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Abstract

In traditional paired comparison models heterogeneity in the population is
simply ignored and it is assumed that all persons have the same preference
structure. Here, a new method to model heterogeneity in paired compari-
son data is proposed. The preference of an item over another item is explic-
itly modelled as depending on measurements on the subjects. Therefore,
the model allows for heterogeneity between subjects as the preference for
an item can vary across subjects depending on subject-specific covariates.
Since by construction the model contains a large number of parameters
we propose to use penalized estimation procedures to obtain estimates of
the parameters. The used regularized estimation approach penalizes the
differences between the parameters corresponding to single covariates. It
enforces variable selection and allows to find clusters of items with respect
to covariates. We consider simple binary but also ordinal paired compar-
isons models. The method is applied to data from a pre-election study
from Germany.

Keywords: BTL-Lasso; paired comparison; Bradley-Terry-Luce model; Lasso;
heterogeneity.

1 Introduction

Paired comparisons are a well established method to measure the relative pref-
erence or dominance of objects or items. The aim is to find the underlying
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preference scale by presenting the items in pairs. The method has been used in
various areas, for example, in psychology, to measure the intensity or attractive-
ness of stimuli, in marketing, to evaluate the attractiveness of brands, in social
sciences, to investigate the value orientation (e.g. Francis et al. (2002)). In all
these applications the items or stimuli are presented in an experiment. But paired
comparison are also found in sports whenever two players or teams compete in
a tournament. Then the non-observable scale to be found refers to the strengths
of the competitors. Paired comparisons can also be obtained from ranked data
(Francis et al., 2010) or from scale data (Dittrich et al., 2007). In this kind of
data, respondents rank a predefined number of items or assign values from a Lik-
ert scale to the items, always referring to a certain attitude of the respondents
towards the items. Building differences between the ranks or scales yields (binary
or ordered) paired comparison data. We consider an application that shows how
to analyse scales for the preference of parties by paired comparisons. In a Ger-
man pre-election study the respondents were asked to scale the most renowned
German parties. The focus of the analysis is on the inclusion of subject-specific
covariates to account for the heterogeneity in the population and to investigate
which variables determine the preference. More precisely, we investigate which
clusters of parties are distinguished by specific covariates allowing that some co-
variates have no effect on the preference at all.

The most widely used model for paired comparison data is the Bradley-Terry-
Luce model. It has been proposed by Bradley and Terry (1952) and is strongly
linked to Luce’s choice axiom (Luce, 1959). The basic model has been extended
in various ways allowing for dependencies among responses, time dependence or
simultaneous ranking with respect to more than one attribute. Overviews are
found in the review of Bradley (1976), the monograph of David (1988) and more
recently in the review of Cattelan (2012). The method proposed in this work can
be applied both to binary and ordered response. Former approaches for ordered
responses in paired comparisons include Tutz (1986) and Agresti (1992). Dittrich
et al. (2004) also combine ordered responses and the inclusion of covariates, yet in
a quite different modelling approach using log-linear models and without variable
selection.

When persons choose between a pair of items most models assume that the
strengths of the items are fixed and equal for all persons. Heterogeneity over
persons has rarely been modeled explicitly. Exceptions are Turner and Firth
(2012) or Francis et al. (2010), where categorical covariates are considered, but
the application is very low dimensional with just two covariates, one with two and
one with four categories. Also in Francis et al. (2002) covariates are included.
Their model allows even for smooth effects of subject-specific covariates, but
the fitting procedure that is proposed is also restricted to few variables. More
recently, Casalicchio et al. (2015) presented a boosting approach that is able to
include explanatory variables. An alternative approach has been proposed by
Strobl et al. (2011). It is based on recursive partitioning techniques (also known
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as trees) and automatically selects the relevant variables among a potentially
large set of variables. The method proposed here is an alternative to handle the
inherently high dimensional estimation problem that comes with the inclusion of
explanatory variables. Maximum likelihood estimation is replaced by penalized
estimation methods. By using a specific L1-type penalty, the method is able to fit
in high dimensional settings and to form clusters of items regarding the variables
that generate heterogeneity.

