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ABSTRACT: Compactifications of heterotic theories on smooth Calabi-Yau manifolds re-
main one of the most promising approaches to string phenomenology. In two previous
papers, arXiv:1106.4804 and arXiv:1202.1757, large classes of such vacua were con-
structed, using sums of line bundles over complete intersection Calabi-Yau manifolds in
products of projective spaces that admit smooth quotients by finite groups. A total of 10'2
different vector bundles were investigated which led to 202 SU(5) Grand Unified Theory
(GUT) models. With the addition of Wilson lines, these in turn led, by a conservative
counting, to 2122 heterotic standard models. In the present paper, we extend the scope
of this programme and perform an exhaustive scan over the same class of models. A total
of 10% vector bundles are analysed leading to 35,000 SU(5) GUT models. All of these
compactifications have the right field content to induce low-energy models with the matter
spectrum of the supersymmetric standard model, with no exotics of any kind. The de-
tailed analysis of the resulting vast number of heterotic standard models is a substantial
and ongoing task in computational algebraic geometry.
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1 Introduction and summary

Heterotic string compactifications [1-4] on Calabi-Yau threefolds have provided one of the
most promising approaches to string phenomenology for almost three decades. Several
approaches have been proposed and used over the years: smooth Calabi-Yau compactifi-
cations based on the standard embedding [4-8], non-standard embedding models [9-20],
models based on orbifolds [21-30], free fermionic strings [31-36] and Gepner models [37—
39]. In the present paper, we display the latest results of a large scale model building



programme in the context of smooth Calabi-Yau compactifications of the heterotic string.
This programme, aimed at achieving more detailed phenomenology than has to date be
possible in this context, was initiated in the publications [40, 41] (for an early example of
a systematic scan over heterotic models in the free fermionic context, see [31-33]). The
history of string phenomenology suggests that it is difficult to fine tune any particular
construction in order to simultaneously meet all the properties of the Standard Model.
Instead, the approach we take is that of a ‘blind’ automated scan over a huge number of
models; for the present scan this number is of order 10%.

Following this approach, what lies in front of the heterotic string model builder is a
set of highly non-trivial challenges that can be summarised in the following checklist:

1. Construct a geometrical set-up, such that the 4-dimensional compactification of the
N = 1 supergravity limit of the heterotic string contains the symmetry SU(3) x
SU(2) x U(1) of the Standard Model of particle physics. This step is usually realised
in two stages, by firstly breaking the Fg heterotic symmetry to a Grand Unified
Theory (GUT) group and then breaking the latter to the Standard Model gauge
group (plus possibly U(1) factors). This requires a VEV of the gauge connection on
the internal (compact) 6-dimensional space X, or, equivalently, one needs to construct
a vector bundle V — X.

2. Derive the matter spectrum of the 4-dimensional theory. At low energy, the fermion
fields transforming under the broken gauge group must be massless modes of the
Dirac operator on the internal space X. The number of massless modes for a given
representation is given by the dimension of certain bundle-valued cohomology groups
on X. Such cohomology computations are generically difficult to perform. At this
stage, one would like to identify models with the matter spectrum of the minimally
supersymmetric Standard Model (MSSM), typically a very small sub-set of all con-
sistent models constructed in this way.

3. Constrain the resulting Lagrangian, in order to avoid well-known problems of su-
persymmetric GUT models, such as fast proton decay. For this purpose, additional
discrete or continuous symmetries derived from the compactification set-up may be
helpful.

4. Derive information about the detailed properties of the model, such as the superpo-
tential, the holomorphic Yukawa couplings, fermion mass-terms and p-terms. Such
holomorphic quantities can usually be understood using techniques from algebraic
geometry.

5. Compute the physical Yukawa couplings. The physical Yukawa couplings consist of
holomorphic superpotential terms times a non-holomorphic prefactor, whose compu-
tation requires the explicit knowledge of the metric on X and the gauge connection on
the vector bundle V. For the case when X is a Calabi-Yau manifold, Yau’s proof [42]
guarantees the existence of a Ricci-flat metric, while for poly-stable vector bundles
on Calabi-Yau manifolds, the Donaldson-Uhlenbeck-Yau theorem [43, 44] guarantees



the existence of a Hermitian Yang-Mills connection. However, except in very special
cases, these quantities are not known analytically. So far, one can approach this
differential geometric problem only numerically [45-47].

6. Stabilize the moduli and break supersymmetry. Recently, some progress has been
made by including the effect of the Fg x Eg bundle flux [48-50].

7. Compute soft-breaking parameters.

Every phenomenological requirement in this list will lead to a substantial reduction in the
number of viable models. It is, therefore, crucial to start with a large number of models
at the initial stages, if one hopes to retain a realistic model in the end. In this paper, we
will concentrate on precisely this task and obtain, within a certain class of constructions,
the largest possible set of models after the first two steps.

The history of this field can be largely understood by looking at the types of poly-
stable holomorphic vector bundles that have been the focus of study at any given time. In
the early days of the subject researchers largely concentrated on small deviations from the
“standard embedding”, where the gauge bundle was taken to be a holomorphic deformation
of the tangent bundle [5, 6]. Such work has been continued to the current day with the
first exact MSSM being produced from such an approach relatively recently [8]. In the
1990’s and later more general poly-stable holomorphic vector bundles, or “non-standard
embeddings”, began to be considered in earnest [9-20, 51]. These gauge bundles were
typically taken to have structure groups SU(3), SU(4) or SU(5) leading to an Eg, SO(10)
or SU(5) GUT group, respectively.

Recently, a new approach to building heterotic models on smooth Calabi-Yau three-
folds has been advanced [40, 41]. In this approach, the vector bundles in consideration
were chosen to be simple sums of line bundles. This construction leads to a GUT group
which naively includes additional U(1) factors in the GUT group beyond the gauge groups
mentioned above. However, these extra U(1)’s are frequently broken, in addition to other
effects, by the Green-Schwarz mechanism [52, 53]. As such, these models are just as capable
of leading to acceptable particle physics phenomenology as their non-abelian cousins.

There are several advantages to working with sums of line bundles, as opposed to
irreducible vector bundles. Firstly, such configurations are relatively simple to deal with
from a computational point of view, and as a result, vastly greater numbers of models
can be considered as compared to other approaches, such as [18-20]. Secondly, although
broken at a high scale, the additional U(1) symmetries that are present in these models
can greatly constrain the Lagrangian of these models giving more information about the
superpotential, and in particular the Kéhler potential, than is usually available in smooth
heterotic constructions. Finally, although line bundle sums often represent special loci in
the moduli space of vector bundles of a given topology, one can move away from the ‘split’
locus by turning on VEVs for certain bundle moduli, thus reaching non-abelian bundles.
As such, these simple configurations provide a computationally accessible window into an
even bigger moduli space of heterotic compactifications.



The two previous papers in which the line bundle construction was employed, [40, 41],
achieved a number of goals. These publications presented the results of a scan over some
10'2 line bundle sums in a search for heterotic standard models. The number of models
investigated was in some sense arbitrary. The range of integer values defining the first
Chern class of the line bundles scanned over was relatively restricted. These values were
chosen simply to give a large number of models which was, nevertheless, manageable with
a relatively simply implemented algorithm. From these 10'2 vector bundles, the authors
extracted 202 SU(5) GUT models which had precisely three generations of GUT families,
no anti-families, at least one 5 — 5 pair of Higgs fields and no other charged matter of any
kind whatsoever. Each of these models was constructed such that there was at least one
Wilson line which could be added to the configuration which led to exactly the spectrum
of the MSSM with the Higgs triplets being projected out. In fact, each of these GUT
models led to many different standard models due to choices, closely related to the Wilson
line breaking, which were available in the construction. The results of including Wilson
lines were presented explicitly and the 202 GUT models led to, by a conservative counting,
2122 heterotic standard models. The constraints on the effective field theory description
of these models coming from the broken U(1) gauge factors was also explicitly computed.
The complete data set including higher dimensional construction and tabulation of the
resulting four-dimensional effective field theories was presented in a data base which can
be found here [54].

