Abelian factors.

In table 9 we list the number of inequivalent models we have considered in our scans
and indicated which percentage of them is tachyon-free. Since our scans have not been
systematically exhaustive, we certainly do not wish to imply that the number of inequiv-
alent models will be closely related to the actual figures each of these geometries could
actually demonstrate. However, we checked that the percentages quoted in this table do
not change significantly when scanning over large sets of models. This suggests that these
percentages of non-tachyonic models have significant meaning within the limitations of our
non-exhaustive scans. We see that, when tachyons would be possible on given orbifolds
according to table 4, they arise abundantly yet not predominantly.
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Orbifold Inequivalent | Tachyon-free SM-like tachyon-free models
twist #(geom) || scanned models | percentage total | one-Higgs | two-Higgs
Zs (1) 74,958 100 % 128 0 0
Zy (3) 1,100,336 100 % 12 0 0
Zg.1 (2) 148,950 55 % 59 18 0
Zg-11 (4) 15,036,790 57 % 109 0 1
Zg 1 (3) 2,751,085 51 % 24 0 0
Zg.11 (2) 4,397,555 1% 187 1 1
Lo X L (12) 9,546,081 100 % 1,562 0 5
Lo X Ly (10) 17,054,154 67 % 7,958 0 89
Zg X T3 (5) 11,411,739 52 % 284 0 1
Zy X Ly (5) 15,361,570 64 % 2,460 0 6

Table 9. Results of our model search on various Zy and Zj; X Zx orbifold geometries. The number
of such geometries per orbifold twist is displayed in brackets. In the next column we indicate the
number of inequivalent models generated, the percentage of them which are non-tachyonic, how
many (tachyon-free) Standard Model-like models were found and the frequency among them of
models with one or two Higgs scalars.

Within the set of non-tachyonic models, we have searched for models which one could
call Standard Model-like. Our definition of Standard Model-like consists of the following

requirements:

i.) The gauge group contains the Standard Model gauge group with the SU(5) normal-
ization of the non-anomalous hypercharge Y.

ii.) There is a net number of three generations of chiral fermions.
iii.) There is at least one Higgs scalar field.

iv.) The exotic fermions are vector-like w.r.t. the Standard Model gauge group.

Following this definition we have collected the number of Standard Model-like models for
each of the scanned orbifolds in the fourth column of table 9. Finally, we have explored
the number of Higgs scalar fields found in these semi-realistic models. We list in the last
two columns of table 9 how many of them exhibit one or two Higgs scalars.

5.3 A tachyon-free Standard Model-like model

Let us discuss one specific tachyon-free Standard Model-like theory explicitly. This is a
model defined on the Zg 1 orbifold on the lattice SU(3)3. The shift and Wilson lines of this
model are given by

- (3,-3,-3,1,-4,-3,0,1)(3,-4,-3,0,-3,0,1,4) (5.1a)

(5,3,3,-3,-1,3,1,-3) (- 7,3,-1,-5,1,5,3, 1) . (5.1b)
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Sector Massless spectrum: chiral fermions / complex bosons
Observable | 3(3,2)1/6 4+ 3(3,1)_2/3 +6(3,1)1/3 +3(3,1)_1/3 +3(1,1)1 +5(1,2) 15
2(1,2)1/2 +20(1,1)1/2 +20(1,1) 12 +6(3,1)1 /6 +6(3,1)_1/6 + 2(1,2)0
Obs. & Hid. 3(1,1;1,2)1 /5 +3(1,1;1,2) /9
Hidden 14(1,2)0 + 10(4,1)0 + 6(4,1)g + 3(6,1)p + 2(4,2)o + 71(1)o
Observable (1,2)_1/2
(3,1)1/6 + (3,1)_1/6 +2(3,1)1/3 + 13(1,2)0 + 20(1,1) _1 )5 + 18(1, 1)1
Obs. & Hid. (1,1;4,1)1 5+ (1,1;4,1)_ 5+ (1,2;1,2)g
Hidden 14(1,2)0 + 4(4,1)0 + (6,2)0 + 23(1)o

Table 10. Spectrum of a non-supersymmetric one-Higgs doublet model derived from string theory.
The states are divided into fermionic and bosonic classes and we distinguish whether they are only
charged under the Standard Model group Gops, the hidden group Gpiq or both.

