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Precipitation is an essential input parameter for land surface models because it controls a large variety of environmental processes.
However, the commonly sparsemeteorological networks in complex terrains are unable to provide the information needed formany
applications.Therefore, downscaling local precipitation is necessary. To this end, a newmachine learningmethod, LASSOalgorithm
(least absolute shrinkage and selection operator), is used to address the disparity between ERA-Interim forecast precipitation data
(0.25∘ grid) and point-scalemeteorological observations. LASSOwas tested and validated against other three downscalingmethods,
local intensity scaling (LOCI), quantile-mapping (QM), and stepwise regression (Stepwise) at 50 meteorological stations, located
in the high mountainous region of the central Alps.The downscaling procedure is implemented in two steps. Firstly, the dry or wet
days are classified and the precipitation amounts conditional on the occurrence of wet days are modeled subsequently. Compared
to other three downscaling methods, LASSO shows the best performances in precipitation occurrence and precipitation amount
prediction on average. Furthermore, LASSO could reduce the error for certain sites, where no improvement could be seen when
LOCI and QM were used. This study proves that LASSO is a reasonable alternative to other statistical methods with respect to the
downscaling of precipitation data.

1. Introduction

Precipitation is one of the most important variables for
a large variety of environmental processes and its spatial
and temporal variations directly influence the local as well
as the global water, energy, and matter cycle (e.g., [1–6]).
Precipitation is also an essential input parameter for land
surface models in fields such as in hydrology, ecology, and
climatology [7–9]. Traditionally, precipitation is measured
by rain gauges. However, most of them are located in
homogeneous terrains and in valley regions. In complex
terrains, few gauge stations exist due to difficulties in snow
depth measuring and maintenance of stations which result
in a lack of long-term and high resolution records [10]. In
order to overcome these limitations, in the past decades,
GCMs have been widely applied to meet the specific needs

of environmental impact models by providing time series of
precipitation and plausible scenarios of change [8, 11].

However, it is well known that the coarse spatial reso-
lution (∼300 km) of GCMs limits the reliable use of these
data in decision making and model based impact stud-
ies [12–15]. Specifically, GCMs only provide precipitation
characteristics that are based on the mean elevation of the
pixel, thus not considering subgrid variability of topography
and consequent atmospheric features. Local processes, such
as orographic precipitation along mountain slopes, are not
represented in the coarse grids [12]. Even if RCMs nested in
GCMs provide better descriptions of local scale characteris-
tics, based on the finer spatial resolution of 10–50 km, they
do not fulfill the requirement of hydrological and climatic
impact models, which typically run on the scale of 0.1–1 km
[11, 16–21]. Thus, correction and downscaling are necessary
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Figure 1: Location of the MeteoSwiss sites (triangles) and ERA-Interim 0.25∘ × 0.25∘ points (dots). The elevation ranges from 22 to 4783m
a.s.l., with a DEM resolution of 90m.

for both GCM and RCM outputs before they are applied for
environment impact models [22–26].

In a broad sense, downscaling includes two purposes:
one is obtaining future emission scenarios (time series) for
stations or regions or catchments from global climate models
(e.g., HadAM3P) using the established statistical relationship
between measurements and large-scale predictors. The other
purpose is obtaining time series for nonmeasurement area.
This also could be treated as spatial interpolation or disaggre-
gation to some extent.Many previous studies have shown that
a reproduction of station data and the generation of future
times series at the respective locations is extremely useful
(e.g., [19, 22, 24]).

In terms of downscaling methods, dynamical and
statistical downscaling are the two main approaches. The
latter approach establishes the statistical connections
between large-scale circulation variables (predictors) and
local observed variables (predictands) [27, 28]. Compared
to dynamical downscaling, statistical downscaling methods
have lower computational demands and allow for a fast
application [27, 29]. Maraun et al. [11] comprehensively
reviewed precipitation downscaling methods from an end
user’s point-of-view. For example, local intensity scaling
(LOCI) and quantile-mapping (QM) are the standard
methods used for correcting GCM or RCM outputs with
respect to local observations.

Other methods focus on investigating the relationship
between local precipitation and large-scale atmosphere cir-
culations, which vary from linear regression (e.g., [30–
35]) to complex nonlinear models (e.g., [36–40]). Although
numerous studies were carried out, a general standardized
precipitation downscaling method still does not exist, espe-
cially for complex terrains. Furthermore, a separate predictor
selection process (e.g., principal components analysis) is
usually implemented in order to search for the most sensitive
variables with regard to precipitation variations (e.g., [34,
39, 41–44]). However, this procedure costs the additional
computation time. Therefore, it is of particular interest to
introduce new approaches, especially for the stations where
benchmark methods do not work at all.

To this end, a new machine learning method, the “least
absolute shrinkage and selection operator (LASSO)” algo-
rithm, is introduced for downscaling ERA-Interim forecast
precipitation data in complex terrain. Compared to standard
linear downscaling approaches, LASSO is also well suited
for possibly underdetermined linear regression problems,
as well as for joint estimation and continuous variable
selection. It is tested and validated against three different
methods, local intensity scaling (LOCI), quantile-mapping
(QM), and stepwise regression (Stepwise), using data from
50 meteorological stations located in the high mountainous
region of the central Alps (Figure 1).
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This paper is structured as follows. Section 2 describes the
ERA-Interim forecast precipitation data and meteorological
observations in the study area. Section 3 describes the four
downscaling methods as well as the evaluation criteria. The
downscaling results and methods comparison are presented
in Section 4, while finally a discussion and subsequent
conclusions are given in Section 5.

