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Abstract The available data on |�B| = |�S| = 1 decays
are in good agreement with the Standard Model when per-
mitting subleading power corrections of about 15 % at large
hadronic recoil. Constraining new-physics effects in C7, C9,
C10, the data still demand the same size of power corrections
as in the Standard Model. In the presence of chirality-flipped
operators, all but one of the power corrections reduce sub-
stantially. The Bayes factors are in favor of the Standard
Model. Using new lattice inputs for B → K ∗ form factors
and under our minimal prior assumption for the power cor-
rections, the favor shifts toward models with chirality-flipped
operators. We use the data to further constrain the hadronic
form factors in B → K and B → K ∗ transitions.

1 Introduction

The rare B decays mediated by b → sγ and b → s�+�−
(� = e, μ, τ ) flavor-changing neutral-current transitions are
important probes of the Standard Model (SM) and provide
constraints on nonstandard effects in the flavor sector up to
the TeV range. In recent years, phenomenological analyses
focused on the exclusive modes B → K ∗(→ Kπ) �+�−,
B → K�+�−, and Bs → μ+μ−. Many observables of these
modes were recently measured at the LHC (LHCb, CMS,
and ATLAS), and previously at B factories (Belle, BaBar)
and the Tevatron (CDF) [1–19].

The goal is to measure a large number of observables
accessible in the angular analysis of the decay distributions
of the three- and four-body final states. With the CP-averaged
observables one can test—in a model-independent fashion—
the underlying short-distance couplings of the �B = 1
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effective theory. CP-asymmetric observables also probe new
sources of CP violation beyond the SM. In B → K ∗(→
Kπ) �+�− decays, certain combinations of the angular
observables, the “optimized observables” [20–28], are free of
form factors to leading order in the 1/mb expansion and con-
sequently expected to have smaller theoretical uncertainties.
The same framework also provides observables that are dom-
inated by ratios of B → K ∗ form factors [22,28–31], provid-
ing some additional data-driven control over these hadronic
quantities.

The 1/mb expansions are important tools for the pre-
diction of exclusive decays. At large hadronic recoil of
the K (∗) meson, QCD factorization (QCDF) yields correc-
tions beyond naive factorization [32,33]. Effects of (qq̄)-
resonances, dominantly from charm, as well as the chromo-
magnetic dipole operator can be calculated using a light-cone
operator product expansion (OPE) in combination with dis-
persion relations [34–38]. At low hadronic recoil, a local
OPE [39,40] can be employed. Its prediction of correla-
tions between different observables can be tested experimen-
tally through measurement of the observables H (1)

T and J7

in B → K ∗�+�− [28]. Hadronic form factors are a major
source of theoretical uncertainties in the prediction of angu-
lar observables, whereas optimized observables are sensitive
to higher-order terms in the 1/mb expansions, especially at
large recoil. At present, the associated uncertainties due to the
unknown 1/mb contributions are estimated based on simple
power-counting arguments.

As of 2011, several global analyses of the available
data—differing in the degree of sophistication, the statis-
tical approach, and the estimation of theory uncertainties—
have been performed [27,30,41–44]. Recently, experimental
updates from LHCb [5,15,16,45,46] and CDF [14] became
available as well as analogous measurements from CMS
[6,17] and ATLAS [18]. LHCb is the first experiment to mea-
sure optimized observables [19]. Perhaps the most outstand-
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ing LHCb result is that the measured value of P ′
4,5 is in some

tension with the SM predictions, stimulating new global fits
[47–49].

Based on the framework developed in our previous work
[30], we perform a global analysis using Bayesian inference,
and we include a total of 28 nuisance parameters to account
for theory uncertainties. Apart from new-physics parameters,
our framework allows us to infer also B → K (∗) form factors
and the size of subleading contributions, thereby shedding
some light on the origin of tensions between data and SM pre-
dictions. Compared to [30], we include the most recent mea-
surements, add additional observables to the fit, and account
also for recent lattice calculations of form factors [50,51] and
other new theoretical results.

In Sect. 2, the model-independent framework of �B = 1
decays is briefly revisited, and three scenarios of new physics
(NP) are introduced. In Sect. 3, we list the updated experi-
mental input. The results of the global analysis are presented
in Sect. 4: (1) for the most important Wilson coefficients
of the SM operator basis C7,9,10 and their chirality-flipped
counterparts assuming them to be real-valued, (2) for the
B → K (∗) form factors in the SM and the two NP scenarios,
and (3) the size of subleading contributions. We also compare
our results with recent analyses that had access to the same
experimental data. In Appendix A we summarize the theoret-
ical predictions of newly included observables and changes
in the treatment of form factors and subleading contributions.

2 Model-independent scenarios

For the global analysis of b → s(γ, �+�−) data we use a
model-independent approach based on the |�B| = |�S| = 1
effective theory. The Hamiltonian reads

Heff = −4 G F√
2

VtbV ∗
ts
αe

4π

∑

i

Ci (μ)Oi + h.c. (2.1)

with dimension-six flavor-changing operators Oi and their
respective short-distance couplings, the Wilson coefficients
Ci (μ). We evaluate the hadronic matrix elements of the oper-
ators at the scale μ = 4.2 GeV of the order of the bottom-
quark mass mb. We restrict our analysis to the set of operators
present in the SM (i = 7, 9, 10)

O7(7′) = mb
e

[
s̄σμν PR(L)b

]
Fμν,

O9(9′) = [
s̄γμPL(R)b

] [
�̄γ μ�

]
,

O10(10′) = [
s̄γμPL(R)b

] [
�̄γ μγ5�

]
(2.2)

and their chirality-flipped counterparts (i = 7′, 9′, 10′),
denoted by SM′. The Wilson coefficients of the four-quark

and the chromomagnetic dipole operators are set to their
NNLO SM values at μ = 4.2 GeV [52,53].

In principle, the scalar, pseudo-scalar, and tensor b →
s�+�− operators can contribute to the angular distributions
of B → K ∗(→ Kπ)�+�− and B → K�+�− as discussed
in great detail in [28]. However, only a few measurements
of sensitive observables are currently available, with rather
large uncertainties. We therefore abstain from including these
operators into our analysis. Instead, we focus on comparing
the SM to several new-physics scenarios with regard to their
ability to describe the data well.

In the model-independent approach, the SM and SM′
Wilson coefficients are the parameters of interest; they are
assumed real valued and independent a priori. The nuisance
parameters ν serve to model theory uncertainties, includ-
ing CKM parameters, quark masses, and hadronic matrix
elements; see Appendix A. The following scenarios of fit
parameters:

SM(ν−only) :

⎧
⎪⎨

⎪⎩

C7,9,10 SM values

C7′,9′,10′ SM values

ν free floating

,

SM :

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

C7 ∈ [−2,+2]
C9,10 ∈ [−15,+15]
C7′,9′,10′ SM values

ν free floating

, (2.3)

SM+SM′ :

⎧
⎪⎨

⎪⎩

C7,7′ ∈ [−1,+1]
C9,9′,10,10′ ∈ [−7.5,+7.5]
ν free floating

,

SM+SM′(9) :

⎧
⎪⎨

⎪⎩

C7,7′,10,10′ SM values

C9,9′ ∈ [−7.5,+7.5]
ν free floating

.

Expressing vague prior knowledge, we assign a flat prior dis-
tribution to the Wilson coefficients. However, each nuisance
parameter ν comes with an informative prior as discussed in
detail in Appendix A.

The SM values C7,9,10 are obtained at NNLO [52,53] and
depend on the fundamental parameters of the top-quark and
the W -boson masses, as well as on the sine of the weak
mixing angle. For new-physics models that fall into one of
the scenarios SM and SM+SM′, the obtained fit results of
the Wilson coefficients can be subsequently used to constrain
those models’ fundamental parameters after accounting for
the renormalization group evolution from the high matching
scale down to μ ∼ mb.
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3 Observables and experimental input

In this section we describe changes of the experimental inputs
that enter our global analysis with respect to our previous
work [30]. We first introduce observables which are newly
added to the global analysis and refer the reader for details
of their theoretical treatment to Appendix A. Afterward,
we summarize those observables whose measurements have
been updated, or for which additional measurements have
since become available. In general we employ the full set
of observables listed in Table 1 except for the last row and
denote this as “full”. Inclusion of the B → K ∗ lattice points
from the last row is denoted as “full (+FF)”. For the sake
of comparison with [47] we also repeat the analysis with
a smaller subset called “selection” as specified in the same
table. Generally, we model the probability distributions of
experimental measurements as (multivariate) Gaussian dis-
tributions. In practice, however, experiments do not yet pro-
vide correlations, except for S and C in B → K ∗γ . For
measurements with asymmetric uncertainties, we model the
probability distribution as a split Gaussian with two different
widths. For the measurement of B(Bs → μ+μ−), we use the
Amoroso distribution to avoid the unphysical region B < 0
as described in [30].

In the following, all observables are understood to be CP-
averaged unless noted otherwise. The dilepton invariant mass
in inclusive and exclusive b → s�+�− decays is denoted by
q2 throughout.

