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Abstract 

For the exploratory analysis of survey data commonly the exploratory factor analysis (EFA) is 

used. However, EFA is known to exhibit some problems. The major mathematical issue is the 

factor indeterminacy. Further problems are for example its weak performance in small sample 

sizes (n ≤ 150) and with high cross-loadings (e.g. Guadagnoli & Velicer, 1988; Sass, 2010; 

Wayne F. Velicer & Fava, 1998) as well as the general issue of the underlying measurement 

model including uncorrelated residual variances, what may be difficult to justify (Cudeck & 

Henly, 1991; MacCallum & Tucker, 1991; R. C. Tryon, 1959). The authors suggest two new 

k-means approaches as an alternative: k-means scaled distance measure (sdm) where items 

are represented in a coordinate system in a way so that their distance is based on one minus 

their correlation; and k-means cor where item inter-correlations are directly taken as the 

coordinate points of the items. These approaches were tested in a resampling with two real 

data sets and a traditional Monte Carlo simulation, as well as in a cross validation using 

confirmatory factor analysis (CFA). For dimensionality assessment the cluster validity 

coefficient Silhouette was used. In either analysis these approaches were compared to existing 

cluster analysis approaches and EFA. The authors conclude that the main advantage of the 

new approaches are (a) that cluster scores are determinate and (b) for item assignment k-

means sdm obtains better results than EFA and other cluster analysis approaches. The authors 

therefor suggest to use a combination of EFA methods for dimensionality assessment and k-

means for item assignment. 
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1. Introduction 

When talking about exploratory structure detection in psychometric data, we usually 

refer to detection of homogenous groups of items of questionnaires, when no prior 

information about the test structure is present. Homogenous typically means that items within 

one group are highly interrelated. The most frequently used method for this process is the 

exploratory factor analysis (EFA). It is based on the idea that latent variables cause relations 

between test items, and that fewer than p underlying factors thus, can explain these 

relationships between p items. Hence, the aim of EFA is the detection of the ‘true’ factor 

model, 

𝑹 = 𝚲𝚽𝚲! + 𝐔𝟐 

whereby R is the pxp correlation matrix of the p observed variables, U2 is the diagonal 

pxp matrix of the unique variances, Λ   is the pxk matrix of the factor loadings on the k < p 

factors, and Φ  stands for the kxk matrix of the factor inter-correlations. 

The exploratory structure detection with EFA involves two steps: First the 

dimensionality assessment, i.e. the assessment of the number of factors m and second the 

item assignment to factors. The second step, the item assignment, is directly based on the 

estimation of the loading matrix obtained from the principal axis factoring (PAF) given 

the number of factors m. In numerous studies with simulated and real data it has proven to 

work sufficiently accurate (Arrindell & Van der Ende, 1985; Guadagnoli & Velicer, 1988; 

Mundfrom, Shaw, & Ke, 2005; Sass, 2010, 2010; Schmitt, 2011; Wayne F. Velicer & 

Fava, 1998). The dimensionality assessment has to be done by a separate preceded 

method. For example, Parallel Analysis (PA, Horn, 1965a) and Minimum Average Partial 

rule (MAP rule, Velicer, 1976) have been suggested for that purpose after their accuracy 

had been shown in several studies (Fabrigar, Wegener, MacCallum, & Strahan, 1999; 

Patil, Singh, Mishra, & Todd Donavan, 2008; W. F. Velicer, Eaton, & Fava, 2000; Zwick 

& Velicer, 1986).  
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  However, EFA has been criticized for some unsolved problems it reveals. One 

huge mathematical drawback of EFA is the problem of factor indeterminacy. Even when 

the factor model is defined on a correlation level, it is not defined on the data level (e.g. 

Anderson, 1958). For the calculation of factor scores there are always infinite solutions 

that satisfy the equation system. Although the estimation of factor scores is possible 

(Schonemann & Steiger, 1978), the solution of the equation system is not determined.  

Furthermore, some rather practical issues have been found. For example, EFA cannot 

cope with small samples of n ≤ 150 (Guadagnoli & Velicer, 1988; Sass, 2010; Wayne F. 

Velicer & Fava, 1998) although they are not uncommon in psychological research 

(Fabrigar et al., 1999). In fact, Fabrigar et al. (1999) showed in their summary that 30% of 

the current studies in the use of FA, had used sample sizes of n=100 or less. Moreover, the 

presence of medium or high cross-loadings may cause several problems as for example 

biased estimates of parameters of the rest of the model depending on the chosen rotation 

criterion (Asparouhov & Muthén, 2009; Sass & Schmitt, 2010).  Other objections are 

somehow more of a theoretical nature. For example, it had been noted that the assumption 

of observed values that are a linear composition of a systematic part that is explained by a 

few underlying factors plus an error term that has to be uncorrelated is very simplified and 

fails to meet the criterion of real live circumstances (R. C. Tryon, 1935, 1959). Cattell 

(1987, S101 ff.) was already aware that the data are in fact the result of many more 

underlying, systematic factors than observed variables. Until today researchers keep 

pointing out that no factor model is entirely true, even in the population (Cudeck & Henly, 

1991; MacCallum & Tucker, 1991). While most researchers nevertheless continue to use 

EFA in order to find the model that best fits the data, the question arises whether there is 

not a different way. It would be desirable to reduce dimensionality and to assign items to 

subtests without the need of a complex underlying model about the composition of item 

scores. For this purpose, Cluster Analysis (CA) has been suggested for the use of 
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clustering of items more than 70 years ago (R. C. Tryon, 1939). Since then, a 

controversial debate has been going on whether CA could be an alternative to EFA or not. 