2. Datasets

2.1. ERA-Interim. We make use of the ERA-Interim forecast
precipitation data provided by the European Centre for
MediumRangeWeather Forecast (ECMWF) for the year 1979
onwards and continuing in real time [45, 46]. ERA-Interim
shows some improvements when compared with ERA-40
in these aspects: a representation of the hydrological cycle,
an improved description of the stratospheric circulation,
and an enhanced handling of biases [46–49]. Cycle 31r2 of
ECMWF’s Integrated Forecast System (IFS) was used in here.
The model in this configuration comprises 60 vertical levels,
with the top level at 0.1 hPa; it uses theT255 spectral harmonic
representation for the basic dynamical fields and a reduced
Gaussian grid (N128) with an approximately uniform spacing
of 79 km [46, 50]. ERA-Interim assimilates four analyses per
day at 00, 06, 12, and 18 UTC. Furthermore, two 10-day
forecasts with a 3-hour resolution are initialized based on the
00:00 UTC and 12:00 UTC analyses.

A variety of data in uniform lat/long grids (0.125∘, 0.25∘,
0.5∘, 0.75∘, 1∘, 1.125∘, 1.5∘, 2∘, 2.5∘, and 3∘) are available
from ECMWF datasets. Here, we apply 3-hourly forecast
precipitation data (03, 06, 09, 12, 15, 18, 21, and 24 UTC)
initialized at 00 UTC from 1983–2010 which are projected
on the grid of 0.25∘ × 0.25∘. Daily precipitation is calculated
from eight times 3-hourly precipitation forecast. In addition,
19 surface and upper-atmosphere variables (Table 1) are
applied as predictors according to previous studies (e.g.,
[38, 40]). These 3-hourly predictors are aggregated into daily
averages. The used variables are listed in Table 1. We used
00 UTC initialized forecasts and calculated the elevation in
meters a.s.l. by the normalization of the geopotential over the
gravity.

2.2. Test Sites. Daily total precipitation of the period 1983–
2010 at 50 meteorological stations was made available
through the interactive tools of IDAWEB, which is designed
by MeteoSwiss (the Swiss Federal Office of Meteorology
and Climatology) providing free, available, and extensive
archive data of ground level monitoring networks. Table 2
lists the information about stations and Figure 1 shows the
locations of test sites. The stations are located within a
large range of altitude from 381m to 3305m. Among these
stations, 16 are located below 500m and 11 are situated
between 500m and 1000m, 9 between 1000m and 1500m,
8 between 1500m and 2000m, and 6 above 2000m. The
observations and ERA-Interim data are processed for the
same period. The available data is partitioned into two
periods, 1983–1999 for calibration and 1999–2010 for valida-
tion. A 1mm threshold was defined for defining a dry/wet
day.

Table 1: Predictors from ERA-Interim forecast dataset. All variables
are aggregated from 3-hourly to daily averages.

Predictor Description
P ERA ERA-Interim precipitation (mm)
MSLP Mean sea-level pressure (hPa)
TCW Total column water (mm)
U 10 10-meter 𝑈 wind component (m s−1)
V 10 10-meter 𝑉 wind component (m s−1)
WS 10 Wind speed (m s−1)
FG 10 10-meter wind gust (m s−1)
LSP Large-scale precipitation (mm)
H 850 Geopotential height at 850 hPa (m)
H 700 Geopotential height at 700 hPa (m)
H 500 Geopotential height at 500 hPa (m)
T 850 Temperature at 850 hPa (∘C)
T 700 Temperature at 700 hPa (∘C)
T 500 Temperature at 500 hPa (∘C)
RH 850 Relative humidity at 850 hPa (%)
RH 700 Relative humidity at 700 hPa (%)
RH 500 Relative humidity at 500 hPa (%)
SH 850 Specific humidity at 850 hPa (g kg−1)
SH 700 Specific humidity at 700 hPa (g kg−1)
SH 500 Specific humidity at 500 hPa (g kg−1)

It is necessary to note that the data of the stations GUE,
PAY, and GVE are used within the ERA-interim data assimi-
lation procedure, given their status asWMO SYNOP stations
[46, 51]. According to the information of the ECMWF, it can
be assumed that the majority of the stations (47 of 50 sites)
are not used by ERA-Interim and therefore represent a fully
independent dataset.

3. Methods

3.1. Local Intensity Scaling (LOCI). LOCI is a robust
method to directly correct GCM or RCM outputs for
local observations. Although GCMs or RCMs are partly
unrealistic due to their coarse resolution, they contain
valuable information about the actual precipitation [11].
The assumption is realized by a so-called scaling factor,
calculated from observation and climate model data of
a reference period, which is then expanded to scenarios
data. Here, LOCI is applied as the benchmark method
for comparison with LASSO. LOCI was developed by
Widmann and Bretherton [52]. Widmann et al. [53] used
it for scenario precipitation corrections. Not only GCMs,
but also RCMs were corrected using the LOCI approach
[54–56]. Schmidli et al. [57] further modified LOCI for
precipitation occurrence and amount correction, separately.
In this study, LOCI is implemented based on a monthly
scaling factor which is calculated in three steps as follows:

Fre (𝑃ERA ≥ 𝑃
thres
ERA ) = Fre (𝑃obs ≥ 𝑃

thres
obs ) ,

SF =
(𝑃obs ≥ 𝑃

thres
obs ) − 𝑃

thres
obs

(𝑃ERA ≥ 𝑃
thres
ERA ) − 𝑃

thres
ERA

,

𝑃

𝑡
= max (𝑃thresobs + SF (𝑃

Val
ERA − 𝑃

thres
ERA ) , 0) ,

(1)
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Table 2: Test sites information. ERA-Interim grid height is also listed.

