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1. Introduction

Recently, models describing interacting quantum particles in a random potential have been
studied (see, e.g., [1–3]). We consider n interacting particles moving in a “homogeneous”
potential in the d-dimensional configuration space R

d. A typical example of what we mean
by a “homogeneous” potential is an Anderson or alloy-type random potential. The goal of
the present paper is twofold.

First, we prove that if the Hamiltonian of the single particle in the “homogeneous”
media admits an integrated density of states (IDS), then, so does the interacting n-particle
Hamiltonian. The proof consists of two steps. First, we prove the claim for the noninteracting
n-particle system and in a second step, we show that the IDS for noninteracting and
interacting system is the same. These two steps allow an application to the interacting n-
particle Anderson model in R

d.
Note that, in general, knowledge of the integrated density of states is not yielding

estimates for the normalized counting functions of the finite volume restrictions of the
random operator; such information is also very valuable as it is a major tool in the study
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of the spectrum. Therefore, the second aim of this note is to provide estimates on the finite
volume normalized counting function which lead to a Wegner estimate. The proof uses the
ideology and tools developed for the one-particle Hamiltonian.

1.1. The Interacting Multiparticle Model

The noninteracting n-particle Hamiltonian satisfies Hn
0 = −Δ + V n

ext where the Laplacian −Δ
on R

nd describes the free kinetic energy of the n particles. As all the particles are in the same
background, the potential V n

ext is of the form

V n
ext
(
x1, . . . , xn

)
=

n∑

k=1

V 1(xk

)
. (1.1)

Hence, the noninteracting n-particle Hamiltonian is a sum of one-particle HamiltoniansH1 =
−Δ + V 1. On the one particle potential V 1, we assume that

(H.1.a) (V 1)+ := max{V 1, 0} is locally square integrable and (V 1)− := max{−V 1, 0} is an
infinitesimally −Δ-bounded potential, that is, D((V 1)−) ⊇ D(−Δ) and for all α > 0,
there exists γ(α) < ∞, such that for all φ ∈ D(−Δ)

∥∥(V 1)−φ
∥∥ ≤ α‖Δφ‖ + γ(α)‖φ‖, (1.2)

(H.1.b) the operator H1 admits an integrated density of states, say N1, that is, if H1
0.L

denotes the Dirichlet restriction ofH1 to a cube Λ(0, L) centered at 0 of side-length,
L, then the following limit exists

N1(E) := lim
L→+∞

L−d Trace
(
1]−∞,E]

(
H1

0.L

))
. (1.3)

Assumption (H.1.a) implies essential self-adjointness of −Δ + V 1 on C∞
0 (Rd) by [4, Theorem

X.29 ]. Indeed,

V n
ext =

(
V n
ext
)
+ −

(
V n
ext
)
−,

(
V n
ext
)
±
(
x1, . . . , xn

)
:=

n∑

j=1

(
V 1)

±
(
xj

)
, (1.4)

where

(i) (V n
ext)− is infinitesimally −Δ-bounded, that is, (1.2) holds for the same constants and

the Laplacian over R
nd;

(ii) (V n
ext)+ is nonnegative locally square integrable.

The self-adjoint extensions of −Δ + V 1 and −Δ + V n
ext are again denoted by H1 and Hn

0 ; they
are bounded from what follows.

Classical models for which the IDS is known to exist include periodic, quasiperiodic,
and ergodic random Schrödinger operators (see, e.g., [5]).
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In the definition of the density of states, we could also have considered the case of
Neumann or other boundary conditions.

The interacting n-particle Hamiltonian is of the form

Hn := −Δ + V n
i + V n

ext, (1.5)

where

V n
i

(
x1, . . . , xn

)
:=

∑

1≤k<l≤n
V
(
xk − xl

)
(1.6)

is a localized repulsive interaction potential generated by the particles; so we assume that

(H.2) V : R
d → R is measurable nonnegative locally square integrable and V tends to 0

at infinity.

The standard repulsive interaction in three-dimensional space is of course the Coulomb
interaction V (x) = 1/|x|. In some cases, due to screening, it must be replaced by the Yukawa’s
interaction V (x) = e−|x|/|x|.

Finally, we make one more assumption on both V 1 and V ; we assume that

(H.3) the operator V n
i (H

n
0 − i)−1 is bounded.

