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Abstract

Despite the limitations imposed by the proportional hazards as-
sumption, the Cox model is probably the most popular statistical
tool used to analyze survival data, thanks to its flexibility and ease
of interpretation. For this reason, novel statistical/machine learning
techniques are usually adapted to fit it, including boosting, an itera-
tive technique originally developed in the machine learning community
and later extended to the statistical field. The popularity of boosting
has been further driven by the availability of user-friendly software
such as the R packages mboost and CoxBoost, both of which allow the
implementation of boosting in conjunction with the Cox model. De-
spite the common underlying boosting principles, these two packages
use different techniques: the former is an adaption of the model-based
boosting, while the latter adapts the likelihood-based boosting. Here
we contrast these two boosting techniques as implemented in the R
packages from an analytic point of view, and we examine the solutions
there adopted to treat mandatory variables, i.e. variables that for some
reasons must be included in the model. We explore the possibility of
extending solutions currently only implemented in one package to the
other. We illustrate the usefulness of these extensions through the
application to two real data examples.
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1 Introduction

Among the iterative methods that have been largely exploited during the
recent years in the statistical practice, a particular attention has been gained
by the boosting: originally developed in the machine learning community
(Schapire, 1990; Freund, 1995; Freund & Schapire, 1996), primarily to face
classification problems, it has been successfully translated into the statistical
field (Breiman, 1998; Friedman et al., 2000) and extended to any statistical
problem, including regression and survival analysis. Thanks to its resistance
to overfitting, it is particularly interesting in the construction of prediction
models. Its iterative nature, moreover, allows straightforward adaptations to
cope with high-dimensional data (Bühlmann & Yu, 2003; Bühlmann, 2006;
Tutz & Binder, 2006; Binder & Schumacher, 2008). The so called compo-
nent-wise boosting, in particular, satisfies the two most important needs for a
procedure whose goal is to derive a prediction model from high-dimensional
data: variable selection and shrinkage of the coefficients toward 0. These
two aspects, in particular, are pursued simultaneously. Applied in a para-
metric framework, the basic idea of boosting is to provide estimates of the
parameters by updating their values step by step: at each iteration, a weak
estimator is fitted on a modified version of the data, with the goal of min-
imizing a pre-specified loss function. The obtained value provides a small
contribution used to update the estimate of the parameter: the result of all
the contributions is the final estimate. The boosting relies on two tuning
parameters: a first parameter controls the “weakness” of the estimator and
it is usually called penalty or boosting step (hereafter, we use the former def-
inition). A second one, by far more influential, is related to the stopping
criterion, i.e. specifies how many boosting iterations are performed. The
latter parameter, in particular, plays an important role in avoiding overfit-
ting, and, in case of component-wise version, it also controls the sparsity of
the model, i.e., it is related to the variable selection property. Although the
choice of these tuning parameters is highly relevant (see, for example Mayr
et al., 2012), in this paper we do not consider this issue.

The popularity of the boosting methods has been favored by the avail-
ability of user-friendly software. The R (R Development Core Team, 2014)
package mboost (Hothorn et al., 2010), in particular, provides some routines
which allow the users to apply the boosting to several statistical problems (for
a complete overview, see Bühlmann & Hothorn, 2007; Hofner et al., 2014).
Among these, the routine glmboost with argument family=CoxPH() tackles
time-to-event data when the proportional hazards assumption holds. An-
other R package which exploits the boosting method within the Cox regres-
sion is CoxBoost (Binder, 2013). Despite the common underlying gradient
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boosting idea, these two packages implement different techniques: the former
is an adaption of the model-based boosting (Bühlmann & Yu, 2003), while
the latter adopts the likelihood-based boosting approach (Tutz & Binder,
2006).

The goal of this study is to contrast the algorithms implemented in these
two R packages. For this reason, we focus on time-to-event data, under the
proportional hazard assumptions. Although in the context of survival analy-
sis the possibilities offered by these methods exceed the limitations imposed
by the Cox model, we note that a large part of the biomedical applications,
especially those involving high-dimensional data, relies on this model. The
case of high-dimensional data is highly relevant for our study because, in this
situation, the traditional statistical tools stop to work and the boosting is
a really attractive alternative. For this reason, and because it is the boost-
ing version implemented in mboost and CoxBoost, in the paper we will pay
particular attention to the component-wise boosting.

An important part of our comparison concerns the treatment of manda-
tory variables, i.e. those variables that for some reasons must be treated in a
special way in the statistical analysis. Typical examples are clinical variables
in biomedical studies also involving omics data: several papers (see, e.g.,
Binder & Schumacher, 2008; Boulesteix & Sauerbrei, 2011; De Bin et al.,
2014b) show that by considering the clinical variables as mandatory it is
possible to obtain better prediction models than by simply merging them
with the omics data. We will see that the two R packages implement two
different strategies to deal with this issue, and, as a novel contribution of the
paper, we will explore the possibility of extending solutions currently only
implemented in one package to the other.

