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The electronic structure of ErGa3 and its isostructural compounds with Tm, Yb, and Lu are investigated with a highly accurate band
structure scheme in LDA and GGA and warped muffin-tin approximation. In contrast to other investigations, the 4f electrons of
the constituent Re are also treated as part of the valence bands. The position of the corresponding 4f bands relative to the Fermi
energy EF strongly depends on the nuclear charge of Re. In Lu, they lie almost by 0.5 Ryd below EF and are extremely narrow.
In Er, both in LDA and GGA, the 4f bands are found to be very close to the Fermi level EF . Assuming most of the 4f electrons to
be part of the core removes the disagreement almost completely but produces a Fermi surface with a topology markedly different
from that proposed in previous investigations. The intersections of the Fermi surface with planes are strongly varying within the
Brillouin zone, they do not well match with the sparse experimental results. Investigations using the LDA + U scheme as well as
investigations of the dielectric response function are sketched.

1. Introduction

Studies on the electronic structure of cubic ReGa3 (Re deno-
tes the heavy earth metals Er, Tm, Yb, and Lu, resp.) compo-
unds which crystallize in the AuCu3 structure (see Figure 1)
are a challenge not only as it is supposed that their magnetic
properties are controlled by peculiarities of their Fermi
surfaces but also as the role of the localized 4f electrons is
not well understood.

In previous investigations of ErGa3 and of TmGa3 [1–
6], which have been done to get detailed information
about the shape of the Fermi surface, the 4f electrons are
assumed to be part of the core contributing to the charge
density without interacting with the other valence electrons.
Using the linear muffin-tin orbital method (LMTO) in the
atomic sphere approximation (ASA), Pluzhnikov et al. [2]
and Petukhov et al. [3] found in the range of the high
as well as the intermediate de Haas-van Alphen (dHvA)
frequencies a quite good agreement between their ab initio
calculations and the experimental data. In order to analyze
measurements of the two-dimensional angular correlation
of the annihilation radiation spectra [5] which give more
details about the FS topology more modern schemes have

been used: the full-potential LMTO and the full-potential
linear augmented plane waves (FLAPW) schemes have been
applied [6]. Disappointingly, none of these codes was able
to produce a satisfying description of some experimental
features that were in satisfying agreement with the previous
LMTO-ASA results [2, 3]. It was supposed [6] that the most
probable reason for this difference lies in the choice of the
linearization energy El around which the expansion of the
energy-dependent radial function Rl(E, r) is performed, in
LMTO as well as in FLAPW.

It is a question of principle importance whether the pos-
sible breakdown of the LDA in the cases of the compounds
ErGa3 and of TmGa3 is a failure of the LDA scheme or if
it is caused by fact that in these compounds the 4f bands
fortuitously coincide with the Fermi level EF and thus yield
a density of states unrealistically enhanced at EF . In the
systematic analysis of the electronic structure of compounds
consisting of rare earth metals neighboured in the periodic
table done in present work, the second alternative turned out
to be true.

The present investigations use the Modified Augmented
Plane Wave (MAPW) method [7] scheme. It is a linearized
version of Slater’s APW method but differs from LAPW
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Figure 1: The fcc superlattice Cu3Au. Open circles: Au, stars: Cu.

in that within the atomic spheres the radial part of the
Bloch functions is a combination of radial functions Rs,l,
counting the energies Es,l chosen within a broad range, which
distinctly differ from each other. Thus, the above-mentioned
problems of LAPW are avoided. In the context of the LDA
DFT formalism, the MAPW scheme is almost free of any
systematic restrictions and guarantees any desired accuracy
by a suitable choice of the ansatz functions and of other
intrinsic parameters.

This paper is organized as follows. Section 2 starts with a
comparison of the essentials of the LAPW and the MAPW
scheme. It is explained why the latter guarantees the high
accuracy needed to properly describe the electronic struc-
ture of ErGa3. The progress of self-consistent calculations
incorporating many valence electrons, especially in the case
of narrow 4f bands just below EF , sensitively depends on
the choice of the starting potential. Therefore, in Section 3,
our study of the series of RE compounds were started with
the compound LuGa3 characterized by fully occupied 4f
bands. Thus, we could avoid that the iteration mechanism
stops at an incidental minimum. By reducing the Re core
charge in noninteger steps, we could show how the 4f peak
in the density of states curve approaches the Fermi level. This
strategy actually makes self-consistent calculations faster and
more stable because we remain near an absolute minimum
in the high dimensional potential landscape. Then, the
band structure, the shape of the Fermi surfaces including
extremal areas, and cyclotron masses are discussed. In
Section 4, investigations of the dielectric response function
are sketched.

2. Basic Theoretical Aspects

2.1. Relativistic Effects. The heavy Re rare earth atom makes
a relativistic treatment necessary. In previous investigations
dealing with this aspect, the core and the valence electrons
have been treated by completely different schemes. The
atom-like core states were obtained by use of the four-
component Dirac equation whereas the valence states were
approximated by a two-component equation that has been

derived, more or less, via successive applications of unitary,
norm-conserving Foldy-Wouthuysen transformations. In
the simplest case, the so-called scalar relativistic approach,
a modified Pauli or radial Schrödinger equation containing
the relativistic mass correction and the Darwin term, is
solved within the spherical regions [2, 4]. More refined
investigations [5, 6] make the expectation value of a Hamil-
tonian containing the spin-orbit coupling stationary, with a
Ritz ansatz obtained in the scalar-relativistic approximation.
It is obvious that the orthogonality of the core states to
the valence states is destroyed by the use of completely
different Hamiltonians. Test calculations on Au [8] that go
beyond the approximations just described (because they are
based on nonrestricted two-component spinors) yielded the
result that this improper treatment of the relativistic effects
produces uncontrolled errors in the charge density and the
total energy. Therefore, as long as a fully relativistic treatment
of compounds similar to the treatment of solids containing
only one atom in the cell [9] is outstanding, a nonrelativistic
is regarded as more reliable.

