J.-L. Martin · A. Migus G. A. Mourou · A. H. Zewail (Eds.)

Ultrafast Phenomena VIII

Proceedings of the 8th International Conference, Antibes Juan-Les-Pins, France, June 8–12, 1992

With 523 Figures

Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona Budapest

Contents

Part I	Overview and General Prospects	
	ulse Modelocking and Kerr-Lens Modelocking uus (With 6 Figures)	3
By Y. Yan,	Control Spectrometer B.E. Kohler, R.E. Gillilan, R.M. Whitnell, K.R. Wilson, amel	8
	tions of Proteins	13
	retical Aspects of Electron Transfer in Supermolecules or and M. Bixon (With 3 Figures)	15
	d Time-Resolved Spectroscopy of Magneto-Excitons emla, J.B. Stark, and W.H. Knox (With 6 Figures)	21
÷	Harmonic Generation in Strong Laser Fields iillier and P. Balcou (With 3 Figures)	29
QED at 10 ² By A.C. Me	⁰ W/cm ² elissinos (With 6 Figures)	34
Part II	Elementary Dynamics: Chemistry, Biology and Physics	3
Femtochemi By A.H. Ze	istry wail (With 6 Figures)	43
By N.F. Sch	ichroism Studies of I ₂ Predissociation in Solution herer, L.D. Ziegler, D. Jonas, and G.R. Fleming heres)	49
Investigation Using 10 fs	n of the Primary Event in Vision Blue-Green Optical Pulses hoenlein, L.A. Peteanu, Q.W. Wang, R.A. Mathies,	77

and C.V. Shank (With 3 Figures)

53

Mechanisms of Charge Separation in Bacterial Reaction Centers By M.H. Vos, F. Rappaport, JC. Lambry, C. Rischel, J. Breton, and JL. Martin (With 2 Figures)	58
Coherent Phonons in Superconducting Materials By W. Albrecht, Th. Kruse, and H. Kurz (With 3 Figures)	63
Displacive Excitation of Coherent Phonons By T.K. Cheng, J. Vidal, H.J. Zeiger, E.P. Ippen, G. Dresselhaus, and M.S. Dresselhaus (With 1 Figure)	66
Femtosecond Time-Resolved Photodissociation of Triiodide Ions in Alcohol Solution: Directly Observed Photoinduced Vibrational Coherence of Reactants and Products By U. Banin, A. Waldman, and S. Ruhman (With 4 Figures)	68
Vibrational Coherence in Charge Transfer By K. Wynne, C. Galli, P.J.F. De Rege, M.J. Therien, and R.M. Hochstrasser (With 1 Figure)	71
Ultrafast Dynamics in Solution: Wavepacket Motion and the Cage Effect in Iodine By Y. Yan, R.M. Whitnell, K.R. Wilson, and A.H. Zewail (With 1 Figure)	74
Femtosecond Time-Resolved Ionization Spectroscopy of Polyatomic Molecules By M. Seel and W. Domcke (With 1 Figure)	76
A Study of Nuclear Vibrational Wave Packets in Na ₂ by Time- and Frequency-Resolved Fluorescence Upconversion By I.A. Walmsley, T.J. Dunn, J. Sweetser, and C. Radzewicz (With 3 Figures)	78
Ultrafast Dynamics of Solid C ₆₀ By S.L. Dexheimer, D.M. Mittleman, R.W. Schoenlein, W. Vareka, XD. Xiang, A. Zettl, and C.V. Shank (With 2 Figures)	81
Femtosecond Dynamics of Molecular and Cluster Ionization and Fragmentation By T. Baumert, R. Thalweiser, V. Weiß, and G. Gerber (With 5 Figures)	83
Dephasing and Beats of Excitonic-Enhanced Transitions of J-Aggregates Measured by Femtosecond Time-Resolved Resonance CARS By V.F. Kamalov, R. Inaba, and K. Yoshihara (With 1 Figure)	87
Excited States Dynamics of the Special Pair Dimer By P.O.J. Scherer and S.F. Fischer (With 4 Figures)	89
Creation of an Anti-Wavepacket in a Rydberg Atom By L.D. Noordam, H. Stapelfeldt, D.I. Duncan, and T.F. Gallagher (With 3 Figures)	92
VIII	

Squeezing of the Molecular Vibrations by Femtosecond Laser Pulses	
By A.V. Vinogradov and J. Janszky (With 1 Figure)	95

Part III Spectroscopy and Advances in Measurements

Spectroscopic Applications of Phase-Locked Femtosecond Pulses By N.F. Scherer, M. Cho, L.D. Ziegler, M. Du, A. Matro, J. Cina, and G.R. Fleming (With 5 Figures)	99
Use of Piecewise Phase-Swept Pulses to Counteract Inhomogeneous Decay in Wave Packet Interferometry By L.W. Ungar, A. Matro, and J.A. Cina (With 1 Figure)	105
Ultrafast Nonlinear Spectroscopy with Chirped Optical Pulses By E.T.J. Nibbering, F. de Haan, D.A. Wiersma, and K. Duppen (With 2 Figures)	107
Multiple Excitation Pulse, Multiple Probe Pulse Femtosecond Spectroscopy By G.P. Wiederrecht, W. Wang, K.A. Nelson, A.M. Weiner, and D.E. Leaird (With 2 Figures)	110
Stimulated Emission Pumping and Selective Excitation by Adiabatic Passage with Frequency-Modulated Picosecond Laser Pulses By J.S. Melinger, A. Hariharan, S.R. Gandhi, and W.S. Warren (With 2 Figures)	113
A Subpicosecond Optical Sampling System By J.D. Kafka, J.W. Pieterse, and M.L. Watts (With 2 Figures)	116
Femtosecond Sagnac Interferometry By JC. Diels, P. Dorn, M. Lai, W. Rudolph, and X.M. Zhao (With 3 Figures)	120
Femtosecond Time-Gated Imaging of Translucent Objects Hidden in Highly Scattering Media By K.M. Yoo, B.B. Das, F. Liu, Q. Xing, and R.R. Alfano (With 2 Figures)	124
Femtosecond Waveform Processing via Spectral Holography By A.M. Weiner, D.E. Leaird, D.H. Reitze, and E.G. Paek (With 4 Figures)	128
The Chronocyclic Representation of Ultrashort Light Pulses By J. Paye (With 4 Figures)	133
Femtosecond Pulse Phase Measurement by Spectrally Resolved Up-Conversion	
By JP. Foing, JP. Likforman, and M. Joffre (With 3 Figures)	136 ıx