The paper is organized as follows: in Section 2 we introduce the Cox
model and we briefly review the two boosting algorithms implemented in
mboost and CoxBoost. In Section 3 we contrast these two algorithms showing
their similarities and differences as particular cases of the general gradient
descending boosting algorithm (Friedman, 2001). The comparison continues
in Section 4, where we focus on the issue of mandatory variables and we show
how to increase the potential of one boosting package by implementing the
solution adopted by the other. A small example with simulated data and
two real data applications are shown in Section 5. Some final considerations
are reported in Section 6.
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2 Methods

2.1 Background

Let us consider the time-to-event data (t,X, δ), where t is the n-dimensional
vector of the observed survival times, X the n × p matrix of the data and
δ an n-dimensional vector reporting whether the i-th observed survival time
t(i) is censored (δ(i) = 1) or not (δ(i) = 0), i = 1, . . . , n. Hereafter, we
suppose, without loss of generalization, that the variables are standardized,
i.e. E[Xj] = 0 and V ar[Xj] = 1, ∀j = 1, . . . , p.

To cope with this kind of data, one usually use the Cox model (Cox, 1972)
to describe the hazard function λ(t|X),

λ(t|X) = λ0(t) exp(X>β), (1)

where λ0(t) is the baseline hazard function and β the p-dimensional vector of
the regression coefficients. A nice property of the Cox model is that it is not
necessary to consider λ0(t) to estimate β, as β is estimated by maximizing
the partial log-likelihood

pl(β) =
n∑

i=1

δi(X
(i))>β − log


∑

l∈R(i)

exp{(X(l))>β}


 .

Here R(i) is the set of the observations at risk at time t(i), while X(i) denotes
the i-th observation.

From (1) we note that the hazard function depends in a multiplicative
way on β, i.e. the hazard ratio between two observations is proportional over
the time. Despite this pretty stringent assumption (usually called propor-
tional hazards assumption), the Cox model is by far the most used tool in the
biomedical practice, thanks to the relative ease of interpretation of its regres-
sion coefficients. In particular, many approaches related to high-dimensional
problems are based on it (Binder & Schumacher, 2008).

The Cox model is also the basis of the two boosting algorithms imple-
mented in the R packages mboost and CoxBoost. Before analyzing these two
specific implementations, we first review the underlying boosting idea, using
the concept of functional gradient descending technique (Friedman, 2001).
This statistical interpretation of boosting is not unanimous accepted (see,
for example, Mease & Wyner, 2008), but it provides a good understanding
of the method. Let us call L(y, F (X)) a generic loss function, where F (X)
is a statistical model. The goal is to estimate F (X) by iteratively updating
its value through a base learner h(y,X). The boosting algorithm can be
described as follows:
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1. initialize the estimate, e.g., F̂ (X) = constant;

2. compute the negative gradient vector, u = − ∂L(y,F (X))
∂F (X)

∣∣∣
F (X)=F̂ (X)

;

3. compute the update by:

3.1 fit the base learner to the negative gradient vector, ĥ(u,X);

3.2 penalize the value, f̂(X) = νĥ(u,X);

4. update the estimate, F̂ (X) = F̂ (X) + f̂(X).

In the algorithm, steps from 2 to 4 are repeated mstop times, where mstop

denotes the number of boosting iterations. The penalty ν is the other tuning
parameter and can assume values between 0 and 1.

This algorithm is very general and can be adapted to several statistical
problems. In this paper we focus on applications that are related to the Cox
regression and that potentially deal with high-dimensional data. Therefore,
in the following we mainly consider the component-wise version of the boost-
ing, in which the algorithm described above is modified in order to update
F̂ (X) using only one dimension of X in each boosting iteration. In partic-
ular, the steps 3 and 4 are applied separately to the different columns of
X, generating p possible updates f̂j(X). An additional step is then imple-
mented to identify which of the p possible updates should be used in the
last updating step. Since we restrict our analysis in the Cox regression case,
hereafter we consider the parametric version of the boosting, where F (X) is
a parametrized class of functions, F (X, β) and therefore the update process
involves only the estimate of the parameter. The parametric component-wise
boosting algorithm is:

1. initialize the estimate, e.g., β̂ = (0, . . . , 0);

2. compute the negative gradient vector, u = − ∂L(y,F (X,β))
∂F (X,β)

∣∣∣
β=β̂

;

3. compute the possible updates by:

3.1 fit the base learner to the negative gradient vector, ĥ(u,Xj);

3.2 penalize the value, b̂j = νĥ(u,Xj);

4. select the best update j∗ (usually that minimizing the loss function);

5. update the estimate, β̂j∗ = β̂j∗ + b̂j.

The steps to be repeated mstop times are those between 2 and 5. The quantity

b̂j is also called weak estimator.

5



2.2 mboost for Cox regression

The R package mboost is a general tool to implement the boosting. In par-
ticular, its function glmboost allows to implement the model-based boosting
under different models, by implementing the appropriate function for the
option family. To perform the Cox regression, the pre-built function CoxPH
is available. Its implementation is based on the work of Ridgeway (1999),
who derived the formula for the gradient vector u. The routine glmboost
is a direct implementation of the functional descending gradient algorithm,
in which L(y, F (X)) is substituted with the negative partial log-likelihood
and ĥ(u,Xj) with the least square estimator (X>X)−1X>u. In details, for
the Cox regression, the model-based boosting algorithms can be described as
follows:

1. initialize β̂ = (0, . . . , 0);

2. compute the negative gradient vector, ui = δi−
∑

l∈R(i) δl
exp{X(l)

j β̂j}
∑
k∈R(l) exp{X(k)

j β̂j}
;

3. compute the possible updates by applying the least square estimator
to the negative gradient vector, b̂j = (X>j Xj)

−1X>j u;

4. select the best update, j∗ = argminj
∑n

i=1(u
(i) −X(i)

j b̂j)
2;

5. update the estimate, β̂j∗ = β̂j∗ + νb̂j∗ .

