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Abstract

Background: In the last years GWA studies have successfully identified common SNPs associated with complex
diseases. However, most of the variants found this way account for only a small portion of the trait variance. This
fact leads researchers to focus on rare-variant mapping with large scale sequencing, which can be facilitated by
using linkage information. The question arises why linkage analysis often fails to identify genes when analyzing
complex diseases. Using simulations we have investigated the power of parametric and nonparametric linkage
statistics (KC-LOD, NPL, LOD and MOD scores), to detect the effect of genes responsible for complex diseases using
different pedigree structures.

Results: As expected, a small number of pedigrees with less than three affected individuals has low power to map
disease genes with modest effect. Interestingly, the power decreases when unaffected individuals are included in
the analysis, irrespective of the true mode of inheritance. Furthermore, we found that the best performing statistic
depends not only on the type of pedigrees but also on the true mode of inheritance.

Conclusions: When applied in a sensible way linkage is an appropriate and robust technique to map genes for
complex disease. Unlike association analysis, linkage analysis is not hampered by allelic heterogeneity. So, why does
linkage analysis often fail with complex diseases? Evidently, when using an insufficient number of small pedigrees,
one might miss a true genetic linkage when actually a real effect exists. Furthermore, we show that the test statistic
has an important effect on the power to detect linkage as well. Therefore, a linkage analysis might fail if an
inadequate test statistic is employed. We provide recommendations regarding the most favorable test statistics, in
terms of power, for a given mode of inheritance and type of pedigrees under study, in order to reduce the
probability to miss a true linkage.

Keywords: Linkage, Parametric analysis, Nonparametric analysis, NPL score, LOD score, MOD score, Complex
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Background
Linkage analysis has been a very popular method for
detecting genes of major effect. It has been used since the
'80s with either sibling pairs or large multiplex pedigrees.
In complex diseases, where the mode of inheritance is
characterized by factors such as reduced penetrances,
* Correspondence: antonia.flaquer@lmu.de
1Institute of Medical Informatics, Biometry and Epidemiology, Chair of
Genetic Epidemiology, Ludwig-Maximilians-Universität (LMU) Munich,
Neuherberg 85764, Germany
2Institute of Genetic Epidemiology, Helmholtz Zentrum München, German
Research Center for Environmental Health, Neuherberg 85764, Germany
Full list of author information is available at the end of the article

© 2012 Flaquer and Strauch; licensee BioMed
Creative Commons Attribution License (http:/
distribution, and reproduction in any medium
presence of phenocopies, and heterogeneity, it has been
argued that a better approach to identify variants involved
in such diseases is genome wide association analysis
(GWAS). In the last years, GWAS have grown in scale
and complexity, with studies looking at over a million gen-
etic markers in samples with many thousand individuals.
These studies have proved to be successful in identifying
common single nucleotide polymorphisms (SNPs) and
common risk alleles that contribute to complex diseases.
Nevertheless, it is believed that many genetic and epige-
netic factors are likely to contribute to common complex
diseases, including multiple rare SNPs, i.e., those that
occur in less than 5% of the world's population [1]. In fact,
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it has been argued that these variants are not likely to be
captured in current GWA studies due to the low linkage
disequilibrium between the rare variant and the more
common genotyped SNPs. In such situations a direct
mapping approach by means of sequencing techniques
will be a useful strategy, although the power to detect sin-
gle variants by association methods will be low because of
their small frequency. Here it will be important to take
family information into consideration. Linkage analysis
can be a powerful method for detecting the effect of genes
for complex diseases [2,3]. Especially because of the en-
richment of rare variants in families, linkage analysis has
the advantage over association analysis that it is not prone
to allelic heterogeneity. That is, the combination of many
weak association signals obtained in a certain region for
various single variants segregating in different pedigrees is
automatically performed in the context of linkage analysis.
Therefore, in the era of genome-wide or exome-wide se-
quencing, linkage analysis has the important task to fur-
ther restrict the genetic regions that possibly harbor
disease causing variants. Anyway, when considering com-
plex diseases, linkage should be used carefully and with
some differences compared to Mendelian diseases. It is
important to know how the power of linkage analysis is
affected by complex inheritance and which sampling
schemes and best test statistic should be used to detect
disease susceptibility genes in complex genetic diseases.
Genome wide linkage studies are performed with para-

