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Abstract

This paper considers a “war of attrition” game in which agents
learn about an uncertain state of the world through private signals
and from their peers. I provide existence and uniqueness results for
a class of equilibria that satisfy a “full-participation” condition, and
show that asymmetries in the distribution of information can lead to
excessive stopping and an oversupply of information relative to the

social optimum.

1 Introduction

In 1929, the young German physician Werner Forssmann secretely conducted
a risky self-experiment. He inserted a narrow tube into his arm and ma-
neuvered it along a vein unto his heart. The procedure, known as cardiac

catheterization, constituted a revolutionary breakthrough in cardiology, and
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later earned him the Nobel prize in medicine. Forssmann’s main contribution
was the proof that cardiac catheterization was safe to perform on humans.
The basic methods for the procedure had already been developed decades
earlier and successfully tested on animals. It was widely believed, however,
that inserting any object into the beating human heart was fatal, and thus
there was a need for someone to put this hypothesis to the ultimate test.

The story of Werner Forssman is of someone who took action in an en-
vironment of “wait and see”, in which everyone hoped for the independent
initiative of a volunteer who resolves some of the risks relating to an un-
charted course of action. The fact that people learn from the behavior and
experience of their peers has been shown empirically by a large body of lit-
erature. Peer learning effects have been found for example in the diffusion
of innovations among health professionals (Becker, 1970), the enrollment in
health insurance (Liu et al., 2014), the diffusion of home computers (Gools-
bee et al., 2002), stock market entry (Kaustia and Kniipfer, 2012) and the
introduction of the personal income tax (Aidt and Jensen, 2009). In envi-
ronments in which no formal institution or informal arrangement exists that
coordinates exploratory activities, how efficient is it to rely on the initiative
of volunteers, and how well does such a decentralized mechanism aggregate
dispersed information?

To study this problem, we consider a stopping game with asymmetric
distribution of information and a pure informational externality. In this
game, each agent has the option to take the same risky action. Taking
this action produces a payoff which depends on an uncertain state of the
world. At the beginning of the game agents privately receive information
about the state and then they engage in a “war of attrition”, each deciding
independently how long to wait before taking action. The first agent who
stops receives his state-dependent payoff and thereby reveals the state to the
remaining agents. Uncertainty about the value of taking action and payoff

observability generate a second-mover advantage that provides agents with



an incentive to free-ride on others’ initiative.

I allow for heterogeneity in the distribution of information among agents.
Existing literature dealing with social learning and free-riding typically con-
siders symmetric equilibria of models in which agents are ex-ante identical.
Because of the heterogeneity in my model, we cannot use symmetric equilib-
rium. Instead, I propose a different solution concept, called full-participation
equilibrium, in which the (ex-ante) distribution over stopping times induced
by each agent’s strategy has full support. Intuitively, the full-participation
requirement rules out equilibria in which agents use the threat of being pas-
sive in the future to coerce others into taking action. I prove uniqueness
of the full-participation equilibrium and its existence for a general class of
games. Moreover, I demonstrate that the full-participation equilibrium co-
incides with the symmetric equilibrium when agents are identical. As such,
full-participation equilibrium can be viewed as a natural generalization of
symmetric equilibrium for models with heterogeneous agents.

I analyze the effects of variations in the distribution of information on the
full-participation equilibrium outcome and show that a strong informational
asymmetry leads to excessive stopping by poorly informed agents. More
specifically, when there are two agents of whom one is significantly better
informed than the other, then in a full-participation equilibrium the agent
with the least accurate information stops with probability one. Therefore,
the state is revealed with certainty regardless of the realization of signals,
which is more than would be optimal from a social welfare point of view.
The cost is borne mainly by the poorly informed.

There is a number of results in the related literature that suggest the
opposite: when a public good is provided through voluntary contribution,
then in a symmetric equilibrium the good is provided at an socially insuffi-
cient level, because no agent takes into account the positive externality of his
own contribution for others. Our model differs from these standard public

goods papers in two important ways. First, agents have asymmetrically dis-



tributed private information and learn from others’ inaction about the state
over time. Second, there is aggregate uncertainty whether providing the good
is individually and socially desirable. Naively, one may expect that the stan-
dard logic still applies by the argument that when one agents observes that
others remain passive, she becomes more pessimistic about the state and is
thus less willing to take action herself. In fact, this is indeed the case when
information is symmetrically distributed.

The argument does not go through however when there is a strong asym-
metry in the distribution of information. The basic intuition is that less
informed agents crowd out the informed agents’ participation.To fix ideas,
consider a model with two groups of agents. The first group observes infor-
mative signals about the state from some common distribution, the second
group receives no information. In equilibrium each agent chooses a stopping
time based on his belief about others” behavior. The informed agents’ will-
ingness to take action correlates with the state of the world: they tend to
be more pessimistic when the state is low and are thus tend to wait longer.
The behavior of the uninformed, on the other hand, is uncorrelated with
the state of the world. This means that the informed have an informational
reason to wait when they receive a low signal, as well as a strategic reason
to do so, resulting from the relatively higher optimism of the uninformed. In
equilibrium, the informed stop at decreasing rates over time, and in return,
the uninformed learn less and less from the informed agents’ inactivity. In
the limit, as time goes to infinity, informed agents become entirely inactive
and thus their abstinent behavior provides no information to the remaining
agents.