Steps from 2 to 5 are repeated mstop times.

In practice, starting from β̂ = (0, . . . , 0), the algorithm computes the
gradient vector of pl(β) with respect to F (Xj, β), i.e. the direction in which

the slope of the partial log-likelihood is locally (in β̂) more steep (Ridgeway,
1999). A multivariate linear regression is then performed to regress this
vector (u) on each Xj. The value of b̂j which minimizes the residual sum

of squares, shrunk by ν, is then used to update β̂. Roughly speaking, the
boosting algorithm “climbs” the partial log-likelihood step by step in the
direction which is more correlated with the steepest way to “climb” it. This
procedure is iteratively performed mstop times. In case of p < n, β̂ → β̂MPLE

as mstop → ∞. The acronym MPLE stays for “maximum partial likelihood
estimate”.

2.3 CoxBoost : likelihood-based boosting in the Cox
model

The R package CoxBoost implements in the case of time-to-event data the
likelihood-based boosting approach. This approach uses as a loss function
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the negative L2-norm penalized partial log-likelihood,

plpen(β) = pl(β)− 0.5λβ>Pβ,

where P is a p× p matrix usually corresponding to the identity matrix. To
save the iterative updates of the parameter estimate, an offset term η̂ = X>β̂
is added to this log-likelihood, obtaining a function of the form

plCBpen(β) =
n∑

i=1

δi


η̂(i) + (X(i))>β − log


∑

l∈R(i)

exp{η̂(l) +X(l)>β}




−λ

2
β>Pβ.

(2)
At each boosting iteration, the maximizer of this function is applied to com-
pute the possible update(s). To better understand the procedure, let us first
consider a non-component-wise version, applicable only if p < n. The maxi-
mizer of (2) is a “weak estimator” because it provides an estimate that highly
shrink toward 0 the MPLE. Let focus on the parameter space: as a first it-
eration, the partial log-likelihood is “shifted” toward the origin by applying
the penalty term, obtaining the penalized partial log-likelihood plpen(β). The
values of the coordinates of the maximum of plpen(β) are a (small) fraction of
related coordinate of the MPLE. The amount of this shrinkage for the differ-
ent coordinates depends on λ. In particular, a large value of λ has the effect
of strongly moving the partial log-likelihood close to the origin, obtaining a
penalized partial log-likelihood whose maximum has coordinates which are a
very small proportion of those of the MPLE.

The new β̂ is added to the offset term, and the procedure is re-implemented
from this point of the parameter space. Through λ, the partial log-likelihood
is now “shifted” toward β̂ and a new value of the update is computed, mov-
ing β̂ toward the MPLE. Also in this case β̂ → β̂MPLE as mstop → ∞ . It

is worth noting that, since λ is constant, the updates to β̂ become smaller
and smaller as far as we proceed with the boosting iterations. Therefore β̂
continuously approaches the MPLE without reaching it.

The component-wise version follows a similar idea, but the procedure
is applied on the p restricted partial log-likelihoods pl(βj). At each boost-

ing iteration, the restricted partial log-likelihoods are “shifted” toward β̂j,

obtaining the restricted penalized partial log-likelihoods plCBpen(βj|β̂). The ar-
guments of the maximums of these functions are the candidate updates, and
the one which maximizes the penalized partial log-likelihoods is added to the
offset term. In scheme:

1. initialize β̂ = (0, . . . , 0);
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2-3. compute the possible updates by a first order approximation around 0

of the restricted MPLE b̂LBj =
plLBβj

(0|β̂j)
−plLBβjβj (0|β̂j)

;

4. select the best update j∗ = argmin1≤j≤ppl
LB
βj

(0|β̂)2/[−plLBβjβj(0|β̂)];

5. update the estimate, β̂j∗ = β̂j∗ + b̂LBj∗ .

Steps 2-3 – 4 are repeated mstop times. Here plLBβj (βj) =
∂plLBpen(βj)

∂βj
denotes the

score and plLBβjβj(βj) =
∂2plLBpen(βj)

∂β2
j

the observed information. The equation at

step 4 is the first order approximation around 0 of plLBpen(β), implemented in
CoxBoost for computational reasons Binder & Schumacher (2008).

3 Comparison

At a first sight, the two boosting procedures seem quite different. The up-
dates computed within the model-based boosting are based on the correla-
tion between the observations and the negative gradient vector, while for
the likelihood-based boosting this procedure involves the maximization of
a log-likelihood. Moreover, the penalty term is applied in two completely
different ways, multiplied to the updates in the former case, directly on the
partial log-likelihood in the latter. In general, these aspects would make the
two procedures non-comparable: for example, the penalty parameters would
shrink the estimates obtained in each boosting iteration in a very different
way depending on the correlation structure of X: we will discuss this aspect
in Section 6. Involving only one dimension of X at each iteration, how-
ever, the component-wise versions of the boosting procedures implemented
in mboost and CoxBoost are not related to this issue. Moreover, we will
see that the form of the linear predictor of the Cox model makes the two
boosting procedures even more similar.