Up to additional U(1)s, the observable and hidden gauge groups are:
Gobs = SU(3)C X SU(Q)L X U(l)y, Ghid = SU(4) X SU(Q) . (5.2)

Hence, we have states charged only under Ggps, only under Gy;q, and very few exotic states
charged under both gauge sectors. In table 10 we present the quantum numbers of the
full massless spectrum for both the fermions and the bosons, indicating the hypercharge
as subindex. In order not to clutter the notation too much, we only indicate the represen-
tations w.r.t. either the observable / hidden group for those states that are only charged
under either one of them, and omit all U(1) charges excepting the hypercharge. For the
states that are charged under both the hidden and observable groups, we use a semicolon
to separate their representations.

It is not difficult to see that this model has precisely a single scalar Higgs (1,2); /2 and
contains three generations of Standard Model quarks and leptons. However, we see that the
model also contains many states that should be considered as exotics w.r.t. the Standard
Model, i.e. states charged under the Standard Model gauge group G, while not being part
of it. Note that this definition differs from the definition of exotics for MSSM-searches in the
supersymmetric situation: in the latter case, all the scalar superpartners of the Standard
Model fermions are not considered to be as exotics w.r.t. the MSSM although they are
exotics w.r.t. the Standard Model itself. In particular, the model presented here contains
complex scalar SU(3)¢ triplets, which — like analogous states in MSSM-like models —
might take VEVs and lead to color-breaking vacua unless there exists a mechanism that
forbids such VEVs. On the other hand, similarly to what happens in known string MSSM
candidates, all exotic fermions of the model are vector-like w.r.t. the Standard Model and
can thus be decoupled from the emerging field theory in scalar minima, where the scalars
(1)o coupling to the fermions could develop non-vanishing VEVs.% Hence, we see that this
model faces similar phenomenological challenges as its supersymmetric counterparts.

5A detailed discussion of this issue is beyond the scope of this work and will be carried out elsewhere.
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6 Discussion

In this paper we have investigated non-supersymmetric model building within string the-
ory. Concretely, we considered compactifications of the non-supersymmetric heterotic
SO(16) xSO(16) string on singular orbifolds and smooth Calabi-Yau manifolds which them-
selves would preserve N=1 supersymmetry in compactifications of N=1 string theories.

We have reviewed two formulations of the N=0 theory: a fermionic formulation with
certain generalized discrete torsion phases switched on and a lattice formulation. We found
that the lattice formulation appears to be more flexible when it comes to orbifold compact-
ifications mainly because the conditions for modular invariance and consistent projections
are less constraining. The reason why the conditions are stronger in the fermionic descrip-
tion can be traced back to the requirement of obtaining well-defined GSO and orbifold
projections from these generalized torsion phases.

We have investigated various aspects of orbifold compactifications of the N=0 heterotic
theory. First of all, twisted tachyonic scalars may appear at tree level depending on both 1)
the geometry of the orbifold and ii) the specifics (shifts and Wilson lines) of each model. In
table 4 we indicate for which orbifold geometries tachyonic states may arise and for which
this is impossible. In addition, we have checked that the orbifold compactification spectra
of this N=0 theory are always free of non-Abelian anomalies and that there is at most one
anomalous U(1) satisfying the conventional universality conditions (3.20).

We also considered smooth Calabi-Yau compactifications of the non-supersymmetric
heterotic SO(16)xSO(16) theory. The fermionic spectra can be computed using the usual
index theorems or cohomology methods. In addition, exploiting that the compactification
manifold is Calabi-Yau, we realized that the spectrum of scalar bosons is also dictated by
the zero modes of the Dirac operator of the — non-existing — superpartners of the gauge
fields. We used this to perform a cross-check of the computation of the scalar spectra on the
orbifold: we showed that the bosonic spectra on the orbifold and smooth resolution agreed
up to vector-like states that decouple when the blow-up modes attain non-trivial VEVs.
This showed that on smooth manifolds the N=0 theory never leads to tachyons when the
large volume approximation applies. Consequently, when one fully blows up an orbifold,
all the tachyons should disappear from the spectrum. To illustrate these features, we
considered in subsection 4.3 the blow-up of a tachyonic T°/Zg.; model, where all tachyonic
contributions can be decoupled by considering superpotential-like scalar interactions.

