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Abstract

Childhood diseases are a major cause of death of children in the developing
world. In developing countries a quarter of infant and childhood mortality is
related to childhood disease particularly to diarrhea. Our case study is based on
the 2003 Demographic and Health Survey for Egypt(EDHS). It provided data
on the prevalence and treatment of common childhood disease such as diarrhea,
cough and fever which are seen as symptoms or indicators of children’s health
status, causing increased morbidity and mortality. These causes are often asso-
ciated with a number of risk factors, including inadequate antenatal care, lack of
or inadequate vaccination and environmental factors which affected the health
of child in early years, various bio-demographic and socio-economic variables.
In this paper we investigate the impact of such factors on childhood disease with
flexible geaodditive models. These models allow to analyze usual linear effects
of covariates, nonlinear effects of continuous covariates, and small-area regional
effects within a unified, semi-parametric Bayesian framework for modelling and
inference. As a first step we employ separate geoadditive probit models to the
binary target variables for diarrhea, cough and fever using covariate informa-
tion from the EDHS. Based on these results, we then apply recently developed
geoadditive latent variable models where the three observable disease variables
are taken as indicators for the latent individual variable ”health status” or
”frailty” of a child. This modelling approach allows to study the common in-
fluence of risk factors on individual frailties of children, thereby automatically
accounting for association between diseases as indicators for health status.

Keyword: Childhood diseases, developing countries, geoadditive regression
model, latent variable models, MCMC.

1 Introduction

Childhood disease is among the most serious health issues facing developing
countries, and it has an impact on future development. The main objective of
this paper is to examine the impact of the socio-economic and bio-demographic
factors on childhood disease, including geographical effects as a surrogate for un-
observed covariates with spatial information. In our case study, we focus on the
analysis for childhood disease in Egypt using data from the 2003 Demographic
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and Health survey (EDHS) which was jointly sponsored by the United Nations
Population Found Activities (UNPFA) and the U.S.Agency International De-
velopment (USAID). One of the main objectives of EDHS is to provide an up
to date information on childhood disease. This intends to assist policy makers
and administrators in evaluating and designing programs and improve planning
for future interventions in these areas, which in turn should reduce childhood
morbidity and childhood mortality as well. We will model the impact of various
socio-economic, public health and geographical variables on disease of young
children in developing countries with Egypt as a case study. Statistical analysis
will be based on modern Bayesian approaches which allow to flexibly formulate
realistically complex geoadditive regression and latent variable models. In a
first step, we analyze the impact of various risk factors on the three diseases di-
arrhea, cough and fever through separate geoadditive probit models developed
in Fahrmeir and Lang (2001) and Brezger and Lang (2005). In a second step,
we use geoadditive latent variable models, recently suggested in Raach (2005)
and Fahrmeir and Raach (2007). In geoaditiive probit latent variable models,
the three observable binary disease variables are taken as indicators for the la-
tent individual variable ”health status” or ”frailty” of a child. This modelling
approach to study the common influence of risk factors on individual frailties
of children, thereby automatically accounting for association between diseases
as indicators for health status. Compared to previous results, our approach
can provide additional and new insight of childhood morbidity and mortality in
developing countries in general and, more specifically, in Egypt.

Previous studies on child disease have focused on various-socio-economic, demo-
graphic or health factors available in specific data sets, however most of these
studies have neglected aspects for the spatial effects, see for instance see for
instance Miller and Hirschhorn (1995), and Miller et al. (1994). Previous work
on child disease in Egypt is restricted to few selected or specific towns and gov-
ernorates. However, a notable exception is the study for Nigeria in Kandala et
al. (2007), using separate geoadditive probit models for cough, fever and diar-
rhea. For such work, see Langsten and Hill (1994). Our case study, different
from these previous works with respect to the following aspects: Firstly, the
analysis studies spatial differentials of child disease at a highly disaggregated
governorates level using a Bayesian approach for geoadditive models. This al-
lows to incorporate covariates effects in a flexible semi-parametric way, which
is not possible through the usual parametric approaches considered previous
works. Secondly, a latent variable model (LVM) for heath status based on
binary disease indicators permits modelling of covariates effects on the latent
variables through a flexible geoadditive predictor. All computations have been
carried out with BayesX- Version 1.40 (Brezger et al., Lang 2005), STATA and
R Programs using MCMCpackage see Raach.(2005) and Fahrmeir and Raach
(2007). The rest of the paper is organized as follows: In Section 2 we discuss the
data set and methods, while Section 3 describes geoadditive models and latent
variable models. Section 4 contains data analysis and results for child disease
in Egypt. Concluding remarks are given in Section 5.
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2 Data

This paper is based on data available from the 2003 EDHS. The 2003 EDHS
uses standard survey instruments to collect data on household members such as
working status and education of mother, sex of child, and exposure to media etc.
It also collects household living conditions such as housing characteristics and
information on fertility, mortality and child health from mothers in reproductive
ages (15-49). Individual data records were constructed for 6661 children in
Egypt. Each record consists of disease information and the list of covariates
which could affected child’s health. The EDHS data only permit to attribute
child morbidity to specific disease in the last two weeks before the surveys. Table
2 shows an overview of the three common diseases in Egypt in the last two weeks
before the interview, and Figure 1 shows the rates of the three diseases in the
governorates of Egypt. In the following, we provide some more information
about the three diseases, which are used as response variables, as well as about
the covariates considered in the case study.