Assumption (H.3) is satisfied in the case of the Coulomb and Yukawa potential for those
V 1 satisfying (H.1.a); Hn

0 is self-adjoint on D(Hn
0 ) ⊆ D(−Δ), hence ‖V n

i (H
n
0 − i)−1‖ ≤

‖V n
i (−Δ − i)−1‖ · ‖(−Δ − i)(Hn

0 − i)−1‖, where ‖(−Δ − i)(Hn
0 − i)−1‖ < ∞ due to closed graph

theorem and ‖V n
i (−Δ − i)−1‖ < ∞ for Coulomb and Yukawa’s interaction potentials V n

i ; see
[4, Theorem X.16 ].

2. The Integrated Density of States

We now compute the IDS for the n-particle model. LetΛL = Λ(0, L) be the cube in R
d centered

at 0 with side-length L andwriteΛn
L = ΛL×· · ·×ΛL for the product of n copies ofΛL.Wedenote

the restriction of the interacting n-particle Hamiltonian Hn to Λn
L with Dirichlet boundary

conditions byHn
L. Clearly assumptions (H.2) and (H.1.a) guarantee thatHn

L is bounded from
what follows with compact resolvent. Hence, for any E ∈ R, one defines the normalized
counting functions

NL(E) := L−nd Trace
(
1]−∞,E]

(
Hn

L

))
. (2.1)

As usual, N, the IDS of Hn is defined as the limit of NL(E) when L → +∞. Equivalently,
one can define the density of states measure applied to a test function ϕ as the limit of
L−nd Trace [ϕ(Hn

L)]. If the limit exists, it defines a nonnegative measure. It is a classical result
that the existence of that limit (for all test functions) or that of NL(E) is equivalent [5].
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2.1. The IDS for the Noninteracting n-Particle System

Recall that, by assumption (H.1.b), the single particle model H1 admits an IDS (see [5]) and
a density of states measure denoted, respectively, by N1 and ν1.

Let Hn
0,L be the restriction of Hn

0 to Λn
L with Dirichlet boundary conditions. One has

the following lemma.

Lemma 2.1. The IDS for the noninteracting n-particle Boltzmann model given by

Nni(E) := lim
L→∞

1
Lnd

Trace
(
1]−∞,E]

(
Hn

0,L

))
(2.2)

exists and satisfies

Nni = N1∗ν1∗ · · · ∗ν1. (2.3)

Let us comment on this result. First, the convolution product in (2.3) makes sense as
all the measures and functions are supported on half-axes of the form [a,+∞); this results
from assumption (H.1.a). When the field V 1 is not bounded fromwhat follows, one will need
some estimate on the decay of N1 and ν1 near −∞ to make sense of (2.3) (and to prove it);
such estimates are known for some models (see, e.g., [5, 6]).

Proof of Lemma 2.1. The operator Hn
0 is the sum of n commuting Hamiltonians, each of

which is unitarily equivalent to H1; so is Hn
0,L, its restriction to the cube Λn

L. As the sum
decomposition ofHn

0 commutes with the restriction toΛn
L, the eigenvalues ofH

n
0,L are exactly

the sum of n eigenvalues ofH1 restricted to ΛL. This immediately yields that

Trace
(
1]−∞,E]

(
Hn

0,L

))
=
(
N̂L

1 ∗ν̂
L
1 ∗ · · · ∗ν̂

L
1

)
(E), (2.4)

where N̂L
1 (E) is the eigenvalue counting function for H1 restricted to ΛL, and ν̂L1 is its

counting measure (i.e., dN̂L
1 ). The normalized counting function and measure, NL

1 and νL1 ,
are defined as

NL
1 =

1
Ld

N̂L
1 , νL1 =

1
Ld

ν̂L1 . (2.5)

The existence of the density of states of H1 then exactly says that NL
1 and νL1 converge,

respectively, to N1 and ν1. The convergence of NL
1 ∗ν

L
1 ∗ · · · ∗ν

L
1 to N1∗ν1∗ · · · ∗ν1 is then

guaranteed as the convolution is bilinear bicontinuous operation on distributions. This
completes the proof of Lemma 2.1.

Let us now say a word on the boundary conditions chosen to define the IDS. Here,
we chose to define it as an infinite-volume limit of the normalized counting for Dirichlet
eigenvalues. Clearly, if we know that the single particle Hamiltonian has an IDS defined as
the infinite-volume limit of the normalized counting for Neumann eigenvalues, so does the
noninteracting n-body Hamiltonian. Moreover, in the case when the two limits coincide for
the one-body Hamiltonian, they also coincide for the noninteracting n-body Hamiltonian.
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Using Dirichlet-Neumann bracketing, one then sees that the integrated densities of states
for both the one-body and noninteracting n-body Hamiltonian for positive mixed boundary
conditions also exist and coincide with that defined with either Dirichlet or Neumann
boundary conditions.

