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Studies have suggested that there is a strong correlation between the masses of nuclear star clusters (NSCs) and their host galaxies,
a correlation which is said to be an extension of the well-known correlations between supermassive black holes (SMBHs) and
their host galaxies. But careful analysis of disk galaxies—including 2D bulge/disk/bar decompositions—shows that while SMBHs
correlate with the stellar mass of the bulge component of galaxies, the masses of NSCs correlate much better with the total galaxy
stellar mass. In addition, the mass ratio MNSC/M�, tot for NSCs in spirals (at least those with Hubble types Sc and later) is typically
an order of magnitude smaller than the mass ratio MBH/M�, bul of SMBHs. The absence of a universal “central massive object”
correlation argues against common formation and growth mechanisms for both SMBHs and NSCs.We also discuss evidence for a
break in the NSC-host galaxy correlation, galaxies with Hubble types earlier than Sbc appear to host systematically more massive
NSCs than do types Sc and later.

1. Introduction

As far as we can tell, all massive galaxies in the local universe
harbor supermassive black holes (SMBHs, with masses
MBH ∼ 106–109M�). The masses of these SMBHs correlate
strongly with several global properties of the host galaxies,
particularly with the central velocity dispersion σ0 [1, 2]
and with the bulge luminosity or mass (e.g., [3, 4]). These
correlations imply that the processes which drive galaxy
growth and the processes which drive black hole growth are
intimately linked—perhaps even the same processes.

It is now also clear that many galaxies, particularly later-
type spirals, host luminous nuclear star clusters (NSCs; e.g.,
[5, 6]), with masses in the range 105–108M�; see the review
by Böker [7] for more details. Recently, several authors have
argued that NSCs and central SMBHs have the same host-
galaxy correlations, in particular, that SMBHs and NSCs have
the same correlation with bulge luminosity and mass [8–11]
(but see Balcells et al. [12]). The suggestion, then, is that

NSCs and SMBHs are in a sense members of the same family
of “Central Massive Objects” (CMOs), and thus that they
may have grown via the same mechanisms (e.g., [13–16]).

We argue, however, that one should be cautious about
assuming that NSCs and SMBHs are really part of the same
family, with the same host-galaxy relationships. To begin
with, the samples of Wehner and Harris [8] and Ferrarese
et al. [9], which were used to make the CMO argument,
were almost entirely early-type galaxies—mostly ellipticals
and dwarf ellipticals. These are galaxies which are, in essence,
“pure bulge” systems, so one could just as easily argue for a
correlation with total galaxy mass. But we know that SMBHs
in disk galaxies correlate better with just the bulge, and not
with the total galaxy mass or light (e.g., [17, 18]). Given
that there have been previous claims that NSCs in spiral
galaxies correlate with the total galaxy light (e.g., [19]), we
are prompted ask the question: do nuclear clusters in disk
galaxies correlate with the bulge (like SMBHs), or with the
whole galaxy?
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2. Samples, Methodology, and Data Sources

Although current studies suggest that the MBH-σ0 relation
is tighter and has less intrinsic scatter than the MBH-M�,bul

relation (e.g., [20]), velocity dispersion is not the ideal host-
galaxy measure to use here, for three reasons. First, most of
the best-determined NSC masses are based directly on the
measured velocity dispersion of the NSC (e.g., [21]), which
is often indistinguishable from that of the surrounding bulge;
this means a (spurious) correlation between NSC mass, and
central velocity dispersion is only to be expected. Second,
some NSCs are found in galaxies with no detectable bulge
at all (see discussion in Section 3). Finally, it is difficult
to see how one should discriminate between a velocity
dispersion due to the bulge versus one due to the whole
galaxy. But discriminating between bulge and whole-galaxy
luminosities and masses is much simpler. So we choose
instead to compare NSCs and their host galaxies with the
MBH-M�,bul relation, which means comparing NSC masses
with the stellar masses of host galaxies and their bulges.

