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Abstract 

For simulation studies on the exploratory factor analysis (EFA), usually rather simple 

population models are used without model errors. In the present study, real data 

characteristics are used for Monte Carlo simulation studies. Real large data sets are examined 

and the results of EFA on them are taken as the population models. First we apply a 

resampling technique on these data sets with sub samples of different sizes. Then, a Monte 

Carlo study is conducted based on the parameters of the population model and with some 

variations of them. Two data sets are analyzed as an illustration. Results suggest that 

outcomes of simulation studies are always highly influenced by particular specification of the 

model and its violations.  Once small residual correlations appeared in the data for example, 

the ranking of our methods changed completely. The analysis of real data set characteristics is 

therefore important to understand the performance of different methods.  
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Within the framework of psychological survey data, latent structure detection is an 

important aim. Items have to be assembled into groups in a way so that items within one 

group are as similar as possible to enable sufficiently accurate diagnoses. Generally, 

exploratory factor analysis (EFA) represents a widely accepted standard for exploration of test 

structures and detection of items that have a similar content. The first step in this structure 

detection process is to determine the appropriate number of true factors to retain 

(dimensionality assessment). The second step includes identifying which variable belongs to 

which factor (assignment of variables), what is usually done by assigning each variable to the 

factor on which it has the highest loading. 

For the evaluation of the performance of EFA methods in both steps, previous studies 

have used real data and artificial data. Artificial data from Monte Carlo studies usually are 

generated by specifying the underlying population model correlation matrix that serves as 

covariance matrix of the distribution from which random data are drawn (Bacon, 2001; 

Beauducel, 2001; Crawford et al., 2010; D. A. Jackson, 1993; Ruscio & Roche, 2012; Smith, 

1996; Velicer, Eaton, & Fava, 2000; Velicer & Fava, 1998; Zwick & Velicer, 1986). When 

using real data though, the true underlying model is unknown and cannot be tested. One 

possible way is to compare the results of sub samples to the corresponding result of the full-

sample, the so-called resampling that has been used for evaluation of EFA in order to analyze 

sample sizes effects (Arrindell & Ende, 1985; Barrett & Kline, 1981; MacCallum, Widaman, 

Preacher, & Hong, 2001).  

EFA simulation studies are based on more or less artificial conditions and most of 

them are built on simple population factor models. Typically, only few of the possible model 

parameters are integrated into the simulations in the first place while the others are set to zero. 

Model violations are almost never included. Note that the simulation of model violations is in 

fact much more common in Monte Carlo simulation studies on confirmatory factor analysis 

(CFA). Here, model error may be specified in the model in the form of residual correlations 
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(e.g. Hu & Bentler, 1999). But almost all simulation studies of EFA are based on the ideal 

case of exact fit of the common factor model in the population. This is a huge limitation, 

given that performance of EFA may change substantially in presence of model error 

(MacCallum et al., 2001). Generally speaking, studies that are based on simulated data lack a 

connection to real world data conditions. For example, in studies that investigated the 

influence of different sizes of loadings or communalities, cross-loadings are typically set to 

zero (Gerbing & Hamilton, 1996; Mundfrom, Shaw, & Ke, 2005; Velicer & Fava, 1998). If 

cross-loadings are integrated (Bacon, 2001; Sass & Schmitt, 2010; Sass, 2010; Zwick & 

Velicer, 1986), mostly either a two-factor model is investigated or only one or two high cross-

loadings per variable are specified while the others remain restricted to zero. Real life 

psychometric data however often do consist of multiple factors and small but multiple cross-

loadings of all variables on all factors (e.g. Church & Burke, P. J., 1994; Haynes, Miles, & 

Clements, 2000). In studies that examined factor inter-correlations on the other hand (Bacon, 

2001; Crawford et al., 2010; Sass & Schmitt, 2010; Sass, 2010), either two-factor models 

were investigated or all factor inter-correlations were set to be equal. Data from the social 

sciences, however, often exhibit a complex model structure with many cross-loadings and 

factor inter-correlations of different sizes. And in addition, real data always exhibit more or 

less high model violations, e.g. residual correlations, because even complex models are never 

exactly true even in the population (Cudeck & Henly, 1991; MacCallum & Tucker, 1991). 

Model violations are a serious issue, which has to be considered since they might affect 

recovery of the population correlation matrix substantially (MacCallum et al., 2001). 

Moreover, it could have been shown that the disregard of existing model violations can lead 

to biased estimations of model parameters (Kaplan, 1988; Yuan, Marshall, & Bentler, 2003). 

Therefore, conclusions from Monte Carlo simulations that do not apply realistic factor models 

along with realistic model violations cannot be generalized to real data. This is in line with 

several studies showing that traditional Monte Carlo studies and rules of thumb commonly 
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lack validity (Fan & Sivo, 2005; D. L. Jackson, 2007; MacCallum & Tucker, 1991; 

MacCallum et al., 2001). They showed that simple rules of thumb regarding for example the 

minimum sample size for EFA are misleading. Thus, to draw valid conclusions from 

simulation studies, characteristics of the model and its violations have to be considered. These 

characteristics of the model and its violations in the shape they occur in a particular real data 

set shall in the following be called data set characteristics.  

In studies where real data, exhibiting model violations, are analyzed, data set 

characteristics are not known and not manipulated. The advantage of the use of real data is 

that particular real data conditions can be described. These results can though hardly be 

transferred to other data sets; in so far as it is unknown which kind of data set might display 

the same behavior and which not. For a sufficient examination of EFA thus, we see it as 

reasonable approach to explore not only the performance of different methods on real data 

sets but also the data set characteristics of the respective data set. Not only all parameters of 

the model that best fits the data shall be taken into consideration but also their related 

occurred model violations. These parameters can be modified in a controlled way in a 

subsequent Monte Carlo study in order to detect their particular influence. In the present 

study, we explore different data sets with specific characteristics and aim to identify those 

characteristics that make the difference between the performance of EFA in simulation studies 

and real world data. We take parameter estimates from real data sets and integrate them into 

simulation studies to compare their impact. Only after taking these data characteristics into 

account, the influence of sample size on the performance of different methods will be 

investigated. 

