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Pregnancy is a state of immunotolerance, and pregnancy outcome is strongly linked to the correct activation and balancing of the
maternal immune system. Besides abortion as possible result of improper early pregnancy development, other pregnancy associated
conditions like preeclampsia (PE), intrauterine growth retardation (IUGR), preterm labour, or gestational diabetes mellitus (GDM)
are linked to immunologic overactivation and dysregulation. Both the innate and the adaptive immune system, and therefore
B and T lymphocytes, natural killer cells (NK), macrophages and dendritic cells (DCs) are all involved in trophoblast invasion,
pregnancy maintenance, and development of pregnancy disorders. Peroxisome proliferator activated receptors (PPARs) are nuclear
transcription factors with three known isotypes: PPAR«, PPAR3/8, and PPARy. They are expressed in most human organs and their
function extends from regulating metabolism, homeostasis, and carcinogenesis to immune response. In the recent years, PPARs
have been identified in most reproductive tissues and in all lines of immune cells. Only in few cases, the role of PPARs in reproductive
immunology has been elucidated though the role of PPARs in immune answer and immunotolerance is evident. Within this paper
we would like to give an update on today’s knowledge about PPARs and immune cells in reproduction and highlight interesting

interferences in regard of future therapeutic targets.

1. Introduction

Trophoblast invasion at the beginning of pregnancy devel-
opment is often described in the context of pregnancy com-
plications. The underlying pathophysiology includes elevated
macrophage populations hampering trophoblast invasion
and inducing trophoblast apoptosis [1, 2]. As another, even
bigger part of the innate immune response decidual natural
killer (dNK) cells have been identified in promoting tro-
phoblast invasion [3] and reduced numbers of ANK have been
reported associated with IUGR [4]. The components of the
adaptive immune system present at the fetomaternal interface
as the site of immunologic tolerance plays an important
role in balancing the maternal immune response to the
fetal allograft. For many years a simplified approach to this
complex process of immunotolerance was postulated. Thus
pregnancy was regarded as a phenomenon of T helper cells
subgroup 2 (Th2) going along with inhibition of T helper cells
subgroup 1 (Thl) and their cytotoxic effects [5]. However the
results of the last years have shown that cytokines associated

with Thl are closely linked to a positive pregnancy outcome
[6]. Besides this formerly used concept of Thl and Th2
immune response additional Thl7 cells and regulatory T
cells (T reg) have been described to show their importance
concerning pregnancy outcome. In PE T reg have been shown
to be reduced in number [7], whereas regular pregnancies go
along with increased numbers of T reg [8]. The importance of
the adaptive and innate immune system at the fetomaternal
interface, that is, the extra villous trophoblast (EVT), is
obvious not just in terms of late term pregnancy compli-
cations such as PE or IUGR but even more when talking
about miscarriages and maintaining early pregnancy. In this
context not only T cell regulation has been described but also
macrophage population and its dynamic polarization seem to
play a role concerning the success of early pregnancy [9].

As part of the nuclear hormone receptor (NHR) super-
family peroxisome proliferator activated receptors have been
discovered in the year 1990. They act as ligand activated
transcription factors binding to DNA as heterodimers with
retinoid X receptor (RXR) inducing transcription of various



genes [10]. Their function is triggered by the shape of the
ligand binding domain and by coactivator and corepressor
proteins. Among those are free fatty acids and eicosanoids
that are, mostly prostaglandins and leukotrienes [11]. Origi-
nally PPARs were mostly associated with metabolic aspects as
fatty acid transport or oxidation [12]. However, PPARs have
been identified to play an important role in carcinogenesis,
homeostasis, and immune system. Both the innate and
the adaptive immune system, are strongly influenced by
PPAR activation triggering macrophages and other leukocyte
populations such as lymphocytes and dendritic cells [13, 14].
Concerning placenta as the spot of feto-maternal immuno-
tolerance PPARs and their effect on macrophage population
and polarization as well as lymphocyte differentiation have
come to scientific interest and basic research on this aspect
of placental immunology has been done over the past years.
Within this paper we would like to show interesting findings
on the field of PPAR research in placental tissue and point
out recent findings of PPAR influence on macrophages and T
lymphocytes in general thus encouraging further research in
the field of PPAR and placental immune response.