For NSCs, we emphasize galaxies where the NSC masses
have been dynamically measured, since this is the most
direct analog to well-determined SMBH masses (i.e., those
with direct dynamical mass measurements from stellar, gas,
or maser kinematics, where the SMBH sphere of influence
is resolved). In addition, dynamical measurements avoid
possible problems with multiple stellar populations; the
latter can potentially bias stellar masses estimated from
broadband colors. Spectroscopic studies [11, 22] have shown
that NSCs often contain multiple stellar populations; this
renders mass estimates based on single stellar population
(SSP) models (e.g., those used by [9]) somewhat uncertain.
The NSCs we focus on are taken primarily from the sample
of Walcher et al. [21], with additional data from Ho and
Filippenko [23], Böker et al. [24], Kormendy and Bender
[25], Matthews et al. [26] and Gebhardt et al. [27], Barth
et al. [28], Seth et al. [29], and Kormendy et al. [30]; we
use the estimate of Launhardt et al. [31] for the Milky Way’s
NSC. This gives us a total of 18 galaxies with dynamically
determined NSC masses. These cover Hubble types S0–Sm,
but the sample is in fact heavily biased towards later types;
over three-quarters are Hubble types Second or later. As an
additional, secondary sample, we include 15 galaxies from
Rossa et al. [11], where the masses are estimated by fits of
multiple SSP models to high-resolution spectroscopy. Most
of these galaxies are Sc and later, but a few earlier-type spirals
(Sa–Sb) are also included.

Total stellar masses are based on K-band total magni-
tudes from 2MASS [32] or from Malhotra et al. [33] for M31
and M33 (which are too large for accurate sky subtraction
of 2MASS images), combined with color-based mass-to-light
(M/L) ratios from Bell et al. [34]. For the latter, we use
optical colors from the literature (primarily from HyperLeda
(http://leda.univ-lyon1.fr/)) or from direct measurements
on Sloan Digital Sky Survey (SDSS, [35]) images. The
bulge masses are derived using bulge-to-total (B/T) values
determined individually for each galaxy by 2D image decom-
position, using the BUDDA software package [36, 37], which
incorporates bulge and disk components and optional bars

and central point sources (the latter can be used for both
nuclear star clusters and AGN). Note that we explicitly define
“bulge” to be the “photometric bulge”, that is, the excess
light (and stellar mass) which is not part of the disk, bar,
or nuclear star cluster. We defer questions of how SMBH
(or nuclear cluster) mass relates to so-called “pseudobulges”
versus “classical bulges” (e.g., [38, 39]) to a later analysis.

Full 2D decompositions, as described above, were used
for all S0 and spiral SMBH host galaxies. For the NSC host
galaxies, we follow the same approach, with one simplifi-
cation. Since we have found that B/T ratios for unbarred
galaxies do not change dramatically if we use 1D surface-
brightness profile decompositions instead of 2D image
decompositions, we use the former for genuinely unbarred
galaxies; we are careful to exclude (or separately model) the
NSC contribution to the surface-brightness profile in these
cases. Galaxies which do possess bars are subjected to full 2D
decompositions; see the following section for details.

2.1. Bulge-Disk Decompositions. As noted previously, we use
2D image decompositions via the BUDDA software package
to determine the B/T ratios, and thus the bulge stellar
masses, for SMBH host galaxies and for barred NSC host
galaxies. For the NSC galaxies, we use HST data wherever
possible, to enable the NSC itself to be properly modeled as a
separate source. However, we have found that when the NSC
is sufficiently luminous, and when the bulge is sufficiently
low-contrast, we can achieve reasonable decompositions
with ground-based images; these are sometimes preferable if
they are near-IR (to minimize the effects of dust extinction
and recent star formation) and/or large enough to include
the entire galaxy (to allow better recovery of the disk
component).

We have completed decompositions for the galaxies with
dynamically determined NSC masses (we use the published
2D decomposition of [28] for NGC 3621); in the special
case of the Milky Way, we assume a bulge mass of ∼ 1.0 ×
1010M� and a total stellar mass of 5.5 × 1010M�, based on
arguments in Dehnen and Binney [40], Klypin et al. [41],
and Flynn et al. [42]. Decompositions for the spectroscopic
sample are still in progress but are mostly complete; since our
primary analysis (e.g., computing the MNSC-M�,bul relation)
is based on the dynamical masses, the incompleteness of the
spectroscopic sample does not affect our results.