As a first step of the comparison, we rewrite the likelihood-based boosting
procedure as a functional gradient descending technique:

1. initialize β̂ = (0, . . . , 0);

2. compute the negative gradient vector u =
∂pl(F (Xj ,βj))

∂F (Xj ,βj)

∣∣∣
β=β̂

3. compute the possible updates as b̂LBj =

(
u
∂F (Xj ,βj)

∂βj

∣∣∣
β̂j=0

)
/


−

∂u
∂F (Xj,βj)

∂βj

∂βj

∣∣∣∣∣
β̂j=0

+ λ
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4. select the best update j∗ = argmin1≤j≤p

(
u
∂F (Xj ,βj)

∂βj

∣∣∣
β̂j=0

)2

/


−

∂u
∂F (Xj,βj)

∂βj

∂βj

∣∣∣∣∣
β̂j=0

+ λ


;

5. update the estimate, β̂j∗ = β̂j∗ + b̂LBj∗ .

As before, steps from 2 to 5 are repeated mstop times.
This formulation makes clear that both procedures rely on the negative

gradient vector to identify the best “direction” in which the estimate can be
improved, and both add this improvement, suitably penalized, to the current
value of the estimate. The likelihood-based boosting, in particular, uses
the negative gradient vector to derive the score function and the observed
information. We saw that these quantities are then used to compute the first
order approximation of the maximum penalized partial likelihood estimate
around 0. Let us focus on this quantity and contrast it with the update
derived with the model-based boosting. The formulas are

b̂CBj =

u
∂F (Xj ,βj)

∂βj

∣∣∣
β̂j=0

−
∂u

∂F (Xj,βj)

∂βj

∂βj

∣∣∣∣∣
β̂j=0

+ λ

and νb̂MB
j = ν

uXj

X>j Xj

,

respectively. Ignore for the moment the penalty parameters. In the case
of linear F (Xj, βj), as for the Cox regression, ∂F (Xj, βj)/∂βj = Xj, and
therefore the two numerators are equal. The same is not true for the denom-
inators: the observed information for the Cox model, including the offset
term η̂ = X>β̂, indeed, is

−
∂u

∂F (Xj,βj)

∂βj

∂βj

∣∣∣∣∣
β̂j=0

=

=
∑n

i=1 δi

{
∑
l∈Ri (X

(l)
j )2eX

(l)β̂
∑
l∈Ri e

X(l)β̂

(∑
l∈Ri e

X(l)β̂
)2 −

(∑
l∈Ri X

(l)
j eX

(l)β̂
)2

(∑
l∈Ri e

X(l)β̂
)2

}
,

clearly different from the simple X2
j of b̂MB

j . Using the negative gradient vec-
tor in this term as well, indeed, the likelihood-based boosting weak estimator
takes into account the concavity of the loss function in the current point of
the parametric space (β̂), while that the model-based boosting estimators
uses a sort of parabolic approximation.
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Remark 1. It is easy to see that in case of linear regression the two boosting
techniques provide the same results. In the linear regression case, i.e., with

the Gaussian density as the loss function,
∂2pl(βj)

∂β2
j

= X>j Xj and the two

denominators are also equal. In case of generalized linear model, instead, the
weak estimator for the likelihood-based boosting has form

b̂CBj =
Xju

V (µ)X2
j

,

where µ = g−1(F (X, β)), with g the canonical link function, and V (µ) is the
variance function (for more details, see McCullagh & Nelder, 1989, Section
2). Also in this case the denominator depends on β̂ and the two algorithms
provide different results. It is possible to obtain with the model-based boost-
ing the same possible updates of the likelihood-based boosting by using a
weighted least square estimator instead of the simple least square estimator.

Remark 2. In the previous remark we claimed that the two procedures in
the linear regression case provide the same results. This is true for suitable
values of the penalty parameters ν and λ. With standardized X, simple
algebra shows that the two estimators are equal if λ = n(1 − ν)/ν. In the
likelihood-based boosting, λ can assume values from 0, no penalty, to infinity,
while in the model-based boosting, ν assumes values between 0 and 1, where
0 corresponds to λ =∞ and 1 to λ = 0. The recommendations of setting λ
“sufficiently large” (Binder & Schumacher, 2008) and ν “sufficiently small”
(Bühlmann & Hothorn, 2007), therefore, coincide.

Obviously, one could modify the values of the penalty parameters to force
the two boosting procedures to give the same results in the Cox regression
case as well. This can be done by setting

λ =
X>j Xj + νplβjβj(0|β̂)

ν
. (3)

Since this equation depends on β̂, it is clear that different values for the
penalty parameters should be provided in each boosting iteration. Alterna-
tively, the matrix P should include suitable weights.