2.2. Existence of the IDS for the Interacting n-Particle System

Let Hn
L denote the restriction of Hn to the box Λn

L with Dirichlet boundary conditions. Our
main result is.

Theorem 2.2. Assume (H.1), (H.2), and (H.3) are satisfied. For any ϕ ∈ C∞
0 (R), one has

1
Lnd

Trace
[
ϕ
(
Hn

L

)
− ϕ

(
Hn

0,L

)] L→∞−→ 0. (2.6)

As the density of states measure of Hn is defined by

〈ϕ, dN〉 = lim
L→+∞

1
Lnd

Trace
[
ϕ
(
Hn

L

)]
, (2.7)

we immediately get the following corollary.

Corollary 2.3. Assume (H.1), (H.2), and (H.3) are satisfied. The IDS for the interacting n-particle
Boltzmann modelHn exists and coincides with that of the noninteracting modelHn

0 ; hence, it satisfies

N = Nni = N1∗ν1∗ · · · ∗ν1. (2.8)

Note that, in view of the remark concluding Section 2.1, we see that the integrated
density of states of the interacting n-body Hamiltonian is independent of the boundary
conditions if that of the one-body Hamiltonian is.

In Corollary 2.3, we dealt with the Boltzmann statistic, that is, without statistic.
Theorem 2.2 stays clearly true for both the Fermi and the Bose statistics, that is, if one restricts
to the subspaces of symmetric and antisymmetric functions. One defines the following:

(i) for the Fermi statistics, the Fermi integrated density of states

〈
ϕ, dNF〉 = lim

L→+∞

n!
Lnd

Trace∧nL2(Λ1
L)
[
ϕ
(
Hn

L

)]
, (2.9)

where ∧nL
2(Λ1

L) denotes n-fold antisymmetric tensor product of L2(Λ1
L);

(ii) for the Bose statistics, the Bose integrated density of states

〈
ϕ, dNB〉 = lim

L→+∞

n!
Lnd

Trace s
⊕nL2(Λ1

L)

[
ϕ
(
Hn

L

)]
, (2.10)

where
s
⊕nL

2(Λ1
L) denotes n-fold symmetric tensor product of L2(Λ1

L).
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Let us now discuss shortly the Bose and Fermi counting functions (i.e., the eigenvalue
counting functions of the Hamiltonian restricted to a finite cube) in the free case (i.e., when
the interaction vanishes). Consider the cube Λ1

L and let E1(L) ≤ E2(L) ≤ · · · be the eigenvalue
of the single particle Hamiltonian repeated according to multiplicity. The three counting
functions are then given by

#L(E) := #
{
eigenvalues of Hn

0,L on L2(Λn
L

)
less than E

}

= #
{(

j1, j2, . . . , jn
)
: Ej1(L) + Ej2(L) + · · · + Ejn(L) ≤ E

}
,

#FL(E) := #
{
eigenvalues of Hn

0,L on ∧nL
2(Λ1

L

)
less than E

}

= #
{(

j1, j2, . . . , jn
)
: j1 < j2 < · · · < jn, Ej1(L) + · · · + Ejn(L) ≤ E

}
,

#BL(E) := #
{
eigenvalues of Hn

0,L on
s
⊕nL

2(Λ1
L

)
less than E

}

= #
{(

j1, j2, . . . , jn
)
: j1 ≤ j2 ≤ · · · ≤ jn, Ej1(L) + · · · + Ejn(L) ≤ E

}
.

(2.11)

Hence,

n!#FL(E) ≤ #L(E) ≤ n!#BL(E). (2.12)

Uniformly in L, the eigenvalues (Ej(L))j≥1 are lower bounded by, say, −C. Hence, if Ej1(L) +

Ej2(L)+· · ·+Ejn(L) ≤ E, then, for k = 1, . . . , n, one has Ejk(L) ≤ E+Cn so that jk ≤ N̂L
1 (E+Cn) =

NL
1 (E + Cn)Ld. This implies that

0 ≤ #BL(E) − #FL(E)

= #

⎧
⎨

⎩
(
j1, j2, . . . , jn

)
;
j1 ≤ j2 ≤ · · · ≤ jn, ∃k < l s.t. jk = jl

Ej1(L) + Ej2(L) + · · · + Ejn(L) ≤ E

⎫
⎬

⎭

≤ C̃Ld(n−1).

(2.13)

Thus, dividing (2.12) and (2.13) by Lnd and taking the limit L → +∞,we obtain that the free
Fermi and Bose density of states are equal to the Boltzmann one. Theorem 2.2 then gives the
following corollary.