Full details of the individual decompositions will be
published elsewhere (Erwin and Gadotti 2012a, in prep.). An
example of one of the 2D decompositions is given in Figure 1
for the galaxy NGC 7418, where we fit an H-band image
from the Ohio State University Bright Spiral Galaxy Survey
[43, OSU BSGS] using an exponential disk (95.6% of the
light), a Sérsic bulge (1.6% of the light), a bar (2.4% of the
light), and a point source for the NSC (0.5% of the light).
(In this particular galaxy, the disk appears to be truncated,
but this has little effect on the decomposition; including
a broken-exponential profile for the disk changes the B/T
ratio from 0.016 to 0.017.) This illustrates the importance
of including a separate bar component in the decomposition
when the galaxy is barred; the bar has almost twice the
luminosity of the bulge, and, without it, the bulge luminosity
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Figure 1: An example of one of our 2D decompositions of NSC host galaxies—in this instance, the decomposition of the OSU BSGS H-band
image of NGC 7418, using an exponential disk, a Sérsic bulge (n = 1.5), a bar, and a point source for the NSC. (a): original H-band image,
with masking of bright stars (logarithmic brightness scaling). (b): residual image after subtracting best-fitting model image. (c): major-axis
profile (black) along with the components of the model and their sum (purple). (d): same, but plotted with logarithmic major-axis scaling.

(and stellar mass) would certainly be overestimated. In fact,
a 1D decomposition for this galaxy gives a B/T value almost
twice as large (0.030); similar results were found for four
other barred galaxies in the sample, with mean B/T values
a factor of 2.1 times larger when the bar was omitted; see also
[37].

3. Comparing Black Holes and
Nuclear Star Clusters

Although black-hole–bulge correlations are sometimes de-
scribed as correlations between the black hole mass and the
host galaxy mass (or luminosity as a proxy for mass), this
is really only true for elliptical galaxies, where the entire
galaxy is the “bulge.” Kormendy and Gebhardt [17] explicitly
compared B-band total and bulge luminosities for SMBH

hosts and showed that the latter provided a much better
correlation. Most recently, Kormendy et al. [18] have show
for a larger, updated sample that SMBH masses in disk
galaxies correlated much better with (classical) bulge K-band
luminosity than with the luminosity of the disk component;
this naturally suggests that total-galaxy luminosity is unlikely
to correlate well with SMBH mass when the galaxy is disk
dominated.

In Figure 2, we compare SMBH masses with total galaxy
stellar mass (Figure 2(a)) and with bulge stellar mass
(Figure 2(b)), based on our careful bulge/disk/bar decom-
positions (see Table 1). Error bars include the effects of
uncertainties in the distance and in the M/L and B/T ratios.
As expected, the correlation between SMBH mass and bulge
mass is much stronger than any correlation with total galaxy
mass; the Spearman correlation coefficients are rS = 0.71
for the MBH-M�,bul relation versus 0.29 for the MBH-M�,tot
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Figure 2: (a): SMBH mass (red: elliptical galaxies, blue: disk galaxies) versus total galaxy stellar mass. (b): SMBH mass versus bulge stellar
mass. (Data and sources in Table 1). The diagonal dashed lines are the best fits to the MBH-M�,bul relation for the whole sample (black), for
the elliptical galaxies (red), and for bulges of the disk galaxies (blue). Open symbols are galaxies without precise distances, which are not
used in the fits. It is clear that the SMBH masses of S0 and spiral galaxies (blue) correlate better with the bulge stellar mass than with total
galaxy mass.

relation, with the latter correlation not being statistically
significant.

We also plot linear fits of logMBH as a function of
logM�,bul; these fits are made using galaxies with well-
determined distances (filled points) to minimize distance-
based uncertainties, using the Bayesian-based approach of
D’Agostini [44], which explicitly incorporates errors in both
variables and intrinsic scatter in the black hole mass (see also
[45, 46]). By “well-determined distances,” we mean those
determined using direct methods such as surface-brightness
fluctuations and Cepheid stars, or redshift-based distances,
where z > 0.01 (to avoid large relative uncertainties due
to peculiar motions.) The best-fitting relation for the whole
sample (black line; the fit to just the elliptical galaxies, shown
by the red line, is almost identical) is

logMBH = 8.46± 0.08

+ (1.04± 0.12) log
(
M�,bul/1011M�

)
,

(1)

with intrinsic scatter in SMBH mass of 0.39 ± 0.05 dex; the
best-fitting relation for the bulges of disk galaxies only (blue
line) is

logMBH = 8.68± 0.20

+ (1.27± 0.26) log
(
M�,bul/1011M�

)
,

(2)

with intrinsic scatter = 0.41± 0.07. (The errors are based on
bootstrap resampling.)