 In a first step, we use real data sets with several thousand cases for the definition of a 

(finite) population. The entire data set is analyzed and the results of the assessed methods are 

taken as the population model. Next, samples are drawn with replacement from this data set to 

examine how well the detected structure can be reproduced in each of these sub-samples. This 
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analysis will be referred to as Real World simulation. The main goal of this process is to get a 

deeper insight into the performance of EFA under realistic data conditions in comparison to 

traditional simulation conditions. In the second step, the results of the Real World simulation 

set are compared to results from the commonly used simulation study design, using the same 

hypothetical factor model. In this way, we will test the hypothesis that most methods show 

different levels of performance in traditional simulation studies than they do in the Real 

World. The idea is to use sample based estimates of model parameters from the real data as a 

basis for the simulation of the artificial data in the simulation study. In doing so, we search for 

such data set characteristics that are necessary to conduct traditional simulation studies in 

order to resemble Real World conditions as good as possible. Another advantage of the 

subsequent Monte Carlo simulation is that although it is compared to the same model as in the 

Real World simulation, the simulated model is free of the effects of sample size. If thus the 

Real World simulation shows that a method is sensitive for sample size and therefore leads to 

different results in the population data set than in the sub samples, this can be verified in the 

subsequent Monte Carlo study. We use two different psychometric data sets and examine five 

different EFA methods for assessment of dimensionality and one EFA method for the 

assignment of variables. 

 

Dimensionality assessment 

EFA is based on the idea that latent variables are the cause of correlations between test 

items. Thus, the aim of EFA is the reproduction of the correlation matrix: 

𝑅 = ΛΦΛ! + U! 

whereby R is the p x p correlation matrix of the p observed variables, U2 is the 

diagonal p x p matrix of the unique variances, Λ  is a p x k matrix of the factor loadings on the 

k < p factors, and Φ stands for the k x k matrix of the factor inter-correlations.  
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Different methods have been suggested to determine the number of factors in EFA. 

According to previous research, Parallel Analysis (PA, Horn, 1965) seems to be the most 

accurate procedure to determine the right number of factors to retain (Fabrigar, Wegener, 

MacCallum, & Strahan, 1999; Humphreys & Montanelli Jr., 1975; Lance, Butts, & Michels, 

2006; Patil, Singh, Mishra, & Todd Donavan, 2008). PA is based on a simulated data set, 

containing random numbers for the same number of variables with the same sample size. This 

variables thus do not share a common factor. A Principal Component Analysis (PCA) or a 

Principal Axis Factor Analysis (PAF) for each simulated data set is conducted, and obtained 

Eigenvalues are recorded. Consequently, one obtains a sample distribution of eigenvalues. 

Finally, those factors with Eigenvalues exceeding the mean of the corresponding simulated 

factors, or its 95th-percentile, are retained. Given that in previous research the 95th-percentile 

criterion was found to be preferable over the mean criterion and its results mitigate the classic 

PA’s slight tendency to recommend too many factors (Crawford et al., 2010; Glorfeld, 1995; 

Hayton, Allen, & Scarpello, 2004), in this study we decided to use the 95th-percentile 

criterion. 

According to Zwick & Velicer (1982, 1986), the Minimum Average Partial rule (MAP 

rule, Velicer, 1976) is the second most accurate method for dimensionality assessment. It is 

based on a preliminary PCA in which only the first principal component is retained. This 

component is then partialed out of the correlations between variables. The off-diagonals of the 

resulting partial correlation matrix are used to compute the average squared coefficient. In the 

next step, the first two principal components are partialed out of the original correlation 

matrix and the average squared coefficient is computed again. These steps are repeated with 

one additional component per step until the average squared coefficient no longer decreases. 

At this point, when the average squared coefficient is minimal, the variance in the partial 

correlation matrix is interpreted as to no longer represent systematic variance. The number of 
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components that are retained at that point determines the number of components that has to be 

extracted.  

The number of factors to be extracted can also be estimated using fit indices based on 

the maximum likelihood (ML) approach, such as the Akaike information criterion (AIC; 

Akaike, 1974) and the Bayesian information criterion (BIC; Schwarz, 1978). For both of 

these indexes, first the value of the likelihood function L for the estimated model is 

maximized. This value is then transformed in the following manners: 

AIC= -2ln(L) + 2p 

BIC= -2ln(L) + ln(n) x p. 

with p being the number of parameters to be estimated and n the sample size. Lower 

values indicate better fit and, therefore, the model with the lowest AIC- or BIC-value is the 

optimal one.  

There has been a large debate on the question of how sample size influences the 

dimensionality assessment in factor analysis (FA). The results are far from being clear and 

different researchers have come to different conclusions. When interpreting their results 

though, two aspects have to be considered. First, with increasing sample size the estimation 

error decreases and therefore parameter estimations become more stable across samples. 

Second, some methods select more complex models (i.e. more factors) the higher the sample 

size gets. The first influence has been examined in several previous simulation studies 

(Beauducel, 2001; Browne, 1968; Crawford et al., 2010; Guadagnoli & Velicer, 1988; Velicer 

& Fava, 1998). However, the more other parameters are included into the simulation, e.g. 

communalities and number of variables, the more the effect of more accurate estimation of 

number of factors with increasing sample size seems to diminish (Mundfrom et al., 2005; 

Pennell, 1968; Velicer & Fava, 1998). Interestingly, one study that analyzed real data could 

not find any relation between factor stability and sample size at all (Arrindell & Ende, 1985). 