metric or nonparametric methods. Parametric analysis
provides the most powerful method when the mode of in-
heritance (MOI) is known. The most used parametric stat-
istic is the LOD score [4]. However, because one must
assume a MOI for the analysis, the application of paramet-
ric methods to complex genetic diseases has been ques-
tioned. Therefore, alternative nonparametric linkage
methods based on allele sharing by relatives have been
developed. Such statistics are the NPL [5] and the KC-
LOD score proposed by Kong and Cox [6]. In order to cir-
cumvent the difficulty that in parametric analysis the MOI
must be specified prior to the analysis, it has been pro-
posed to maximize the maximum LOD with respect to
the genetic parameters. This approach is called MOD
score analysis [7]. There has been a lot of discussion about
the methods that one should use to analyze human link-
age data. Also, some research has been done concerning
different pedigree sizes. Samples differing in the compos-
ition of affected and unaffected siblings in the family will
differ in their power to detect linkage when using non-
parametric methods [8]. In parametric analysis for a reces-
sive MOI, both linkage and heterogeneity can be detected
in feasible sample sizes [9]. For dominant inheritance,
linkage can be detected but heterogeneity cannot be
detected unless larger sibships (four offspring) are
sampled. It has been shown that the distribution of the
MOD score is dependent on the size and structure of the
pedigrees under study [10]. However, the influence of
pedigree structure on the power to detect linkage with the
MOD score has not been investigated so far. It is well
known that large, multigeneration pedigrees are the most
informative for linkage analysis. However, it is not always
possible to recruit such families. Given that two-
generation families may be the most feasible to study, it is
essential to investigate how the sample structure may im-
prove the detection of linkage when complex diseases are
present. The present work focuses on the power of para-
metric and nonparametric linkage statistics to detect the
effect of genes for complex diseases using different pedi-
gree structures. We first conducted simulations under the
null hypothesis of no linkage to see the influence of pedi-
gree structure on the distribution of the parametric scores
(LOD and MOD) and on the nonparametric scores (NPL
and KC-LOD). Second, we examine the power of these
test statistics to detect linkage for each pedigree structure
and discuss which is the best test statistic given the sample
under study.
Methods
Pedigree structures
Samples of different pedigree structures and sizes were
considered, the same structures as by Mattheisen et al.
[10]. Five pedigree structures represent nuclear families,
varying the number of affected and unaffected siblings.
Furthermore, two structures represent three-generation
families (Figure 1). Genotypes are available for all family
members. The annotation to each pedigree structure is as
follows: affected sib pair (ASP), affected sib triplet (AST),
affected sib quadruplet (ASQ), discordant sib triplet
(DST), discordant sib quadruplet (DSQ), affected three-
generation (A3G) and discordant three-generation (D3G).
We conducted also simulations with a mixture of different
pedigrees (100 AST, 100 ASQ, 100 DST, 100 DSQ).
Data simulation
Under HO

In order to investigate the influence of the pedigree
structure on the distribution of parametric and non-
parametric linkage scores, 100,000 replicates of 500 ped-
igrees were generated under HO using MERLIN software
[11] for each of the pedigree structures presented in
Figure 1. To allow for a high polymorphism information
content, one genetic marker with 8 equifrequent alleles
was simulated. Under HO, MERLIN generates each repli-
cate under the assumption of marker segregation inde-
pendent of the trait, using identical pedigree structure,
affection status, marker spacing, allele frequencies and
patterns of missing data as given in the input file.