We apply exactly the same methodology to NSC-host
galaxies in Figure 3, plotting NSC mass versus total galaxy
stellar mass in the left panel and versus bulge stellar mass
in the right panel. Since several of the NSC host galaxies
are genuinely bulgeless systems (without even a distinct

“pseudobulge”), we plot their bulge masses as upper limits
(B/T < 0.001M�,tot). As the figure shows, NSC mass clearly
correlates better with total stellar mass than it does with bulge
mass. (The respective correlation coefficients are rS = 0.76
versus 0.38; the bulge-mass correlation is not statistically
significant.) Fitting NSC mass versus total stellar mass, using
the same methodology as for the SMBH fits, gives the
following relation:

logMNSC = 7.65± 0.23

+ (0.90± 0.21) log
(
M�,tot/1011M�

)
,

(3)

with intrinsic scatter = 0.43 ± 0.10 dex. Note that the
slope is formally indistinguishable from unity; that is, the
MNSC/M�,tot ratio does not appear to depend on M�,tot itself.

It is important to note that the difference in correla-
tion coefficients actually underestimates the true difference
between the two relations, because the MNSC-M�,bul cor-
relation was computed assuming that bulgeless spirals still
have nominal bulges (using B/T = 0.001). In the combined
sample of dynamical and spectroscopic NSC masses, we
can identify at least three galaxies which have no detectable
bulge. In two of these (NGC 1493 and NGC 2139), our 2D
decomposition assigned stellar light to a bar in addition to
a pure exponential disk; in 1D decompositions (or simple
bulge + disk 2D decompositions), light from the bar might be
(wrongly, we would argue) interpreted as “bulge” light. For
the other galaxy (NGC 300), however, there is no ambiguity;
this is an unbarred spiral galaxy with a surface brightness
profile consisting of only an exponential disk and the NSC
(see, e.g., Figure 8 of [47]).

The existence of nuclear star clusters in genuinely
bulgeless spirals is simply an additional, direct confirmation
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Table 1: Galaxies with well-determined SMBH masses.

Name T D MBH(+,−)
Source

Total M� (err) Bulge M� (err)

(Mpc) (log10 M�) (log10 M�) (log10 M�)

Milky way 4 0.01 6.63 (+0.03,−0.04) 1 10.74 (0.09) 10.00 (0.13)

M31 3 0.77 8.15 (+0.22,−0.10) 2 10.92 (0.06) 10.27 (0.21)

M32 −5 0.79 6.45 (+0.08,−0.10) 3 9.00 (0.06) 9.00 (0.06)

NGC524 −1 23.3 8.92 (+0.04,−0.02) 4 11.14 (0.09) 10.42 (0.12)

NGC821 −5 23.4 7.92 (+0.15,−0.23) 5 10.84 (0.08) 10.84 (0.08)

NGC1023 −1 11.1 7.62 (+0.04,−0.04) 6 10.85 (0.08) 10.42 (0.09)

NGC1068 3 14.3 6.90 (+0.14,−0.21) 7 11.22 (0.49) 10.71 (0.50)

NGC1300 4 18.9 7.82 (+0.29,−0.29) 8 10.74 (0.37) 9.86 (0.37)

NGC1316 −5 21.3 8.23 (+0.10,−0.13) 9 11.66 (0.06) 11.66 (0.06)

NGC1399 −5 21.1 9.11 (+0.15,−0.29) 10 11.38 (0.06) 11.38 (0.06)

NGC2549 −2 12.3 7.15 (+0.02,−0.16) 4 10.21 (0.12) 9.88 (0.13)

NGC2748 4 23.1 7.64 (+0.25,−0.74) 8 10.43 (0.30) 9.80 (0.31)

NGC2787 −1 7.28 7.59 (+0.04,−0.06) 11 10.08 (0.15) 9.70 (0.22)

NGC3031 1 3.63 7.85 (+0.11,−0.07) 12 10.83 (0.06) 10.51 (0.07)

NGC3227 1 22.9 7.30 (+0.13,−0.35) 13 10.89 (0.11) 9.72 (0.13)

NGC3245 −1 20.3 8.30 (+0.10,−0.12) 14 10.72 (0.09) 10.38 (0.12)

NGC3368 2 10.5 6.88 (+0.09,−0.12) 15 10.75 (0.09) 9.91 (0.11)

NGC3377 −5 10.9 7.99 (+0.28,−0.05) 5 10.34 (0.06) 10.34 (0.06)