Remark 3. The learning path of the two boosting procedures may also
differ due to the different choice of which dimension should be updated at
each boosting step. In glmboost the choice is based on the residuals of the
regression of u on Xj, while CoxBoost select the dimension which results
in the largest decrease of the penalized partial log-likelihood function. As
noted before, using a penalized version of the loss function in this step may
be advantageous (Mayr et al., 2014).
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4 Allowing for mandatory variables

4.1 Background

In the last years, the importance of combining clinical and molecular data in
a prediction model becomes clear in the biomedical field, and recent studies
contrasted different solutions and methods to profitably use both kinds of
data in the model building process (Boulesteix & Sauerbrei, 2011; De Bin
et al., 2014b; Truntzer et al., 2014). The main issue related to the combina-
tion of clinical and molecular information is the different nature of the data,
which belong to the low- and the high-dimensional world, respectively. The
consequence is that, if not adequately treated, the risk of “losing” the clinical
information among the high number of molecular variables is high (Binder
& Schumacher, 2008; Boulesteix & Sauerbrei, 2011).

Both the R packages under investigation tackle this issue by consider-
ing the clinical variables as mandatory: in CoxBoost there is the possibility,
through the argument unpen.index, to exclude some variables from the pe-
nalization (Binder & Schumacher, 2008). With mboost, instead, it is possi-
ble to perform a two-step procedure in which the mandatory variables are
summarized in a score (in our case, typically the linear predictor of a Cox
model) that is later used as an offset in the boosting procedure (Boulesteix
& Hothorn, 2010).

In Boulesteix & Sauerbrei (2011), these two strategies are called “fa-
voring” and “residuals”, respectively (De Bin et al. (2014b) use the more
opportune term “clinical offset” for the latter strategy). These two strate-
gies have some theoretical differences which may influence the model building
process and may result more adequate in specific situations. In particular,
the “clinical offset” strategy implemented in mboost may lead to better re-
sults when there is a strong consensus on the effect (regression coefficients)
of the clinical (mandatory) variables: the clinical regression coefficients are
not modified by the boosting procedure, which only exploits the molecular
data to explain the part of the outcome variability not already explained by
the clinical model.

The “favoring” strategy implemented in CoxBoost follows a different idea,
allowing the coefficients of the clinical variables to change during the boost-
ing procedure: at each iteration, the coefficients of the clinical variables are
adapted to take into consideration the information provided by the molec-
ular variables. In this way, it may be possible to better integrate the clin-
ical and the molecular information. Binder & Schumacher (2008) defined
two ways to perform the stepwise update of the mandatory variables in the
likelihood-based component-wise bootstrap framework: in the former, the
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p0 < n mandatory variables are considered in turn with one of the other
p − p0 variables, with the matrix P associated with the penalty term con-
taining 0 in correspondence to the mandatory variables. The latter way,
implemented in CoxBoost, instead, consists in updating the regression co-
efficients of the mandatory variables as a further step before each boosting
iteration.

As we stated above, the two strategies to deal with mandatory variables
have advantages that may depend on the structure of the data. Therefore, it
would be valuable to have the chance to apply both the strategies in both the
likelihood- and model-based boosting approaches, to extend the possibilities
offered by the two packages. In the following, we consider without loss of
generality that the first p0 columns of X contain the mandatory variables.

4.2 Favoring strategy in glmboost

We can allow the regression coefficients of the mandatory variables to vary
through the iterations following the model-based boosting. At each boosting
iteration, we simultaneously estimate the coefficients of the mandatory and
one of the non-mandatory variables, i.e., for each j = p0+1, . . . , p, we regress
the negative gradient vector on X+

j = (X1, . . . , Xp0 , Xj). The choice of the
best update is performed as in the regular algorithm, while the penalization
is applied only to the last component of the update, that corresponding to
the non-mandatory variable:

1. initialize β̂ = (0, 0, . . . , 0);

2. compute the negative gradient vector u;

3. for each optional variable, compute the possible updates of the coeffi-
cients estimates together with the mandatory variables, b̂j = (X+>

j X+
j )−1X+>

j u;

4. select the update which minimizes the residual sum of squares;

5. update the estimate β̂[1,...,p0,j∗] = β̂[1,...,p0,j∗]+(b̂j∗[1], . . . , b̂j∗[p0], νb̂j∗[p0+1]).

Step 2 – 5 are repeated mstop times. The matrix (X+>
j X+

j )−1X+>
j is common

in each boosting iteration, and therefore it is sufficient to compute it only
once for the (p − p0) non-mandatory variables. It is worth noting that in
our implementation the regression coefficient of the mandatory variables are
not shrunken toward 0. We could do that by applying a penalty νclin to the
relative components of the update.

Please note that within this approach, in step 4 we do not select the most
significant variable in absolute, but that which explain better the response
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in concert with the mandatory variables. From a prediction point of view,
it means that we select the predictor with largest added predictive value
(Boulesteix & Sauerbrei, 2011; De Bin et al., 2014a) instead of that with
larger predictive value.

4.3 Clinical offset strategy in CoxBoost

To implement the clinical offset strategy into the CoxBoost routine we ba-
sically need a preliminary step in which we fit a Cox model including the
mandatory variables. The linear predictor is then included before the first
boosting iteration in η̂, and the likelihood-based procedure works as usual.
Since no iteration will involve the mandatory variables, their regression coef-
ficients are not modified by the boosting procedure. It is worth noting that in
this way the boosting works using a penalized restricted partial log-likelihood
as a loss function, where the parameters related to the mandatory variables
are substituted with their maximum partial likelihood estimates.