3.1 New observables

Measurements of the branching ratio of the inclusive radia-
tive decay B → Xsγ

B1.8 GeV = (3.36 ± 0.13 ± 0.25) · 10−4, [1] (3.1)

B1.8 GeV = (3.21 ± 0.15 ± 0.29) · 10−4, [2] (3.2)

are included with a lower cut on the photon energy Eγ >
1.8 GeV. For the branching ratio of the inclusive semileptonic
decay B → Xs�

+�− integrated over the low-q2 region q2 ∈
[1, 6] GeV2, we use

〈B〉[1,6] = (1.8 ± 0.7 ± 0.5) · 10−6, [3] (3.3)

〈B〉[1,6] = (1.493 ± 0.504+0.411
−0.321) · 10−6. [4] (3.4)

A source of parametric uncertainty in inclusive decays arises
from matrix elements of dimension-five operators, μ2

π and
μ2

G , discussed in more detail in Appendix A.1. They appear
in the heavy-quark expansion at order 
2

QCD/m2
b, and μ2

G
enters also the B∗–B mass splitting [54]

MB∗ − MB = (4.578 ± 0.035) · 10−2 GeV, (3.5)

incorporated as an additional experimental constraint.
Previous experimental angular analyses of B → K ∗(→

Kπ) �+�− were restricted to the measurements of the longi-
tudinal K ∗-polarization fraction, FL , and the lepton forward-

Table 1 List of all observables in the various inclusive and exclusive b → s(γ, �+�−) decays that enter the global fits with their respective
kinematics and experiments that provide the measurements. The B∗–B mass splitting is used to constrain matrix elements of dimension-five
operators. Lattice results of B → K form factors are used to constrain their parameters, and theoretical constraints on B → K ∗ form factors are
included. For more details we refer to Sect. 3 and Appendix A . †: Note that we include only the LHCb measurements in the [1, 6] GeV2 bin as
part of the “selection” data set, but not the low-recoil bins

Channel Constraints Kinematics Source Selection

B → Xsγ B 1.8 GeV < Eγ [1,2] �
B → Xs�

+�− B q2 ∈ [1, 6] GeV2 [3,4] �
Bs → μ+μ− ∫

dτB(τ ) – [5,6] �
B → K ∗γ B, S, C – [7–11] �
B → K�+�− B q2 ∈ [1, 6], [14.18, 16], [> 16] GeV2 [12–14] –

q2 ∈ [1, 6], [14.18, 16], [16, 18], [18, 22] GeV2 [15] –

B → K ∗�+�− B q2 ∈ [1, 6], [14.18, 16], [> 16] GeV2 [12–14,16,17] –

FL −"− [12–14,16–18] –

AFB −"− [12–14,16–18] †

A(2)T −"− [14,16] †

Are
T , P ′

4,5,6 −"− [16,19] †

B properties MB∗ − MB – [54] �
B → K form factor f+ q2 = 17, 20, 23 GeV2 [50] –

B → K ∗ form factors V/A1 q2 = 0 GeV2 Large energy limit �
A0 q2 = 0 GeV2 [35] �
V , A1, A12 q2 = 15, 19.21 GeV2 [51] –
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backward asymmetry, AFB. The CDF collaboration was the
first to measure A(2)T and the CP-asymmetry A9 = Aim [55].
Most recently, LHCb extended the angular analysis to mea-
sure Are

T [16] as well as S4,5,7,8 and their optimized analogs
P ′

4,5,6,8 [19] in addition to the previously published results on

A(2)T , S3, A9, and S9. The original definitions of the observ-
ables Si and P ′

i can be found in [56] and [27], respectively.
Here we include the measurements of Are

T and P ′
4,5,6 in the

q2-bins [1, 6], [14.18, 16.0], and [>16.0] GeV2. We replace
S3 data from LHCb by the corresponding A(2)T results.

3.2 Updated experimental input

We use the same experimental input as in our previous anal-
ysis [30], unless the experimental collaborations provide
updated measurements. For some of the observables, addi-
tional measurement by further experimental collaborations
have become available; they are added to the previous ones.
Both types of updates are listed below.

The measurement of the time-integrated and CP-averaged
branching ratio of the leptonic decay Bs → μ+μ− has been
recently updated by LHCb and measured for the first time by
CMS

B =
(

2.9+1.1
−1.0

+0.3
−0.1

)
· 10−9, [5] (3.6)

B =
(

3.0+1.0
−0.9

)
· 10−9, [6] (3.7)

with 4.0 σ and 4.3 σ signal significance, respectively. To
faithfully model the physical constraint B ≥ 0 and the
reported asymmetric uncertainties of the experimental prob-
ability distribution (PDF), we use the Amoroso distribution
[30].

The LHCb measurement of the B+ → K +�+�− branch-
ing ratio (CP-averaged) [15], based on 1 fb−1 integrated
luminosity, is used in the q2 bins [1, 6], [14.18, 16.0],
[16.0, 18.0], and [18.0, 22.0] GeV2, in addition to the pre-
vious results from Belle and BaBar. The new CDF results are
now based on the full [14] rather than a partial data set [57].
Very recently, LHCb reported a broad peaking structure in
the branching ratio at high q2 compatible with ψ(4160) [58]
using the larger data set of 3 fb−1. Within the picture of quark-
hadron duality, an adapted larger bin [≥15] GeV2 around the
peak should satisfy the necessary conditions required by the
theoretical framework [39,40] in the future. For the moment,
we continue to use the binning provided by experiments and
do not enlarge theoretical uncertainties in B → K (∗)�+�−
at high q2.

There are numerous updates on B → K ∗�+�− for
which we use the three q2 bins [1, 6], [14.18, 16.0], and
[>16.0] GeV2. We add recent measurements of the branch-
ing ratio from CMS [17] as well as for FL and AFB from
CMS [17] and ATLAS [18]. For the branching ratio, FL , and

AFB we now use the updated values [16] instead of [59] in
the case of LHCb, and [14] instead of [55,57] in the case of
CDF.

For B0 → K ∗0(→ Kπ) �+�− LHCb provides results
of “optimized observables”. Combining these with both the
observables FL and AFB can lead to double counting [25]
in the strict limit of vanishing lepton masses that is well
justified in the NP scenarios considered in this work.1 For
this reason, we replace the LHCb measurements of 〈AFB〉[1,6]
by 〈Are

T 〉[1,6]. However, we continue to use 〈AFB〉 rather than
〈Are

T 〉 for the low-recoil bins because neither is an optimized
observable at high q2. It is difficult to include the LHCb
measurement of 〈Are

T 〉[14.18,16.0], since it implies that Are
T (q

2)

is constant and attains its theoretical maximum.
Overall, the measured q2 dependence of individual observ-

ables is in quite good agreement with the SM predictions.
The largest deviation of 3.7σ is reported for the opti-
mized observable 〈P ′

5〉[4.3,8.68] [19] when compared to the
SM prediction [47]. We do not use any of the [4.3, 8.68]
GeV2 bins since their theory predictions receive large con-
tributions from cc̄-loops [35]. The [1, 6] GeV2 bins are
less affected by these effects. The remaining uncertainty
is accounted for by the parameters of subleading contri-
butions at the level of the decay amplitudes [30] in our
predictions. The SM predictions available in the literature
for this bin (and the low-recoil bins) are compared with
our results in Table 2. Based on our prior input, we obtain
central values as in [47] deviating by 2.5σ from the mea-
surement whereas the analysis [38] has a different central
value and larger errors with a 1.0σ deviation from experi-
ment.

A second interesting deviation appears in the optimized
observable 〈P ′

4〉[14.18,16.0]. In the SM operator basis it is given
by a ratio of form factors [31] up to strongly suppressed sub-
leading corrections. The extrapolation of LCSR form-factor
results [35] from low to high q2 yields a much larger value
compared to the measurement. This is also observed [49]
with recent lattice QCD determinations of B → K ∗ form
factors at high q2 [51]. They allow us to further constrain
the form factor parameters a priori. However, these deter-
minations do not reliably consider systematic uncertainties
due to finite width effects [51] of the K ∗. For this reason,
we provide our fit results for analyses with and without the
B → K ∗ lattice inputs. Note, however, that this issue does
not affect the lattice determinations of B → K form fac-
tors.

A third deviation from the SM prediction is seen in the pre-
liminary measurements of 〈FL〉[1,6] from BaBar and ATLAS
that are both too low by more than 3σ and 2σ , respectively.

1 This does not apply to NP scenarios with additional (pseudo-) scalar
and tensor operators, however, the present LHCb analysis [19] cannot
be applied to such scenarios.
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Table 2 Predictions based on SM(ν-only) and wide (tripled uncertainty) priors, and postdictions after the fits, for the optimized observable P ′
4,5,6

in various q2 bins; see Appendix A.3 for details. We compare our results with several sources. Note that for our predictions (postdictions) the
uncertainties correspond to 68 % credibility intervals that arise from variation of only the nuisance parameters (all fit parameters). †: Values have
been adjusted to match the theory convention for the observable

Source 〈P ′
4〉[1,6] 〈P ′

4〉[14.18,16] 〈P ′
4〉[16,19] 〈P ′

5〉[1,6] 〈P ′
5〉[14.18,16] 〈P ′

5〉[16,19] 〈P ′
6〉[1,6] 〈P ′

6〉[14.18,16] 〈P ′
6〉[16,19]

Measurement

LHCb† [19] 0.58+0.32
−0.36 −0.18+0.54

−0.70 0.70+0.44
−0.52 +0.21+0.20

−0.21 −0.79+0.27
−0.22 −0.60+0.21

−0.18 +0.18+0.21
−0.21 0.18+0.24

−0.25 −0.31+0.38
−0.39

Predictions in SM(ν-only)

Nominal priors 0.47+0.07
−0.08 +1.21+0.08

−0.10 1.30+0.05
−0.05 −0.34+0.09

−0.08 −0.77+0.16
−0.14 −0.56+0.13

−0.13 −0.07+0.01
−0.02 O (

10−4
) O (

10−4
)

Wide priors 0.44+0.15
−0.15 +1.21+0.08

−0.10 1.31+0.04
−0.07 −0.32+0.18

−0.10 −0.77+0.16
−0.14 −0.54+0.13

−0.17 −0.07+0.02
−0.03 O (

10−4
) O (

10−4
)