Finally, we have performed model searches on orbifolds of the non-supersymmetric het-
erotic theory. With this purpose, we have developed three independent codes to determine
spectra of such models. Two of them are modifications of the publicly available “Orb-
ifolder” package while the other is a Mathematica code which implements the partition
functions as a whole. We confirmed that the results of these different codes agree when
the input data is suitably chosen. We used the modified “Orbifolder” based on the con-
struction of the non-supersymmetric SO(16)xSO(16) theory as a (freely-acting) orbifold of
the EgxEg theory, to build more than 76 million inequivalent consistent four-dimensional
N=0 string orbifold models with different geometries. By means of this extensive model
search, we showed that for orbifolds on which tachyons are not strictly forbidden, they

— 23 —



appear abundantly but not predominantly. In addition, we found that it is possible to
generate Standard-Model-like theories with a net number of three generations of chiral
Standard Model fermions and at least one Higgs scalar. As can be seen from table 9, we
constructed over 12,000 models of this type. One of these models with one Higgs field is
briefly discussed in subsection 5.3.

Outlook. Let us conclude with some remarks about known challenges that the approach
presented in this work faces:

The most notorious and difficult problem is that of the cosmological constant and
the related dilaton tadpole. This means that the theory is unstable since the dilaton
is driven away from its perturbative value in which the analysis of the model was per-
formed. This might lead to interesting but problematic properties in the cosmological set-
ting [81, 82]. In supersymmetric string theories the cosmological constant is identically zero
since no tachyons are present and at each massless level one encounters an equal number of
bosonic and fermionic states. In the orbifold compactifications of the non-supersymmetric
SO(16)xSO(16) theory we have seen that, except for Zs, Z4 and Zgy X Zg orbifolds, one is
not safeguarded from tachyons in the spectrum. When they occur, then the computation
of the cosmological constant leads to a divergent result. However, even if we restrict to
the orbifolds which are always tachyon-free, or consider only the tachyon-free models for
the orbifolds that might possess tachyons, then all states at all mass level contribute to
the cosmological constant. Moreover, as emphasized in [29] even non-level-matched states
contribute to the cosmological constant. The off-shell tachyonic states which only exist in
the loop give rise to the most sizable contributions of all non-level-matched states. All in
all this means that even though string theory does give a finite result of the cosmological
constant for non-tachyonic models, this result will generically be large. Moreover, it will
be very sensitive to the values of all kind of moduli like the torus radii or size of blow-
up modes. There have been some attempts in the literature to address the issue of the
vacuum energy in such string theory context: in ref. [83] a certain non-supersymmetric
non-Abelian orbifold of the type-II string was considered. Moore has considered an Atkin-
Lehner symmetry to enforce to have a vanishing partition function without target space
supersymmetry [84] (for an extension see [85]).

Similar issues one expect for the computation of the Higgs mass in these non-
supersymmetric models. To determine the Higgs mass one should compute the two-point
function of the vertex operators corresponding to the Higgs field and its conjugate. On
general grounds one again expects that the result is finite, but generically the value of the
Higgs mass will be of the order of the string scale unless one could somehow impose some
very non-trivial cancellations.

Both these problems are well-known problems within the Standard Model and beyond.
The only real candidate to address these issues is supersymmetry. However, even if one as-
sumes that supersymmetry is broken at a low scale compared to the string scale, such that
current experimental data suggest a moderate hierarchy between the Higgs mass and the su-
persymmetry breaking scale, then still this will lead generically to a huge cosmological con-
stant as compared to the observed value. Hence, the non-supersymmetric models consid-
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ered here or in ref. [29] are at least at equal footing as generic field theories that incorporate
the Standard Model. One might even argue that the string constructions are more under
control than such effective field theories as the non-supersymmetric string models at least
allow one to definitely calculate the Higgs mass and the cosmological constant in principle.

In this work we have considered supersymmetric backgrounds for a non-supersym-
metric theory and seen that many consequences of supersymmetry still hold at tree level
and leading order in o'. It would therefore be very interesting to investigate how non-
supersymmetric features arise at higher orders and non-perturbatively. This is very im-
portant as it is expected that such effects may (re)introduce tachyons in the description.
Moreover, it would be interesting to see how the supersymmetric backgrounds we consid-
ered get corrected by quantum effects.