NGC3379 −5 10.3 8.00 (+0.20,−0.31) 5 10.77 (0.07) 10.77 (0.07)

NGC3384 −1 11.3 7.20 (+0.03,−0.05) 5 10.65 (0.08) 10.19 (0.10)

NGC3393 1 48.3 7.48 (+0.03,−0.03) 16 10.99 (0.15) 10.38 (0.16)

NGC3489 −1 11.7 6.76 (+0.04,−0.04) 15 10.43 (0.08) 10.08 (0.13)

NGC3585 −3 19.5 8.49 (+0.16,−0.09) 17 11.15 (0.09) 10.84 (0.19)

NGC3607 −5 22.2 8.11 (+0.13,−0.19) 17 11.15 (0.08) 11.15 (0.08)

NGC3608 −5 22.3 8.28 (+0.02,−0.16) 5 10.71 (0.08) 10.71 (0.08)

NGC3998 −2 13.7 8.34 (+0.27,−0.56) 18 10.58 (0.09) 10.22 (0.12)

NGC4026 −3 13.2 8.26 (+0.12,−0.09) 17 10.45 (0.12) 10.10 (0.13)

NGC4151 2 14.5 7.52 (+0.10,−0.56) 19 10.59 (0.13) 10.10 (0.15)

NGC4258 4 7.18 7.59 (+0.04,−0.04) 20 10.73 (0.08) 9.77 (0.26)

NGC4261 −5 30.8 8.70 (+0.08,−0.10) 21 11.33 (0.09) 11.33 (0.09)

NGC4291 −5 25.5 8.48 (+0.10,−0.57) 5 10.70 (0.14) 10.70 (0.14)

NGC4342 −1 16.7 8.52 (+0.20,−0.18) 22 10.09 (0.07) 9.80 (0.08)

NGC4374 −5 18.5 8.97 (+0.04,−0.04) 23 11.30 (0.06) 11.30 (0.06)

NGC4473 −5 15.3 8.04 (+0.13,−0.56) 5 10.76 (0.06) 10.76 (0.06)

NGC4486 −5 16.7 9.56 (+0.11,−0.14) 24 11.37 (0.06) 11.37 (0.06)

NGC4486A −5 18.4 7.16 (+0.13,−0.25) 25 10.06 (0.06) 10.06 (0.06)

NGC4564 −3 15.9 7.77 (+0.02,−0.07) 5 10.48 (0.06) 10.24 (0.07)

NGC4649 −5 16.4 9.30 (+0.08,−0.15) 26 11.39 (0.06) 11.39 (0.06)

NGC4697 −5 12.5 8.26 (+0.05,−0.09) 5 10.90 (0.06) 10.90 (0.06)

NGC5077 −5 37.5 8.83 (+0.21,−0.23) 27 11.12 (0.19) 11.12 (0.19)

NGC5128 −5 3.42 7.64 (+0.06,−0.03) 28 10.75 (0.07) 10.75 (0.07)

NGC5252 −2 92.9 8.98 (+0.40,−0.27) 29 11.31 (0.09) 10.97 (0.11)

NGC5576 −5 24.8 8.20 (+0.09,−0.08) 17 10.90 (0.08) 10.90 (0.08)

NGC5845 −5 25.2 8.36 (+0.07,−0.41) 5 10.42 (0.15) 10.42 (0.15)

NGC6251 −5 95.9 8.73 (+0.12,−0.18) 30 11.80 (0.09) 11.80 (0.09)

NGC7052 −5 67.9 8.58 (+0.23,−0.22) 31 11.49 (0.12) 11.49 (0.12)

NGC7457 −1 12.9 6.53 (+0.12,−0.23) 5 10.19 (0.10) 9.32 (0.13)

IC1459 −5 28.4 9.38 (+0.05,−0.04) 32 11.44 (0.12) 11.44 (0.12)

IC4296 −5 53.2 9.15 (+0.06,−0.07) 33 11.70 (0.08) 11.70 (0.08)

A1836-BCG −5 155.6 9.55 (+0.05,−0.06) 33 11.65 (0.07) 11.65 (0.07)