1. compute the maximum partial likelihood estimate for the coefficient
related to the mandatory variables, β̂0, . . . , β̂p0;

2. initialize β̂ = (β̂1, . . . , β̂p0 , 0, . . . , 0);

3. compute, for j = p0 + 1, . . . , p, the potential updates using b̂LBj ;

4. determine which b̂LBj maximizes the penalized partial log-likelihood;

5. update the parameter estimate β̂j = β̂j + b̂LBj using the b̂LBj selected in
step 4.

Repeat steps 3 – 5 mstop times. Please note that, from a prediction point of
view, following this approach we also select the predictor with largest added
predictive value.

5 Examples

5.1 Simulated data.

In order to to illustrate the similarities and differences between the likelihood-
based and the model-based boosting outlined in Section 3, we conduct a very
simple simulation study. We focus on the two-variable regression case, in
which it is possible to draw the likelihood function and show the boosting
learning path of the component-wise boosting for the linear and the Cox
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regressions. We generate n = 200 observations (X1, X2) from a bivariate
Gaussian distribution with 0 mean and covariance matrix

Σ =

[
1 0.7

0.7 1

]
.

For the linear regression case, we generate the response y1, . . . , yn from a
Gaussian distribution with variance 1 and mean β1X1 +β2X2, where β1 = 2,
β2 = 3. We center y around its mean and standardize X1 and X2. We use the
recommended value of 0.1 for the model-based boosting penalty parameter ν
and the corresponding λ = (n−1)(1−0.1)/0.1 = 1791 for the likelihood-based
boosting. Please note that the (n−1) substitute n due to the standardization
performed with an unbiased estimator of the variance.

For the Cox regression case, instead, we generate the survival times t
through the formula

t = −0.1
log(a)

eβ1X1+β2X2
,

where a is generated from a uniform distribution between 0 and 1. If t is
smaller than a random draw from an exponential distribution with rate 0.1,
it is the observed time, while if it is larger, the observation is considered
censored and the value generated from the exponential distribution is the
observed time. For more details on this simulation model, see Binder &
Schumacher (2008). In this case, we deliberately choose a non-optimal value
for the penalty parameter in order to show more efficaciously the different
learning path. In fact, we set ν = 0.25 for the model-based boosting and
the corresponding λ = (n− 1)(1− 0.25)/0.25 = 597 for the likelihood-based
boosting.

Figure 1 shows that, in case of linear regression, the component-wise
versions of the model-based and the likelihood-based boosting procedures
provide the same results. Conversely, in Figure 2, we clearly see that the
equivalence does not hold in the case of Cox regression. Please note that the
magnitude of the difference depends on the value of the parameters ν and
λ. Reducing ν and, in parallel, increasing λ, indeed, lead to learning paths
always more similar, with both approaching the learning path of the least
angle regression (Efron et al., 2004) for ν → 0 and λ→∞, respectively.

Table 1 reports the values obtained for β̂ in the first 10 boosting itera-
tions. Starting from β̂ = (0, 0), we obtain the update candidates b̂

[1]
1 = 0.204,

b̂
[1]
2 = 0.219 for CoxBoost and νb̂

[1]
1 = 0.178, νb̂

[1]
2 = 0.191 for glmboost. As

we have seen, the differences lies in the denominator of the two estimators:
the numerators coincide and are equal to 142.004 and 151.811, for b̂

[1]
1 and

b̂
[1]
2 , respectively. Here the superscript [m] denotes the m-th boosting itera-

tion. For CoxBoost these values are divided by the information, 694.845 and
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linear regression − componentwise boosting
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Figure 1: Learning path of the component-wise versions of the two boosting
approaches in the linear regression case. The contour lines represent the
levels of the normalized log-likelihood.

692.533, respectively, while for glmboost they are divided by X>j Xj/ν, which,
since we are using standardized predictors, corresponds to (n− 1)/ν = 796,
despite the index j. The results are different unless equation (3) is satisfied.
In particular, keeping λ fixed, this equation requires ν to be equal to 0.286
for b̂

[1]
1 and to 0.287 for b̂

[1]
2 : in Table 1, 0.219 is indeed 0.191 × 0.287/0.25.

In the first step, both the techniques select the second candidate, being the
values of the loss function −29.021 versus −33.279 in CoxBoost (approxima-
tion of the profile penalized partial log-likelihood) and 67.442 versus 52.961
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Component−wise boosting in Cox regression
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Figure 2: Learning path of the component-wise versions of the boosting
approaches in the Cox regression case. The contour lines represent the levels
of the normalized partial log-likelihood.

in glmboost (residual sum of squares). This is not always the case, as we

can see from in the second step: in this case the candidates are b̂
[2]
1 = 0.192,

b̂
[2]
2 = 0.192 for CoxBoost and νb̂

[2]
1 = 0.168, νb̂

[2]
2 = 0.168 for glmboost, which

lead to the values of loss function −25.385 versus −25.348 (CoxBost) and
54.349 versus 53.486 (glmboost). In this case, the former techniques update
β̂1, while the latter again β̂2.
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boosting CoxBoost mboost

iteration β̂1 β̂2 β̂1 β̂2
0 0.000 0.000 0.000 0.000
1 0.000 0.219 0.000 0.191
2 0.192 0.219 0.000 0.359
3 0.192 0.402 0.160 0.359
4 0.192 0.565 0.160 0.503
5 0.344 0.565 0.296 0.503
6 0.344 0.706 0.296 0.627
7 0.473 0.706 0.413 0.627
8 0.473 0.829 0.413 0.738
9 0.585 0.829 0.515 0.738
10 0.585 0.939 0.515 0.836

Table 1: Estimates of the Cox regression coefficients in the first 10 steps of
the boosting procedures.