In Section 2 the basic Bradley-Terry-Luce model for binary and ordered re-
sponse is introduced. Then the model is extended to include subject-specific
covariates. Section 3 contains the integration of the proposed model into the
framework of generalized linear models and the penalty term is introduced. Sec-
tion 3 also describes the implementation of the algorithm, the search for the
optimal tuning parameter and the calculation of bootstrap confidence intervals.
In Section 4 the application is given in detail.

2 Bradley-Terry Models with Covariates

2.1 The Basic Model

Let {a1, . . . , am} denote the set of objects or items to be compared in a paired
comparison experiment. The basic Bradley-Terry model (Bradley and Terry,
1952) specifies the probability that item ar is preferred over as as

P (ar � as) =
exp(γr − γs)

1 + exp(γr − γs)
,

where, for reasons of identifiability, we use the restriction
∑m

r=1 γr = 0. The pa-
rameters γr, r = 1, . . . ,m, represent the attractiveness of the items {a1, . . . , am}.
The interpretation as strength parameters is straightforward. For γr = γs, the
probability that ar is preferred over as is 0.5, for growing distance γr − γs the
probability increases.

With the random variable Y(r,s) = 1 if r � s and Y(r,s) = 0 otherwise one
obtains the logit model

log
P (Y(r,s) = 1)

P (Y(r,s) = 0)
= γr − γs.

2.2 Bradley-Terry Models with Ordered Response

In some applications, paired comparison data can or should not be reduced to
binary decisions. For example in sport events like football matches where also
draws are possible, simple binary paired comparisons are not appropriate. A
model that allows for ordinal responses is the cumulative Bradley-Terry-Luce
model (Tutz, 1986) which has the form
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P (Y(r,s) ≤ k) =
exp(θk + γr − γs)

1 + exp(θk + γr − γs)
(1)

with the same restriction
∑m

r=1 γr = 0.
The parameters θ1, . . . , θK represent threshold parameters for the different

levels of the response Y(r,s) ∈ {1, . . . , K}. The response Y(r,s) = 1 corresponds to
a strong preference of ar over as and Y(r,s) = K corresponds to a strong preference
of as over ar. The basic Bradley-Terry model can be seen as a special case of
model (1) for binary response with K = 2.

The strength parameters γ1, . . . , γm have the same interpretation as in the
binary model. With increasing γr the probability for low response categories, and
therefore the strong preference of ar over as is increasing while the probability
for large response categories denoting dominance of as decreases. The threshold
parameters determine the preference for specific categories. The threshold for the
last category K is restricted to θK = ∞ so that P (Y(r,s) ≤ K) = 1 holds. It is
sensible to put further restrictions on the threshold parameters to ensure equal
probabilities for corresponding categories if the order of the paired comparison
is reversed. Therefore, we use the restrictions θk = −θK−k and, if K is even,
additionally θK/2 = 0. These restrictions ensure, for example, that Y(r,s) = 1
(maximal preference of ar over as) has the same probability as Y(s,r) = K. Due
to these restrictions, bK−1

2
c (free) threshold parameters have to be estimated. In

the special case of binary response (K = 2) all threshold parameters are omitted
and the model reduces to the ordinary Bradley-Terry model. If an order effect
is required, for example to model the home advantage in sport competitions, an
additional parameter can be included. For the application considered here no
order effect is needed and therefore is omitted.