Figure 1 Pedigree structures used for simulations. Legend: 1) affected sib pair (ASP), 2) affected sib triplet (AST), 3) affected sib quadruplet
(ASQ), 4) discordant sib triplet (DST), 5) discordant sib quadruplet (DSQ), 6) affected three-generation (A3G), 7) discordant three-generation (D3G).
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Under H1

Three scenarios reflecting a dominant, an additive and a
recessive MOI were studied to evaluate the power of
detecting linkage in complex genetic diseases. For each
scenario, 5,000 replicates of 500 pedigrees were gener-
ated for each of the pedigree structures shown in
Figure 1 under the alternative hypothesis of complete
linkage with a dominant (f0 = 0.04, f1 = 0.20, f2 = 0.20,
p = 0.05), additive (f0 = 0.03, f1 = 0.13, f2 = 0.23, p = 0.1),
and recessive mode (f0 = 0.04, f1 = 0.04, f2 = 0.20,
p = 0.2), where fi stands for the penetrance of the
genotype with i copies of the disease allele and p stands
for the disease allele frequency. The genetic parameters
were obtained using the R package POWERPKG [12] for
affected sib pairs to obtain a power of approximately
80%. For comparison purposes, these parameters were
also used for the other pedigree structures. Heterogeneity
was simulated by assuming a nonzero phenocopy rate
(f0). Phenocopies represent individuals who are affected
not owing to genetic predisposition at the locus under
study but due to unspecified environmental factors or
genes at another location [13]. By the same token, the
models include a strongly reduced penetrance. This
allows for an individual being unaffected despite having a
high risk genotype, either due to environmental or due to
other genetic effects. Replicates were generated using
MERLIN software [11]. MERLIN simulates data under
H1 respecting the pattern and the allele frequencies for
the phenotypes and genotypes of the input files, but
introduces linkage between the phenotype and the mar-
ker depending on the specified MOI.

Analysis models
To simplify the discussion, we restrict the analysis to a
single genetic position. The simulated data were ana-
lyzed using parametric and nonparametric methods. The
following statistics were used:

The parametric LOD
The LOD is computed as the ratio between the likeli-
hood of obtaining the test data if the two loci are indeed
linked, versus the likelihood of observing the same data
purely by chance. Here, MLINK [14] was used to com-
pute LOD scores letting the recombination fraction vary
from 0 to 0.48 in steps of 0.02, and taking the max-
imum LOD. The program was run using ANALYZE
[15]. Three parametric models reflecting realistic sce-
narios for complex genetic diseases have been specified
for the analysis: a dominant model (f0 = 0.003, f1 = 0.5,
f2 = 0.5), additive model (f0 = 0.003, f1 = 0.25, f2 = 0.5), and
recessive model (f0 = 0.003, f1 = 0.05, f2 = 0.5) where fi
stands for the penetrance of the genotype with i copies
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of the disease allele. Since a high disease allele fre-
quency (p) can compensate for misspecified penetrance
parameters when analyzing complex traits [16], p was
fixed at 0.25 for all three models. In the following, the
term MOI refers to the parametric model used in data
simulation and AMOI refers to the parametric model
used in the analysis of the simulated data. We have de-
liberately chosen different parameters in the MOI and
in the AMOI, corresponding to the real life situation of
studying complex diseases in which the correct param-
eter values are not known beforehand. Hence, there is
some degree of model misspecification even when MOI
and AMOI are the same (i.e., both dominant, additive,
or recessive). Misspecification of the penetrance does
not generally have a strong effect on the two-point
LOD score (only on the estimate of the recombination
fraction), as long as dominance is specified correctly
[7,17].

The MOD score
The MOD is based on maximizing the maximum LOD
with respect to the trait-model parameters (i.e., pene-
trance and disease allele frequency). MOD scores were
computed with GENEHUNTER-MODSCORE [10,18]
with the option “modcalc single”.

Nonparametric NPL and KC-LOD score
The NPL focuses on the sharing of disease status as well
as the sharing of alleles by relatives. Its extension, KC-
LOD, is maximized over a parameter δ representing the
degree of allele sharing among affected individuals. In-
deed, when the IBD information is complete, there is a
one-to-one correspondence between the NPL score and
the KC-LOD score, which means that the tests based on
the two statistics are formally equivalent [6]. In our case
we simulated the models to be as realistic as possible,
hence, a highly informative but not fully informative
marker was considered. Both statistics were calculated
under the “score pairs” option using the MERLIN soft-
ware [11].
To study the effect of pedigree structure on the distri-

bution of the linkage statistics, each replicate generated
under H0 was analyzed using the parametric and non-
parametric linkage statistics mentioned above. The
scores corresponding to empirical P-values of 0.0017
“suggestive evidence for linkage” [19], 0.0001 “classical
LOD-3 criterion” [20] and 0.000049 “significant evidence
for linkage” [19] were calculated for each statistic and for
each structure.
To study the power of the different statistics to detect