Corollary 2.4. Assume (H.1), (H.2), and (H.3) are satisfied. One has N = NB = NF.

Proof of Theorem 2.2. We take some q > nd/2 and specify the appropriate choice later on. By
assumptions (H.1.a) and (H.2), there exists ζ > 0 such that

−∞ < −ζ ≤ min
(
inf
L≥1

{
inf

[
σ
(
Hn

0,L

)
∪ σ

(
Hn

L

)]}
, inf

[
σ
(
Hn

0

)
∪ σ

(
Hn)]

)
. (2.14)

Let γ = γ(1/2) be given by (1.2) for α = 1/2. Fix λ0 > ζ + 2γ + 1.
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By (2.14), we only need to prove (2.6) for ϕ ∈ C∞
0 (R) supported in (−ζ−1,+∞). For such

a function, let ϕ̃ be an almost analytic extension of the function x �→ (x + λ0)
qϕ(x) ∈ C∞

0 (R),
that is, ϕ̃ satisfies

(i) ϕ̃ ∈ S({z ∈ C : |Iz| < 1},

(ii) for any k ∈ N, the family of functions (x �→ (∂ϕ̃/∂z)(x + iy)|y|−k)0<|y|<1 is bounded
in S(R).

The functional calculus based on the Helffer-Sjöstrand formula implies

ϕ
(
Hn

L

)
−ϕ

(
Hn

0,L

)
=

i

2π

∫

C

∂ϕ̃

∂z
(z)

[(
Hn

L + λ0
)−q(

Hn
L − z

)−1−
(
Hn

0,L + λ0
)−q(

Hn
0,L − z

)−1]
dz ∧ dz.

(2.15)

In the following, we apply an idea, which has already been used in [6, 7] andwhich simplifies
in this situation. Using resolvent equality, the integrand in (2.15) is written as

(
Hn

L + λ0
)−q(

Hn
L − z

)−1 −
(
Hn

0,L + λ0
)−q(

Hn
0,L − z

)−1

=
(
Hn

0,L + λ0
)−q[(

Hn
L − z

)−1 −
(
Hn

0,L − z
)−1]

+
[(
Hn

L + λ0
)−q −

(
Hn

0,L + λ0
)−q](

Hn
L − z

)−1

= −
(
Hn

0,L + λ0
)−q(

Hn
0,L − z

)−1(
V n
i

)(
Hn

L − z
)−1

−
q∑

l=1

(
Hn

0,L + λ0
)l−q−1(

V n
i

)(
Hn

L + λ0
)−l(

Hn
L − z

)−1
.

(2.16)

Estimating the trace of (2.16), we choose ε > 0 and write

V n
i = V n

i · 1{|V n
i |≤ε} + V n

i · 1{|V n
i |>ε} (2.17)

and note that V n
i · 1{|V n

i |≤ε} is bounded by ‖V n
i · 1{|V n

i |≤ε}‖ ≤ ε. As V is nonnegative, one has

supp
(
V n
i · 1{|V n

i |>ε}
)
⊆

n⋃

j=1

n⋃

i=1
i /= j

{
(
x1, . . . , xn

)
∈ R

nd : V
(
xi − xj

)
≥ ε

n(n − 1)

}
. (2.18)

As, by assumption (H.2), V tends to 0 at infinity, (2.18) implies that there exists 0 < C(n; ε)
(independent of L) such that

μ
({∣∣V n

i

∣∣ > ε
}
∩Λn

L

)
≤ C(n, ε)L(n−1)d, (2.19)
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where μ( · ) denotes the Lebesgue measure. Using decomposition (2.17) of V n
i , we obtain

∣
∣Trace

(
Hn

0,L + λ0
)−q(

Hn
0,L − z

)−1(
V n
i

)(
Hn

L − z
)−1∣∣

≤ ε

|Iz|2
Trace

∣
∣(Hn

0,L + λ0
)−q∣∣ +

1
|Iz|

∥
∥(V n

i

)(
Hn

L − z
)−1∥∥

·Trace
∣
∣(Hn

0,L + λ0
)−q1{|V n

i |>ε}∩Λ
n
L

∣
∣

≤ ε

|Iz|2
∥
∥(Hn

0,L + λ0
)−1∥∥q

Tq
+

1
|Iz|2

∥
∥(Hn

0,L + λ0
)−1∥∥q−1

Tq

·
∥
∥(Hn

0,L + λ0
)−11{|V n

i |>ε}∩Λ
n
L

∥
∥
Tq

·
∥
∥(V n

i

)(
Hn

0,L + λ0
)−1∥∥,

(2.20)

where ‖ · ‖Tq denotes the qth Schatten class norm (see [8]) and we used Hölder’s inequality.
In the same way, the cyclicity of the trace yields