Site abbreviation Site name Latitude Longitude Site elevation (m) ERA-Interim grid elevation (m)
COV Piz Corvatsch 46.42 9.82 3305 1618
WFJ Weissfluhjoch 46.83 9.81 2690 1722
SAE Säntis 47.25 9.34 2502 1154
GSB Col du Grand St-Bernard 45.87 7.17 2472 1493
GUE Gütsch ob Andermatt 46.65 8.62 2287 1432
PIL Pilatus 46.98 8.25 2106 1154
MLS Le Moléson 46.55 7.02 1974 1193
SAM Samedan 46.53 9.88 1709 1661
DOL La Dôle 46.42 6.10 1670 699
CIM Cimetta 46.20 8.79 1661 1281
SBE S. Bernardino 46.46 9.18 1639 1532
ZER Zermatt 46.03 7.75 1638 1552
CHA Chasseral 47.13 7.05 1599 669
DAV Davos 46.81 9.84 1594 1722
MVE Montana 46.30 7.47 1427 1470
NAP Napf 47.00 7.93 1403 1115
ULR Ulrichen 46.50 8.30 1345 1435
SCU Scuol 46.80 10.28 1303 1818
FRE Bullet/La Frétaz 46.83 6.58 1205 818
DIS Disentis/Sedrun 46.70 8.85 1197 1479
ROB Poschiavo/Robbia 46.35 10.07 1078 1394
ENG Engelberg 46.82 8.42 1035 1432
CDF La Chaux-de-Fonds 47.08 6.80 1018 770
PIO Piotta 46.52 8.68 990 1447
STG St. Gallen 47.43 9.40 775 1027
VIS Visp 46.30 7.85 639 1498
RUE Rünenberg 47.43 7.88 611 701
FAH Fahy 47.42 6.93 596 554
INT Interlaken 46.67 7.87 577 1325
CHU Chur 46.87 9.53 556 1668
SMA Zürich/Fluntern 47.38 8.57 555 780
BER Bern/Zollikofen 46.98 7.47 552 1008
TAE Aadorf/Tänikon 47.48 8.90 539 897
GLA Glarus 47.03 9.07 516 1312
PAY Payerne 46.82 6.95 490 1030
WAE Wädenswil 47.22 8.68 485 1011
NEU Neuchâtel 47.00 6.95 485 849
SIO Sion 46.22 7.33 482 1408
VAD Vaduz 47.13 9.52 457 1226
PUY Pully 46.52 6.67 455 1100
CGI Nyon/Changins 46.40 6.23 455 835
LUZ Luzern 47.03 8.30 454 1154
REH Zürich/Affoltern 47.43 8.52 443 780
GUT Güttingen 47.60 9.28 440 962
SHA Schaffhausen 47.68 8.62 438 662
ALT Altdorf 46.88 8.62 438 1193
KLO Zürich/Kloten 47.48 8.53 426 780
WYN Wynau 47.25 7.78 422 827
GVE Genève-Cointrin 46.25 6.13 420 973
AIG Aigle 46.33 6.92 381 1346
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where 𝑃
𝑡
is the target station precipitation, 𝑃ValERA the un-

downscaled ERA-Interim data for validation, 𝑃thresERA ERA-
Interim precipitation threshold, and 𝑃thresobs the observation
threshold and the brackets present the frequency condition
judgment function. Here, 1mm is used to define wet/dry
days and SF is the scaling factor. In the first step, an adjusted
threshold for ERA-Interim data is found that matches the
occurrence of wet/dry days, based on the 1mm threshold of
observation. In a second step, the scaling factor is obtained
and then, finally, the target station precipitation is calculated.

3.2. Quantile-Mapping (QM). QM introduced by Panof-
sky and Brier [58] is a popular statistical transformations
approach to correct GCM and RCM outputs straightfor-
wardly [25, 59–65]. The distribution function (e.g., cumu-
lative distribution function, CDF) of model precipitation
is first adjusted to match the distribution of observations.
Subsequently, this matched distribution is used for unbiased
model (or future scenario) data. The mapping is usually
implemented based on empirical quantiles or quantiles of
gamma distributions [11, 64]. In this study, the corrected
ERA-Interim can be obtained via

𝑃

𝑡
= 𝑃

Val
ERA + Δ𝑓,

Δ𝑓 = 𝑓

−1

obs,cal (𝑓ERA,cal (𝑃
Val
ERA)) − 𝑓

−1

ERA,cal (𝑓ERA,cal (𝑃
Val
ERA)) ,

(2)

where 𝑓−1obs,cal and 𝑓
−1

ERA,cal is the inverse CDF of observations
and ERA-Interim for calibration, respectively, and 𝑓ERA,cal is
the CDF of 𝑃ValERA.

3.3. Stepwise Regression (Stepwise). Stepwise Regression
(Stepwise hereafter) is an automatic procedure where Step-
wise combines an ordinary regression (3) with a predictor
variable selection procedure.Threemain approaches are used
in Stepwise according to the relevant selection sequence:
forward selection, backward elimination, or bidirectional
elimination. The advantage of stepwise regression is easily
explained and implemented. Several previous studies have
used stepwise regression for different purposes. For example,
Harpham and Wilby [39], Hessami et al. [42], and Huth
[66] adopted Stepwise for predictor selection; Agnihotri
and Mohapatra [30] applied it to occurrence estimation of
daily summer monsoon precipitation. In this study, stepwise
regression is adopted to test LASSO. Stepwise regression is
implemented using backward elimination method with a
significance level of 0.05,

𝑦

𝑖
= 𝑥

𝑖𝑗
𝛽

𝑗
+ 𝜀, (3)

where𝑦 is the 𝑖×1 response vector,𝑥 is the 𝑖×𝑗 variable vector,
𝛽 is the 𝑗×1 parameter vector, and 𝜀 is the random errors.We
used the same set of 20 variables (Table 1) for Stepwise and
LASSO, for a better method comparison. For precipitation
occurrence, 𝑦 is defined as 1 for wet days (>1mm) and 0 for
dry days (<1mm). All variables are standardized tomake data
fall between 0 and 1.

