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tailed analysis of the resulting vast number of heterotic standard models is a substantial
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1 Introduction and summary

Heterotic string compactifications [1–4] on Calabi-Yau threefolds have provided one of the

most promising approaches to string phenomenology for almost three decades. Several

approaches have been proposed and used over the years: smooth Calabi-Yau compactifi-

cations based on the standard embedding [4–8], non-standard embedding models [9–20],

models based on orbifolds [21–30], free fermionic strings [31–36] and Gepner models [37–

39]. In the present paper, we display the latest results of a large scale model building
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programme in the context of smooth Calabi-Yau compactifications of the heterotic string.

This programme, aimed at achieving more detailed phenomenology than has to date be

possible in this context, was initiated in the publications [40, 41] (for an early example of

a systematic scan over heterotic models in the free fermionic context, see [31–33]). The

history of string phenomenology suggests that it is difficult to fine tune any particular

construction in order to simultaneously meet all the properties of the Standard Model.

Instead, the approach we take is that of a ‘blind’ automated scan over a huge number of

models; for the present scan this number is of order 1040.

Following this approach, what lies in front of the heterotic string model builder is a

set of highly non-trivial challenges that can be summarised in the following checklist:

1. Construct a geometrical set-up, such that the 4-dimensional compactification of the

N = 1 supergravity limit of the heterotic string contains the symmetry SU(3) ×
SU(2)×U(1) of the Standard Model of particle physics. This step is usually realised

in two stages, by firstly breaking the E8 heterotic symmetry to a Grand Unified

Theory (GUT) group and then breaking the latter to the Standard Model gauge

group (plus possibly U(1) factors). This requires a VEV of the gauge connection on

the internal (compact) 6-dimensional space X, or, equivalently, one needs to construct

a vector bundle V → X.

2. Derive the matter spectrum of the 4-dimensional theory. At low energy, the fermion

fields transforming under the broken gauge group must be massless modes of the

Dirac operator on the internal space X. The number of massless modes for a given

representation is given by the dimension of certain bundle-valued cohomology groups

on X. Such cohomology computations are generically difficult to perform. At this

stage, one would like to identify models with the matter spectrum of the minimally

supersymmetric Standard Model (MSSM), typically a very small sub-set of all con-

sistent models constructed in this way.

3. Constrain the resulting Lagrangian, in order to avoid well-known problems of su-

persymmetric GUT models, such as fast proton decay. For this purpose, additional

discrete or continuous symmetries derived from the compactification set-up may be

helpful.

4. Derive information about the detailed properties of the model, such as the superpo-

tential, the holomorphic Yukawa couplings, fermion mass-terms and µ-terms. Such

holomorphic quantities can usually be understood using techniques from algebraic

geometry.

5. Compute the physical Yukawa couplings. The physical Yukawa couplings consist of

holomorphic superpotential terms times a non-holomorphic prefactor, whose compu-

tation requires the explicit knowledge of the metric on X and the gauge connection on

the vector bundle V . For the case when X is a Calabi-Yau manifold, Yau’s proof [42]

guarantees the existence of a Ricci-flat metric, while for poly-stable vector bundles

on Calabi-Yau manifolds, the Donaldson-Uhlenbeck-Yau theorem [43, 44] guarantees
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the existence of a Hermitian Yang-Mills connection. However, except in very special

cases, these quantities are not known analytically. So far, one can approach this

differential geometric problem only numerically [45–47].

6. Stabilize the moduli and break supersymmetry. Recently, some progress has been

made by including the effect of the E8 × E8 bundle flux [48–50].

7. Compute soft-breaking parameters.

Every phenomenological requirement in this list will lead to a substantial reduction in the

number of viable models. It is, therefore, crucial to start with a large number of models

at the initial stages, if one hopes to retain a realistic model in the end. In this paper, we

will concentrate on precisely this task and obtain, within a certain class of constructions,

the largest possible set of models after the first two steps.

The history of this field can be largely understood by looking at the types of poly-

stable holomorphic vector bundles that have been the focus of study at any given time. In

the early days of the subject researchers largely concentrated on small deviations from the

“standard embedding”, where the gauge bundle was taken to be a holomorphic deformation

of the tangent bundle [5, 6]. Such work has been continued to the current day with the

first exact MSSM being produced from such an approach relatively recently [8]. In the

1990’s and later more general poly-stable holomorphic vector bundles, or “non-standard

embeddings”, began to be considered in earnest [9–20, 51]. These gauge bundles were

typically taken to have structure groups SU(3), SU(4) or SU(5) leading to an E6, SO(10)

or SU(5) GUT group, respectively.

Recently, a new approach to building heterotic models on smooth Calabi-Yau three-

folds has been advanced [40, 41]. In this approach, the vector bundles in consideration

were chosen to be simple sums of line bundles. This construction leads to a GUT group

which naively includes additional U(1) factors in the GUT group beyond the gauge groups

mentioned above. However, these extra U(1)’s are frequently broken, in addition to other

effects, by the Green-Schwarz mechanism [52, 53]. As such, these models are just as capable

of leading to acceptable particle physics phenomenology as their non-abelian cousins.

There are several advantages to working with sums of line bundles, as opposed to

irreducible vector bundles. Firstly, such configurations are relatively simple to deal with

from a computational point of view, and as a result, vastly greater numbers of models

can be considered as compared to other approaches, such as [18–20]. Secondly, although

broken at a high scale, the additional U(1) symmetries that are present in these models

can greatly constrain the Lagrangian of these models giving more information about the

superpotential, and in particular the Kähler potential, than is usually available in smooth

heterotic constructions. Finally, although line bundle sums often represent special loci in

the moduli space of vector bundles of a given topology, one can move away from the ‘split’

locus by turning on VEVs for certain bundle moduli, thus reaching non-abelian bundles.

As such, these simple configurations provide a computationally accessible window into an

even bigger moduli space of heterotic compactifications.
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The two previous papers in which the line bundle construction was employed, [40, 41],

achieved a number of goals. These publications presented the results of a scan over some

1012 line bundle sums in a search for heterotic standard models. The number of models

investigated was in some sense arbitrary. The range of integer values defining the first

Chern class of the line bundles scanned over was relatively restricted. These values were

chosen simply to give a large number of models which was, nevertheless, manageable with

a relatively simply implemented algorithm. From these 1012 vector bundles, the authors

extracted 202 SU(5) GUT models which had precisely three generations of GUT families,

no anti-families, at least one 5− 5 pair of Higgs fields and no other charged matter of any

kind whatsoever. Each of these models was constructed such that there was at least one

Wilson line which could be added to the configuration which led to exactly the spectrum

of the MSSM with the Higgs triplets being projected out. In fact, each of these GUT

models led to many different standard models due to choices, closely related to the Wilson

line breaking, which were available in the construction. The results of including Wilson

lines were presented explicitly and the 202 GUT models led to, by a conservative counting,

2122 heterotic standard models. The constraints on the effective field theory description

of these models coming from the broken U(1) gauge factors was also explicitly computed.

The complete data set including higher dimensional construction and tabulation of the

resulting four-dimensional effective field theories was presented in a data base which can

be found here [54].

In this paper, we extend the scope of the scan to make it comprehensive within the class

of heterotic compactifications being studied. Instead of restricting the range of integers

defining the line bundles in an arbitrary manner, we developed an algorithm which allows

for an exhaustive scan. This leads to a considerable increase in the size of the data set being

considered. Instead of examining 1012 configurations as before, in this paper we present the

results of a scan over 1040 different compactifications of heterotic string theory. Even with

improvements to our methodology from the previously published work, this scan, which is

described in section 5 ran on a computer cluster over a period of seven months. The data

set of GUT models we have obtained is, unsurprisingly, much larger than the 202 models

discussed above. A conservative counting results in 34, 989 such GUT models which we

expect will lead to one order of magnitude more heterotic standard models when Wilson

lines are added. Given the size and extra technical complications resulting from dealing

with such huge numbers of heterotic compactifications, we will present the detailed analysis

of incorporating the effects of the Wilson line breaking in a separate paper. This represents

in and of itself a huge task in computational algebraic geometry, which will take several

months to complete.