(1) Galaxy name. (2) Hubble type T from RC3. (3) Adopted distance in Mpc. (4) Logarithm of SMBH mass and uncertainties; masses have been rescaled
using the distances column 2, if necessary. Uncertainties are 1-σ values. (5) Source of SMBH measurement. (6) Logarithm of total galaxy stellar mass and
uncertainty (see text for details). (7) Logarithm of bulge stellar mass and uncertainty, based on 2D decompositions in Erwin and Gadotti (2012b, in prep).
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Figure 3: As for Figure 2, but now plotting NSC mass versus total stellar mass (a) and bulge stellar mass (b) (Data and sources in Table 2).
Green circles are galaxies with dynamical mass estimates for their NSCs; black diamonds are the spectroscopically estimated masses of Rossa
et al. [11] (bulge mass estimates are not complete for these galaxies). Filled symbols indicate galaxies with direct distance measurements
(e.g., from Cepheid stars). Arrows show nominal upper limits for three bulgeless spirals (assuming that B/T ≤ 0.001). The diagonal black
line is a fit of NSC mass to total stellar mass for the dynamical-mass sample (green circles); for comparison, the diagonal dashed red and blue
lines are the MBH-M�,bul fits for ellipticals (red) and disk galaxies (blue) from Figure 2. The situation is now the reverse of that for SMBHs:
NSC masses clearly correlate better with total galaxy mass than they do with bulge mass.

of our basic conclusion: nuclear star cluster masses scale with
the total stellar mass of their host galaxies, not with the bulge
mass. This means that NSCs and SMBHs do not follow a
common host-galaxy correlation.

We have also investigated whether other galaxy parame-
ters might correlate with NSC mass, or even with residuals
from the MNSC-M�,tot relation. In particular, we have
compared NSC mass with rotation velocity and with total
baryonic mass (stellar mass plus atomic gas from Hi measure-
ments). In both cases, correlations exist, but they are not as
strong as the correlation with total stellar mass. No particular
correlations with residuals of the MNSC-M�,tot relation are
seen.

4. Trends with Hubble Type

Closer inspection of the left-hand panel of Figure 3 suggests
that the spectroscopic masses (black diamonds) tend to
be offset from the NSC-M�,tot relation, in the sense that
they have larger NSC masses for the same total stellar
mass. This could, in principle, be evidence of a systematic
overestimation of NSC masses in the spectroscopic sample,
but of the four galaxies in common between Walcher et al.
[21] and Rossa et al. [11] only one has a (slightly) higher
spectroscopic mass, while the other three have spectroscopic
masses slightly lower than the dynamical masses. There is,
however, another difference to consider; the spectroscopic
sample tends to have earlier Hubble types.

This brings us to something which Seth et al. [48] pointed
out several years ago, using a larger dataset of NSCs and
host galaxies, with NSC masses based (mostly) on colors
or assumed M/L ratios. They noted that NSCs in late-type
spirals tended to have lower relative masses (MNSC/M�, tot)

than early-type spirals and ellipticals. (Rossa et al. [11]
pointed out a similar trend in absolute NSC mass for their
smaller sample of NSCs in early- and late-type spirals.)
Figure 4 makes this explicit by plotting MNSC/M�,tot versus
Hubble type for the galaxies in Seth et al.’s compilation, plus
seven galaxies from our updated dynamical-mass sample
which were not in their sample. We have also added galaxy
stellar-mass estimates for 16 galaxies that did not have masses
in Seth et al., using total K-band magnitudes from 2MASS
and either B–V colors from HyperLeda or measured g–r
colors from SDSS images to derive the K-band M/L via Bell
et al. [34].

What is curious about Figure 4 is not just that the MNSC/
M�,tot ratio depends on Hubble type, but that it actually
appears to do so in a bimodal fashion; Hubble types Sb and
earlier have relatively large NSC masses, while Sc and later-
type galaxies have significantly smaller relative NSC masses.
Plotted on top of the figure are simple fits of a function
where the MNSC/M�,tot ratio can take two constant values,
one for Hubble types T < T1 and the other for T > T2,
with a simple linear transition between T1 and T2. Fits to
just the dynamical + spectroscopic masses (red dashed line)
and to the entire sample (gray dashed line) are similar,
indicating that Sb and earlier Hubble types form one class,
with 〈MNSC/M�,tot〉 ∼ 0.002, and Sc and later types form
a different group, with 〈MNSC/M�,tot〉 almost an order of
magnitude smaller (∼0.0003). The corresponding best-fit
values of (T1, T2) are (3.51, 4.05) for the dynamical +
spectroscopic masses and (3.10, 5.01) for the complete
sample. As a crude check on whether this split is statistically
significant, we performed Kolmogorov-Smirnov tests on the
values of MNSC/M�,tot for galaxies with T ≤ 3 and galaxies
with T ≥ 5. The K-S test gives a probability PKS = 0.0038
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Table 2: Galaxies with well-determined NSC masses.