The paper is related to the literature on voluntary contributions to a dis-
crete public goods. These papers consider the strategic interaction between
agents who face the binary decision of whether to contribute to a public good
or not, and in which the public good is provided if the number of partici-

pants exceeds a given threshold. Such a model was first analyzed by Palfrey



and Rosenthal (1984) who characterize its Nash equilibria. Consistent with
standard logic, they find that in the unique symmetric equilibrium there is
an insufficient provision of the public good. There are several extensions to
their model allowing for the presence of informational asymmetry. Bliss and
Nalebuff (1984) consider endogenous timing of voluntary contributions to a
discrete good in a “war of attrition” framework. In their model, agents are
privately informed about their own cost, and thus agents learn about others’
participation only, but not about an underlying common state of the world.

There is also a natural connection to the literature on social learning,
following the seminal articles of Bikhchandani et al. (1992) and Banerjee
(1992). These papers consider models in which agents are ordered in a fixed
sequence and learn from previous agents’ actions about the common payoff
to some risky action. They show that private information and sequential
decision making can lead to informational cascades in which agents ignore
their own information and herd on a socially undesirable action. Informa-
tional cascades arise in my model in symmetric equilibria, but never when
there is a strong informational asymmetry.

Somewhat more closely related to this paper is Chamley and Gale (1994),
who propose a variant of the game with endogenous timing of actions. In
their model agents have an incentive to delay their action strategically when
they expect to obtain additional information from other agents decisions. A
similar mechanism is at work in the present model as well, but the strategic
setup is nevertheless quite different. In their model it is really the sequen-
tiality of actions that is important — delays occur in their model only when
agents are restricted to act at discrete times. In my model, delay arises natu-
rally as a consequence of an informational spill-over that results from payoff
observability.

Informational spill-overs from payoff observability have been studied in
the strategic experimentation literature starting with Bolton and Harris (1999)

and Keller et al. (2005). In these papers a group of agents dynamically choose



between two actions (i.e., the arms of a bandit) one of which yields a risky
and the other a safe payoff. Payoffs are observable giving rise to free-riding
among agents and inefficient levels of experimentation with the risky action
in equilibrium. Indeed, I view my model as a version of such a game, in
which choosing the risky action is immediately fully revealing.

A number of papers study versions of games of strategic experimentation
with asymmetrically informed agents. Those include non-competitive models
in which agents are privately informed about their cost of delay (Décamps
and Mariotti, 2004) or in which they privately observe their own payoffs
(Rosenberg, Solan, and Vieille, 2007; Murto and Valimaki, 2011). Another
array of papers considers model of competitive experimentation in which
agents are privately informed about the realization of a common state vari-
able (Malueg and Tsutsui, 1997; Moscarini and Squintani, 2010). To the
best of my knowledge there is no paper that considers a model with a pure
informational externality in which agents are asymmetrically informed about
a common state variable.

The paper is structured as follows. The model, definitions and basic
assumptions and the equilibrium concept are introduced in Section 2. Equi-
librium and existence results are presented in Section 3. Section 4 presents
the main result. Section 5 includes a discussion of efficiency and comparative

statics. Section 5 concludes.

2 Model

The set of agents is N = {1,...,n}. Each agent decides when to take a
risky irreversible action that yields the uncertain payoff that depends on an
uncertain state of the world 6 € {H, L}, where H > 0 is arbitrary and L is
normalized to —1. Once one agent stops, the remaining agents can observe
the true value of 6 and they can choose to collect the payoff 6 as well or to

make use of an outside option that yields a payoff of zero. There is no cost



to staying in the game. Agents share the common prior belief py that 6 = H.
At the outset, it is commonly known that each agent i € N is endowed with
a signal s; € S; = [s;, §;] about 6, drawn independently from a distribution
which has full support and a smooth c.d.f. F;y with bounded density. Future

payoffs are discounted at common rate r.

Strategies and equilibrium. A pure strategy for agent i € N is a function
o; ¢ [8;, 8] — [0,00) U{oo}, where o;(s;) represents the time agent ¢ with
signal s; stops if the game has not ended. For a given profile of signals and
strategies, denote by t_; the first taking action time among all agents except
1. If agent ¢ chooses t; > t_;, then agent ¢ observes the state of the world
at time t_;, and consequently receives the payoff e~ max{f,0}. If agent

rt_

1 stops at a time t; < t_;, she receives a payoff e—f. For a given profile

o_; = (0;)j of strategies for all agents except ¢, the expected payoff for

agent ¢ with signal s; from taking action at time ¢; is

Uz(tl, O',i‘Si) = Pr(t,l- < ti‘Si)E[eirt% max{@, 0}|t,7j < t;, 81‘]
+ Pr(t_; > t|s;)Ele "0

t_; >t 8]

The expectations are with respect to 6 and t_;. A strategy profile (0;);en is a
Bayes-Nash-equilibrium if o;(s;) € arg maxy, U;(t;,0_;|s;) for all i and every
si € [s;, 5il-

We consider full-participation equilibria which are Bayes-Nash equilibria

in which the image of each strategy is the entire positive real line.

Definition 1 (Full-participation equilibrium). A pure strategy Bayes-Nash
equilibrium (0;)ien 1S a full-participation equilibrium if for all t € Ry and

every i € N there exists s; € S; such that o;(s;) = t.

We prove that full-participation equilibria have a number of desirable
properties. They are unique, and exist in a large class of games. Moreover,

strategies that are part of a full-participation equilibrium are differentiable
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and monotone (see Lemma 1 on page 12). More specifically, if o; is a strategy
belonging to a full-participation equilibrium, then there is a §; € (s;, 8;) such
that o; is constant on [s;, §;], and strictly decreasing on (§;,s;]. Moreover,
when agents are identical, then symmetric equilibrium and full-participation
equilibrium coincide. In this sense, the notion of full-participation equilib-
rium is a natural analogue to symmetric equilibrium when there is hetero-
geneity among agents.