The table below presents a statistics on the total number of consistent GUT models

which have resulted from the search detailed in section 5. The first column counts SU(5)

GUT models having the correct chiral asymmetry, which can, however, suffer from the

presence of 10 multiplets or the absence of 5 − 5 pairs to accomodate the Higgs content

of the standard model. In the second column we eliminate those models that contain 10

anti-family matter. This step relies on computations of line bundle cohomology groups,

which we are able to perform in 94% of all cases. The number in parentheses indicates the
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GUT models no 10 multiplets
no 10 s and

at least one 5−5 pair

63325 44343 (3606) 34989 (5291)

Table 1. Statistics on the number of models.

GUT models for which we could not decide upon the presence of 10 multiplets. Similarly,

in the third column we select from the 44343 models that definitely have no anti-families,

those which contain at least one 5− 5 pair to contain MSSM Higgs fields.

The rest of this paper is structured as follows. In the next section we review the

line bundle construction, and in addition provide a discussion of the structure group of

holomorphic sums of line bundles, which is crucial in determining correctly the GUT gauge

group. The latter discussion is new and, for the purpose of preserving the fluidity of the

text, we defer a full presentation to appendix A. In the following two sections we define

the class of manifolds under consideration and present the constraints imposed on the

vector bundles. In section 5 we outline the algorithm used in the automated scan, while in

section 6 we list the number of viable models obtained over each manifold, noting that in

all cases we reach a limit beyond which no realistic line bundle vacua exist. We conclude

with an example and final remarks.

2 Overview of the construction

The structure of E8 × E8 heterotic compactifications on smooth Calabi-Yau three-folds

with Abelian vector bundles, as well as the class of N = 1 four dimensional supergravities

to which they lead, have been thoroughly discussed in two previous publications [40, 41].

As such, we limit the scope of this section to merely summarising the central features

of heterotic line bundle standard models. Additionally, we provide a discussion on the

possible structure groups of vector bundles constructed as direct sums of holomorphic line

bundles.

2.1 Heterotic line bundle compactifications

Schematically, the construction and analysis of heterotic string line bundle standard models

can be broken up into three steps.

1. In the first step, a solution to the 10-dimensional supergravity limit of the E8 × E8

heterotic string is obtained by specifying several geometrical elements. Firstly, we

compactify 10-dimensional space-time on a smooth Calabi-Yau threefoldX. Over this

manifold we specify a poly-stable holomorphic vector bundle V with structure group

H ⊂ E8 × E8 which describes the gauge field expectation values in the supergravity

solution. The possible choices of V over a givenX are restricted by several consistency

requirements as described in sections 2.2 and 4. In the line bundle construction, the

vector bundle is taken to be a direct sum of five holomorphic line bundles

V =
⊕
a

La .

– 5 –



J
H
E
P
0
1
(
2
0
1
4
)
0
4
7

As we will discuss in section 2.2, we choose the five line bundles La such that the

structure group H ⊂ E8 is Abelian and of the form H = S
(
U(1)5

) ∼= U(1)4.

If the background derived in this first step was used to dimensionally reduce the

heterotic string theory to obtain an N = 1 four dimensional supergravity without

further modification, then the result would be a supersymmetric GUT. The gauge

group seen in four dimensions G would, naively, be the commutant of H inside E8.

For the line bundle models mentioned above, this leads to a GUT group

G = SU(5)× S
(
U(1)5

)
However, the additional U(1) factors are generically Green-Schwarz anomalous and

thus the associated gauge bosons often obtain Stückelberg masses which are close to

the compactification scale in magnitude.

2. In the second step, Wilson lines are added on the Calabi-Yau in such a way as to

break the GUT group described above, down to that of the Standard Model. Adding

such structure to the compactification is only possible if X is not simply connected.

Most standard constructions of Calabi-Yau threefolds lead to manifolds for which

π1(X) = 0. Fortunately this situation can be resolved by quotienting a monifold X

obtained from one of the usual constructions by a freely acting discrete symmetry

Γ. The fundamental group of the resulting smooth quotient manifold X̂ = X/Γ is

non-trivial, and in fact is isomorphic to Γ.

The vector bundle V constructed in step 1 must be consistent with this quotienting

procedure. We must ensure that our bundle V → X descends to a well defined vector

bundle V̂ → X̂. This is only the case if V admits an equivariant structure under the

symmetry Γ. Indeed, the set of vector bundles on X̂ is in one-to one correspondence

with the set of equivariant vector bundles on X.

The heterotic theory is then compactified to four dimensions on this new quotiented

configuration including a non-trivial Wilson line. The gauge group obtained in four

dimensions is then the commutant of the structure group of the flat bundle associated

to the Wilson line inside G. This result is corrected as described in the first step by

the Green-Schwarz mechanism. If the configuration is chosen correctly this can lead

to the standard model gauge group GSM in four dimensions. The matter content

must be computed by the usual techniques of dimensional reduction — including the

effects of the Wilson line. One wishes to obtain examples where the resulting four

dimensional standard model charged matter is exactly that of the MSSM.

3. As a final step in analysing a heterotic line bundle standard model, one can use the

additional U(1) four dimensional gauge symmetries to constrain the operators present

in the four dimensional Lagrangian even though they are spontaneously broken by

the Green-Schwarz mechanism. This allows a degree of analytical control over the

low energy theory associated to these models which is unusual in the context of

smooth Calabi-Yau reductions — in particular with regard to the Kähler potential
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for matter fields. In specific models, these symmetries can help forbid operators in

the four dimensional theory whose presence can be problematic for issues such as

proton stability.

In this paper we present the results obtained after pursuing the avenue described in

the first step above. We construct a large class of GUT models, postponing the remaining

analysis for a future publication. However, we stress that the full analysis is feasible and

has already been carried out for the more restricted set of models described in ref. [40, 41].

In the rest of this section we describe the GUT gauge group and particle spectrum that is

obtained in such constructions in more detail.

2.2 The GUT gauge group

As discussed in refs. [40, 41], the gauge group of the GUT models that we hope to construct

using line bundles is SU(5)×S
(
U(1)5

)
, the maximal subgroup of E8 which commutes with

S
(
U(1)5

)
. We reserve this section for determining when the structure group of a direct

sum of five holomorphic line bundles with vanishing first Chern class is indeed S
(
U(1)5

)
,

leading to the desired GUT gauge group. We will outline below the possible structure

groups (and obstructions) for V =
⊕5

a=1 La.

It is a long standing problem in vector bundle geometry that in general, the structure

group, H, of a vector bundle cannot be determined without explicit knowledge of the

H-valued connection (satisfying the equations of motion, here the Hermitian Yang-Mills

equations [40]). However, for holomorphic bundles in certain cases, knowledge of the

topology of the bundle and other facts may be enough to fully specify H.

As discussed more fully in appendix A, for the present scans of rank 5, reducible bun-

dles, built as a sum of holomorphic line bundles
⊕5

a=1 La, there are only a few possibilities

for H. We demand that
∑

a c1(L1) = 0. Thus, it can be argued that H must be a subgroup

of SU(5), SO(5) or Sp(4) (see appendix A). The latter two structure groups are possible

for a rank 5 vector bundle only if V5 admits either a real or symplectic fiber structure

(see [55, 56] and (A.7)), in the form of a vector bundle isomorphism, φ : V → V ∗. Since⊕
a La is an odd sum of 5 line bundles, such an isomorphism is possible if and only if

La = OX for at least one a. To avoid this case we impose for all a = 1, . . . , 5 that

cr1(La) 6= 0 for at least one value of r = 1, . . . h1,1(X) . (2.1)

This constraint, combined with the vanishing of the first Chern class, means that H must

be a sub-group of SU(5). It only remains to determine whether H = S
(
U(1)5

)
or a proper

sub-group thereof. If H is not equal S
(
U(1)5

)
, it is possible that its commutant in E8 (the

4d GUT group, G) is not of the form SU(5)×U(1)4, but rather another group less suitable

for realistic model-building. For example, the structure group H = S
(
U(1)2

)
× S

(
U(1)3

)
has commutant, G = SU(6) × U(1)3. To eliminate such phenomenologically unviable

possibilities, the following condition is imposed on the Chern classes of the line bundle sum:∑
a∈S

c1(La) 6= 0 for all proper subsets S ⊂ {1, . . . , 5} . (2.2)
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repr. cohomology total number required for MSSM

1ea−eb
H1(La ⊗ L∗

b)
∑

a,b h
1(La ⊗ L∗

b) = h1(V ⊗ V ∗) -

5−ea−eb
H1(L∗

a ⊗ L∗
b)

∑
a<b h

1(L∗
a ⊗ L∗

b) = h1(∧2V ∗) = h1(∧2V ) nh

5ea+eb
H1(La ⊗ Lb)

∑
a<b h

1(La ⊗ Lb) = h1(∧2V ) 3|Γ|+ nh

10ea H1(La)
∑

a h
1(La) = h1(V ) 3|Γ|

10−ea
H1(L∗

a)
∑

a h
1(L∗

a) = h1(V ∗) 0

Table 2. The possible SU(5) matter representations which may be obtained in four dimensions

and their U(1) charges. The dimensions of the cohomology groups indicated in the second column

determine the multiplicity of each representation in the four dimensional spectrum. The third

column gives the total number of each SU(5) representation present in the four dimensional effective

theory, of any U(1) charge. The final column gives the number of each SU(5) multiplet that we

require in the GUT theory in order to obtain the standard model spectrum (with at most nh pairs

of Higgs doublets) after the addition of suitable Wilson lines.