In this paper, we extend the scope of the scan to make it comprehensive within the class
of heterotic compactifications being studied. Instead of restricting the range of integers
defining the line bundles in an arbitrary manner, we developed an algorithm which allows
for an exhaustive scan. This leads to a considerable increase in the size of the data set being

0'2 configurations as before, in this paper we present the

considered. Instead of examining 1
results of a scan over 10%° different compactifications of heterotic string theory. Even with
improvements to our methodology from the previously published work, this scan, which is
described in section 5 ran on a computer cluster over a period of seven months. The data
set of GUT models we have obtained is, unsurprisingly, much larger than the 202 models
discussed above. A conservative counting results in 34,989 such GUT models which we
expect will lead to one order of magnitude more heterotic standard models when Wilson
lines are added. Given the size and extra technical complications resulting from dealing
with such huge numbers of heterotic compactifications, we will present the detailed analysis
of incorporating the effects of the Wilson line breaking in a separate paper. This represents
in and of itself a huge task in computational algebraic geometry, which will take several
months to complete.

The table below presents a statistics on the total number of consistent GUT models
which have resulted from the search detailed in section 5. The first column counts SU(5)
GUT models having the correct chiral asymmetry, which can, however, suffer from the
presence of 10 multiplets or the absence of 5 — 5 pairs to accomodate the Higgs content
of the standard model. In the second column we eliminate those models that contain 10
anti-family matter. This step relies on computations of line bundle cohomology groups,
which we are able to perform in 94% of all cases. The number in parentheses indicates the



_ 10 d
GUT models | no 10 multiplets 1o 20 and .
at least one 5—5 pair

63325 44343 (3606) 34989 (5291)

Table 1. Statistics on the number of models.

GUT models for which we could not decide upon the presence of 10 multiplets. Similarly,
in the third column we select from the 44343 models that definitely have no anti-families,
those which contain at least one 5 — 5 pair to contain MSSM Higgs fields.

The rest of this paper is structured as follows. In the next section we review the
line bundle construction, and in addition provide a discussion of the structure group of
holomorphic sums of line bundles, which is crucial in determining correctly the GUT gauge
group. The latter discussion is new and, for the purpose of preserving the fluidity of the
text, we defer a full presentation to appendix A. In the following two sections we define
the class of manifolds under consideration and present the constraints imposed on the
vector bundles. In section 5 we outline the algorithm used in the automated scan, while in
section 6 we list the number of viable models obtained over each manifold, noting that in
all cases we reach a limit beyond which no realistic line bundle vacua exist. We conclude
with an example and final remarks.

2 Overview of the construction

The structure of Fg x Eg heterotic compactifications on smooth Calabi-Yau three-folds
with Abelian vector bundles, as well as the class of A/ = 1 four dimensional supergravities
to which they lead, have been thoroughly discussed in two previous publications [40, 41].
As such, we limit the scope of this section to merely summarising the central features
of heterotic line bundle standard models. Additionally, we provide a discussion on the
possible structure groups of vector bundles constructed as direct sums of holomorphic line
bundles.

2.1 Heterotic line bundle compactifications

Schematically, the construction and analysis of heterotic string line bundle standard models
can be broken up into three steps.

1. In the first step, a solution to the 10-dimensional supergravity limit of the Fg x Eg
heterotic string is obtained by specifying several geometrical elements. Firstly, we
compactify 10-dimensional space-time on a smooth Calabi-Yau threefold X. Over this
manifold we specify a poly-stable holomorphic vector bundle V' with structure group
H C Eg x Eg which describes the gauge field expectation values in the supergravity
solution. The possible choices of V' over a given X are restricted by several consistency
requirements as described in sections 2.2 and 4. In the line bundle construction, the
vector bundle is taken to be a direct sum of five holomorphic line bundles

V:@La.



As we will discuss in section 2.2, we choose the five line bundles L, such that the
structure group H C Ejg is Abelian and of the form H = S (U(1)%) = U(1)*.

If the background derived in this first step was used to dimensionally reduce the
heterotic string theory to obtain an A/ = 1 four dimensional supergravity without
further modification, then the result would be a supersymmetric GUT. The gauge
group seen in four dimensions G would, naively, be the commutant of H inside Eg.
For the line bundle models mentioned above, this leads to a GUT group

G =SU(5) x S (U(1)")

However, the additional U(1) factors are generically Green-Schwarz anomalous and
thus the associated gauge bosons often obtain Stiickelberg masses which are close to
the compactification scale in magnitude.

. In the second step, Wilson lines are added on the Calabi-Yau in such a way as to
break the GUT group described above, down to that of the Standard Model. Adding
such structure to the compactification is only possible if X is not simply connected.
Most standard constructions of Calabi-Yau threefolds lead to manifolds for which
7m1(X) = 0. Fortunately this situation can be resolved by quotienting a monifold X
obtained from one of the usual constructions by a freely acting discrete symmetry
I". The fundamental group of the resulting smooth quotient manifold X=X JT is
non-trivial, and in fact is isomorphic to I'.

The vector bundle V' constructed in step 1 must be consistent with this quotienting
procedure. We must ensure that our bundle V' — X descends to a well defined vector
bundle V' — X. This is only the case if V admits an equivariant structure under the
symmetry I'. Indeed, the set of vector bundles on X is in one-to one correspondence
with the set of equivariant vector bundles on X.

The heterotic theory is then compactified to four dimensions on this new quotiented
configuration including a non-trivial Wilson line. The gauge group obtained in four
dimensions is then the commutant of the structure group of the flat bundle associated
to the Wilson line inside G. This result is corrected as described in the first step by
the Green-Schwarz mechanism. If the configuration is chosen correctly this can lead
to the standard model gauge group Ggys in four dimensions. The matter content
must be computed by the usual techniques of dimensional reduction — including the
effects of the Wilson line. One wishes to obtain examples where the resulting four
dimensional standard model charged matter is exactly that of the MSSM.

. As a final step in analysing a heterotic line bundle standard model, one can use the
additional U(1) four dimensional gauge symmetries to constrain the operators present
in the four dimensional Lagrangian even though they are spontaneously broken by
the Green-Schwarz mechanism. This allows a degree of analytical control over the
low energy theory associated to these models which is unusual in the context of
smooth Calabi-Yau reductions — in particular with regard to the Ké&hler potential



for matter fields. In specific models, these symmetries can help forbid operators in
the four dimensional theory whose presence can be problematic for issues such as
proton stability.

In this paper we present the results obtained after pursuing the avenue described in
the first step above. We construct a large class of GUT models, postponing the remaining
analysis for a future publication. However, we stress that the full analysis is feasible and
has already been carried out for the more restricted set of models described in ref. [40, 41].
In the rest of this section we describe the GUT gauge group and particle spectrum that is
obtained in such constructions in more detail.

2.2 The GUT gauge group

As discussed in refs. [40, 41], the gauge group of the GUT models that we hope to construct
using line bundles is SU(5) x S (U(1)?), the maximal subgroup of Eg which commutes with
S (U(1)®). We reserve this section for determining when the structure group of a direct
sum of five holomorphic line bundles with vanishing first Chern class is indeed S (U(1)%),
leading to the desired GUT gauge group. We will outline below the possible structure
groups (and obstructions) for V = @2:1 L,.

It is a long standing problem in vector bundle geometry that in general, the structure
group, H, of a vector bundle cannot be determined without explicit knowledge of the
H-valued connection (satisfying the equations of motion, here the Hermitian Yang-Mills
equations [40]). However, for holomorphic bundles in certain cases, knowledge of the
topology of the bundle and other facts may be enough to fully specify H.