Name T
D MNSC (err)

Type Source
Total M�(err) Bulge M�(err)

(Mpc) (log10 M�) (log10 M�) (log10 M�)

Milky way 4 0.01 7.48 (0.09) D 1 10.74 (0.09) 10.00 (0.13)

M31 3 0.77 7.54 (0.06) D 2 10.92 (0.06) 10.27 (0.11)

M33 6 0.81 6.24 (0.08) D 3 9.74 (0.08) 8.44 (0.12)

IC342 6 3.37 7.05 (0.07) D 4 10.23 (0.07) 8.82 (0.23)

NGC300 7 2.02 5.98 (0.06) D 5 9.26 (0.06) < 6.26

NGC404 −3 3.18 7.04 (0.06) D 6 9.24 (0.06) 9.06 (0.11)

NGC428 9 15.5 6.51 (0.18) D 5 9.81 (0.18) 7.76 (0.29)

NGC1042 6 17.5 6.51 (0.18) D 5 10.14 (0.18) 7.98 (0.21)

NGC1493 6 11.0 6.38 (0.19) D 5 9.75 (0.19) < 6.75

NGC1705 −3 5.11 4.91 (0.12) D 7 8.38 (0.12) 7.87 (0.15)

NGC2139 6 22.9 5.92 (0.18) D 5 10.15 (0.18) < 7.15

NGC3423 6 14.4 6.53 (0.19) D 5 10.08 (0.19) 8.91 (0.21)

NGC3621 7 6.64 7.00 (0.08) D 8 10.20 (0.08) 8.25 (0.14)

NGC5457 6 7.05 6.91 (0.09) D 9 10.68 (0.09) 8.76 (0.24)

NGC6946 6 5.89 7.88 (0.10) D 9 10.62 (0.10) 9.36 (0.13)

NGC7418 6 17.8 7.78 (0.18) D 5 10.29 (0.18) 8.50 (0.19)

NGC7424 6 10.5 6.09 (0.18) D 5 9.53 (0.18) 8.29 (0.19)

NGC7793 7 3.91 6.96 (0.11) D 5 9.65 (0.11) 8.01 (0.14)

NGC1325 4 19.6 7.08 (0.18) S 10 10.34 (0.18) 7.91 (0.20)

NGC1385 6 18.1 6.39 (0.18) S 10 10.28 (0.18) 8.69 (0.20)

NGC2552 9 9.68 5.77 (0.18) S 10 9.00 (0.18) 6.30 (0.28)

NGC3177 3 19.6 8.15 (0.18) S 10 10.10 (0.18) 8.71 (0.20)

NGC3277 2 21.4 8.34 (0.18) S 10 10.32 (0.18) . . .

NGC3455 3 16.4 6.75 (0.18) S 10 9.46 (0.18) . . .

NGC4030 4 20.5 7.99 (0.18) S 10 10.92 (0.18) 10.28 (0.20)

NGC4411B 6 18.6 6.53 (0.19) S 10 9.46 (0.19) . . .

NGC4701 6 10.8 6.53 (0.18) S 10 9.34 (0.18) . . .

NGC4775 7 21.9 7.60 (0.19) S 10 10.19 (0.19) 8.76 (0.20)

NGC5377 1 28.4 8.63 (0.18) S 10 10.80 (0.18) . . .

NGC5585 7 8.71 5.87 (0.19) S 10 9.26 (0.19) 8.58 (0.21)

NGC5806 3 20.0 8.11 (0.18) S 10 10.43 (0.18) . . .

NGC7421 4 23.1 6.87 (0.18) S 10 10.24 (0.18) . . .