Single-Shot Measurement of the Intensity and Phase of a Femtosecond Pulse By D.J. Kane and R. Trebino (With 4 Figures)	138
Two-Photon Interference Measurement of Ultrafast Laser Pulses By M. Matsuoka, Y. Miyamoto, T. Kuga, M. Baba, and Y. Li (With 2 Figures)	140
Picosecond Single-Shot Pulse-Shape Measurement by Stochastic Sampling of Detected Photon Times By N. Adams, C. Bovet, E. Rossa, and A. Simonin (With 1 Figure)	142
Integrated Devices for Single Picosecond Pulse Measurements By V. Gerbe, M. Cuzin, M.C. Gentet, and J. Lajzerowicz (With 3 Figures)	145
The C850X Ultrafast Streak Camera: An Instrument to Study Spatially and Temporally Subpicosecond Laser–Matter Interaction By A. Mens, R. Sauneuf, D. Schirmann, R. Verrecchia, P. Audebert, J.C. Gauthier, J.P. Geindre, A. Antonetti, J.P. Chambaret, G. Hamoniaux, and A. Mysyrowicz (With 2 Figures)	147
Distortion of a 6 fs Pulse in the Focus of a BK7 Lens By Zs. Bor and Z.L. Horváth (With 1 Figure)	150
Part IV Tools: Sources and Amplifiers	
Part IVTools: Sources and AmplifiersModelocking, Stabilizing, and Starting Ultrashort Pulse Lasers By E.P. Ippen (With 4 Figures)	155
Modelocking, Stabilizing, and Starting Ultrashort Pulse Lasers	155
Modelocking, Stabilizing, and Starting Ultrashort Pulse Lasers By E.P. Ippen (With 4 Figures)	
Modelocking, Stabilizing, and Starting Ultrashort Pulse Lasers By E.P. Ippen (With 4 Figures)	160
Modelocking, Stabilizing, and Starting Ultrashort Pulse Lasers By E.P. Ippen (With 4 Figures) 17 fs Pulses from a Mode-Locked Ti:Sapphire Laser By C.P. Huang, M.T. Asaki, S. Backus, H. Nathel, H.C. Kapteyn, and M.M. Murnane (With 2 Figures) Design Considerations for Femtosecond Ti:Sapphire Oscillators By Ch. Spielmann, P.F. Curley, T. Brabec, E. Wintner, A.J. Schmidt, and F. Krausz (With 3 Figures) Self-Mode-Locked Cr ³⁺ :LiCaAlF ₆ and Cr ³⁺ :LiSrAlF ₆ Lasers By A. Miller, P. Li Kam Wa, B.H.T. Chai, J.M. Evans, and W. Sibbett	160 163

60-fs Chromium-Doped Forsterite (Cr ⁴⁺ :Mg ₂ SiO ₄) Laser By A. Seas, V. Petričević, and R.R. Alfano (With 3 Figures)	74
Femtosecond Pulses from Nd:Glass Lasers By A.J. Schmidt, M.H. Ober, M. Hofer, M.E. Fermann, F. Krausz, T. Brabec, Ch. Spielmann, and E. Wintner (With 3 Figures) 17	17
A Diode-Pumped Picosecond Oscillator at 1053 nm By I.P. Mercer, Z. Chang, M.R.G. Miller, C.N. Danson, C.B. Edwards, and M.H.R. Hutchinson (With 3 Figures)	32
A New Intracavity Antiresonant Semiconductor Fabry-Perot Passively Mode-Locks Nd:YLF and Nd:YAG Lasers By U. Keller, D.A.B. Miller, G.D. Boyd, T.H. Chiu, J.F. Ferguson, and M.T. Asom (With 3 Figures)	84
CW Mode-Locked Singly-Resonant Optical Parametric Oscillator Pumped by a Ti:Sapphire Laser By A. Nebel, U. Socha, and R. Beigang (With 1 Figure)	87
70 fs, High-Average Power, CW Infrared Optical Parametric Oscillator By G. Mak, Q. Fu, and H.M. van Driel (With 2 Figures)	90
Femtosecond Intracavity Dispersion Measurements By W.H. Knox (With 2 Figures) 19	92
Time Synchronization Measurements Between Two Self-Modelocked Ti:Sapphire Lasers By D.E. Spence, W.E. Sleat, J.M. Evans, W. Sibbett, and J.D. Kafka (With 2 Figures)	94
Femtosecond Synchronous Pumping of Dye Lasers with <100 fs Jitter By W.H. Knox and F.A. Beisser (With 2 Figures)	96
Development of High Average Power Femtosecond Amplifiers Based on Ti:, Cr: and Nd:Doped Materials By J. Squier, S. Coe, G. Mourou, D. Harter, and F. Salin	98
Femtosecond Pulse Amplification and Continuum Generation at >250 kHz with a Ti:Sapphire Regenerative Amplifier By T.B. Norris (With 4 Figures) 20	00
Millijoule Femtosecond Pulse Amplification in Ti:Al ₂ O ₃ at Multi-kHz Repetition Rates By F. Salin, J. Squier, G. Mourou, and G. Vaillancourt (With 4 Figures)	03
High Repetition Rate CW Pumped Cr:LiSAF Regenerative AmplifierBy F. Balembois, P. Georges, F. Salin, G. Roger, and A. Brun(With 4 Figures)	.06

Part V High Intensity and Nonlinear Effects	
Generation of 1.7 ps Solitons by Amplification of Pulses from a Laser Diode with Saturable Absorber in an Erbium-Doped Fibre By I.Yu. Khrushchev, A.B. Grudinin, E.M. Dianov, D.V. Kuksenkov, and E.L. Portnoy (With 3 Figures)	237
Temporal Characteristics of the Ytterbium–Erbium Figure-8 Laser By I.Yu. Khrushchev, A.B. Grudinin, and E.M. Dianov (With 3 Figures)	235
Nonlinear Loop Mirrors in Fiber Lasers By I.N. Duling III, C.J. Chen, P.K. Wai, and C.R. Menyuk (With 4 Figures)	232
Generation of Pairs of Solitons in an All-Fibre, Femtosecond Soliton Source By D.J. Richardson, V.V. Afanasjev, A.B. Grudinin, and D.N. Payne (With 5 Figures)	229
Generation of Stable Pulse Trains with a Passively Modelocked Er-Fiber Laser By M.E. Fermann, M.J. Andrejco, Y. Silberberg, and A.M. Weiner (With 4 Figures)	227
Experimental Analysis of Gain Modulation in Sub-Picosecond (~0.45 ps) Mode-Locked Laser Diodes By N. Stelmakh, JM. Lourtioz, and D. Pascal (With 3 Figures)	224
Sequential Laser Emission in Multiple Quantum Well Vertical-Cavity Structures By C. Tanguy, JL. Oudar, B. Sermage, and R. Azoulay (With 2 Figures)	222
100-Gbps Response of Microcavity Lasers By H. Yokoyama, Y. Nambu, and T. Shimizu (With 2 Figures)	220
Ultrashort Pulse Generation from High-Power Arrays Using Intracavity Nonlinearities By L.Y. Pang, J.G. Fujimoto, and E.S. Kintzer (With 3 Figures)	217
Monolithic CPM Diode Lasers By M.C. Wu, Y.K. Chen, T. Tanbun-Ek, and R.A. Logan (With 5 Figures)	211
18 fs Pulse Generation by a Single Excimer-Laser-Pumped Pulsed Dye Laser By P. Simon, C. Jordan, and S. Szatmari (With 2 Figures)	209