∣∣Trace
(
Hn

0,L + λ0
)l−q−1(

V n
i

)(
Hn

L + λ0
)−l(

Hn
L − z

)−1∣∣

≤ Trace
∣∣(Hn

L + λ0
)−l(

Hn
0,L + λ0

)l−q−1(
V n
i

)(
Hn

L − z
)−1∣∣

≤
∥∥(Hn

L + λ0
)−l(

Hn
0,L + λ0

)l∥∥ ·Trace
∣∣(Hn

0,L + λ0
)−q−1(

V n
i

)(
Hn

L − z
)−1∣∣

≤ C

|Iz|
∥∥(Hn

0,L + λ0
)−1∥∥q−1

Tq
· ‖
(
Hn

0,L + λ0
)−11{|V n

i |>ε}∩Λ
n
L

∥∥Tq ·
∥∥(V n

i

)(
Hn

0,L + λ0
)−1∥∥

+ C
ε

|Iz|
∥∥(Hn

0,L + λ0
)−1∥∥q

Tq
.

(2.21)

We are now left with estimating ‖(Hn
0,L + λ0)

−1‖Tq and ‖(Hn
0,L + λ0)

−11{|V n
i |>ε}∩Λ

n
L
‖Tq for q

sufficiently large, depending on nd. Therefore, we compute

∥∥(Hn
0,L + λ0

)−11{|V n
i |>ε}∩Λ

n
L

∥∥
Tq

≤
∥∥(Hn

0,L + λ0
)−1( −ΔΛn

L
+ λ0

)1/2∥∥
T2q

·
∥∥( −ΔΛn

L
+ λ0

)−(1/2)1{|V n
i |>ε}∩Λ

n
L

∥∥
T2q

,
(2.22)

where −ΔΛn
L
is the Dirichlet Laplacian on Λn

L. We use the decomposition (1.4). As the
Laplacians are positive, the infinitesimal −Δ-boundedness on (V n

ext)−, [4, Theorem X.18 ] and
the definition of γ imply the following form bound:

∣∣〈φ, (V n
ext)−φ

〉∣∣ ≤ 1
2
〈
φ,−ΔΛn

L
φ
〉
+ γ‖φ‖2. (2.23)

As λ0 > 2γ + 1, one has

Hn
0,L + λ0 ≥ −ΔΛn

L
+
(
V n
ext
)
− + λ0 ≥

1
2
(
−ΔΛn

L
− 2γ + 2λ0

)
≥ 1

2
(
−ΔΛn

L
+ λ0

)
. (2.24)
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Thus, the operator Hn
0,L + λ0 is invertible and

(
Hn

0,L + λ0
)−1 ≤ 2

(
−ΔΛn

L
+ λ0

)−1
. (2.25)

Let (μj)j and (φj)j , respectively, denote the eigenvalues and eigenfunctions of the Dirichlet

Laplacian −ΔΛn
L
(the index j runs over (Nnd)∗). For q ∈ N such that 2q > nd,we compute

∥
∥(Hn

0,L + λ0
)−1( −ΔΛn

L
+ λ0

)1/2∥∥2q
τ2q

=
∑

j∈Nnd

(
μj

(
−ΔΛn

L

)
+ λ0

)q〈
φj,

(
Hn

0,L + λ0
)−1

φj

〉2q

≤ 22q
∑

j∈Nnd

(
μj

(
−ΔΛn

L

)
+ λ0

)q〈
φj,

(
−ΔΛn

L
+ λ0

)−1
φj

〉)2q

= 22q
∑

j∈Nnd

(
μj

(
−ΔΛn

L

)
+ λ0

)−q ≤ CLnd.

(2.26)

The last estimate is a direct computation using the explicit form of the Dirichlet eigenvalues.
By [6, Lemma 2.2], we know that, for q ∈ N such that 2q > nd, there exists Cq > 0 such

that, for any measurable subset Λ′ ⊆ Λn
L, one has

∥∥( −ΔΛn
L
+ λ0

)−1/21Λ′
∥∥2q
T2q

≤ Cqμ(Λ′). (2.27)

Choosing Λ′ = {|V n
i | > ε} ∩ Λn

L and taking (2.19) into account, then by combining estimates
(2.20)–(2.27), we get that there exists c, depending only on q (and the bound in assumption
(H.3)), such that

Trace
∣∣(Hn

L + λ0
)−q(

Hn
L − z

)−1 −
(
Hn

0,L + λ0
)−q(

Hn
0,L − z

)−1∣∣

≤ c

(
ε

|Iz|2
Lnd +

1
|Iz|2

Lnd−(d/2q) +
ε

|Iz|L
nd +

1
|Iz|L

nd−(d/2q)
)
.