The second effect of a systematically increasing number of factors with increasing sample 
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size has been examined by McDonald  (1989). He found a strong dependency of model 

complexity and sample size when using AIC. Cudeck and Henley (1991) in their study though 

stated that this dependency is not necessarily undesired saying that “It may be better to use a 

simple model in a small sample rather than one that perhaps is more realistically complex but 

that cannot be accurately estimated.” (Cudeck & Henly, 1991). It is important to consider that 

the target model of AIC changes with sample size while BIC assumes that there is a true 

model, independent of n (Burnham & Anderson, 2004; Kuha, 2004). AIC values parsimony 

less than BIC, therefore it can be expected that AIC favors more complex models than BIC, 

especially when sample size is growing large (Vrieze, 2012). Other simulation studies on the 

performance of AIC (Homburg, 1991; Lubke & Neale, 2006) did not find sample size to have 

such a big impact on model complexity. They rather found AIC to detect the right umber of 

factors more often with increasing sample size. These heterogeneous results suggest that 

when analyzing the influence of sample size on dimensionality assessment, one has to 

consider the characteristics of the data set, because for different data set characteristics 

different sample size effects are observed. 

Assignment of variables 

The first step necessary for assignment of variables to factors with EFA is the 

estimation of a loading matrix. Therefore, it is important that the specific method used yields 

one loading matrix that best reflects the underlying population loading pattern. Most of the 

existing studies compared the height of all loadings between the population loading matrix 

and the reproduced loading matrix (Arrindell & Ende, 1985; Guadagnoli & Velicer, 1988; 

Mundfrom et al., 2005; Sass & Schmitt, 2010; Sass, 2010; Schmitt & Sass, 2011; Velicer & 

Fava, 1998).  To our knowledge there is only one study to date by Gerbing & Hamilton 

(1996) that evaluated not only the loading matrix, but also the assignment of variables to 

factors by assigning each indicator to the factor for which it showed the highest loading. They 

did not, however, include cross-loadings in their simulations. To assess the correct assignment 
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of facets to factors, we computed one EFA with PAF per data set. Variables were assigned to 

the factor for which they had the highest loading.  

To summarize, this study aims to analyze the performance of EFA in dimensionality 

assessment and assignment of variables using Real World simulation and traditional 

simulation studies. We expect to find differences between the two simulations and hope to be 

able to establish useful guidelines for making simulation studies more comparable to Real 

World situations.  

 

 

Method 

We implemented a new approach, the Real World simulation for the exploration of the 

performance of EFA in the dimensionality assessment and assignment of variables. As 

population data sets we first used the norm data set of the German version of the revised NEO 

personality inventory (NEO-PI-R, Ostendorf & Angleitner, 2004) and then the second edition 

of the multidimensional intelligence structure test IST-2000-R by Amthauer, Brocke, 

Liepmann and Beauducel (Amthauer, Brocke, Liepmann, & Beauducel, 2007)1. Both are 

broadly used diagnostic tools in psychological practice. We specified a population model with 

each method on the population data and then tried to replicate the respective model in smaller 

samples drawn out of this population data. In a second step, these results were compared to 

the results from traditionally simulated conditions where estimators from the population data 

set were used to simulate data from a distribution.  

Real World simulation.  

The NEO-PI-R data set. The NEO-PI-R is a widely used personality inventory 

measuring personality in five major domains: neuroticism, extraversion, openness to 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1	  We would like to express our thanks to Fritz Ostendorf and André Beauducel for providing the data 
sets for this study.	  
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experience, agreeableness, and conscientiousness. Each domain scale is divided into six facets 

and eight items operationalize each facet. Thus, the questionnaire consists of 240 items. For 

this study, a self-report form was used in which participants provided self-reports on typical 

behaviors or reactions on a five point Likert scale, ranging from 0 = strongly disagree to 4= 

strongly agree. Validity and reliability for all questionnaires was shown by Ostendorf and 

Angleitner (2004).  

As indicated in the manual of the NEO-PI-R, the correlation matrix of facets shows 

moderate to high inter-correlations within factors and low inter-correlations between factors 

(for more details see Ostendorf & Angleitner, 2004). The mean of factor inter-correlations is -

.05 and the mean of absolute values of factor inter-correlations is .19 ranging from .02 to .52. 

Main factor loadings range from .37 to .88 (see Table 1). Cross-loadings of the data set are 

more or less normally distributed with a mean of .01, ranging from -.44 to .47. All in all the 

NEO-PI-R data set exhibits relatively high cross loadings and low factor inter-correlations. 

The NEO-PI-R norm data set consists of 11,724 participants. The mean age of the 

sample is 29.92, ranging from 16 to 91 with 36% males and 64% females. Sum scores on 

facets were calculated for each subject.  

The IST-2000-R data set. The basic module of the IST-2000-R measures intelligence 

in three major domains: verbal intelligence, numerical intelligence and spatial intelligence 

each of which is divided into three sub-tests. The test compromises a total of 180 questions, 

which can only be answered true or false.  

Main factor loadings of the sub-test sum scores range from .47 to .83 (see Table 2). 