A quite popular quote in that context is that from Tryon and Bailey (1970): “Cluster 

analysis is a poor man’s factor analysis”. In contrast, a number of researchers have kept 

suggesting complementing the process of assigning items to sub tests with CA or even 

substituting EFA with CA. They proposed several different hierarchical and non-

hierarchical CA methods (Bacon, 2001; Hunter, 1973; Loevinger, Gleser, & DuBois, 

1953; W. Revelle, 1979; Schweizer, 1991). Hunter (1973) for example, noticed that EFA 

is not a useful instrument for assessing the homogeneity of an item pool and therefore 

suggested to add a subsequent CA to every EFA. He therefore proposed the similarity 

coefficient. Revelle (1979) presented the ICLUST method using the reliability coefficient 

beta for determination of the number of clusters. It conservatively estimates the 

homogeneity by using the lowest possible split-half reliability of the scale. Revelle (1979) 

could show that results he obtained were more useful than those from EFA. Schweizer 

(1991) then used the hierarchical CA with disaggregated correlations and Bacon (2001) 

developed the correlations of correlations as a distance measure. Loevinger et al. (1953) 

were the first ones to use a non-hierarchical approach in psychometrics. There, triplets of 

items are detected that have the highest similarity according to a previously chosen 

similarity matrix. Then, iteratively items are added to the cluster that increases the 

homogeneity of the cluster and those items are removed that decrease the homogeneity of 

the cluster. This procedure is then repeated for the remaining items until all items are 

assigned to a cluster. None of these researchers though, has tried to use k-means for 

clustering of items. The present study aims to find an algorithm that clusters items by 

applying the k-means approach directly. In Section 2, we present possible methods for 

non-hierarchical clustering of items and in Section 3, we compare these methods with 

hierarchical cluster methods using real data and simulated data. 
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2. Non-hierarchical clustering of items 

 We will first explain an existing approach for the clustering of variables that so 

far has not been used in a psychometric context. This approach assumes the centre of the 

cluster to be a latent variable. Then, two new k-means approaches will be introduced that 

we developed for clustering of items.  

2.1. ClustOfVar 

 ClustOfVar (Chavent, Kuentz, Liquet, & Saracco, 2011) is a clustering technique that 

has mainly been developed for the purpose of dimension reduction and variable selection for 

mixtures of quantitative and qualitative variables (Chavent et al., 2011) and has been applied 

on gene expressions data (Chavent, Genuer, Kuentz-Simonet, Liquet, & Saracco, 2013). The 

idea is to define a synthetic variable as the mean of the cluster. In the case of metric variables 

the synthetic variable is that variable of which the sum of squared correlations to all variables 

of the cluster is maximal. It can be shown (Vigneau & Qannari, 2003) that this synthetic 

variable is the first principal component of all the variables in the cluster. The sum of squared 

correlations of all variables to the synthetic variable is referred to as homogeneity (H). Based 

on these two definitions two cluster algorithms are defined:  

1. A hierarchical cluster method and  

2. A k-means cluster method.  

The first one is an agglomerative hierarchical cluster method with the distance measure: 

 

where in each step those two clusters are merged that have the smallest d. The number of 

clusters can be determined e.g. via examination of the dendrogram. 

In the k-means approach an initial clustering is selected which can be either at random or 

obtained from the hierarchical cluster approach. Based on this initial clustering a synthetic 

variable, which is the first principal component of the correlation matrix of all variables of the 

respective cluster, is calculated for each cluster. Then, the variables are assigned to the cluster 

d(A,B) = H (A)+ H (B)− H (A∪ B)
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with which mean they have the highest correlation. This process is optimized iteratively until 

convergence is reached. 

2.2. K-means clustering of items 

 The idea of k-means clustering of items is that the items are points in a coordinate 

system and the square distances between each item of a cluster and its centre are 

minimized iteratively. It can be expressed as follows: 

min
{mk },1≤k≤K

(x −mk )
2

x∈Ck
∑

k=1

K

∑  

where {x1,…,xn} is the data to be clustered, mk is the centroid of cluster Ck and K is the 

previously defined number of clusters. As a baseline condition k random items are each 

assigned to one cluster, so that each cluster consists of exactly one item. Then the item 

assignment is optimized iteratively until the result no longer changes significantly. 

Beforehand, a way has to be found in which the items can be represented in a coordinate 

system. For clustering of items naturally the principal aim is to cluster those items 

together that have the highest correlation. For this reason, both methods implemented here 

are based on correlations. 