2.2. LAPW versus MAPW: A Critical Comparison. It is
common to both the LAPW and the MAPW [7] methods

that the Bloch functions 〈�r | n�k〉 outside the APW-spheres
are approximated by superpositions of plane waves, and
that within the APW spheres, the plane waves are suitably
augmented, yielding a linear eigenvalue problem. This has
been done in different ways. In LAPW, the wave function
consists of a sum of products of a spherical harmonic Ylm

and a linear combination of two radial functions. The first
is a solution of the radial differential equation inside the
atomic sphere with an averaged spherical potential and a
linearization energy El, around which the expansion of the
energy dependent wave functions is performed. The second
one is the energy derivative of the radial function. Up to
the maximal value of the angular momentum Lmax, the
linear combination at the surface of the APW-sphere, joins
continuously to the angular momentum expansion of the
corresponding plane wave. As for all l > Lmax, no continuity
exists, and the truncation error can be made small by
choosing, large Lmax, for example, 10. As a consequence
of this choice of the radial functions, the solutions of the
eigenvalue problem are most reliable at energies around El.
The range of validity around El can be quite small when
the branches of the logarithmic derivatives R′(rAPW)/R(rAPW)
follow in rapid succession as is the case in ErGa3. Because the
sets of eigenfunctions obtained with different values of El are
not strictly orthogonal to each other, a change of the relevant
energy El is not a good remedy.

In the MAPW scheme, a set of radial functions Rsl is
generated in the spherical averaged potential, mostly by
requiring that their logarithmic derivative is either +1 or −1.
To avoid any truncation error, the augmentation of the plane
waves is only performed for the leading angular numbers
l ≤ lmax, whereas for l > lmax, the spherical Bessel functions
jl are kept. In contrast to all other versions of the APW
scheme, the full wave function and its derivative are made
exactly continuous on the surface of the APW spheres by
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the use of additional constraints. To account for the special
role of the 4f electrons, the basis of the radial functions
within the Re spheres contains one radial function that is
optimally localized by an appropriate choice of the radial
energy, implying that the value of the radial wave function on
the APW sphere is smaller by almost a factor of 100 than the
others. Further 4f radial functions are chosen according to
the previously mentioned recipe, guaranteeing the continuity
of the the corresponding partial wave.

2.3. Details of the MAPW Calculation. The following con-
siderations are based on the assumption that the Re core
has a Pd-type configuration consisting of 46 electrons. We
have found that the states up to 4d are welllocalized; for
example, their radial functions assume values less then 0.6 ·
10−3 on the surface of the Er sphere, and need not to be
considered in the MAPW calculations. Nevertheless, they are
numerically orthogonal to the wave functions of the valence
states because they are not kept frozen during the self-
consistency cycles. In contrast, the best localized 4f state of Er
assumes the value 0.032413 a.u. on the Er sphere confirming
our reservation against treating this state as part of the core.

The quantum number l of the angular decomposition
of the Bloch functions is restricted to be less than or equal
to 2 within the Ga spheres and to be less than or equal
to 3 within the Re spheres. Four radial functions Rsl(r)
are used for each of the l ≤ 3. The proper choice of the
4f radial functions needs special care as the corresponding
logarithmic derivative is strongly varying in the energy
region near the Fermi level.

The number of plane waves used to describe a Bloch state

|�k〉 within the whole atomic polyhedron is restricted by the
inequality

(
�k + �K

)2
≤ 12

(
2π
a

)2
, (1)

where �K denotes the vector of a simple cubic reciprocal
lattice, and a is the lattice constant. In contrast to the plane-
wave cutoff mostly applied in LAPW it guarantees the full
point symmetry of the Bloch energies at any point of the
Brillouin zone (BZ). Depending on the specific value of

the wave vector �k, this restriction yields a superposition
consisting of between 160 and 181 plane waves. In total,
each ansatz consists of more than 320 trial functions. It
guarantees sufficient accuracy of the Fermi energy and of the
total energy in the SCF cycles and leaves the topology of the
band structure almost stationary, that is, no jumps are visible
in the intersection of the Fermi surface with certain planes,
as shown in Figures 7, 8, 9, 10, and 12.

The Brillouin zone integrations over all occupied states
yielding the electron density ρ, the Fermi energy EF , and the
total energy Etot are approximated by a sum over MG3 points
of a simple cubic lattice of length (1/MG)(2π/a) within one
octant of the BZ. Because the evaluation of ρ requires those
operations of the subgroup of the point group Qh that leave
the atoms of the basis invariant, a further restriction to the
irreducible wedge of the fcc BZ is not possible, at least in the
SCF cycles.
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Figure 2: Left panel: Band structure of LuGa3 with lattice
constant a = 4.212 Å. EF = 2.059387 Ryd. The horizontal line
at 1.4712 Ryd denotes the 4f bands. Black line: Δ1,Z1,Σ1,Λ1,T1

representations, red line: Δ2, .2,Σ2,Λ2,T2 representations, green
line: Δ′2,Z3,Σ3,Λ3,T ′2 representations, blue line: Δ5,Z4,Σ4,T5 repre-
sentations. Right panel: density of states in units of electrons cell(−1)

Ryd(−1), dashed line denotes the position of the Fermi level. Figure 3
illustrates the position of the symmetry points and of the lines
within the BZ.