5.2 Colon cancer data

In this example, we would like to show the possible advantages of using a
favoring strategy over the default clinical offset in the model-based boosting.
We use the data on colon cancer presented in a study by Marisa et al. (2013)
and publicly available in the ArrayExpress web repository with reference
number E-GEOD-39582.

The dataset contains 566 observations split into a training (443) and a test
set (123). Out of these observations, 10 were discarded due to missing values,
obtaining a training set of 439 and a validation set of 117 observations. In
particular, the effective sample size, i.e. the number of observations with an
event (δi = 1) is 141 and 36. We have information about 4 clinical variables,
namely sex, age, subtype and stage. The latter two are categorical variables
with 6 and 4 modalities, and we need to transform them in dummy variables.
The molecular data, instead, consist in 54675 gene expressions determined
on Affymetrix U133 Plus 2.0 chips.

In order to implement the model-based boosting, we centered the contin-
uous variables, namely the age and the gene expressions. Please note that for
centering the variables we use the means computed on the training set only.
We set the penalty term ν = 0.1 and select the number of boosting iterations
mstop via a repeated 10-fold cross-validation, which consists of merging the
results of several 10-fold cross-validation replications in order to make the
results robust with respect to the specific split of the data in the 10 folds
(see also Boulesteix et al., 2013).
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Figure 3: Prediction error curves based on the Brier score computed in the
test set for the null model (continuous line) and for the boosting models
obtained following a naive (dot-dashed line), a clinical offset (dashed line)
and a favoring (dotted line) strategy.

We evaluated the performance of the models obtained by following differ-
ent strategies to combine clinical and molecular data in terms of Brier score
(Graf et al., 1999), a time-dependent quadratic score for survival data. The
results are summarized in the so called “prediction error curves” using the R
packages pec (Mogensen et al., 2012). It is worth noting that all models are
trained in the training set and their performance evaluated in the test set
only. As we can see in Figure 3, in this example there is a small improvement
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in performing the favoring strategy (dotted line) rather than following the
clinical offset strategy (dashed line). This example, moreover, shows very
clearly the importance of treating the clinical and the molecular variables in
a different way in the model building process: implementing a naive strategy
in which the two kinds of data are simply merged together ignoring their
differences, indeed, we obtain a definitely worse prediction (dot-dashed line).

5.3 Advanced prostate cancer

In this example we see a case in which the likelihood-base boosting bene-
fits from the implementation of the clinical offset strategy with respect to
the favoring one. In this case, we focus on a low dimensional example,
in particular on a well-known dataset about advanced prostate cancer first
analyzed using a Cox model by Byar & Green (1980). The data are pub-
licly available at http://portal.uni-freiburg.de/imbi/Royston-Sauerbrei-book/,
as supplementary file of Royston & Sauerbrei (2008). In this study, informa-
tion on 12 variables were collected, some without any technical measurement
(namely age and history of cardiovascular disease, continuous and binary,
respectively) and other with the help of some instruments (weight, systolic
blood pressure, diastolic blood pressure, size of the primary tumor, serum
acid phosphatase, hemoglobin, Gleason stage-grade category as continuous
variables, performance status, presence of bones metastases and tumor stage
as binary variables). We consider the former two (age and history of cardio-
vascular disease) as mandatory variables, the latter as optional. It is clear
that this split is quite artificial, but we are mainly interested in the effect of
the boosting procedure rather than in the substantive research question.

The dataset contains information about 475 patients with 338 events.
Since a separation between training and test sets is not available, we ran-
domly split the observations with a 2/3 ratio, obtaining a training set with
317 observations and a test sets with sample size equal to 158. To reduce the
dependence on the specific split, we repeat the analysis 100 times, generating
different training and test sets. For each of these split, we standardized all
the continuous variables and codified the binary variables using the values
(−1; 1). The observations in the test sets are standardized using the standard
deviation computed on the corresponding training set.

For each split, we compute the value of the penalty parameter λ using the
routine optimCoxBoostPenalty of the package CoxBoost. We compute this
value only once, and then use it for all the boosting implementations of the
different strategies. The effect of the parameter λ on the results, indeed, is
not particularly relevant, and Binder & Schumacher (2008) claimed that it is
only important that it has the right magnitude. For the computation of the
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number of boosting iterations mstop, instead, we use a 10-fold cross-validation
procedure, specific for each strategy implementation. Again, the models are
trained using the training set and evaluated using the test set only in terms
of Brier score.
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Figure 4: Prediction error curves obtained by averaging the Brier scores
computed in the several test sets for the null model (continuous line) and for
the boosting models obtained following a naive (dot-dashed line), a clinical
offset (dashed line) and a favoring (dotted line) strategy.