With these conditions in hand, it is guaranteed that the heterotic line bundle con-

struction leads to a 4d GUT symmetry of the form SU(5)×U(1)4 (with the abelian factors

generically Green-Schwarz massive). We are now ready to turn to the more detailed ques-

tion of the charged matter particle spectrum of the low-energy theory.

2.3 The GUT spectrum

If the conditions of the previous section are satisfied, a sum of five line bundles breaks

the E8 heterotic symmetry to SU(5) × S
(
U(1)5

)
. In such a case, the computation of the

spectrum of the heterotic line bundle model has been explained in detail in [40, 41]. Here

we simply state the results for the convenience of the reader.

We represent S
(
U(1)5

)
representations by vectors q = (q1, . . . , q5) of five integer

charges. Due to the determinant condition associated to the “S” of S
(
U(1)5

)
, two such

vectors q and q′, represent the same representation and, hence, have to be identified if

q− q′ ∈ Zn, where n = (1, 1, 1, 1, 1). We also introduce the standard basis {ea}a=1,...,5 in

five dimensions. Charges for GUT multiplets are indicated by adding the charge vector as

a subscript so that, for example, 10e1 represents a 10 multiplet of SU(5) with charge 1

under the first U(1) and uncharged under the others. A list of the relevant multiplets and

their properties is provided in table 2, below. Different SU(5) representations are associ-

ated with different patterns of U(1) charges. For example, the 10 multiplets carry charge

one under precisely one of the five U(1) symmetries, while the 5 multiplets carry charge

one with respect to two U(1) symmetries. Apart from such rules, the precise assignment of

charges across the spectrum (including bundle moduli) is model-dependent. This is of ma-

jor phenomenological importance: invariance under the (global remnant of the) S
(
U(1)5

)
symmetry constrains the allowed operators in the low-energy theory. Indeed, one can easily

envisage situations in which the pattern of charges is such that, for example proton decay

operators are forbidden.

The final column of the table shows the number of each SU(5) representation that we

require in the GUT model such that after quotienting the Calabi-Yau manifold and adding

– 8 –
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suitable Wilson lines, we obtain the spectrum of the MSSM. As before, Γ denotes a freely

acting finite group by which we quotient the Calabi-Yau manifold and |Γ| is its order.

We have now completed our overview of what is required for a successful heterotic

line bundle standard model construction. In the next sections we move on to describe the

particular class of Calabi-Yau threefolds which we will study, as well as some details of the

line bundles over them.

3 The manifolds

Historically the first class of Calabi-Yau three-folds explicitly constructed [57], complete

intersections in products of projective spaces (CICYs) have often served as the starting

point in heterotic model building [5–8, 12–15, 18–20]. The present systematic computer-

based scan for standard models will continue this tradition.

The choice is based on two crucial features of the CICY class of manifolds. In the first

place, there exists a systematic classification of all linearly realised freely acting discrete

symmetries on the CICY manifolds in the database [58, 59]. More accurately, Braun’s

classification [59] provides a list of all such symmetries which descend from a linearly

acting symmetry on the ambient space. Furthermore, a given Calabi-Yau manifold can

frequently be embedded in many different products of projective spaces. The symmetry

classification of [59] is carried out for a limited selection of possible ambient spaces for each

Calabi-Yau. As discussed in the previous section, a knowledge of such symmetries is an

essential ingredient in breaking the GUT group to the Standard Model gauge group. We

note that in constructing the GUT models presented here, it is in fact only knowledge of

the possible orders of the available groups, and thus the possible values of |Γ|, which is

required.

The second feature of the CICY’s which makes them particularly suitable for the

current work is related to their relative simplicity. The embedding of Calabi-Yau manifolds

in such simple ambient spaces means that computations of the cohomology of line bundles

over these manifolds can be effectively automatised on a computer.1 This is particularly

true when there is a strong connection between line bundles on the ambient space and line

bundles on the Calabi-Yau threefold. As such we restrict our attention to CICYs presented

in a ‘favourable’ embedding.

Favourable embeddings can be described in many equivalent ways. For example, on

manifolds such as those we are considering, isomorphism classes of line bundles are com-

pletely classified by their first Chern class. This is an element of the second cohomology

group H2(X,Z) of the base space X. Favourable CICYs can be defined to be those whose

second cohomology descends entirely from the second cohomology of the embedding space.

In such a case, all of the line bundles on X are restrictions of line bundles over the ambient

product of projective spaces. For this property to hold for a given description of a CICY,

certain requirements have to be satisfied, as discussed in appendix B.

1Using the “CICY Package” by L.B. Anderson, J. Gray, Y.-H. He, S.-J. Lee and A. Lukas based on

methods described in in [60–64].
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4 The bundles

Recall that our bundles V → X are taken to be sums of five line bundles

V =
5⊕

a=1

La . (4.1)

A single line bundle is specified by its first Chern class and, hence, by a set of h1,1(X)

integers. Given this, a sum of 5 line bundles is specified by a matrix of integers with

h1,1(X) rows and 5 columns. In our systematic investigation, we have scanned over ∼1040

such matrices and selected approximately 35, 000 bundles which lead to phenomenologically

consistent SU(5) GUTs. In the following subsections we list the criteria that these 35, 000

models satisfy.

4.1 Topological constraints

We require that,

c1(V ) = 0 , (4.2)

as well we eq. (2.2), such that the structure group of V is S(U(1)5) which leads to a

GUT group G = SU(5)× S
(
U(1)5

)
. Apart from this group theoretical advantage, impos-

ing c1(V ) = 0 guarantees the existence of a spin structure on V .

In addition, the integrability condition on the Bianchi Identity for the Neveu-Schwarz

two form leads to the following constraint on the vector bundle V .

ch2(TX)− ch2(V )− ch2(Ṽ ) + [C] = 0 (4.3)

Here [C] ∈ H4(X) is the Poincaré dual to the effective holomorphic curve class wrapped

by a five-brane and Ṽ is the hidden-sector bundle (which we will take to be trivial). The

simplest way to guarantee that this condition can be satisfied is to require that c2(TX)−
c2(V ) ∈Mori cone of X, where we have used that c1(V ) = 0. In this case, an effective curve

class which saturates the condition (4.3) for a trivial hidden bundle Ṽ exists (although,

typically, solutions with non-trivial Ṽ can be found as well). For favourable CICYs we

have a basis {Jr} of (1,1)-forms on X, obtained from hyperplane classes of the embedding

projective spaces, such that the Kähler forms J = trJr correspond to positive values, tr > 0,

of the Kähler parameters tr. The above Mori cone condition can then be written as∫
X

(c2(TX)− c2(V )) ∧ Jr ≥ 0, for all r ∈ {1, . . . , h1,1(X)} . (4.4)

4.2 Constraints from stability

Demanding an N = 1 supersymmetric vacuum in four dimensions leads to the requirement

that the gauge connection on V satisfies the hermitian Yang-Mills equations at zero slope.

By the Donaldon-Uhlenbeck-Yau theorem this is possible if and only if V is holomorphic,

has vanishing slope and is polystable.
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The slope of a vector bundle V is defined as

µ(V ) =
1

rk(V )

∫
X
c1(V ) ∧ J ∧ J =

1

rk(V )

h1,1(X)∑
r,s,t=1

drst c
r
1(V )tstt ,

where drst =

∫
X
Jr ∧ Js ∧ Jt are the triple intersections on X.