Validity and reliability for all questionnaires was shown by Amthauer et al. (2007). Cross-

loadings range from -.15 to .20 with a mean of .01. The three factor inter-correlations have the 

values .66, .49 and .43. To sum it up, cross-loadings are lower than in the NEO-PI-R 
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Table 1 
Loading Matrix of the Population Data Set NEO-PI-R 
 
Facet Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 
N1 .88  .12  .10 
N2 .76 -.44    
N3 .80   -.15 .12 
N4 .65 .13  -.17  
N5 .37 -.18 -.23 .41 .12 
N6 .77  -.16   
E1  .47 .10 .81  
E2  .15  .76 -.16 
E3 -.27 -.37 .21 .37  
E4  -.22 .36 .50  
E5  -.23 -.17 .37  
E6 -.16 .14  .64 .18 
O1  -.10 -.21  .62 
O2 .15 .13   .76 
O3 .26  .11 .21 .67 
O4 -.24  -.16 .16 .38 
O5 -.19 -.15 .12 -.25 .65 
O6 -.16  -.18  .46 
A1 -.23 .54  .38  
A2  .60    
A3  .73 .15 .44  
A4 -.14 .73    
A5 .21 .55   -.12 
A6 .21 .52  .26 .25 
C1 -.32  .55 .12 .14 
C2 .12  .72   
C3  .22 .73   
C4 .10 -.19 .74  .18 
C5 -.13  .76   
C6  .13 .48 -.40  
Note. N=Neuroticism; E=Extraversion; O=Openness to experiences; A=Agreeableness; 
C=Conscientiousness. Promax roation; ML estimation. Loadings below .10 are suppressed.  
 



	   12	  

 

data set and factor inter-correlations are much higher. The norm data set consists of 1,352 

observations. The mean age is 19.09 ranging from 16 to 25 with 44% females and 56% males.  

In both data sets the sub-facets (NEO-PI-R), and sub-tests (IST-2000-R) respectively, 

were the basis of our calculations. We regarded them as variables of our data set and 

assembled them into overlying factors. This was done in order to avoid the problem of 

categorical, and binary data that will be addressed in further research. 

For determining the number of factors we used the MAP rule, PA-PAF, PA-PCA, 

AIC, and BIC. AIC and BIC were based on a PAF with ML estimation and Promax rotation. 

For the assignment of variables, also a PAF with ML estimation and Promax rotation was 

conducted. Van der Linden et al. (2012) showed in a study on factor inter-correlation of 

different personality inventories that factors are typically correlated. Their inter-correlations 

range from .52 to .67 (in absolute values) and the average inter-correlation is .60. For this 

reason, we chose oblique Promax rotation for our study. Facets were assigned to the factor for 

which they had the highest absolute loading. 

Samples. Samples of sizes 100; 200; 300; 400; 500 and 1,000 were drawn randomly 

with replacement from the complete data set, with 1,000 replications each. Sampling with 

Table 2 
Loading Matrix of the Population Data Set IST-2000-R 
 
Sub Test Factor 1 Factor 2 Factor 3 
V1  .74 -.11 
V2  .67 .18 
V3 .18 .53  
N1 .47 .12 .18 
N2 .83   
N3 .74   
S1   .64 
S2   .49 
S3 -.11  .51 
Note. V=verbal intelligence; N=numerical intelligence; S=spacial 
intelligence. Promax roation; ML estimation. Loadings below .10 
are suppressed. 
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replacement was chosen because otherwise a larger sample would have automatically meant a 

closer similarity to the population data set and therefore higher success rates (proportion of 

identical number of factors as in the population data set). By choosing sampling with 

replacement, we intended to create more comparable conditions between different sample 

sizes. For dimensionality assessment for each sample the MAP rule, PA-PAF and PA-PCA as 

well as AIC and BIC were computed. Subsequently, we determined the percentage of correct 

number of dimensions (success rate), i.e. identical to the number found in the population data 

and the mean of the suggested number of dimensions. 

Thus, we had 6 x 5 different conditions in each data set for determining the number of 

factors as we compared the five different methods with six different sample sizes each.  

For the report of similarities of factor solutions in assignment of variables we set the 

number of factors to the theoretically assumed number: Five factors for the NEO-PI-R and 

three factors for the IST-2000-R. Similarity was then determined using the Rand Index (Rand, 

1971), calculated by counting the number of correctly classified pairs of elements. Thus, the 

Rand Index is defined by:  

𝑅 𝐶,𝐶! =
2 𝑛!! + 𝑛!!
𝑛 𝑛 − 1  

C is the actual cluster solution in the sample, C´ is the cluster solution in the 

population data set, n11 is the number of pairs that are in the same cluster under C and C´, and 

n00 is the number of pairs that are in different clusters under C and C´.  

 

Traditional simulation Study. 

We specified the model from the NEO-PI-R with five factors and six variables each. 

To make the traditional simulation comparable to the Real World model, estimators of main 

factor loading and uniquenesses from the EFA of the norm data set were used for the 

simulations. The design contained three fixed factors: sample size, cross-loadings and factor 
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inter-correlations. In the first simulation condition we did not manipulate cross-loadings and 

factor inter-correlations, but took their estimators from the population data set (population 

model). Building on that, we manipulated them in four different ways, which were devised to 

best reflect the common practice in Monte Carlo simulations. Second, we set all cross-

loadings and third, all factor inter-correlations to zero (zero cross-loadings / zero factor 

correlations). Fourth, we set one cross-loading per variable to a high value (one cross-

loading) while taking factor inter-correlations from the estimators of the real data set. Fifth, 

we set inter-correlations to random values in the range given by the population data set 

(varying factor inter-correlations) and obtained cross-loadings from the real data set. We 

determined the values of cross-loadings by summing up the squares of all cross-loadings of 

each variable of the real data and then taking the square root. In doing so, we made sure to 

retain the communalities of all variables. Setting cross-loadings and/or factor inter-

correlations to zero is an unrealistic but in simulation studies often used procedure. First, in 

all simulation conditions correlations of residual variances terms were also set to zero. 

Resulting loading matrices can be seen in Tables 1 and 2. Later on, we also included residual 

correlations into the simulation by adding the residual correlations we had found in the EFA 

of the population data set to the correlation matrix calculated for the population model. 