 2.2.1. k-means scaled distance measure (sdm). 

 In the first approach, the idea is to create coordinate points in a way so that the 

distance between these points are directly based on correlations, or more precisely on 1 

minus the correlation (1-cor). As a result those items are close to each other that are 

highly correlated. However, 1-cor is not a metric (van Dongen & Enright, 2012) and 

therefore this distance measure cannot be interpreted as a Euclidian distance between two 

points in a space. Van Dongen and Enright (2012) though could show that  

 

is a metric and therefore this distance measure shall be used in this paper. To represent the 

items in a coordinate system in a way so that the distance between two items is d(A,B), a 

d(A,B) = 0.5 − 0.5 ⋅Cor(A,B)
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scaling procedure is used that is based on the idea of multidimensional scaling. Given that 

we have n items, the solution shall have n-1 dimensions. Multidimensional scaling is a 

method that estimates a matrix of coordinate points with a preliminary specified number 

of dimensions (D2) from a distance matrix (X). X  is chosen such that it is a column 

centered matrix with the column sum scores being 0. With the distances of each of the n 

points to each other given, one has  equations for the distances. Given that each 

point has a dimension of (n-1) we obtain  unknown coordinates and thus the 

solution is unique. How the scaling of the matrix is done in detail can be found in Borg & 

Groenen (2005). 

2.2.2. k-means correlation (cor). 

The idea of the second approach is that the correlations between the items are directly 

used as the coordinates of the items. The vector of correlations of one item to all the other 

items is represented as the coordinates of this item. The distance between two items is then  

     

All k-means approaches have one advantage over hierarchical methods: They allow us to 

cluster items around a centroid.  Vigneau and Qannari (2003) called this centroid the 

“synthetic variable” what can also be regarded as the construct to be measured. As a 

consequence we obtain distances between items and the centroid of their cluster, e.g. the 

construct - what is equivalent to a loading matrix in EFA. However, there is no need to 

establish a whole measurement model that includes assumptions about uncorrelated residual 

variances. 

Just like in EFA in CA the item assignment to clusters has to be preceded by a 

dimensionality assessment. When using hierarchical clustering, this decision usually is based 

on information derived from the dendrogram. This is not possible when using non-

hierarchical procedures. Here, usually the user has to specify the number of clusters before 

n ⋅(n −1)

n ⋅(n −1)

d(A,B) = (Cor(A,Vi )−Cor(B,Vi ))
2

i
∑
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any clustering is accomplished (Milligan & Cooper, 1985). In other disciplines that use non-

hierarchical clustering, like genomic research, dimensionality assessment is commonly made 

using visual inspection and prior knowledge while the fit with the data is less frequently 

examined (Handl, Knowles, & Kell, 2005).  Handl et al. (Handl et al., 2005) give an overview 

of cluster validation techniques that can be used for determination of the best-fitting number 

of clusters and some of them are implemented in the R package “clValid” (Brock, Pihur, 

Datta, & Datta, 2008). One group of validation methods they use was the internal measures 

that measure internal validity in a way so that they “reflect the compactness, connectedness, 

and separation of the cluster partitions” (Brock et al., 2008). One of these methods is also 

used in the following.  

2.3 Silhouette width for assessment of dimensionality 

The Silhouette width is based on each observation’s Silhouette value, which is defined in the 

following manner: 

S(i) = bi − ai
max(bi ,ai )

 

with ai being the average distance between i and all other observations in the same cluster, 

and bi is the average distance between i  and the observations in the “nearest neighboring 

cluster”.  A high Silhouette value means a good fit of the item to the respective cluster and a 

low fit to all the other clusters. 

In the case of clustering of items, one silhouette value is obtained for each item and these 

values are then all summed up in order to get the Silhouette width. When a Silhouette width is 

computed for the suggested cluster solution of each possible number of clusters it is possible 

to select that number of clusters for which the Silhouette width is highest. This method will be 

referred to as Silhouette. 
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3. Comparison of methods 

The purpose of this study was first to examine new k-means approaches that have not 

been used for clustering of variables before. These approaches are k-means sdm and k-means 

cor. Furthermore, two other variable clustering approaches that have only been used for 

genomic data shall be applied to psychometric data, ClustOfVar I, which is a hierarchical 

approach and ClustOfVar II, the k-means approach. Their comparative performance to EFA 

and traditional hierarchical CA methods shall be investigated. The two hierarchical clustering 

methods used, is one with complete linkage (CACL) and one with average linkage (CAAL), 

both with the distance measure: 

 

For EFA, one PAF is conducted with pearson correlations, promax rotation and ML 

estimation. Van der Linden et al. (2012) showed in a study on factor inter-correlations of 

different personality inventories that factors are typically correlated. Their inter-correlations 

range from .52 to .67 (in absolute values) and the average inter-correlation is .60. For these 

reasons, we chose oblique Promax rotation for our study.  Items are assigned to those factors 

on which they have the highest absolute loading. 