For the case of interest, V is a direct sum of line bundles and c1(V ) = 0. The vanishing

slope condition µ(V ) = 0 is therefore automatically satisfied. In addition, these sums of

line bundles are automatically holomorphic. On the other hand, poly-stability reduces to

the requirement that,

∃ tr such that µ(La)|tr = 0 ∀a (4.5)

somewhere in the interior of the Kähler cone (tr > 0 ∀r).
Finally, we note that for slope(poly)-stable bundles on a Calabi-Yau threefold there

is a positivity condition on the second Chern class, given by the so-called Bogomolov

bound [65]. For SU(n) bundles this takes the simple form∫
X
c2(V ) ∧ J ≥ 0 (4.6)

and J is any Kähler form for which V is poly-stable.

4.3 Constraints from the GUT spectrum

The SU(5)× S
(
U(1)5

)
GUT spectrum has already been discussed in section 2.3. In order

to secure a chiral asymmetry of 3 after taking the quotient of X by Γ, we must require

that h1(X,V ) − h2(X,V ) = h1(X,∧2V ) − h2(X,∧2V ) = 3|Γ|. Since for a poly-stable

bundle the zeroth and the top cohomologies vanish, the chiral asymmetry conditions can

be formulated in terms of the indices

ind(V ) = ind(∧2V ) = −3|Γ| . (4.7)

In fact, for an SU(5) bundle, ind(V ) = ind(∧2V ), so one needs to check only one chiral

asymmetry. Furthermore, in order to exclude anti-families, we require the absence of 10

multiplets, and hence that

h2(X,V ) = 0 (4.8)

Finally, in order to safeguard the presence of at least one Higgs doublet, it is necessary

to demand the existence of at least one 5− 5 pair which is expressed by the requirement

h2(X,∧2V ) > 0 . (4.9)

4.4 Equivariance and the doublet-triplet splitting problem

In addition to the above constraints, we demand that, for each a < b

ind(La ⊗ Lb) ≤ 0 (4.10)

– 11 –



J
H
E
P
0
1
(
2
0
1
4
)
0
4
7

In the case where each of the line bundles composing V are individually equivariant,

this condition is necessary for it to be possible to project out all Higgs triplets upon the

addition of a Wilson line. If the line bundles composing V are individually equivariant,

then V descends to a simple sum of line bundles on the quotient space X̂. In such a case

there is a relation between the index of the line bundle products on X and X̂.

ind(L̃a ⊗ L̃b) =
1

|Γ|
ind(La ⊗ Lb)

All indices involved must, of course, be integers and in the case where the line bundles

are individually equivariant the size of ind(La ⊗ Lb) will be such as to ensure that this is

true. Given this relationship, if ind(La ⊗ Lb) > 0 then so is ind(L̃a ⊗ L̃b). This ensures

that in such cases there is at least one complete set of 5 degrees of freedom of SU(5) in the

four dimensional effective theory — leading to the presence of Higgs triplets. This result is

unaffected by the presence of Wilson lines as the undesirable particle content is protected

by an index which such gauge configurations do not affect.

For line bundle sums with non-trivial equivariant blocks the situation is more com-

plicated since divisibility of the index only applies to each equivariant block rather than

to individual line bundles. In the simplest such case, an equivariant block is formed by

two or more same line bundles which are permuted by the equivariant structure. More

complicated equivariant blocks can consist of different line bundles which are mapped into

each other, typically subject to an additional permutation of their integer entries. At any

rate, bundle isomorphisms between the relevant line bundles must exist in this case so they

must have the same index. In conclusion, line bundles within equivariant blocks must have

the same index and, hence, if this index is positive so is the index of the equivariant block.

Then, a generalization of the above index argument to the entire block leads to the same

conclusion, namely the inevitable presence of Higgs triplets. Hence, the condition (4.10)

should be imposed in all cases.

5 The scanning algorithm

If a sum of five line bundles passes the criteria (4.2)–(4.10), it leads to a consistent four

dimensional GUT theory which, with appropriate Wilson line breaking, will lead to het-

erotic standard models. As mentioned above, a sum of five line bundles is specified by

5 ·h1,1(X) integers. An examination of the CICY database reveals that all manifolds which

are favourable and admit known linear free actions of discrete groups have h1,1(X) in the

range 2 ≤ h1,1(X) ≤ 6.2 Thus, we are interested in investigating bundles described by

matrices of between 10 and 30 integers, and deciding when they obey the criteria we have

described.

One could envisage a scan over all line bundle sums with entries between, say, −10

and 10, for the manifolds with h1,1(X) = 6. This would require us to check ∼1030 matrices

representing sums of line bundles. For comparison, a year has ∼3 ·107 seconds. It is rather

2Manifolds with h1,1(X) = 1 cannot lead to consistent line bundle models since the slope zero condi-

tion (4.5) cannot be satisfied.
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clear that such an attempt would be impossible if one desired to explicitly construct each

such line bundle matrix and then check the necessary criteria. A better approach is based

on the observation that the criteria (4.2)–(4.10) impose certain conditions on individual

line bundles, as well as on partial sums of line bundles. These restrictions are of four kinds:

stability related, index related, conditions stemming from the integrability of the heterotic

Bianchi identity and restrictions on cohomology.

The constraint from stability imposes that each collection of up to five line bundles

{La} can only describe a heterotic vacuum if there exists a point in the interior of the

Kähler cone, tr > 0, such that simultaneously for all a,

h1,1(X)∑
r,s,t=1

drst c
r
1 (La) t

st t = 0.

This is condition (4.5) of the previous section.

Deciding whether a quadratic equation in several variables has positive solutions can

be a computationally intensive question. Establishing the existence of common positive

solutions for a collection of such equations is an even more formidable problem. On

the other hand, given that the Kähler cone for our manifolds is given by tr > 0 for

all r = 1, . . . , h1,1(X), a fairly strong, and obviously necessary, condition for the ex-

istence of positive solutions to the slope-zero equation for each line bundle La is that

the matrix (Ma)st = drst c
r
1(La) has both positive and negative entries. For any subset

{La1 , . . . , Lan} ⊂ {L1, . . . , L5} of our five line bundles to have common positive solutions,

it is necessary that any linear combination of the matrices {Ma1 , . . . ,Man} has both positive

and negative entries. In practice, we consider linear combinations with integer coefficients

between −5 and 5. This turns out to be a remarkably effective way of eliminating line

bundle sums that are not poly-stable.

For the line bundle sums that pass this necessary criterion we explicitly find common

solutions to the slope-zero equations in the interior of the Kähler cone. In a great majority

of the cases we are able to find exact solutions, while in the remaining cases (most of which

appear for the h1,1 = 6 manifolds), we have to resort to numerical methods.

The index-related criteria impose, for any subset of the five line bundles, that the

sum of their indices is negative and greater than or equal to −3|Γ|. This criterion simply

follows from equation (4.7) — we do not want more than three generations of standard

model particles. We must also check the index based criteria given by equation (4.10).

Indices of line bundles can be computed very rapidly in terms of their defining integers

using the following standard formula:

ind(L) =
1

12

(
2 c1(L)3 + c1(L) c2(TX)

)
=

h1,1(X)∑
r,s,t=1

drst

(
1

6
c r1 (L) c s1 (L) c t1(L) +

1

12
c r1 (L) c s t2 (TX)

)
The condition (4.4) stemming from the integrability of the heterotic Bianchi Identity

constrains the full sum of five line bundles. This can be rewritten in terms of the integers
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describing the line bundles as follows.∫
X
c2(TX) ∧ Jr ≥

∫
X
c2(V ) ∧ Jr =

1

2
drst

5∑
a=1

c s1 (La) c
t
1(La)

The restrictions on the cohomology of the line bundle sums (4.8)–(4.9) require a larger

amount of computational resources to implement than do the simple checks already de-

scribed. Therefore, at first, we only take into account the remaining constraints (4.2)–(4.7)

and (4.10). This stage of the scan leads to GUT models with the correct chiral asymmetry,

but does not exclude the possibility of having 10 multiplets or no Higgs doublets at all. In

the second stage of the scan, we attempt to eliminate the models containing anti-families.

In 94% of the cases we are able to compute the required cohomology and thus decide upon

the fate of the corresponding models. Finally, we eliminate the models that have no Higgs

doublets, with a rate of decidability of 88%. The code we use to evaluate the relevant

cohomolgy groups can only compute the ranks of a subset of the maps involved in the

calculation. The 6% and 12% of cohomologies respectively which could not be determined

here require these ranks to be computed. The computation of the cohomology of line

bundles over CICYs is reviewed, for example, in ref. [50].