The characteristic ground-state properties are calculated
by use of elaborate exchange-correlation functionals in LDA
[10] and GGA [11–14]. Without any further truncation,
exchange and correlation within the atomic spheres are
obtained from the charge density along the special directions.
Outside the spheres, the charge density is evaluated on a
fine mesh of suitably chosen �r-points [15] which allows to
determine exchange and correlation in any accuracy wanted.
Further details of the present calculation are described in
previous publications [16, 17].

3. Results

3.1. Trends in the Electronic Structure of the Isostructural
Compounds ErGa3, TmGa3, YbGa3, and LuGa3 in LDA. The
following investigations aim to provide an overall insight into
the influence of the 4f electrons. To avoid any influence of
the lattice spacing, all investigations have been done with the
lattice constant of ErGa3 at zero temperature, a = 4.212 Å
[4]. The narrow Re-5s and 5p bands with energies around
−0.5764 Ryd and 0.7636 Ryd, respectively, in the case of
ErGa3 are well separated from the complex of the other bands
originating from the atomic Re 6s- and 5d-states and are not
to be considered.

In the course of these considerations, we have found that
the electronic structure of the compound LuGa3 is standing
out for its relative simplicity. As shown in Figure 2, the 4f
electrons occupy a band of extremely small width of 3 mRyd
located by more than half of a Rydberg below the Fermi level.
It is split according to the cubic symmetry and additionally
hybridized with the single band starting at the lowest Γ state.
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Figure 3: Brillouin zone for the simple cubic Bravais lattice. The
notation of the symmetry points and lines follows [18].
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Figure 4: Band structure and density of states of YbGa3 with lattice
constant a = 4.212 Å and EF = 1.999407 Ryd. For further details,
see Figure 2.

It is remarkable that it leaves the other bands almost
unchanged with the favourable effect on the self-consistency
that a small number of cycles is sufficient. Thus, the final
potential is best suited as a reliable starting point for the
investigations of the other isostructural compounds.

Table 1 lists some characteristic quantities found by
successive decrease of the nuclear charge of the Re con-
stituent, Znuc, in noninteger steps, starting from the last line.
It causes the energy of the best localized 4f radial state,
E1,3, continuously to rise whereas the Fermi energy slightly
diminishes. Both energies get closer and closer but do not
cross. This change is accompanied by a strong increase of the
hybridization of the 4f states with the other valence bands,
although the wave function of the best localized 4f radial
state at the APW sphere only moderately increases from
0.0208 a.u. to 0.0323 a.u. in ErGa3. Correspondingly, N(EF)
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Figure 5: Band structure and density of states of TmGa3 with lattice
constant a = 4.196 Å [2] and EF = 2.009753 Ryd. For further details
see Figure 2.
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Figure 6: Band structure and density of states of TmGa3 with lattice
constant a = 4.212 Å [2] and EF = 1.996388 Ryd. For further details
see Figure 2.

raises but does not tend to the unphysical values cited in [2].
There is no doubt that in the cases of TmGa3 and ErGa3

the corresponding values are still too large compared with
experimental results. Figures 4, 5, and 6 illustrate how the Re
nuclear charge influences the band structure along the lines
of high symmetry in the Brillouin zone. In their overall look,
all Figures are rather similar; however, significant differences
are visible in the range of the 4f bands and their location
relative to the Fermi level.

To emphasize the role of the Re 4f bands as possible
sinks of electrons, we have calculated the f orbital projected
density. The number of f-electrons per rare-earth atom,
Z4f(EF), listed in Table 1 in the last but one column, increases
up to Znuc ≈ 70.1 almost in the same measure as the virtual
core charge and reversely the Fermi energy decreases. Above
this value, all 4f-like states are occupied and the additional
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Table 1: Energy E1,3 of the best localized 4f radial state, Fermi energy EF , density of states at the Fermi level N(EF), f resolved density of
states N4f(EF), and number of 4f electrons Z4f(EF) per Re atom. Last column: value of the best localized 4f radial state at the APW sphere.
Energies in Ryd and densities of states in electrons cell −1 Ryd −1.

Znuc E1,3 EF N(EF) N4f(EF) Z4f(EF)

68.00 1.99673 1.99917 178.51055 163.28079 11.7888 0.032286

68.25 1.99337 1.99530 144.41692 129.80704 12.0677 0.032002

68.50 1.99215 1.99530 116.63079 102.57300 12.2938 0.031850

68.75 1.98843 1.99288 89.01376 75.98205 12.5443 0.031450

69.00 1.98413 1.99052 58.31993 46.82609 12.7942 0.031069

69.25 1.97924 1.98868 40.87829 30.40385 13.0363 0.030684

69.50 1.97191 1.98682 24.92342 16.16095 13.2867 0.030259

69.75 1.96031 1.98813 11.39923 4.77653 13.5222 0.029762

70.0 1.93251 1.99847 7.64239 1.04675 13.7220 0.028962

70.3 1.84650 2.01689 8.03116 0.20343 13.8744 0.027075

70.5 1.75745 2.02962 8.82774 0.13170 13.9296 0.025372

70.7 1.65198 2.04194 9.27159 0.11006 13.9608 0.023550

71.0 1.47513 2.05984 9.86605 0.11126 13.9885 0.020820

electrons occupy the s-p-d like states which are less and
less hybridized with the 4f states. The Fermi energy starts
to rise and N(EF) approaches moderate values. This change
occurs at a noninteger value of Znuc: the compound YbGa3

stands on one side and the compound LuGa3 on the other,
and consequently their crystal potentials are significantly
different. According to Table 1, the projected 4f density
N4f(EF) substantially contributes to the large value of N(EF)
especially in the case of ErGa3 and TmGa3.