Ref. [38] 0.46+0.16
−0.19 – – −0.28+0.30

−0.26 – – −0.07+0.08
−0.10 – –

Ref. [47] 0.56+0.07
−0.06 +1.16+0.19

−0.33 1.26+0.12
−0.25 −0.35+0.09

−0.10 −0.78+0.33
−0.36 −0.60+0.28

−0.37 −0.09+0.04
−0.05 0.00+0.00

−0.00 0.00+0.00
−0.00

Ref. [49] – +1.22+0.38
−0.38 1.30+0.02

−0.02 – −0.71+0.07
−0.07 −0.54+0.04

−0.04 – – –

Postdictions: this work, “full” data set

SM(ν-only) 0.49+0.06
−0.04 +1.13+0.03

−0.03 1.24+0.02
−0.02 −0.23+0.02

−0.03 −0.84+0.05
−0.04 −0.65+0.04

−0.04 −0.08+0.01
−0.01 O (

10−4
) O (

10−4
)

SM 0.51+0.07
−0.08 +1.12+0.03

−0.03 1.24+0.02
−0.03 −0.24+0.03

−0.03 −0.85+0.04
−0.05 −0.66+0.04

−0.05 −0.08+0.01
−0.01 O (

10−4
) O (

10−4
)

SM+SM′ 0.51+0.05
−0.06 +1.22+0.03

−0.05 1.30+0.02
−0.03 −0.26+0.04

−0.03 −0.71+0.05
−0.08 −0.55+0.06

−0.05 −0.08+0.01
−0.01 O (

10−4
) O (

10−4
)

This stands in contrast to the published results of Belle,
CDF, CMS, and LHCb, which are all in good agreement
with the SM at low q2. The BaBar results are an average of
B0 → K ∗0�+�− and B+ → K ∗+�+�−. While the neutral
mode yields FL consistent or close to the SM, the charged
mode deviates strongly in the low q2 region and points in
principle to a large isospin asymmetry for the longitudinally
polarized K ∗ branching fraction [60]. The ATLAS measure-
ment has been performed only for the neutral mode. Although
preliminary and despite the isospin average in the case of
BaBar, we include both measurements in the fit.

4 Results

In this section, we review briefly our statistical approach
and summarize our fit results in several subsections, pro-
viding measures for the goodness of fit. We describe several
solutions in the subspace of the Wilson coefficients for all
four scenarios introduced in Sect. 2. Using Bayes factors,
we compare models with non-SM Wilson coefficients to the
SM(ν-only) fit. Finally, we present results for the nuisance
parameters of the form factors and subleading corrections
to the B → K ∗�+�− transition amplitudes in each of the
scenarios. Throughout we will compare with recent similar
analyses in the literature.

4.1 Statistical approach

Our results are obtained from a Bayesian fit, similar to our
previous work [30]. The main outputs are samples drawn
from the posterior distribution using the EOS flavor pro-
gram [61]. The samples are obtained using an algorithm that

employs Markov chains, hierarchical clustering, and adap-
tive importance sampling (for a detailed description we refer
to [62]).

Throughout we denote by P(θ |D,M) the posterior,
where D ∈ {full, full (+FF), selection} represents the data
set, and θ all parameters (Ci and nuisance parameters ν) of
the model M ∈ {SM(ν-only), SM, SM+SM′, SM+SM′(9)}
as defined in Sect. 2. The weighted posterior samples provide
access to all marginal distributions and to the evidence

P(D|M) =
∫

V0

d θ P(D|θ ,M) P0(θ |M), (4.1)

where the integration extends over the whole prior volume
V0 spanned by the parameters θ . The likelihood and prior dis-
tribution are denoted by P(D|θ ,M) and P0(θ |M), respec-
tively. For M ∈ {SM, SM+SM′}, the posterior has numerous
well separated local maxima. Most of these have a negligi-
ble impact, and we consider only those solutions with sig-
nificant posterior mass. We require the ratio R of the local
evidence—integration volume V0 restricted to contain only a
single solution—to the global evidence (4.1) exceeds 0.001.
We label the individual solutions as A in the SM(ν-only)
scenario, A and B in the SM scenario, and A′ through D′
in the SM+SM′ scenario, whereas in SM+SM′(9) only A′
appears. For each model, A(′) denotes the solution in which
the signature of (C7, C9, C10) is (−,+,−) as predicted in the
SM(ν-only), and B(′) indicates flipped signs; i.e., (+,−,+).

To determine the goodness of fit, we first find the best-
fit point, θ∗, in each solution using Minuit [63]. Next, we
calculate the pull value as in [30] for fixed M , θ∗ for each
constraint, and finally χ2 as the quadratic sum of pulls. From
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χ2, a p value follows assuming Ndof degrees of freedom.
Note that there are N experimental constraints and dim ν

informative priors. For the goodness of fit, we consider each
informative prior as one constraint. With K Wilson coeffi-
cients varied in M , we have

Ndof = (N + dim ν)− (K + dim ν) = N − K (4.2)

degrees of freedom. For the full data set we have dim ν = 28
nuisance parameters, and we include N = 93 constraints.
In addition there are 11 or 5 theory constraints on the form
factors, depending on whether we include the lattice results
of the B → K ∗ form factors or not. Below we denote both
setups as “full (+FF)” and “full”, respectively. For the selec-
tion data set, we have N = 27 inputs—including two the-
ory constraints—and dim ν = 23. For this data set we do
not include the lattice form factor results since their theory
uncertainty, when extrapolated to low q2, is comparable to
the uncertainty of the LCSR results.

We calculate the Bayes factor between two statistical mod-
els M1 and M2 and for a common data set D,

B(D|M1,M2) ≡ P(D|M1)

P(D|M2)
. (4.3)

The standard quantity to compare two models, the posterior
odds, are defined as

P(M1|D)
P(M2|D) = B(D|M1,M2)

P0(M1)

P0(M2)
; (4.4)

i.e., the product of the Bayes factor and the prior odds
P0(M1)/P0(M2). It is important to note that the prior of
the model parameters, P0(θ |M), is an integral part of the
model M . Therefore, the Bayes factor penalizes M2 versus
M1 if M2 contains extra parameters because the evidence
(4.1) is just the likelihood weighted by the prior, and the
average typically decreases when the same unit probability
mass is smeared over a larger volume V0. This occurs, e.g.,
in the present analysis for M1 =SM(ν-only) and M2 =SM
as the Wilson coefficients are fixed in M1 but variable with
flat priors over a large volume covering multiple solutions in
M2. With the evidence given separately for each solution in
Table 3, the reader can, for example, compute the Bayes fac-
tor between M1 and M2 as though only one of the solutions
had been allowed a priori by reducing the (flat) prior ranges
of the Wilson coefficients and scaling the evidence accord-
ingly. We focus on the SM-like solution of each scenario that
is fully contained in a hyperrectangle with edge lengths

0.4 for C7,7′ ,

4.0 for C9,9′,10,10′ . (4.5)

The penalty due to extra parameters can be overcome if M2

provides a significantly better description of the data; i.e.,

Table 3 Goodness of fit and posterior evidence (ratio) for various com-
binations of constraints and fit models. Individual solutions are labeled
as A and B in the SM(ν-only) and the SM, and A′ through D′ in the
SM+SM′ and A′ in the SM+SM′(9). The solutions with SM-like and
flipped signs of Ci are A(′) and B(′), respectively. For the definitions of
P(D|M) and R see (4.1) and below

Scenario Data set Solution χ2 p value ln P(D|M) R

SM(ν-only) Full A 111.1 0.10 571.9 1

Full (+FF) A 118.4 0.04 576.6 1

Selection A 19.9 0.75 110.9 1

SM Full A 109.6 0.08 561.0 0.74

B 110.0 0.08 560.0 0.26

Full (+FF) A 118.1 0.03 565.7 0.70

B 118.6 0.02 564.9 0.30

Selection A 14.6 0.88 103.3 0.47

B 14.3 0.89 103.5 0.53

SM+SM′ Full A′ 104.8 0.09 560.4 0.39

B ′ 105.3 0.09 560.5 0.41

C ′ 106.8 0.07 558.3 0.05

D′ 106.3 0.08 559.5 0.15

Full (+FF) A′ 105.0 0.09 569.6 0.49

B ′ 105.5 0.09 569.2 0.31

C ′ 107.8 0.06 567.4 0.05

D′ 106.9 0.07 568.4 0.15

SM+SM′(9) Full A′ 106.6 0.13 571.3 1

Full (+FF) A′ 107.4 0.12 580.7 1

higher likelihood values. In conclusion, B(D|M1,M2) > 1
implies that the data favor M1.

We stress that the evidence by itself is not meaningful
because of the arbitrary likelihood normalization due to the
fact that we do not have the actual events seen by an exper-
iment but only a concise summary usually in the form of
an observable’s value maximizing the likelihood value plus
uncertainties. Using a consistent normalization, at least ratios
of evidences for identical data D—as in the Bayes factor—
have a well defined interpretation.

The fit results regarding model comparison and goodness
of fit are listed in Table 3, in which the local evidence is
available at a relative precision of 1 % on the linear scale.
For an overview of all of the following results on the Wilson
coefficients, we refer to Table 4. The pull values entering
the p value are compiled for each experimental constraint in
Table 5 for the solution A of SM and A′ of the SM+SM′.