Second, a formula for computation of cluster validity, Silhouette, shall be used as a 

stopping rule and its performance will be investigated. Its performance in dimensionality 

assessment is compared to the performance of three established methods of dimensionality 

assessment in EFA: parallel analysis with principal component analysis (PA-PCA) and with 

principal axis factoring (PA-PAF) according to Horn (1965) and the minimum average partial 

rule (MAP rule) by Velicer (1976). They have been chosen because their accuracy compared 

to other methods has been shown in previous studies and they can easily be automated for use 

in simulation studies (Fabrigar et al., 1999; Patil et al., 2008; W. F. Velicer et al., 2000; Zwick 

& Velicer, 1986). The MAP was based on a PAF with maximum likelihood estimation and 

Promax rotation. For all CA methods the number of clusters was determined with Silhouette.  

d(A,B) = 1− cor(A,B)
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3.1 Design of the simulation study 

In order to obtain a comprehensive image of the accuracy of these methods three different 

types of simulations will be used. First, we will use the Real World simulation, a new 

approach using real data. Second, a Traditional simulation study is conducted where a few 

variables are varied and different sample sizes are drawn. And third, we will make a cross 

validation with confirmatory factor analysis (CFA). 

3.1.1. Real World simulation 

 For comparison of the performance of the methods, first a resampling technique is 

used that is referred to as Real World simulation. The result of each method in a real, huge 

data set is regarded as the population model. Samples of sizes 100, 200, 500, 1000 are then 

drawn with replacement from this data set and the results of each method in the sub samples 

are compared to the population model. Each sample size is replicated 1000 times. Thus, we 

have 4 x 4 different conditions for determining the number of factors as we compare 4 

different methods (Silhouette, PA-PAF, PA-PCA and MAP rule) and 7 x 4 for item 

assignment. The 7 item assignment methods we compare are: k-means scaled distances, k-

means cor, ClustofVar hierarchical, ClustofVar k-means, CACL, CAAL and EFA. 

1. NEO-PI-R data. NEO-PI-R is a widely used personality inventory measuring 

personality in five major domains (Ostendorf & Angleitner, 2004): neuroticism, extraversion, 

openness to experience, agreeableness, and conscientiousness. Each domain scale is divided 

into six facets and eight items operationalize each facet. Thus, the questionnaire consists of 

240 items. For this study, a self-report form was used in which participants provided self-

reports on typical behaviors or reactions on a five point Likert scale, ranging from 0=‘strongly 

disagree’ to 4=‘strongly agree’. Validity and reliability for all domain scales was shown by 

Ostendorf and Angleitner (2004). For the present paper, we took all the items of one sub-facet 

per factor. We assigned the resulting 40 items to the overlying 5 sub-facets. We chose the 
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following 5 facets from each of the 5 factors: N1 (Anxietey), E2 (Gregariousness), O3 

(Feelings), A4 (Compliance) and C5 (Self-discipline). As indicated in the manual of the 

NEO-PI-R the correlation matrix of items shows intermediate intercorrelations of items 

within facets (from .18 to .36) and low intercorrelations between factors (for more details see 

Ostendorf & Angleitner, 2004). Visualisations of both correlations matrices are provided in 

Figure 1. The mean of factor inter-correlations when specifying the theoretical five-factor 

model is .00 and the mean of absolute values of factor inter-correlations is .13 ranging from 

.01 to .33. Main factor loadings are between .28 and .79. (see Table 1). Although these values 

may seem particularly low, they are rather typical for personality questionnaires. Peterson 

(2000) showed in a meta-analysis on factor loadings in EFA’s of questionnaire data, that the 

average factor loading is .32 with 25% of the factor loadings being less than .23, and 25% 

greater than .37. Cross-loadings in the NEO-PI-R data show a mean of .00, ranging from -.21 

to .16. All in all the NEO-PI-R data set exhibits relatively low cross loadings and low factor 

inter-correlations (see Table 2). The NEO-PI-R norm data set consists of 11,724 participants. 

The mean age of the sample is 29.92, ranging from 16 to 91 with 36% males and 64% 

females.  

2. IST-2000-R data. The basic module of the IST-2000-R measures intelligence in three major 

domains: verbal intelligence, numerical intelligence and spatial intelligence each of which is 

divided into three sub-tests (Amthauer, Brocke, Liepmann, & Beauducel, 2007). The test 

compromises a total of 180 questions, which can only be answered true or false. The sub-tests 

were the basis of our calculations. We treated them as variables of our data set and assembled 

them into overlying factors. This was done in order to avoid the problem of binary data that 

will be addressed in further research. Main factor loadings range from .47 to .83 (see Table 3). 

Validity and reliability for all sub-tests was shown by Amthauer et al. (2007). Cross-loadings 

range from -.11 to .18 (see Table 3) with a mean of .01. The three factor inter-correlations  
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have the values .66, .49, and .43. To sum it up, the level of cross-loadings is comparable to 

that in the NEO-PI-R data set and factor inter-correlations are much higher. The norm data set  

consists of 1,352 observations. The mean age is 19.09 ranging from 16 to 25 with 44% 

females and 56% males.  