Note that assuming that agents choose their taking action time simul-
taneously ex-ante is without loss of generality. We could write the model
as a full-fledged dynamic game, in which agents decide continually over time
whether to take action or to wait and continuously update their beliefs about
the state of the world and the other agents’ signals. By construction, every
history in a full-participation equilibrium is reached along the equilibrium
path, and thus each full-participation equilibrium of the dynamic game is
outcome-equivalent to the unique full-participation equilibrium of the corre-

sponding game in strategic form.

Signals. We assume that signal distributions have the monotone likelihood
ratio property (MLRP), that is, the likelihood ratio Fj ;(s;)/Fj (s;) is in-
creasing in s; for each agent i. We shall make two further assumptions to
render the strategic interaction interesting. The first assumption ensures
each agent is willing to take action in equilibrium for some realizations of his

signal.
Assumption 1 (Initial Optimism). E[f]s;] >0 Vi e N.

Initial optimism among all agents is a necessary condition for the existence
of full-participation equilibria, since agents for whom the assumption does
not hold would never act in any equilibrium. We can transform any game
into one that satisfies initial optimism by removing all agents for whom the

expected value of the state for each of his signals is negative.



Next, we assume that there is aggregate uncertainty about the state of
the world. By aggregate uncertainty we mean that there is a profile of signals
such that the expected value of the state conditional on this signal profile is
negative. It follows that there is a signal for each agent so that this agent

prefers not to act for some realization of other agents’ signals.

Assumption 2 (Aggregate Uncertainty).
Pr(H|sy,...,s,)nH — Pr(L|sy,...,s,) <O0.

Aggregate uncertainty in conjunction with initial optimism implies that
it is initially uncertain whether taking action is socially desirable. The as-
sumption of aggregate uncertainty is important, because we are interested in
studying issues relating the aggregation of dispersed information, and want
to assess how the equilibrium outcome in the strategic environment compares
to the socially optimal outcome. Without aggregate uncertainty, taking ac-
tion would always be socially optimal, so that questions relating to efficiency
at the extensive margin become moot.

The reverse hazard rate \; g of agent ¢’s at s; € S; in state 6 is the density
assigned to signal s;, conditional on the event that the true signal is weakly

lower than s;. It is given by

Nio(si) = z

The reverse hazard rate ratio h; for agent ¢ at s; € S; is defined as the ratio

of reverse hazard rates, and given by

F y(si)/Fim(si)
Fip(si)/Fin(si)

hz<81) =

It is well known that MLRP implies A; z > A; 1 and thus h; > 1.
The likelihood ratio of the public belief « is the likelihood ratio of the



posterior probability that the state is H, conditional on each agent i’s signal

being below s;. It follows from Bayes’ rule that

MLRP implies that the Fj;/F; is increasing for each i (Eeckhoudt and
Gollier, 1995) and thus « is increasing in each of its arguments.

The hazard rate ratio h; and the likelihood ratio of the public poste-
rior « play an important role in the equilibrium analysis. If (0;);en is a
full-participation equilibrium, then each o; is monotone (see Lemma 1 on
page 12), and thus there exists an inverse ¢; of o; restricted to some subin-
terval ($;,5;] of S;. Therefore, at time t = 0;(s;) , the posterior probability
agent ¢ with signal s; € (8;, ;] assigns to the state being H has the likelihood

ratio

Po Fyu(o;(t) Fin(oit) N ,
T LU G0) Fratoy = @0 o)

This equation says that in an equilibrium in monotone strategies, for each
time t the likelihood ratio of the subjective belief of an agent ¢ who is to
act at time ¢ can be decomposed into the common component o and a pri-
vate component h;. Here, o represents a measure of the information about
the state that is commonly available to all agents. The factor h; represents
the information that agent ¢ holds privately and it provides a measure of
divergence of an agent’s private belief from the public belief. Based on these
definitions, we introduce the following notion of asymmetry in the distribu-

tion of information between agents.

Definition 2. The distribution of information is strongly asymmetric if there

are i,j € N such that infyes, hi(si) > sup,, e, hj(s;)-

In other words, the distribution of signals is strongly asymmetric, if there

10



are agents ¢ and j so that the lowest value of h; exceeds the highest value of
hj. The more informative a signal is, the larger the divergence of an agents
subjective belief about the state from the public belief. Consequently, higher
values of the reverse hazard rate ratios are associated with more informative
signals. Thus, strong asymmetry in the distribution of information essentially
means that there is a pair of agents such that one is always better informed
than the other, regardless of the actual realization of signals and the nature
of the equilibrium strategies.

As an example, consider a signal distribution that has the property F; g =
Ff 1, where f3; > 1. Such a signal distribution has a constant reverse hazard
rate ratio equal to ;. Moreover, the informativeness of signals is strictly
increasing in ;. Thus, if there are two agents ¢ and j # 4, whose signal
distributions have the constant reverse hazard rate ratios 3; and 8; < 3,
then the distribution of information is strongly asymmetric, with agent ¢

being better informed than agent j.

3 Equilibrium existence and uniqueness

First, we derive conditions for a strategy profile to be a full-participation
equilibrium and we then we how that these condition imply uniqueness. Sec-

ond, we provide sufficient conditions for existence.

3.1 Uniqueness

Fix an agent ¢ and a strategy for every other agent j # i. Denote by
Gig(t) the probability that agent i assigns to the event that every other
agent chooses an action lower than ¢, conditional on the state being 6. By

Bayes’ rule, agent ¢’s belief that the state is H after observing signal s; but

11



before the beginning of the game, is given by

pOFi/,H (si)

Pr(H|s;) = )
(Hls) = o G+ (L= po) Ly (5)

Then, agent i’s expected payoff is

(1) wuy(t,s;) =Pr(H]|s;) (/0 e "dGg(z) + (1 — Gi,H(t))e”) H
—Pr(L|s;)(1 — Gy n(t)) e ™.