Generation of Ultra-Intense Pulses and Applications	
By G. Mourou (With 1 Figure)	241

Generation of 50 TW Femtosecond Pulses in a Nd-Glass Chain By C. Rouyer, E. Mazataud, I. Allais, A. Pierre, and S. Seznec (With 2 Figures)	248
All-Solid Femtosecond Oscillator-Amplifier Laser Chain with 100 mJ per Pulse By C. Le Blanc, G. Grillon, J.P. Chambaret, G. Boyer, M. Franco, A. Mysyrowicz, and A. Antonetti (With 1 Figure)	251
Development of a High Intensity Femtosecond LiSAF Laser By M.C. Richardson, P. Beaud, B.H.T. Chai, E. Miesak, YF. Chen, and V. Yanovsky (With 2 Figures)	253
Contrasted Behaviors of Stark-Induced Resonances in Multiphoton Ionization of Krypton By E. Mevel, R. Trainham, J. Breger, G. Petite, P. Agostini, J.P. Chambaret, A. Migus, and A. Antonetti (With 1 Figure)	255
Phase-Dependent Ionization Using an Intense Two-Color Light Field By D. Schumacher, M.P. de Boer, H.G. Muller, R.R. Jones, and P.H. Bucksbaum (With 2 Figures)	257
Stabilization of Atoms in Ultra-Intense Laser Pulses: A Classical Model By A. Maquet, T. Ménis, R. Taïeb, and V. Véniard (With 1 Figure)	259
Inertially Confined Molecular Ions By M. Laberge, P. Dietrich, and P.B. Corkum (With 2 Figures)	261
A Femtosecond Lightning Rod By X.M. Zhao, C.Y. Yeh, JC. Diels, and C.Y. Wang (With 2 Figures)	264
Plasma Physics with Ultra-Short and Ultra-Intense Laser Pulses By T.W. Johnston, Y. Beaudoin, M. Chaker, C.Y. Côté, J.C. Kieffer, J.P. Matte, H. Pépin, C.Y. Chien, S. Coe, G. Mourou, and D. Umstadter (With 1 Figure)	267
X-Rays Generated by Femtosecond Laser-Produced PlasmasBy J.P. Geindre, P. P. Audebert, A. Rousse, F. Falliès, J.C. Gauthier,A. Mysyrowicz, G. Grillon, J.P. Chambaret, A. Antonetti, A. Mens,R. Verrecchia, R. Sauneuf, and P. Schirman (With 2 Figures)	272
K-Shell Emission from 100 fs Laser-Produced PlasmasCreated from Porous Aluminum TargetsBy R. Shepherd, D. Price, B. White, S. Gordan, A. Osterheld, R. Walling,D. Slaughter, and R. Stewart (With 2 Figures)	275
Kilovolt X-Ray Emission from Femtosecond Laser-Produced Plasmas By G. Jenke, H. Schüler, T. Engers, D. von der Linde, I. Uschmann, E. Förster, and K. Gäbel (With 1 Figure)	278

Ultrafast Spectroscopy of Plasmas Generated by Superintense Femtosecond Laser Pulses By D. von der Linde, H. Schüler, H. Schulz, and T. Engers (With 3 Figures)	280
 Picosecond Soft-X-Ray Pulse Length Measurement by Pump–Probe Absorption Spectroscopy By M.H. Sher, U. Mohideen, H.W.K. Tom, O.R. Wood II, G.D. Aumiller, D.L. Windt, W.K. Waskiewicz, J. Sugar, T.J. McIlrath, and R.R. Freeman (With 4 Figures)	283
Photon Acceleration via Laser-Produced Ionization Fronts By R.L. Savage Jr., R.P. Brogle, W.B. Mori, and C. Joshi (With 5 Figures)	286
Propagation of Intense Laser Pulses in Plasmas By E. Esarey, P. Sprangle, J. Krall, and G. Joyce (With 1 Figure)	290
Ponderomotive Steepening in Short-Scale-Length Laser-Plasmas By D. Umstadter and X. Liu (With 2 Figures)	293
Possibility of Experimental Studies of Nonlinear Quantum Electrodynamics Effects Using High Power Ultrashort Laser Pulses By P.G. Kryukov (With 1 Figure)	296
Soliton-Like Self-Trapping of Three-Dimensional Patterns By A. Barthelemy, C. Froehly, M. Shalaby, P. Donnat, J. Paye, and A. Migus (With 9 Figures)	299
Physical Origins of the Spectral Continuum: Self-Focusing, Self-Trapping and Cerenkov Radiation By F. Salin, J. Watson, JF. Cormier, P. Georges, and A. Brun (With 2 Figures)	306
Diffraction and Focussing of Spectral Energy in a Two-Photon Process By B. Broers, L.D. Noordam, and H.B. van Linden van den Heuvell (With 3 Figures)	309
Efficient Raman Conversion of Femtosecond UV Light Pulses By K.A. Stankov and YW. Lee (With 1 Figure)	311
Organic Crystalline Fiber for Efficient Compression of Femtosecond Laser Pulses By M. Yamashita (With 1 Figure)	313
Nonlinear Temporal Diffraction in Optical Fibers By G.R. Boyer, M.K. Jackson, J. Paye, M.A. Franco, and A. Mysyrowicz (With 3 Figures)	315
Generation of a Soliton Pulse Train in an Optical Fibre Using Two CW Single-Frequency Diode Lasers By S.V. Chernikov, J.R. Taylor, P.V. Mamyshev, and E.M. Dianov (With 2 Figures)	318
2317	