Below, we schematically present the algorithm used in this automated search. The

input parameters are the Calabi-Yau data (configuration matrix, intersection numbers,

c2(TX), a list of row permutations that leave the configuration matrix unchanged); the

order of a freely acting discrete group Γ and the maximal value for a line bundle entry,

kmax. The list of permutations present in the Calabi-Yau data is used in order to eliminate

redundant line bundle sums, that is, line bundle sums that can be related to one another

by a trivial re-labeling of the ambient space projective factors. The algorithm outputs a

list of Models represented as matrices of integers whose columns stand for the first Chern

classes of the 5 line bundles.

1. assemble List 1 containing line bundles satisfying:

i) −3|Γ| ≤ ind (L) ≤ 0 and

ii) µ(L) = 0, somewhere in the interior of the Kähler cone

2. obtain List 1r⊂ List 1 by removing all redundant line bundles;

3. for each Li1 ∈ List 1r assemble List 2 (Li1) ⊂ List 1 containing line

bundles such that, for every Li2 ∈ List 2 (Li1) the following relations

hold:

i) −3|Γ| ≤ ind (Li1) + ind (Li2);

ii) −3|Γ| ≤ ind
(
∧2 (Li1 ⊕ Li2)

)
= ind (Li1 ⊗ Li2) ≤ 0;

iii) µ(Li1) = µ(Li2) = 0, somewhere in the interior of the Kähler cone

4. given Li1 ∈ List 1r, for each Li2 ∈ List 2 (Li1) assemble List 3 (Li1 , Li2) ⊂
List 2 (Li1), such that any Li3 ∈ List 3 (Li1 , Li2) satisfies:
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i) −2 kmax ≤ c r1 (Li1) + c r1 (Li2) + c r1 (Li3) ≤ 2 kmax, for all r ∈ {1, . . . , h1,1(X)}

ii) −3|Γ| ≤ ind (Li1) + ind (Li2) + ind (Li3);

iii) −3|Γ| ≤ ind(Li1 ⊗ Li3) ≤ 0; −3|Γ| ≤ ind(Li2 ⊗ Li3) ≤ 0;

iv) −3|Γ| ≤ ind
(
∧2 (Li1 ⊕ Li2 ⊕ Li3)

)
= ind (Li1⊗Li2)+ind (Li1⊗Li3)+ind(Li2⊗

Li3) ≤ 0;

v) µ(Li1) = µ(Li2) = µ(Li3) = 0, somewhere in the interior of the Kähler

cone

5. given Li1 , Li2 and Li3 as above, select from List 3 (Li1 , Li2) those line

bundles Li4, such that the line bundle Li5 defined by c1(Li1 ⊕ Li2 ⊕ Li3 ⊕
Li4 ⊕ Li5) = 0 satisfies:

i) −kmax ≤ c r1 (Li5) ≤ kmax

ii) −3|Γ| ≤ ind (Li5) ≤ 0;

iii) µ(Li5) = 0 somewhere in the interior of the Kähler cone

6. given Li1 , Li2 , Li3 , Li4 and Li5 as above, check:

i) −3|Γ| = ind (Li1) + ind (Li2) + ind (Li3) + ind (Li4) + ind (Li5);

ii) −3|Γ| = ind
(
∧2 (Li1 ⊕ Li2 ⊕ Li3 ⊕ Li4 ⊕ Li5)

)
;

iii) ind(Lia ⊗ Lib) ≤ 0 for all pairs a < b that have not been checked so

far;

iv) µ(Li1) = µ(Li2) = µ(Li3) = µ(Li4) = µ(Li5) = 0, in the interior of the

Kähler cone

v) 2 drst c
s t
2 (TX) ≥ drst

5∑
a=1

c s1 (Lia) c t1(Lia)

if these requirements are satisfied, append Li1 ⊕ Li2 ⊕ Li3 ⊕ Li4 ⊕ Li5 to

Models

7. remove all redundant line bundle sums from Models.

8. for the remaining Models, check stability by explicitly finding points

in the Kähler cone where all line bundles have slope zero.

9. eliminate models with 10 multiplets

10. eliminate models with no 5− 5 pairs

In the next section we discuss the results of running this algorithn and will describe

in what sense the list of models obtained is comprehensive in nature.
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6 Results and finiteness

It is expected that the number of slope(poly)-stable vector bundles relevant for a smooth

heterotic compactification is in fact finite. To begin, it is possible to see that for any bundle

which is stable somewhere in the Kähler cone, the possible values of its topology, at least,

are finite. For example, for the bundles under consideration here, the first Chern class is

constrained to vanish (the condition for spinors) and the second Chern class is bounded

from above by the anomaly cancellation condition (4.3) and from below by the Bogomolov

bound (4.6), thus yielding a finite range of possible values for c2(V ). Moreover, for an

SU(n) vector bundle which is semistable somewhere in the Kähler cone, it is known that

there can be only finitely many values possible for the third Chern class [66, 67]. Moreover

for fixed topology (that is, fixed total Chern class) the moduli space of semi-stable sheaves

on a Calabi-Yau threefold is known (by algebraicity of the family [65, 66]) to have only

finitely many components.

An important subtlety arises here for the problem at hand — namely that the math-

ematical definition of this moduli space proceeds by first defining an explicit choice of

Kähler form (that is, a ray in Kähler moduli space) with respect to which the sheaves are

semistable. However, for the purposes of heterotic model building, we aim to build all

Standard Model bundles which are stable for some (not necessarily all the same) Kähler

form. We wish to know, then, if there are finitely many components to the collection of all

moduli spaces, allowing the Kähler moduli to vary over any relevant values in the Kähler

cone. For this harder problem, some boundedness results are still known (with the most

detailed bounds possible in the case of complex surfaces) (see [65, 67] for a review) for the

families of moduli spaces relevant for present scans.

Thus, viewing our poly-stable sums of line bundles as special points in the moduli

space of semistable sheaves, it is expected that for a given Calabi-Yau threefold, X, there

are a bounded number of line bundle Standard Models that can be constructed. However,

for the most part, the bounds described above are non-constructive. Thus, in this work, we

will empirically bound the number of such models by algorithmic scanning and explicitly

constructing the poly-stable vector bundles.

The number of models over a certain manifold admitting discrete symmetries of a

fixed order is an increasing and saturating function of the maximal integer appearing in

the line bundles (ignoring sign). This can be observed for all the pairs (X, |Γ|) that we have

considered, as shown in the tables below. However, we believe that our results reflect a more

general phenomenon. In practice, we have applied the above algorithm to all pairs (X, |Γ|)
of favourable CICYs with the orders |Γ| of a freely-acting symmetries and all line bundle

sums (4.1) with |cr1(La)| ≤ km, for a fixed upper bound km. In each case, the number

of viable models has then been determined for increasing values of km until saturation

occurred. As a practical criterion for the onset of saturation we have required the number

of models to remain unchanged for three consecutive values of km. This criterion has been

checked by going to large integer entries in the line bundles in simple cases where the

computation can be completed in a modest amount of time. However, although it seems

that the data set is indeed comprehensive, there is no formal proof that this criterion
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X, |Γ| km = 1 km = 2 km = 3 km = 4 km = 5 km = 6 km = 7

7484, 4 0 0 0 1 1 1

7669, 3 0 0 2 2 2

7669, 9 0 0 1 1 1

7735, 8 0 0 0 0 1 1 1

7745, 8 0 0 0 0 1 1 1

Table 3. Number of models as a function of km on CICYs with h1,1(X) = 3. Total number of

models: 6.

is enough to ensure that all relevant sums of line bundles have been found. The results,

before imposing the absence of 10 multiplets, eq. (4.8), and the presence of Higgs multiplets,

eq. (4.9), can be found in the subsequent tables. The Calabi-Yau manifolds, X, are specified

by a number, given in the first column of the tables below, which represents their position

in the standard list of CICYs compiled in refs. [57, 68] and explicitly accessible here [69].

As is evident from the tables all viable models consist of line bundles satisfying

|cr1(La)| ≤ 10 . (6.1)

As one would expect, their number increases dramatically with h1,1(X), the number of

Kähler parameters. For h1,1(X) = 1, 2, 3, 4, 5, 6 we find 0, 0, 6, 552, 21731, 41036 models,

respectively, for a total of 63325 models, the number already quoted in the introduction.