The first term in (1) is the expected payoff from taking action at ¢ conditional
on the state being high. Agent i with signal s; assigns probability Pr(H]|s;)
to this event. He receives payoff e " H if another agent acts at z < t, and
otherwise he acts at time ¢ and obtains the payoff e ™" H. The second term
represents the expected payoff if the state is low. In this case agent ¢ receives
a payoff of zero if some agent acts before ¢, and otherwise he incurs a loss
—e . We first show that every full-participation equilibrium is in monotone

and differentiable strategies.

Lemma 1. Let (04, ...,0,) be a full-participation equilibrium. Then for each

o; there exist §; € [s;, 5], so that

(1) 0i(s;) = 00 for all s; € [s;, 5i].

(17) o; is strictly decreasing and differentiable on (8;, ;).
(1i1) o04(8;) = 0.

The proof is in the appendix. The lemma allows us to write each G, ¢ as
a function of the signal distributions of all agents 7 # ¢ and their strategies.
Specifically, there exists an inverse ¢; to each o; on (§;,5;] which itself is
strictly decreasing. Therefore, the probability that the earliest stopping time

among all agents except i is after time ¢ is equal to the joint probability

12



that the signal of each agent j # i is below ¢;(t), so that by conditional

independence
(2) H 3,0 ¢J
J#i

By part (ii) of the lemma and smoothness of the distribution functions, each
Gl g is differentiable. It thus follows immediately from (2) that

W (= Ea(60)
3 = Gald @ Fo @) “)> '

Taking the partial derivative of equation (1) with respect to ¢ and setting it

equal to zero yields
(4)  Pr(H|s;)(1 = Giu(t))rH — Pr(L|s;) (G}, (t) +r(1 — G L(t)) = 0.

Now, divide both sides by r Pr(L|s;)(1 — G, (t)) and rewrite the last expres-
sion as
Pr(H|s;) 1 — G;u(t) 1 G (t)

H—1=-—%" |
PI‘(L|SZ) 1-— Gi,L(t) rl— Gi,L(t>

(5)

If we now substitute (2) and (3) in (5), we obtain

po Fiu(0it) yp Fu(é;(t) ,, . _ 1 M
1—p0Fz‘/,L(¢i<t>>£[i j,L(qﬁj(t))H L= ( — ¢j<t)>'

Finally, we can write the last equation in terms of the revere hazard rates
Aig, the reverse hazard rate ratios h; and the likelihood ratio of the posterior

a, and obtain the more succinct expression

(6 (a6 OV — 1=~ 37 X166 1),

JF
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where ¢ = (¢1,...,¢,) denotes the profile of inverse strategies. Using ele-
mentary operations to isolate the derivatives in the equations forv =1,... n,

we obtain the nonlinear differential equation

r R 1
7 —di(t)= ———— )| —=> hij(p;(t))—hi(p;(t) | H———= |
M) =5 <a<¢< ) [n_lz 650 —hiloif >>] n_1>
for each ¢« = 1,...,n. In a full-participation equilibrium, the highest type
of each agent acts immediately (by Lemma 1), so that a solution of (7)
corresponds to a full-participation equilibrium if it is strictly decreasing and
#(0) = (51,...,5,). The next lemma shows that the dynamic system (7) has

a unique solution.

Lemma 2. The system of ordinary differential equations (7) with initial

condition ¢(0) = (51,...,5,) has a unique solution.

The proof is standard, and based on the fundamental existence and
uniqueness theorem for Lipschitz-continuous systems of ordinary differential
equations. The lemma implies that if a full-participation equilibrium exists,
then it is unique. The solution to (7) is not necessarily strictly monotone,

however, so that a full-participation equilibrium may fail to exist in general.

3.2 Sufficient conditions for existence

In this subsection we provide sufficient conditions for the existence of full-
participation equilibria. We consider games with n > 2 agents of whom
m € N receive a signal drawn from a distribution Fy in state § € {H, L}, with
reverse hazard rate ratio h and reverse hazard rate Ay (omitting the index
i). Except for differentiability and full support we do not impose restrictions
on Fy. The remaining n — m agents receive state-independent signal. For
expositional purposes, I refer to the agents who receive informative signals

as “experts”, and I call those agents who receive no information “amateurs”.
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We write

an(s) = 72 (?((s)))m

This is the likelihood ratio of the experts’ posterior belief about # when each
of the experts’ signal is equal to s.

The equilibrium strategy for experts is obtained from (7), using the fact
that the differential equation for amateurs depends only on the experts’
strategy. This specification allows us to derive the strategy for experts in
closed form. The strategy for amateurs on the other hand is not available
in closed form, but we can characterize the amateurs’ stopping rate which is
the hazard rate of the distribution of their individual stopping times. More
specifically, if ¢y denotes the strategy of an amateur and F{ the state inde-
pendent distribution of the amateurs signal, then the stopping time has the
c.d.f. Go(t) =1 — Fy(po(t)). The associated stopping rate is therefore given
by Ao(¢o(t))dy(t). The following proposition shows that a full-participation

equilibrium exists.

Proposition 1. Let n > 2 with n > m > 0 informed and n —m uninformed

agents. There exists a full-participation equilibrium if
(8) po[n —m — (n—m —1)h((E)|H >1—p,

in which the informed agents’ stopping time is

() = ? (n—1D)An(2)/r
(s) /s am(z)[n—m—(n—-—m-—1)h(z)| H -1

dz

for an agent with signal s > s* and o(s) =0 if s < s*, where s* solves

(9) am(s)(n—m —(n—m—1)h(s))H = 1.