As discussed more fully in appendix A, for the present scans of rank 5, reducible bun-
dles, built as a sum of holomorphic line bundles @‘2:1 L, there are only a few possibilities
for H. We demand that ) c1(L1) = 0. Thus, it can be argued that H must be a subgroup
of SU(5), SO(5) or Sp(4) (see appendix A). The latter two structure groups are possible
for a rank 5 vector bundle only if V5 admits either a real or symplectic fiber structure
(see [55, 56] and (A.7)), in the form of a vector bundle isomorphism, ¢ : V' — V*. Since
@D, La is an odd sum of 5 line bundles, such an isomorphism is possible if and only if
L, = Ox for at least one a. To avoid this case we impose for all a = 1,...,5 that

¢i(Ly) #0 for at least one value of r=1,...RM(X). (2.1)

This constraint, combined with the vanishing of the first Chern class, means that H must
be a sub-group of SU(5). It only remains to determine whether H = S (U(1)5) or a proper
sub-group thereof. If H is not equal S (U(1)5), it is possible that its commutant in Eg (the
4d GUT group, G) is not of the form SU(5) x U(1)*, but rather another group less suitable
for realistic model-building. For example, the structure group H = S (U(1)?) x S (U(1)?)
has commutant, G = SU(6) x U(1)3. To eliminate such phenomenologically unviable
possibilities, the following condition is imposed on the Chern classes of the line bundle sum:

ch(La) # 0 for all proper subsets S C {1,...,5}. (2.2)

a€S



repr. cohomology | total number required for MSSM
lo,—e, | H'(La®L}) | 3, h' (Lo ® Lj) = ' (V@ V*) -

5 co—e, | H'(LE®LY) | Yocp B (L ® L) = K1 (A2V*) = 1 (A%V) np,

Se,te, | H'(La® Ly) | 3, h' (La ® Lp) = B (A?V) 3]+ np

10, H'(L,) > b (La) = h'(V) 3|0

10, | H'(L;) 2o W (Ly) = h'(VF) 0

Table 2. The possible SU(5) matter representations which may be obtained in four dimensions
and their U(1) charges. The dimensions of the cohomology groups indicated in the second column
determine the multiplicity of each representation in the four dimensional spectrum. The third
column gives the total number of each SU(5) representation present in the four dimensional effective
theory, of any U(1) charge. The final column gives the number of each SU(5) multiplet that we
require in the GUT theory in order to obtain the standard model spectrum (with at most n;, pairs
of Higgs doublets) after the addition of suitable Wilson lines.

With these conditions in hand, it is guaranteed that the heterotic line bundle con-
struction leads to a 4d GUT symmetry of the form SU(5) x U(1)* (with the abelian factors
generically Green-Schwarz massive). We are now ready to turn to the more detailed ques-
tion of the charged matter particle spectrum of the low-energy theory.

2.3 The GUT spectrum

If the conditions of the previous section are satisfied, a sum of five line bundles breaks
the Eg heterotic symmetry to SU(5) x S (U(1)"). In such a case, the computation of the
spectrum of the heterotic line bundle model has been explained in detail in [40, 41]. Here
we simply state the results for the convenience of the reader.

We represent S (U(1)5) representations by vectors q = (q1,...,¢q5) of five integer
charges. Due to the determinant condition associated to the “S” of S (U(1)?), two such
vectors q and q’, represent the same representation and, hence, have to be identified if

—q' € Zn, where n = (1,1,1,1,1). We also introduce the standard basis {€,}q=1,...5 in
five dimensions. Charges for GUT multiplets are indicated by adding the charge vector as
a subscript so that, for example, 10e, represents a 10 multiplet of SU(5) with charge 1
under the first U(1) and uncharged under the others. A list of the relevant multiplets and
their properties is provided in table 2, below. Different SU(5) representations are associ-
ated with different patterns of U(1) charges. For example, the 10 multiplets carry charge
one under precisely one of the five U(1) symmetries, while the 5 multiplets carry charge
one with respect to two U(1) symmetries. Apart from such rules, the precise assignment of
charges across the spectrum (including bundle moduli) is model-dependent. This is of ma-
jor phenomenological importance: invariance under the (global remnant of the) S (U(1)%)
symmetry constrains the allowed operators in the low-energy theory. Indeed, one can easily
envisage situations in which the pattern of charges is such that, for example proton decay
operators are forbidden.

The final column of the table shows the number of each SU(5) representation that we
require in the GUT model such that after quotienting the Calabi-Yau manifold and adding



suitable Wilson lines, we obtain the spectrum of the MSSM. As before, I' denotes a freely
acting finite group by which we quotient the Calabi-Yau manifold and |T'| is its order.

We have now completed our overview of what is required for a successful heterotic
line bundle standard model construction. In the next sections we move on to describe the
particular class of Calabi-Yau threefolds which we will study, as well as some details of the
line bundles over them.

3 The manifolds

Historically the first class of Calabi-Yau three-folds explicitly constructed [57], complete
intersections in products of projective spaces (CICYs) have often served as the starting
point in heterotic model building [5-8, 12-15, 18-20]. The present systematic computer-
based scan for standard models will continue this tradition.

The choice is based on two crucial features of the CICY class of manifolds. In the first
place, there exists a systematic classification of all linearly realised freely acting discrete
symmetries on the CICY manifolds in the database [58, 59]. More accurately, Braun’s
classification [59] provides a list of all such symmetries which descend from a linearly
acting symmetry on the ambient space. Furthermore, a given Calabi-Yau manifold can
frequently be embedded in many different products of projective spaces. The symmetry
classification of [59] is carried out for a limited selection of possible ambient spaces for each
Calabi-Yau. As discussed in the previous section, a knowledge of such symmetries is an
essential ingredient in breaking the GUT group to the Standard Model gauge group. We
note that in constructing the GUT models presented here, it is in fact only knowledge of
the possible orders of the available groups, and thus the possible values of |I'|, which is
required.

The second feature of the CICY’s which makes them particularly suitable for the
current work is related to their relative simplicity. The embedding of Calabi-Yau manifolds
in such simple ambient spaces means that computations of the cohomology of line bundles

I This is particularly

over these manifolds can be effectively automatised on a computer.
true when there is a strong connection between line bundles on the ambient space and line
bundles on the Calabi-Yau threefold. As such we restrict our attention to CICYs presented
in a ‘favourable’ embedding.

Favourable embeddings can be described in many equivalent ways. For example, on
manifolds such as those we are considering, isomorphism classes of line bundles are com-
pletely classified by their first Chern class. This is an element of the second cohomology
group H?(X,7Z) of the base space X. Favourable CICYs can be defined to be those whose
second cohomology descends entirely from the second cohomology of the embedding space.
In such a case, all of the line bundles on X are restrictions of line bundles over the ambient
product of projective spaces. For this property to hold for a given description of a CICY,
certain requirements have to be satisfied, as discussed in appendix B.

1Using the “CICY Package” by L.B. Anderson, J. Gray, Y.-H. He, S.-J. Lee and A. Lukas based on
methods described in in [60-64].



4 The bundles

Recall that our bundles V' — X are taken to be sums of five line bundles
V=L (4.1)

A single line bundle is specified by its first Chern class and, hence, by a set of hb!(X)
integers. Given this, a sum of 5 line bundles is specified by a matrix of integers with
hY'(X) rows and 5 columns. In our systematic investigation, we have scanned over ~10%°
such matrices and selected approximately 35, 000 bundles which lead to phenomenologically
consistent SU(5) GUTs. In the following subsections we list the criteria that these 35,000
models satisfy.

4.1 Topological constraints

We require that,
ca(V)=0, (4.2)

as well we eq. (2.2), such that the structure group of V is S(U(1)?) which leads to a
GUT group G = SU(5) x S (U(1)5). Apart from this group theoretical advantage, impos-
ing ¢1 (V) = 0 guarantees the existence of a spin structure on V.

In addition, the integrability condition on the Bianchi Identity for the Neveu-Schwarz
two form leads to the following constraint on the vector bundle V.

chy(TX) — chy(V) — cho(V) +[C] =0 (4.3)

Here [C] € H*(X) is the Poincaré dual to the effective holomorphic curve class wrapped
by a five-brane and V is the hidden-sector bundle (which we will take to be trivial). The
simplest way to guarantee that this condition can be satisfied is to require that co(T'X) —
c2(V') € Mori cone of X, where we have used that ¢ (V) = 0. In this case, an effective curve
class which saturates the condition (4.3) for a trivial hidden bundle V exists (although,
typically, solutions with non-trivial V can be found as well). For favourable CICYs we
have a basis {J,} of (1,1)-forms on X, obtained from hyperplane classes of the embedding
projective spaces, such that the Kahler forms J = t"J, correspond to positive values, t" > 0,
of the Kéahler parameters t". The above Mori cone condition can then be written as

/ (a(TX) — ca(V)) A Jy > 0, for all 7 € {1,..., h"(X)} | (4.4)
X

4.2 Constraints from stability

Demanding an N' = 1 supersymmetric vacuum in four dimensions leads to the requirement
that the gauge connection on V satisfies the hermitian Yang-Mills equations at zero slope.
By the Donaldon-Uhlenbeck-Yau theorem this is possible if and only if V' is holomorphic,
has vanishing slope and is polystable.