Diarrhea

There is a variety of micro-organisms that could be the main cause of the di-
arrhea disease including viruses, bacteria and protozoans. Diarrhea affects the
health of persons and causes to loss of water and electrolytes as well which are
a leading cause of both dehydration and death in some other cases. It is a
most public health problem which related to water and sanitation. In the 2003
EDHS, mothers were asked whether any of their children under five years of age
had diarrhea at any time during the two-week period prior to the survey.

Fever

Most fevers in babies and children are caused by a viral (germ) infection. How-
ever, fever is less common and high fevers are unusual in young infants, and
any fever should be considered a danger sign of very severe disease. The causes
of fever could be an infection caused by germs like virus, parasites, or bacteria
and vaccinations or immunization shots. Sometimes children have fever for no
known reason.

Cough

Cough and difficult breathing are common problems in young children. The
recent literature indicates that breastfed children who had a cough or cold may
have difficulties in feeding, however breastfeeding could help to fight the diseases.
Along with diarrhea, acute respiratory infection (ARI), particularly pneumonia,
is a common cause of death among infants and young children (EDHS 2003).

Categorical covariates

Table 2 provides information on categorical socio-economic and bio-demographic
covariates, their categories, frequencies and the coding used in the regression
models.
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Variable Obs Mean Std. Dev. 0:had no diseases 1:had diseases
Diarrhea 6348 0.210 0.407 5.013(78.97) 1.335(21.03)

Fever 6348 0.323 0.467 4.297(67.69) 2.051(32.31)
Cough 6348 0.255 0.4361 4.725(74.43) 1.623(25.57)

Table 1: Overview of diseases in Egypt

Factor n (%) coding

Place of residence

Urban 2237(33.58%) 1
Rural 4424(66.42%) -1.ref

Child’s sex

Male 3487(52.35%) 1
Female 3174(47.65%) -1.ref

Working

Yes 1209(18.15%) 1
No 5452(81.85%) -1.ref

Mother’s education

No,
Incomp.prim,
Comp.prim,
Incomp.sec 4194(62.97%) 1
Compl.sec,

Higher 2467(37.04%) -1.ref
Pregnancy’s treatment

Yes 697(10.46%) 1
No 5964(89.54%) -1.ref

Receive vaccination

Yes 1737(25%) 1
No 56(0.8%) -1.ref

Missing 75%

Drinking water

Controlled 5374(80.68%) 1
Not controlled 1287(19.32%) -1.ref

Missing 1%

Has radio

Yes 5374(80.68%) 1
No 1559(19.32%) -1.ref

Has electricity

Yes 6203(93.12%) 1
No 458(6.88%) -1.ref

Toilet facility

Own flush toile 1768(28%) 1
No toilet 4511(71.8%) -1.ref
Missing 1%

Antenatal visit

Yes 4181(63%) 1
No 2342(35%) -1.ref

Missing 2%

Table 2: Factors analyzed in diseases study
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Figure 1: Maps of Egypt showing the rates of diarrhea disease (top left), rate of
Fever disease (top right) and rate of cough disease(bottom)

The following continuous covariates have possibly nonlinear effects on diseases.

Child’s age (chage)

The prevalence of diseases depends on age. According to the world health orga-
nization (WHO), children should receive the complete schedule of recommended
vaccinations by 12 months of age. Figure 2 (left panel) shows that there are
many cases fall in the age group 10-12 months.

Mother’s body mass index (BMI)

Body mass index varies with the woman’s age, and it is somewhat higher among
urban women than among rural women (EDHS 2003). Studies show that this
coexistence of under- and overnutrition exists not only at the societal but also
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Figure 2: Density estimates of child’s age (top left), kernel density estimates of
Mother’s body mass index (right left) and kernel density estimates of mother’s
age at birth in Egypt (bottom).

the household level. The range of overweight mothers is remarkably large, even
within a region. For instance, 55 percent of mothers had overweight in Egypt.
Figure 2 (right panel) shows that there are many overweight mothers (between
27-30 BMI) in the data set for Egypt.

Mother’s age at birth (magb)

This is an important variable to fertility since it marks the onset of childbearing
process. In a typical Middle Eastern culture, magb is expected to be highly
correlated with age at first marriage. Delays in magb may indicate late estab-
lishment of marriage unions and hence implies shortening of the reproductive
period and as consequence a reduced fertility. Figure 2 (Bottom panel) shows
the kernel density estimates of mother’s age at birth. It reflects the effect of the
increasing age of mother at birth, a few mother fall in the age group (12-19). It
indicates that most women had become mothers between age 18-24. Further, it
shows that only a small percentage of women older than age 25 had given birth
at the time of the survey.

Spatial covariates

Figure 1 shows that lower Egypt, essentially some districts in Nile Delta, are
associated with significantly higher rate of illness. Red areas indicate that there
is a negligible effect within these areas, green areas reflect a strong effect in
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these regions and gray areas indicate that there are no children live in these
regions according to the data set.

3 Bayesian Geoadditive Regression and Latent
Variable Models

Geoadditive regression models extend (generalized) linear models for various
types of response variables by adding nonparametric terms for nonlinear effects
of continuous covariates and geographical effects of a spatial variable to the
usual linear part of the predictor. Similarly, predictors in latent variable models
can be extended to geoadditive predictors. In the following, we focus on probit
models for binary responses, but in general the approach also covers models
with continuous, ordered categorical and count variables as observed responses.