2. Material and Methods

By searching PubMed 942 relevant studies up to November
2012 were identified. Only publications in English language
were selected. Following keywords were used individually
and in combination. PPAR, macrophages, T lymphocytes,
B lymphocytes, placenta, and reproduction. A systematic
literature review was conducted using the literature provided
and based on our findings and experience in PPAR function
in female reproduction. Relevant information on PPAR and
macrophages and lymphocytes in reproductive context were
gathered to offer an updated summary on this topic.

3. PPARs and Reproduction

By now three isotypes of PPAR, that is, PPAR«, PPPARp/S,
and PPARYy have been described [15]. All three are expressed
in human placenta and different functions have been
attributed to them. Interestingly concentration and function
of PPAR isotypes in placenta change throughout pregnancy
in humans and in animal models [16, 17]. For PPARy and
PPAR/S a role in trophoblast differentiation, trophoblast
invasion, and decidualization has been established [17, 18].
Also for PPAR« there is evidence for its supportive role in
placental development and creating an anti-inflammatory
placental environment by negatively effecting lipid peroxida-
tion and production of nitric oxide (NO) [19]. Concerning
PPARJ/$ its importance and positive effect on placentation
timing and uterine angiogenesis has been shown in the
mouse model [20]. PPARy is by now well established in
several aspects of placenta biology such as regulation of
trophoblast invasion and early development. It has been
shown to modulate the expression of proinflammatory genes
such as matrix metalloproteinases [21]. A supposedly detri-
mental role for PPARy has been described in the case of
human cytomegalovirus (HCMV) as the virus is causing an
activation of PPARy and therefore hampering invasion of
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the trophoblast [22]. Concluding the preliminary research
PPARy seemingly takes the most important role among the
three isotypes in placenta differentiation and immunology.

3.1. PPAR«x. PPAR« is highly expressed in various organs
such as liver and heart, where PPAR« regulates lipid
metabolism and anti-inflammatory pathways [23, 24]. So far
PPAR« has also been identified in placenta and different fetal
organs in postplacentation period [25]. In a rat model changes
of PPAR« concentration were shown to appear during the
course of pregnancy and its activation was linked to a neg-
ative regulation of lipid peroxidation and nitric oxide (NO)
production [26]. In mice adverse reproductive outcomes
in the context of disrupted carbon-1 metabolism could be
attributed to PPAR« effects, which lead to an imbalance in
the Thl: Th2 ratio through increased maternal and fetal inter-
feron y (IFNy) and decreased maternal interleukine 10 (IL-
10) [27]. Perturbations in PPAR« caused by a disruption of
carbon-1 metabolism showed also anti-inflammatory effects
of PPAR« by increasing the production of Th2 cytokines IL-
10 and IL-4 and by reducing the production of Thl specific
cytokines like IFNy and IL-2 in a mouse model [28].
Contrarily to former statements PPAR alpha seems to
have impact on pregnancy outcome by influencing T cell dif-
ferentiation and therefore T cell specific cytokine production.