~10 -



The slope of a vector bundle V is defined as

1 T
_ — r syt
M) = 2775 /X R r;;l dy (V)

where dpot = / Jr N Jg A Jp are the triple intersections on X.
X

For the case of interest, V' is a direct sum of line bundles and ¢; (V') = 0. The vanishing
slope condition u(V') = 0 is therefore automatically satisfied. In addition, these sums of
line bundles are automatically holomorphic. On the other hand, poly-stability reduces to
the requirement that,

3t" such that wu(Ly)|ler =0 Va (4.5)

somewhere in the interior of the Kéhler cone (t" > 0 Vr).

Finally, we note that for slope(poly)-stable bundles on a Calabi-Yau threefold there
is a positivity condition on the second Chern class, given by the so-called Bogomolov
bound [65]. For SU(n) bundles this takes the simple form

/ (VYA >0 (4.6)
X

and J is any Kéahler form for which V is poly-stable.

4.3 Constraints from the GUT spectrum

The SU(5) x S (U(1)®) GUT spectrum has already been discussed in section 2.3. In order
to secure a chiral asymmetry of 3 after taking the quotient of X by I', we must require
that h1(X,V) — h2(X,V) = hY(X,A%V) — h3(X,A%V) = 3|T'|. Since for a poly-stable
bundle the zeroth and the top cohomologies vanish, the chiral asymmetry conditions can
be formulated in terms of the indices

ind(V) = ind(A*V) = =3|T . (4.7)

In fact, for an SU(5) bundle, ind(V) = ind(A?V), so one needs to check only one chiral
asymmetry. Furthermore, in order to exclude anti-families, we require the absence of 10

multiplets, and hence that
h2(X,V) =0 (4.8)

Finally, in order to safeguard the presence of at least one Higgs doublet, it is necessary
to demand the existence of at least one 5 — 5 pair which is expressed by the requirement

R(X,\2V) > 0. (4.9)

4.4 Equivariance and the doublet-triplet splitting problem

In addition to the above constraints, we demand that, for each a < b

ind(L, ® Ly) <0 (4.10)
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In the case where each of the line bundles composing V' are individually equivariant,
this condition is necessary for it to be possible to project out all Higgs triplets upon the
addition of a Wilson line. If the line bundles composing V' are individually equivariant,
then V' descends to a simple sum of line bundles on the quotient space X. In such a case
there is a relation between the index of the line bundle products on X and X.

ind(Ly ® L) = ‘111‘ ind(Lq ® Lp)

All indices involved must, of course, be integers and in the case where the line bundles
are individually equivariant the size of ind(L, ® L;) will be such as to ensure that this is
true. Given this relationship, if ind(L, ® L) > 0 then so is ind(L, ® Lp). This ensures
that in such cases there is at least one complete set of 5 degrees of freedom of SU(5) in the
four dimensional effective theory — leading to the presence of Higgs triplets. This result is
unaffected by the presence of Wilson lines as the undesirable particle content is protected
by an index which such gauge configurations do not affect.

For line bundle sums with non-trivial equivariant blocks the situation is more com-
plicated since divisibility of the index only applies to each equivariant block rather than
to individual line bundles. In the simplest such case, an equivariant block is formed by
two or more same line bundles which are permuted by the equivariant structure. More
complicated equivariant blocks can consist of different line bundles which are mapped into
each other, typically subject to an additional permutation of their integer entries. At any
rate, bundle isomorphisms between the relevant line bundles must exist in this case so they
must have the same index. In conclusion, line bundles within equivariant blocks must have
the same index and, hence, if this index is positive so is the index of the equivariant block.
Then, a generalization of the above index argument to the entire block leads to the same
conclusion, namely the inevitable presence of Higgs triplets. Hence, the condition (4.10)
should be imposed in all cases.

5 The scanning algorithm

If a sum of five line bundles passes the criteria (4.2)—(4.10), it leads to a consistent four
dimensional GUT theory which, with appropriate Wilson line breaking, will lead to het-
erotic standard models. As mentioned above, a sum of five line bundles is specified by
5-h11(X) integers. An examination of the CICY database reveals that all manifolds which
are favourable and admit known linear free actions of discrete groups have h''!(X) in the
range 2 < hb1(X) < 6.2 Thus, we are interested in investigating bundles described by
matrices of between 10 and 30 integers, and deciding when they obey the criteria we have
described.

One could envisage a scan over all line bundle sums with entries between, say, —10
and 10, for the manifolds with ~A!(X) = 6. This would require us to check ~103° matrices
representing sums of line bundles. For comparison, a year has ~3-107 seconds. It is rather

*Manifolds with R*'(X) = 1 cannot lead to consistent line bundle models since the slope zero condi-
tion (4.5) cannot be satisfied.
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clear that such an attempt would be impossible if one desired to explicitly construct each
such line bundle matrix and then check the necessary criteria. A better approach is based
on the observation that the criteria (4.2)—(4.10) impose certain conditions on individual
line bundles, as well as on partial sums of line bundles. These restrictions are of four kinds:
stability related, index related, conditions stemming from the integrability of the heterotic
Bianchi identity and restrictions on cohomology.

The constraint from stability imposes that each collection of up to five line bundles
{Lq} can only describe a heterotic vacuum if there exists a point in the interior of the
Kahler cone, t" > 0, such that simultaneously for all a,

RbH(X)
> disvef (L) tt' =0.

r,s,t=1

This is condition (4.5) of the previous section.

Deciding whether a quadratic equation in several variables has positive solutions can
be a computationally intensive question. KEstablishing the existence of common positive
solutions for a collection of such equations is an even more formidable problem. On
the other hand, given that the Ké&hler cone for our manifolds is given by t" > 0 for
all 7 = 1,...,hY1(X), a fairly strong, and obviously necessary, condition for the ex-
istence of positive solutions to the slope-zero equation for each line bundle L, is that
the matrix (Mgy)st = dist ¢](Lq) has both positive and negative entries. For any subset
{La4y,---,La,} C{L1,...,Ls} of our five line bundles to have common positive solutions,
it is necessary that any linear combination of the matrices {M,,, ..., M,, } has both positive
and negative entries. In practice, we consider linear combinations with integer coeflicients
between —5 and 5. This turns out to be a remarkably effective way of eliminating line
bundle sums that are not poly-stable.

For the line bundle sums that pass this necessary criterion we explicitly find common
solutions to the slope-zero equations in the interior of the Kéahler cone. In a great majority
of the cases we are able to find exact solutions, while in the remaining cases (most of which
appear for the h! = 6 manifolds), we have to resort to numerical methods.

The index-related criteria impose, for any subset of the five line bundles, that the
sum of their indices is negative and greater than or equal to —3|I'|. This criterion simply
follows from equation (4.7) — we do not want more than three generations of standard
model particles. We must also check the index based criteria given by equation (4.10).
Indices of line bundles can be computed very rapidly in terms of their defining integers
using the following standard formula:

1
ind(L) = - (2¢e1(L)? + c1(L) co(TX))
" 1
= Y (DDl + e D))
r,s,t=1
The condition (4.4) stemming from the integrability of the heterotic Bianchi Identity
constrains the full sum of five line bundles. This can be rewritten in terms of the integers
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describing the line bundles as follows.

5
1
/ co(TX) A Jp > / (VYA Ty == di Y cf (La) cf (La)
X X 2 e

The restrictions on the cohomology of the line bundle sums (4.8)—(4.9) require a larger
amount of computational resources to implement than do the simple checks already de-
scribed. Therefore, at first, we only take into account the remaining constraints (4.2)—(4.7)
and (4.10). This stage of the scan leads to GUT models with the correct chiral asymmetry,
but does not exclude the possibility of having 10 multiplets or no Higgs doublets at all. In
the second stage of the scan, we attempt to eliminate the models containing anti-families.
In 94% of the cases we are able to compute the required cohomology and thus decide upon
the fate of the corresponding models. Finally, we eliminate the models that have no Higgs
doublets, with a rate of decidability of 88%. The code we use to evaluate the relevant
cohomolgy groups can only compute the ranks of a subset of the maps involved in the
calculation. The 6% and 12% of cohomologies respectively which could not be determined
here require these ranks to be computed. The computation of the cohomology of line
bundles over CICYs is reviewed, for example, in ref. [50].