Formally, model (1) is a cumulative logit model, also called a proportional
odds model. For a response variable consisting of K ordered categories, one
models K − 1 cumulative probabilities P (Y(r,s) ≤ 1), . . . , P (Y(r,s) ≤ K − 1).
The probability for a single response category is represented by the difference
P (Y(r,s) = k) = P (Y(r,s) ≤ k) − P (Y(r,s) ≤ k − 1). Therefore, P (Y(r,s) ≤ k) has
to be greater or equal P (Y(r,s) ≤ k − 1) for k = 1, . . . , K to have non-negative
probabilities for all single categories. As the probabilities only differ with respect
to the threshold parameters, this is ensured if θ1 ≤ θ2 ≤ . . . ≤ θK .

2.3 Heterogeneity in the Bradley-Terry Model

The models considered so far assume that all persons have the same preference
structure. Heterogeneity in the population is simply ignored. A more sensible
assumption is that preferences depend on covariates that characterize the person
that chooses.

Let Yi(r,s) denote the response of person i for given pair of items (r, s) and
xT
i = (xi1, . . . xip) be a person-specific covariate vector. It is assumed that the
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strength of the preference of item ar for person i is determined by γir = βr0+x
T
i βr.

That means there is a global strength parameter βr0 but the effective strength
is modified by the covariates. The parameter βT

r = (βr1, . . . , βrp) contains the
effect of the covariates on item ar. The corresponding model has the form

P (Yi(r,s) ≤ k | xi) =
exp(θk + γir − γis)

1 + exp(θk + γir − γis)

=
exp(θk + (βr0 + xT

i βr)− (βs0 + xT
i βs))

1 + exp(θk + (βr0 + xT
i βr)− (βs0 + xT

i βs))

=
exp(θk + βr0 − βs0 + xT

i (βr − βs))

1 + exp(θk + βr0 − βs0 + xT
i (βr − βs))

(2)

As in model (1), the sum-to-zero constraints
∑m

r=1 βrj = 0 with j = 0, 1, . . . , p
are used for identifiability.

The model allows for different preference structures in sub populations. For
illustration let us consider the simple case where the person-specific variable codes
a subgroup like gender, which has two possible values. Let xi = 1 for males and
xi = 0 for females. Then the strengths parameters for item r are

βr0 + βr for males and βr0 for females.

The βr represents the difference in attractiveness of item ar between males and
females. When items ar and as are compared the dominance in the male pop-
ulation is determined by (βr0 − βs0) + (βr − βs), in the female population by
(βr0 − βs0). Thus the female population is like a reference population with dom-
inance determined by the difference in the basic parameters (βr0 − βs0). The
preference in the male population is modified by the term βr − βs, and can be
quite different. If one prefers a more symmetric representation one can choose
xi = 1 for males and xi = −1 for females obtaining for the strengths parameters
for item r

βr0 + βr for males and βr0 − βr for females.

Then βr represents the deviation of the attractiveness of item r from the baseline
attractiveness βr0. When items ar and as are compared the dominance in the
male population is determined by (βr0−βs0)+(βr−βs), in the female population
by (βr0 − βs0)− (βr − βs). Thus the difference of the basic parameters βr0 − βs0
is augmented by βr − βs in the male population and reduced by the same value
in the female population.

The model accounts for the heterogeneity in the population by explicitly link-
ing the attractiveness of alternatives to explanatory variables. The weight pa-
rameters βr reflect how the attractiveness of a specific alternative depends on
the covariates.
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3 Penalized Estimation

The main problem with the general model (2) is the number of parameters that
are involved. One has (with the given restrictions)

⌊
K−1
2

⌋
threshold parameters

and for each item the (p+ 1)-dimensional parameter vector (βr0,βr). In general,
not all covariates might have a (different) influence on all m items. Therefore,
we propose to use a penalized likelihood approach instead of ordinary maximum
likelihood estimation to reduce the number of involved parameters and to select
the relevant variables. In a first step we embed the estimation into the framework
of generalized linear models (GLMs) and then introduce penalty terms.