3.2. PPARp/S. PPARJ/S, which is also referred to as PPARf
or PPARS, is encoded by one gene (nuclear receptor sub-
family 1, group C, member 2; NRIC2) and belongs to the
well-discussed family of PPARs and is highly expressed at the
human placenta [29]. Its role in pregnancy development and
maintaining pregnancy has been shown for both uterine and
embryonic PPARf3/8 by stating their pivotal roles in placental
angiogenesis and on time placentation [30]. PPARf/J null
mice showed reduced birth weight and placental defects
hereby underlining the importance of PPAR/6 for placental
function [31]. An in vitro model of trophoblast cells has
shown further implications of PPARf/S effects on enzyme
expression in trophoblast cells. 11-hydroxysteroid dehydroge-
nase type 2 (11-HSD2), which is responsible of protecting the
fetus from exposure to high levels of maternal glucocorticoid,
seems to be repressed by activation of PPARf/S, consecu-
tively causing TUGR. Leaving out in vivo coactivation effects
on 11-HSD2, which might influence its expression and func-
tion, it is attempting to speculate whether over-expression of
PPARJ/S is linked to placental pathologies via this pathway
[32]. Impact of PPAR/8 on inflammation processes has been
shown in central nervous system autoimmunity by reducing
inflammatory T cells. In both mouse and human immune
cells PPARB/S was found to reduce production of IFNy
and IL-12 family cytokines and expansion of CD 4+ cells
hereby reducing the inflammatory reaction [33]. Concerning
miscarriages PPARS/S expression has been shown to be
enhanced in miscarried placentas whereas leptin expression
appeared to be low [34]. Obviously PPAR/§ cannot attribute
a clear pro- nor an anti-inflammatory function at this point
of time; however its presence and importance in immune
response is indisputable.
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3.3. PPARy. PPARYy alike the other PPAR isotypes was at first
described in its role in metabolic control and homeostasis
gaining importance because of its highly efficient ligands,
which are currently made use of in diabetes therapy. Further
studies have shown its role in trophoblast function and
invasion and treatment with PPARy agonists led to fetal and
placental growth restriction in a PPARy dependent manner
[35, 36]. Contrarily rats treated with PPARy antagonists
demonstrated impaired placentation and placental differenti-
ation, thus implying differences in effect of PPARy activation
or blocking according to the stage of pregnancy development
[37]. In regard of IUGR and obesity PPARy expression was
found to be increased in human placenta; hereby this upreg-
ulation could be interpreted as adaptive response to the [UGR
placenta preventing insufficient nutrient supply [38, 39].
Alternatively PPARy expression could be seen as causative for
IUGR and placental failure as it was shown in different studies
based on PPARy specific activation [36, 40]. Mouse knockout
models reacted with fetal loss in early pregnancy due to the
missing PPARy expression and showed placental defects [31].
Further studies with continuous PPARy antagonist treatment
in uncomplicated rat pregnancies have provided evidence
for the pivotal role of PPARy in development of PE, as this
treatment led to an increase in soluble fms-like tyrosine
kinase 1, which is strongly linked to the pathogenesis of PE.
Therefore PPARy might offer a potential therapeutic target
for the treatment and prevention of PE [41].

Additionally research on human placentas has been able
to show the importance of PPARy in cytokine production as
IL-6, IL-8, and TNF« were reduced by PPARy ligands trogli-
tazone and 15d-PGJ2 [42].

In Macrophages stimulated with IL-4 PPARy is markedly
induced [43] and therefore further investigation was done
to elucidate the role of PPARy in alternative activation of
macrophages. In a mouse model setting of high caloric
uptake alternative activation of macrophages was not possible
without PPARy expression and therefore affected individuals
were more prone to obesity and insulin resistance [44].

4. PPAR Activation in Macrophages

Among the immune cells regulating early pregnancy develop-
ment and implantation T cells and NK cells have been essen-
tially described. At the site of trophoblast invasion decidual
macrophages are the second most predominant cell line.
Producing inflammatory cytokines and presenting antigen
they are known to regulate T-cell activation and therefore
apoptosis [45].

According to today’s research findings about macro-
phages two classical phenotypes are known—MI1 as inflam-
mation phenotype and M2 as promotor of immune modu-
lation. Considering pregnancy as state of balancing immune
tolerance at the fetomaternal interface M2 phenotype would
be expected in regular pregnancy development and Ml
would be linked to miscarriage or failure of implantation.
As macrophage plasticity has been demonstrated to be
dynamic in character this more or less simple model of
thought has lost its importance [46]. It seems obvious that
macrophages, which are increased in number in cases of

spontaneous miscarriage [15], can react to external stimuli
and conditions and therefore a more complex function
of macrophages in terms of reproductive immunology is
considered. Macrophages stimulated by IFNy differentiate
into the classically activated (M1) phenotype, thus implying
inflammation and activation of T-lymphocytes. On the other
hand IL-4 can induce macrophage differentiation into the
alternatively activated (M2) phenotype via expression of
PPARy and PPAR gamma activator [47]. By its transrepres-
sive action PPARy can also stop the nuclear factor kappa B
(NFxB) mediated production of pro-inflammatory mediators
[48]. Leishmania infection, for example, benefits from infil-
trating macrophages and from Leishmania parasites produc-
ing PPARy ligands that lead to inactivation of the destructive
inflammation response. Thus PPARy activation leads to M2
differentiation and consequently allows an immunomodu-
latory response and chronic stage in this parasitary disease
[49]. Further evidence for PPARy effects on macrophage
activation and differentiation comes from a transgenic mouse
model. Macrophage specific PPARy deletion led to diet
associated obesity, insulin resistance, and glucose intolerance
[44]. The effect of PPARy activation on macrophage differ-
entiation became even clearer in the field of atherosclerosis,
where monocytes developed into enhanced M2 phenotype
after PPARy activation. Additionally these M2 macrophages
implemented more pronounced anti-inflammatory compo-
nents of M1 macrophages. This interference with activated
M1 macrophages is transported via negative influence on pro-
inflammatory signaling pathways such as activating protein
1 (AP-1), signal transducer activator of transcription (STAT-
3) and NF«xB [50, 51]. Interestingly this effect of PPARy is
operating mainly in presence of adequate stimulation for
monocytes into M2 macrophages such as IL-4 and not in
already differentiated M1 phenotypes. This observation in the
field of atherosclerosis could be demonstrating limitations
to macrophage plasticity. Macrophage plasticity, which is
obviously strongly PPAR dependent, has also been shown in
pregnancy development and maintenance [52]. Macrophages
are highly active in phagocytosis of apoptotic cells in order
to reduce autoimmune response to self-antigens during
pregnancy. PPARS has been shown to be highly expressed in
such macrophages and can attribute a pivotal role in clearance
of apoptotic cells by macrophages. In case of PPARS deletion
in macrophages a decrease in opsonin expression like Clgb
and therefore impairment of phagocytosis is the result [53].