4.2 Fitting the nuisance parameters

Let us begin the summary of our results with the fit of the
scenario SM(ν-only); i.e., the fit of nuisance parameters by
fixing Wilson coefficients to their values in the SM at the

123



Eur. Phys. J. C (2014) 74:2897 Page 7 of 18 2897

Table 4 The 68- and 95 %-credibility intervals and the local modes of the marginalized 1D posterior distributions of the Wilson coefficients at
μ = 4.2 GeV, P(Ci |D), i = 7, 9, 10, 7′, 9′, 10′, for nominal priors of nuisance parameters in the various scenarios. Note that for the SM+SM′
scenario the individual solutions cannot be disentangled within the 1D posterior distributions, unlike for the SM scenario. For comparison, the SM
values of the Wilson coefficients read CSM

7 = −0.34, CSM
9 = +4.27, CSM

10 = −4.17, CSM
7′ = −0.01, CSM

9′ = CSM
10′ = 0

Scenario SM “selection” SM “full” SM+SM′ “full”

Solution A B A B

C7 68 % [−0.37, −0.32] [+0.48, +0.54] [−0.38, −0.31] [+0.50, +0.51] [−0.38, −0.31] ∪ [+0.47, +0.53]

95 % [−0.39, −0.30] [+0.46, +0.56] [−0.46, −0.28] [+0.46, +0.55] [−0.40, −0.29] ∪ [−0.02, +0.20] ∪ [+0.45, +0.55]

Mode −0.34 +0.51 −0.34 +0.51 −0.33 ∧ +0.12 ∧ +0.50

C9 68 % [+2.46, +3.54] [−4.70, −3.45] [+3.49, +4.58] [−5.13, −4.96] [−5.05, −4.09] ∪ [+3.00, +3.68]

95 % [+1.98, +4.14] [−5.39, −2.92] [+3.28, +4.89] [−5.75, −4.46] [−5.59, −3.27] ∪ [+2.73, +4.09]

Mode +2.94 −4.02 +3.98 −5.03 −4.43 ∧ +3.48

C10 68 % [−4.55, −3.71] [+3.73, +4.67] [−4.98, −4.12] [+4.41, +4.55] [−4.77, −3.68] ∪ [+2.05, +3.68]

95 % [−5.01, −3.25] [+3.25, +5.08] [−5.18, −3.86] [+3.90, +4.96] [−5.05, −3.00] ∪ [−2.05, −1.64] ∪ [+2.05, +3.68]

Mode −4.12 +4.19 −4.58 +4.48 −4.30 ∧ −1.70 ∧ +3.20

C7′ 68 % – – – – [−0.09, +0.07] ∪ [+0.40, +0.44]

95 % – – – – [−0.45, −0.42] ∪ [−0.16, +0.13] ∪ [+0.38, +0.45]

Mode – – – – −0.43 ∧ +0.01 ∧ +0.43

C9′ 68 % – – – – [−3.82, −1.77] ∪ [+0.82, +2.32]

95 % – – – – [−4.09, −1.23] ∪ [−0.54, +3.55]

Mode – – – – −2.39 ∧ +2.11

C10′ 68 % – – – – [−1.91, +0.40]

95 % – – – – [−3.00, +1.22] ∪ [+2.18, +2.45]

Mode – – – – −0.75 ∧ +2.25

scale μ = 4.2 GeV

CSM
7 = −0.34, CSM

9 = 4.27, CSM
10 = −4.17. (4.6)

The main purpose is to check whether the SM(ν-only),
including all theory uncertainties, provides a good descrip-
tion of the available data. This scenario serves as the refer-
ence point to compare with scenarios SM, SM+SM′(9) and
SM+SM′ later on.

Within the SM(ν-only) scenario, we perform three fits
to the data sets “full”, “full (+FF)”, and “selection”. All
fits exhibit good or satisfactory p values of 0.10, 0.04, and
0.75, respectively, and they show that the posterior is uni-
modal. For the values of the evidence and χ2, we refer to
Table 3. The large p value for the data set “selection” can be
explained through the smaller overall number of measure-
ments, and especially the absence of measurements deviat-
ing substantially from their SM predictions, such as ATLAS’
and BaBar’s results on 〈FL〉[1,6]. The measurements with the
largest pull values above 2σ are all in B → K ∗�+�− as
can be seen in Table 5: the aforementioned 〈FL〉[1,6] from
BaBar and ATLAS, 〈B〉[16,19] from Belle, 〈AFB〉[16,19] from
ATLAS and the two optimized observables 〈P ′

4〉[14.18,16] and
〈P ′

5〉[1,6] from LHCb (see also the caption of Table 5).

We note that removing the ATLAS and BaBar measure-
ments of 〈FL〉[1,6] increases the p value substantially, from
0.10 to 0.38 and from 0.04 to 0.30 for the “full” and “full
(+FF)” data sets, respectively. The smaller p value of the
“full (+FF)” data set compared to the one of the “full” data
set arises dominantly from a tension of the B(B → K ∗�+�−)
data at high q2 with predictions based on B → K ∗ lattice
form factors [49,51].

We find that the impact of experimental measurements
published after our previous analysis [30] does not change
the main outcome; i.e., the data can be accurately described
without resort to new physics beyond the SM. This result
may appear surprising given the large tensions that were
seen in [47]. Within our approach, however, the tension
between SM prediction and measurement of 〈P ′

5〉[1,6] can

be eased by shifts in the parameters ζ Lχ
K ∗ , χ =⊥, ‖, 0 that

parametrize the size of subleading contributions at large
recoil in B → K ∗�+�−; see Appendix A.3 for their defi-
nition. The shifts of about −(15–20)% to ζ Lχ

K ∗ , χ =⊥, 0 and

about +10 % to ζ L‖
K ∗ are compatible with the power-counting

expectation 
QCD/mb. They suffice to increase the most
likely value of 〈P ′

5〉[1,6] from −0.34 (nominal prior) to −0.23
(see Table 2), thereby reducing the tension and explaining the
B → K ∗�+�− “anomaly”. The prior and posterior distribu-
tions of ζ Lχ

K ∗ are shown in Fig. 1. We do not find any shifts
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Table 5 Compilation of the pull values in units of σ at the SM-like best fit points A in the SM fit (left columns) and A′ in the SM+SM′ fit (right
columns), listed per experiment and observable. Only pull values for fits with the “full” data set are listed. The single CLEO measurement of
B(B → K ∗γ ) has a pull value +0.3σ in both the SM and the SM+SM′ fits. The pull values for the SM(ν-only) fit are very similar to the SM fit
for the “full” data set, with the exception of +2.1σ for the LHCb measurement of 〈P ′

5〉[1,6]. The pull values for SM+SM′ with the “full (+FF)” data
set deviate by less than 0.2 from those given for SM+SM′ “full”. The pull values for SM “full (+FF)” also agree with those of SM “full” except for
notable deviations of ∼ 0.6σ for the high q2 bins of the B → K ∗�+�− branching ratio

Observable SM full, solution A SM+SM′ full, solution A′

ATLAS BaBar Belle CDF CMS LHCb ATLAS BaBar Belle CDF CMS LHCb

B → Xsγ B – −0.1 +0.4 – – – – −0.1 +0.4 – – –

B → Xs�
+�− 〈B〉[1,6] – +0.4 +0.0 – – – – +0.6 +0.3 – – –

Bs → μ+μ− B – – – – −1.0 −1.0 – – – – +0.5 +0.4

B → K ∗γ B – +0.7 −1.2 – – – – +0.7 −1.2 – – –

S + C – +0.4 +0.7 – – – – +0.9 +0.4 – – –

B → K�+�− 〈B〉[1,6] – +0.0 +0.0 +0.0 – −1.3 – +0.2 +0.3 +0.2 – −0.9

〈B〉[14.18,16] – +1.1 +0.4 +1.0 – +1.0 – +1.0 +0.2 +0.7 – +0.4

〈B〉[16,18] – – – – – +1.2 – – – – – +0.7

〈B〉[16,23] – +0.2 +1.7 −1.3 – – – +0.0 +1.6 −1.6 – –

〈B〉[18,22] – – – – – −0.1 – – – – – −0.5

B → K ∗�+�− 〈B〉[1,6] – +0.6 −0.6 +0.4 +0.9 −0.3 – +0.5 −0.7 +0.3 +0.9 −0.4

〈B〉[14.18,16] – +1.0 −0.2 +1.0 −1.3 −0.7 – +1.0 −0.3 +1.0 −1.3 −0.8

〈B〉[16,19] – −0.6 +2.6 −1.4 +0.9 −0.3 – −0.6 +2.5 −1.5 +0.8 −0.3

〈AFB〉[1,6] −0.9 −1.9 −1.3 −1.9 −0.5 – −1.0 −1.9 −1.3 −1.9 −0.5 –

〈AFB〉[14.18,16] −0.2 +0.9 −1.1 −0.5 +1.4 −1.4 −0.3 +0.8 −1.1 −0.5 +1.4 −1.5

〈AFB〉[16,19] +2.2 +0.2 −1.7 −0.1 −0.4 +1.1 +2.2 +0.2 −1.7 −0.1 −0.3 +1.1

〈FL 〉[1,6] −2.6 −3.5 +0.4 +1.2 +0.9 +0.9 −2.5 −3.3 +0.5 +1.3 +1.2 +1.2

〈FL 〉[14.18,16] −0.5 +0.5 −1.8 +0.7 +1.4 −0.3 −0.3 +0.6 −1.7 +1.0 +1.6 +0.0

〈FL 〉[16,19] +0.2 +1.2 −1.4 −1.5 +1.4 +0.6 +0.4 +1.3 −1.3 −1.4 +1.6 +0.8

〈A(2)T 〉[1,6] – – – −0.2 – +0.5 – – – −0.4 – −0.7

〈A(2)T 〉[14.18,16] – – – +0.5 – +1.1 – – – +0.4 – +0.7

〈A(2)T 〉[16,19] – – – −0.1 – −0.5 – – – −0.3 – −0.7

〈A(re)T 〉[1,6] – – – – – +1.0 – – – – – +1.0

〈P ′
4〉[1,6] – – – – – +0.1 – – – – – +0.4

〈P ′
4〉[14.18,16] – – – – – −2.4 – – – – – −2.3

〈P ′
4〉[16,19] – – – – – −1.2 – – – – – −1.2

〈P ′
5〉[1,6] – – – – – +1.6 – – – – – +1.1

〈P ′
5〉[14.18,16] – – – – – +0.1 – – – – – +0.1

〈P ′
5〉[16,19] – – – – – +0.2 – – – – – +0.3

〈P ′
6〉[1,6] – – – – – +1.2 – – – – – +1.2

〈P ′
6〉[14.18,16] – – – – – +0.7 – – – – – +0.7

〈P ′
6〉[16,19] – – – – – −0.8 – – – – – −0.8

in the parameters ζ Rχ
K ∗ , χ =⊥, ‖, 0 exceeding a few percent.