3.1 Geoadditive Probit Regression

Let y1, ..., yp denote p observable binary responses, such as the three disease
indicators in our case study, and x1, .., xp corresponding covariate vectors. Note
that some or even all components of these covariate vectors may be identical,
thereby inducing association between the responses. Separate probit models
with linear predictors can be defined through

P (yj = 1|xj) = Φ(β0j + x′jβj) j = 1, .., p, (1)

where Φ is the standard normal distribution function. Probit models can be
based on Gaussian linear models

ỹj = β0j + x′jβj + εj , εj ∼ N(0, 1) (2)

for unobservable auxiliary variables ỹj through the threshold mechanism

yj = 1 ⇔ ỹj > 0, yj = 0 ⇔ ỹj ≤ 0. (3)

Geoadditive probit models are obtained by extending the linear predictor

ηlin
j = β0j + x′jβj to a geoadditive predictor

ηgeo
j = β0j + x′jβj + f j

1 (z1) + .. + f j
k(zk) + f j

geo(s).
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The smooth functions f j
1 , ..., f j

k represent nonlinear effects of continuous covari-
ates z1, ..., zk. For simplicity, we only considered the case that these covariates
are the same for each predictor ηgeo

j , j = 1, .., p. The function f j
geo represents

the geographical effect of a spatial variable s ∈ {1, .., d}, indicating regions or
districts in a country. The geographical effect f j

geo(s) of region s can be inter-
preted as a surrogate for unobserved variables with geographical information,
incomplete or not covered by observable covariates. It may be split up into
a structured part fstr for correlated spatial effects, and an unstructured part
funstr for uncorrelated, local spatial effects, see section 3.3. Given the data
(yij , xij , zi1, ..., zik, si), i = 1, .., n, where si is the region ∈ {1, .., d} where indi-
vidual i lives, geoadditive probit models for observations are given by

P (yij = 1|ηgeo
ij ) = Φ(ηgeo

ij ), i = 1, .., n, j = 1, .., p (4)

ηgeo
ij = β0j + x′ijβj + f j

1 (zi1) + .. + f j
k(zik) + f j

geo(si).

Correspondingly, unobservable geoadditive Gaussian models for the auxiliary
variables ỹj are given by

ỹij = ηgeo
ij + εij , εij i.i.d ∼ N(0, 1). (5)

The unknown parameters β0j , βj and functions f j
1 , ..., f j

k , f j
geo have to be esti-

mated from the data. We follow a semiparametric Bayesian approach as devel-
oped in Fahrmeir and Lang (2001) and Brezger and Lang (2005). We assume
diffuse, non-informative priors based on Markov Chain Monte Carlo (MCMC)
techniques p(β0j) ∝ const, p(βj) ∝ const. Functions f1, ..., fk follow P-spline
priors, and the geographical effect fgeo is modelled through a Markov random
field. Details about these priors are outlined in Khatab, 2007 , and the MCMC
inference is implemented in BayesX.

3.2 Latent Variable Models for Binary Responses

A drawback of separate probit models for each of the binary responses yj intro-
duced so far is that association among y1, ..., yp can only be captured by joint
covariates. Latent variable models, as introduced in this section, automatically
induce correlation among the responses.

The basic idea of factor analysis and latent variable models (LVM) is that the
vector of the p observable variables can be represented, at least partly, by one or
more latent factors or variables υ with a lower dimension. As in our case study,
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where we introduce the latent variable υ “health status“ we only consider a one-
dimensional latent variable for simplicity. Extension to multi-dimensional latent
variables and models with different types of observable responses are presented
in Fahrmeir and Raach (2007) and Fahrmeir and Khatab (2007). The simplest
LVM for Gaussian responses ỹj , j = 1, .., p, and scalar υ is given through

ỹij = λjυi + εij , i = 1, .., n, j = 1, .., p, (6)

with i.i.d, Gaussian errors εij . In this model, υi is the unobservable value of
individuum i, λj is the ”factor loading,” and λjυi is the effect of υi. The
restriction to συ=var(υ) = 1 is necessary for identifiability reasons; otherwise
λj would only be identifiable up to the constant συ 6= 1. If the ỹij cannot be
observed directly but only binary indicators

yij = 1 ⇔ ỹij > 0,

then we obtain a probit LVM

P (yij = 1|υi) = Φ(λjυi) i = 1, .., n, j = 1, .., p. (7)

One aspect of the latent variable is that it captures part of the variability of the
responses. Secondly, although responses ỹij or yij are conditionally independent
for the given υi, they are correlated marginally. These simple models can be
extended to geoadditive probit LVMs as follows:

In the most general form, we augment the geoadditive predictors ηgeo
ij in model

(4) or (5) to

ηgeo
ij + λjυi, i = 1, .., n, j = 1, .., p, (8)

resulting in the measurement model

ỹij = ηgeo
ij + λjυi + εij , (9)

with i.i.d errors εij ∼ N(0, 1) for the auxiliary variables ỹij and in

P (yij |ηgeo
ij , υi) = Φ(ηgeo

ij + λjυi), j = 1, .., p

for the binary responses.
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Secondly, we allow that the latent variable υ is influenced by covariates in form
of a geoadditive structural model

υi = u′iα + f1(wi1) + ... + f(wiq) + fgeo(si) + δi, (10)

with i.i.d. Gaussian errors δi ∼ N(0, 1). For identifiability reasons as mentioned
before it is assumed that (δi) = 1, and that the predictor for υ contains no in-
tercept term. The additional covariates u,w1, .., wk and the location variable s
act directly on the latent variable υ, but indirectly on the observable responses.
Covariates included in the structural model (10) must not be included in the
measurement model at the same time, again for identifiability reasons. In par-
ticular, a spatial effect fgeo has to be included in either the measurement or the
structural model. As for our application, we will restrict the attention to probit
LVMs with linear predictors for the measurement model, i.e.,

P (yij |xij) = Φ(β0j + a′ijβj + λjυi)

and geoadditive structural models (10) for υi. The covariates aj are different
from the covariates u,w1, .., wk, and they have direct effects βj on the observed
responses. The effects α of u, and the nonparametric effects as well as the
spatial effect are indirect effects. We used aj (instead of xj) as direct covariates
in the case of latent variable model for simplicity.