Below, we schematically present the algorithm used in this automated search. The
input parameters are the Calabi-Yau data (configuration matrix, intersection numbers,
c2(TX), a list of row permutations that leave the configuration matrix unchanged); the
order of a freely acting discrete group I' and the maximal value for a line bundle entry,
kmax. The list of permutations present in the Calabi-Yau data is used in order to eliminate
redundant line bundle sums, that is, line bundle sums that can be related to one another
by a trivial re-labeling of the ambient space projective factors. The algorithm outputs a
list of Models represented as matrices of integers whose columns stand for the first Chern
classes of the 5 line bundles.

1. assemble List_1 containing line bundles satisfying:

i) =3|'| < ind (L) <0 and

i) u(L) =0, somewhere in the interior of the Kdhler cone
2. obtain List_IrC List_1 by removing all redundant line bundles;

3. for each L;; € List_1r assemble List_2(L;;) C List_1 containing line
bundles such that, for every L;, € List_2(L;) the following relations
hold:

i) =3|T| < ind (L;,) + ind (L) ;
ii) —3|T| < ind (A% (Li, ® Ly,)) = ind (Ls, ® Ly,) < 0;
i9i) p(Li,) = p(Li,) =0, somewhere in the interior of the Kdhler come

4. given L; € List_1r, for each L;, € List_2(L;, ) assemble List_3(L;,,L;,) C
List_2(L;, ), such that any L;, € List_3(L;,,L;,) satisfies:
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—2kpax < 7 (Liy) + ¢l (Liy) + ¢ (Liy) < 2knax, for all r e {1,...,hH(X)}
=3|I'| < ind(L;, ® Li;) <0; —3|I'| < ind(L;, ® Li;) < 0;

—3|F| <ind (/\2 (Lll D Li2 D Lls)) = ind (Li1®L12)—|—ind (Lil®Li3)+ind(Li2®
Liy) < 0;

v) w(Li) = pu(Liy) = p(Liy) = 0, somewhere in the interior of the K&hler

cone

)

1) —3|I'| <ind(L;,) + ind (L;,) + ind (L) ;
)
)

5. given L;,L;, and L;, as above, select from List_3(L;,,L;,) those line
bundles L;,, such that the line bundle L;, defined by ci(L;, ® Li, ® Li; ®
Li,®L;) =0 satisfies:

Z) _kmaX < C{(ng‘) < kmax
i1) —3|I'| < ind (L;;) < 0;
i71) p(Li;) =0 somewhere in the interior of the Kihler cone

6. given L;,L;,,L;;,L;, and L;; as above, check:

i) —=3|'| = ind (L;,) + ind (L;,) + ind (Li;) + ind (L;,) + ind (L, ) ;
ZZ) —3‘F‘ = ind (/\2 (LZ1 D LZ‘2 D Li3 &) Li4 &) Li5))§

i11) ind(L;, ® L;,) < 0 for all pairs a < b that have not been checked so

far;

i) p(Liy) = w(Liy) = p(Lig) = p(Liy) = u(Li,) = 0, in the interior of the
K&dhler cone

5
’U) 2 dyst CQSt(TX) > dyst Z Cls(Lla> Cf(L’La)
a=1

if these requirements are satisfied, append L; @© L;, ® L;; ® L;, ® L;; to
Models

7. remove all redundant line bundle sums from Models.

8. for the remaining Models, check stability by explicitly finding points
in the K&hler cone where all line bundles have slope zero.

9. eliminate models with 10 multiplets

10. eliminate models with no 5 —5 pairs

In the next section we discuss the results of running this algorithn and will describe
in what sense the list of models obtained is comprehensive in nature.
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6 Results and finiteness

It is expected that the number of slope(poly)-stable vector bundles relevant for a smooth
heterotic compactification is in fact finite. To begin, it is possible to see that for any bundle
which is stable somewhere in the Kéhler cone, the possible values of its topology, at least,
are finite. For example, for the bundles under consideration here, the first Chern class is
constrained to vanish (the condition for spinors) and the second Chern class is bounded
from above by the anomaly cancellation condition (4.3) and from below by the Bogomolov
bound (4.6), thus yielding a finite range of possible values for c2(V). Moreover, for an
SU(n) vector bundle which is semistable somewhere in the Kahler cone, it is known that
there can be only finitely many values possible for the third Chern class [66, 67]. Moreover
for fixed topology (that is, fixed total Chern class) the moduli space of semi-stable sheaves
on a Calabi-Yau threefold is known (by algebraicity of the family [65, 66]) to have only
finitely many components.

An important subtlety arises here for the problem at hand — namely that the math-
ematical definition of this moduli space proceeds by first defining an explicit choice of
Kahler form (that is, a ray in Kéhler moduli space) with respect to which the sheaves are
semistable. However, for the purposes of heterotic model building, we aim to build all
Standard Model bundles which are stable for some (not necessarily all the same) Kéhler
form. We wish to know, then, if there are finitely many components to the collection of all
moduli spaces, allowing the Kahler moduli to vary over any relevant values in the Kéhler
cone. For this harder problem, some boundedness results are still known (with the most
detailed bounds possible in the case of complex surfaces) (see [65, 67] for a review) for the
families of moduli spaces relevant for present scans.

Thus, viewing our poly-stable sums of line bundles as special points in the moduli
space of semistable sheaves, it is expected that for a given Calabi-Yau threefold, X, there
are a bounded number of line bundle Standard Models that can be constructed. However,
for the most part, the bounds described above are non-constructive. Thus, in this work, we
will empirically bound the number of such models by algorithmic scanning and explicitly
constructing the poly-stable vector bundles.

The number of models over a certain manifold admitting discrete symmetries of a
fixed order is an increasing and saturating function of the maximal integer appearing in
the line bundles (ignoring sign). This can be observed for all the pairs (X, |I'|) that we have
considered, as shown in the tables below. However, we believe that our results reflect a more
general phenomenon. In practice, we have applied the above algorithm to all pairs (X, |T'|)
of favourable CICYs with the orders |I'| of a freely-acting symmetries and all line bundle
sums (4.1) with |c¢](Lg)| < km, for a fixed upper bound k. In each case, the number
of viable models has then been determined for increasing values of ky, until saturation
occurred. As a practical criterion for the onset of saturation we have required the number
of models to remain unchanged for three consecutive values of k. This criterion has been
checked by going to large integer entries in the line bundles in simple cases where the
computation can be completed in a modest amount of time. However, although it seems
that the data set is indeed comprehensive, there is no formal proof that this criterion
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X, [kon=1]kn=2kn=3kn=4]kn=5|kn=6|kn="1
7484, 4 0 0
7669, 3 0 0
7669, 9 0 0
0 0
0 0

7735, 8
7745, 8

Table 3. Number of models as a function of ky, on CICYs with h11(X) = 3. Total number of
models: 6.

is enough to ensure that all relevant sums of line bundles have been found. The results,
before imposing the absence of 10 multiplets, eq. (4.8), and the presence of Higgs multiplets,
eq. (4.9), can be found in the subsequent tables. The Calabi-Yau manifolds, X, are specified
by a number, given in the first column of the tables below, which represents their position
in the standard list of CICYs compiled in refs. [57, 68] and explicitly accessible here [69].
As is evident from the tables all viable models consist of line bundles satisfying

e (La)| < 10 (6.1)

As one would expect, their number increases dramatically with h'!(X), the number of
Kihler parameters. For h''!(X) = 1,2,3,4,5,6 we find 0,0,6,552,21731,41036 models,
respectively, for a total of 63325 models, the number already quoted in the introduction.
When the two further constraints (4.8) and (4.9) are imposed this number reduces to 44343
and 34989, as already indicated in table 1. The number of models at each stage, for all
pairs (X,|I'|) is tabulated in appendix C. Numbers in parentheses in the tables of this
appendix indicate how many cases a given quantity could not be computed for, given the
limitations in the code used to compute cohomology which we have already discussed. The
complete list of these models can be accessed here [70].