3.4. LASSO Algorithm. Least absolute shrinkage and selec-
tion operator (LASSO) is an alternative regularized version
of least squares, which is useful for feature selection and to
avoid overfitting problems. LASSO shrinks the estimates of
the regression coefficients towards zero to prevent overfitting
problem and to reduce variables by using a penalty parameter
[67, 68]. To simplify understanding, the history of LASSO
is introduced briefly. The following equation presents the
ordinary least squares regression (OLS) that tries tominimize
the error RSS (Root of Sum of Squares),

̂

𝛽

ols
= argmin

𝛽

{

{

{

𝑁

∑

𝑖=1

(𝑦

𝑖
− 𝛽

0
−

V

∑

𝑗=1

𝑥

𝑖𝑗
𝛽

𝑗
)

2

}

}

}

. (4)

OLS is not always satisfactory for minimizing the RSS,
especially when 𝑥 contains a large number of variables. A
penalty parameter 𝜆 was added based on the normal OLS in
LASSO (see the following equation):

̂

𝛽

lasso
= argmin

𝛽

{

{

{

𝑁

∑
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(𝑦

𝑖
− 𝛽

0
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𝑗
)

2

+ 𝜆

V

∑

𝑗=1

𝛽

𝑗

}

}

}

,

(5)

where V is the number of variables. LASSO imposes inten-
tionally that some coefficients have to be zero, thus achieving
a sparse model. Thus, the penalty parameter (regularizer) 𝜆
controls the level of sparsity of the resulting model. In this
study, we applied an efficient algorithm for solving LASSO
[69]. Also, we defined the value 1 for wet days (>1mm) and 0
for dry days (<1mm), and all variables are standardized the
same as Stepwise.

3.5. Evaluation Criteria. Precipitation downscaling proce-
dure is implemented in two steps. Firstly, precipitation occur-
rence is modeled by the four methods, respectively. Secondly,
precipitation amount conditional on the occurrence of wet
days is modeled subsequently. Please note that the results
of precipitation occurrence ranges from 0 to 1. We defined
0.5 as the threshold value to classify dry/wet days. The
modeled precipitation amount also could be negative values.
Therefore, we set these negative values to zero.The root mean
square error (RMSE) and the mean absolute error (MAE)
are used for the assessment of precipitation amount, and
correspondence ratio (CR) is applied for the evaluation of
dry/wet days classification accuracy (6)-(7),

RMSE = √ 1
𝑁

𝑁

∑

𝑡=1

(𝑃

𝑜
− 𝑃

𝑚
)

2

,

MAE = 1
𝑁

𝑁

∑

𝑡=1









𝑃

𝑜
− 𝑃

𝑚









,

(6)

where 𝑃
𝑜
and 𝑃

𝑚
are observed and modeled precipitation

amount on wet days, respectively. 𝑁 is the number of wet
days,

CR =
𝑛dry + 𝑛wet

𝑁

,
(7)
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Figure 2: Annual precipitation bias (bars) between ERA-Interim
and MeteoSwiss stations in percent for the period 1983–2010. Pos-
itive values indicate an overestimation of the annual precipitation
by ERA-Interim and vice versa. The line with dots indicates altitude
differences, Δℎ, defined as ERA-Interim grid height minus site
elevation.
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the validation period 1999–2010.

where 𝑛dry and 𝑛wet are the numbers of dry or wet days that
are correctly classified by downscaling methods.

4. Results

4.1. Validation of the Original ERA-Interim Forecast Pre-
cipitation Data. Table 3 shows the comparison of ERA-
Interim daily precipitation forecasts with observations at 50
meteorological stations from 1983–2010. CR as well as the
RMSE and MAE in mm is listed. CR varies from 0.68 to 0.86
andRMSE changes in the range of 4.40–11.13mm,whileMAE
ranges from 2.22 to 5.19mm.The large errors show that there
is a great need for the correction and downscaling of ERA-
Interim data at local stations. The altitude differences change
sharply in a large interval. We use the abbreviations for the
characterization of the stations. StationCOV is 1687mhigher
than ERA-Interim grid height while station SCU is 515m
lower than grid height. ERA-Interim shows good agreement
with the occurrence of observations (0.68 to 0.86), but large

deviations with respect to the amount of precipitation on
wet days. However, in contrast to temperature estimations,
the difference in altitude is unable to explain the observed
bias. For example, station DOL has the highest CR with
the value of 0.86, but with a large elevation difference of
971m. Station ZER has a CR of 0.74 but its elevation matches
the grid height very well with an altitude gap of only 86m.
This again suggests that the general relationship between
precipitation and elevation is not easy to obtain, due to
the great variability in the interaction between atmospheric
circulation and complex topographical characteristics.

Figure 2 illustrates the bias (in percent) between ERA-
Interim data and station precipitation observations for the
time period 1983–2010. Positive values indicate that annual
precipitation is overestimated by ERA-Interim and vice versa.
In general, ERA-Interim data overestimate observations the
observed annual precipitation for the majority of test sites;
only 7 of 50 sites are underestimated. Among them, station
GSB has the largest negative bias with a value of −44.2%. 5
out of 50 sites show an overestimation of more than 100%.
Station WFJ and DAV are located in the same ERA-Interim
grid. However, ERA-Interim overestimated stationWFJ with
7.5% and station DAV with a value of 45.6%. Besides, stations
PIL and LUZ are also in the same ERA-Interim grid. ERA-
Interim underestimates PILwith 25.2%. In the contrast, ERA-
Interim overestimates LUZ with a value of 28.6%. The lower
stations that are mainly located at the northern part of the
Alps are underestimated by ERA-Interim.