These considerations are further illustrated by the plots
of the density of states (DOS) displayed in the right
panels, respectively. The sharp peak caused by the 4f band
approaches the Fermi level with decreasing values of Znuc. In
ErGa3, the energy distance amounts up to 4 mRyd. The non-
4f part of the DOS is rather similar in the four compounds
and is quite smooth. From these results, we learn that the
large value of N(EF), especially in the case of ErGa3, in
contradiction to experimental facts is not a systematic deficit
of LDA, but it is almost accidental as it locates the position of
the 4f bands near to the Fermi level. Only a small shift of the
position of the 4f bands by about 5 mRyd will improve the
agreement with the experimental data considerably. On the
other hand, these results do not support at all the concept of
assuming 11 or 12 electrons as part of the core [2, 4].

3.2. Fermi Surface in Strict LDA and GGA. It is evident
that the position of the 4f bands relative to the Fermi
level has significant influence on the shape of the Fermi
surface. To tie on to previous investigations [2, 4–6], we
first consider intersections of the Fermi surface with high
symmetry planes, the panels ΓXMX, RMXM, and ΓXRM.

In the case of LuGa3, displayed in Figure 7, we find a
certain resemblance to the FLAPW results derived for ErGa3

[6], especially in the lower panel showing the intersection
with the (011) plane. The intersection with the plane kz = 0
displayed in the upper panel is a bounded contour of almost

R M X

M X Γ

R M

Figure 7: Intersection of the Fermi surface of LuGa3 with high
symmetry planes. The various sheets are marked by different
colours.

elliptic shape whereas in FLAPW the central contour merges
with the contours encircling the occupied states around the
X-points. The LMTO-ASA results of ErGa3 discloses a minor
similarity as the contours of the occupied states around the
M points extend far in the direction of the Γ point. In YbGa3,
the intersections look quite similar.

The contour lines of ErGa3 shown in Figure 8 disclose
a completely different shape of the Fermi surface. This
already follows from the band structure displayed in Figure 6
which shows that twofold degenerated sheets of the Fermi
surface cross the Δ- and the T-lines producing cusps on the
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Figure 8: Intersection of the Fermi surface of ErGa3 with high
symmetry planes. EF = 1.996388 Ryd. Solid line (green): b1, broken
line (red): b2, dotted line (blue): b3, and points connected by a thin
line: b4. The Fermi sheets b1, b2, b3, and b4 are described in the text.
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Figure 9: Intersection of the Fermi surface of TmGa3 with high
symmetry planes. EF = 2.009753 Ryd. For further details, see
Figure 8.

respective boundary lines. Contours around the M- and R-
points encircle occupied states whereas the surrounding of
the Γ- and X-points are not occupied. The lines encircling
the points M, R, and X are the tracks of electron sheets,
whereas the line around Γ is the track of a hole sheet. It is
remarkable that the intersections of the Fermi surface for
TmGa3, displayed in Figure 9, are quite similar to that of
ErGa3 although their densities of states differ by more than
a factor 3.

An extensive analysis in 3 dimensions which is
straightforward but quite arduous had the result that
the Fermi surface of ErGa3 consists of four sheets: three,
more or less, spherically shaped surfaces denoted by b1, b2,
and b3 all having the full cubic point symmetry Oh. The
hole FS b1 is centered at the Γ point whereas the electron
surfaces b2 and b3 are located at the R point. Finally, the FS
b4 is multiply-connected and extends over the whole BZ and
is best described by its intersections with planes k3 = const.
displayed in Figure 10 in steps of Δk3 = 0.25 · 2/a. For
completeness, the cross-sections with other surfaces are also
shown. From this Figure, we learn that the FSs b1, b2, and
b3 are monotonically shrinking with increasing value of k3,
indicating that the cross-sections are extremal at the surface
of the first BZ. According to Figure 10, the FS b1 is strongly
indented in the (111) direction. The FS b4 continuously
changes its shape. Up to k3 ≈ 0.125 · 2π/a it is outside of the
cylinder around (0, 0.5, k3), then rapid changes of its shape
occur and beyond k3 = 0.375 · 2π/a, it is again outside of the
cylinder around (0, 0.5, k3). It is evident that the intersections
with planes oriented in (110) and (111) with the FS b4 also
reflect this great variety of orbits. The investigations in
Section 3.3 will have similar results. Intersections of the
type b1, b2, or b3 which are easy to comprehend, and those
of type b4 which show a great diversity of intersections.
These findings distinctly demonstrate that the customary
plots [2, 4–6] of the panels ΓXMX, RMXM and ΓXRM
do not capture the great variety of orbits which change
rapidly mostly inside the Brillouin zone. Our results also cast
doubts on the methods usually applied to reconstruct the
Fermi surfaces of such compounds like ErGa3 directly from
experiments (de Haas-van Alphen, cyclotron resonance,
electron-positron annihilation measurements) which are
mostly based on the assumption that the FS has some
well-defined cross-sections [19].