linkage, each replicate generated under H1 was analyzed
using the parametric and nonparametric linkage statis-
tics mentioned above. The values for each statistic were
ordered from highest to lowest over the 5,000 replicates
for a given model and for a given structure. Observed
power levels P(Z) were determined as a function of the
score Z used as a critical value for each test statistic T,
as follows: P(Z)� (number of replicates yielding T ≥Z)
/N, where N represents the number of replicates per-
formed (i.e., 5,000).
In order to compare the different linkage statistics

regarding their power, critical values were obtained using
the theoretical distribution under H0 for the correspond-
ing test statistic. The NPL score is constructed on the
basis of a score statistic [21,22]. Theoretically, once the
score statistic is standardized it follows a standard nor-
mal distribution. The KC-LOD follows a N(0,1)²/(2�ln
(10)) [6]. The LOD score corresponds to a non-standard
likelihood ratio statistic, i.e., 2�ln(10)�LOD follows
asymptotically half a chi-square distribution with one
degree of freedom and half a point mass of zero. The
asymptotic null distribution of MOD scores has been
derived for ASPs and unilineal affected relative pairs
only [23-25], for that reason, critical values for other
pedigree structures have to be obtained from simulations
under H0. Instead of using the critical values obtained in
this study, we decided to rely on the ones provided by
Mattheisen et al. [10] for the reason that they used one
million replicates, i.e., a factor of ten more than we gen-
erated in this study, resulting in more precise estimates.
In all cases a type I error of α= 0.000049 (significant evi-
dence for linkage) was used. With our three scenarios a
considerable number of analyses were required.
4,200,000 analyses were performed under H0 ([3 non-
parametric scores + 1 parametric score x 3 AMOI] x 7
pedigree structures x 100,000 replicates), and 630,000
analyses were performed under H1 ([3 non-parametric
scores + 1 parametric score x 3 AMOI] x 3 MOI x 7
pedigree structures x 5,000 replicates).

Results
The impact of pedigree structure on the null distribution
A graphical overview of the results is shown in Figure 2
for the nonparametric statistics (NPL, KC-LOD) and the
MOD score. The horizontal lines at the bottom of the
graph represent the 95% confidence interval at the sug-
gestive and LOD-3 level. The parametric LOD score is
shown in Figure 3, with the 95% confidence intervals at
the LOD-3 level. Two non-overlapping intervals for two
pedigree structures at the same level represent statisti-
cally significant differences for the test statistic. Al-
though an effect of the pedigree structure on the
distributions of the NPL and KC-LOD score can be
appreciated at the LOD-3 level, this effect is not statisti-
cally significant. However, there is a significant effect of
the pedigree structure on the distribution of the MOD
score at the suggestive level (Figure 2). In summary, add-
ing one affected offspring to the ASPs (ASTs, red line)



 1

 2

 3

 4

 5

  1.5   2.0   2.5   3.0   3.5   4.0   4.5

-l
og

(E
m

pi
ri

ca
l P

-v
al

ue
)