3.3 Priors and Bayesian Inference

To complete the Bayesian model specifications, priors have to be assigned. For
the direct effects β0j , βj and the indirect parametric effects α, we assume diffuse
priors

p(β0j) ∝ const, p(βj) ∝ const, p(α) ∝ const.

For the factor loadings, we specify informative Gaussian priors

p(λj) ∝ N(0, σ2
j ),

with σ2
j = 1 as the standard choice, to avoid the so-called Heywood cases (see

e.g. Raach, 2005).

Priors for functions

For a function f(w) of a continuous covariate w, we assume Bayesian P-spline-
priors as in Brezger and Lang (2005).
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Priors for spatial effects

We usually split fgeo (s) into a smooth structured effect and an unstructured
effect, i.e.

fgeo(s) = fstr(s) + funstr(s)

4 Statistical Analyses and Results

Statistical analyses were performed in two steps:

First, we fitted separate geoadditive probit models to the following three dis-
eases: diarrhea, fever and cough. A main purpose of this step was model se-
lection, to model effects of the continuous covariates, and to see if there are
sizeable spatial effects. Based on preliminary exploratory analyses not shown
here, we used the Deviance Information Carterion (DIC) of Spiegelhalter et
al.(2002) to select models in a formal way. Section 4.1 presents results of this
first data analysis step. In the second step, we then applied geoadditive pro-
bit LVMs to analyze the data. While the DIC is now commonly accepted as
a standard tool for selecting probit or logit models, its performance for LVM
model choice is not yet well understood. It was decided to choose the covariates
used in equation (9) for the measurement model, which have direct effects on
the disease indicators; or in the case of the structural equation (10), those have
indirect effects via their common impact on the latent variable ”health status,”
we therefore proceeded more informally: if the effects of covariates turned out to
be significantly different (in terms of confidence intervals) for the three diseases,
we decided to keep them in the measurement model, otherwise covariates were
included in the geoadditive predictor of the structural equation for the latent
variable. The results are presented in section 4.2.

4.1 Analyses with Separate Geoadditive Models

We present results for the following probit models, selected from a longer hier-
archy of models. The responses yj , j = 1 (diarrhea), 2 (fever), 3 (cough) are
coded as

yi =
{

1 : if child had disease 2 weeks prior to the survey
0 if not (11)

The following covariates were considered in the analysis in both countries:

Metrical covariates

Chage: Child’s age in months.

BMI : Mother’s body mass index.

11



Mageb: Mother’s age at birth.

Categorical covariates (in effect coding)

male: Child’s sex: male or female (reference category).

educ: Mother’s educational attainment: incomplete primary, complete primary, and
incomplete secondary school; or complete secondary school and higher eduction
(reference category).

trepr : Whether mother had treatment during pregnancy: yes or no (reference cate-
gory).

anvis: Whether mother had antenatal care: yes or no (reference category).

water : Source of drinking water: controlled water or no (reference category).

toilet : Has flush toilet at household: yes or no (reference category).

urban: Locality where respondent lives: urban or rural (reference category).

radio: Has a radio at household: yes or no (reference category).

elect : Has electricity: yes or no (reference category).

work : Mother’s current working status: Working or not (reference category).

Spatial covariate

reg : Governorate where respondent resides.

The predictors of the models considered in this section are as follows:

M0: Included only district-specific effects.

M0 : ηij = β0 + fstr(reg) + funstr(reg) (12)

M1: Includes all categorical covariates and the metrical covariates.

M1 : ηij = β0j + fj(Chage) + fj(BMI) + fj(Mageb) + w′iγj (13)

M2: Adds district-specific effects to Model 1.

M2 : ηij = β0j+fj(Chage)+fj(BMI)+fj(Mageb)+fstr(reg)+funstr(reg)+w′iγj

(14)

M3 : ηij = β0j+fj(Chage)+fj(BMI)+fj(Mageb)+fstr(reg)+funstr(reg)+z′iγj

(15)

In these models, β0 is a constant term and the covariate vector w in models M1
and M2 contains all the bio-demographic and health factors. In model M3 the
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Model Deviance pD DIC
Diarrhea

M0 6364.46 15.45 6395.38
M1 5433.27 36.53 5506.34
M2 5432.74 36.91 5506.55
M3 5311.83 46.50 5404.84

Fever
M0 7892.49 12.98 7918.47
M1 6972.51 36.74 7045.99
M2 6904.23 48.043 7000.32
M3 6911.25 44.38 7000.02

Cough
M0 7076.87 14.43 7106.38
M1 6432.95 35.92 6504.78
M2 6330.83 48.96 6428.75
M3 6336.81 45.15 6427.11

Table 3: The Deviance Information Criterion (DIC)

vector w is reduced to the vector z by omitting factors of education, type of
toilet and source of water. The metrical covariates child’s age, mother’s BMI
and mother’s age at birth are allowed to have a non-linear effect on the diseases
of child as well as the spatial effects fstr and funstr. It turned out that model
M3 for each type of diseases is superior in terms of the DIC.
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Results

In the preliminary analysis, we aim to separate the two kinds of spatial effects
included in model M0 to estimate a structured and an unstructured effect. In
a further step, we include the categorical covariates and the metrical covariates
in the analysis as shown in models M1, M2 and M3. The results for these
models are given in Khatab (2007). However, we will only focus in this paper
on the results of M3 which is the best model in terms of DIC. The results for
the categorical covariates (M3) are shown in Tables 4 through 6 for the three
diseases, respectively.