5. PPARs in Other Immune Cells

Various leukocyte populations express PPARy and therefore a
role in immune response of lymphocytes and dendritic cells is
suggested for this transcription factor [14]. PPAR« has been
described as suppressor of Thl immunity and promotor of
Th2 immunity [27, 28, 54]. As Thl and Th2 cytokines have
contrary effects on human pregnancy T cell differentiation
towards Thl has been identified as one of the major reasons
for abortion, IUGR and PE [55, 56]. Decreased levels of
maternal PPAR« have been brought into causative context
with an imbalance in Thl:Th2 ratio leading to increased
IFNy and reduced maternal IL-10 and therefore implicating



miscarriage and abortion [27]. PPAR/§ has been proved to
be an important negative regulator in central nervous system
autoimmune inflammation. Besides of the inhibition of IFN-
y and IL-12 family cytokines PPARS/8 has been attributed an
important role in downregulation CD 4+ T cell population
[57].

15-Deoxy-A-Prostaglandin J2 (15d-PGJ2), which is an
endogenous prostaglandin and acts as ligand for chemoat-
tractant receptor-homologous molecule expressed on Th2
cells (CRTH2), has been shown to suppress the expression of
NF«B, which leads to a decrease in Thl cell cytokines IFNy
and TNF«. Activation via PPARy and therefore therapeutic
approach via PPAR agonists has been ruled out explicitly for
this regulatory mechanism in amnion and myometrial cells
[58]. Whether 15dPGJ2, which is also a ligand for PPARYy, is
furthermore capable of promoting an anti-inflammatory shift
in cytokine production via PPARy is still to be elucidated.

An important part of the adaptive immune system is
taken over by B lymphocytes, which differentiate into immu-
noglobulin-producing plasma cells therefore setting up the
basis for humoral immune response [59]. B lymphocytes
that have been described quantitatively changed in cases of
recurrent abortion, for example, caused by antiphospholipid
syndrome [60]. Concerning the role of B lymphocytes on
PE pathophysiology extensive research has identified them as
pro-inflammatory agents by mass producing of immunoglob-
ulin and therefore promoting hypertensive reaction via
angiotensin II type I receptor (AT1-AA) [61]. Depletion of B
cells in this context led to lower blood pressure response to
placental ischemia and lower levels of TNF« [62]. Expression
of PPARy has been described for normal and malignant B
cells and additionally certain types of PPAR ligands were
identified to inhibit B cell proliferation [63]. Activated B cells
upregulate their expression of PPARy and beyond this PPAR
ligands such as 15d-PGJ2 (endogenous) and rosiglitazone
(synthetic) proofed to stimulate B cell proliferation and
differentiation. Furthermore PPARy ligands enhanced the
expression of cyclooxygenase 2 (Cox-2) and the plasma cell
transcription factor BLIMP-1. Antagonists, however, showed
the reverse effect on B cell population [64].