In addition, the non-supersymmetric models constructed in this work will face similar
questions as their supersymmetric counter parts. As our Standard Model-like single Higgs
model discussed in subsection 5.3 illustrates, such models will suffer from having many
additional exotic states. Like in the supersymmetric case, one might try to find vacuum
configurations where all these exotics decouple.
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A Theta functions and lattice sums

A.1 Basic partition functions

The eta and genus-d theta functions are defined as

[e.e]
— g1/24 _ " a:| — L(n—a)? —2mibT (n—a)
nm)=¢[[Q-¢. [b (1))=Y ¢ : (A1)
n=1 nezk
with ¢ = €™ in terms of the Teichmmiiller parameter 7.
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For a set of d complex worldsheet Fermions 1" with boundary conditions
Yo+1) =Y o),  Yo—T1)=TPigl(a), (A.2)

we find the partition function

(A.3)

where eq = (1,...,1) is the d component vector with only entries equal to 1. By including
appropriate phases,

Za {;] (1) = e~mie" (Bed) 7, [“

"o (A1)

one can ensure that this partition function is modular invariant up to phases that only
depend on d:

m‘p-

zdm (r+1) = i, [m](”’ zdm (@) =42, 7] (). (a5

-Q

Notice that the additional phase drops out when one has multiple of eight complex fermions
with Zs twisted boundary conditions while for four complex fermions one has relative sign:

te t, R EPS se

zs[ ]() zg[j, }(7), Z4[j,4}(r):( )8824[3 }(7). (A.6)
568 ze8 2

For a set of d complex bosons X* with identical boundary conditions we find instead

ol, 1
zy [ﬂ] (r,7) = ‘zd [;] . 5 - (A7)

When D real bosons x* have trivial twist boundary conditions their partition function

becomes
1

o) = oy,

(A.8)

A.2 Lattice sums

Let Ap be D dimensional real lattice on which left-moving bosons Y7 live. They lead to
the partition function

7% S B (A.9)

PGAD

To resolve the slight abuse of notation using the same notation for a lattice and its associ-
ated partition function we indicate the partition functions by always giving its 7 argument.



Weight lattice Lattice vectors

Rp Root nGZD,ZnZ-E2Z

Vb Vector neZP, Y n; €27 +1
Sp Spinor neZbP + %eD, > n; € 27
Cp Cospinor nEZD—F%eD, Yon;€2Z+1
Ty Space-time Vi®Sy

Eg Eg Root Rg & Sg

I'is | EgxEg Root Eg & Eg

Table 11. Definition of various weight lattices.

The partition functions for the lattices defined in table 11 can be written as:

1 0 0 _
Sp/Cp(7) = 5 (ZD [ ] (r)+Zp [ } (7')> = ¢P/12 (2P 1 0(q)), (A.10a)
ep/2 0
1 ep/2 ep/2 _
Rp(r) =3 <ZD[ D;J (T) + ZD[ Do/ } (T)> = ¢ P (1+D(2D~1)q + O(¢")) .,
ep
(A.10b)
1 ep/2 ep/2 _
Vo) = (20|22 - 20 [P 0) =g PP D 4 0Ww) . (A100)
ep/2 0
The partition function associated with the lattice I'y also encodes the target space spin-
statistics:
7_ 4 Z Z C]% nt+k 5€4) )2 27I'7,?6£TL< )k’k+k’+k’ (All)
k,k'=0 nez4
since .
1 -~ Se
Ty(r) =Va(r) = Salr) == > Zu|2 " | (7). (A.12)
2 s,s'=0 T

Similarly, we have

Eg(7) = Ry(7) + Sg(1) = Z Zs [E J (1), I'i(r) = Eg(7) - Eg(r) . (A.13)

Furthermore, to describe orbifolded lattices sums, we define the shifted lattice partition
function

~ 1 j ‘
Ap H ()= o5 3 qh(Pra) 2mis”P rials (A.14)
B U PeAp

associated to any lattice Ap. When Ap is a direct sum of two lattices, then this definition
is taken to linear in the sense that e.g.

&=Vt -8 0| (A.15)
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The shifted lattice sum (A.14) already includes appropriate vacuum phases such that for
the Euclidean lattices we have

Rolt|can=e8h | "l Rolt|@=Rn[’]).  (as)
For the lattice partition function I'y we have instead

T, [‘;] (r+1) = /3T, m (r), T4 m (L) =T, [ g ] (1) . (A.17)
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any medium, provided the original author(s) and source are credited.
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