4.2. Evaluation of Downscaling Methods in Precipitation
Occurrence. Theperformance of the four downscalingmeth-
ods, as well as the ERA-Interim original data in precipitation
occurrence in the validation period 1999–2010, is summa-
rized in Table 4. The averaged CR showed that the four
downscaling methods were much better than the original
ERA-Interim data. QM and LASSO had the same range of
CR from 0.82 to 0.88. LOCI ranged from 0.81 to 0.88 and
Stepwise varied from 0.82 to 0.87. QM estimated a worse CR
than the original ERA data at station GSB. LASSO predicted
the worst occurrence at station DOL. The four methods had
the same performance at 7 sites. For 11 sites, LASSO and
Stepwise were the best methods in precipitation occurrence
modeling. Figure 3 illustrates the averaged correspondence
ratio for each month in the validation period 1999–2010. It
reveals that LOCI, QM, Stepwise, and LASSO captured the
general tendency of the monthly precipitation occurrence for
the whole year. LASSO and Stepwise identified better dry and
wet days than LOCI and QM in May, but they performed
worse in October. LASSO classified dry/wet days similarly
with Stepwise for all 12 months.The result shows that LASSO
is quite suitable for dry/wet days classification.

Figure 4 shows the used variables in Stepwise and
LASSO for dry/wet days classification. LASSO selected more
variables than Stepwise. For LASSO, P ERA, T 700, and
TCW were the most frequent (50 sites) variables. RH 500
was the least frequently (17 sites) applied by LASSO. P ERA
and U 10 were the most frequent (more than 45 sites)
variables in Stepwise. T 500 was the least frequent variable.
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Table 3: Comparison of ERA-Interim forecast daily precipitation with observations at 50 meteorological stations from 1983 to 2010. CR,
RMSE, and MAE in mm are listed. The elevations of sites are different with ERA-Interim grid heights, so the altitude differences (Δℎ, ERA-
Interim grid height minus elevation) are also labeled.

Site CR RMSE MAE Δℎ

COV 0.76 4.66 2.37 −1687
WFJ 0.79 5.83 2.93 −968
SAE 0.84 11.13 5.19 −1348
GSB 0.83 10.86 4.59 −979
GUE 0.79 6.96 3.30 −855
PIL 0.82 9.18 3.97 −952
MLS 0.79 5.40 2.73 −781
SAM 0.68 4.84 2.62 −48
DOL 0.86 6.04 2.76 −971
CIM 0.76 8.97 3.45 −380
SBE 0.74 9.16 3.91 −107
ZER 0.74 5.33 2.64 −86
CHA 0.80 5.23 2.56 −930
DAV 0.76 5.10 2.69 128
MVE 0.75 5.52 2.75 43
NAP 0.82 5.70 2.79 −288
ULR 0.75 6.33 3.14 90
SCU 0.69 4.98 2.74 515
FRE 0.82 5.08 2.46 −387
DIS 0.75 6.12 3.05 282
ROB 0.77 5.46 2.50 316
ENG 0.81 5.91 3.01 397
CDF 0.84 4.87 2.33 −248
PIO 0.72 8.17 3.58 457
STG 0.81 5.48 2.74 252
VIS 0.68 5.66 2.98 859
RUE 0.79 4.62 2.38 90
FAH 0.81 4.40 2.22 −42
INT 0.79 5.24 2.70 748
CHU 0.72 5.19 2.81 1112
SMA 0.80 4.85 2.44 225
BER 0.78 5.07 2.59 456
TAE 0.80 4.91 2.55 358
GLA 0.80 5.55 2.87 796
PAY 0.77 5.45 2.84 540
WAE 0.81 5.55 2.71 526
NEU 0.77 5.08 2.59 364
SIO 0.69 5.18 2.80 926
VAD 0.76 5.11 2.69 769
PUY 0.80 5.76 2.79 645
CGI 0.79 4.99 2.56 380
LUZ 0.78 5.46 2.79 700
REH 0.79 4.73 2.42 337
GUT 0.77 5.01 2.66 522
SHA 0.78 4.47 2.33 224
ALT 0.77 5.32 2.74 755
KLO 0.78 4.83 2.49 354
WYN 0.79 4.71 2.37 405
GVE 0.78 5.13 2.61 553
AIG 0.79 4.82 2.44 965
Average 0.78 5.79 2.84 100
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Table 4: Comparison of downscaling methods, as well as the original ERA-Interim forecast data in precipitation occurrence in the validation
period 1999–2010.