There are no significant differences between the “full” and
“full (+FF)” fits, except for two shifts in subleading param-
eters. At low q2, ζ L0

K ∗ reduces from −15 % to about −5 %,
and at high q2, 
‖ changes from 0 % to about −5 % due
to the tension between the data and predictions using lattice
B → K ∗ form factors for the branching ratio B (see also the
B predictions in [49]). We find also substantial negative sub-

leading contributions to the B → K�+�− amplitude at low
q2, which lowers 〈B〉[1,6] to accommodate the measurement
by LHCb. This is in agreement with the observations of [36].

Beyond inference of the size of subleading contributions
to the amplitudes, we extract information on the B → K
and B → K ∗ hadronic form factors. We confront our results
for the various fit scenarios with the prior values in Table 6.
Within the “full” data set, the ratio V (0)/A1(0) is in over-
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Fig. 1 Comparison of the prior (gray, dotted) and marginalized pos-
terior distributions, using the “full” data set, for the parameters ζ Lχ

K ∗ ,
χ = ⊥, ‖, 0, describing the unknown 1/mb contributions to the B →
K ∗�+�− transversity amplitudes AL

χ at large recoil. Upper panel SM(ν-
only); in the SM, the results are very similar (not shown). Lower panel
SM+SM′. Note that the tail for χ = ⊥ is a consequence of the sup-
pressed solutions C ′ and D′

all good agreement with the results labeled “SE2 LCSR” of
[31], with less than 1σ tension for our scenarios SM(ν-only)
and SM+SM′, and � 1σ deviation for our scenario SM. Our
results for the ratio A2(0)/A1(0) are consistently higher than
those of [31], with a 2σ variance which can be attributed to
our usage of the constraint on A0(0); see (6.3). In the case of
the “full (+FF)” data set, the prior values of B → K ∗ form
factors at q2 = 0 show two to three times smaller uncertain-
ties when taking into account the lattice results [51], whereas
the shape parameters b1 are not affected except for the form
factor A2. Although lattice results provide a reduction of the
prior uncertainty, there is still agreement with [31] within 1σ
for the “full (+FF)” data set. Except for a slight increase of
the variance of V (0)/A1(0) in scenarios SM and SM+SM′,
the ratios do not change qualitatively.

4.3 Fit in the SM basis

Although the SM(ν-only) fit shows that the SM provides a
reasonable description of the available data, we still extend
our analysis to obtain model-independent constraints on NP
couplings. In the SM scenario we fit the real-valued Wilson
coefficientsC7,9,10 in addition to the nuisance parameters (see
(2.3)) to the data sets “full”, “full (+FF)” and “selection”. For
all data sets we obtain two dominant solutions A and B with
SM-like and flipped signs of the Wilson coefficients, and
many more solutions with negligible posterior mass.

In the case of the “selection” data set, the p values of 0.88
and 0.89 are obtained for solutions A and B, respectively,
depicted in Fig. 2. They are larger compared to 0.75 obtained
in the SM(ν-only) scenario, indicating that the additional
parameters further reduce the tension with the data by�χ2 �
−5. Within solution A, the fit yields a deviation from the SM
value of C9

�9 = C9 − CSM
9 � −1.3+0.6

−0.5, (4.7)

with 68 % probability; see Table 4. However, we find no sig-
nificant deviations in either C7 or C10. This observation is
compatible with the findings of [47], where the sign-flipped
solution B had been discarded. However, in our results the
2D-marginalized posterior shows merely a � 2σ deviation
from the SM, in contrast to 3.2σ as in [47]. The ratio of pos-
terior masses is RA : RB = 47 % : 53 %, slightly in favor
of the flipped-sign solution.

As in the case of SM(ν-only), the p values of the “full”
data set are much smaller compared to the “selection” data,
but they still indicate a decent fit at 0.08 for both solutions
A and B. Contrary to the “selection”, solution A is now
strongly favored over solution B: RA : RB = 74 % : 26 %.
This underlines the importance of a combined analysis of all
available experimental data rather than a selected subset.

As can be seen in Fig. 2, the SM lies within the 1σ credi-
bility regions of all 2D-marginalized posterior distributions.
With the updated experimental data, the credibility regions
are reduced in size by roughly a factor of two when compared
to our previous results [30]. For the 1D credibility regions
with both solutions A and B we refer to Table 4, whereas
for the single solution A we find smaller 68 % probability
regions of

�7 = 0.0 ± 0.02, �9 = −0.3 ± 0.4,

�10 = −0.4 ± 0.3.

The authors of [48] do not consider a scenario of simulta-
neous NP contributions to C7,9,10, but only single-Wilson-
coefficient scenarios C7 and C9, the two-Wilson-coefficient
scenario C7,9 and the full set of Wilson coefficients of
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Table 6 1D-marginalized posterior results at 68 % probability in comparison to the prior inputs for the various B → K ∗ (upper rows) and B → K
(middle two rows) form-factor parameters. The results are shown for the “full” (left) and “full (+FF)” (right) data set in various scenarios. The priors
for the “full” data set comprise LCSR [35] inputs combined with the additional constraints (6.1)–(6.3) and B → K lattice results [50], whereas for
“full (+FF)” the B → K ∗ lattice results [51] are added. Note that the marginalization has been performed over all solutions A, B in the case of SM
and A′ − D′ in the case of SM+SM′

No B → K ∗ lattice B → K ∗ lattice

Prior SM(ν-only) SM SM+SM′ Prior SM(ν-only) SM SM+SM′

V (0) 0.35+0.13
−0.08 0.38+0.04

−0.02 0.38+0.03
−0.03 0.38+0.04

−0.03 0.37+0.03
−0.02 0.38+0.03

−0.02 0.38+0.03
−0.02 0.37+0.02

−0.02

bV
1 −4.8+0.8

−0.3 −4.8+0.7
−0.4 −4.8+0.6

−0.4 −4.8+0.6
−0.4 −4.7+0.7

−0.4 −4.7+0.7
−0.5 −4.8+0.7

−0.3 −4.8+0.6
−0.3

A1(0) 0.27+0.09
−0.05 0.24+0.03

−0.02 0.24+0.03
−0.03 0.28+0.04

−0.03 0.29+0.03
−0.03 0.26+0.02

−0.02 0.26+0.03
−0.02 0.28+0.03

−0.03

bA1
1 0.4+0.8

−0.8 0.5+0.6
−0.7 0.5+0.6

−0.6 0.0+0.7
−0.7 0.4+0.6

−0.5 0.1+0.4
−0.6 0.1+0.5

−0.5 0.3+0.4
−0.6

A2(0) 0.24+0.13
−0.07 0.23+0.04

−0.04 0.22+0.05
−0.04 0.27+0.06

−0.05 0.29+0.05
−0.05 0.27+0.03

−0.04 0.26+0.04
−0.03 0.28+0.04

−0.03

bA2
1 −0.7+2.3

−1.4 −0.9+1.7
−1.0 −0.9+1.7

−1.1 −0.7+1.8
−1.2 −1.6+1.1

−0.7 −2.0+0.9
−0.6 −1.9+0.8

−0.7 −1.4+1.0
−0.8

f+(0) 0.34+0.02
−0.02 0.31+0.02

−0.01 0.30+0.03
−0.01 0.34+0.02

−0.02 0.34+0.02
−0.02 0.32+0.01

−0.02 0.32+0.02
−0.02 0.33+0.03

−0.02

b f+
1 −1.7+0.4

−0.5 −2.3+0.3
−0.3 −2.4+0.4

−0.4 −1.7+0.4
−0.5 −1.7+0.4

−0.5 −2.2+0.3
−0.4 −2.1+0.2

−0.4 −1.8+0.4
−0.4

V (0)/A1(0) 1.25+0.41
−0.23 1.31+0.31

−0.31 1.57+0.20
−0.20 1.29+0.21

−0.17 1.27+0.18
−0.13 1.49+0.13

−0.16 1.42+0.16
−0.13 1.32+0.10

−0.10

A2(0)/A1(0) 0.97+0.12
−0.12 0.97+0.10

−0.15 0.95+0.09
−0.07 0.96+0.09

−0.06 1.00+0.08
−0.09 1.02+0.06

−0.07 1.00+0.07
−0.05 0.99+0.05

−0.05
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Fig. 2 Credibility regions of the Wilson coefficients C7,9,10 obtained
from the fit of the “full” data set after the EPSHEP 2013 conference at
68 % (dark red) and 95 % (light red) probability. The SM-like solution
A (upper row) and the flipped-sign solution B (lower row) are magni-

fied. Overlaid are the results of the fit to the “selection” data set at 68 %
(blue, solid line) and 95 % (blue, dashed line). The black diamond and
the black cross represent the projections of the SM point and the best-fit
point to the respective 2D plane

SM+SM′. Their results show a decrease of |�7| once allow-
ing NP contributions to C9,10 in the ballpark of our findings.2

The NP contributions �9 and �10 are also found to be pref-
erentially negative.

2 Note that in [48] Wilson coefficients are determined at the scale μ =
160 GeV but RGE effects are only of concern for �7.