We note that the average number of viable models per pair (X, |I'|) as a function of
h11(X) is approximately given by 0.3, 20,530, 4560 for h''! = 3,4, 5,6, respectively. Very
roughly, this corresponds to an increase of one order of magnitude per additional Kéhler
parameter. At this point it is tempting to speculate about the total number of standard
models, that is, models with the MSSM spectrum, in string theory. Known Calabi-Yau
three-folds have Hodge numbers in the range of up to A (X) < 500. If the increase
by an order of magnitude observed at small h''(X) continues to such large values the
number of string standard models is enormous. However, a line bundle sum is determined
by 5-hb1(X) integers and it seems likely that the three-family constraint becomes more
difficult to satisfy for a large number of these integers. We would, therefore, expect the
increase to slow down at larger h'''(X). Currently, we do not see any way of checking
this by explicit scanning since h%!(X) = 6 marks out the reach of present computational

power.

7 An example

For illustration, we would like to present a model from our database, which is accessible
here [70]. The example is based on the CICY with number 7447, defined by the configura-
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XU [kon=1]lkn=2]kn=3]kn=4]kn=5]|km=6] kn=7 | km =8 | km =9
6784, 2 0 0 2 10 12 12 12
6784, 4 0 6 38 50 62 70 70 70
6828, 2 0 0 1 5 6 6 6
6828, 4 0 3 19 25 31 35 35 35
6831, 2 0 1 2 2 2
7204, 2 0 2 14 22 22 22
7218, 2 0 1 7 11 11 11
7241, 2 0 1 7 11 11 11
7245, 2 0 1 4 4 4
7247, 3 0 19 57 59 59 59
7270, 2 0 2 14 22 22 22
7403, 2 0 3 6 6 6
7435, 2 0 0 0 2 2 2
7435, 4 0 0 5 8 9 10 10 10
7462, 2 0 0 0 6 6 6
7462, 4 0 0 15 24 27 30 30 30
7468, 2 0 5 7 7 7
7491, 2 0 0 0 2 2 2
7491, 4 0 0 5 8 9 10 10 10
7522, 2 0 0 0 6 6 6
7522, 4 0 0 15 24 27 30 30 30
7719, 2 0 4 14 26 26 26
7736, 2 0 2 7 13 13 13
7742, 2 0 2 7 13 13 13
7862, 2 0 5 7 10 10 10
7862, 4 0 9 46 54 58 58 58
7862, 8 0 3 40 53 58 62 64 64 64
7862, 16 0 0 0 1 4 5 5 5

Table 4. Number of models as a function of ky, on CICYs with h1!(X) = 4. Total number of
models: 552.

tion matrix and line bundle sum

P 1]>% 1-2 1 1 1
P11 0-2-1 1 2
X = Pl11 , vV = 0 2-1 1-2
P11 0 2 0 0-2
L2 I O 1 0 0-2 1

According to ref. [59], the manifold X can be smoothly quotiented by a group of order 4.
The columns of the second matrix correspond to the first Chern classes of the five line bun-
dles composing V. The dimension 2*(X,V) = (h%(X, V), k' (X, V), h3(X,V),h3(X,V)) of
the bundle cohomologies for V' are explicitly given by

h*(X,V) = (0,12,0,0)
h*(X,N2V) = (0,15,3,0)
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X, || km = k=2 | km =3 | kn =4 | knn =5 | b =6 | k=7 | bk =8 | km =9
5256, 2 0 575 727 775 779 779 779
5256, 4 0 672 1857 2085 2173 2180 2180 2180
5301, 2 0 144 182 194 195 195 195
5301, 4 0 169 466 523 545 547 547 547
5452, 2 0 574 726 774 778 778 778
5452, 4 0 672 1854 2083 2171 2177 2177 2177
6024, 3 0 303 510 513 513 513
6204, 2 0 62 116 122 125 125 125
6225, 2 0 147 221 231 232 232 232
6715, 2 0 96 148 184 184 184
6715, 4 0 165 690 812 844 848 848 848
6724, 2 0 19 34 36 39 39 39
6732, 2 0 434 778 880 880 880
6770, 2 0 216 307 329 331 331 331
6777, 2 0 434 778 880 880 880
6788, 2 0 96 148 184 184 184
6788, 4 0 165 690 812 844 848 848 848
6802, 2 0 432 775 877 877 877
6804, 2 0 59 154 169 173 173 173
6834, 2 0 218 390 441 441 441
6836, 2 0 24 37 46 46 46
6836, 4 0 43 175 206 214 215 215 215
6836, 8 0 6 94 120 131 133 137 137 137
6836, 16 0 0 0 0 2 3 3 3
6890, 2 0 860 1546 1750 1750 1750
6896, 2 0 218 390 441 441 441
6927, 2 0 144 222 276 276 276
6927, 4 0 244 1030 1212 1260 1266 1266 1266
6927, 8 0 34 554 706 770 782 806 806 806
6947, 2 0 24 37 46 46 46
6947, 4 0 43 175 206 214 215 215 215
6947, 8 0 6 94 120 131 133 137 137 137
6947, 16 0 0 0 0 2 3 3 3
7279, 2 0 128 204 212 218 218 218
7447, 2 0 56 87 93 93 93
7447, 4 0 214 377 419 428 430 432 432 432
7447, 10 0 6 58 72 81 82 83 83 83
7487, 2 0 277 430 459 459 459
7487, 4 0 1052 1851 2058 2101 2111 2121 2121 2121

Table 5. Number of models as a function of ky, on CICYs with h11(X) = 5. Total number of

models: 21731.

The model has a chiral asymmetry of 12, which, after quotienting, is reduced to 3.
It contains a number of 5 — 5 pairs, which after introducing Wilson lines lead to one (or

possibly more than one) pair of Higgs doublets.

The above example is interesting as it satisfies the anomaly cancellation condition

without the addition of any 5-branes. In this case,

co(TX).J; = co(V).J; = (24,24, 24,24, 24)
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kem = 10,
X0 | k=1 | km =2 |km=3|kmn =4 |km =5 |km =6 | km =7 | kn =8 | kmn =9 112,13
3413,3 | 0 2278 | 2897 | 2906 | 2906 | 2906

4190, 2 | 11 766 | 1175 | 1243 | 1246 | 1247 | 1249 | 1249 | 1249

5273,2 | 29 4895 | 7149 | 7738 | 7799 | 7810 | 7810 | 7810

5302,2 | O 4314 | 5978 | 6360 | 6369 | 6369 | 6369

5302,4| 0 11705 | 16988 | 17687 | 17793 | 17838 | 17868 | 17868 | 17868

5425,2 | 0 2381 | 3083 | 3305 | 3337 | 3337 | 3337

5958,2 | 0 148 224 240 253 253 253

6655, 5| 0 92 178 189 194 194 198 201 202 203
6738,2 | 1 2733 | 4116 | 4346 | 4386 | 4393 | 4399 | 4399 | 4399

Table 6. Number of models as a function of k,, on CICYs with h%'(X) = 6. Total number of
models: 41036.

As the ranks of V and TX are the same, and their second Chern classes match, one
could study the interesting problem® of deforming V to T'X, which would bring us back
to the standard embedding. Our database contains 348 such models which saturate the
inequality (4.4).

8 Final comments and outlook

In this paper, we have presented the results of a comprehensive scan over heterotic line
bundle models on favourable complete intersection Calabi-Yau manifolds (CICYs) with
freely-acting symmetries. There are 68 such manifolds with A (X) = 2,...,6 contained
in the standard list of CICY three-folds [57, 68] available at [69]. We have focused on
rank five line bundle sums, leading to SU(5) GUT models, and a scan over about 10%°
configurations has produced 63325 consistent and physically viable such models, available
here [70]. Furthermore, we have shown computationally that this exhausts the set of
physically viable line bundle models on the aforementioned class of CICYs. More precisely,
by a consistent and physically viable model we mean a model with a poly-stable line bundle
sum which allows for a global completion and whose chiral asymmetries have the correct
values to produce a standard model upon taking the quotient by the freely-acting symmetry
and including the Wilson line. When we require, in addition, the absence of 10 multiplets
and the presence of at least one 5-5 pair to account for the Higgs the number of viable
models is reduced to about 35000.