Site CR
ERA LOCI QM Stepwise LASSO

COV 0.76 0.85 0.84 0.82 0.82
WFJ 0.78 0.82 0.82 0.85 0.85
SAE 0.83 0.84 0.84 0.84 0.84
GSB 0.83 0.83 0.82 0.85 0.85
GUE 0.78 0.81 0.82 0.83 0.83
PIL 0.81 0.84 0.84 0.83 0.83
MLS 0.76 0.83 0.83 0.84 0.84
SAM 0.68 0.86 0.85 0.84 0.84
DOL 0.86 0.88 0.88 0.86 0.85
CIM 0.77 0.85 0.84 0.87 0.87
SBE 0.74 0.83 0.82 0.86 0.86
ZER 0.74 0.84 0.84 0.84 0.84
CHA 0.80 0.85 0.85 0.83 0.83
DAV 0.75 0.84 0.84 0.85 0.84
MVE 0.74 0.83 0.83 0.85 0.85
NAP 0.81 0.85 0.85 0.84 0.84
ULR 0.75 0.84 0.83 0.84 0.84
SCU 0.69 0.86 0.86 0.85 0.85
FRE 0.82 0.87 0.87 0.85 0.85
DIS 0.75 0.84 0.84 0.83 0.83
ROB 0.76 0.84 0.83 0.86 0.86
ENG 0.80 0.82 0.82 0.84 0.84
CDF 0.84 0.86 0.87 0.85 0.85
PIO 0.71 0.84 0.83 0.87 0.87
STG 0.81 0.85 0.84 0.84 0.84
VIS 0.68 0.85 0.85 0.85 0.85
RUE 0.78 0.85 0.84 0.83 0.83
FAH 0.81 0.86 0.86 0.85 0.85
INT 0.79 0.85 0.85 0.85 0.85
CHU 0.71 0.84 0.83 0.84 0.84
SMA 0.80 0.86 0.86 0.83 0.83
BER 0.77 0.86 0.86 0.85 0.85
TAE 0.80 0.86 0.86 0.85 0.85
GLA 0.79 0.84 0.84 0.86 0.86
PAY 0.76 0.86 0.85 0.85 0.85
WAE 0.81 0.85 0.85 0.84 0.85
NEU 0.77 0.87 0.86 0.85 0.85
SIO 0.69 0.87 0.87 0.87 0.88
VAD 0.76 0.86 0.85 0.85 0.85
PUY 0.79 0.87 0.86 0.86 0.86
CGI 0.78 0.88 0.88 0.87 0.87
LUZ 0.77 0.84 0.84 0.84 0.84
REH 0.79 0.85 0.85 0.83 0.84
GUT 0.78 0.84 0.84 0.84 0.84
SHA 0.78 0.85 0.85 0.83 0.83
ALT 0.77 0.84 0.84 0.84 0.84
KLO 0.79 0.85 0.85 0.84 0.84
WYN 0.79 0.86 0.86 0.85 0.85
GVE 0.78 0.88 0.87 0.86 0.86
AIG 0.78 0.86 0.86 0.87 0.86
Average 0.77 0.85 0.85 0.85 0.85
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Figure 4: Selected variables in Stepwise and LASSO for dry/wet days classification.

For the individual sites, station INT selected least variables
(12 variables) while station COV, CHA, and CGI chose the
most variables (20 variables) in LASSO. Stepwise selected 16
variables at stations GSB, CHA, FAH, and SMA, while it only
applied 9 variables at stations SAM and PIO. LASSO applied
more variables compared with Stepwise for the majority
of stations (49 stations). Although, different variables are
applied by the two methods, the performances of dry/wet
days classification were similar.

4.3. Evaluation of Downscaling Methods in Precipitation
Amount. The overall performance of four downscaling
methods, as well as the ERA-Interim original data in precipi-
tation amount conditional on the occurrence of a wet day for
the validation period 1999–2010, is summarized in Table 5.
On the average, Stepwise and LASSO performed similarly in
RMSE and MAE, which were much smaller than LOCI and
QM. The reduction of error of Stepwise was 12.2% of RMSE
and 15.7% of MAE, respectively. LASSO was slightly better
than Stepwise in MAE (16.3%) and it had the same error
reductionwith Stepwise in RMSE (12.2%), whereas LOCI and
QM were the worst methods. The reduction of RMSE was
only 3.5% and 0.9% for LOCI and QM, respectively. In total,
LOCI and QM did not reduce RMSE at 13 stations such as
station WFJ. QM was the worst method at 24 stations while
LOCI performed the worst in RMSE at stations ENG and
CDF. LASSO outperformed the other methods at 9 stations.
Stepwise reduced the most RMSE at 40 stations compared
with other three methods. However, the four downscaling
methods failed to reduce the errors at station CHA. In
terms of MAE, LOCI outperformed the other methods at 26
stations. LASSO reduced the most MAE at 22 stations. QM
method was not able to reduce MAE at 5 stations. It could be
concluded that LOCI andQMmethod are not always suitable
for local stations. It has to be noted that the four downscaling
methods did not work for MAE reduction at station DOL,

which has a large elevation difference of 971m against ERA-
Interim grid height.

Taking station WFJ as an example, Figures 5 and 6
illustrate the downscaled daily precipitation for the four
downscaling methods, as well as the original ERA-Interim
data in January and July, respectively, for the validation
period 1999–2010. In general, four downscaling methods
capture the tendency of the daily precipitation in January
and July. However, LOCI and QM are generally inclined to
misidentify the heavy precipitation events, in particular in
January 2008 and July 2003. Stepwise and LASSO underes-
timated heavy precipitation events compared with LOCI and
QM.

Figure 7 illustrates the comparison of observations with
downscaled annual precipitation for the fourmethods, as well
as the original ERA-Interim data in the validation period
1999–2010. LASSO and Stepwise predicted the annual precip-
itation best. In general, LOCI and QMmodeled drier results,
with mean value of −7.7% and −5.0%, respectively. 31 out of
50 sites were underestimated by LASSO with the range from
−19% (station KLO) to −0.1% (station RUE) while 19 sites
were overestimated by 0.2% (station SCU) to 31.6% (station
MLS). The majority of sites were underestimated by LOCI
(48 out of 50 sites) and QM (40 out of 50 sites) while 30 of 50
sites were underestimated by Stepwise. Figure 8 compares the
averaged sum of daily precipitation for each month between
observations and the four downscaling methods, as well as
the original ERA-Interim data in the validation period 1999–
2010. It is easy to find that LASSO and Stepwise predicted
more precipitation in the whole year than LOCI and QM
with exception of August and November. LASSO reproduced
best monthly precipitation for February, March, April, and
November. Stepwise was the best method for May, June,
July, and October. QM performed best in January, August,
and September. LOCI outperformed the other methods in
December.
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Table 5: Comparison of observations with downscaled daily precipitation for the four downscaling methods, as well as the original ERA-
Interim data in precipitation amount (mm) on wet days for the validation period 1999–2010.