NK cells are the most abundant immune cell population
at the site of implantation and have been long recognized
as important regulators in early pregnancy maintenance
partially in cooperation with dendritic cells (DCs) [65].
Underlining this statement DCs have been reported to elevate
induction of regulatory T reg due to crosstalk with uterine
NK cells and uterine DC to enhance proliferation of NK
cells producing IL-10 [66, 67]. Obviously both cell types
contribute to regular implantation as depletion mice models
for each cell type have shown [68]. Production of IFNy
and cytolytic activity are two major functions of NK cells;
both functions being essential for innate immunity [69].
PPARy ligands were reported to influence both functions via
PPARy and without this pathway. The natural PPARy ligand
15d-PGJ2 and the synthetic ligand ciglitazone both reduce
the production of IFNy via PPARy expression. However
cytotoxic activity of NK cell seems not affected by PPARy
expression. Interestingly IFNy levels were decreased by 15d-
PGJ2 even without influencing PPARy expression, suggesting
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that this effect takes place at a posttranscriptional level
[70].

DCs are extensively described as antigen presenting
cells triggering the T cell immune response and T cell
differentiation also in reproductive organs. Their importance
in decidualization and vascularization has been shown in
depletion models of mice [68]. PPARy has been found to
prevent IL-12 production, which is indispensable for Thl
differentiation and therefore PPARy might shift naive T cells
to Th2 via its effect on DC [71, 72].

6. Summary

Placental architecture and function play a crucial role in fetal
development and pregnancy maintenance. Correct placental
differentiation and trophoblast invasion are highly important
preconditions for fetal growth and appear to be altered in
several pregnancy complications. PE, IUGR, and GDM are
strongly linked to placenta changes [73, 74]. Each of these
pregnancy related disorders shares similar risk factors and
comes along with an elevated risk for developing the other
[75, 76]. Risk factors include obesity, hypertension, previous
episodes of GDM, PE or IUGR and a family history of
such disorders [77, 78]. Common risk factors allow to draw
conclusions on common aspects of pathophysiology high-
lighting improper placentation, processes of inflammation
and elevated levels of cytokines and oxidative stress [79-81].

Mostly PPARB/S and PPARy have been identified in
macrophages influencing differentiation and cytokine pro-
duction to an anti-inflammatory profile. Considering the well
described dynamic plasticity of macrophages especially in
terms of pregnancy related tolerance PPAR ligands could
evolve to an interesting therapeutic agent by promoting the
M2 phenotype and therefore improving pregnancy devel-
opment and reducing glucose intolerance. In analogy to
the formerly proposed model of M1 versus M2 distribution
of macrophage population the paradigm of pregnancy as
Th2 phenomenon has been left. However, the Thl: Th2 ratio
still plays an important role in pregnancy as T cell specific
cytokine production is essential for immunotolerance at
the fetomaternal interface. PPARf/S and PPARy have been
described as promotor of the anti-inflammatory Th2 differ-
entiation [54, 57]. Besides endogenous PPARy ligands (15d-
PGJ2) other synthetic ligands have been shown to promote
an anti-inflammatory cytokine profile in Thl and Th2 cells;
however it remains unclear if all these effects are induced
via PPAR activation [58]. The potential effect of PPAR
ligands on T cell differentiation would still be a promising
approach to the treatment of inflammatory activation in
pregnancy. B lymphocytes considering pregnancy disorders
mostly associated with PE have been shown to get activated
by PPAR agonists and a reverse effect was described for PPAR
antagonists [64]. In a similar way NK cells can be influenced
by endogenous and synthetic PPAR ligands. However this
influence seems to be limited to their cytokine production
[70].

Looking at therapeutic strategies in order to prevent loss
of pregnancy or miscarriage changing Thl immune response
[82] via PPAR activation could be a reasonable solution. Use
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of PPARy agonists could be useful in preventing preterm
labour by reducing inflammatory response within the fetal
membranes [83]. Also lifestyle and nutrition changes could
become recommendable according to PPARy actions as
linoleic acid as component of vegetables, fruits, grains, seeds,
and others is easily converted to a ligand of PPARy by the gut
flora in combination with probiotics [84].

Summing up PPARs evidently play an important role in
immune cell differentiation and interaction of the innate and
adaptive immune system. They offer various opportunities
for therapeutic approach assuming that further research is
done in order to elucidate their range of effects on immune
response reaching from pro- to anti-inflammatory. So far
immune cells in reproduction have been focused intensively
concerning early and late pregnancy; however, knowledge
about PPAR activation effects on immune cells concerning
especially pregnancy issues is limited. As PPAR activation
of immune cells and the importance of immune cells in
pregnancy are both well described further research in this
field is very promising in terms of understanding placental
immunology and finding therapeutic targets.
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