For dimensionality assessment, success rates were reported for each sample size, i.e. 

the percentage of identical number of factors as in the population data. And for item 

assignment, we set the number of factors to the theoretically assumed number: 5 factors for 

the NEO-PI-R and 3 factors for the IST-2000-R. Similarity was then determined using the  

 

Table 1 
Loading Matrix of Population Data Set NEO-PI-R 

 N1 E2 O3 A4 C5 
V1 .62     

V31 .59     
V61 .75     
V91 .52     
V121 .53     
V151 .67     
V181 .68     
V211 .47  .13 -.11  

V7  .61    
V37  .79    
V67  .50  .14  
V97 .13 .51 .11   
V127  .43  .13  
V157  .43 -.21   
V187  .59    
V217  .75  -.15  
V13   .56 -.10  
V43   .62   
V73   .56   
V103   .39   
V133   .71   
V163   .58   
V193   .42   
V223   .46   
V19   .14 .28  
V49 .11  -.13 .41 .14 
V79  -.18  .42  
V109    .46  
V139    .35  
V169  -.13  .54  
V199    .54  
V229 -.17   .38 .16 
V25     .64 
V55     .72 
V85 .10    .63 
V115     .69 
V145     .57 
V175 -.17  .11  .39 
V205     .58 
V235     .55 

Note. N1=Anxietey; E2=Gregariousness; O3=Feelings; A4=Compliance; 
C5=Self-discipline. Promax rotation; ML estimation. Loadings below .10 are 
supressed. 
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Rand Index (Rand, 1971), calculated by counting the number of correctly classified pairs of 

elements. The Rand Index is defined by:  

𝑅 𝐶,𝐶! =
2 𝑛!! + 𝑛!!
𝑛 𝑛 − 1  

C is the actual cluster solution in the sample, C’ is the cluster solution in the 

population data set, n11 is the number of pairs that are in the same cluster under C and C’, and 

n00 is the number of pairs that are in different clusters under C and C’.  

 

	
    

Table 2 
Loading Matrix of Population Data Set and Population Model  
IST-2000-R 
Facet Factor 1 Factor 2 Factor 3 
V1  .74 -.11 
V2  .67 .18 
V3 .18 .53  
N1 .47 .12 .18 
N2 .83   
N3 .74   
F1   .64 
F2   .49 
F3 -.11  .51 

Note. V=Verbal Intelligence; N=Numerical Intelligence; F=Figural  
Intelligence. Promax rotation; ML estimation. Loadings below .10 are  
suppressed. 
 

Table 3  
Factor Inter-correlation Matrix of the Population Data Set NEO-PI-R 

 Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 
Factor 1 1.0 -.33 -.14 .19 -.06 

 
Factor 2  1.0 .01 -.08 .07 

 
Factor 3   1.0 .28 .01 

 
Factor 4    1.0 -.03 

 
Factor 5     1.0 
Note. Promax roation; ML estimation. 
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3.1.2. Traditional Simulation 

 We specified the factor model, the EFA had found in each of the population 

data sets. Estimates of main and cross loadings, factor intercorrelations and uniquenesses 

were obtained from the factor analysis of the norm data set and subsequently used for the 

simulations (population model). In the first simulation condition, all residual correlations 

were set to zero, which means that a perfectly fitting model was simulated. And in the second 

simulation condition, residual correlations also were obtained from the population data and 

included into the simulation.   

 Additionally, we also applied different sample sizes (100, 500 and 1000) with 1000 

replications each. Success rates in the sub-samples are reported for dimensionality assessment 

and Rand Indexes are reported for item assignment. We therefore had 5 x 3 x 2 different 

conditions for determining the number of factors as we compared 5 different methods with 3 

sample sizes and 2 simulation conditions and 7 x 3 x 2 for item assignment.  

Sample covariance matrices were drawn from the given population covariance matrix 

(calculated from loadings, factor inter-correlations and residual variances). On basis of these 

sample covariance matrices, we applied the different methods.  

3.1.3. Cross validation with CFA 

We specified factor models with all combinations of each of the dimensionality 

assessment methods and the item assignment methods on sub-samples of the data set with 

n=100, 500, 1000 and 1000 replications each. We subsequently tested the specified model on 

the entire data set with a CFA. We then reported BIC values of each model.  

All calculations were programmed in the open source software R 0.94.110. 