3.1 Embedding into Generalized Linear Models

First, the ordinal Bradley-Terry model is embedded into the framework of Gen-
eralized Linear Models (GLMs). In the ordinal Bradley-Terry model without
covariates the linear predictor η(r,s)k = θk + γr − γs can be given as

η(r,s)k = θk + x
(r,s)
1 γ1 + · · ·+ x(r,s)m γm = θk + (x(r,s))Tγ,

where x
(r,s)
l = 1 if l = r, x

(r,s)
l = −1 if l = s, and x

(r,s)
l = 0 otherwise, encodes

the considered pair. The whole vector x(r,s) has the simple form x(r,s) = 1r − 1s,
where 1r = (0, . . . , 0, 1, 0, . . . , 0) has length m with 1 at position r. In this model
the strength of an item is the same for all persons, which is a strong assumption
ignoring potential heterogeneity.

In the general model with covariates, and therefore explicit modelling of het-
erogeneity, the linear predictor has the form

ηi(r,s)k = θk + βr0 − βs0 + xT

i (βr − βs)

= θk +

p∑

j=0

xij(βrj − βsj) = θk +

p∑

j=0

m∑

l=1

xijx
(r,s)
l βlj

where xi0 = 1 is a fixed intercept. Here, xT
i = (xi1, . . . , xip) represents a covariate

vector associated to person i and, therefore, the linear predictors for the same pair
are different for persons. For j > 0 the predictor is determined by interactions
between xij and the items, which reflects the underlying structure that the item
strength is modified by the covariates.

The link between the linear predictor and the probability P (Yi(r,s) ≤ k |
xi) is determined by the logistic distribution function. It should be noted
that the ordered response is transformed into a multivariate response yT

i(r,s) =

(yi(r,s)1, . . . , yi(r,s)q) with q = K−1 binary variables where yi(r,s)k = 1 if Yi(r,s) ≤ k
and yi(r,s),k = 0 if Yi(r,s) > k. With πi(r,s)k = exp(ηi(r,s)k)/(1 + exp(ηi(r,s)k)), the
covariance structure for such a multivariate response is given by
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Cov(yi(r,s)) =




πi(r,s)1(1− πi(r,s)1) πi(r,s)1(1− πi(r,s)2) · · · πi(r,s)1(1− πi(r,s)q)
πi(r,s)1(1− πi(r,s)2) πi(r,s)2(1− πi(r,s)2)

...
...

. . .
...

πi(r,s)1(1− πi(r,s)q) · · · · · · πi(r,s)q(1− πi(r,s)q)




Because of the restrictions θk = −θK−k and, if K is even, θK/2 = 0, the design
matrix for the threshold parameters has a special form. As stated above, for
a response with K categories, bK−1

2
c different threshold parameters have to be

estimated. Therefore, the part of the design matrix corresponding to the paired
comparison (r, s) of one person is a (K−1)×bK−1

2
c matrix. This matrix is given

by



1 0 · · · 0

0 1
...

...
. . . 0

0 · · · 0 1
0 · · · 0 −1
... . .

.
0

0 −1
...

−1 0 · · · 0




or




1 0 · · · 0

0 1
...

...
. . . 0

0 · · · 0 1
0 · · · · · · 0
0 · · · 0 −1
... . .

.
0

0 −1
...

−1 0 · · · 0




for K uneven or even, respectively. As stated above, for K = 2 the model reduces
to a GLM with binomial distributed response and all threshold parameters are
eliminated from the model.

3.2 Selection by Penalization

In regression models with β as the parameter vector penalization approaches
maximize the penalized likelihood

lp(β) = l(β)− λJ(β),

where l(β) is the usual log-likelihood and J(β) is a penalty term that penalizes
specific structures in the parameter vector. The parameter λ is a tuning param-
eter that specifies how seriously the penalty term has to be taken. A simple
penalty term that could be used is the squared length of the parameter vector
J(β) = βTβ =