(2.28)

By using this inequality in (2.15), we get (2.6) as ϕ̃ being almost analytic, ∂ϕ̃(z) vanishes to
any order in Iz as z approaches the real line. Thus, we completed the proof of Theorem 2.2.

3. Application to the Interacting Multiparticle Anderson Model

In the interacting multiparticle Anderson model, we consider a random external potential,
that is, V 1 = V 1(ω). The one particle Anderson potential is of the form

V 1(ω, x) =
∑

j∈Zd

ωju(x − j), (3.1)
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with a family ωj : Ω → R of random variables on (Ω,P). This one-particle models leads us
to the n-particle random “background” potential

V n(ω, x1, . . . , xn

)
=

n∑

k=1

V 1(ω, xk

)
(3.2)

and the interacting n-particle Hamiltonian reads as

Hn(ω) = −Δ + V n
i + V n(ω). (3.3)

For the Anderson model, it is known under rather general assumptions that, for a given
energy, the normalized counting function defined in assumption (H.1.b) converges almost
surely (see, e.g., [5, 9]). The limit is a nondecreasing function of E. Its discontinuity set is
countable. By [9, pp. 311f ], for almost every ω, except at this set, the normalized counting
function defined in assumption (H.1.b) then converges. On this set of full measure, we can
now apply the results of the last section and get a P-almost sure integrated density of states
Nni = N for both, the noninteracting and interacting n-particle system. Note that only
translations along a “diagonal” vector (j, j, . . . , j) ∈ Z

nd leave Hn(ω) invariant. Hence, for
an application of ergodic theorems (as in the one particle case) for the proof of existence and
P-almost sure constancy of N, there are typically too few ergodic transformations.

One of the interesting properties of the integrated density of states is its regularity; it
is well known to play an important role in the theory of localization for random one-particle
models (see, e.g., [10]). Usually, it comes into play through a Wegner estimate, that is, an
estimate of the type

E
(
Trace 1]E0,E0+η]

(
Hn

Λ

))
≤ CWη|Λ|. (3.4)

On the other hand, Corollary 2.3 directly relates the regularity of the IDS of the
interacting system to that of the IDS of the single particle Hamiltonian. The regularity of the
IDS of the single particle has been the subject of a lot of interest recently (see, e.g., [11, 12]).

We now prove a Wegner estimate; for convenience, we assume the following.

(H.A.2) The single-site potential u is nonnegative, compactly supported, ‖u‖L∞ ≤ 1 and that
there is some c > 0, such that u(x) ≥ c for x ∈ [−(1/2), 1/2]d.

For the proof of a Wegner estimate in the interacting n-particle Anderson model, we
can choose rather general probabilistic hypothesis like in [13]:

(H.A.3) (ωj : Ω → R)
j∈Zd is a family of bounded random variables on the probability space

(Ω,P).

When μj denotes the conditional probability measure for ωj at site j ∈ Z
d conditioned on all

the other random variables (ωi)i /= j , that is, for all A ∈ B(R),

μj(A) = P({ωj ∈ A | (ωi)i /= j}), (3.5)
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then, a Wegner estimate à la [13] uses the quantity

s(η) := sup
j∈Zd

E

{
sup
E∈R

μj

([
E, E + η

])
}

(3.6)

and is stated as follows.

Theorem 3.1. Let us assume (H.A.2) and (H.A.3), and let Λ ⊆ R
nd be a bounded open cube of side

length ≥ 1, let Hn
Λ(ω) be the restriction of Hn(ω) to Λ with Dirichlet boundary conditions. Then,

there exists an increasing function

CW : R −→ [0,∞[
E0 �→ CW

(
E0

)
,

(3.7)

such that for all η > 0

E
(
Trace 1]E0,E0+η]

(
Hn

Λ

))
≤ CW

(
E0

)
s(η)|Λ|. (3.8)

In order to prove Theorem 3.1, we prove two preparatory lemmas.

Lemma 3.2. Let Λ ⊆ R
nd be an open bounded cube, then the restrictions Hn

i,Λ and Hn
i,Λ,N of Hn

i =
−Δ + V n

i to Λ with Dirichlet or Neumann boundary conditions define self-adjoint operators with
compact resolvent.