In figures 3-5 for the effects of the continuous covariates on the three diseases,
respectively,and in figures 6-8, these suggest district variation in prevalence of
diarrhea, fever, and cough using geoadditive separate analyses.

Diarrhea

Tables 4 displays the estimated categorical effects of these variables (male, ur-
ban, mother working status, mother had treatment during pregnancy, antenatal
visit, availability of radio, availability of electricity, source of drinkable water,
mother’s education, and toilet facility) on diarrhea disease in Egypt. The re-
sults of Egypt indicate a significant impact of mother had treatment during
pregnancy on disease of diarrhea and a significant impact of antenatal visit.
However, antenatal visit has a positive effect. This analysis also suggests that
mother’s education, mother working status, toilet facility, availability of elec-
tricity and source of drinkable water have little or non significant effects.

With regard to the non-linear effects, figure 3 shows from top to bottom: the
(nonlinear) effects of age of the child, mother’s body mass index and mother’s
age at birth for model M3, respectively, modelled through Bayesian P-splines.
The nonlinear effect of child’s age suggested that there is continuous and serious
worsening of children’s health status up to about 11 months of age, with an
almost linear decline thereafter. The impact of a mother’s BMI on diarrhea is
only slight. There is some evidence that the children of mothers whose have
a BMI less than 25 face a lower risk of disease (even though there are few
mothers with BMI between 15 and 20). For BMI larger than 43-45, there are
few observations and the credible intervals gets wider. A somewhat higher
risk for diarrhea seems to exist for mothers who have a BMI between 27 and
30, where a bump appears. In addition, we find the influence of mother’s age
(second panel from the bottom to the top bottom of figure 3) on diarrhea in
Egypt seems to be in the form of an inverse U-shape. It shows that the mother’s
age has a slight impact on diarrhea, however the children from mothers who are
in age group (18-22 years) are at a higher risk of diarrhea compared to children
from mothers in other age groups.

With regard to spatial effects, figure 6 displays the estimates of the spatial effect
(the levels correspond to ”high risk of morbidity” (green colored) and ”low risk”
(red colored) for Egypt. The colored maps show posterior means of structured
random effects on diarrhea (right panels) and its corresponding posterior mean
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of unstructured random effects (left panels). For the model M3 for the diarrhea
disease, the geographical pattern of regions in the right panel of figure 6 reflects
the estimated posterior means of the structured random effects on diarrhea.
Obviously, there exists a district-specific geographical variation in the level of
the disease in Egypt (figure 6) based on the 2003 EDHS. The pattern reveals
that significant high rates of illness are associated with the Upper Egypt area
(Minya, Amarna, Luxor, Esna, Edfu, Aswan, ....), some cities and rural areas
in the Nile Delta and in Eastern Cairo (Sinai). Upper Egypt implies a relative
higher risk of having a diarrhea disease and knowing the characteristics of the
region, the result is not surprising. The left panel also reveals a higher risk
of diarrhea morbidity in the upper area in spite of being surrounded by some
districts with lower risk.

Fever

The fixed parameters show that the prevalence of fever in Egypt (table 5)is
higher among infants from mothers who are working, males, and children from
mothers who obtained antenatal visits during pregnancy. Availability of radio
in the household is associated with a lower risk of fever morbidity. On the other
hand, the results suggest that mother’s educational attainment, whether the
mother received injection during pregnancy or not, availability of a flush toilet,
availability of electricity, source of drinkable water and locality of residence have
only a slight influence on fever morbidity in Egypt. In addition, mother who
obtained antenatal care during pregnancy, had access to electricity and radio
have a lower significant effect on fever.

Figure 4 shows the nonlinear effects of a child’s age on fever. The impact
of a child’s age is quite similar in the three models in Egypt. It shows that
deterioration sets in right after birth and continues, up to 11-12 months, but
then the age effect declines more or less steadily until 25-26 months. The effect
of mother’s BMI on fever is shown in figure 4. It is observed that mother’s BMI
has a slight significant impact on child health status in Egypt. Furthermore,
it declines for mothers with a BMI of less than 20, and is less pronounced for
mothers with BMI between 20-35, in spite of a blip between BMI of 30 and 35,
which is caused by overweight mothers in Egypt, and over a BMI of 40, there
are only few observations (wide credible interval). Unexpectedly, the effect of
mother’s BMI f(BMI) in the three models turns out to be almost linear.

With regard to the non-linear effect of mother’s age at birth on fever morbidity,
the figure 4 displays that children from younger mothers (< 20 years) are at
considerably higher risk of morbidity compared to children from mothers who
are in the middle-aged group (25-35) and the impact of mother’s age on fever
disease is quite similar for both countries.