Experimental Investigation of Dark Solitons Interaction By Ph. Emplit, JP. Hamaide, and M. Haelterman (With 3 Figures)	320
Femtosecond Pulse Propagation in Erbium-Doped Single-Mode Fibers By J.M. Hickmann, A.S.L. Gomes, C.B. de Araújo, and A.S. Gouveia-Neto (With 3 Figures)	323
Compression of Pulses from Soliton Fibre Lasers in a Dispersion-Decreasing Fibre	
By S.V. Chernikov, D.J. Richardson, E.M. Dianov, and D.N. Payne (With 4 Figures)	325

Part VI Metals, Surfaces and Materials

Observation of the Thermalization of Electrons in a Metal Excited by Femtosecond Optical Pulses By W.S. Fann, R. Storz, H.W.K. Tom, and J. Bokor	
(With 2 Figures)	331
Femtosecond Thermionic Emission: Experiment, Analytical Theory, and Particle Simulations By M.C. Downer, D.M. Riffe, X.Y. Wang, J.L. Erskine, D.L. Fisher, T. Tajima, and R.M. More (With 2 Figures)	335
Electron-Electron Dynamics Observed in Femtosecond Thermoreflection Measurements on Noble Metals By R.H.M. Groeneveld, R. Sprik, and Ad. Lagendijk (With 2 Figures)	338
Inversion of Single- and Two-Photon Photoelectric Sensitivities of Metals in the Femtosecond Range By J.P. Girardeau-Montaut, C. Girardeau-Montaut, S.D. Moustaïzis, and C. Fotakis (With 1 Figure)	340
Femtosecond Relaxation of Plasma Excitations in Silver Films By R.A. Höpfel, D. Steinmüller-Nethl, F.R. Aussenegg, and A. Leitner (With 3 Figures)	342
Femtosecond Free Induction Decay of Metal Surface Adsorbate Vibrations By J.C. Owrutsky, J.P. Culver, M. Li, Y.R. Kim, M.J. Sarisky, M.S. Yeganeh, R.M. Hochstrasser, and A.G. Yodh (With 1 Figure)	345
Observation of Laser-Induced Desorption of CO from Cu(111) with 100 fs Time-Resolution By J.A. Prybyla, H.W.K. Tom, and G.D. Aumiller (With 2 Figures)	347
Femtosecond Desorption of Molecular Oxygen from Pt(111) By FJ. Kao, D.G. Busch, D. Gomes da Costa, D. Cohen, and W. Ho (With 1 Figure)	350 xv
	~~*

Femtosecond Carrier Dynamics in Solid C ₆₀ Films By S.D. Brorson, M.K. Kelly, U. Wenschuh, R. Buhleier, and J. Kuhl (With 4 Figures)	354
The Role of Covalency in Femtosecond Time-Resolved Reflectivity of Hydrodynamically Expanding Solid Surfaces By X.Y. Wang, H.Y. Ahn, and M.C. Downer (With 1 Figure)	357
Ultrafast Formation Processes of Self-Trapped Excitons in Alkali Iodide Crystals under Band-to-Band Excitation By T. Tokizaki, S. Iwai, T. Shibata, A. Nakamura, K. Tanimura, and N. Itoh (With 2 Figures)	360
Femtosecond Self-Trapping of Interacting Electron–Hole Pairs in α -SiO ₂ By W. Joosen, S. Guizard, P. Martin, G. Petite, P. Agostini, A. Dos Santos, G. Grillon, J.P. Chambaret, D. Hulin, A. Migus, and A. Antonetti (With 4 Figures)	362
Ultrafast Soft Mode Dynamics in Ferroelectric Crystals By G.P. Wiederrecht, T.P. Dougherty, and K.A. Nelson (With 3 Figures)	365
Temporal Domain Study of the Phase Transition in $PbTiO_3$: A ₁ Symmetry Investigation By D.P. Kien, J.C. Loulergue, and J. Etchepare (With 2 Figures)	368
Femtosecond Transient Absorption Measurements on Low Band Gap Thiophene Polymers By A. Cybo-Ottoné, M. Nisoli, V. Magni, S. De Silvestri, O. Svelto, G. Zerbi, and R. Tubino (With 2 Figures)	370
Effects of Crosslinking in Host Polymer on Picosecond Optical Dephasing of Doped Dye Molecules By S. Nakanishi, S. Fujiwara, M. Kawase, and H. Itoh (With 3 Figures)	372
Ultrafast Relaxation of Exciton and Soliton–Antisoliton Pair in One-Dimensional Conjugated Polymers By T. Kobayashi, M. Yoshizawa, S. Takeuchi, and A. Yasuda (With 2 Figures)	376
Polarization-Dependent Femtosecond Dynamics of MBE-Grown Phthalocyanine Organic Thin Films By Sandalphon, V.S. Williams, K. Meissner, N.R. Armstrong, and N. Peyghambarian (With 3 Figures)	379
Detection of a New Strongly-Coupled Vibration Mode During the Exciton Bleaching of Polydiacetylene By J.M. Nunzi, C. Hirlimann, and J.F. Morhange (With 1 Figure)	381

Pressure-Induced Vibrational Relaxation and Electronic Dephasing in Molecular Crystals By E.L. Chronister and R.A. Crowell (With 3 Figures)	384
Ultrafast Reversible Phase Changes for Optical Recording By J. Solís, C.N. Afonso, F. Catalina, and C. Kalpouzos (With 1 Figure)	387
Picosecond Transient Absorption and Fluorescence Emission Studies of C ₆₀ and C ₇₀ in Solution By D. Kim, Y.D. Suh, S.K. Kim, and M. Lee (With 2 Figures)	389