Residual correlations in the NEO-PI-R data set ranged between -.10 and .15 and in the IST-

2000-R data set between -.04 and .06. Additionally, we applied different sample sizes (100; 

200; 300; 400; 500 and 1,000). Multivariate normally distributed data are drawn from a 

distribution with given population covariance matrix that is calculated from loadings, factor 

inter-correlations and uniquenesses.  

For dimensionality assessment, the MAP rule, PA-PAF, PA-PCA and AIC and BIC 

were used, and the variations described above were tested. This resulted in a fully crossed 5 x 

6 x 5 design. Each of the resulting conditions was replicated 1,000 times to obtain reliable 

results from the simulations. For each method, the success rates and means of indicated 
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numbers of factors were reported. For the assignment of variables, a fully crossed 6 x 5 

design was tested (six different sample sizes and five simulation models). Means and Rand 

Indexes in EFA then were calculated. All calculations were programmed in the open source 

software R 0.94.110 using the package ‘psych’ (Revelle, 2012). 

 

Results 

Real world simulation 

Dimensionality assessment. In the population data set of the NEO-PI-R, the MAP rule 

and PA-PCA resulted in five factors while PA-PAF suggested six factors, which served as 

reference for the sub samples. Therefore, in the sub samples we expected five factors for the 

MAP rule, five factors for PA-PCA and six factors for PA-PAF. AIC reached its lowest value 

for the maximum number of factors possible, which was 29. BIC suggested 22 factors.2  

The success rates for the sub samples can be obtained from Table 3. For smaller 

samples, PA-PAF indicated five factors to retain more often than PA-PCA, although in the 

population data set, PA-PAF had suggested six factors. For this reason, PA-PAF achieved 

comparatively low success rates in the sub-samples, as the reference was six factors. For 

samples with n > 250, in PA-PAF, the frequency of six factors increased and the frequency of 

five factors decreased. This finding suggests that PA-PAF, at least for the Real World data 

set, is sensitive for sample size. AIC and BIC both did not suggest the same number of factors 

as in the population data set in any of the Real World samples. This was caused by the effect 

that AIC, as expected, was highly sensitive for sample size (see Table 4). And therefore in the 

large population data set, AIC reached its minimum with the maximum number of possible 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2	  Please note that from 15 factors on it was not possible to estimate communalities for PAF so 
1s were used instead.	  
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factors (29). Contrary to our expectations, BIC also seemed to be susceptible to sample size in 

the Real World simulation, increasing up to eight suggested factors for 1,000 

observations (see Table 4).  

Table 3  
Success Rates for dimensionality assessment in Real World Simulation for Different 
Sample Sizes for both Data Sets 
 

n MAP PA-PAF PA-PCA  AIC BIC 
 NEO-PI-R 
 5 Factors 6 Factors 5 Factors 29 Factors 22 Factors 

100 .619 .023 .582 .000 .000 
200 .822 .025 .912 .000 .000 
300 .922 .025 .988 .000 .000 
400 .966 .030 .997 .000 .000 
500 .977 .038 1.00 .000 .000 

1,000 .999 .100 1.00 .000 .000 
 IST-2000-R 
 1 Factor 4 Factors 2 Factors 4 Factors 4 Factors 

100 .994 .180 .577 .000 .000 
200 1.00 .249 .789 .038 .002 
300 1.00 .282 .926 .125 .012 
400 1.00 .316 .973 .250 .029 
500 1.00 .347 .991 .432 .073 

1,000 1.00 .638 1.00 .947 .497 
Notes. MAP=MAP rule; PA-PAF= Parallel Analysis with Principal Axis Factoring; PA-PCA= 
Parallel Analysis with Principal Component Analysis; AIC= Akaike information criterion; 
BIC=Bayesian information criterion; n=sample size. All success rates are based on 1,000 
replications. 

Table 4 
Mean Number of indicated Factors for different sample sizes in Real World Samples, AIC 
and BIC - NEO-PI-R 
	  
	   	   	   	   	   	   	  

    n    
 100 200 300 400 500 1,000 

AIC 5.40 6.72 7.80 8.54 9.12 
 

11.29 
 

BIC 4.19 4.98 5.23 5.69 6.32 8.38 
Note. AIC= Akaike information criterion; BIC=Bayesian information criterion. n= sample size. 
Facets are assigned to factors.  
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In the IST-2000-R population data set, none of the used methods suggested the 

theoretically assumed three factors. The MAP rule indicated one and PA-PCA resulted in two 

factors while the other methods all found four factors. Consequently, these are the respective 

numbers we expected them to recover for the sub samples as well. As can be obtained from 

table 3, the MAP rule almost perfectly reproduced the one factor it had suggested in the 

population data set. Also PA-PAF performed satisfactory for at least medium sample sizes in 

finding two factors. In contrast, the other methods failed to recover the four factors they had 

previously suggested because they all resulted in smaller numbers of factors in most of the 

samples. Taking a closer look at the mean number of indicated factors (Table 5), in this data 

set none of the methods was overly sensitive for sample size while all methods (except for the 

MAP rule) showed at least a slight tendency towards sensitivity for sample size. Maybe this is 

because this data set reveals less residual correlations. It might also be caused by the fact that 

the total number of possible factors (i.e. the number of variables) was much lower.  

Assignment of variables. Factor loadings on the five factors for the entire data set of the NEO-

PI-R can be obtained from Table 1. When assigning facets to the factor with the highest 

absolute loading, EFA revealed a grouping of facets according to theoretical assumptions, 

except for facet N5 impulsiveness, which was assigned to the facets of the factor Extraversion 

instead of Neuroticism. Therefore, in our sub-samples, we also expected EFA to assign N5 to 

the factor Extraversion for a perfect fit (Rand Index = 1.0). In the sub-samples the Rand Index 

increased with increasing sample size, from .891 (100 obs.) to .967 (1,000 obs.).  