The geographical pattern of district-specific effects for fever in figure 7 indicates
that significant high illness rates are associated with the Egyptian governorates
Suez, El Arish, Ismalia and Sinia ”in the southwestern area”. There is a varia-
tion in the level of illness rates of children in Egypt, and this variation could be
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Variable Mean S.dv 2.5% median 97.5%
const −1.116∗ 0.169 -1.469 -1.119 -0.806
male 0.060∗ 0.019 0.021 0.060 0.097

urban −0.062∗ 0.024 -0.109 -0.063 -0.016
work 0.010 0.025 -0.042 0.010 0.057
trepr 0.065∗ 0.031 0.002 0.065 0.129
anvis 0.080∗ 0.022 0.036 0.079 0.123
radio -0.051 0.025 -0.101 -0.050 0.001
elect -0.002 0.094 -0.177 -0.003 0.201

Table 4: Fixed effects of model(M3) on diarrhea-Egypt.

attributed to environmental risks, which in turn influence exposure to disease.
The unstructured effects are similar to the structured effects. The gray area,
however, indicates that no children live there.

Cough

The results indicate that children from mothers who attended an antenatal
care during pregnancy, and currently working face a high rate of cough disease
compared to children from mothers who are not working and did not attended
any care. The results also suggested that ownership of radio facility has a
negative impact on cough disease in Egypt. It is observed that the boys under 5
years are more likely to get cough morbidity than girls. The rest of categorical
covariates have either a negligible impact or an insignificant effect on cough
morbidity table (6). Further, the results indicate that some covariates such
as availability of electricity, source of water, place of residence, and education
attainment are only at the borderline to significance.

The non-linear effect of child’s age for model M3 has a similar pattern to diarrhea
and fever. The same is true for mother’s BMI and mother’s age at birth, for
Egypt.

Spatial effect on cough in Egypt is seen in figure (8). The results suggest that
significantly high rates of cough illness are associated with Damietta, Dakhalia
and Esmaliyia.
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Variable Mean S.dv 2.5% median 97.5%
const −0.270∗ 0.186 -0.603 -0.275 0.095
male 0.046∗ 0.017 0.009 0.044 0.080

urban 0.006 0.021 -0.036 0.006 0.049
work 0.043 0.023 -0.003 0.045 0.089
trepr 0.025 0.030 -0.036 0.025 0.0868
anvis 0.075∗ 0.0198 0.039 0.074 0.115
radio −0.069∗ 0.024 -0.119 -0.068 -0.019
elect -0.211 0.167 -0.536 -0.200 0.104

Table 5: Fixed effects of model (M3) on fever-Egypt.

Variable Mean S.dv 2.5% median 97.5%
const −0.420∗ 0.199 -0.811 -0.420 -0.036
male 0.046∗ 0.017 0.010 0.046 0.077

urban 0.033 0.021 -0.009 0.032 0.072
work 0.0596∗ 0.0235 0.010 0.060 0.104
trepr 0.026 0.029 -0.027 0.0273 0.084
anvis 0.059∗ 0.020 0.019 0.059 0.099
radio −0.066∗ 0.024 -0.115 -0.066 -0.017
elect -0.090 0.177 -0.422 -0.093 0.270

Table 6: Fixed effects (M3) on cough-Egypt.

4.2 Discussion

Fixed Effects

As for child’s gender, it is widely believed that probability of disease is higher
for males due to biological reasons. Although, boys are noticeably more likely
than girls to be taken to a provider for treatment (EDHS 2003). However, some
studies show higher female mortality indicating gender discrimination. The
results show that a child’s gender is mostly significant and has a large impact
on the three types of diseases in Egypt.

The effects of urban versus rural place of residence are different for the three
diseases: For diarrhea, living in urban areas lowers the risk, for fever and cough
the effect is not significant for children from urban vs.rural areas. These results
support the important role of the public health policy in rural-urban disparities.

Mothers who attended a clinic to receive antenatal care during the period of
pregnancy are expected to have lower problems in comparison to those who had
not received any care. The results for Egypt, however, suggest the contrary:
the factor antenatal visit has a positive effect on the indicators of disease! A
possible reason could be that there are few of mothers who obtained antennal
visits frequently during their pregnancy. In addition, there are only 10% who
had treatment during their pregnancy or maybe the reason of getting care was
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not related to their pregnancy. The ownership of radio facilitates the acquisition
of disease and vaccination information, allowing a more effective allocation of
resources to produce child health. Therefore, it has a negative significant effect
on the morbidity as suggested by the results for Egypt.

Concerning current working status of mother, these results suggest a significant
effect of this variable on fever and cough morbidity in Egypt, however the effect
is positive. The problem is when mothers engage in out-of-home employment it
curtails the duration of full breastfeeding and necessitates recently introduced
supplementary feeding, often by the illiterate care-takers, and that could have
a side effect on the health of child in the early months.

Non-Linear Effects

In general, the results show that the risk of having diseases in the two-week
reference period reaches its peak at 11 months and then begins to fall with in-
creasing age of the child. This pattern resembles those found in many studies of
sub-Saharan Africa. The prevalence of disease was found to be highest among
children 6-12 months of age, the period when most children are weaned. In
addition to breast milk, inborn immunity and less exposure to contaminated
agents during the early period also contributes to the lower prevalence of diar-
rhea. On the other hand, prevalence is quite high when the child has lost inborn
immunity and when it is exposed to different types of infections by eating food
prepared with contaminated water and from an unhealthy environment.