Figure 4 shows the results. In this case, the clinical offset strategy (dashed
line) performs slightly better than the favoring one (dotted line). It is worth
noting that, in this example, both the mandatory and the optional parts are
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low-dimensional, and therefore there is no strong advantage is using a special
strategy to combine them. In particular, as expected, the favoring and the
naive strategy lead to the same prediction error.

6 Discussion

In this paper, we contrasted the model- and likelihood-based boosting algo-
rithms for the Cox regression implemented in the R packages mboost and
CoxBoost. We showed that they follow different learning paths, conversely
to the linear regression case in which the same result is produced, provid-
ing λ = n(1 − ν)/ν. It is worth noting that the equivalence in the linear
regression case only works for the component-wise version of the boosting.
In the non-component-wise version, when we update all the dimensions of β
simultaneously, indeed, the two weak estimators have the form

b̂CB = (X>X + λP )−1X>u and νb̂MB = ν(X>X)−1X>u,

for the likelihood- and the model-based boosting, respectively. While the
model-based penalty ν affects all the dimensions in the same way, the penalty
λ penalizes the dimensions with respect to the correlation structure of X.
Consider P = Ip, the identity matrix used as default in CoxBoost. The weak

estimator b̂CB is then a ridge estimator: in the regression procedure, when the
response is projected on the orthonormal basis of the explanatory variables
(columns of X), the penalty term shrinks the coordinates (inversely) propor-
tionally to the variance of the related principal components. This means, in
particular, that the term λ penalizes (shrinks) more the coefficients related
to principal components with low variance. If we look at the predictive val-
ues obtained through the two algorithms, denoting with B the orthonormal
basis of the columns of X, we obtain

ŷMB = B diag(1− (1− ν)m+1)B>y

ŷCB = B diag(1− (1− dj
dj+λ

)m+1)B>y,

where dj, j = 1, . . . , p is the j-th eigenvalue of the matrix X>X (divided by
n, is the variance of the principal component) and m indicates the number
of iterations performed. Substituting m with 0 we obtain the formula for
the single step update. It is worth noting that, due to its stage-wise nature,
the algorithm of boosting ridge regression leads to a different penalization
(and, therefore, to different estimates) than the usual ridge regression (Tutz
& Binder, 2006).
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We can obtain a uniform penalization with the likelihood-based boosting
by setting P = (1/n)X>X, provided that the columns of X are centered in
0 and standardized. In this case, in particular, (1/n)X>X represents the
correlation matrix of X.

It is worth noting that it is possible to use a penalized least square estima-
tor within the model-boosting algorithm as well. This solution seems to gain
popularity (see, e.g., Hofner et al., 2014), because it allows to better handle
categorical variables. Please note that in this case the whole penalization is
a combination of the effect of λ and ν. Another issue related to categorical
variables is related to their variance. In this paper, we considered standard-
ized X, but we saw in the examples that in practical situations we need a
standardize process. The likelihood-based boosting, in particular, needs all
Xj having variance 1. For this reason, in the Example 5.2 we codified the
dummy variables as (−1; 1). In case of completely balanced observations,
the variance of the binary variables is then equal to 1. Unfortunately, this
happens rarely in practice. A possible solution which does not require the
standardization of X is to substitute P with the covariance matrix of X or, in
case of component-wise version, with diag((1/n)X>X). In this way we would
standardize the binary variables using their observed standard deviation as
well.

We would like to remind that the main focus of this paper was on the Cox
regression case, in which the effect of the regression parameter is relatively
easy to understand. For these reasons, here we did not consider more sophisti-
cated boosting versions which include non-linear effects (Schmid & Hothorn,
2008; Hofner et al., 2013) or are based on a tree-based approach (Ridgeway,
2010). A different possibility to treat survival data using glmboost is provided
by Hothorn et al. (2006): instead of using the partial log-likelihood as the
loss function, they modify the boosting algorithm for the linear regression
(L2Boosting Bühlmann & Yu, 2003), adapting the loss function (Gaussian
log-likelihood) and the least square estimator by adding some weights to take
into account the censored nature of the data (Hothorn et al., 2006; Bühlmann
& Hothorn, 2007). In particular, the inverse probability of censoring weights
(Van der Laan & Robins, 2003) are used. This approach does not necessarily
rely on the Cox model (it may do through a specific definition of the weights)
and therefore it is not considered here.

We finally note that in this paper we considered the theoretical similari-
ties and differences of the two boosting algorithms, without trying to evaluate
their performance in specific cases. The complexity of the reality makes al-
most impossible to identify all the situations in which one algorithm performs
better than the other: from this point of view, it is positive to have different
solutions which enrich the practitioner’s toolbox. For this reason, a relevant
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part of this paper is devoted to the extensions of the solutions available in
only one R package to the other. Nevertheless, it is important to use these
possibilities wisely, without falling into the temptation of trying all of them
and then reporting only the results for the method which more supports our
theory.
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Bühlmann, P. (2006). Boosting for high-dimensional linear models. The
Annals of Statistics 34, 559–583.
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