The situation of the P ′
5 anomaly is the same as in the

SM(ν-only) fit, and the modifications to the posterior dis-
tributions of ζ L(R)χ

K ∗ , χ =⊥, ‖, 0 are of the same type and
similar size for both data sets. The same applies to the post-
diction 〈P ′

5〉[1,6] given in Table 2. The pull value of 〈P ′
5〉[1,6]

decreases only little from 2.1σ in the SM(ν-only) fit to 1.6σ
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Fig. 3 Credibility regions obtained from the fit in the SM+SM′ model.
We show the results of the full data set after the EPSHEP 2013 con-
ference at 68 % (dark red) and 95 % (light red) probability. The black

diamond and the black cross represent the projections of the SM point
and the best-fit point to the respective 2D plane

in the SM fit when allowing NP contributions to C7,9,10. How-
ever, the tensions in other measurements are not eased; see
Table 5.

Focusing on solution A [cf. (4.5)], the fit yields a Bayes
factor of

P(full|SM)

P(full|SM(ν − only))

∣∣∣
A

= 1 : 93. (4.8)

In the absence of substantial improvements in the han-
dling of subleading contributions to the B → K (∗)�+�−
amplitudes, we are forced to conclude that the SM interpre-
tation of the data is more economical than the hypothesis of
new physics contributions to the SM Wilson coefficients.

The inclusion of lattice B → K ∗ form factors in the “full
(+FF)” analysis shifts the ratio of the probability mass of
solutions A and B toward B, RA : RB = 0.70 : 0.30. The
p values at the best-fit points decrease to 0.03 and 0.02,
respectively. Omitting FL from BaBar and ATLAS, the p
values jump to 0.25 in A and B. The 1D-marginalized 68 %
probability regions of the Wilson coefficients in solution A
remain the same

�7 = 0.0 ± 0.02, �9 = −0.4+0.4
−0.3, �10 = −0.1 ± 0.3,

when compared to the “full” data set, except for the central
value of �10, which moves even closer to the SM. Finally,
the Bayes factor of solution A would be almost unchanged
1 : 97.

4.4 Fit in the extended SM+SM′ basis

We proceed with fitting the SM-like and chirality-flipped
Wilson coefficients in the SM+SM′ scenario. Using the “full”
data set we obtain a good fit with p values between 0.07 and

0.09 in four well separated solutions A′ through D′, best
seen in the 2D-marginalized (C7 − C7′) plane in Fig. 3. Here
A′ and B ′ denote solutions that show the same signs of the
Wilson coefficients C7,9,10 of the SM operator basis as the
solutions A and B in the previous section, and C ′ and D′
denote further solutions. The corresponding p values of the
“full (+FF)” data set hardly differ, ranging from 0.06 to 0.09.
Of all four solutions, A′ and B ′ dominate over C ′ and D′ in
terms of the posterior mass:

RA′ : RB′ : RC ′ : RD′ = 39 % : 41 % : 5 % : 15 %.

The influence of the lattice results of the B → K ∗ form
factors roughly increases the posterior mass of solution A′
by 10 % at the expense of B ′, while leaving C ′ and D′ as is;
see Table 3.

The posterior distributions marginalized to the 2D (Ci −
Ci ′) planes (i = 7, 9, 10) are shown in Fig. 3 with the SM
point and the projection of the best-fit points in each solution
A′ through D′. Note that the projection of the best-fit point
can deviate from the position of the modes of the marginal-
ized distributions; compare to the 1D intervals in Table 4.
Unlike in the SM scenario, it is not possible to disentan-
gle the individual solutions A′ through D′ within the 1D-
marginalized posterior distributions. In order to compare our
findings with [48] we choose those intervals that contain the
SM-like signs for C7,9,10 and find with 68 % probability

�7 = +0.01+0.02
−0.05,�9 = −0.8+0.2

−0.5,�10 = −0.1+0.6
−0.5,

in agreement with [48]. Our results hardly change when tak-
ing B → K ∗ lattice results into account. The best-fit points
for C7′,9′,10′ of [48] fall into the intervals given in Table 4,
with larger deviations from the modes of the 1D posterior dis-
tributions. The SM prediction CSM

7′ = −0.01 and CSM
10′ = 0 is

contained in the smallest 68 % region of the 1D-marginalized
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posterior distributions, whereas CSM
9′ = 0 is not. In the 2D-

marginalized (C9—C9′ ) plane, the SM point is just outside of
the 95 % region, dominantly due to a shift in C9; see Fig. 3.

The additional NP contributions in chirality-flipped opera-
tors in scenario SM+SM′ can address the tension in the mea-
surement of 〈P ′

5〉[1,6]. However, the previously mentioned
large pull values for 〈FL〉[1,6], 〈B〉[16,19], 〈P ′

4〉[14.18,16] and
〈AFB〉[16,19] remain almost unchanged (see Table 5). This
corroborates the findings of [31,48] that the pull value of
〈P ′

4〉[14.18,16] cannot be pushed below 2σ .
Focusing on the solution A′ [cf. (4.5)], the Bayes factor

becomes

P(full|SM+SM′)
P(full|SM(ν − only))

∣∣∣
A′ = 1 : 19. (4.9)

Thus the NP hypothesis with chirality-flipped Wilson
coefficients is disfavored in comparison to the SM(ν-only)
hypothesis. However, the data favor SM+SM′ over SM with
roughly 5 : 1. Taking the lattice form factor results into
account, we find

P(full (+FF)|SM+SM′)
P(full (+FF)|SM(ν − only))

∣∣∣
A′ = 5 : 1, (4.10)

a significant increase by almost 100 compared to (4.9); see
the discussion in Sect. 4.5.

In the SM+SM′, the size of subleading contributions to
transversity amplitudes χ = 0 (‖) reduces to about −5 %
(+5 %) for ζ Lχ

K ∗ , in contrast to ζ L⊥
K ∗ , which remains large;

see Fig. 1. The solutions A′ through D′ are clearly distinct
when viewed in the ζ L⊥

K ∗ −C9′ plane. The subleading param-
eter
‖ at high q2 decreases back to 0 % for the “full (+FF)”
data set. There are no differences between the “full” and
“full (+FF)” data sets. Similarly, the subleading contribu-
tions to the B → K�+�− amplitude disappear. The small
shifts we observe between the SM and SM+SM′ scenarios
suggest a common property to ease the tensions between pre-
dictions and data, that is shared by the ζ Lχ

K ∗ and the chirality
flipped Wilson coefficients. It is therefore desirable to bet-
ter understand size, chirality structure, and q2-dependence
of the power corrections.

In view of the significantly enlarged Bayes factor (4.9)
in the scenario with chirality-flipped operators compared to
(4.8) in the SM, we investigate also the variant SM+SM′(9).
This scenario has only two additional new-physics parame-
ters C9,9′ compared to six in the SM+SM′ scenario, implying
a “smaller punishment” due to the larger prior volume w.r.t.
the SM(ν-only) case. The 2D-marginalized (C9 − C9′) plane
in Fig. 4 shows the SM point on the border of the 3σ region for
the only solution A′. The results do not change much when
using the “full (+FF)” data set. The 1σ probability regions
from the 1D-marginalized posterior distributions are

1 2 3 4 5 6
C9

−1

0

1

2

3

4

C 9

Fig. 4 Credibility regions obtained from the fit in the SM+SM′(9)
model. We show the results of the full data set after the EPSHEP 2013
conference at 68.3 % (dark red), 95.4 % (light red), and 99.7 % (lightest
red) probability. The black diamond and the black cross represent the
projections of the SM point and the best-fit point

�9 = −0.8 ± 0.3, �9′ = +1.4+0.3
−0.4,

which is compatible with the results of [48]. With the same
parameter ranges as in (4.9), the Bayes factor with the “full”
data set comparing the SM-like solution A′ to SM(ν-only) is

P(full|SM+SM′(9))
P(full|SM(ν − only))

∣∣∣
A′ = 8 : 1, (4.11)

slightly favoring the SM+SM′(9) over the SM. With the “full
(+FF)” data set, the Bayes factor increases to

P(full (+FF)|SM+SM′(9))
P(full (+FF)|SM(ν − only))

∣∣∣
A′ = 820 : 1. (4.12)

4.5 Interpretation

We conclude this section with a remark on the model compar-
ison. We emphasize again that, to derive the posterior odds,
the Bayes factor has to be multiplied by the appropriate prior
odds [see (4.4)], the determination of which is beyond the
scope of the present work. Given that the standard model
successfully describes the vast majority of particle physics
data, our prior odds are in strong favor of the SM(ν-only).
This is true even for the considered rare decays despite their
particular sensitivity to new physics because the majority of
standard model predictions are in the ballpark of the other
experimental measurements of �B = 1, 2 observables.

Currently the lack of experimental evidence for right-
handed weak interactions significantly reduces our prior
probabilities of scenarios with chirality-flipped Wilson coef-
ficients SM+SM′ and SM+SM′(9) compared to SM(ν-only).
Among the scenarios with chirality-flipped Wilson coeffi-
cients we would set prior odds in favor of SM+SM′ because
SM+SM′(9) is only a restricted subset of SM+SM′.
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It remains to be noted that the SM+SM′(9) scenario can be
realized in a model-independent way due to operator mixing
with b → s f f̄ four fermion operators. Such scenarios have
been considered previously for f = quarks [64–66] as well
as f = τ [67] and recently discussed in the present context
of the data [68] for f = b. In the case of f = quarks also
hadronic charmless decays would be affected [69]. Explicit
Z ′-models have been discussed recently in [70–73].