Part VII Semiconductors, Confinement and Opto-Electronics

Transient Absorption-Edge Singularities in GaAs By D. Hulin, JP. Foing, M. Joffre, M.K. Jackson, JL. Oudar, C. Tanguy, and M. Combescot (With 3 Figures)	395
Nonthermal Distribution of Electrons in GaAs By D. Snoke and W.W. Rühle (With 1 Figure)	399
Femtosecond Carrier–Carrier Interaction in GaAs By T. Gong, K.B. Ucer, L.X. Zheng, G.W. Wicks, J.F. Young, P.J. Kelly, and P.M. Fauchet (With 4 Figures)	402
Quantum Beats versus Polarization Interference: An Experimental Distinction By M. Koch, J. Feldmann, G. von Plessen, E.O. Göbel, P. Thomas, and K. Köhler (With 1 Figure)	405
Plasmon–Phonon Coupling and Hot Carrier Relaxation in GaAs and Low-Temperature-Grown GaAs By R.I. Devlen, J. Kuhl, and K. Ploog (With 2 Figures)	408
Femtosecond Carrier–Carrier Interaction Dynamics in Doped GaAs By T. Furuta and A. Yoshii (With 1 Figure)	410
Femtosecond Carrier Kinetics in Low-Temperature-Grown GaAs By X.Q. Zhou, H.M. van Driel, A.P. Heberle, W.W. Rühle, and K. Ploog (With 2 Figures)	412
Transient Anisotropic Luminescence and Long-Living Polarization of an Optically Excited Dense Electron–Hole Plasma By A.L. Ivanov and H. Haug (With 2 Figures)	414
Hot Hole Capture by Shallow Acceptors in p-Type GaAs Studied by Picosecond Infrared Spectroscopy By A. Lohner, M. Woerner, T. Elsaesser, and W. Kaiser	
(With 2 Figures)	416

Ultrafast Dephasing and Interference of Coherent Phonons in GaAs By W. Kütt, T. Pfeifer, T. Dekorsy, and H. Kurz (With 2 Figures)	418
Femtosecond, Electronically-Induced Disordering of GaAs By JK. Wang, Y. Siegal, P.N. Saeta, N. Bloembergen, and E. Mazur (With 2 Figures)	420
Laser-Induced Ultrafast Order–Disorder Transitions in Semiconductors By K. Sokolowski-Tinten, J. Bialkowski, and D. von der Linde (With 1 Figure)	422
Femtosecond Carrier Dynamics in InGaAsP Optical Amplifiers By J. Mark and J. Mørk (With 1 Figure)	424
Ultrafast Nonlinear Refraction in Semiconductor Laser Amplifiers By M. Sheik-Bahae and E.W. Van Stryland (With 3 Figures)	426
Femtosecond Luminescence Spectroscopy of Indium Phosphide By E. Fazio and G.M. Gale (With 2 Figures)	429
Dynamics of Excitons Probed by Accumulated Photon Echo By T. Bouma, P. Vledder, and J.I. Dijkhuis (With 1 Figure)	431
Time-Resolved Measurement of Hot Carrier Cooling Rates in a-Si:H and a-Ge:H By M. Wraback and J. Tauc (With 2 Figures)	433
Dephasing of the Short Exciton–Polariton Pulses in Polar Semiconductors: The Cuprous Chloride Case By F. Vallée, F. Bogani, and C. Flytzanis (With 3 Figures)	435
Femtosecond Electronic Dynamics of CdSe Nanocrystals By C.V. Shank, R.W. Schoenlein, D.M. Mittleman, J.J. Shiang, and A.P. Alivisatos (With 4 Figures)	438
Quantum Beats Spectroscopy of Exciton Spin Dynamics in GaAs Heterostructures By S. Bar-Ad and I. Bar-Joseph (With 3 Figures)	443
Evidence of Slow Hole Spin Relaxation in n-Modulation Doped GaAs/AlGaAs Quantum Well Structures By Ph. Roussignol, P. Rolland, R. Ferreira, C. Delalande, G. Bastard, A. Vinattieri, J. Martinez-Pastor, L. Carraresi, M. Colocci, J.F. Palmier, and B. Etienne (With 1 Figure)	446
Femtosecond Time-Resolved Four-Wave Mixing in GaAs Quantum Wells By D.S. Kim, J. Shah, T.C. Damen, J.E. Cunningham, W. Schäfer, and S. Schmitt-Rink (With 4 Figures)	448
Exciton Radiative Lifetimes in GaAs Quantum Wells By R. Eccleston, J. Kuhl, W.W. Rühle, and K. Ploog (With 2 Figures)	451

Optical Investigation of Bloch Oscillations in a Semiconductor Superlattice By J. Feldmann, K. Leo, J. Shah, D.A.B. Miller, J.E. Cunningham, T. Meier, G. von Plessen, P. Thomas, and S. Schmitt-Rink (With 5 Figures)	454
Coherent Pulse Breakup in Femtosecond Pulse Propagation in Semiconductors By P.A. Harten, A. Knorr, S.G. Lee, R. Jin, F. Brown de Colstoun, E.M. Wright, G. Khitrova, H.M. Gibbs, S.W. Koch, and N. Peyghambarian (With 1 Figure)	458
Absorption Saturation of the Urbach's Tail in Multiple Quantum Wells By R. Raj, B.G. Sfez, D. Pellat, and J.L. Oudar (With 2 Figures)	460
Photon Echo Polarisation Rules in GaAs Quantum Wells By R. Eccleston, D. Bennhardt, J. Kuhl, P. Thomas, and K. Ploog (With 3 Figures)	463
Observation of Many-Body Effects in the Femtosecond Temporal Profile of Quasi-2D Exciton Free-Induction Decay By S. Weiss, MA. Mycek, JY. Bigot, S. Schmitt-Rink, and D.S. Chemla (With 3 Figures)	466
Radiative Recombination of Free Excitons in GaAs Quantum Wells By B. Sermage, K. Satzke, C. Dumas, N. Roy, B. Deveaud, F. Clerot, and D.S. Katzer (With 4 Figures)	472
Field-Enhanced GaAs/AlGaAs Waveguide Saturable Absorbers By J.R. Karin, D.J. Derickson, R.J. Helkey, J.E. Bowers, and R.L. Thornton (With 2 Figures)	475
Picosecond Excitonic Nonlinearities in the Presence of Disorder By S.T. Cundiff and D.G. Steel (With 3 Figures)	478
Fast Optical Nonlinearities in Semiconductor Quantum Dots By G. Tamulaitis, R. Baltramiejũnas, S. Pakalnis, and A.I. Ekimov (With 2 Figures)	482
Terahertz Radiation from Coherent Electron Oscillations in a Double-Quantum-Well Structure By H.G. Roskos, M.C. Nuss, J. Shah, K. Leo, D.A.B. Miller, S. Schmitt-Rink, and K. Köhler (With 3 Figures)	484
Optical Generation of Terahertz Pulses from Polarized Excitons in Quantum Wells By P.C.M. Planken and M.C. Nuss (With 3 Figures)	487
Generation of High-Power Single-Cycle Picosecond Radiation By D.R. Dykaar, R.R. Jones, D. You, D. Schumacher,	
and P.H. Bucksbaum (With 3 Figures)	490