15



The strateqy of each uninformed agent induces the stopping rate

r

(10)

(am(@() [(A(6(1) ~ Dym + 1] H ~ 1)

n—1
where ¢ s the inverse of o.

The above equilibrium specification includes as special cases the symmet-
ric games in which (i) agents receive identically distributed signals (m = n)
and (ii) no agent has any information (m = 0). In both cases, the equilib-
rium is a symmetric one. Note that for m = n, condition (8) is satisfied
because of Assumption 1. For m = 0, when all signals are drawn from a
state-independent distribution, then (8) reduces to poH > 1 — py which sim-
ply means that the stopping value must be positive for each agent. The

uninformed agents’ stopping rate then becomes

r Do H_1

Assumption 2 is violated in that case. When py H < 1 — pg, then in the

unique equilibrium no agent stops in finite time, and thus no full-participation
equilibrium exists. In all other cases (n > m > 0), we have existence of a
full-participation equilibrium only if the arrival rate at the highest signal
is low enough, which roughly means that the best signal informed agents
receive cannot be too informative. The bound depends on the number of
agents n, on of the number of informed agents m, and on the relative gain
H when the state is high. Condition (8) is needed, because full-participation
equilibria may fail to exist if the signal structures are extremely skewed, with
some agents having significantly more informative signals than others. It is
then possible that no strategy profile exists such that all agents are willing
to participate.

As an illustration, consider a situation with one expert (agent 1, say)

and two amateurs, so that hy > 1, and hy = hy = 1. In this case, we
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have %Z?Zl hj(sj)—hi(si) = 1 — hi(s1)/2, which is negative if hy(sy) > 2.
Thus, if agent 1’s signal is very informative, from equation (7), it follows
that ¢/ (e) > 0 for € > 0 small, ruling out that agent 1's strategy is strictly
decreasing. The underlying intuition is as follows. If agent ¢ receives a signal
s; = §; — €, he must choose an action lower than 1 by strict monotonicity of
strategies by Lemma 1. From equation (6) it follows that inducing agent 1
with signal s; to concede at t > 0 requires that the stopping rates for agents 2
and 3 are sufficiently high. But both agents 2 and 3 are less optimistic about
the state than agent 1, so that if agent 2’s strategy makes it a best response
for agent 1 to choose a lower action, then agent 3 will strictly prefer a later
stopping time regardless of his type, implying that agent 3’s strategy must

have a jump, thus ruling out existence of a full-participation equilibrium.

4 Efficiency

We now introduce a notion of efficiency that will serve as a benchmark of
comparison for the equilibrium analysis. In principle, there are two types
of inefficiencies that can arise in equilibrium. First, inefficiencies can arise
at the intensive margin, because agents act only with delay as a result of
free-riding. This issue has been discussed in detail in Bliss and Nalebuff
(1984). We thus set aside this aspect and focus on the inefficiencies along
the extensive margin, resulting from too much or too little stopping as a
consequence of imperfect exchange of private information.

Our notion of efficiency focuses on the aggregate stopping decision and
entails the constraint that each agent’s strategy cannot depend on another
agent’s strategy. Intuitively, this corresponds to a situation in which agents
collaboratively choose a profile of strategies prior to observing their signals
so as to maximize the sum of their payoffs. Let the stopping region for a

given strategy profile o = (01,...,0,) be a subset £ C Sy X ... xS, of signal
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profiles defined as

miin{ai(si)} < oo} .

E:{(sl,...,sn)

The stopping region is the set of all signal profiles for which some agent takes
action in finite time. We shall say that for a given strategy profile o aggregate
stopping is efficient if the stopping region E associated with ¢ maximizes
the sum of payoffs resulting from one agent taking action immediately if and
only if the realized signal profile lies in £. We call such a stopping region
the efficient stopping region.

The efficient stopping region is characterized by thresholds, one threshold
§; for each agent i. A signal profile (s1,...,s,) then lies in the stopping region
if and only if for any i, agent ¢’s signal s; lies above the threshold §;. This
follows from the monotone likelihood ratio property: if it is socially optimal
for an agent take action in finite time when his signal is s;, then it must also
be socially optimal to take action for any signal s, > s; as the higher signal
implies a higher probability of a high state. The socially optimal profile of
thresholds is chosen such that social gain from taking action is maximized,
conditional on agent ¢’s signal and on the event that i is pivotal. More

specifically, the efficient stopping region is characterized as follows.

Proposition 2. The efficient stopping region is given by the set of signal
profiles {(s1,...,8,) | 3i € N :s; > §;}, where 3; > s, for each i € N and

each §; < §; solves

8i) = -

Note that the efficient stopping region differs from the set of signal pro-
files at which a social planner would stop who can observe the agents’ signals.
A benchmark involving such a omniscient social planner would set an exces-
sively high standard for efficiency as it demands that agents use strategies
that are measurable with respect to all available information. The stop-

ping region that is optimal for a social planner is thus never attainable in
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equilibrium.

It is interesting to note that when there is an agent who is more informed
than all others in the sense of Definition 2, then this agent’s signal alone
determines whether action is taken or not. More specifically, suppose we
have n agents, and suppose the lowest value of the reverse hazard ratio of
agent 1 is higher than the highest value of the reverse hazard rate ratio of each
agent 7 > 1. Proposition 2 then implies that the signal profile (s, ..., s,) lies
in the efficient stopping region if and only if s; > §;, where §; is the signal of
agent 1 for which the expected social value of taking action is equal to zero.
The fact that the most informed agent becomes pivotal follows immediately
from the condition in Proposition 2. When there is a gap in the reverse
hazard ratios, then the condition cannot hold simultaneously for more than

one agent.