When the two further constraints (4.8) and (4.9) are imposed this number reduces to 44343

and 34989, as already indicated in table 1. The number of models at each stage, for all

pairs (X, |Γ|) is tabulated in appendix C. Numbers in parentheses in the tables of this

appendix indicate how many cases a given quantity could not be computed for, given the

limitations in the code used to compute cohomology which we have already discussed. The

complete list of these models can be accessed here [70].

We note that the average number of viable models per pair (X, |Γ|) as a function of

h1,1(X) is approximately given by 0.3, 20, 530, 4560 for h1,1 = 3, 4, 5, 6, respectively. Very

roughly, this corresponds to an increase of one order of magnitude per additional Kähler

parameter. At this point it is tempting to speculate about the total number of standard

models, that is, models with the MSSM spectrum, in string theory. Known Calabi-Yau

three-folds have Hodge numbers in the range of up to h1,1(X) ≤ 500. If the increase

by an order of magnitude observed at small h1,1(X) continues to such large values the

number of string standard models is enormous. However, a line bundle sum is determined

by 5 · h1,1(X) integers and it seems likely that the three-family constraint becomes more

difficult to satisfy for a large number of these integers. We would, therefore, expect the

increase to slow down at larger h1,1(X). Currently, we do not see any way of checking

this by explicit scanning since h1,1(X) = 6 marks out the reach of present computational

power.

7 An example

For illustration, we would like to present a model from our database, which is accessible

here [70]. The example is based on the CICY with number 7447, defined by the configura-
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X, |Γ| km = 1 km = 2 km = 3 km = 4 km = 5 km = 6 km = 7 km = 8 km = 9

6784, 2 0 0 2 10 12 12 12

6784, 4 0 6 38 50 62 70 70 70

6828, 2 0 0 1 5 6 6 6

6828, 4 0 3 19 25 31 35 35 35

6831, 2 0 1 2 2 2

7204, 2 0 2 14 22 22 22

7218, 2 0 1 7 11 11 11

7241, 2 0 1 7 11 11 11

7245, 2 0 1 4 4 4

7247, 3 0 19 57 59 59 59

7270, 2 0 2 14 22 22 22

7403, 2 0 3 6 6 6

7435, 2 0 0 0 2 2 2

7435, 4 0 0 5 8 9 10 10 10

7462, 2 0 0 0 6 6 6

7462, 4 0 0 15 24 27 30 30 30

7468, 2 0 5 7 7 7

7491, 2 0 0 0 2 2 2

7491, 4 0 0 5 8 9 10 10 10

7522, 2 0 0 0 6 6 6

7522, 4 0 0 15 24 27 30 30 30

7719, 2 0 4 14 26 26 26

7736, 2 0 2 7 13 13 13

7742, 2 0 2 7 13 13 13

7862, 2 0 5 7 10 10 10

7862, 4 0 9 46 54 58 58 58

7862, 8 0 3 40 53 58 62 64 64 64

7862, 16 0 0 0 1 4 5 5 5

Table 4. Number of models as a function of km on CICYs with h1,1(X) = 4. Total number of

models: 552.

tion matrix and line bundle sum

X =

P1

P1

P1

P1

P1


1 1

1 1

1 1

1 1

1 1



5,45

−80

, V =


−1 −2 1 1 1

0 −2 −1 1 2

0 2 −1 1 −2

0 2 0 0 −2

1 0 0 −2 1

 .

According to ref. [59], the manifoldX can be smoothly quotiented by a group of order 4.

The columns of the second matrix correspond to the first Chern classes of the five line bun-

dles composing V . The dimension h•(X,V ) =
(
h0(X,V ), h1(X,V ), h2(X,V ), h3(X,V )

)
of

the bundle cohomologies for V are explicitly given by

h•(X,V ) = (0, 12, 0, 0)

h•(X,∧2V ) = (0, 15, 3, 0)
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X, |Γ| km = 1 km = 2 km = 3 km = 4 km = 5 km = 6 km = 7 km = 8 km = 9

5256, 2 0 575 727 775 779 779 779

5256, 4 0 672 1857 2085 2173 2180 2180 2180

5301, 2 0 144 182 194 195 195 195

5301, 4 0 169 466 523 545 547 547 547

5452, 2 0 574 726 774 778 778 778

5452, 4 0 672 1854 2083 2171 2177 2177 2177

6024, 3 0 303 510 513 513 513

6204, 2 0 62 116 122 125 125 125

6225, 2 0 147 221 231 232 232 232

6715, 2 0 96 148 184 184 184

6715, 4 0 165 690 812 844 848 848 848

6724, 2 0 19 34 36 39 39 39

6732, 2 0 434 778 880 880 880

6770, 2 0 216 307 329 331 331 331

6777, 2 0 434 778 880 880 880

6788, 2 0 96 148 184 184 184

6788, 4 0 165 690 812 844 848 848 848

6802, 2 0 432 775 877 877 877

6804, 2 0 59 154 169 173 173 173

6834, 2 0 218 390 441 441 441

6836, 2 0 24 37 46 46 46

6836, 4 0 43 175 206 214 215 215 215

6836, 8 0 6 94 120 131 133 137 137 137

6836, 16 0 0 0 0 2 3 3 3

6890, 2 0 860 1546 1750 1750 1750

6896, 2 0 218 390 441 441 441

6927, 2 0 144 222 276 276 276

6927, 4 0 244 1030 1212 1260 1266 1266 1266

6927, 8 0 34 554 706 770 782 806 806 806

6947, 2 0 24 37 46 46 46

6947, 4 0 43 175 206 214 215 215 215

6947, 8 0 6 94 120 131 133 137 137 137

6947, 16 0 0 0 0 2 3 3 3

7279, 2 0 128 204 212 218 218 218

7447, 2 0 56 87 93 93 93

7447, 4 0 214 377 419 428 430 432 432 432

7447, 10 0 6 58 72 81 82 83 83 83

7487, 2 0 277 430 459 459 459

7487, 4 0 1052 1851 2058 2101 2111 2121 2121 2121

Table 5. Number of models as a function of km on CICYs with h1,1(X) = 5. Total number of

models: 21731.

The model has a chiral asymmetry of 12, which, after quotienting, is reduced to 3.

It contains a number of 5 − 5 pairs, which after introducing Wilson lines lead to one (or

possibly more than one) pair of Higgs doublets.

The above example is interesting as it satisfies the anomaly cancellation condition

without the addition of any 5-branes. In this case,

c2(TX).Ji = c2(V ).Ji = (24, 24, 24, 24, 24)
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X, |Γ| km = 1 km = 2 km = 3 km = 4 km = 5 km = 6 km = 7 km = 8 km = 9
km = 10,

11, 12, 13

3413, 3 0 2278 2897 2906 2906 2906

4190, 2 11 766 1175 1243 1246 1247 1249 1249 1249

5273, 2 29 4895 7149 7738 7799 7810 7810 7810

5302, 2 0 4314 5978 6360 6369 6369 6369

5302, 4 0 11705 16988 17687 17793 17838 17868 17868 17868

5425, 2 0 2381 3083 3305 3337 3337 3337

5958, 2 0 148 224 240 253 253 253

6655, 5 0 92 178 189 194 194 198 201 202 203

6738, 2 1 2733 4116 4346 4386 4393 4399 4399 4399

Table 6. Number of models as a function of km on CICYs with h1,1(X) = 6. Total number of

models: 41036.

As the ranks of V and TX are the same, and their second Chern classes match, one

could study the interesting problem3 of deforming V to TX, which would bring us back

to the standard embedding. Our database contains 348 such models which saturate the

inequality (4.4).

8 Final comments and outlook

In this paper, we have presented the results of a comprehensive scan over heterotic line

bundle models on favourable complete intersection Calabi-Yau manifolds (CICYs) with

freely-acting symmetries. There are 68 such manifolds with h1,1(X) = 2, . . . , 6 contained

in the standard list of CICY three-folds [57, 68] available at [69]. We have focused on

rank five line bundle sums, leading to SU(5) GUT models, and a scan over about 1040

configurations has produced 63325 consistent and physically viable such models, available

here [70]. Furthermore, we have shown computationally that this exhausts the set of

physically viable line bundle models on the aforementioned class of CICYs. More precisely,

by a consistent and physically viable model we mean a model with a poly-stable line bundle

sum which allows for a global completion and whose chiral asymmetries have the correct

values to produce a standard model upon taking the quotient by the freely-acting symmetry

and including the Wilson line. When we require, in addition, the absence of 10 multiplets

and the presence of at least one 5–5 pair to account for the Higgs the number of viable

models is reduced to about 35000.