The task ahead involves constructing the standard models associated to these GUT
models. From prior experience with a smaller data set [40, 41] we expect this will lead to a
larger number of standard models compared to the number of GUT models. A number of
technical hurdles have to be overcome in order to complete this task, notably devising and
implementing a complete algorithm for computing (equivariant) line bundle cohomology
on CICYs. This work is currently in progress. The resulting models will provide by far
the largest data set of standard models in any type of string construction and they will

3This idea was suggested to one of us by S.-T. Yau in a private communication.
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provide a starting point for a systematic study of phenomenological questions beyond the
spectrum, such as proton decay, p-problem and the structure of Yukawa-couplings.
We hope to report on the results of this ongoing work in the near future.
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A Bundle structure groups

In this appendix, we review some useful results regarding principal and vector bundle
geometry in heterotic compactifications. In particular, we address the problem of how to
determine the structure group, H C FEjg, of a vector bundle without knowing an explicit
form for the connection.

A.1 Principal bundles vs. vector bundles

In compactifications of the heterotic string, for each Fg factor, the gauge fields over the
Calabi-Yau threefold are specified by a principal H-bundle, V, with H C Fg. Given an
explicit embedding of H into Eg, V determines a collection of associated vector bundles,
Va, carrying specific representations of H, as determined by the decomposition of the
248 representation of Fg. For example, if a principal SU(3) bundle, Vgy s), is embedded
into Fg via the direct product (Eg x SU(3)) /Zs, then the decomposition of the adjoint
representation of Fg yields the following representations, carried by the corresponding trio
of vector bundles with appropriate rank (fiber dimension):

3| 3| 8
Vs | V5 | End(Vh)

(A1)

Given the rank 3 vector bundle, V3, in the fundamental representation of SU(3), we can
straightforwardly build those bundles corresponding to the 3 and the 8 by taking the dual
or tensor products.

In practice, however, in building the background geometry for a heterotic compactifi-
cation we do not explicitly construct the principal bundle V, but rather, first, the vector
bundle in the fundamental representation, and from it the full collection of vector bundles,
Va, in the relevant representations. Moreover, as an added difficulty, except in very special
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cases, there are no tools available to explicitly construct the H-valued connections, V, of
the relevant vector bundles.*

Instead, our starting point is an explicit formal construction of a rank n holomorphic
vector bundle (for example a sum of line bundles, or a bundle constructed via a monad [18],
or by extension [71]). The question now becomes, can we be sure that the given collection
of vector bundles really arose from an H-valued principle bundle? Suppose, for example,
that we consider a holomorphic rank 3 vector bundle, V3, with structure group H C U(3)
and c1(V3) = 0. We may be tempted to declare this an SU(3) vector bundle from this data
alone. However, suppose further that the bundle satisfies the non-trivial condition that

VeVt (A.2)

Now, from this new information, it is clear that the previous conclusion was too hasty.
Since the 3 of SU(3) is not a real representation, it follows that no SU(3) vector bundle can
satisfy the self-duality condition in (A.2). Instead, the given V3 could actually be carrying
the symmetric, 3-representation of SU(2) (more precisely, it could correspond to S?Va for
some fundamental, rank 2, SU(2)-bundle, V3); or similarly, the 3 of an SO(3)-bundle. An
obstruction of this type could occur for any vector bundle in the collection V,,, and we must
make sure that no such topological obstacles exist in building a bundle with the desired
structure group.

In this work, we focus on SU(5) principal bundles breaking Eg to an SU(5) GUT
symmetry in 4-dimensions via,

2485, — [(1,24) @ (5,10) @ (5,10) ® (10,5) ® (10,5) ® (24,1)]sus)xsus)  (A.3)
Thus, we must construct the associated vector bundles with fiber-dimensions corresponding
the 5,5,10,10, 24 representations (see table 2).

Beginning with the fundamental 5-representation, for the vector bundles constructed
in this work, we will check here that there are no obstructions, such as the one described
above, which would prevent the sum of five line bundles, €@, L,, from having structure
group S (U(1)®?).

We will outline in the following paragraphs a set of tools for determining the structure
groups of rank n holomorphic vector bundles with structure group H C U(n) and ¢1(V) =
0. We will focus on distinguishing the groups SU(n),Sp(2n) and SO(n). The exceptional
sub-groups of Fg will not arise in the dimensions of representation in consideration here

and we will omit them from this discussion.

A.2 Chern classes and structure groups

The first and most important ingredient we have in determining the structure group of a
vector bundle is its topology. As a simple example, consider the following direct sums of
two line bundles on a threefold X

V| LieL | Lol | Lo L*
H | U(1)xU(1) | U1)xU@1)orU®1) | S[UQ)xU)]=0U(Q)

(A4)

4For numeric approaches to this problem see [45-47].
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For the first sum of line bundles, ¢1(L1) # ¢1(L2) implies that for all possible connections
on this sum, the structure group is U(1) x U(1). However, for the sum of two identical
line bundles with the same first Chern class, L @ L, there is some flexibility in the choice
of connection. For generic, independent, U(1)-valued connections, the structure group
likewise is generic, that is, U(1) x U(1). For this topology, however, a non-generic choice
is also available, and by choosing the two connections Vi = Vs, the structure group is
simply U(1). Finally, in the last example, the sum of a line bundle and its dual, the only
structure group compatible with the reducible connection and vanishing trace condition is
the diagonal U(1) C SU(2).

For phenomenology we require that the low energy GUT symmetry in 4-dimensions is
SU(5) times possible U(1) factors. So long as the commutant of H is of this form, SU(5) x
S(U(1)%) C Es, the Green-Schwarz Mechanism will guarantee that the U(1) symmetries are
generically massive (see [40, 41, 52, 53]). Just as in the case of two line bundles described
above, here we must guarantee that the topology of our sum does not force a smaller
sub-group than S (U(1)®5) in such a way that the commutant contains other non-Abelian
factors beyond SU(5). For example, if the sum of 5 line bundles satisfies

Cl(Ll) =+ Cl(Lg) =+ Cl(Lg) =0 , Cl(L4) + Cl(L5) =0 (A5)

then structure group is H = S (U(1)®3) x S (U(1)®?) ~ U(1)®3, but its commutant in
FEg is SU(6) x U(1)®3 which would not be suitable for model-building. Thus, in the scans
outlined in the main body of the text, we have, in addition to ), ¢i(L,) = 0, imposed
that

ch(La) # 0 for all proper subsets S C {1,...,5}. (A.6)
acsS

Finally, having eliminated the possibility of undesirable sub-groups of S (U(1)®5) we
must still worry about accidental isomorphisms of the form described in (A.2), which could
force the structure group to be non-unitary and perhaps even larger than S (U(1)®5).

A.3 Hermitian, real and symplectic fiber structures

To guarantee that the fibers of V' carry the SU(5) representations given in (A.3), we must
check that no other topological obstructions, beyond the Chern class conditions described
above, exist which could force a different structure group. To begin, we note that we can
distinguish between the classical simple groups: SU(n),SO(n) and Sp(2n) by determining
whether the vector bundles carry more than the standard Hermitian fiber metric (char-
acteristic of U(n) bundles [55]), but also symplectic or real fiber structures (see [56] for
a review). For example, an Sp(2n)-bundle can be represented by a rank 2n holomorphic
vector bundle (with trivial determinant) equipped with a skew-symmetric, holomorphic
pairing, V ® V — C. The pairing can be viewed as an isomorphism ¢ : V' — V* which
is skew-symmetric and non-degenerate on each fiber. The morphism ¢ is referred to as
a “symplectic fiber structure”. The case of an SO(n)-bundle is identical for rank n holo-
morphic bundles, where in this case the morphism ¢ is symmetric and forms a “real fiber
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structure”. These conditions are summarized in (A.7).