Site RMSE MAE
ERA LOCI QM Stepwise LASSO ERA LOCI QM Stepwise LASSO

COV 4.53 4.14 4.31 3.87 3.87 2.33 1.76 1.83 1.80 1.78
WFJ 6.12 6.29 6.45 5.47 5.46 3.03 2.89 2.95 2.71 2.68
SAE 11.89 11.09 11.26 9.74 9.75 5.56 5.49 5.58 5.01 5.01
GSB 11.20 10.59 10.65 9.18 9.18 4.61 4.72 4.78 4.49 4.48
GUE 6.50 6.38 6.79 5.85 5.85 3.16 2.84 2.91 2.95 2.94
PIL 10.42 10.04 9.90 9.57 9.56 4.30 4.21 4.18 4.23 4.20
MLS 5.85 5.28 5.65 4.67 4.66 3.02 2.41 2.50 2.37 2.34
SAM 4.73 3.90 4.05 3.60 3.60 2.58 1.46 1.54 1.55 1.53
DOL 5.71 5.92 6.02 5.40 5.39 2.63 2.64 2.70 2.72 2.70
CIM 8.79 9.46 9.56 8.09 8.09 3.48 3.46 3.52 3.52 3.52
SBE 9.27 9.08 9.91 7.51 7.50 3.98 3.76 3.98 3.52 3.51
ZER 5.10 4.16 4.50 3.65 3.65 2.55 1.61 1.65 1.64 1.62
CHA 5.50 5.61 5.77 5.52 5.52 2.62 2.47 2.52 2.60 2.58
DAV 5.18 4.82 4.89 4.44 4.45 2.72 2.11 2.15 2.09 2.07
MVE 5.32 4.86 4.97 4.21 4.21 2.72 2.08 2.11 2.14 2.13
NAP 6.15 6.47 6.50 6.10 6.10 2.97 2.98 3.00 2.95 2.94
ULR 6.23 5.92 6.21 5.68 5.71 3.11 2.52 2.60 2.70 2.69
SCU 4.93 3.72 3.98 3.55 3.55 2.72 1.46 1.54 1.57 1.54
FRE 5.15 5.43 5.56 4.91 4.91 2.46 2.30 2.34 2.26 2.25
DIS 5.97 5.33 5.49 5.29 5.29 3.00 2.18 2.20 2.37 2.36
ROB 5.72 6.14 6.24 5.09 5.08 2.66 2.40 2.47 2.37 2.36
ENG 6.16 6.64 6.41 5.79 5.79 3.13 3.17 3.10 2.93 2.90
CDF 5.01 5.44 5.44 4.89 4.89 2.34 2.37 2.40 2.36 2.33
PIO 7.88 7.72 7.98 6.76 6.77 3.54 2.99 3.09 3.16 3.16
STG 5.67 5.81 5.92 5.55 5.53 2.76 2.54 2.58 2.60 2.57
VIS 5.49 4.12 4.53 3.75 3.75 2.92 1.52 1.60 1.62 1.61
RUE 4.62 4.57 4.68 4.15 4.15 2.40 1.98 2.03 2.00 1.98
FAH 4.67 4.69 4.78 4.44 4.45 2.28 1.99 2.04 2.05 2.02
INT 5.21 5.30 5.34 4.82 4.81 2.71 2.33 2.35 2.33 2.32
CHU 5.19 4.48 4.82 4.20 4.21 2.80 1.88 1.96 1.91 1.90
SMA 4.86 4.95 5.14 4.71 4.72 2.44 2.17 2.23 2.18 2.16
BER 5.14 5.16 5.23 4.68 4.68 2.64 2.15 2.20 2.18 2.16
TAE 4.74 4.80 4.97 4.51 4.51 2.54 2.24 2.30 2.28 2.26
GLA 5.60 6.02 6.05 5.29 5.29 2.87 2.80 2.82 2.65 2.64
PAY 5.30 4.51 4.60 3.96 3.97 2.83 1.86 1.92 1.90 1.88
WAE 5.50 5.96 6.05 5.40 5.40 2.74 2.67 2.71 2.67 2.64
NEU 5.00 4.85 4.90 4.34 4.34 2.60 1.95 2.00 1.97 1.94
SIO 4.98 3.52 3.65 3.09 3.08 2.74 1.37 1.43 1.48 1.46
VAD 5.26 4.61 4.83 4.38 4.38 2.72 1.87 1.94 1.91 1.90
PUY 5.58 5.57 5.76 5.06 5.06 2.76 2.28 2.36 2.44 2.43
CGI 4.95 4.50 4.69 4.14 4.15 2.55 1.83 1.90 1.86 1.85
LUZ 5.40 5.48 5.52 5.21 5.21 2.81 2.45 2.48 2.55 2.52
REH 4.91 4.82 4.88 4.54 4.55 2.46 2.04 2.07 2.04 2.03
GUT 4.84 4.34 4.56 3.96 3.97 2.60 1.91 1.98 1.91 1.89
SHA 4.36 4.25 4.34 3.90 3.90 2.31 1.85 1.88 1.83 1.80
ALT 5.47 5.47 5.57 5.23 5.23 2.80 2.39 2.44 2.40 2.37
KLO 4.90 4.83 4.97 4.62 4.63 2.51 2.07 2.11 2.07 2.05
WYN 4.87 5.23 5.31 4.60 4.60 2.46 2.21 2.24 2.19 2.17
GVE 5.13 4.72 4.90 4.53 4.53 2.61 1.87 1.96 1.93 1.93
AIG 4.69 4.55 4.65 4.02 4.02 2.43 1.91 1.97 1.99 1.97
Average 5.83 5.63 5.78 5.12 5.12 2.87 2.41 2.46 2.42 2.40
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Figure 5: Comparison of observations with downscaled daily precipitation for the four downscaling methods, as well as the original ERA-
Interim data in January at station WFJ during the validation period 1999–2010