Likewise, the effect of mother’s age at birth is almost linear in Egypt, particu-
larly in the interval age between 20 and 27 years. The curve has a slight bath-
tub shape, indicating that children from younger mothers (12-20) have higher
risk, compared to mothers 20-35 years old. The results reflect a slight effect of
mother’s age at birth on the morbidity of children.

In the literature, the influence of the body mass index (BMI) of the mother
is sometimes expected to be inversely U-shaped. Parents with low BMI values
are malnourished and are therefore likely to have undernourished and weak
children. At the same time, very high BMI values indicate poor quality of the
food and hence, may also imply weakness of the children in our study. The
results of Egypt indicate that a mother’s BMI of 27-30 greatly increases the
effect on child morbidity. Beyond a BMI of 30, the effect remains at a low level
equilibrium. The higher impact of BMI through the interval between 27-30,
indicates poor quality of food for mothers and hence, may imply malnutrition
of the child and affect the health of the child.

Spatial Effects

The Egyptian regions used in this study and in previous studies are metropoli-
tan, Lower Egypt, Upper Egypt and border areas. Ninety-five percent of the
population of Egypt lives in the first three regions. The metropolitan gover-
norates essentially comprise the four major cities of Cairo, Alexandria, Port-
Said and Suez, all in northern Egypt. Lower Egypt (essentially the region of
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Parameter Mean Std 2.5% 97.5%
Factor Loadings

1. Fever λ11 2.2 0.34 1.78 3.03
2. Cough λ21 0.87 0.04 0.77 0.959

3. Diarrhea λ31 0.67 0.03 0.616 0.73

Table 7: Results of Model LVM0 for Egypt with η = 0.

the Nile Delta) is also in the northern part of Egypt, and Upper Egypt is the
area south of Cairo, with governorates largely following the meandering upper
parts of the Nile. The border areas are the less populated desert areas bordering
the Red Sea, the Sinai, and the vast Marsa Matruh and El Wadi El Gadid areas
west of the Nile. Generally, childhood diseases appear to have higher influence
on child in the north-east part, affecting the most of districts there. Food inse-
curity associated with water supplies and quality of water could be a reason for
these negative effects in this area.

5 Analyses with Latent Variable Models

As previously discussed in section 3, we now investigate how the three diseases
can be interpreted as indicators of a latent variable υ ”health status” of children,
how much of the variation of υ can be explained through a geoadditive predictor,
and which covariates have a direct effect on the disease indicators. This concept
does not only allow us to analyze the impact of covariates on health status,
it also automatically introduces a correlation among disease indicators. To
demonstrate the latter property, we first consider a classic model without any
covariates, i.e. in turns of auxiliary variables.

(LVM0):

P (yij = 1|υi) = Φ(λjυi), υi ∼ N(0, 1) (16)

and η = 0, so that υi ∼ N(0, 1). Table 7 shows the estimates for the factor
loadings λj , j = 1, 2, 3 implying considerable (marginal) correlation.

Our next model is selected on the basis of the separate analyses as explained at
the beginning of this section. This leads to the latent variable model

P (yij |xij) = Φ(β0j + a′ijβj + λjυi), j = 1, 2, 3

with the structural model

υi = u′α + f1(Chagei) + f2(BMIi) + f3(Magebi) + fgeo(regi) + δi
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for the latent variable. The vector a′ (measurement model) comprises the covari-
ates with direct effects (such as urban, availability of electricity and controlled
water in LM1 for Egypt) on yj , and u comprises the remaining categorical covari-
ates (such as sex, mother’s education, etc. in LM1 for Egypt) having common
effects on the latent variable υ. Because the patterns for the nonparametric
functions and the spatial effects were rather similar in the separate analyses,
they were included in the geoadditive predictor for υ.

The results of latent variable models for categorical covariates are in table 8.
Factor loadings are slightly lower than for the factor analysis without covariates.

Because indirect effects affect the latent variable, they cover a larger range of
values and thus exert more influence on the variability of the indicators, even if
the factor loadings are slightly lower.

The results show that the parametric indirect covariates of male, antenatal visit,
having radio, and mother’s working status have a significant effect on the latent
variables. The results indicate that the mother’s education, ever had treatment
during pregnancy and toilet facility have only a non-significant or slight effect
on the latent variables. Concerning the categorical direct covariates, the results
indicate a significant effect of urban on cough and diarrhea. However, the effect
of urban on cough is positive. The reason is that only one instead of three
separate effects have to be estimated. The results of LVM1 are quite consistent
with the previous results which are obtained using geoadditive models for each
kind of disease in section 4.1. The insignificant (access to electricity and water)
parametric direct covariates were included in the parametric indirect effects
in LVM2 (it is not included in this paper) and they still have nonsignificant
impacts on the indicators of health status in Egypt, therefore, we excluded
these covariates in model LVM3 (table 9).

The pattern for non-linear effects on the latent variable health status closely
resembles the patterns of separate analyses. Furthermore, there is no notice-
able difference between the nonlinear effects by model LVM2 and model LVM3.
Therefore, only the results of model LVM2 are reported here.

The spatial effect is displayed in figure 10, and shows that the northeast has an
influence on the latent variable associated with high illness rates. These areas
face problems with health conditions, level of sanitation and water supplies that
could lead to a high level of infections among children under 5 living in these
areas.
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5.1 Conclusions

In this paper we investigated socioeconomic and public health, and spatial deter-
minants of morbidity, measured through prevalence of fever, cough and diarrhea,
in Egypt. Our analyses show that geoadditive models are needed to adequately
assess nonlinear covariate effects and geographical effects within a joint model.
With traditional regression model these effects are difficult if not impossible
to model and to detect. Latent variable models offer a new methodology for
considering special types of diseases as indicators for latent morbidity and to
flexibly model covariate and spatial effects on this latent variable.