The GGA using the functionals [11–14] almost rigidly
shifts the band structure of ErGa 3 to lower energies by 50.0
mRyd but has only minor influence on the shape of the Fermi
surface. The energy of the best-localized 4f radial states E1,l=3

is even closer to the Fermi energy than in LDA, that is, 1.8
mRyd, with the fatal consequence that the density of states at
the Fermi level assumes the unphysical value of 195.2 elec-
trons cell−1 Ryd−1. Consequently, sections of the Fermi sur-
face with the high symmetry planes of the Brillouin zone look
quite similar to those displayed in Figure 8. Hence, GGA does
not improve agreement with the experimental data at all.

3.3. Exclusion of the Hybridization of the Valence Bands by the
4 f Electrons: Following Previous Tracks. Our investigations
have the result that, based on experimental evidence [4,
6], the three-dimensional mapping of the Fermi surface
of ErGa3 could not be explained by high-accurate LDA-
MAPW calculations if the 4f-electrons are considered to
be constituents of the valence bands. The strong influence
of the 4f bands on the topology of the Fermi surface of
ErGa3 and TmGa3 is avoided by treating them as part of
the core as has been done in previous investigations [2, 4–
6]. Then, in the MAPW scheme, the quantum number l
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Figure 10: Intersections of the Fermi surface of ErGa3 with planes k3 = const. Each square is bounded by the lines k1 = 0, k1 = π/a, k2 = 0,
and k2 = π/a. The actual value of k3 is given in the upper right corner. Solid line (green) b1, broken line (red) b2, dotted line (blue) b3, and
points connected by solid line (black) b4. By virtually placing these squares in stacks one over the other, an insight into the various FSs is
obtained.

of the angular decomposition of the Bloch functions may
also be restricted to be less than or equal 2 within the Er
or Tm spheres. Self-consistent calculations yielded the result
that the energy of the 4f-orbitals is below the Fermi level
by half a Rydberg in the case of the Er 4f11 core whereas

it is distinctly above the Fermi level when an additional
4f electron is assumed as belonging to the core. The band
structure of the Er 4f11 configuration, displayed in Figure 11,
as well as that of the Tm 4f12 configuration shows a great
similarity with that of the LuGa3, but they differ markedly
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Figure 11: Band structure and density of states of ErGa3 for the
4f11 configuration with lattice constant a = 4.212 Å [2] and EF =
2.078341 Ryd. For further details, see Figure 2.

from the band structure found when the 4f electrons are
assumed to be part of the valence electrons (see Figure 6).
Consequently, the Fermi topology is completely changed.
This is illustrated in Figure 12, showing the contour lines of
the Fermi surface. Compared with FLAPW results obtained
with the same concept [6], the sections with the (110) plane
displayed in the XMRM face are quite similar, but some
sections with the (100) plane are completely different. A
coarse resemblance to the LMTO-ASA [4] result also exists.
In contrast, the contour plots of the Er 4f12, not shown
here, disclose a completely different Fermi surface topology
for which we have no experimental evidence. The plot of
the density of states N(E) displayed in the right panel of
Figure 11 shows some van-Hove singularities with modest
heights.

The values of N(EF) are in a reasonable range, for
example, 10.34 and 9.60 electrons cell−1 Ryd−1 in the Er 4f11

and the Tm 4f12 configurations, respectively, and are even
smaller by 30% if the number of the 4f electrons in the core
is increased by one. From these results, we learn that within
a heuristic approach, we could achieve closer agreement
with the low temperature specific heat data by choosing the
nonintegral parameter x of the Er 4fx core configuration to
be near the value 11.0.

The Fermi surface in the Er 4f11 core configuration
consists of four sheets: B1 is almost spherical in shape around
the point R, slightly dented in (011), with a mean radius
0.3826 · 2π/a. B2 is a prolate spheroid around the point
X(0,0,0.5) with the longest axis in the (001) direction. The
lengths of its axis are approximately 0.1441·2π/a and 0.0868·
2π/a. B3 is almost ellipsoidally shaped around the point
(0.2730,0.2730,0) 2π/awith the longest axis oriented in (110)
directions. The lengths of its axes are approximately 0.1356 ·
2π/a, 0.0721·2π/a, and 0.0387·2π/a. Finally, B4 is multiply-
connected and again is best described by its intersections
with planes k3 = const, as displayed in Figure 13 together with
those of the other Fermi surfaces. Similar to the FS b4 shown
in Figure 10, its shape exhibits rapid variations within the BZ.

R M X

M X Γ

R M

Figure 12: Intersection of the Fermi surface of ErGa3 with high
symmetry planes derived for the Er 4f11 core configuration. EF =
2.078341 Ryd. Full line (green): B1, broken line (red): B2, dotted line
(blue): B3, and points connected by a thin line: B4. Note the close
similarity with the case of LuGa3 displayed in Figure 5.