5 Asymmetric distribution of information and

excessive stopping

In this section, we analyze the effects of variations in the distribution of
information on the full-participation equilibrium outcome and show that
strong informational asymmetry leads to excessive stopping by poorly in-
formed agents. More specifically, when there are two agents of whom one
is significantly better informed than the other, then in a full-participation
equilibrium the agent with the least accurate information stops with prob-
ability one. Therefore, the state is revealed with certainty regardless of the

realization of signals

Theorem 1. If the distribution of information is strongly asymmetric, then
in the full-participation equilibrium there exists an agent who stops in finite

time almost surely.

The theorem tells us that information aggregation completely fails when
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there are asymmetries in the distribution of information. Moreover, the
inefficiency does not arise through insufficient stopping due to free-riding
as has been suspected in the literature (Foster and Rosenzweig, 2010), but
rather from excessive stopping. The cost of this excess is borne mainly by
the poorly informed. Thus, as far as production of information is concerned,
there is no “exploitation of the great by the small” (Olsen, 1965) but rather
an exploitation of the small by the great.

To illustrate the logic behind the result, let us consider the game from the
last subsection with m experts and n — m amateurs where n > m > 0. First
note that the distribution of information is strongly asymmetric, since MLRP
implies that the reverse hazard rate ratio for experts is greater than one,
while it is equal to one for amateurs. From (9) it follows immediately that
the right-hand side of (7) converges to zero as t approaches infinity. Hence,
the stopping rate of experts converges to zero. Moreover, by Assumption
2, the threshold s* defined in (9) is greater than the experts’ lowest signal,
which implies that they stop with probability less than one.

Next, consider the stopping rate for amateurs. By Lemma 1, equilibrium
strategies are strictly decreasing, and thus a,,(¢(t)) is strictly decreasing in
t. Moreover, the reverse hazard rate ratio for experts’ signal distribution is
strictly greater than 1, and thus its infimum, denoted by h*, is greater than 1
as well. Hence, letting o, = lim;_, o an(0(t)), the stopping rate of amateurs

at any ¢ € [0,00) is larger than

r * * _ _
(11) — (am((h Vm +1)H 1).
From the equilibrium threshold defined in (9), it follows that

1<ai(n—m—(n—m-—1)h")H.

If we now substitute this inequality into (11), we find that the stopping rate

20



for amateurs has the lower bound

ay (h*—=1)H > 0.
This last inequality implies that the stopping rate of amateurs is greater than
zero for all ¢ > 0. Moreover, it shows that the distribution over stopping
times induced by the amateurs’ strategy first-order stochastically dominates
the exponential distribution with parameter o (h* — 1)H. Consequently,
amateurs stop in finite time with probability one.

In summary, in a full-participation equilibrium of a game with informed
“experts” and uninformed “amateurs”, the experts’ stopping rates converges
to zero as t tends to infinity, while the uninformed agents continue to stop at
a positive rate throughout. It is noteworthy that amateurs as well as some
informed experts retain a positive stopping value. That is, their expected
instantaneous payoff from stopping remains positive even in the limit as ¢
approaches infinity. This is clear for amateurs, as they would otherwise not
be willing to stop. For experts, note that an expert whose signal is at the
equilibrium threshold s* is more optimistic about the state than an amateur
in the limit, so that his stopping value must remain positive as well.

Considering the class of games with “experts” and “amateurs” is illus-
trative, but the result of Theorem 1 is more general. For example, we can
apply the same logic to a game in which amateurs receive weak informative
signals. The same argument then goes through as long as their stopping
value remains positive in the limit for all realizations of their signal.

Let us now contrast the result with the symmetric equilibrium of a game
in which agents receive identically distributed signals. In this case, there is
no persistent gap in posterior beliefs about the state, and the stopping rate
of all agents converges to zero in the limit as ¢ — oco. Consequently, stopping
occurs if and only if one agent’s signal exceeds the equilibrium threshold s*

given in Proposition 1.
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Theorem 2. If all agents’ signals are identically distributed, then in the
unique full-participation equilibirum, there is too little stopping relative to

the social optimum.

What is driving this difference is the information gap between well and
poorly informed agents. The stopping time of well informed agents is more
strongly correlated with the state of the world, than that of agents whose
signal is noisy. This means in particular that when the state is low, then
poorly informed agents are less cautious and crowd out participation of the
better informed. As a result, the poorly informed learn little from the better
informed agents’ inaction. In the limit, agents with more accurate informa-
tion become entirely passive, and the poorly informed effectively play against

each other.

6 Conclusion

The objective of this paper was to reveal some of the mechanisms that un-
derly volunteering environments in which information is dispersed and in
which learning occurs through different interfering channels. Here, agents
learn through private signals and from other’s behavior. The basic setup of
the model has been kept purposefully simple to retain tractability. It is how-
ever natural to consider extensions. For example, first-mover advantage or
second-mover advantage appear plausible in many applications, such as R&D
competition. Such a change would create a bias among agents for action or
inaction, depending on whether we consider first or second-mover advantages,
but qualitatively the basic insights in this paper remain the same. Another
possibility would be to study how private information affects free-riding in
richer model in which experimentation occurs over time contemporaneously
with learning from others’ action. This alternative was in fact the starting
point of a previous version of this paper. However, such a model is signif-

icantly more difficult to analyze. Alternatively, we may view the current
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model as a reduced form game in which the stopping payoffs represent the
continuation value in an extended game in which a second round is played
after agent stops. Finally, private information arrives here only at the first in-
stant. It would perhaps be feasible to consider a model in which information

arrives over time.
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A  Proofs

Proof of Lemma 1. (i) In a full-participation equilibrium, strategies are
strictly decreasing. The proof proceeds in two steps. We first show that
strategies are non-decreasing as a consequence of supermodularity of the
agents’ payoff functions. Second, we show that strategies do not have atoms,
i.e., for no agent i is there a set of types of positive measure with the property
that all types in the set choose the same action t, so that Pr(o;'(t)) > 0.
These two result together imply that o; must be strictly decreasing.