∑
β2
i , known as ridge penalty, see, for example Hoerl and Ken-

nard (1970), Nyquist (1991), Segerstedt (1992), LeCessie (1992). Then, for λ = 0
maximization yields the ML estimate. If λ > 0 one obtains parameters that are
shrunk toward zero. For appropriately chosen λ the ridge estimator stabilizes
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estimates. A disadvantage of the ridge estimator is that it does not select vari-
ables. Thus no reduction of the model is obtained. An alternative penalty is
the L1-penalty, also known as lasso (Tibshirani, 1996), which is able to select
variables. Instead of the squared parameters one penalizes the absolute values of
the parameters with the penalty term J(β) =

∑ |βi|. For penalized likelihood
estimation, it is essential that all covariates are on comparable scales. Therefore,
in the following it is assumed that all covariates are standardized.

However, the simple lasso cannot be used directly since penalty terms for
paired comparison models have to account for the specific structure of the model.
In particular, in model (2) one has the parameters of the regular (ordinal) BTL
model, namely the threshold parameters and, for each item r, a parameter βr0
for its basic attractiveness. They form the basic model and, therefore, will not be
penalized. In the general model one has additional parameters for the interaction
between the items and the covariates. These parameters will be penalized to
obtain the interactions that are actually needed. The proposed penalty term has
the form

J(α) =

p∑

j=1

∑

r<s

wrsj|βrj − βsj|,

where r, s ∈ {1, . . . ,m}, wrsj is a weight parameter and the parameters are
collected in αT = (θ1, . . . , θK−1, β10, . . . , βmp). The penalty has the effect that
the parameters referring to the same covariate are shrunk towards each other.
For large values of λ, the differences are shrunk to exactly zero so that the effect
of a covariate is the same for two (or more items). Therefore, the penalty yields
clusters of items which share the same effect of a certain covariate. With growing
tuning parameter, these clusters become bigger until all items form one single
cluster. In that case, due to the sum-to-zero constraints all parameters are zero
and the covariate is irrelevant for the attractiveness of the items. The penalty is
a L1-type fusion penalty rather than a simple lasso. Similar penalties have been
used for the modelling of factors in GLMs by Bondell and Reich (2009), Gertheiss
and Tutz (2010) and Oelker et al. (2014). More recently, penalties of this form
have also been used in the modelling of paired comparison models, however,
not for the modelling of heterogeneity by inclusion of covariates (Masarotto and
Varin, 2012; Tutz and Schauberger, 2014).

For illustration, Figure 1 shows the coefficient paths corresponding to a co-
variate j for a toy example with m = 5 items. The paths are drawn along the
(normed) penalty term

∑
r<s

|βrj − βsj| for covariate j. It can be seen that the

penalty enforces a clustering of the items when the penalty is increased. In the
unpenalized model, all items form clusters of their own. With increasing penalty,
items 1 and 4 form a cluster, later item 3 is integrated into that cluster. Next,
also items 2 and 5 form a cluster and finally all items form one single cluster.
If all items share the same parameter (all parameters are zero) that means that
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∑
r<s

βrj − βsj max ∑
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βrj − βsj
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Item 2

Item 3

Item 4
Item 1

Figure 1: Exemplary coefficient paths for a covariate j in a setting with m = 5
different items

the respective covariate is eliminated from the model. Therefore, the proposed
penalty term enforces both clustering of items and variable selection at the same
time.

Zou (2006) proposed the so-called adaptive lasso as an extension of the regular
lasso. In contrast to regular lasso, it provides consistency in terms of variable
selection. In the adaptive lasso, the single penalty terms are weighted with the
inverses of the unpenalized ML-estimates. In a similar way the weight parameters
wrsj are defined by wrsj = |βML

rj − βML
sj |−1. The effect is that small differences in

the ML-estimates are penalized stronger than bigger differences which has the
effect that the clustering of the parameters is enforced.