Figure 9 shows the used variables in Stepwise and LASSO
for precipitation amount prediction on wet days. LASSO
again selected more variables than Stepwise. For LASSO,
P ERA, H 850, H 700, H 500, T 850, and MSLP were
applied at all 50 sites. SH 500 was applied at 25 sites. P ERA
was the sole variable used by all test sites by Stepwise. SH 850
and U 10 were the second most frequent (34 sites) variables.
RH 700 and RH 500 were the least frequent variables (10
sites) by Stepwise. For the individual sites, station VAD used
the least variables (11 variables) while 19 stations selected
all 20 variables in LASSO. Station SBE applied the most
variables (16 out of 20 vairables) while station WYN only
applied 4 variables in Stepwise.

5. Discussion and Conclusion

The comparison between ERA-Interim and observations
showed that ERA-Interimhas a large error (5.79mmofRMSE
and 2.84mm of MAE) in the central Alps (Table 3). Thus,
there is a great need for the correction and downscaling of
ERA-Interim data. This study compared four downscaling
methods, LOCI, QM, Stepwise, and LASSO, for downscaling
of ERA-Interim daily precipitation data in the central Alps.

As a frequent input variable for hydrological models,
daily precipitation is always corrected or downscaled due
to the limits of rain gauges. In the previous studies (e.g.,
[57, 63]), LOCI and QM methods have been widely used for
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Figure 6: Comparison of observations with downscaled daily precipitation for the four downscaling methods, as well as the original ERA-
Interim data in July at station WFJ during the validation period 1999–2010.

the bias correction with the advantages of maintaining the
variation and distribution of historical data. Although LOCI
and QM captured the best estimation of daily precipitation
occurrence, the reduction of error is not significant by these
two methods and even worse than the original ERA-Interim
data for 13 out of 50 sites. It demonstrates that straightforward
methods are not always suitable for downscaling local obser-
vations in complex terrain.

LASSO algorithm simulated the occurrence of daily
precipitation as well as LOCI, QM, and Stepwise; it captured
the occurrence for all test sites generally. Compared to
the other three downscaling methods, it reduced the most
amount error to 16.3% of MAE and 12.2% RMSE. LASSO

also predicted the best annual and monthly precipitation.
Although the LASSO algorithm has been developed for more
than 15 years by statistician, the application in geosciences is
still at the early-stage (e.g., [70]). A main practical challenge
in applying LASSO for precipitation downscaling is that
precipitation in heterogeneous terrain is such a complex
processwhich tends to usemore variables and to overestimate
observations. It has shown that LASSO tends to use more
variables than Stepwise. To avoid the overfitting problem, the
penalty (or regularization) parameter 𝜆 plays a key role. The
cross-validation and hundreds of runs are necessary to find
an appropriate penalty parameter.Therefore, LASSO is a little
bit time-consuming than the other three methods.
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Figure 7: Percentage of annual precipitation bias between observations and the four downscaled results, as well as the original ERA-Interim
data in the validation period 1999–2010.
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Figure 8: Comparison of averaged sum of daily precipitation for each month between observations and the four downscaled results, as well
as the original ERA-Interim data in the validation period 1999–2010.

So far, the work presented herein has been limited to
the central Alps with 50 meteorological stations providing
calibration/validation data sets for testing LASSO algorithm.
It would be necessary to extend LASSO method to other
highmountainous areas around the world. Besides, this study
focuses on the local stations at present; it is of special interest
to extend LASSO method for nonstation areas. A limited
number of variables (20 variables in this study) derived from
ERA-Interimdatawere applied for LASSO; however, it should
also be investigated whether other potential variables such
as vapor pressure can be used in the presented approach.

This study focused on the daily total precipitation. Certainly,
higher temporal resolution data, such as 3-hourly, would be of
great interest in further investigations. Furthermore, applying
other reanalysis data sets based on different land surface
representations could also be valuable for validating LASSO
algorithm.
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Figure 9: Selected variables in Stepwise and LASSO for precipitation amount prediction on wet days.
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precipitation downscaling over the northwestern united states
using numerically simulated precipitation as a predictor,” Jour-
nal of Climate, vol. 16, no. 5, pp. 799–816, 2003.

[54] T. Engen-Skaugen, “Refinement of dynamically downscaled
precipitation and temperature scenarios,” Climatic Change, vol.
84, no. 3-4, pp. 365–382, 2007.

[55] L. P. Graham, J. Andreáasson, and B. Carlsson, “Assessing
climate change impacts on hydrology from an ensemble of
regional climate models, model scales and linking methods: a
case study on the Lule River basin,” Climatic Change, vol. 81, no.
1, pp. 293–307, 2007.

[56] R. Leander, T. A. Buishand, B. J. J.M. van denHurk, andM. J.M.
deWit, “Estimated changes in flood quantiles of the riverMeuse
from resampling of regional climate model output,” Journal of
Hydrology, vol. 351, no. 3-4, pp. 331–343, 2008.

[57] J. Schmidli, C. Frei, and P. L. Vidale, “Downscaling from
GCM precipitation: a benchmark for dynamical and statistical
downscaling methods,” International Journal of Climatology,
vol. 26, no. 5, pp. 679–689, 2006.

[58] H. W. Panofsky and G. W. Brier, Some Applications of Statistics
to Meteorology, The Pennsylvania State University Press, Uni-
versity Park, Pa, USA, 1968.
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