When conducting an EFA for the entire data set of the IST-2000-R with three factors, all sub-

tests showed the highest loadings on the factor they were theoretically assigned to. This was 

thus, the assignment pattern, we also expected in the sub samples. Here, the Rand Index 

increased from .832 for 100 observations to .996 for 1,000 observations. Although for 100 

observations the Rand Index was slightly lower than in the NEO-PI-R data set, it was higher 

in the IST-2000-R for all other sample sizes. 
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Traditional simulation study 

Dimensionality assessment. Comparing the zero cross-loadings condition with the 

population model condition of the NEO-PI-R, all of the used EFA methods performed almost 

equally well in both conditions (see Table 6). The MAP rule and AIC seemed to achieve the 

best success rates. BIC achieved the poorest results in both conditions, but still converged to 

five factors in all Traditional simulation conditions in contrast to the results of the Real World 

simulation. In the condition where only one cross-loading per variable was set to a higher 

value, performance of the MAP rule and both PA methods decreased to success rates below 

.90. AIC and BIC yielded almost the same results as in the zero cross-loadings condition as 

well as the population model condition. When setting all factor inter-correlations to zero, all 

methods showed their best success rates. This suggests that the performance of these methods 

is more affected by the population factor inter-correlations than by cross-loadings, although 

factor inter-correlations were much lower than in other personality inventories (Van der 

Linden et al., 2012). When choosing random values in the range of the population data set, 

results were almost equal to the population model. Hence, this seems to be a reasonable way 

of simulating factor inter-correlations. 

PA-PAF and AIC only in the Real World condition were sensitive for sample size and 

not in any of the simulation conditions where their success rates increased with increasing 

Table 5  
Mean Number of indicated Factors for different Sample sizes in Real World Samples  
IST-2000-R 
	  

 n  
 100 200 300 400 500 1,000 

MAP 1.01 1.00 1.00 1.00 1.00 1.00 
PA-PAF 3.02 3.25 3.28 3.32 3.35 3.64 
PA-PCA 1.64 1.86 1.97 1.99 2.00 2.00 

AIC 2.22 2.93 3.12 3.25 3.45 3.95 
BIC 1.30 2.14 2.72 2.97 3.07 3.50 

Note. MAP=MAP rule; PA-PAF= Parallel Analysis with Principal Axis Factoring; PA-PCA= 
Parallel Analysis with Principal Component Analysis; AIC= Akaike information criterion; 
BIC=Bayesian information criterion. n= sample size.	  
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sample size. Given the fact that the only parameter that was not included into the model for 

computing the population correlation matrix in the traditional simulation study was the 

residual correlations, one can assume that the non-zero residual correlations, present only in 

the Real World condition, caused this sample size effect. To prove this assumption, we 

performed an additional simulation in which we included the residual correlations from the 

Table 6  

Success Rates and mean Number of Factors across all Sample Sizes for all Traditional 
Simulation Conditions - NEO-PI-R 
 

 MAP PA-PAF PA-PCA AIC BIC 
Zero cross-loadings 

Success rate .98 .95 .91 .98 .80 
 

Mean 4.99 4.95 4.91 4.98 4.77 
One cross-loading 

Success rate .97 .88 .76 .96 .77 
 

Mean 4.97 4.88 4.76 4.97 4.77 
Zero factor inter-correlations 

Success rate .99 1.00 1.00 .94 .68 
 

Mean 4.99 5.00 5.00 5.05 4.51 
Varying factor inter-correlations 

Success rate .99 .93 .88 . 98 .77 
 

Mean 4.99 4.98 4.95 5.00 4.91 
Population model 

Success rate .99 .96 .92 .99 .83 
 

Mean 4.99 4.96 4.92 4.99 4.83 
Population model + residual correlations 

Success rate .91 .93 .92 .14 .44 
 

Mean 5.03 4.98 4.92 7.88 8.25 
Real World 

Ratio 5 Factors 
 

.88 .91 .91 .13 .45 

Mean 5.06 4.99 4.92 7.83 5.65 
Note. MAP=MAP rule; PA-PCA= Parallel Analysis for Principal Component Analysis; PA-
PAF= Parallel Analysis for Principal Axis Factoring; AIC= Akaike information criterion; 
BIC=Bayesian information criterion. Facets are assigned to factors. All success rates are based 
on 1,000 replications. In the zero cross-loadings and one cross-loading conditions the factor 
inter-correlations were set to population model values; In the zero factor inter-correlations and 
varying factor inter-correlations conditions cross-loadings were set to population model values. 
Sample sizes=100; 200; 300; 400; 500; 1,000. 
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Real World data to the population model. Results of this simulation can be obtained from 

Table 6. As expected, success rates of all methods were almost identical to those from the 

Real World condition and therefore, for AIC and BIC much worse than when population 

parameters without residual correlations were simulated. AIC, in contrast to the PA methods 

and the MAP rule, does not seem to be able to indicate a useful number of factors in the 

presence of residual correlations despite its very accurate detection of five factors for every 

other simulation condition. 