According to Figure 12, besides the contours of B2 and B3,
two contours of B4 exist near the face ΓXMX . One is almost
circular the centre being over the point M whereas the other
has fourfold symmetry around the point Γ. With increasing
value of the component k3, the contours of B2 and B3 shrink
whereas those of B4 grow, merge for k3 = 0.0823 · 2π/a, and
then split into two other parts with contours centred above
X points. Being well separated in the range 0.1 · 2π/a ≤ k3 ≤
0.225 · 2π/a, both curves merge again at k3 = 0.28 · 2π/a
and form considerably larger contours centred below the R
point for 0.228 · 2π/a ≤ k3 ≤ 0.280 · 2π/a. For still larger
values of k3, the size of the contours, again centred around
the Γ X line gradually shrinks. The intersections of the sheet
B4 with planes normal to the (110) and (111) directions even
show a still greater diversity. Besides closed contours, now in

certain ranges of the projection of �k on the normal direction,
contours exist that extend over the whole reciprocal lattice
space, yielding the so-called open orbits. In general, the
shape of the contours shows rapid changes, especially near
0.3 · 2π/a.

It is surprising that even in the present case, considering
the 4f electrons as part of the core possible cross-sections of
FS can rapidly change inside the BZ, and they are not at all
described by the usual plot of the contour line only showing
the faces ΓXMX , RMXM, and ΓXRM. We suspect that a
thorough analysis using the LAPW scheme will produce a
similar behaviour provided the plane waves satisfy a criterion
analogous to that quoted in Section 2.3.

3.4. Extremal Areas and Cyclotron Masses of ErGa3.
The extremal cross-sectional areas and the corresponding
cyclotron masses for the closed Fermi sheets are listed in
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Γ X
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0.025 0.05

0.075 0.1 0.125

0.15 0.175 0.2

0.225 0.25 0.275

0.3 0.325 0.35

0.375 0.4 0.425

0.45 0.475
0.5

M R

X M

Figure 13: Intersection of the Fermi surface of ErGa3 with planes k3 = const derived for the Er 4f11 core configuration. Each square is
bounded by the line k1 = 0, k1 = π/a, k2 = 0, k2 = π/a. The actual value of k3 is given in the upper right corner. Full line (green): B1, broken
line (red): B2, dotted line (blue): B3, and points connected by a thin line: b4.

Table 2 (the areas A of the cross-sections are related to the
magnetic field B, in gauss, by the relation (a/2π)2A = 4.2897
10 −9 B in the case of the lattice constant cited by Pluzhnikov
et al. [4]). Because of their spherical shapes, the areas of the
Fermi sheet b1 are slightly orientationally dependent, within
a margin of 10%. Both FS b2 and b3 have, as a consequence of

their dimension, such small areas that they need no further
consideration. As a consequence of the strong change of the
shape of the FS within the BZ, the areas and the cyclotron
masses of b4 listed in Table 3 cover a wide spectrum of values
strongly depending on the vector pointing to the centre of the
corresponding contour. It is questionable whether the usual
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Table 2: Extremal cross-sectional areas A and the corresponding cyclotron masses mc of the sheets b1, b2, and b3 of ErGa3. A in units of
(2π/a)2. mc in units of the free electron mass.

FS
(001) (110) (111)

A mc A mc A mc

b1 0.4598 0.6136 0.4366 0.5579 0.4114 0.5602

b2 0.0214 0.1869 0.0319 0.2372 0.0284 0.2604

b2 0.0355 0.3290 0.0262 0.2375 0.0284 0.2600

b3 0.0311 0.5333 0.0166 0.2294 0.0193 0.2757

b3 0.0117 0.2114 0.0159 0.3039 0.0107 0.1872

b3 0.0088 0.1321

Table 3: Cross sectional areas A and the corresponding cyclotron masses mc of the sheets b4. Same units as in Table 2.

(001) (110) (111)

A mc A mc A mc

(0.101,0.357) (0.442,1.631) (0.155,0.216) (0.478,0.859) (0.031,0.182) (0.380,1.251)

(0.748,0.766) (1.453,1.607) (0.296,0.376) (0.265,0.369) (0.574,0.714) (0.927,1.275)

approach which simply connects the de Haas-van Alphen
frequencies with extremal areas of the FS, is applicable [19]
when the cross-sections show the strong variations found in
the previous sections.

The Fermi surface and the cyclotron masses of ErGa3

were investigated by Pluzhnikov et al. [4] by de Haas-van
Alphen measurements in sufficiently strong magnetic fields
destroying the antiferromagnetic phase. They found that
the measured dHvA frequencies arranged in four branches
that are orientationally independent to within a margin
of at most 2%. The highest branch denoted by a can
be uniquely attributed to the FS b1; the measured values
0.4211, 0.4100, and 0,4210, in units of (2π/a)2 in (001),
(110), and (111), respectively, agree satisfactorily with the
corresponding values in Table 2. The following two branches,
denoted by b, d, and d′, are due to the FS b4. However, the
values listed in Table 3 cover a far broader range than the
experimental values, all in the same units, 0.1763, 0.1298,
0.0519 in (001)-, 0.0678, 0.0649, 0.0513 in (110)-, and 0.1522
in the (111)-direction, and are far more orientationally
independent. Finally, the FS b2, b3, and some of the contour
lines of b4 produce the low-frequency branch, h. The good
agreement between the experimental data with the ab initio
calculations (carried out using the linear muffin-tin orbital
method in the atomic sphere approximation with the 4f
Er electrons as part of the core) performed by Pluzhnikov
et al. [4] seems to be rather fortuitous in the light of our
more accurate investigations, according to which only the
orbit around R is expected to be orientationally independent
and is characterized by a high dHvA frequency. Finally, the
large discrepancies between the measured and theoretical
values of the cyclotron masses found in both investigations
can hardly be explained by many-body enhancement, as
has been done by the previous authors [4], but raises the
suspicion that the high magnetic fields applied to destroy

the antiferromagnetic phase of ErGa3 have a nonnegligible
influence on the electronic structure.