3.3 Implementation

L1 penalized cumulative logit models have, e.g., been used in Archer and Williams
(2012) and are implemented for R (R Core Team, 2015) in Archer (2014a) and
Archer (2014b). However, these implementations are limited to lasso type penal-
ties for coefficients. They cannot be used to penalize differences between param-
eters as required in the paired comparison case. Moreover, in order to obtain
consistent estimates we want to include the weights wrsj. For that purpose, a
new fitting algorithm was implemented that is able to fulfill these requirements.
It is based on the idea of approximating penalties proposed by Oelker and Tutz
(2015), which is implemented in the R-package gvcm.cat (Oelker, 2015), yet not
for cumulative logit models. For shorter computation time, the fitting algorithm
itself is implemented in C++ and integrated into R using the packages Rcpp (Eddel-
buettel et al., 2011; Eddelbuettel, 2013) and RcppArmadillo (Eddelbuettel and
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Sanderson, 2014). The code is available by request from the authors and should
be available on CRAN soon.

3.4 Choice of Penalty Parameter

The performance of penalized estimation methods is essentially determined by
the choice of the tuning parameter λ. It determines which covariates modify the
attractiveness and forms the clusters within the chosen covariates. Mostly, two
different approaches are used to determine tunings parameters, namely model se-
lection criteria and cross-validation. Model selection criteria like the AIC (Akaike,
1973) or the BIC (Schwarz, 1978) try to find a compromise between the complex-
ity of the model and the model fit. The complexity of a model is determined by
its degrees of freedom. While for ML estimation, the degrees of freedom simply
correspond to the number of parameters, the degrees of freedom for penalized
likelihood approaches, in particular with a penalty applied on differences, are not
straightforward. Therefore, we use cross-validation. In cross-validation, the data
set is divided into a predefined number of subsets. Each subset is once used as
a test data set while the remaining subsets serve as training data. The model is
fitted (for a predefined grid of values for the tuning parameter λ) on the training
data while the test data are used for prediction. Then, the predictive performance
in the test data can be measured, for example by using the deviance. Moreover,
this procedure provides a measure of the predictive performance of the model for
every value from the predefined grid of tuning parameters. The tuning parameter
with the best performance is chosen. We adapted this general principle to our
specific case. The persons or subjects are treated as the observation units so that
all paired comparisons corresponding to one person are in the same subset.

3.5 Confidence intervals

In contrast to maximum likelihood estimators, for estimators from penalized like-
lihood approaches one cannot use the information matrix to obtain standard er-
rors or confidence intervals. Therefore, alternative techniques have to be used.
We propose to use the bootstrap method for that purpose. The main idea of
bootstrap is to replace an unkown distribution by the respective empirical dis-
tribution function. Then, for a predefined number of bootstrap iterations B, a
subsample from the empirical distribution function is drawn. In our case, for
a single bootstrap iteration, n persons are drawn from the original sample with
replacement. The proposed procedure is applied to the sampled data set, includ-
ing the model selection using cross–validation. Therefore, the additional variance
originating from the process of model selection is incorportated in the resulting
confidence intervals. Finally, for every parameter bootstrap confidence intervals
can be calculated using the empirical α/2 and 1 − α/2 quantiles from the B
bootstrap estimates for the respective parameter.
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4 Application to Pre-Election Data from Ger-

many

The proposed method is applied to data from the German Longitudinal Election
Study (GLES), see Rattinger et al. (2014). The GLES is a long-term study of the
German electoral process. It collects pre- and post-election data for the several
federal elections.

4.1 Data

The data we are using here originate from the pre-election survey for the Ger-
man federal election in 2013. In this specific part of the study, the participants
(n = 1155 after eliminating all incomplete cases) were asked to rank the most
important parties (CDU/CSU, SPD, Greens, Left Party, FDP, we eliminated the
smaller parties AfD and the Pirate Party) for the upcoming federal election on a
scale from −5 to +5. Plass et al. (2015) used the data in the context of modelling
approaches for undecidedness. The ranks Zr reflect the general opinions of the
participants of party r where +5 represents a very positive and −5 represents
a very negative opinion. The main goal of this application is to analyse which
characteristics of the participants are connected to the opinions of the single par-
ties. For that purpose, we generated paired comparisons out of the rankings.
A similar approach for the analysis of rank data using paired comparisons was
proposed by Francis et al. (2010). They also discuss the advantages of a paired
comparison approach to model this form of data. For each participant, the dif-
ferences between the ranks of all parties were calculated, ending up with ordered
paired comparisons with values between −10 and 10. The response was narrowed
down to an ordered response with five categories. The data now represent paired
comparisons between all parties measured on an ordered five-point scale:

Zr − Zs ∈ {6, 10} 7→ Y(r,s) = 1 : ”I strongly prefer party r over party s”

Zr − Zs ∈ {1, 5} 7→ Y(r,s) = 2 : ”I slightly prefer party r over party s”

Zr − Zs = 0 7→ Y(r,s) = 3 : ”I have equal opinions of parties r and s”

Zr − Zs ∈ {−5,−1} 7→ Y(r,s) = 4 : ”I slightly prefer party s over party r”

Zr − Zs ∈ {−10,−6} 7→ Y(r,s) = 5 : ”I strongly prefer party s over party r”

Within the GLES study, several characteristics of the participants are ob-
served that possibly could affect the preference for the single parties. For our
application, the following covariates are considered:

• Age: age of participant in years

• Gender: female (1); male (0)
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• East Germany: East Germany/former GDR (1); West Germany/former
FRG (0)

• Personal economic situation: good or very good (1); neither/nor, bad or
very bad (0)

• School leaving certificate: Abitur/A levels (1); else (0)

• Unemployment: currently unemployed (1); else (0)

• Attendance in Church/Mosque/Synagogue/...: at least once a month (1);
else (0)

• Have you been a German citizen since birth: yes (1); no (0)

4.2 Results

In the following, the results for the proposed method are presented for a model
where all covariates described above are considered as possibly influential vari-
ables. The optimal model is determined by 10-fold cross-validation. Figure 2
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Figure 2: Deviance path for 10-fold cross-validation, dashed vertical line repre-
sents model with lowest deviance.

shows the deviances obtained by cross-validation plotted against the (normed)
size of the penalized differences. Strong penalization corresponds to values close
to 0, weak penalization to values close to 1. The dashed vertical line represents
the model with the lowest deviance. Figure 3 shows the corresponding coefficient
paths for the threshold parameters θ1 and θ2 and the party-specific intercepts
β10, . . . , βm0. These parameters are not penalized. In principle, they might be
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Figure 3: Coefficient paths for all unpenalized parameters (threshold parameters
θ1 and θ2 and party-specific intercepts). Dashed vertical line represents optimal
model according to 10-fold cross-validation.

different for different tuning parameters λ. In the current application, it is seen
that both the threshold parameters and the intercepts hardly change along their
paths.

Figure 4 shows the corresponding coefficient paths for the eight covariates.
The coefficient paths are drawn separately for each covariate. It is seen how the
penalty term enforces clustering of the different parties. The dashed vertical lines
represent the optimal model according to the 10-fold cross-validation.

The coefficient paths allow for interesting insights into how the preference of
the voters for certain parties depends on characteristics of the voters themselves.
Let us first consider the covariate unemployment. With respect to unemployment,
the parties can be divided into two main clusters. The Left party and the Greens
in one cluster, CDU, SPD and FDP in another cluster. As a global tendency
one sees that unemployed persons tend to prefer the younger parties (Greens and
Left Party) while the tendency to the more established parties (SPD, CDU, FDP)
is reduced. In the optimal model, the second cluster of parties can be further
divided into a cluster of SPD and FDP and a cluster only consisting of CDU.
For gender, four different clusters are identified in the final model. The Greens
are much more attractive for female than for male voters and form a cluster of
their own. The SPD and the Left party seem almost equally attractive for males
and females while the CDU and the FDP are more attractive for males. For the
variable school leaving certificate, a very sparse solution with only two clusters
(Greens vs. all other parties) emerged confirming the reputation of the Greens
to be a party for academics. The German citizenship was completely eliminated
from the model, naturalized citizens do not systematically prefer other parties
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Figure 4: Coefficient paths separately for all eight covariates. Dashed vertical
lines represent optimal model according to 10-fold cross-validation.
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than citizens that were German citizens since birth. The variables age and church
attendance have a specific impact on the preference of parties and every party
forms a cluster of its own.
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Figure 5: Paths representing the sums of absolute differences for all eight covari-
ates. Dashed vertical line represents optimal model according to 10-fold cross-
validation.