PA-PCA revealed big problems with the comparatively high factor inter-correlations 

with the IST-2000-R data set (see Table 7). When setting them to zero, PA-PCA jumped back 

to almost 100% success rate. PA-PCA seems to perform bad only in presence of high factor 

inter-correlations. The MAP rule however does not find the right number of factors even 

when factor inter-correlations are set to zero. Given the specific loading and factor inter-

correlation pattern in the IST-2000-R data set, the MAP rule seems to detect one factor no 

matter what specific simulation is used. Across all simulation conditions PA-PAF showed the 

best success rates compared to the other methods across simulation conditions. Even though 

PA-PAF showed a slight dependency on sample size in the NEO-PI-R data set and was 

therefore unable to achieve a good performance in the Real World simulation, this method 

seems to be the most consistent one across all simulation conditions and data sets. It is the 

only method that did not show the same dramatic drop as all the other methods in presence of 

factor inter-correlations. Both AIC and BIC performed reasonably well in almost all 

simulation conditions, although they did not overall reach the same performance as in the 

NEO-PI-R data set. The decrease from the population model without residual correlations to 

the population model + residual correlations though was by far not as bad as in the NEO-PI-

R data set given the residual correlations where much lower. For the same reason, 

performance was also better in the Real World simulation. Across all conditions, BIC had the 

lowest success rates of all criteria in both data sets.  
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Previous results, that AIC tends to overfactor with large sample sizes (Cudeck & Henly, 1991; 

McDonald, 1989; Vrieze, 2012) could be confirmed only in the Real World data of NEO-PI R 

and seems to be due to the moderate residual correlations (-.10 – .15). It does not occur with 

small residual correlations as in the IST-2000-R data set (-.04 – .06). 

Table 7  

Success Rates and mean Number of Factors across all Sample Sizes for all Traditional 
Simulation Conditions - IST-2000-R 

 MAP PA-PAF PA-PCA AIC BIC 
Zero cross-loadings 

Success rate .00 
 

.93 .09 .81 .56 

Mean 1.00 3.00 1.94 2.78 2.31 
One cross-loading 

Success rate .00 
 

.88 .00 .76 .47 

Mean 1.00 2.90 1.26 2.72 2.15 
Zero factor inter-correlations 

Success rate .06 
 

.99 1.00 .98 .90 

Mean 1.47 3.01 3.00 2.98 2.90 
varying factor inter-correlations 

Success rate .00 
 

.76 .08 1.00 .99 

Mean 1.00 2.99 1.96 2.81 2.41 
Population model 

Success rate .00 
 

.93 .04 .82 .03 

Mean 1.00 2.99 1.93 2.80 2.44 
Population model + residual correlations 

Success rate .00 
 

.59 .04 .56 .68 

Mean 1.00 3.36 1.95 3.16 2.50 
Real World 

Success rate 
 

1.00 .27 .85 .30 .50 

Mean 1.00 3.24 1.89 3.15 2.61 
Note. MAP=MAP rule; PA-PCA= Parallel Analysis for Principal Component Analysis; PA-
PAF= Parallel Analysis for Principal Axis Factoring; AIC= Akaike information criterion; 
BIC=Bayesian information criterion. Facets are assigned to factors. All success rates are based 
on 1,000 replications. In the zero cross-loadings and one cross-loading conditions the factor 
inter-correlations were set to population model values; In the zero factor inter-correlations and 
varying factor inter-correlations conditions cross-loadings were set to population model values. 
Sample sizes=100; 200; 300; 400; 500; 1,000. 
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All of the investigated dimensionality assessment methods proved to be more sensitive 

for factor inter-correlations than to cross-loadings on the level present in these data sets, even 

in the NEO-PI-R data set where factor inter-correlations are comparatively low. This 

dependency resulted in a dramatic drop in performance for the IST-2000-R data set that 

almost disappeared completely when setting factor inter-correlations to zero. For the 

dimensionality assessment we found no substantial difference among the methods regarding 

presence or absence of population cross-loadings, whereas when factor inter-correlations were 

set to zero, almost all methods had a success rate of 1.00. These findings are congruent with 

other previous findings (Bacon, 2001; Beauducel, 2001).  

Assignment of variables. For the traditional simulation, we used the factor solution 

with five factors. Results can be obtained from Table 8. In the NEO-PI-R data set, EFA 

showed its best performance in the zero cross-loadings condition with almost 100% correct, 

and its poorest performance in the one cross-loading condition, where its Rand Index was 

even lower than in the Real World simulation.  In the IST-2000-R data set the Rand Index was 

best when all factor inter-correlations were set to zero and worst for varying factor inter-

correlations, while the one cross-loading condition still showed a poor performance. The fact 

that in the IST-2000-R data factor inter-correlations also for assignment of variables mattered 

the most might be due to their relatively high level here. Our results concerning the 

assignment of varialbes confirmed the previous results of Gerbing and Hamilton (1997): in 

cases of low factor inter-correlations and no cross-loadings, almost perfect structure detection 

can be achieved. Only when applying cross-loadings, and especially when both cross-loadings 

and factor correlations are present, performance of EFA decreases substantially (Rand 

Indexes of .95 or less). 
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Discussion 

The present paper examined data set characteristics of real data sets and their impact 

on the performance of factor structure detection methods in psychometrics. As an example, 

two real large data sets were examined and the consistency of EFA methods in sub samples of 

different sizes was analyzed. This new Real World simulation addresses the issue of lacking 

validity of traditional simulation studies, i.e. Monte Carlo studies, by detecting crucial data 

set characteristics from real data sets and manipulating them systematically in a subsequent 

simulation study. It therefore enables researchers to better understand data sets in 

psychological settings. Constellations are simulated that represent the real world in 

psychological data and thus results of these simulations yield information that is relevant to 

what happens in practice. When applying unrealistic conditions to simulations, produced 

results often are misleading. We found that when using one high cross-loading per variable, a 

common procedure in traditional simulation studies (e.g. Zwick & Velicer, 1986), all 

Table 8  
Rand Indexes across all Sample Sizes for Real World Simulation and Traditional 
Simulation for the NEO-PI-R Data Set and the IST-2000-R Data Set 
 Data set 

Simulation condition NEO-PI-R IST-2000-R 

Zero cross-loadings 1.00 .98 

One cross-loading .93 .95 

Zero factor inter-correlations .96 1.00 

Varying factor inter-correlations .95 .93 

Population model .95 .96 

Real world .93 .94 
Note. NEO-PI-R data set: Facets are assigned to factors. All Rand Indexes are based on 
1,000 replications. In the zero cross-loadings and one cross-loading conditions the factor 
inter-correlations were set to population model values; In the zero factor inter-
correlations and varying factor inter-correlations conditions cross-loadings were set to 
population model values. Sample sizes=100; 200; 300; 400; 500; 1,000. 
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methods seem to perform worse than in the other simulation conditions in which the same 

total amount of cross-loadings per variable was applied. These results suggest that the manner 

in which cross-loadings are manipulated is at least as important as the level of cross-loadings. 