Sp(2n) ‘ o:VenV* ‘ = —p ‘ © € HO(X,N?V)
SO(n) ‘ p: Ve V* ‘ = ‘ 0 e HY(X,S?V)

(A7)

5
a=1

Returning to the case of V.= @
dimensional representations, so to guarantee that H C S (U(1)®5) we have only to elimi-

L,, no exceptional sub-group of Eg carries 5-

nate the possibility that V5 corresponds to the 5 of either SO(5) or Sp(4). However, from
the conditions above in (A.7) it is clear that this is only possible if V' ~ V*.

Happily, for the sum of 5 line bundles considered here such an isomorphism is only
possible if L, = Ox for at least one a € {1,...5}. This possibility can be explicitly
excluded in scans by demanding that for all a € {1,...,5}

c1(Lg) #0  for at least one value of r . (A.8)

Thus, for a sum of five holomorphic line bundles, satisfying »_, c¢1(L,) = 0 in which each
summand is a non-trivial line bundle, both real and symplectic fiber structures are not
possible.

Having eliminated the possibility of an SO(n) or Sp(n) structure group, via the con-
dition (A.8), and V # V* and with no exceptional group representations of the appro-
priate dimension, by process of elimination we have determined that the structure group
of V.= @°_, L, satisfies H C SU(5). Combining this with the condition (A.6) to ex-
clude undesirable subgroups which might lead to non-Abelian commutants in Fg, we have
a necessary set of conditions to guarantee a 4d GUT symmetry of SU(5) x U(1)*.

B Favourable embeddings

In section 3 we noted that the line bundle scan has been carried out over the class of
favourable CICYs, that is, CICYs for which the entire second cohomology descends from
the ambient space. We would now briefly like to discuss the precise meaning of this property
as well as some criteria which can be used to decide whether a given CICY is favourable.
We begin with a CICY, X, defined in the ambient space A = @, P"r, as the common
zero locus of certain polynomials which can be thought of as sections of the line bundle
sum N on A. We denote the restriction of N' to X by N = N|x and also introduce the
bundle S = @™, Ox(e,)®™+1) where e, are the standard unit vectors in m dimensions.

The tangent bundle TX of the CICY X can be obtained from the two short exact
sequences

0-TX 5TAlx > N—=0, 009" =S —>TAx—0. (B.1)

Noting that H''(X) = H?(X,TX) and H3*(X,TX) = H%!(X) = 0 the two associated
long exact sequences lead to the following relations for the second cohomology of X

H"(X) = Coker (H'(X,S) - H'(X,N)) ® Ker (H*(X,TA|x) — H*(X,N))(B.2)
H*(X,TA|x) & H*(X,S) & Ker (C™ — H*(X,9)) . (B.3)
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The part of H'!(X) which descends from the second ambient space cohomology corre-
sponds to the C™ term in the second equation. Hence, the precise conditions for the CICY
X to be favourable are

Coker (H'(X,S) - H'(X,N)) =0, H*X,S)=0. (B.4)

In particular, this means a CICY with AY1(X) > m or (X, S) < R} (X, N) or h?(X,S) >
0 is not favourable. A sufficient, however slightly too strong, condition for X to be

favourable is
hY(X,N)=h*X,8) =0, (B.5)

where the first of these conditions guarantees that the Coker in (B.4) vanishes. Eq. (B.5)
can be checked relatively easily since it only involves cohomologies of line bundles on X
and we, therefore, adopt it as our practical definition of favourability.

C The distribution of models according to (X, |T'|)

no 10s and no 10s and equivari-

X, |I'| | GUT models | no 10 multiplets — . | ance check for individ-
at least one 5 — 5 pair .
ual line bundles

7484, 4 1 1 1 1
7669, 3 2 2 0 (2)

7669, 9 1 1 0 (1) 1
7735, 8 1 1 1 0
7745, 8 1 1 1 0

Table 7. Number of models on CICYs with A1 (X) = 3.
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no 10s and equivari-

X, |I'| | GUT models | no 10 multiplets no 10s andﬁ .| ance check for individ-
at least one 5 — 5 pair .
ual line bundles
6784, 2 12 10 10 10
6784, 4 70 59 59 55
6828, 2 6 6 6 6
6828, 4 35 33 33 31
6831, 2 2 2 2 2
7204, 2 22 14 14 14
7218, 2 11 11 11 11
7241, 2 11 9 9 9
7245, 2 4 4 4 4
7247, 3 59 42 (14) 22 (4) 38
7270, 2 22 18 18 18
7403, 2 6 4 (2) 0(3) 2
7435, 2 2 2 P 2
7435, 4 10 9 9 7
7462, 2 6 6 6 6
7462, 4 30 16 16 14
7468, 2 7 6 5 6
7491, 2 2 2 2 2
7491, 4 10 4 4 4
7522, 2 6 6 6 6
7522, 4 30 21 21 17
7719, 2 2% 24 24 24
7736, 2 13 12 12 12
7742, 2 13 12 12 12
7862, 2 10 10 8 10
7862, 4 58 53 46 44
7862, 8 64 52 36 10
7862, 16 5 5 4 0

Table 8. Number of models on CICYs with A1 (X) = 4.
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no 10s and

no 10s and equivariance

X, [T GUT models | no 10 multiplets - . check for individual line
at least one 5 — 5 pair
bundles

5256, 2 763 625 (12) 480 (65) 625
5256, 4 2128 1812 (23) 1485 (167) 1444
5301, 2 191 178 (3) 87 (40) 178
5301, 4 534 504 (6) 323 (82) 406
5452, 2 762 547 (11) 497 (25) 547
5452, 4 2122 1624 (17) 1518 (71) 1278
6024, 3 509 244 (69) 215 (29) 237
6204, 2 119 96 (14) 76 (17) 93
6225, 2 229 137 (21) 118 (17) 133
6715, 2 184 170 (0) 138 (4) 170
6715, 4 847 711 (4) 539 (76) 457
6724, 2 39 32 (7) 20 (10) 21
6732, 2 880 667 (6) 532 (60) 667
6770, 2 330 271 (0) 197 (39) 271
6777, 2 880 587 (6) 549 (32) 587
6788, 2 184 155 (0) 147 (4) 155
6788, 4 848 621 (4) 579 (28) 397
6802, 2 877 786 (6) 524 (128) 786
6804, 2 141 108 (4) 99 (5) 101
6834, 2 441 371 (3) 283 (47) 371
6836, 2 46 37 (0) 36 (1) 37
6836, 4 214 151 (1) 147 (4) 97
6836, 8 136 109 (0) 97 (9) 14
6836, 16 3 3 (0) 2 (1) 0
6890, 2 1750 1245 (12) 1091 (83) 1245
6896, 2 441 421 (3) 232 (88) 421
6927, 2 276 243 (0) 218 (6) 243
6927, 4 1264 983 (6) 856 (67) 628
6927, 8 798 659 (5) 510 (79) 81
6947, 2 46 45 (0) 30 (1) 45
6947, 4 214 196 (1) 105 (35) 127
6947, 8 136 125 (0) 44 (19) 21
6947, 16 3 3 (0) 2 (1) 0
7279, 2 218 109 (49) 96 (10) 108
7447, 2 93 89 (0) 45 (15) 89
7447, 4 430 396 (2) 182 (77) 306
7447, 5 0 0 (0) 0 (0) 0
7447, 10 81 76 (0) 12 (19) 0
7447, 20 0 0 (0) 0 (0) 0
7487, 2 459 319 (0) 261 (28) 319
7487, 4 2115 1505 (8) 1257 (94) 1136

Table 9. Number of models on CICYs with h!}(X) = 5.
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— no 10s and equivari-

X, IT'| | GUT models | no 10 multiplets no 10s anCL .| ance check for individ-
at least one 5 — 5 pair .
ual line bundles

3413, 3 1737 709 (516) 599 (98) 698
4190, 2 1145 540 (195) 473 (57) 429
5273, 2 6753 4154 (934) 3292 (701) 3757
5302, 2 6294 4130 (246) 3291 (456) 4130
5302, 4 17329 13242 (82) 10174 (1678) 9235
5425, 2 3128 1946 (533) 1358 (409) 1802
5958, 2 246 215 (23) 103 (66) 179
6655, 5 161 143 (15) 67 (64) 1
6738, 2 4243 1846 (743) 1599 (169) 1763

Table 10. Number of models on CICYs with A1 (X) = 6.
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