We conclude by pointing out some conceptual and technical problems associated
with information on prevalence of fever, diarrhea and cough obtained retrospec-
tively from cross-sectional studies. First, seasonal differences of occurrence in
diarrhea cannot to be taken into account in such studies. Longitudinal studies
may be more appropriate to provide data in different seasons. Second, during
the survey, neither the children were examined nor mothers were given a precise
definition of what constitutes an episode of various diseases. In addition, we
have no sufficient information about the children who have died before the sur-
vey, and whether the cause of dying was kind of the diseases which are reported
here or not. The questions measure (in the DHS) the mother’s perception of
her child’s health rather than morbidity according to clinical examination. This
may create variations among different socio-economic groups because perception
of illness is not the same across different social groups. Third, loss of memory of
events as well as misinterpretation of the reference period can also contribute to
the problems associated with the prevalence of diarrhea (Bateman and Smith,
1991; Gaminiratne, 1991).
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Parameter Mean Std 2.5% 97.5%
Factor Loadings

1. Fever λ11 1.29∗ 0.093 1.12 1.46
2. Cough λ21 0.82∗ 0.04 0.75 0.91

3. Diarrhea λ31 0.79∗ 0.04 0.71 0.87
Parametric Indirect Effects

male 0.135∗ 0.038 0.059 0.208
anvis 0.218∗ 0.044 0.131 0.30
trepr 0.088 0.061 -0.034 0.208
work 0.123∗ 0.05 0.023 0.22
radio −0.169∗ 0.05 -0.269 -0.070
educ -0.061 0.032 -0.125 0.001
toilet -0.129 0.094 -0.319 0.051

Semi-Parametric Indirect Effects
Chage 0.059∗ 0.043 0.014 0.169

BMI 0.017∗ 0.028 0.000 0.085
Mageb 0.004∗ 0.011 0.0003 0.019

reg 0.201∗ 0.112 0.063 0.484
Parametric Direct Effects

urban(a11) 0.0329 0.07 -0.1 0.17
elect(a12) -0.36 0.274 -0.89 0.182

water(a13) 0.129 0.089 -0.041 0.30
urban(a21) 0.152∗ 0.054 0.044 0.25
elect(a22) -0.071 0.23 -0.52 0.39

water(a23) -0.016 0.071 -0.16 0.124
urban(a31) −0.207∗ 0.056 -0.317 -0.09
elect(a32) 0.012 0.22 -0.42 0.47

water(a33) 0.042 0.072 -0.098 0.187

Table 8: Results of LVM1 including direct and indirect effects for Egypt.
(*: Statistically significant at 2.5%)
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Parameter Mean Std 2.5% 97.5%
Factor Loadings

1. Fever λ11 1.273∗ 0.099 1.090 1.487
2. Cough λ21 0.824∗ 0.040 0.746 0.911

3. Diarrhea λ31 0.796∗ 0.047 0.706 0.889
Parametric Indirect Effects

male 0.135∗ 0.038 0.060 0.209
anvis 0.22∗ 0.044 0.138 0.313
work 0.127∗ 0.050 0.02 0.225
radio −0.186∗ 0.049 -0.286 -0.090
educ -0.065 0.033 -0.129 0.008

Semi-Parametric Indirect Effects
Chage 0.0597∗ 0.043 0.014 0.175

BMI 0.016∗ 0.027 0.0008 0.088
Mageb 0.003∗ 0.0056 0.0003 0.001

reg 0.202∗ 0.106 0.069 0.0473
Parametric Direct Effects

urban(a11) 0.041 0.066 -0.088 0.171
urban(a21) 0.141∗ 0.055 0.0318 0.248
urban(a31) −0.209∗ 0.056 -0.316 -0.09

Table 9: Results of LVM3 including direct and indirect effects for Egypt
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Figure 3: Non-linear effects of child’s age, mother’s BMI and mother’s age for M3

on diarrhea for Egypt using probit model.
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Figure 4: Non-linear effects of child’s age, mother’s BMI, and mother’s age (for M3)

on fever for Egypt using probit model.
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Figure 5: Non-linear effects of child’s age, mother’s BMI, and mother’s age (for M3)

on cough for Egypt using probit model.

26



-0.453342 0 0.323306 -0.285076 0 0.243179

Figure 6: Maps of Egypt for diarrhea showing unstructured (left panel) and structured

(right panel) spatial effects for M3 using probit model .

-0.270172 0 0.20383 -0.113826 0 0.0942119

Figure 7: Maps of Egypt for fever showing unstructured (left panel) and structured

(right panel) spatial effects for M3 using probit model.
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-0.315818 0 0.277593 -0.123277 0 0.171186

Figure 8: Maps of Egypt for cough showing unstructured (left panel) and structured

(right panel) spatial effects for M3 using probit model .
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Figure 9: Non-linear effects from top to bottom: child’s age , mother’s BMI and

mother’s age at birth (for model LVM1), child’s age, mother’s BMI and mother’s age

at birth (for model LVM3) on the indicators of a latent variable ”health status” of

children disease for Egypt using Bayesian latent variable model for binary responses.
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−0.568 0.2870 −0.534 0.2860

Figure 10: Posterior mean for latent variable model for LVM1 (left panel) and
LVM3 (right panel) on diseases in Egypt.
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