NGC7690 3 17.7 7.98 (0.18) S 10 9.90 (0.18) 9.28 (0.20)

(1) Galaxy name. (2) Hubble type T from RC3. (3) Adopted distance in Mpc. (4) Logarithm of NSC mass and uncertainty; masses have been rescaled using the
distances column 2, if necessary. Errors are 1-σ values. (5) Type of NSC mass measurement: D: dynamical, S: spectroscopic. (6) Source of NSC measurement:
1 = Launhardt et al. [31]; 2 = Kormendy and Bender [25]; 3 = Matthews et al. [26] + Gebhardt et al. [27]; 4 = Böker et al. [24]; 5 = Walcher et al. [21]; 6 =
Seth et al. [29]; 7 = Ho and Filippenko [23]; 8 = Barth et al. [28]; 9 = Kormendy et al. [30]; 10 = Rossa et al. [11]. (7) Logarithm of total galaxy stellar mass
and uncertainty (see text for details). (8) Logarithm of bulge stellar mass and uncertainty (or upper limit for bulgeless galaxies), based on decompositions in
Erwin and Gadotti (2012a, in prep); galaxies currently missing proper decompositions are indicated by “. . .”.

for the two sets of ratios coming from the same parent
population if we use only the dynamical + spectroscopic
masses, or PKS = 3.1 × 10−10 if we use the entire set of NSC
masses.

Do NSCs in late-type spirals differ from those in early-
type spirals, S0s, and ellipticals in any sense other than
average mass? The available evidence is ambiguous. Böker
[7] notes that NSC sizes appear to be independent of Hubble
type. On the other hand, Rossa et al. [11] compared stellar
populations of NSCs in early- and late-type spirals using
fits to their spectroscopy and noted that the NSCs in late-
type spirals did tend to have younger stellar populations

and (slightly) lower metallicities. (They also argued against
any observational effects that might produce systematic
overestimates of NSC mass in early spirals.) This does at least
suggest that different star-formation histories may lie behind
the mass differences in NSCs.

We also plot the MBH/M�,bul ratio for SMBH host galax-
ies (thick gray dotted line in Figure 4, based on (1)). What
this indicates is that the NSC—host-galaxy relationship for
Sb and earlier types is consistent with the SMBH relation, if
all of the galaxy mass is in the bulge. Since most of the galaxies
used for the original CMO studies [8, 9] were dwarf and giant
ellipticals (or S0 galaxies with high B/T ratios), it is easy to
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Figure 4: Relative masses of NSCs versus Hubble type of host
galaxy, based on the compilation of Seth et al. [48]. Filled gray
circles are NSC masses estimated from broadband colors or
assumed M/L ratios by Seth et al [29]; red stars indicate NSC masses
from spectroscopic (hollow) or dynamical (filled) measurements
(see Table 2 for references). Also shown are simple fits to the
dynamical+spectroscopic masses (dashed red line) and to the entire
sample (dashed gray line), along with the mean mass ratio of
SMBHs relative to their host bulges (dotted gray line).

see why the “NSC = SMBH” connection could be made. But
this is clearly true only for very bulge-dominated systems.

Appendix

Data Tables

In Tables 1 and 2, we list the basic data parameters for SMBH
and NSC hosts. References for the NSC masses are in the cap-
tions for Table 2. For the SMBH masses, the numbers in col-
umn 5 of Table 1 translate into the following references: 1 =
Gillessen et al. [49]; 2 = Bender et al. [50]; 3 = Verolme et al.
[51]; 4 = Krajnović et al. [52]; 5 = Gebhardt et al. [53]; 6 =
Bower et al. [54]; 7 = Lodato and Bertin [55]; 8 = Atkinson
et al. [56]; 9 = Rusli et al. [57]; 10 = Nowak et al. [58]; 11 =
Houghton et al. [59]; 12 = Sarzi et al. [60]; 13 = Devereux et
al. [61]; 14 = Davies et al. [62]; 15 = Barth et al. [63]; 16 =
Nowak et al. [39]; 17 = Kondratko et al. [64]; 18 = Güeltekin
et al. [65]; 19 = de Francesco et al. [66]; 20 = Hicks and
Malkan [67]; 21 = Miyoshi et al. [68]; 22 = Ferrarese et al.
[69]; 23 = Cretton and van den Bosch [70]; 24 = Walsh et al.
[71]; 25 =Macchetto et al. [72]; 26 = Nowak et al. [73]; 27 =
Shen and Gebhardt [74]; 28 = de Francesco et al. [75]; 29 =
Neumayer et al. [76]; 30 = Capetti et al. [77]; 31 = Ferrarese
and Ford [78]; 32 = van der Marel and van der Bosch [79];
33 = Cappellari et al. [80]; 34 = Bontà et al [81].
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