We find for nearly all combinations of scenarios and data
sets, except the “selection” data set, satisfactory p values of
about 5–10 %. This indicates that it is possible to find a sin-
gle parameter point (the best-fit point), at which the data is
adequately described. The Bayes factor, in contrast, quan-
tifies the ability to describe the data, averaged over the full
parameter space. Concerning the SM scenario, the Bayes fac-
tor indicates that the additional parameters do not yield an
advantage over the SM(ν-only) scenario. However, it is inter-
esting to see that the Bayes factors are undecided or even in
favor of the scenarios SM+SM′ and SM+SM′(9) for the “full”
data set. Taking lattice results into account, the Bayes factors
increase roughly by a factor 100 for the “full (+FF)” data set.

We emphasize that this increase in the latter scenarios for
the “full (+FF)” data set can be traced to three causes. First,
the prior information based on the lattice results is in line
with the information on form factor parameters as inferred
from the data; see Table 6. Second, chirality-flipped Wilson
coefficients can, at least partially, take on the role of sub-
leading contributions to the B → K (∗)�+�− amplitudes.
Since changing the Wilson coefficients (with flat priors) is
“less costly” than changing the subleading parameters (with
Gaussian prior distributions), the Bayes factor penalizes the
latter. Third, the goodness of fit decreases for SM(ν-only)
while it stays constant for SM+SM′ as follows from the χ2

values of Table 3.
Evaluating the sensitivity to the prior shape, we repeated

the “full (+FF)” fits replacing Gaussian priors with flat priors
of the same range—as in Fig. 1—for all subleading param-
eters. The Wilson coefficients are determined with the same
or slightly higher precision as before. Most of the sublead-
ing parameters play a minor role in the fit, so the prior
equals the posterior. The two exceptions are the large-recoil
parameters ζ L⊥

K ∗ and ζ L0
K ∗ . Their posteriors are very similar

to those of the fit with Gaussian priors shown in Fig. 1 but
marginally wider. Due to the extra freedom, all models are
able to better describe the data. At the best-fit point, the p
values roughly double from 0.04 to 0.1 (SM(ν-only)), from
0.09 to 0.16 (SM+SM′), and from 0.12 to 0.2 (SM+SM′(9)).
The Bayes factors slightly shift in favor of SM(ν-only) by
2.6 (SM+SM′(9)) and 4 (SM+SM′) indicating that the mod-
els with variable Ci on average do not benefit as much from
the added flexibility. In summary, changing the prior shape
of the subleading parameters does not entail any big surprise
and corroborates our main findings.

5 Conclusions

Our Bayesian analysis indicates that the standard model pro-
vides an adequate description of the available measurements
of rare leptonic, semileptonic, and radiative B decays. Com-
pared to our previous analysis [30], we determine the Wilson
coefficients C7,9,10 more accurately, dominantly due to the
reduction of the experimental uncertainties in the exclusive
decays and the addition of the inclusive decay B → Xsγ .

Contrary to all similar analyses, our fits include the the-
ory uncertainties explicitly through nuisance parameters. We
observe that tensions in the angular and optimized observ-
ables in B → K ∗�+�− decays can be lifted through (10–
20)% shifts in the transversity amplitudes at large recoil
due to subleading contributions. These shifts are present
within the SM as well as the model-independent extension
of real-valued Wilson coefficients C7,9,10. For the scenarios
introducing additional chirality-flipped coefficients C7′,9′,10′ ,

the shifts reduce to a few percent (except ζ L⊥
K ∗ ). We find

|C9′ | < 4 (4.1) and |C10′ | < 2 (3) with 68 % (95 %) prob-
ability for the right-handed couplings, which holds in the
absence of scalar and tensor contributions. These constraints
are insensitive to the shape (Gaussian vs. flat) of the priors
of subleading corrections.

Among the information inferred from the data are con-
straints on the parameters of the B → K (∗) form factors.
We have performed all fits with and without the very recent
lattice B → K ∗ form factor predictions [51]. These form
factors constitute very strong additional prior information
leading to a tension with branching fraction measurements of
B → K ∗�+�− at high q2 [49]. It can be eased by the presence
of chirality-flipped Wilson coefficients and currently disfa-
vor new physics without them. Notably, in the fits without the
lattice results the data still yields larger posterior form factor
values in scenarios with chirality-flipped Wilson coefficients,
such that independently of the inclusion of the lattice predic-
tions, the posterior ranges of the Wilson coefficients differ
only little in these scenarios.

The rough picture emerging from current data may be
summarized as follows. The low-q2 B → K ∗�+�− data pre-
fer a negative new-physics contribution to C9 [47], which is
not supported by B → K�+�− data unless one allows a
positive contribution to C9′ (or alternatively C10′) [48]. The
additional C9′ would be in conflict with current measurements
of the branching fraction of B → K ∗�+�− at high q2, unless
one increases the B → K ∗ form factors A1,2 by about 15 %
(see Table 6), which is well within the theoretical uncertain-
ties of their extrapolations of light-cone sum rule predictions
from low to high q2. Perhaps not accidentally, the central
values of recent lattice predictions for these form factors at
high q2 [49] are also higher by the same amount, whereas
their theoretical uncertainties are below 10 %. Including the
lattice predictions, the model comparison suggests that sce-
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narios with chirality-flipped Wilson coefficients can provide
an explanation of the data as efficient or even better than the
standard model.

A substantial reduction of uncertainties can be expected
for LHCb, CMS, and ATLAS measurements of B0 →
K ∗0�+�− and B+ → K +�+�− once they publish the anal-
ysis of their 2012 data sets. It should also be mentioned that
B → K ∗γ and B → K (∗)�+�− results from Belle are not
based on the final reprocessed data set and that BaBar’s angu-
lar analysis of B → K ∗�+�− is still preliminary. It remains
to be seen whether these improved analyses further substanti-
ate the present hints of a 2σ deviation from the SM prediction
in the (C9—C9′) plane.

In our opinion, however, there remain two major chal-
lenges on the theory side. The first is to improve our analytic
knowledge of the 1/mb corrections to the exclusive decay
amplitudes. The second is to reduce the uncertainty from
hadronic form factors, especially at low q2. Without improve-
ments on either, there is little prospect to discern between
small NP effects and large subleading corrections. Another
point of concern are potentially large duality-violating effects
that render the OPE at high q2 invalid. They have been esti-
mated, though model-dependently, to be small [40]. In this
regard, the experimental verification of certain relations [28]
among angular observables in B → K ∗�+�− that are pre-
dicted by the OPE would be very desirable. In the case that
some of these relations are not fulfilled, the analysis of the
breaking pattern can provide information on duality violation
but also on additional new-physics scalar and tensor interac-
tions.
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Appendix A: Theoretical treatment

This appendix details the theoretical predictions for newly
added observables, and their respective nuisance parameters

Table 7 Numerical input that has been updated but is not used as nui-
sance parameters in the fit. †See text for additional details

Quantity Unit Value Reference

αs(MZ ) 0.1184 – [54]

MZ 91.1876 GeV [54]

MW 80.385 GeV [54]

mpole
t 173.5 GeV [54]

MB+ 5.27925 GeV [54]

MB0 5.27958 GeV [54]

τB+ 1.641 ps [54]

τB0 1.519 ps [54]

τB+/0 1.580 ps †

fB+/0 190.6 ± 4.7 MeV [75]

MBs 5.36677 GeV [54]

τBs 1.516 ps [54,76]

��s 0.081 ps−1 [54,76]

ys 0.062 – [54,76]

Table 8 Prior distributions of common nuisance parameters

Quantity Prior Unit Reference

CKM

λ 0.22535 ± 0.00065 – [74]

A 0.807 ± 0.020 – [74]

ρ̄ 0.128 ± 0.055 – [74]

η̄ 0.375 ± 0.060 – [74]

Quark masses

mc(mc) 1.275 ± 0.025 GeV [54]

mb(mb) 4.18 ± 0.03 GeV [54]

are discussed. Further we explain changes to the choice of
priors for some of the nuisance parameters, as well as a dif-
ferent parametrization of B → K ∗ form factors, always with
respect to our previous analysis [30]. We also list the updated
values of input parameters whose uncertainty is neglected in
Table 7.

Concerning the set of common nuisance parameters—the
Wolfenstein parameters of the CKM-quark-mixing matrix
and the MS bottom- and charm-quark masses entering the
majority of observables—we use the updated values given
in Table 8 based on the most recent PDG combinations [54]
and the tree-level result of the UTfit collaboration [74].

We model asymmetric uncertainty intervals for the priors
with LogGamma distributions (see [30] for details), while
symmetric intervals are implemented as Gaussian priors.