3.2. Results 

3.2.1. Real World simulation 

Dimensionality assessment. Table 4 summarizes the results of the Real World simulation 

dimensionality assessment first for the NEO-PI-R data set and second for the IST-2000-R data 



	
   15	
  

set. The column “# pop data” shows how many factors or clusters the respective method 

suggested in the population data set. The following columns display the success rates, i.e. the 

percentages of identical number of dimensions as indicated in the population data for different 

Table 4 
Success Rates for dimensionality assessment in the Real World simulation for Different Sample Sizes for 
both data sets  

    n 

Method  # pop data 100 200 500 1000  

NEO-PI-R 

K-means sdm Silhouette 6 .28  .35 .41 .60  

K-means cor Silhouette 5 .58  .83 .98 1.00  

ClustOfVar I Silhouette 5 .65  .84 .96 .99  

ClustOfVar II Silhouette 5 .69  .89 .96 1.00  

CAAL Silhouette 6 .23  .31 .49 .60  

CACL Silhouette 5 .14  .37 .66 .88  

EFA PA-PAF 8 .02  .00 .00 .01  

 PA-PCA 6 .26  .34 .53 .89  

 MAP 5 .56  .73 .90 .96  

IST-2000-R 

K-means sdm Silhouette 2 .65  .80 .88 .98  

K-means cor Silhouette 2 .71  .80 .93 .96  

ClustOfVar I Silhouette 2 .64  .76 .90 .96  

ClustOfVar II Silhouette 2 .67  .75 .87 .97  

CAAL Silhouette 2 .68  .72 .82 .89  

CACL Silhouette 2 .58  .68 .86 .93  

EFA PA-PAF 4 .18  .27 .39 .64  

 PA-PCA 2 .58  .80 .95 .99  

 MAP 1 .99  1.00 1.00 1.00  

 
Note. K-means sdm=k-means scaled distance measure; k-means cor=k-means correlation; ClustOfVar 
I=ClustOfVar with hierarchical cluster analysis; ClustOfVar II=ClustOfVar with k-means cluster analysis; 
CAAL=hierarchical cluster analysis with average linkage; CACL=hierarchical cluster analysis with complete 
linkage; PA-PAF= Parallel analysis with Principal axis factoring, PA-PCA=Parallel analysis with Principal 
component analysis; MAP=MAP rule; n=sample size; # pop data= number of factors in population data set. All 
success rates are based on 1000 replications. 
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sample sizes. The methods with the highest success rates are k-means cor with Silhouette in 

both data sets, ClustOfVar II in the NEO-PI-R data set and the EFA methods PA-PCA, MAP 

in the IST-2000-R data set. Still, the high success rate of MAP in the IST-2000-R data set is at 

the expense of a very uninformative factor solution of one common factor. The hierarchical 

CA methods (CAAL and CACL) had the lowest success rates across data sets. Overall, in the 

IST-2000-R data only the PA methods were sensitive for sample size (see Table 4) but not the 

CA methods. 

 Item assignment. Next, Table 5 show the mean proportions of item assignments 

identical to the item assignment of the respective method (Rand Index) in the population data 

for different sample sizes for both data sets separately. The new k-means sdm shows the 

highest Rand Index of all methods in both data sets. Especially for smaller sample sizes of 

100 and 200 it outperforms EFA. Also ClustOfVar II achieved at least as high a Rand Index 

as EFA in both data sets. The lowest proportions of identical solutions were obtained by the 

traditional hierarchical methods.  

Please note that ClustOfVar I and ClustOfVar II often yield the same results. This is because 

ClustOfVar I builds on the results of ClustOfVar I and it is possible that these first results 

cannot be further improved. 

3.2.2. Traditional simulation 

 Dimensionality assessment. Table 6 summarizes the results of the Traditional 

simulation for dimensionality assessment for the two different simulation conditions. The 

success rates and means of indicated numbers of dimensions for results from the simulated 

samples in comparison to the simulated model are reported. When specifying the population 

model without residual correlations, EFA methods were the ones to achieve the highest 

success rates. When adding residual correlations though, their performance dropped 

considerably while other methods namely k-means cor and ClustOfVar perform better. In the 

IST-2000-R data set almost no method could find the specified three factors. Mostly, two 
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factors were suggested, what was the lowest possible number for the CA methods. These 

results are probably due to the high factor correlations in this data set that were included in 

the simulation. PA-PAF was the only method to find three factors fairly often.  

 Item assignment. In the NEO-PI-R data, all methods had slightly higher Rand Indexes 

in both traditional simulation conditions than in the Real World simulation (see Table 7). The 

highest Rand Indexes though were obtained by k-means sdm followed by EFA and 

ClustOfVar. However, EFA only was poorer than k-means sdm in the IST-2000-R data set. In 

the NEO-PI-R data set both k-means sdm and EFA achieved almost a 100% correct 

indications. The traditional hierarchical methods again showed the lowest Rand Indexes.  

Summing up the results from the Real World simulation and the Traditional simulation k-

means cor with Silhouette PA-PCA performed best in assessing dimensionality across all 

conditions. On the other hand, for item assignment the new k-means approach k-means sdm 

obtained the best results especially for small sample sizes. According to these results, one  