(i.1) Strategies are non-increasing. Let p(s;) = Pr(H]|s;). The payoff of

stopping at time ¢ for agent ¢ with signal s; is
t
ui(t, ;) = p(Si)/ e "dGi p(z) H + e "ug(t, s;)
0
where
vi(t,si) = p(si)(1 = Gim () H — (1 = p(s:))(1 = Gin(t)).

Let Aw;(t,t',s;) = ui(t,s;) — ui(t',s;) and Av(t, st s;) = vi(t, sh) — vilt, s;).

Then, for ¢ >t and s, > s;, we have
Au(t, 1, s)) — Aug(t, 1, ;)
t/
= —(p(s) — p(sl))/ e dGy g (2) H + e Au(t, s, 5:) — eV Av(t', 8], s;)
t

> —(p(s}) = p(si))e (Gin(t') = G () H + e (Av(t, s}, ;) — Av(t!, 87, 1))

- A X

= A, 5}, 50) + (p(]) = p(s)) (G (V) = Gin(8) H + (Gin(t) = Gin(1))]
>0

Thus u; is supermodular, so that by Topkis” Monotonicity Theorem we have

oi(s;) = arg max u;(t, s;)
t
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is non-increasing in s;.

(1.2) Strategies are atomless. Suppose to the contrary that there is a set
of types for agent 7 of positive measure with the property that all types in the
set choose the same action ¢ > 0, so that Pr(c; *(¢)) > 0. Then for no agent
7 can it be a best response to stop at time ¢, ruling out that the equilibrium
is a full-participation equilibrium.

(ii) Strategies are differentiable. We show that if (0;);en is a full-participation
equilibrium and ¢; is the inverse of o;, then F; 1,(¢;(t)) is Lipschitz-continuous
in ¢ for each ¢. Because F; y has full support by hypothesis, it follows then
that o; is absolutely continuous, and thus differentiable almost everywhere.

Fix agent ¢ with signal ¢;(¢). Because agent i prefers t over t' > t, we
have Au;(t,t',s;) > 0. On the other hand,

¢
Au;(t,t' s;) = p(si)/ e "dG (z) H + e "t s;)
0
t/
— p(si)/ e "dG; u(z) H — e_”,vi(t', Si)
0
/ t/
= e it s) —e Tt ) — p(si)/ e "dG;u(z) H
¢
Thus, it follows
! t,
(12) e ity s) —e Tt s) > p(si)/ e "*dG, y(z) H.
t

We further have

W) [ e 2 e [ a6 = Gunlt) - Guno)e
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Using a zero-addition, we find that

e it s;) — e ot s:)
=e" Ul(t s;) — e ity s;) + e vt s) — e ot s0)
=(e” Vit si) + e p(si)(Gin(t) — Gin (D) H
e (1 = p(s:))(Gi(t') — GiL(t)).

(14)

Now, combining (12) through (14), we obtain

(e — e uilt, si) = e (1= p(s:))(Gin(t)) — Gin(t))

" is Lipschitz-continuous on the positive real-line

The exponential function e~
with Lipschitz bound r, and therefore r(t' —t) > e~ — e, Althogher, it
follows

L(t, )t —t) 2 (Gin(t') — GiL(t))

where
rv;(t, s;)
e~ (1 —p(si))

For any I = [to,t1] C Ry, L(t,t') is continuous on I x I and bounded, and

Lt,t) =

therefore L* = max( y)erxr L(t,t") exists. Hence,
Gip(t') —Gip(t) < L*(t' —t)

for all ¢ > ¢’ in I, which means that G, is locally Lipschitz-continuous.

Moreover,
Gin(t') — (H 5.(05 (1) = T Frw (o (¥ )
J#i e
> [ Funles () (Fyu(e5(t) = Eyu(e;(t)))
1£i,j

implies that each Fj(¢;(t)) is locally Lipschitz-continuous, as well. Now,
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each Fjp is strictly increasing and differentiable and hence it is invertible
and the derivative of the inverse F_L1 is again differentiable with bounded
density (since Fj 1, has full support). Thus, F;} ;1 1s Lipschitz-continuous with
some Lipschitz-bound M, and thus

0;(t) — ¢ (t') = F; L (F0(¢; () — Fi (Fjn(e;(t))
M(F;.(¢;(t)) — Fjn(é;(t)

)
= (Hz;ﬁ” Fio(o;(t ))> (Gir(t) — Gir(t)

(HWFZL(@( >>> E=%)

The last inequality shows that ¢; is locally Lipschitz-continuous for each j

I/\

and thus by Rademacher’s Theorem, it is differentiable almost everywhere
on R;. That ¢; is differentiable everywhere follows from the Fundamental

Theorem of Calculus, by integrating (7). O

Proof of Lemma 2. Define

Xi(sl,...,sn):—%< [n—lzh S;)— ]H 1>

F, ¢ is differentiable and has full support, and o; is differentiable by Lemma
1, and therefore o, 1/); 9 and each h; are all differentiable with respect to s;
fori =1,...,n. Thus, by Theorem 7.6.1 in Greenberg (2014), there exists a

unique solution to (7). O

Proof of Proposition 1. Let ¢ be the inverse of o, restricted to the inter-
val (s*,5] and let ¢y denote the inverse of the (implicitly defined) strategy
for amateurs. We proof the result in two steps. We show that (i) ¢ and ¢,
solve the system of equations (7) and (ii) they are strictly decreasing.