NPL

  1.5   2.0   2.5   3.0   3.5   4.0   4.5

KC-LOD

  1.5   2.0   2.5   3.0   3.5   4.0   4.5

MOD

suggestive

LOD-3

significant

ASP

AST

ASQ

DST

DSQ

A3G

D3G

MIX

Figure 2 Influence of the pedigree structure on the distribution of NPL, KC-LOD and MOD score under H0. Legend: Plots for the empirical
distributions regarding the different pedigree sizes (P-values on a logarithmic scale). Horizontal gray lines refer to suggestive evidence for linkage
(P-value of 0.0017), the classic 'LOD-3-criterion' (P-value of 0.0001), and significant evidence for linkage (P-value of 0.000049), respectively. The
horizontal lines shown at the bottom of each graph represent the 95% confidence interval at the suggestive and LOD-3 level.
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Figure 3 Influence of the pedigree structure on the distribution of the LOD score under H0. Legend: Plots for the empirical distributions
regarding the different pedigree sizes (P-values on a logarithmic scale) when the replicates are analyzed under the dominant, the additive and
the recessive model. Horizontal gray lines refer to suggestive evidence for linkage (P-value of 0.0017), the classic 'LOD-3-criterion' (P-value of
0.0001), and significant evidence for linkage (P-value of 0.000049), respectively. The horizontal lines shown at the bottom of each graph represent
the 95 % confidence interval at the LOD-3 level.
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leads to an increase of the MOD score and adding an-
other affected offspring (ASQ, yellow line) leads to a fur-
ther increase (3.39 vs. 3.53 vs. 3.72; c.f. Figure 2). These
results corroborate the findings by Mattheisen et al. [10].
We also see an increase of type I error when analyzing a
mixture of pedigrees corresponding to a very similar
critical value as DSQ pedigrees (3.81, 3.82 respectively,
violet and orange lines). Although the differences among
ASP, AST and ASQ are not significant, this group shows
significant differences compared to DST and DSQ, i.e.,
when adding one or two unaffected siblings to ASPs.
Significant differences are also found between the three-
generation pedigrees (A3G and D3G).

The power of the test statistics to detect linkage for
different pedigree structures
The observed power of NPL, KC-LOD, MOD and LOD
scores for each pedigree structure is shown in Additional
file 1: Table S1. It compares the power for each pedigree
structure (columns) to reach or exceed a given Z value
for each test statistic (rows) using a type I error of
α= 0.000049 (significant evidence for linkage). The
power is given when analyzing the replicates generated
under a dominant, additive and recessive mode of inher-
itance (MOI). In the case of parametric statistics AMOI
refers to the mode of inheritance used to analyze the
simulated data. Colored numbers are used in the conclu-
sion section for a better understanding of the results.
The results for the different statistics are described in
the following.

Nonparametric NPL
The NPL score is computed using affected pairs only.
For that reason, very similar results are expected for
ASP, DST and DSQ as well as for A3G and D3G. In fact,
the minor differences arise because the disease locus
genotypes are conditioned on the phenotypes of the
ascertained individuals. A very poor power (8.4%-42.0%)
is obtained with ASP, DST or DSQ. The power is
increased (99.5%-99.9%) when adding an affected sib
(AST), and it is even better (99.6%-100%) when A3G
and D3G structures are used. The best power is obtained
using ASQ (100%). At the level of significant evidence
for linkage, a bad performance of the NPL is acquired
when using pedigrees with less than three affected sibs,
especially when the MOI is recessive.

Nonparametric KC-LOD
The KC-LOD is also computed using affecteds only. For
that reason, very similar results are observed for ASP,
DST and DSQ as well as for A3G and D3G. An effect of
pedigree structure is also obtained with the same trend
as for the NPL score, although at the level of significant
evidence for linkage, a better power is obtained with the
KC-LOD than for the NPL statistic (see Additional file 1:
Table S1).

MOD
The effect of the pedigree structure on the power to de-
tect linkage using the MOD score depends on the true
MOI. When considering a complex genetic disease with
a true dominant or additive MOI, ASQ, A3G and D3G
provide the best performance. Generally, for all pedigree
structures the power seems to be better when the true
MOI is dominant. Considering a recessive MOI, again
the ASQ and A3G structures provide the best perform-
ance in detecting linkage. The MOD score slightly
decreases when adding one or two unaffected sibs to the
ASP structure, i.e., for DST and DSQ. However, due to
the markedly increased critical values for significance
(4.20 and 4.36 for DST and DSQ, respectively, compared
to only 3.61 for ASP), the MOD score provides a less
powerful test with DST and DSQ than with ASP.