But the results reported here show that not only the performance of a particular method 

depends on characteristics of a model and its violations in the particular data set but also the 

ranking of different methods can change. For example, for the NEO PI-R data set, we 

demonstrated a dramatic decrease in performance of the MAP rule and AIC, formerly the best 

methods, when introducing the small residual correlations from the population data, whereas 

the PA methods were hardly affected at all. 

One particular finding of this exemplary Real world simulation is that there is no sense 

in establishing general statements on an absolute minimum sample size or a minimum sample 

size depending only on the level of communality. The influence of sample size on structure 

recovery depends on multiple parameters. The results of this study show that one important 

parameter is the residual correlations in small sizes such as they are present in nearly every 

real data set. Once they are included in the specified correlation matrix, some methods 

become very sensitive for sample size and therefore their performance decreases with 

increasing sample size. This effect was strongest for AIC and lowest for both PA methods.  

Since AIC does not assume that there is a true model but only aims to minimize the error of 

prediction (Vrieze, 2012), its sensitivity for sample size in presence of residual correlations is 

not surprising. The larger the sample size becomes the more residual correlations can be 

explained by further minor factors and, therefore, the prediction can be optimized. Yet, one 

needs to bear in mind that residual correlations in the height present in the NEO-PI-R data set, 

indicate a non-diagonal matrix U2 and imply model violations that might indicate model 

misfits. Consequently, one fair conclusion is that in case of the NEO-PI R data set, the five-

factor model is possibly not entirely correct, even though it might be the practically most 

useful one. So, given the existing residual correlations, there are many small additional factors 
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that need to be considered when aiming to explain the observed correlation matrix R (p x p). 

In such cases, the data structure in oblique EFA (and under the assumption that the minor 

factors themselves are not inter-correlated) is then  

𝑅 = ΛϕΛ! +MM! + 𝑈! 

with M as a k x q matrix of k minor factor loadings of the p variables. 

This might be the reason why also BIC is sensitive for sample size in the Real World 

data. Even BIC cannot be expected to converge if the true model is not among the proposed. 

Indicating more factors with increasing sample size is not necessarily undesired in data with 

residual correlations. Still, this decision depends upon the particular aim of the study. 

Possibly, all previously found relations between sample size and model recovery were also 

influenced by the particular model and the level of model violations in the data i.e. the data 

set characteristics. This is a possible explanation why in some studies researchers did find an 

effect of sample size and in some they did not depending on the specified models in the 

simulations (e.g. Browne, 1968b; Guadagnoli & Velicer, 1988) and the data set characteristics 

in real data (Arrindell & Ende, 1985; Barrett & Kline, 1981).  

Please note that with the parameters we manipulated in the subsequent simulation 

study we were not able to explain all the variations of the performance of the methods in the 

real data sets. What is left to explain for example, is that the decrease in performance of the 

MAP rule in the IST data that was not reduced even after setting factor inter-correlations to 

zero. By additionally varying the number of variables per factor or the number of factors, this 

issue can probably be resolved. But this shows again how important the use of real data is to 

receive indications about important data set characteristics.  

Practical implications 

For the application of EFA in practice, it shall be noted that no definite statement can 

be made on which method is superior to all the others not even depending on sample size. The 

ranking of EFA methods strongly depends on data set characteristics and the aim of the study. 
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In particular, this study shows that EFA results are highly unstable against even small 

variations of specific parameters as for example residual correlations. For a comprising 

analysis of the underlying structure, different methods shall thus be used in combination. For 

example, factor inter-correlations appear to be the decisive issue for the election of the 

dimensionality assessment method to be used. PA-PAF seems to be a good choice in presence 

of factor inter-correlations. Further, practitioners are advised to examine residual correlations 

closely when using the MAP rule or PA, since they are not very sensitive for such model 

violations. Whenever AIC and BIC suggest more factors than PA methods and the MAP rule, 

correlated residual variance is likely and minor factors should be considered. Anyhow, the 

particular data set characteristics of the data set under examination shall be examined 

comprehensively. Maybe, in the end the best solution will be to run data specific simulations 

prior to any analysis for selection of the best method for the particular data set (Muthén & 

Muthén, 2002). 

For the examination of the comparative performance of statistical methods in 

simulations, the results of this study suggest that characteristics of real data sets should be 

considered exhaustively before starting the simulation study. Based on single aspects as 

sample size or number of variables per factor, no final conclusions can be drawn as long as 

the impact of their interaction with other data set characteristics is neglected. The Real World 

simulation technique is one possible method to identify key data set characteristics for the 

performance of specific methods from real data sets. The association of data set 

characteristics with specific performance rankings may subsequently be used for traditional 

simulation studies. Here, these core characteristics are varied systematically and thus their 

causal relation can be tested. Future work should address the following issues: Collecting data 

set characteristics from real large data sets, that are crucial for the performance of the specific 

method tested and examination of the performance of these methods in systematic simulation 

studies where these realistic variations are tested.  
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