Figure 5 shows the paths for whole covariates represented by the sum of
absolute differences between all parameters corresponding to one covariate. Every
covariate is represented by a single path. With the used penalty term, the sum of
the absolute differences between all parameters corresponding to one covariate can
be seen as a measure of effect strength for this covariate. Again, one has to keep
in mind that all covariates have been standardized. It can be seen that, not very
surprisingly, the personal economic situation of the voters is the most important
modifier of the preference of a party in the data set. Yet, the first covariate that is
included (for decreasing tuning parameter λ) is the covariate East Germany. Even
23 years after the German reunification, the differences between the former GDR
and the former FRG were still extremely relevant in 2013. Also the covariates age
and church attendance have very strong effects. Again, it can be seen that the
variable German citizenship since birth is eliminated from the model. Figure 5
can provide valuable additional information on the paths depicted in Figure 4
where the variable importance is harder to recognize due to the different scales
in the single plots.

Finally, B = 500 bootstrap iterations were performed to receive confidence
intervals. Figure 6 depicts the estimates of all (penalized) parameters together
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Figure 6: Parameter estimates and 95% bootstrap confidence intervals separately
for all eight covariates.

with the corresponding 95% bootstrap confidence intervalls. It can be seen if two
clusters differ significantly from each other. For example, the parameters for the
Left party and the Greens are not significantly different for church attendance
although they are splitted into two different clusters. For the covariate unemploy-
ment, no parameter is significantly different from zero although three different
clusters were estimated. Except for the covariates unemployment and German
citizenship, for all other covariates at least one coefficient differs significantly from
zero.
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5 Concluding Remarks

A model that explicitly accounts for heterogeneity in (possibly ordered) paired
comparison models is proposed. The heterogeneity is modeled by the incorpora-
tion of subject-specific covariates. The model is estimated using a specific L1-type
penalty. The penalty has two main features: First, the penalty clusters items with
regard to certain covariates. Therefore, one can identify clusters of items whose
preferences are equally affected by a covariate. Second, the penalty can elimi-
nate whole covariates from the model indicating that the respective covariates
do not affect the preference for one or another item. Bootstrap intervals can be
calculated which can be used to check if certain parameters differ significantly.

In particular the ability to select and cluster distinguishes the method from
the few methods that are able to include covariates in paired comparison models.
Francis et al. (2010) and Francis et al. (2002) include covariates but do not select
the relevant ones, Casalicchio et al. (2015) presented a boosting approach that is
able to select explanatory variables but is unable to detect clusters. Moreover,
an advantage of penalty methods over boosting approaches is that the struc-
ture of the regularization is more clearly defined. In contrast to Strobl et al.
(2011), where the underlying structure is searched for by recursive partitioning
techniques, we consider a parametric model that allows for easy interpretation of
parameters and clustering.

The proposed method could be extended in various ways. First, the restriction
of the covariate effects to linear terms could be weakened by allowing for smooth
covariate effects. A big challenge with such an approach would be to find an
appropriate penalty term to have a similar cluster effect as for the linear terms.
Second, the model could be extended by item-specific covariates similar to Tutz
and Schauberger (2014). For the application to the data from the GLES in
this work, this would correspond to the inclusion of party-specific covariates, for
example the popularity of the respective leading candidates.
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