Parametric LOD
When the true MOI is dominant and the AMOI is also
dominant, then AST, ASQ, A3G and D3G structures are
performing well. Surprisingly, the power slightly
increases when the AMOI is misspecified as being addi-
tive. When the true MOI is additive then the additive
AMOI performs best, as one would expect, with the
dominant or recessive AMOI having only slightly
decreased power. Similarly, for a recessive MOI, the best
power is obtained if the AMOI is recessive as well. Over-
all, when the true MOI is recessive the power ranges are
much lower than if a dominant or additive MOI under-
lies the trait. At the level of significant evidence for link-
age a very similar power is obtained as the one obtained
using the KC-LOD score.
As expected, the results of our simulations show that

the power to detect linkage is low, at least with samples
of 500 pedigrees, when using ASP, DST or DSQ to map
complex diseases. Considering a type I error of 0.000049
(Additional file 1: Table S1), the lowest power is
achieved when the true MOI is recessive, in this case the
power to detect linkage with this kind of pedigree struc-
tures ranges from only 8.4% (NPL, DSQ) to 20.2%
(MOD, ASP). For a non-recessive MOI, 53.4% is the
maximum power obtained with these structures (KC-
LOD and LOD). The power decreases every time that an
unaffected sib is added to the pedigree structure. For ex-
ample, considering the NPL score with a dominant
MOI, the power for ASP is 42%, when adding one un-
affected sib it decreases to 36.7% (DST), and with an-
other unaffected sib it decreases to 33.4% (DSQ). This
tendency is observed for all the linkage statistics consid-
ered. An improvement is achieved when using A3G and
D3G, displaying a power from 84.1% to 100%. With such
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structures the lowest power is obtained when the MOI
is recessive. Evidently, the best power is reached when
considering the larger pedigree structures, AST (99.5%-
100%) and ASQ (100%). In other words, with AST and
ASQ, chances are high to map the disease-causing gene,
at least for the genetic effect sizes and the MOI simu-
lated here.
With LOD-score analysis, the additive AMOI outper-

forms the dominant AMOI when the true MOI is dom-
inant. This counterintuitive observation is caused by the
fact that the penetrances of the AMOI have been
defined to differ from those of the corresponding MOI.
It reflects the real-life situation of complex trait mapping
in which the true disease model is unknown. This effect
can be explained by looking at the points in the triangu-
lar parameter space for ASPs that correspond to the true
models as well as those specified for the analysis. It turns
out that with reduced penetrance and phenocopy rates
that we have specified here, the range of parameters
within the possible triangle covered by a LOD score ana-
lysis under the additive AMOI comes much closer to the
point corresponding to the true dominant MOI than the
parameter curve induced by the dominant AMOI does
(data not shown).

Discussion
We undertook this simulation analysis to answer two
questions. First, what is the impact of the pedigree struc-
ture on the null distribution of NPL, KC-LOD, LOD and
MOD score statistics? Second, what is the power of the
NPL, KC-LOD, LOD and MOD score statistics when a
complex disease is present? Results show that an effect
of the pedigree structure under no linkage is seen only
on the MOD score. The critical MOD score values for
suggestive evidence for linkage are markedly increased
for DST and DSQ compared to ASP (green and orange
lines are much lower than the cyan line in Figure 2).
The null distribution of the MOD score has been
derived theoretically for ASPs [23] and for unilineal
affected relative pairs [25]. By the equivalence between
the possible triangle test [26] and MOD score analysis,
Knapp et al. [23] found a mixture of chi-square distribu-
tions with 2, 1 and 0 degrees of freedom for ASPs. Be-
cause the pedigree structure has an important effect on
the distribution of the MOD score it would not be ap-
propriate to generally approximate the null distribution
by a chi-square distribution with fixed degrees of free-
dom. Hence, it is impossible to use a Z threshold com-
mon for all situations, by now the best way is via
simulations.
Regarding our second question, results show that the

statistic used plays an important role in the power to de-
tect linkage. In general, all the statistics perform very
poorly when ASP, DST or DSQ are considered. This is
not surprising given the smaller number of meioses. As-
suming a type I error of 0.000049, with such pedigrees
the weakest statistic is NPL showing a power of at most
42%, followed by the MOD with power of at most
48.5%, and finally a very similar power is achieved by
LOD and KC-LOD statistics with a highest power of
53.4%. A considerable improvement in power is acquired
when AST, ASQ, A3G and D3G are used. In general, the
lowest power is achieved when a disease is inherited in a
recessive pattern.
Clearly, it can be expected that larger pedigrees pro-