Transient Electron Transport in GaAs Quantum Wells: From the Ballistic to the Quasi-Equilibrium Regime By W. Sha, J. Rhee, and T.B. Norris (With 4 Figures)	493
A Novel Free-Standing Absolute-Voltage Probe with 2.3-Picosecond Resolution and 1-Microvolt Sensitivity By J. Kim, S. Williamson, J. Nees, and S. Wakana (With 3 Figures)	496
Picosecond Pseudomorphic AlGaAs/InGaAs MODFET Large-Signal Switching Measured by Electro-Optic Sampling By M.K. Jackson, M.Y. Frankel, J.F. Whitaker, G.A. Mourou, D. Hulin, A. Antonetti, M. Van Hove, W. De Raedt, P. Crozat, and H. Hafdallah (With 3 Figures)	500
Ultrafast Decay of Photodiffractive Gratings in Hetero n-i-p-i's by Enhanced In-Plane Transport By A.L. Smirl, D.S. McCallum, A.N. Cartwright, X.R. Huang, T.F. Boggess, and T.C. Hasenberg (With 2 Figures)	503
Picosecond High-Sensitivity In _x Ga _{1-x} As Photodetectors By S. Gupta, J.F. Whitaker, S.L. Williamson, P. Ho, J.S. Mazurowski, and J.M. Ballingall (With 2 Figures)	505
An Ultrafast Polarization-Independent All-Optical Demultiplexer Utilizing Induced-Frequency Shift By T. Morioka, K. Mori, and M. Saruwatari (With 2 Figures)	508
Electrical Soliton Devices as >100 GHz Signal Sources By E. Carman, M. Case, M. Kamegawa, R. Yu, K. Giboney, and M. Rodwell (With 2 Figures)	511
Determination of Photonic Band Gaps and Dispersion in Two-Dimensional Dielectric Arrays with Ultrafast Electromagnetic Transients By W.M. Robertson, G. Arjavalingam, R.D. Meade, K.D. Brommer,	
A.M. Rappe, and J.D. Joannopoulos (With 2 Figures)	513

Part VIII Biology: Primary Dynamics, Electron and Energy Transfer

Ultrafast Infrared Spectroscopy of Protein Dynamics By R.M. Hochstrasser, R. Diller, S. Maiti, T. Lian, B. Locke, C. Moser, P.L. Dutton, B.R. Cowen, and G.C. Walker (With 5 Figures) 517 Ultrafast Near-IR Spectroscopy of Carbonmonoxymyoglobin: The Dynamics of Protein Relaxation By M. Lim, T.A. Jackson, and P.A. Anfinrud (With 4 Figures) 522

Energetics and Dynamics of Global Protein Motion By R.J.D. Miller, J. Deak, S. Palese, M. Pereira, L. Richard, and L. Schilling (With 2 Figures)	25
Investigation of the Reaction Coordinate for Ligand Rebinding in Photoexcited Hemeproteins Using Transient Raman Spectroscopy By H. Zhu, R. Lingle, Jr., X. Xu, and J.B. Hopkins (With 2 Figures)	28
Resonance Raman Studies of Electronic and Vibrational Relaxation Dynamics in Heme Proteins By P.M. Champion, J.T. Sage, and P. Li	33
Molecular Processes in the Primary Reaction of Photosynthetic Reaction Centers By W. Zinth, C. Lauterwasser, U. Finkele, P. Hamm, S. Schmidt, and W. Kaiser (With 3 Figures)	35
Femtosecond Spontaneous Emission Studies of Photosynthetiic Bacterial Reaction Centers By S.J. Rosenthal, M. Du, X. Xie, T.J. DiMagno, M.E. Schmidt, J.R. Norris, and G.R. Fleming (With 1 Figure)	39
Picosecond Fluorescence Kinetics of Purple Bacterial Reaction Centers	41 43
Primary Radical Pair Formation in Photosystem-Two Reaction Centres By D.R. Klug, J.R. Durrant, G. Hastings, Q. Hong, D.M. Joseph,	46
Energy Transfer and Primary Charge Separation in Heliobacteria by Picosecond Transient Absorption Spectroscopy By P.I. van Noort, T.J. Aartsma, and J. Amesz (With 3 Figures)	49
Excitation Energy Transfer in Mutants of <i>Rb. sphaeroides</i> : The Effects of Changes in the Core Antenna Size By L.M.P. Beekman, R.W. Visschers, K.J. Visscher, B. Althuis, W. Barz, D. Oesterhelt, V. Sundström, and R. van Grondelle	
Ferntosecond Excitation Transfer in Allophycocyanin By A.V. Sharkov, E.V. Khoroshilov, I.V. Kryukov, P.G. Kryukov,	52 55
Femtosecond Förster Energy Transfer over 20 Å in Phycoerythrocyanin (PEC) Trimers By L.O. Palsson, T. Gillbro, A. Sharkov, R. Fischer, and H. Scheer (With 1 Figure)	57

	ergy Transfer Within the Light-Harvesting Antenna	
•	thetic Purple Bacteria scher, V. Gulbinas, R.J. Cogdell, R. van Grondelle, and	
	m (With 2 Figures)	559
Femtosecon	d Dynamics in Rhodopsin	
By T. Koba	yashi, M. Taiji, K. Bryl, M. Nakagawa, and M. Tsuda	
(With 2 Fig	ures)	562
	nd Time-Resolved Spectroscopy of Halorhodopsin ison with Bacteriorhodopsin	
By H. Kand	ori, K. Yoshihara, H. Tomioka, H. Sasabe, and Y. Shichida	
(With 3 Fig	(With 3 Figures)	
Part IX	Chemistry: Electron and Energy Transfer, and Solvation Dynamics	
	d Intermolecular Electron Transfer:	