Proof. V n
i is infinitesimally −Δ form bounded according to [4, Theorem X.18], so the

infinitesimal form bound

∣∣〈Ψ, V n
i Ψ

〉∣∣ ≤ ε‖∇Ψ‖2 + bε‖Ψ‖2 (3.9)

is true forΨ ∈ H1(Rnd), in particular (3.9) is true forΨ ∈ D(−ΔΛ) = H1
0(Λ) ⊆ H1(Rnd).Hence,

the form sum defines via representation theorem a self-adjoint operator Hn
i,Λ = −ΔΛ + V n

i |Λ.
The eigenvalues μk(−ΔΛ) tend to infinity, so by the minimax principle and (3.9), we see that
Hn

i,Λ has compact resolvent. The proof of

〈
Ψ, V n

i Ψ
〉
≤ ε‖∇Ψ‖2 + cε‖Ψ‖2, Ψ ∈ H1(Λ) (3.10)

uses the extension operator EΛ′ : H1(Λ) → H1
0(Λ

′) to Λ′ := {x ∈ R
nd : dist(x,Λ) < 1}, which

has the properties EΛ′Ψ|Λ = Ψ, ‖EΛ′Ψ‖H1 ≤ c1‖Ψ‖H1 and ‖EΛ′Ψ‖L2 ≤ c2‖Ψ‖L2 ; see [14, Satz 5.6
and Folgerung 5.2]. For EΛ′Ψ ∈ H1

0(Λ
′) ⊆ H1(Rnd), we use (3.9), hence by V n

i ≥ 0 and the
above properties of EΛ′ we get for Ψ ∈ H1(Λ),

0 ≤
〈
Ψ, V n

i Ψ
〉
≤
〈
EΛ′Ψ, V n

i EΛ′Ψ
〉
≤ ε

∥∥∇
(
EΛ′Ψ

)∥∥2
L2 + bε

∥∥EΛ′Ψ
∥∥2
L2

= ε
∥∥(EΛ′Ψ

)∥∥2
H1 +

(
bε − ε

)∥∥EΛ′Ψ
∥∥2
L2 ≤ εc21‖∇Ψ‖2 +

(
c22
(
bε − ε

)
+ εc21

)
‖Ψ‖2,

(3.11)
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which is (3.10). With (3.10) at hand, the proof for Neumann boundary conditions is similar
to the Dirichlet case.

Lemma 3.3. Let one assumes (H.A.2) and (H.A.3), and let Λ ⊆ R
nd be a bounded open cube, j =

(j1, . . . , jn) ∈ Z
nd with Λj := Λ ∩ Λ(j, 1)/=∅ (here, Λ(j, 1) = {|x − jk| ≤ 1/2, 1 ≤ k ≤ n}), then for

every f ∈ L2(Λj),

E
{〈
f, 1]E0,E0+η]

(
Hn

Λ

)
f
〉}

≤ 8
c2
s(η)‖f‖2. (3.12)

Proof. For every j ∈ Z
d, we define uj : R

nd → R by

uj

(
x1, . . . , xn

)
:=

n∑

k=1

u
(
xk − j

)
(3.13)

and set ω̃j = (ωl)l /= j . Fix a component of j, say j1, then we get a decomposition

V n(ω, x1, . . . , xn

)
= ωj1uj1

(
x1, . . . , xn

)
+
∑

l∈Z
d

l /= j1

ωlul

(
x1, . . . , xn

)
(3.14)

of the random potential V n(ω), and the same is true for Hn
Λ(ω):

Hn
Λ(ω) = −ΔΛ +

∑

l∈Z
d

l /= j1

ωlul1Λ +ωj1uj11Λ =: H̃n
Λ

(
ω̃j1

)
+ωj1uj11Λ. (3.15)

By the covering condition u 1[−1/2,1/2]d ≥ c on the single site-potential u, we get uj1 ≥ c 1Λj ,

hence we can write f = guj1 , where g(x) = f(x)/uj1(x) almost everywhere, so ‖g‖ ≤ c−1‖f‖.
By spectral calculus,

∫E0+η

E0

dE
〈
ϕ, I(H − E − iη)−1ϕ

〉
≥ π

4
〈
ϕ, 1]E0,E0+η](H)ϕ

〉
, (3.16)

for every self-adjointH, see [13], (3.9). The equalities and estimates in (3.15) and (3.16) allow
us to put the problem into a form, where the results of spectral averaging, [11, Section 3 ],
apply

E
〈
f, 1]E0,E0+η]

(
Hn

Λ

)
f
〉
= E

∫

R

dμj1

(
ωj1

)〈
g, uj11]E0,E0+η]