vide more linkage information than small ones. This is
in fact what we principally have observed in our simula-
tion study. Nevertheless, a decrease of power is observed
in all statistics when adding one or two unaffected sibs
to ASP, resulting in DST and DSQ, respectively. For the
nonparametric statistics (NPL and KC-LOD), this can be
explained by the fact that only the affected phenotype is
used to calculate the statistic, and there are on average
less mutant alleles segregating in DST or DSQ than in
ASP because the disease-locus genotypes are condi-
tioned on the trait phenotypes of the ascertained indivi-
duals. In the case of the parametric LOD score which
makes use of both, the affected and unaffected pheno-
type, this finding is less evident. It could be explained by
the fact that trait-model parameters need to be specified
prior to the analysis and a misspecification of these para-
meters has a more aggravating effect with larger sibships
[7]. Still the same trend of decreasing power is observed
with MOD score analysis which includes a maximization
over trait-model parameters, so that the model misspeci-
fication is not an issue. However, the critical values for
significance are markedly increased for DST and DSQ
compared to ASP (4.20, 4.36 and 3.61, respectively),
resulting in a MOD score analysis with DST or DSQ
being less powerful than with ASP. In fact, in MOD
score analysis, effectively a larger number of dimensions
of the parameter space is explored in the maximization
when analyzing larger pedigrees, which corresponds to a
larger number of degrees of freedom regarding the
underlying distribution under the null hypothesis of no
linkage [25]. It is only worthwhile to 'pay' the associated
price of an inflated critical threshold for declaring link-
age if at least some degree of information regarding the
additionally modeled parameter is in fact present in the
data. In our case, we have observed that modeling un-
affected individuals is not worth the price of an
increased critical value, since due to the strongly
reduced penetrance used for simulating the data (at
most f2 = 0.23), unaffected sibs carry only very limited in-
formation with regard to their unobserved trait-locus
genotype. The aforementioned explanation particularly
applies to a MOD score analysis, but the finding that in-
cluding unaffected individuals leads to a reduced power



Flaquer and Strauch BMC Research Notes 2012, 5:411 Page 8 of 10
http://www.biomedcentral.com/1756-0500/5/411
to detect linkage in the case of reduced penetrance holds
for all parametric and nonparametric linkage statistics
investigated in this simulation study. We want to
emphasize that simply not genotyping an unaffected sib-
bling will not correct this deficiency, as it is an issue
with the type of pedigree from which siblings are ascer-
tained rather than the analysis method or who in the
family is genotyped.
The question arises which test statistic should be used

for a given type of sample, in order to obtain a power as
high as possible. Additional file 2: Table S2 shows which
statistic(s) perform best given the sample structure. As
can be seen from Additional file 1: Table S1, this deci-
sion depends not only on the type of pedigrees but also
on the true MOI. Each color in Additional file 1: Table
S1 and Additional file 2: Table S2 correspond to a spe-
cific test statistic. If the sample under study consists of
ASP or AST then the best statistics are the KC-LOD
(green) and LOD (yellow) when the MOI is dominant or
additive, but more powerful is the MOD (blue) when the
MOI is recessive. In the case of DST or DSQ, under a
dominant or additive MOI we would recommend to use
the LOD (yellow) under an additive AMOI or the KC-
LOD (green), and the LOD (yellow) with recessive
AMOI when the true MOI is recessive. When A3G or
D3G are analyzed and the MOI is recessive, the best
power is achieved with the LOD (yellow) under a reces-
sive AMOI or with the MOD score (blue).
We have to notice that all our results are based on a