Table 5 
Rand Indexes in the Real World simulation for different item assignment methods for different sample 
sizes for both data sets 

n K-means sdm K-means cor ClustOfVar I ClustOfVar II CAAL CACL EFA 

   NEO-PI-R     

100 .96 .88 .94 .95 .86 .88 .94 

200 .99 .89 .97 .97 .90 .93 .98 

500 1.00 .89 .99 .98 .93 .97 1.00 

1000 1.00 .89 .99 .99 .95 .98 1.00 

IST-2000-R 

100 .84 .78 .83 .83 .72 .77 .78 

200 .87 .81 .86 .86 .73 .77 .83 

500 .91 .83 .90 .90 .72 .74 .88 

1000 .91 .85 .91 .91 .72 .73 .89 
Note. K-means sdm=k-means scaled distance measure; k-means cor=k-means correlation; ClustOfVar 
I=ClustOfVar with hierarchical cluster analysis; ClustOfVar II=ClustOfVar with k-means cluster analysis; 
CAAL=hierarchical cluster analysis with average linkage; CACL=hierarchical cluster analysis with complete 
linkage; EFA=exploratory factor analysis. All Rand Indexes are based 1000 replications. 
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Table 6 
Success Rates and Means of indicated Number of Factors across all Sample Sizes in the 
Traditional simulation for both Data Sets 

Method  Population model Population model  
+ res cor 

  Success Rate M Success Rate M 

NEO-PI-R 

K-means sdm Silhouette .48 7.65 .44 7.77 

K-means cor Silhouette .89 3.83 .86 3.86 

ClustOfVar I Silhouette .90 4.69 .89 4.83 

ClustOfVar II Silhouette .92 4.57 .91 4.75 

CAAL Silhouette .40 7.59 .37 7.64 

CACL Silhouette .93 8.40 .98 8.52 

EFA PA-PAF .99 5.36 .33 5.94 

 PA-PCA .98 5.05 .56 5.39 

 MAP .97 3.10 .85 3.08 

IST-2000-R 

K-means sdm Silhouette .05 2.66 .05 2.68 

K-means cor Silhouette .05 2.31 .04 2.29 

ClustOfVar I Silhouette .07 2.69 .06 2.68 

ClustOfVar II Silhouette .07 2.70 .06 2.69 

CAAL Silhouette .04 2.54 .09 2.59 

CACL Silhouette .07 2.90 .06 2.95 

EFA PA-PAF .92 3.17 .57 3.30 

 PA-PCA .04 1.65 .04 1.66 

 MAP .00 1.00 .00 1.00 

Note. K-means sdm=k-means scaled distance measure; k-means cor=k-means correlation; 
ClustOfVar I=ClustOfVar with hierarchical cluster analysis; ClustOfVar II=ClustOfVar with k-
means cluster analysis; CAAL=hierarchical cluster analysis with average linkage; 
CACL=hierarchical cluster analysis with complete linkage; PA-PAF= Parallel analysis with 
Principal axis factoring, PA-PCA=Parallel analysis with Principal component analysis; 
MAP=MAP rule; M=mean; res cor=residual correlations. Simulated number of factors: NEO-PI-
R:5, IST-2000_r:3. All Success Rates are based on 1000 replications. Sample sizes= 100, 500, 
1000. 
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Table 7 
Rand Indexes across all sample sizes in the Traditional simulation for both data sets 

 K-means sdm K-means cor ClustOfVar I ClustOfVar II CAAL CACL EFA 

NEO-PI-R 

Population model .99 .97 .98 .99 .93 .96 .99 

Population model 
+ res cor .99 .96 .97 .98 .92 .95 .99 

IST-2000-R 

Population model .96 .91 .95 .95 .70 .77 .95 

Population model  
+ res cor .96 .90 .94 .94 .70 .74 .93 

Note. Sample size= 100, 500, 1000; number of replications= 1000. 
 

could expect k-means sdm and PA-PCA to be the best combination for exploratory structure 

detection. The suggested models of all combinations of dimensionality assessment methods 

and item assignment methods were tested in a CFA cross validation. 

 

3.2.3. CFA cross validation 

The BIC’s in the CFA cross validation in NEO-PI-R were all above 930,000 and in 

IST-2000-R above 62,000. We therefore report the obtained BIC’s minus 930,000 and minus 

62,000 respectively in Table 8. According to expectations, the combination of k-means sdm 

and PA-PCA obtained the lowest BIC in IST-2000-R followed by the non-hierarchical CA 

methods together with PA-PCA. In NEO-PI-R though, PA-PAF together with ClustOfVar II 

and k-means sdm showed the best results. In NEO-PI-R, also Silhouette with k-means sdm 

had a low BIC. Altogether, PA combined with either ClustofVar II or k-means sdm suggested 

the best fitting factor models according to CFA. PA-PCA turned out to be more useful in the 

IST-2000-R data set where high factor-intercorrelations are present whereas PA-PAF was 

more useful in the NEO-PI-R data set. In the IST-2000-R data, MAP always resulted in the 

same BIC, for the reason that it always indicated one factor. Based on the results previously 

mentioned, high chances for a good overall result could also be expected from a combination 
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of k-means cor with silhouette for dimensionality assessment and k-means sdm for item 

assignment, which was not tested in the CFA cross validation. 