By K. Yoshihara, A. Yartsev, Y. Nagasawa, H. Kandori, A. Douhal, and K. Kemnitz (With 3 Figures)	571
Ultrafast Studies and Simulations on Direct Photoinduced Electron Transfer in the Betaines By A.E. Johnson, N.E. Levinger, G.C. Walker, and P.F. Barbara (With 3 Figures)	576
Picosecond Infrared Study of Ultrafast Electron Transfer and Vibrational Energy Relaxation in [(NC) ₅ RU ^{II} CNRu ^{III} (NH ₃) ₅] ^{1–} By P.O. Stoutland, S.K. Doorn, R.B. Dyer, and W.H. Woodruff (With 1 Figure)	579
Ultrafast Studies on Intervalence Charge Transfer By K. Tominaga, D.A.V. Kliner, J.T. Hupp, and P.F. Barbara (With 1 Figure)	582
Picosecond Infrared Study of Intramolecular Energy Transfer in [(phen)(CO) ₃ Re ^I (NC)Ru ^{II} (CN)(bpy) ₂] ⁺ By R.B. Dyer, K.A. Peterson, K.C. Gordon, W.H. Woodruff, J.R. Schoonover, T.J. Meyer, and C.A. Bignozzi (With 1 Figure)	585
Noise-Induced Intramolecular Electron Transfer Processes in Polar Media By P.O.J. Scherer	587
Femtosecond Proton Transfer in the Electronic Ground State of Vibrationally Hot Molecules By T. Elsaesser, W. Frey, and M.T. Portella (With 2 Figures)	589

Solvent Effects on the Fast Proton Transfer of 3-Hydroxyflavone By B.J. Schwarz, L.A. Peteanu, and C.B. Harris (With 3 Figures)	592
Time-Resolved Charge Separation in Acceptor-Substituted Anthrylpolyenes By H. Port, G. Quapil, H.C. Wolf, F. Effenberger, CP. Niesert, R. Buhleier, Z. Gogolak, and J. Kuhl (With 2 Figures)	596
Vibrationally Unrelaxed cis-Stilbene Photoproducts Examined Through Two-Color UV Pump-Probe Anti-Stokes Raman Spectroscopy By D.L. Phillips, JM. Rodier, and A.B. Myers (With 4 Figures)	598
Vibrational Energy Redistribution and Relaxation in the Photoisomerization of cis-Stilbene By R.J. Sension, S.T. Repinec, A.Z. Szarka, and R.M. Hochstrasser (With 2 Figures)	601
Photoisomerization of cis-Stilbene in Compressed Solvents By L. Nikowa, D. Schwarzer, J. Troe, and J. Schroeder (With 2 Figures)	603
Ultrafast Torsional Dynamics in Adsorbates: An SSHG Study By M.J.E. Morgenthaler and S.R. Meech (With 1 Figure)	606
Barrierless Photochemical Isomerization By U. Åberg, E. Åkesson, I. Fedchenia, and V. Sundström (With 2 Figures)	608
Femtosecond Molecular Dynamics in Liquids By D.A. Wiersma, E.T.J. Nibbering, and K. Duppen (With 4 Figures)	611
Femtosecond Solvent Dynamics Studied by Time-Resolved Fluorescence and Transient Birefringence By S.J. Rosenthal, N.F. Scherer, M. Cho, X. Xie, M.E. Schmidt,	616
and G.R. Fleming (With 2 Figures)Adiabatic and Nonadiabatic Effects in Solvation DynamicsBy E. Neria and A. Nitzan (With 1 Figure)	618
Excited-State Processes of 7-Azaindole By M. Négrerie, F. Gai, JC. Lambry, JL. Martin, and J.W. Petrich (With 1 Figure)	621
Excited-State Proton Transfer and Hydrogen-Bonding Dynamics in 7-Azaindole: Time-Resolved Fluorescence and Computer Simulation By C.F. Chapman, T.J. Marrone, R.S. Moog, and M. Maroncelli	624
Transient Hole Burning Studies of Electronic State Solvation: Phonon and Structural Contributions By J. Yu, J.T. Fourkas, and M. Berg (With 2 Figures)	626

Subpicosecond Study of the Dynamic Processes in Push-Pull Styrenes and the Role of Solvation By P. Hébert, G. Baldacchino, T. Gustavsson, V. Kabelka, P. Baldeck, and JC. Mialocq (With 3 Figures)	628
Picosecond Studies of Charge Transfer States in "Push-Pull" Linear Diphenyl Polyenes: Experimental Evidence for TICT and Bicimer States By J.M. Viallet, F. Dupuy, R. Lapouyade, W.Q. Zheng, and C. Rullière (With 2 Figures)	631
Features of the Dual Fluorescence of 4-N,N-dialkylaminoalkylbenzoates in Alkanes By M.C.C. de Lange, D.T. Leeson, A.H. Huizer, and C.A.G.O. Varma (With 1 Figure)	634
Investigation of Fast Relaxation Processes in Non-Fluorescent Rhodamine Dyes By P. Plaza, N.D. Hung, M.M. Martin, Y.H. Meyer, and W. Rettig (With 1 Figure)	636
Femtosecond Photodissociation of Aromatic Disulfides Followed by Solvent Relaxation By N.P. Ernsting (With 4 Figures)	638
Femtosecond Dynamics of C–O Bond Cleavage of a Spirooxazine Photochromic Reaction By N. Tamai and H. Masuhara (With 2 Figures)	641
Dynamics of Molecular Rotation at the Air/Water Interface by Time- Resolved Second-Harmonic Generation By A. Castro, D. Zhang, and K.B. Eisenthal (With 5 Figures)	644
Energy Relaxation and Redistribution in Large Molecules in Solution on Ultrafast Time Scales By C.B. Harris, J.C. King, K.E. Schultz, B.J. Schwartz, and J.Z. Zhang (With 2 Figures)	650
Photodissociation and Recombination Dynamics of I_2^- in Solution By J.C. Alfano, D.A.V. Kliner, A.E. Johnson, N.E. Levinger, and P.F. Barbara (With 3 Figures)	653
Probing the Microscopic Molecular Environment in Liquids with Femtosecond Fourier-Transform Raman Spectroscopy By D. McMorrow, S.K. Kim, J.S. Melinger, and W.T. Lotshaw (With 3 Figures)	656
The Homogeneity of Liquid Phase Vibrational Line Broadening from Raman Echo Experiments	658
By L.J. Muller, D. Vanden Bout, and M. Berg (With 2 Figures)	658

Excited State Photoreactions of Chlorine Dioxide in Solution By R.C. Dunn and J.D. Simon (With 2 Figures)	661
Bimolecular Reactions are Power-Full By A. Masad, S.Y. Goldberg, D. Huppert, and N. Agmon (With 4 Figures)	664
Dynamics and Mechanism of Cu-Porphyrin Triplet Quenching Through Liganding by Oxygen-Containing Solvents By V.S. Chirvony and R. Gadonas	667
Fast Processes in Liquid Alkane Photolysis Above the Ionization Threshold By M. Sander, U. Brummund, K. Luther, and J. Troe (With 1 Figure)	669
Index of Contributors	671