highly informative marker. It is expected that with a
reduced information content the power would decrease.
Indeed, there are other differences between real data sets
and our simulation settings. For example, in most cases
data sets consist of pedigrees of different structure. To
give an idea regarding the power in this situation, we
conducted the analysis with a mixture of pedigrees (100
AST, 100 ASQ, 100 DST, 100 DSQ) (last column from
Additional file 1: Table S1). For this scheme of pedigrees
we found a power ranging from 75.7% to 98.7%. Interest-
ingly, in this configuration the MOD score is the most
powerful test statistic (despite a high critical value of
4.01 obtained from the simulations under H0 performed
in this study). Apparently, in the case of a mixture of
pedigrees with varying numbers of affected and un-
affected children, it is worthwhile to jointly explore all
dimensions of the parameter space corresponding to a
MOD score analysis with each of the different pedigree
types, such that the higher score outweighs the increased
critical value that is required to declare linkage. Anyway,
this result applies only to the specific mix sample con-
sidered in this analysis; if the mix sample changes the
power values will also change. Another important differ-
ence compared to real data sets is that large pedigrees
containing multiple affected members are usually rare
for complex traits, especially those with late onset. This
is due to relatively small recurrence risks for complex
diseases. Small pedigrees, such as nuclear families, e.g.
ASP, are relatively common and easier to collect. In
these situations, an alternative would be to increment
the number of pedigrees to be analyzed. To give at least
a hint regarding the number of ASP needed to achieve
the same power as with AST, we did simulations for the
KC-LOD and obtained that one would need approxi-
mately 1500 ASP to reach the same power as with 500
AST.
We chose to use two-point analysis (i.e., single marker

linkage analysis) rather than multipoint analysis, because
the former requires significantly less computation time,
which is especially important in a large-scale simulation
analysis. Furthermore, the conclusions for multipoint
analysis do not seem to differ substantially from those
for two-point analysis [27]. In fact, similar results for
two-point and multipoint analysis can be expected for
the nonparametric statistics and the MOD score. How-
ever, in two-point parametric analysis, the LOD score is
maximized with respect to the recombination fraction as
we have done here. In the multipoint situation, such a
free maximization does not take place. Rather, when the
disease-locus position is varied in a multipoint analysis,
it is confined to lie between flanking markers, which
does not happen in the two-point situation. For this rea-
son, multipoint LOD score analysis is particularly sensi-
tive to a misspecification of the trait-model parameters,
such that assuming a wrong trait model may even lead
to the exclusion of linkage [17]. Furthermore, it has been
shown that multipoint LOD scores no longer follow a
chi-square distribution [28]. Multipoint LOD score ana-
lysis should therefore be used with caution when com-
plex traits are under study.
Another concern in this study could be that the de-

creasing cost of SNP genotyping has made it much
harder to justify the use of microsatellite genotyping in
linkage studies. SNPs are likely to be the genotyping
method applied to samples currently being collected.
Still, our results should also be valid in the presence of
SNP data. In a study of linkage analysis with imprinting,
ASP and ASQ were simulated. The study considered
first 40 SNPs (MAF 0.15 and 0.32 cM apart to each
other) and then one microsatellite marker (with 4
alleles). Results showed no substantial difference in the
power to detect linkage between the analysis with SNPs
and the analysis with the microsatellite (manuscript in
preparation). When using SNPs, one should only be cau-
tious about the closely spaced SNP markers and to
model LD, or exclude SNPs in LD before using linkage
analysis.
Generally it is difficult to realistically simulate the

MOI of complex diseases. Here we have focused on
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three realistic models with reduced penetrance as well as
phenocopies, allowing for other genetic and/or environ-
mental factors. We believe that these set of model para-
meters, together with their moderate genotype-relative
risks, reflect a realistic scenario.

Conclusion
Linkage analysis is not hampered by allelic heterogen-
eity, and so it genuinely achieves the combination of the
peak signals for many single variants obtained in a cer-
tain genetic region. We have demonstrated how import-
ant is the impact of pedigree structure on the power to
detect linkage when diseases with a complex MOI are
considered. The pedigree structure has a more severe ef-
fect than a model misspecification in the case of two-
point parametric LOD score analysis. Based on these
results, it is important to use moderate to large pedigree
structures with at least three affected members, unless a
very large number of ASPs is available for study, and to
be cautious when modeling unaffected individuals with
complex diseases. When using small pedigrees, one
might miss the true genetic linkage when actually a real
effect of linkage exists. We believe that missing a true
location is an error at least as severe as the false conclu-
sion of linkage. Furthermore, we have shown that the
test statistic has an important effect on the power to de-
tect linkage. Here, according to our simulation results
we have provided guidelines to researchers regarding
which test statistic should be used when studying a cer-
tain pedigree structure. By this means, it is ensured that
the collected pedigree data are exploited in the best pos-
sible way. After all, such extensive gene-mapping studies
should not fail to detect linkage due to a suboptimal test
statistic used for the analysis.
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