3.5. LDA + U Investigations [20]. A simple way to describe
the correlation between the localized 4f-Er electrons beyond
the usual LDA is provided by the so-called “LDA + U” total-
energy functional [21–23]. We have found that the MAPW
scheme is especially suited for the implementation of this
functional. Due to the lack of detailed information about the
screened interaction, we assumed that the effective on-site
Coulomb interaction has the form of a screened Coulomb
potential with the screening length q as a free parameter. As
desired, the reasonable value of q = 3.0 Bohr −1 shifts the
narrow 4f bands by ≈0.3 Ry below the Fermi level and leaves
the other bands almost unchanged with the consequence
that N(EF) is found to be in quite good agreement with the
experimental data. Details concerning the band structure are
described in [20] giving evidence that the band structure is
quite similar to those in LDA displayed in Figure 6 apart form
the line MX. But it shows no similarity at all with the frozen
core results described in Section 3.3.

4. A Sketch of the Investigations of
the Dielectric Response

The response to a scalar electric field is fully described in the
framework of the time-dependent density-functional theory
by the the Kohn-Sham response function χ [24–27]. In the
case of a slowly varying perturbation, it uniquely splits into
an intraband and interband contribution. The first can be
expressed by a sum over the Fermi surface,

χintra(0, 0,ω) = − qμqν

�2ω2
2
∑

n,�k

∂ε
n,�k

∂kμ

∂ε
n,�k

∂kν

∂ f
(
ε
n,�k

)

∂ε
n,�k

. (2)
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Table 4: Density of electrons, inverse band mass, mean value of the inner product gradε
n�k ·gradε

n�k , band plasma frequency ωpl,b, free plasma
frequency ωpl, f , and the ratio of the compounds’ static conductivities to the conductivity of Cu at room temperature. All in atomic units.

Cu 0.23481 .074400 1.07386 0.6677 3.4617 1.0

Er 0.06148 0.01096 0.00290 0.1301 1.7579 0.00270

Tm 0.06419 0.02502 0.02131 0.2008 1.7962 0.01985

Yb 0.06544 0.12338 0.7997 0.4505 1.8137 0.74484

Lu 0.06743 0.16256 0.6861 0.5249 1.8410 0.63904

Einstein summation convention over μ and ν ∈ 1, 2, 3. This
relation is physically interesting: the mean value of the inner
product of the velocities of the Bloch electrons at the Fermi
surface essentially determine the dc behaviour. A highly
simplified treatment of the dc-conductivity based on the
assumption of a relaxation time τ describing the scattering
of the electrons by lattice defects or phonons has the
result

σμν(0) = − e2

�2Vc
2
∑

n�k

τ
(
ε
n,�k

)∂ε
n,�k

∂kμ

∂ε
n,�k

∂kν

∂ f

∂ε
n,�k

, (3)

Vc volume of the elementary cell. This expression is based
on more general assumptions than those leading to the well-
known Drude formula: (i) the solution of the Boltzmann

equation by a �k-dependent relaxation time and (ii) Kohler’s
variational principle [28, 29] using the trial function grad
ε
n,�k.

Provided the relaxation τ can be assumed to be constant
the cofactor of ω−2 in (2) gives an estimate of the static
conductivity: it roughly depends on the product of the
inverse mass and the density of electrons.

In Table 4, a diagonal element of the inverse mass
averaged over the occupied states, the mean value of grad

ε(n,�k)
2

over the Fermi surface and the plasma frequencies
ωpl,b and ωpl, f are listed. A crude estimate of the dc
conductivity of these compounds has been obtained by
using a relaxation time τ which appropriately explains the
room temperature conductivity of polycrystalline Cu, say
6.0 105 (Ωcm)(−1). The last column lists the ratio of these
conductivities. From these results, we learn that asymptotic
behaviour of Rχ is dominated by the interband contribution
as the intraband contribution is smaller up to one order.
The effective inverse mass and the inner product of grad ε

n,�k
show a stronger variation; in the compounds with Lu and
Yb, the corresponding values are comparable with those of
Cu, but in the compounds with Tm and Er the inner product
of grad ε

n,�k is up to three order of magnitudes smaller with
the consequence that in this context ErGa3 turns out to be
a semimetal. The close similarity of the intersections with
the Fermi surface displayed in Figures 7 and 11 arouses the
suspicion that the model considering the 4f electrons as part
of the core will produce a dc-conductivity comparable with
Cu.

In the long-wave limit, the interband contribution of the
response function reduces to the sum

χinter
(
�q,�q,ω

)

= �2 qμ, qν

m2
2
∑

n /=n′,�k

〈
n,�k
∣∣∣pμ

∣∣∣n′,�k
〉

ε
n,�k − εn′,�k

〈
n′,�k

∣∣∣pμ
∣∣∣n,�k

〉

ε
n′,�k − εn,�k

×
f
(
ε
n,�k

)
− f

(
ε
n′,�k

)

ε
n,�k − εn′,�k + �ω + iη

,

(4)