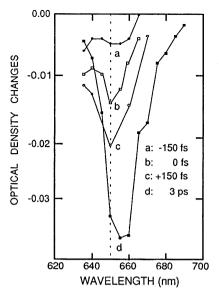
Femtosecond Excitation Transfer in Allophycocyanin

A.V. Sharkov¹, E.V. Khoroshilov¹, I.V. Kryukov¹, P.G. Kryukov¹, T. Gillbro², R. Fischer³, and H. Scheer³

¹P.N. Lebedev Physics Institute, Russian Academy of Sciences, 117924 Moscow, Russia

²Department of Physical Chemistry, University of Umea, S-901 87 Umea, Sweden

³Botanisches Institut der Universität München, W-8000 München, Fed. Rep. of Germany


Allophycocyanin (APC), C-phycocyanin (C-PC) and other biliproteins (phycoerythrin and phycoerythrocyanin) of cyanobacteria and red algae harvest solar energy in regions of the visible spectrum having weak chlorophyll absorption. This excitation energy is then efficiently transferred to chlorophyll in the photosynthetic membrane [1]. Light-harvesting complexes of cyanobacteria (phycobilisomes) consist of several hundred chromophores. The smallest (monomeric) subunit of C-PC consists of three (α -84, β -84 and β -155) chromophores. The APC monomeric subunit consists of two (α -84 and β -84) chromophores. In phycobilisomes APC and C-PC monomeric subunits are organised as trimers. Absorption spectrum of APC monomeric subunit changes drastically upon trimeric formation. Absorption maximum shifts from 620 nm for monomeric preparations to 650 nm with a 620-nm shoulder for trimeric preparations.

Isotropic absorption recovery kinetics with τ =440 fs was recently observed in APC trimers at 615 nm [2-3]. The corresponding anisotropy was constant and close to 0.4 during the first few picoseconds. The results are consistent with a model of APC trimer in which α -84 and β -84 chromophores have different absorption spectra and femtosecond process corresponds to Förster energy transfer from 620-nm chromophore to neighbouring 650-nm one. Now new results from measurements in the 650-nm absorption band is presented here for further understanding of the ultrafast processes in APC trimers.

70-fs pulses at 620 nm from a CPM-laser were amplified at 100 Hz repetition rate in a multipass jet amplifier (pumping at 308 nm) and served as exciting pulses. A part of the amplified light was used for continuum generation. Pump-probe measurements were made with probe pulse polarization parallel or perpendicular to the polarization of the exciting pulse. APC was isolated from *Mastigosladus laminosus*.

Figure 1 shows difference spectra obtained in the 635-690 nm spectral region at parallel polarization of probe relative to the pump pulse. One can see that the bleaching of the 650-nm band is delayed relative to the bleaching of the 620-nm band. The strong red-shifted bleaching at 660 nm, due to stimulated emission, is further delayed relative to the bleaching of the 650-nm band. Fast recovery kinetics (corresponding to the 440-fs process observed at 615 nm [2-3]) was measured at 635 nm after initial bleaching (not shown). In contrast, only rise term was observed at 658 nm within the first picosecond after excitation. Decay of anisotropy from 0.4 to 0.2, however, occurs at that wavelength during this period. Femtosecond processes were not observed in monomeric preparations.

There are two possible explanations for the absorption spectrum of APC trimer. Due to the first one, 650-nm band and 620-nm shoulder both belong to α -84 and β -84 chromophores. One may believe that excitonic coupling between neighbouring α and β chromophores of different monomeric subunits is very strong (620-nm and 650-nm excitonic bands). For C-PC trimers the excitonic coupling (112 cm⁻¹) was calculated on the base of X-ray crystallography data [4]. Förster energy transfer between neighbouring excitonically coupled α and β chromophores with nearly similar absorption spectra was recently observed in C-PC trimers [5].

Difference absorption Fig.1 spectra measured at -150 fs (a), 0 fs (b). +150 fs (c) and 3 ps (d) delay after excitation at 620 nm with polarization of probe pulse parallel to the polatization of exciting pulse. Vertical line corresponds to APC absorption maximum

Unfortunately X-ray data are not available for APC trimers, but the excitonic splitting similar to C-PC could be assumed [6]. The 620-nm band in this case is a vibronic band of 650-nm electronic transition of α and β chromophores. An alternative explanation [3] is that one chromophore in a pair absorbs at 620 nm and the other (most likely β -84) at 650 nm due to a conformational change.

Our results strongly support the latter model. If the 650-nm band and the 620-nm shoulder belong to both chromophores, one should observe simultaneous bleaching of both bands due to ground state depletion. The delay in the bleaching of the 650-nm band (0 fs spectrum in comparison to the -150 fs spectrum) corresponds to Förster energy transfer from a 620-nm donor to the 650-nm acceptor. Absorption recovery observed at 615 nm [2-3] and at 635 nm is due to relaxation of donor molecules to the ground state as a result of excitation energy transfer. Acceptor molecules absorbing mainly at 650 nm participate to a small extend to the isotropic or anisotropic kinetics measured at 615 nm [3]. the strong bleaching appearing near 660 nm is red-shifted relative to the bleaching of the 650-nm band (3 ps spectrum in comparison to 150 fs and 0 fs spectra). This shift is probably due to vibrational relaxation in the acceptor's excited state. Anisotropy decay observed at 658 nm is a result of Förster energy transfer between differently oriented donor and acceptor chromophores (as predicted from C-PC data).

References

- 1. R.MacColl and D.Guard-Friar, "Phycobiliproteins", CRC Press, Boca Raton (1987)
- 2. E.V.Khoroshilov, I.V.Kryukov, P.G.Kryukov, A.V.Sharkov and T.Gillbro, Proc. SPIE Vol. 1403, Laser Applications in Life Sciences (1990), pp. 431-433
- A.V.Sharkov, I.V.Kryukov, E.V.Khoroshilov, P.G.Kryukov, R.Fischer, H.Scheer and T.Gillbro, Chem.Phys.Lett. 191, 633 (1992)
- 4. K. Sauer and H.Scheer, Biochim. Biophys. Acta 936, 157 (1988)
- 5. T.Gillbro, A.V.Sharkov, I.V.Kryukov, E.V.Khoroshilov, P.G.Kryukov, R.Fischer and H.Scheer, Biochim. Biophys. Acta, in press 6. A.R.Holzwarth, E.Bittersmann, W.Reuter and W.Wehrmeyer, Biophys.J. 57, 133
- (1990)