The task ahead involves constructing the standard models associated to these GUT

models. From prior experience with a smaller data set [40, 41] we expect this will lead to a

larger number of standard models compared to the number of GUT models. A number of

technical hurdles have to be overcome in order to complete this task, notably devising and

implementing a complete algorithm for computing (equivariant) line bundle cohomology

on CICYs. This work is currently in progress. The resulting models will provide by far

the largest data set of standard models in any type of string construction and they will

3This idea was suggested to one of us by S.-T. Yau in a private communication.
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provide a starting point for a systematic study of phenomenological questions beyond the

spectrum, such as proton decay, µ-problem and the structure of Yukawa-couplings.

We hope to report on the results of this ongoing work in the near future.
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A Bundle structure groups

In this appendix, we review some useful results regarding principal and vector bundle

geometry in heterotic compactifications. In particular, we address the problem of how to

determine the structure group, H ⊂ E8, of a vector bundle without knowing an explicit

form for the connection.

A.1 Principal bundles vs. vector bundles

In compactifications of the heterotic string, for each E8 factor, the gauge fields over the

Calabi-Yau threefold are specified by a principal H-bundle, V, with H ⊂ E8. Given an

explicit embedding of H into E8, V determines a collection of associated vector bundles,

Vα, carrying specific representations of H, as determined by the decomposition of the

248 representation of E8. For example, if a principal SU(3) bundle, VSU(3), is embedded

into E8 via the direct product (E6 × SU(3)) /Z3, then the decomposition of the adjoint

representation of E8 yields the following representations, carried by the corresponding trio

of vector bundles with appropriate rank (fiber dimension):

3 3 8

V3 V ∗3 End0(V3)
(A.1)

Given the rank 3 vector bundle, V3, in the fundamental representation of SU(3), we can

straightforwardly build those bundles corresponding to the 3 and the 8 by taking the dual

or tensor products.

In practice, however, in building the background geometry for a heterotic compactifi-

cation we do not explicitly construct the principal bundle V, but rather, first, the vector

bundle in the fundamental representation, and from it the full collection of vector bundles,

Vα, in the relevant representations. Moreover, as an added difficulty, except in very special
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cases, there are no tools available to explicitly construct the H-valued connections, ∇α of

the relevant vector bundles.4

Instead, our starting point is an explicit formal construction of a rank n holomorphic

vector bundle (for example a sum of line bundles, or a bundle constructed via a monad [18],

or by extension [71]). The question now becomes, can we be sure that the given collection

of vector bundles really arose from an H-valued principle bundle? Suppose, for example,

that we consider a holomorphic rank 3 vector bundle, V3, with structure group H ⊂ U(3)

and c1(V3) = 0. We may be tempted to declare this an SU(3) vector bundle from this data

alone. However, suppose further that the bundle satisfies the non-trivial condition that

V ' V ∗ (A.2)

Now, from this new information, it is clear that the previous conclusion was too hasty.

Since the 3 of SU(3) is not a real representation, it follows that no SU(3) vector bundle can

satisfy the self-duality condition in (A.2). Instead, the given V3 could actually be carrying

the symmetric, 3-representation of SU(2) (more precisely, it could correspond to S2V2 for

some fundamental, rank 2, SU(2)-bundle, V2); or similarly, the 3 of an SO(3)-bundle. An

obstruction of this type could occur for any vector bundle in the collection Vα, and we must

make sure that no such topological obstacles exist in building a bundle with the desired

structure group.

In this work, we focus on SU(5) principal bundles breaking E8 to an SU(5) GUT

symmetry in 4-dimensions via,

248E8 → [(1,24)⊕ (5,10)⊕ (5,10)⊕ (10,5)⊕ (10,5)⊕ (24,1)]SU(5)×SU(5) (A.3)

Thus, we must construct the associated vector bundles with fiber-dimensions corresponding

the 5,5,10,10,24 representations (see table 2).

Beginning with the fundamental 5-representation, for the vector bundles constructed

in this work, we will check here that there are no obstructions, such as the one described

above, which would prevent the sum of five line bundles,
⊕

a La, from having structure

group S
(
U(1)⊗5

)
.

We will outline in the following paragraphs a set of tools for determining the structure

groups of rank n holomorphic vector bundles with structure group H ⊂ U(n) and c1(V ) =

0. We will focus on distinguishing the groups SU(n), Sp(2n) and SO(n). The exceptional

sub-groups of E8 will not arise in the dimensions of representation in consideration here

and we will omit them from this discussion.

A.2 Chern classes and structure groups

The first and most important ingredient we have in determining the structure group of a

vector bundle is its topology. As a simple example, consider the following direct sums of

two line bundles on a threefold X

V L1 ⊕ L2 L⊕ L L⊕ L∗

H U(1)×U(1) U(1)×U(1) or U(1) S[U(1)×U(1)] = U(1)
(A.4)

4For numeric approaches to this problem see [45–47].
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For the first sum of line bundles, c1(L1) 6= c1(L2) implies that for all possible connections

on this sum, the structure group is U(1) × U(1). However, for the sum of two identical

line bundles with the same first Chern class, L ⊕ L, there is some flexibility in the choice

of connection. For generic, independent, U(1)-valued connections, the structure group

likewise is generic, that is, U(1) × U(1). For this topology, however, a non-generic choice

is also available, and by choosing the two connections ∇1 = ∇2, the structure group is

simply U(1). Finally, in the last example, the sum of a line bundle and its dual, the only

structure group compatible with the reducible connection and vanishing trace condition is

the diagonal U(1) ⊂ SU(2).

For phenomenology we require that the low energy GUT symmetry in 4-dimensions is

SU(5) times possible U(1) factors. So long as the commutant of H is of this form, SU(5)×
S(U(1)5) ⊂ E8, the Green-Schwarz Mechanism will guarantee that the U(1) symmetries are

generically massive (see [40, 41, 52, 53]). Just as in the case of two line bundles described

above, here we must guarantee that the topology of our sum does not force a smaller

sub-group than S
(
U(1)⊗5

)
in such a way that the commutant contains other non-Abelian

factors beyond SU(5). For example, if the sum of 5 line bundles satisfies

c1(L1) + c1(L2) + c1(L3) = 0 , c1(L4) + c1(L5) = 0 (A.5)

then structure group is H = S
(
U(1)⊗3

)
× S

(
U(1)⊗2

)
' U(1)⊗3, but its commutant in

E8 is SU(6)× U(1)⊗3 which would not be suitable for model-building. Thus, in the scans

outlined in the main body of the text, we have, in addition to
∑

a c1(La) = 0, imposed

that ∑
a∈S

c1(La) 6= 0 for all proper subsets S ⊂ {1, . . . , 5} . (A.6)

Finally, having eliminated the possibility of undesirable sub-groups of S
(
U(1)⊗5

)
we

must still worry about accidental isomorphisms of the form described in (A.2), which could

force the structure group to be non-unitary and perhaps even larger than S
(
U(1)⊗5

)
.

A.3 Hermitian, real and symplectic fiber structures

To guarantee that the fibers of V carry the SU(5) representations given in (A.3), we must

check that no other topological obstructions, beyond the Chern class conditions described

above, exist which could force a different structure group. To begin, we note that we can

distinguish between the classical simple groups: SU(n), SO(n) and Sp(2n) by determining

whether the vector bundles carry more than the standard Hermitian fiber metric (char-

acteristic of U(n) bundles [55]), but also symplectic or real fiber structures (see [56] for

a review). For example, an Sp(2n)-bundle can be represented by a rank 2n holomorphic

vector bundle (with trivial determinant) equipped with a skew-symmetric, holomorphic

pairing, V ⊗ V → C. The pairing can be viewed as an isomorphism ϕ : V → V ∗ which

is skew-symmetric and non-degenerate on each fiber. The morphism ϕ is referred to as

a “symplectic fiber structure”. The case of an SO(n)-bundle is identical for rank n holo-

morphic bundles, where in this case the morphism ϕ is symmetric and forms a “real fiber
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structure”. These conditions are summarized in (A.7).