Appendix A.1: Inclusive decays B → Xs(γ, �
+�−)

The branching ratio of the inclusive decay B → Xsγ ,
B(B → Xsγ ) ∼ |C7|2 +|C7′ |2, represents the most stringent
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Table 9 Prior distributions of the nuisance parameters for hadronic
quantities entering inclusive and exclusive decays

Quantity Prior Unit Reference

Inclusive decays

μ2
π (1 GeV) 0.45 ± 0.10 GeV2 [81]

μ2
G(1 GeV) 0.35+0.03

−0.02 GeV2 [81]

B → K form factors

f+(0) 0.34 ± 0.05 – [35,84]

b+
1 −2.1+0.9

−1.6 – [35]

B → K ∗ form factors

V (0) 0.36+0.23
−0.12 – [35]

A1(0) 0.25+0.16
−0.10 – [35]

A2(0) 0.23+0.19
−0.10 – [35]

bV
1 −4.8+0.8

−0.4 – [35]

bA1
1 0.34+0.86

−0.80 – [35]

bA2
1 −0.85+2.88

−1.35 – [35]

Bs decay constant

fBs 227.6 ± 5.0 MeV [75,85–87]

constraint on the magnitude of the dipole Wilson coefficients
C7,7′ . In our analysis we include the known corrections to

next-to-leading order in αs [77,78] as well as αs

2
QCD/m2

b
corrections [79]. Contrary to the common normalization to
the semileptonic inclusive decay B → Xc�ν, we express the
branching ratio in terms of the averaged B meson life time
for a 50:50 production ratio of B+ B− to B0 B̄0 pairs at the
ϒ(4S), τB+/0 given in Table 7, and the bottom-quark pole
mass. In order to avoid renormalon ambiguities we calculate
the pole mass value from the MS mass mb(mb) using the 3-
loop result [80]. The MS mass is part of our set of common
nuisance parameters and its uncertainty dominates the overall
theory uncertainty of inclusive decays. At order 
2

QCD/m2
b

in the heavy-quark expansion hadronic matrix elements of
two dimension-five operators enter. They are parametrized
in terms of μ2

π and μ2
G for the expectation values of the

kinetic and the chromomagnetic operators, respectively. The
parameters μ2

π and μ2
G enter the fit with priors according to

[81], which are listed in Table 9. The correlation between
μ2

G and the b-quark mass is accounted for by the B∗–B mass
splitting. When confronting the theoretical prediction of the
mass splitting with the measurement (3.5), we include also
the effect of dimension-six operators as described in [81].
Our SM prediction B(B → Xsγ ) = (3.14+0.22

−0.19) · 10−4 is
in good agreement with the NNLO result [82]. The theory
uncertainty of our prediction is determined from variation of
the Wolfenstein parameters, mb(mb), mc(mc), μ2

π , and μ2
G .

For the prediction of the branching ratio of the inclu-
sive decay B → Xs�

+�− we work at NNLO in QCD and
NLO in QED, including also 
2

QCD/m2
b subleading cor-

Table 10 Reproduction of mean values, uncertainties (top) and corre-
lation information (bottom) of lattice points [50] for the vector form
factor f+(q2) in B → K transitions

q2 (GeV) 17 20 23

f+(q2) 1.08 ± 0.03 1.51 ± 0.03 2.34 ± 0.07

17 1.00 0.78 0.29

20 – 1.00 0.71

23 – – 1.00

rections, as described in [52,53] except for the SM-SM′
interference terms. We adopt the same normalization in
terms of τB+/0 and bottom-quark pole mass as described
for B → Xsγ . The chirality-flipped operators are included
following [83] and NLO QCD corrections to matrix ele-
ments are accounted for in case they can be derived easily
within the SM operator basis. The overall theory uncertainty
is determined as for B → Xsγ from the variation of the
same nuisance parameters. We obtain as the SM prediction
〈B(B → Xs�

+�−)〉[1, 6] = (1.4 ± 0.1) · 10−6.

Appendix A.2: Form factors and decay constants

The most important change in the treatment of form factors
is the consistent use of the parametrization as in [35], for
both B → K and B → K ∗ transitions. It has the merits
of (a) a convenient expansion in a small parameter z that
respects unitarity, (b) correct behavior at the BK (∗) produc-
tion threshold, (c) correct asymptotic behavior for q2 → ∞,
and (d) a convenient parametrization at q2 = 0.

For B → K we have modified the prior of the nuisance
parameter f+(0) of the f+ form factor parametrization w.r.t.
our previous analysis but kept the slope parameter b+

1 as is.
This change accounts for both LCSR results [35,84] that use
the same approach of B-interpolating currents and on-shell
K -mesons. As a result the prior on f+(0) is wider and the
tension between the SM prediction of the B → K�+�−
branching ratio at q2 ∈ [1, 6] GeV2 [36] and the LHCb mea-
surement [15] is reduced. Moreover, the recent lattice predic-
tions [50] of the form factor f+ at high q2 are included in our
analysis as part of the likelihood for technical reasons. For
this purpose we reproduced lattice predictions at three values
of q2 = 17, 20, 23 GeV2 as well as their correlation matrix
based on the parametrization given in [50]; see Table 10.
(The q2 values and number of points are chosen such that
the correlation of neighboring points does not exceed 80 %.)
This constraint is included in the likelihood by means of a
multivariate Gaussian.

Due to the change of parametrization of the B → K ∗
form factors V, A1 and A2, their three respective nuisance
parameters are replaced by the three form factor normaliza-
tions at q2 = 0 (V (0), A1,2(0)) and three slope parameters

123



2897 Page 16 of 18 Eur. Phys. J. C (2014) 74:2897

Table 11 Reproduction of mean values, uncertainties (top) and cor-
relation information (bottom) of lattice points based on the results in
the arXiv v1 of [51] for the vector form factors V (q2) and A1,12(q2)

in B → K ∗ transitions. Note that the update of the results from the
arXiv v1 to v2 introduce only minor changes to the mean values and
the correlation coefficient for the A12 lattice points

q2 (GeV) 15 19.21

V (q2) 1.19 ± 0.10 1.98 ± 0.11

A1(q2) 0.52 ± 0.03 0.64 ± 0.02

A12(q2) 0.36 ± 0.03 0.43 ± 0.03

V A1 A12

q2 (GeV) 15 19.21 15 19.21 15 19.21

15 1.00 0.46 1.00 0.52 1.00 0.25

19.21 – 1.00 – 1.00 – 1.00

(b
V,A1,2
1 ). The LCSR results of [35] are chosen as the priors

for normalizations and slopes. We note that these priors are
less precise than the results of [88] due to a novel LCSR setup
involving an on-shell B meson and interpolation of the K ∗
final state. Beyond the informative priors we also include two
additional constraints on B → K ∗ form factors at q2 = 0.
First, the ratio V (0)/A1(0) is constrained in the large energy
limit as given by [31] (see also references therein)

V (0)/A1(0) = 1.33 ± 0.40, (6.1)

where the uncertainty has been estimated based on power
counting. Second, we make use of the relation

A0(0) = MB + MK ∗

2MK ∗
A1(0)− MB − MK ∗

2MK ∗
A2(0) (6.2)

where

A0(0) = 0.29+0.10
−0.07 (6.3)

is the LCSR result given in [35]. We note that (6.1) and (6.3)
represent additional constraints on the nuisance parameters
V (0) and A1,2(0). The motivation for this treatment is to
tighten the constraints on A1(0), and to avoid unphysical
(i.e. negative) values of the form-factor combination A0.

Similar to our treatment of B → K lattice results, we
reproduce lattice predictions [51] for the B → K ∗ form
factors V , A1, and A12 at two kinematic points q2 =
15, 19.21 GeV2. We obtain mean values, variances, and the
correlation coefficients between neighboring points as given
in Table 11. Note that Ref. [51] does not provide information
on cross-form factor correlation. We chose the number and
spacing of q2 values so that the correlation of neighboring
points does not exceed 60 %.

The updated prior of the Bs decay constant fBs , entering
the branching ratio of Bs → μ+μ−, takes into account recent
lattice results; see Table 9.

Appendix A.3: Subleading 1/mb

With increasing knowledge of the B → K (∗) form factors
and measurement of optimized—i.e., form factor insensitive
—observables, the treatment of subleading contributions to
the amplitudes of both B → K�+�− and B → K ∗�+�−
decays has increased in relevance. Especially their analytic
q2 dependence is currently unknown, and their determina-
tion is not within the scope of this work. However, we strive
to infer the size of contributions that go beyond the known
QCDF and low-recoil terms. In order to achieve this goal we
keep the parametrization of subleading terms as in our pre-
vious work, except for the complex phases of the low-recoil
terms. Inference of these phases is not possible in the absence
of data on CP asymmetries in B → K (∗)�+�− decays at low
recoil [30]. We therefore remove these phases from the anal-
ysis.

The overall theory uncertainty of our predictions in the
region of large recoil differ substantially from those given in
[38], due to the different treatment of subleading corrections
to the form factor relations and the contributions from cc̄
resonances. We keep the parametrization as in our previous
work,

AL(R)
χ �→ AL(R)

χ ζ
L(R)χ
K ∗ , χ = ⊥, ‖, 0, (6.4)

and obtain similar uncertainties in predictions of observables
as in [47].

We collect the experimental measurements as well as theo-
retical predictions from the literature and this work in Table 2
for the optimized observables 〈P ′

4,5,6〉. There we give predic-
tions, i.e., before the fit, and postdictions that include experi-
mental information, and proceed for this purpose as described
in [30]. The predictions are restricted to the SM(ν-only) sce-
nario and are based on the prior distributions of the nuisance
parameters. Besides our nominal Gaussian prior choice with
1σ ranges of ±0.15 (15 % at amplitude level) for subleading
parameters at large recoil, ζ L(R)χ

K ∗,K , and also at low recoil, we
also show the results for wider 1σ range of ±0.45. We do
not include the recent lattice results of B → K ∗ form factors
[51].

The central values of our predictions agree within errors
with [38,47,49]. At large recoil our theoretical uncertainties
are of the same size as in [47] and much smaller than in [38],
which treats subleading corrections differently. Choosing
wider prior ranges leads to small shifts in the central value
and can double the theoretical uncertainty that is still smaller
than the one in [38]. At low recoil, subleading corrections

123



Eur. Phys. J. C (2014) 74:2897 Page 17 of 18 2897

are less important and the wider prior ranges practically do
not affect the overall uncertainties.

The postdictions are based on the posterior distributions
of the fits for each scenario with nominal prior distributions.
This includes NP effects in the Wilson coefficients in the
scenarios SM and SM+SM′. The overall uncertainties of the
postdictions are smaller than the uncertainties of the pre-
dictions. This can be attributed to the improved knowledge
of form factors and subleading nuisance parameters as wit-
nessed by the prior-to-posterior compression in Table 6
and Fig. 1. The additional NP contributions in SM com-
pared to SM(ν-only) do not change postdictions of 〈P ′

4,5,6〉
noticeably. On the other hand, chirality-flipped operators in
SM+SM′ can induce small shifts only at low recoil.
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