〈n,�k|pμ|n′,�k〉 are the matrix elements of the Kohn-Sham
Bloch functions and ε

n,�k, f (ε
n,�k) the corresponding eigenval-

ues and occupation numbers. The factor 2 in front accounts
for the spin degeneracy. The sum over the wave vector
�k runs over the BZ whereas over n and n′ extends over
all Bloch states obtained in the KS scheme for a fixed
value of �k, occupied or nonoccupied, in present case up
to 240 states with energies up to 250 Ryd above the Fermi
level. This requirement has often been overseen in previous
investigations. As usual this expression may be decomposed
in a real and in an imaginary part. By using the identity

∑

n′ /=n

〈
n,�k
∣∣∣pμ

∣∣∣n′,�k
〉〈
n′,�k

∣∣pν

∣∣n,�k
〉

ε
n,�k − εn′,�k

= 1
2
mδμν, (5)

which corresponds to the Thomas-Reiche-Kuhn sum rule in
atom physics [30] at large values of ω the real part of the
interband contributions reduces to

4πe2

q2Vc
Rχinter

(
�q,�q,ω

) =
ω2
pl, f

ω2
, (6)

in the long-wave limit. The abbreviation ωpl, f is the plasma
frequency of a free electron gas,

ω2
pl, f =

4πe2

m

2
Vc

∑

n,�k

f
(
ε
n,�k

)
, (7)

which only depends on the density of the valence electrons
(2/Vc)

∑
n,�k f (ε

n,�k). Thanks to the completeness of the Bloch
functions (see (5)), all specific information for example, the
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Figure 14: Frequency dependence of the real part of the conductivity (right panel) and of reciprocal conductivity (left panel) of rare-earth.
Sharp spikes in the left panels indicate the possibility of collective excitations.
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band structure or the matrix elements of the momentum
operator has no influence on the asymptotic behaviour of the
interband contributions Rχinter(�q,�q,ω) at long wavelength.

Partial integration of (2) has the result that χintra(0, 0,ω)
has the same asymptotic behaviour with plasma frequencies
analogously defined as in (7) with the sole difference that
1/m is substituted by the mean value of the tensor of the
inverse mass. Both objects are only abbreviations which
have nothing to do with collective excitations of the valence
electrons. As consequence of the causality the infinite integral
over the imaginary part at long wave length again gives the
square of the free plasma frequency,

4πe2

q2Vc

1
π

∫∞
−∞

ωIχinter
(
�q,�q,ω

)
dω = ω2

pl, f . (8)

It can be considered as a sum rule of a suitably defined
conductivity [31].

The numerical work is largely analogous to previous
investigations [32, 33]. The eigenvalues ε

n,�k, their gradients,

and the matrix-elements of the momentum operator �p
were evaluated using the MAPW results without any further
approximation. As a check, the sum rule (5) was used.
Figure 14 shows the frequency dependence of the conductiv-
ity σ(�q,�q,ω) in the long-wave limit in the region 0 ≤ �ω ≤
3 Rydberg, on the right side the real part and on the left
side the real part of the reciprocal conductivity, respectively,
formally defined by Rσ/((Rσ)2 + (Iσ)2). This expression
is sensitive to collective excitations of the valence electrons
similar to the energy loss function in the conventional theory.

At low values of ω, the series of compounds shows a
margin difference: ErGa3 and TmGa3 have a structure with
two well-separated peaks whereas the other two compounds
have a singular peak only. Above 0.25 Ryd, the real parts
of the conductivity of all four compounds look quite
similar. Up to 1 Ryd, the reciprocal conductivity is without
any structures. The peak structures near 1.6 Ryd, especially
pronounced in LuGa 3, indicated the possibility of collective
excitations of the valence electrons of plasmon type.

5. Summary

The electronic structure of the compounds ReGa3 is found
to be very sensitive to the constituent Re due to the location
of the 4f bands relative to the Fermi level. In the heaviest
compound, Lu, the 4f bands are quite small and far from
the Fermi level EF . The remaining valence bands have the
characteristic features of an s-p-d complex and the sections
of the Fermi surface with high symmetry planes of the BZ
are quite similar to the results obtained for ErGa3 [4, 5] and
TmGa3 [2] when the 4f bands are assumed to be part of
the cores. With decreasing core charge these bands approach
EF and strongly interact with the other valence bands. Thus
the topological structure of the Fermi surface is drastically
changed and has no similarity at all with the momentum
density obtained by deconvoluting the measurements of
the angular correlation of the electron-positron annihilation
radiation. In ErGa3 and TmGa3, the closeness of the 4f bands
to the Fermi level produces values of N(EF) which are not

realistic. GGA investigations enforce the disagreement with
the experimental results.

Analogous to previous investigations, the unrealistic high
value of N(EF) is avoided by considering 11 4f electron
as part of the core. A detailed analysis covering the whole
Brillouin zone shows that the Fermi surfaces of the com-
pounds ErGa3 and TmGa3 consist of different sheets allowing
a great variety of orbits in magnetic fields. One of them is
multiconnected, and the usual plots showing intersections
with high symmetry planes do not all describe its complex
shape. Therefore, it is questionable whether the Fermi
surface may be solely reconstructed from measurements.
It is suspected that high-precision investigations of other
compounds with a nonsimple basis will yield similar results.

With regard to the ground state properties and the
response to an external scalar potential, the compounds of
this series behave quite similarly up to one distinct exception:
in ErGa3 and TmGa3, the flat 4f bands are found so close
to the Fermi level that they strongly influence the shape of
the Fermi surface and the inverse band mass. In DFT, both
compounds are semimetals. This obvious defect is cured by
use of the LDA + U scheme which shifts the 4f bands slightly
below the Fermi level [20].
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