Sp(2n) ϕ : V ↪→→ V ∗ ϕ∗ = −ϕ ϕ ∈ H0(X,∧2V )

SO(n) ϕ : V ↪→→ V ∗ ϕ∗ = ϕ ϕ ∈ H0(X,S2V )
(A.7)

Returning to the case of V =
⊕5

a=1 La, no exceptional sub-group of E8 carries 5-

dimensional representations, so to guarantee that H ⊂ S
(
U(1)⊗5

)
we have only to elimi-

nate the possibility that V5 corresponds to the 5 of either SO(5) or Sp(4). However, from

the conditions above in (A.7) it is clear that this is only possible if V ' V ∗.
Happily, for the sum of 5 line bundles considered here such an isomorphism is only

possible if La = OX for at least one a ∈ {1, . . . 5}. This possibility can be explicitly

excluded in scans by demanding that for all a ∈ {1, . . . , 5}

cr1(La) 6= 0 for at least one value of r . (A.8)

Thus, for a sum of five holomorphic line bundles, satisfying
∑

a c1(La) = 0 in which each

summand is a non-trivial line bundle, both real and symplectic fiber structures are not

possible.

Having eliminated the possibility of an SO(n) or Sp(n) structure group, via the con-

dition (A.8), and V 6= V ∗, and with no exceptional group representations of the appro-

priate dimension, by process of elimination we have determined that the structure group

of V =
⊕5

a=1 La satisfies H ⊂ SU(5). Combining this with the condition (A.6) to ex-

clude undesirable subgroups which might lead to non-Abelian commutants in E8, we have

a necessary set of conditions to guarantee a 4d GUT symmetry of SU(5)×U(1)4.

B Favourable embeddings

In section 3 we noted that the line bundle scan has been carried out over the class of

favourable CICYs, that is, CICYs for which the entire second cohomology descends from

the ambient space. We would now briefly like to discuss the precise meaning of this property

as well as some criteria which can be used to decide whether a given CICY is favourable.

We begin with a CICY, X, defined in the ambient space A =
⊗m

r=1 Pnr , as the common

zero locus of certain polynomials which can be thought of as sections of the line bundle

sum N on A. We denote the restriction of N to X by N = N|X and also introduce the

bundle S =
⊕m

r=1OX(er)
⊕(nr+1), where er are the standard unit vectors in m dimensions.

The tangent bundle TX of the CICY X can be obtained from the two short exact

sequences

0→ TX → TA|X → N → 0 , 0→ O⊕mX → S → TA|X → 0 . (B.1)

Noting that H1,1(X) ∼= H2(X,TX) and H3(X,TX) ∼= H0,1(X) = 0 the two associated

long exact sequences lead to the following relations for the second cohomology of X

H1,1(X) ∼= Coker
(
H1(X,S)→ H1(X,N)

)
⊕Ker

(
H2(X,TA|X)→ H2(X,N)

)
(B.2)

H2(X,TA|X) ∼= H2(X,S)⊕Ker
(
Cm → H3(X,S)

)
. (B.3)
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The part of H1,1(X) which descends from the second ambient space cohomology corre-

sponds to the Cm term in the second equation. Hence, the precise conditions for the CICY

X to be favourable are

Coker
(
H1(X,S)→ H1(X,N)

)
= 0 , H2(X,S) = 0 . (B.4)

In particular, this means a CICY with h1,1(X) > m or h1(X,S) < h1(X,N) or h2(X,S) >

0 is not favourable. A sufficient, however slightly too strong, condition for X to be

favourable is

h1(X,N) = h2(X,S) = 0 , (B.5)

where the first of these conditions guarantees that the Coker in (B.4) vanishes. Eq. (B.5)

can be checked relatively easily since it only involves cohomologies of line bundles on X

and we, therefore, adopt it as our practical definition of favourability.

C The distribution of models according to (X, |Γ|)

X, |Γ| GUT models no 10 multiplets
no 10 s and

at least one 5− 5 pair

no 10 s and equivari-

ance check for individ-

ual line bundles

7484, 4 1 1 1 1

7669, 3 2 2 0 (2) 2

7669, 9 1 1 0 (1) 1

7735, 8 1 1 1 0

7745, 8 1 1 1 0

Table 7. Number of models on CICYs with h1,1(X) = 3.
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X, |Γ| GUT models no 10 multiplets
no 10 s and

at least one 5− 5 pair

no 10 s and equivari-

ance check for individ-

ual line bundles

6784, 2 12 10 10 10

6784, 4 70 59 59 55

6828, 2 6 6 6 6

6828, 4 35 33 33 31

6831, 2 2 2 2 2

7204, 2 22 14 14 14

7218, 2 11 11 11 11

7241, 2 11 9 9 9

7245, 2 4 4 4 4

7247, 3 59 42 (14) 22 (4) 38

7270, 2 22 18 18 18

7403, 2 6 4 (2) 0 (3) 2

7435, 2 2 2 2 2

7435, 4 10 9 9 7

7462, 2 6 6 6 6

7462, 4 30 16 16 14

7468, 2 7 6 5 6

7491, 2 2 2 2 2

7491, 4 10 4 4 4

7522, 2 6 6 6 6

7522, 4 30 21 21 17

7719, 2 26 24 24 24

7736, 2 13 12 12 12

7742, 2 13 12 12 12

7862, 2 10 10 8 10

7862, 4 58 53 46 44

7862, 8 64 52 36 10

7862, 16 5 5 4 0

Table 8. Number of models on CICYs with h1,1(X) = 4.
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X, |Γ| GUT models no 10 multiplets
no 10 s and

at least one 5− 5 pair

no 10 s and equivariance

check for individual line

bundles

5256, 2 763 625 (12) 480 (65) 625

5256, 4 2128 1812 (23) 1485 (167) 1444

5301, 2 191 178 (3) 87 (40) 178

5301, 4 534 504 (6) 323 (82) 406

5452, 2 762 547 (11) 497 (25) 547

5452, 4 2122 1624 (17) 1518 (71) 1278

6024, 3 509 244 (69) 215 (29) 237

6204, 2 119 96 (14) 76 (17) 93

6225, 2 229 137 (21) 118 (17) 133

6715, 2 184 170 (0) 138 (4) 170

6715, 4 847 711 (4) 539 (76) 457

6724, 2 39 32 (7) 20 (10) 21

6732, 2 880 667 (6) 532 (60) 667

6770, 2 330 271 (0) 197 (39) 271

6777, 2 880 587 (6) 549 (32) 587

6788, 2 184 155 (0) 147 (4) 155

6788, 4 848 621 (4) 579 (28) 397

6802, 2 877 786 (6) 524 (128) 786

6804, 2 141 108 (4) 99 (5) 101

6834, 2 441 371 (3) 283 (47) 371

6836, 2 46 37 (0) 36 (1) 37

6836, 4 214 151 (1) 147 (4) 97

6836, 8 136 109 (0) 97 (9) 14

6836, 16 3 3 (0) 2 (1) 0

6890, 2 1750 1245 (12) 1091 (83) 1245

6896, 2 441 421 (3) 232 (88) 421

6927, 2 276 243 (0) 218 (6) 243

6927, 4 1264 983 (6) 856 (67) 628

6927, 8 798 659 (5) 510 (79) 81

6947, 2 46 45 (0) 30 (1) 45

6947, 4 214 196 (1) 105 (35) 127

6947, 8 136 125 (0) 44 (19) 21

6947, 16 3 3 (0) 2 (1) 0

7279, 2 218 109 (49) 96 (10) 108

7447, 2 93 89 (0) 45 (15) 89

7447, 4 430 396 (2) 182 (77) 306

7447, 5 0 0 (0) 0 (0) 0

7447, 10 81 76 (0) 12 (19) 0

7447, 20 0 0 (0) 0 (0) 0

7487, 2 459 319 (0) 261 (28) 319

7487, 4 2115 1505 (8) 1257 (94) 1136

Table 9. Number of models on CICYs with h1,1(X) = 5.
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X, |Γ| GUT models no 10 multiplets
no 10 s and

at least one 5− 5 pair

no 10 s and equivari-

ance check for individ-

ual line bundles

3413, 3 1737 709 (516) 599 (98) 698

4190, 2 1145 540 (195) 473 (57) 429

5273, 2 6753 4154 (934) 3292 (701) 3757

5302, 2 6294 4130 (246) 3291 (456) 4130

5302, 4 17329 13242 (82) 10174 (1678) 9235

5425, 2 3128 1946 (533) 1358 (409) 1802

5958, 2 246 215 (23) 103 (66) 179

6655, 5 161 143 (15) 67 (64) 1

6738, 2 4243 1846 (743) 1599 (169) 1763

Table 10. Number of models on CICYs with h1,1(X) = 6.
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