 

4 Discussion 

The above results, using Real World simulation, Traditional Simulation and a CFA 

cross validation, show that the two new k-means approaches k-means sdm and k-means cor 

may be a favorable alternative over EFA in the following aspects:  

1. K-means sdm shows more accurate results for the item assignments to factors, 

especially for small sample sizes  

2. The two approaches do not involve model assumptions about the composition of 

the variance and covariance of the observed variables 

3. Also with k-means clustering, it is possible to compute cluster scores when 

considering the mean of the cluster as the overlying construct and these cluster 

scores are determined 

Table 8 
BIC for CFA cross validation with different combinations of dimensionality assessment and item assignment 
methods for both data sets 

 K-means sdm K-means cor ClustOfVar I ClustOfVar II CAAL CACL EFA 

NEO-PI-R 

Silhouette 5477 12580 7382 6614 6053 7060 - 

PA-PAF 5406 6659 5870  5372  11384  10193  6200 

PA-PCA 5828  7795 6494 5913 13708 11579  6636 

MAP 6136 8370 6882  6287 14568 12078  6936 

   IST-2000-R     

Silhouette  1857  1832  1854  1854    1911 1884  - 

PA-PAF 1936    1941 1934   1934  2050 2077 1884 

PA-PCA 1810 1816  1810  1811    1873 1838  1830 

MAP 1964 1964 1964 1964  1964 1964 1964 

Note. K-means sdm=k-means scaled distance measure; k-means cor=k-means correlation; ClustOfVar I=ClustOfVar with 
hierarchical cluster analysis; ClustOfVar II=ClustOfVar with k-means cluster analysis; CAAL=hierarchical cluster 
analysis with average linkage; CACL=hierarchical cluster analysis with complete linkage; PA-PAF= Parallel analysis with 
Principal axis factoring, PA-PCA=Parallel analysis with Principal component analysis; MAP=MAP rule. Number of 
replications= 1000. Reported values: BIC minus 930,000 for NEO-PI-R and BIC minus 62,000 for IST-2000-R. Sample 
size= 100, 500, 1000. 
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In fact, k-means clustering could overcome one of the problems of hierarchical CA 

while maintaining the advantage of CA over EFA that no crucial assumptions about an 

uncorrelated measurement error have to be made. This problem of hierarchical CA is that it is 

solely based on distances between items and therefore no statement is made about the 

construct to be measured. In k-means clustering the centroid of a cluster can be regarded as 

the overlying construct. Not only its coordinates are known but also distances between the 

construct and the items can be computed. Given that these distances are obtained directly 

from correlations, they can also directly be translated back into correlations. Accordingly, 

correlation matrices and even partial correlation matrices of items and constructs, equivalent 

to the loading matrix in PCA, can be obtained. Based on these distance measures or loadings 

again, the person scores on the constructs can be computed, the cluster scores. Just like in 

PCA and in contrary to PAF these cluster scores are determined since there is no residual 

variance involved in the equation. The equation of the linear combinations of construct scores 

is just the same as the one for component scores in PCA: 

S = XWX '  

where S  is the n x m matrix of the construct scores, X is the n x p data matrix and W 

is the p x m weight matrix with the component loadings in case of PCA and the distances 

between items and the respective cluster means in the case of CA. This information might be 

of use for practitioners in psychological assessment. However, in this study we did not go 

deeper into the precise mathematics behind these calculations.  

It shall be noted that the clustering method k-means sdm provides an additional 

advantage over other structure detection methods. The distances between the items and thus 

also the distances between items and the cluster mean doe not change when more items are 

added to the survey. This is not the case either for EFA or for other cluster techniques. 

As for dimensionality assessment, EFA generally still performed as well as the combination k-

means cor with Silhouette. This effect though was only shown in the Traditional simulation. 
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PA-PAF was sensitive to sample size and did therefore not perform so good in the Real World 

simulation where it indicated systematically more factors in the population data set than in the 

sub samples.  However, when using PA-PAF for dimensionality assessment and preliminary 

assigning the items with the new k-means approach k-means sdm, the best fitting CFA model 

was found in the cross-validation with the NEO-PI-R data. For the IST-2000-R data PA-PCA 

outperformed PA-PAF. This result suggests that a combination of PA for dimensionality 

assessment and k-means sdm for the item assignment is most recommendable as exploratory 

structure detection method for practitioners especially for small sample sizes.  To be more 

precise, PA-PCA shall be used when the aim is to reduce the dimensionality of the data to 

fewer underlying components that explain as much variance as possible. This combination 

moreover is useful when aiming to benefit from the absence of a measurement model 

including uncorrelated residual variances. Another option that still has to be investigated is 

combining k-means cor with silhouette for dimensionality assessment and k-means sdm for 

item assignment. In this study, there was no need to examine whether the new k-means 

approach can cope with the practical problems of EFA mentioned in the introduction, e.g. its 

difficulty with high cross loadings. By using parameters from real data we ensured to test 

practical meaningful conditions. 

It should be stressed though, that CFA fit is only one criterion and is again based on the factor 

model. As mentioned above, a factor model is not necessary for CA, and therefore, in the 

future the evaluation of k-means approaches for clustering of items should focus more on the 

predictive quality of cluster scores obtained from its analysis. 
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