(
H̃n

Λ

(
ω̃j1

)
+ωj1uj1

)
uj1g

〉

≤ 4
π

E

∫

R

dμj1

(
ωj1

)
∫E0+η

E0

dEI
〈
g, uj1

(
H̃n

Λ(ω̃) +ωj1uj1 − E − iη
)−1

uj1g
〉

≤ 8
c2
‖f‖2s(η). (3.17)
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Proof of Theorem 3.1. By (H.A.2) and (H.A.3), we get a P-almost sure bound ‖V n(ω)‖ ≤ |V n|,
then Lemma 3.2 implies that the restrictions Hn

Λ(ω) and Hn
Λ,N(ω) of Hn(ω) to a bounded

open cube with Dirichlet or Neumann boundary conditions define self-adjoint operators with
compact resolvent P-almost sure. Let J := {j ∈ Z

nd : Λ(j, 1) ∩ Λ/=∅} and for j ∈ J set Λj :=
Λ(j, 1) ∩ Λ. Then Λ′ := Λ \ ∪j∈JΛj has Lebesgue measure 0, so by [15, XIII.15, Propositions 3
and 4], we have

−ΔΛ ≥ −ΔΛ,N ≥ −ΔΛ\Λ′,N =
⊕

j∈J

(
−ΔΛj,N

)
. (3.18)

So with Hn
i,Λj,N

defined in Lemma 3.2, we get P-almost sure:

Hn
Λ(ω) ≥ Hn

Λ,N :=
⊕

j∈J
Hn

i,Λj,N
− |V n|. (3.19)

By spectral calculus,

Trace
(
1]E0,E0+η]

(
Hn

Λ(ω)
))

≤ eE0+η Trace
(
1]E0,E0+η]

(
Hn

Λ(ω)
)
e−H

n
Λ(ω)). (3.20)

Let (ϕk(ω))k∈N
be the orthogonal basis of L2(Λ) consisting out of eigenvectors of Hn

Λ(ω) to
eigenvalues μk(ω) and let M(ω) := {k ∈ N : μk(ω) ∈]E0, E0 + η]}, then

Trace
(
1]E0,E0+η]

(
Hn

Λ(ω)
)
e−H

n
Λ(ω)) =

∑

k∈M(ω)

e−〈ϕk(ω),Hn
Λ(ω)ϕk(ω)〉

≤
∑

k∈M(ω)

e−〈ϕk(ω),Hn
Λ,Nϕk(ω)〉

≤
∑

k∈M(ω)

〈ϕk(ω), e−H
n
Λ,Nϕk(ω)〉

= Trace (1]E0,E0+η]
(
Hn

Λ(ω)
)
e−H

n
Λ,N ),

(3.21)

where the last estimate follows from Jensen’s inequality. Let (φk,j)k∈N
be an orthonormal basis

of L2(Λj) consisting of eigenvectors ofHn
i,Λj,N

to the eigenvalues Ek,j, then

Trace
(
1]E0,E0+η]

(
Hn

Λ(ω)
)
e−H

n
Λ,N

)
=
∑

k∈N

∑

j∈J

〈
φk,j, 1]E0,E0+η]

(
Hn

Λ(ω)
)
φk,j

〉
e−Ek,j+|V n|. (3.22)

As φk,j ∈ L2(Λj) and ‖φk,j‖ ≤ 1, Lemma 3.3 implies

E
〈
φk,j, 1]E0,E0+η]

(
Hn

Λ(ω)
)
φk,j

〉
≤ 8

c2
s(η). (3.23)
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As V n
i is nonnegative, the eigenvalues Ek,j ofHn

i,Λj,N
= −ΔΛj,N+V n

i |Λj are estimated fromwhat
follows by the eigenvalues of −ΔΛj,N. These are known explicitly, see [15, page 266], which
can be used to estimate

∑

k∈N

∑

j∈J
e−Ek,j ≤ Card (J)

(
eπ

2

eπ2 − 1

)nd

. (3.24)

If the side-length of Λ is bigger than 1, then Card(J) ≤ 3nd|Λ|, so when applying expectation
value to the chain of inequalities (3.20) to (3.24), it implies

E
(
Trace 1]E0,E0+η]

(
Hn

Λ

))
≤ eE0+η+|V n|

(
3eπ

2

eπ2 − 1

)nd
8
c2
s(η)|Λ|. (3.25)

Under the assumptions (H.A.2) and (H.A.3), we have

N(E) = E(N(E, · )1Ω′) = E(N(E, · )), (3.26)

hence by the Wegner estimate we can deduce regularity properties of N from those of the
conditioned measures (μj)j∈Zd via

0 ≤ N(E + η) −N(E) ≤ CW(E + η)s(η). (3.27)
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