(i) Because of symmetry among experts, we can omit the index 4, and use
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the fact that for every amateur the reverse hazard rate ratio is equal to one.

Therefore, the differential equation (7) for each amateur becomes

n(0(t))[n—m — (n—m —1)h(e(t))]H — 1
(n = DAL(o(t))/r '

By the inverse function theorem, we have ¢'(t) = 1/0’(4(t)). If we then set

t = o(s) and substitute, we obtain a differential equation

(15) —¢'(t) =

(n = DAL(s)/r

) = S —m—(n—m - D@ I =1

The experts’ strategy shown in the theorem is then obtained by integrating
with respect to s. The boundary condition o(s5) = 0 implies that the constant
of integration is zero. For amateurs, notice that if ¢ is the inverse of their
strategy, and Az the reverse hazard rate of their signal, then their stopping
rate is equal to —Azo(¢(t))@g(f), so that from (10) we obtain

1 r
NiL(go(t))n—1

o (t) = — (am(@E) [(A6(6) = ym +1]H - 1)
which is identical to the right-hand side of (7). Thus, by construction, the
strategies of experts and amateurs solve (7).

(ii) The experts’ strategy o is clearly strictly decreasing and therefore ¢ is
as well. For amateurs we show that their stopping rate is non-negative. First,
note that since o is strictly decreasing, a.,(¢(t)) is strictly decreasing in t.
Moreover, the reverse hazard rate ratio for the experts’ signal distribution is
strictly greater than 1, and thus its infimum, denoted by h*, is greater than 1
as well. Hence, letting o, = limy_,, ., (6(t)), the stopping rate of amateurs

at any t € [0, 00) is larger than

(16) I (a:n((h* ~Dm+1)H - 1).

n—1
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From the equilibrium threshold defined in (9), it follows that
1<ai(n—m—(n—m-—1)h")H.

If we now substitute this inequality into (11), we find that the stopping rate

for amateurs has the lower bound
ay (h*—1)H > 0.

]

Proof of Proposition 2. Because of the monotone likelihood ratio prop-
erty, expected payoffs are non-decreasing in signals. Therefore, if it is optimal
to stop for a given signal s; of some agent 4, then it must also be optimal and
thus the stopping region is indeed characterized by a profile of thresholds s.
The optimal threshold profile solves

X po (1—HE,H(sﬁi>> nH — (1 - po) (1—HEL§ )

The associated Lagrangian is

+sz 31‘ +Z,uz z_Sz

1EN iEN
The efficient threshold profile § solves the necessary conditions
po [ [ Fin(35) Fipi(3nH — (1= po) [ | Frn(85)F 1(5:) = pi — .
JFi J#i
together with the Kuhn-Tucker conditions p;(s; —s;) = 0 and p;(5;, —s;) =0

and p;, u; > 0 forall ©+ € N.
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If 8; € (s;,8;), then p; = p; = 0, so that the right-hand side is equal to

zero, and §; satisfies

Do HF]H(SZ) L (80) 1

1_
Po 5

Po ﬁ Fim(s) Fin(3) 1 i < 1
I —po i Fj1(5) Fi/,L(éi) nH (1 —po) H?;éz F}7L(§j)Fz’/,L('§i) ~ nH

Finally, if there exists an ¢ € N with §; = s;, then p; > 0 and p; = 0. That

is the case only if

Do ﬁ Fu(5;) i u(s;) _ 1 . pi S 1
L=po JFi Fj.0(85) Fz'l,L(ﬁi) nH = (1—po) H;lyéz F}L(%)F;L@z) T nH
for each 1.
[
Proof of Theorem 1. Suppose o = (04, ...,0,) is a full-participation equi-

librium and let ¢; be the inverse of o; for all i € N. Define 7;(t) =
—@L(t)/NiL(4i(t)) to be the stopping rate of agent ¢ at time ¢ in state L.
Let a; = limg o ¢(t) for each i € N and set a = (ay,...,a,). Because
of aggregate uncertainty (Assumption 2) there is a subset M C N so that
a; > s; for alli € M, and a; = s, for all i € N\ M. We show that M C N.

Since [0, 00) is the image of o; by the assumption of full-participation, and
since \S; is bounded for each 7, it must be the case that limg,,, 0i(s;) = oo
for each ¢ € N. The inverse function theorem then implies lim; . ¢%(t) = 0.
For each i € M, we have lim; o A; (¢:(t)) = Air(a;) > 0 and therefore
limy . v;(t) = 0 for each i € M.

By strong asymmetry in the distribution of information, there exist i, 7 €
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M with h;(a;) > hj(a;). Then

(17) Jim %(0) = ra(a) izhm)—m(aalﬂ— .

< ra(a)| == hufax) hj(aj)] -

and thus lim;_,o v;(¢) > 0 implying j ¢ M. O

Proof of Theorem 2. By Proposition 1, if all agents’ signals are drawn
from the same signal distribution, then each agent stops in finite time if and

only if his signal is higher than s*, where s* solves
a(s*,...,s")h(s*) = 1/H.

By Proposition 2, the efficient stopping region is {(s1,. .., $,)|s; > §}, where
5 solves

a(s,...,5)h(s) =1/nH.

Now, a(s, ..., s)h(s) is increasing in s by MLRP and hence § < s* implying

that there is insufficient stopping in equilibrium. O
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