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Abstract

Background: Mapping of short sequencing reads is a crucial step in the analysis of RNA sequencing (RNA-seq) data.
ContextMap is an RNA-seq mapping algorithm that uses a context-based approach to identify the best alignment for
each read and allows parallel mapping against several reference genomes.

Results: In this article, we present ContextMap 2, a new and improved version of ContextMap. Its key novel features
are: (i) a plug-in structure that allows easily integrating novel short read alignment programs with improved accuracy
and runtime; (i) context-based identification of insertions and deletions (indels); (iii) mapping of reads spanning an
arbitrary number of exons and indels. ContextMap 2 using Bowtie, Bowtie 2 or BWA was evaluated on both simulated
and real-life data from the recently published RGASP study.

Conclusions: We show that ContextMap 2 generally combines similar or higher recall compared to other
state-of-the-art approaches with significantly higher precision in read placement and junction and indel prediction.

available at http://www.bio.ifi.iImu.de/ContextMap.

Furthermore, runtime was significantly lower than for the best competing approaches. ContextMap 2 is freely

Background

Sequencing of RNA using next generation sequencing
technology (RNA-seq) has become the standard approach
for analyzing the transcriptomic landscape of a cell [1,2].
The first step in RNA-seq data analysis generally consists
in determining the transcriptomic origin of the sequenced
reads (= read mapping) [3], i.e. the best alignment of each
read against a transcript. Here, the major challenge results
from the fact that even for well-annotated species not all
transcripts, in particular rare or non-coding transcripts
[4], are known. Thus, alignment against known transcript
sequences using short read alignment programs such as
Bowtie [5] cannot identify reads from novel transcripts,
in particular spliced reads crossing novel exon-exon junc-
tions. Unspliced reads, in contrast, are easily mapped
using genome alignments.

Currently, many different RNA-seq mapping algorithms
are available, such as TopHat [6], TopHat2 [7], or Map-
Splice [8] (see also [9] for an overview). In most cases,
these approaches combine alignment against reference
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sequences (i.e. a genome and/or transcriptome) using
short read aligners, such as Bowtie [5] or Bowtie 2 [10],
with sophisticated strategies for identifying spliced reads
crossing exon-exon junctions. A common strategy for this
purpose involves splitting reads into smaller segments
before aligning and is used e.g. by TopHat2 and Map-
Splice. Other mapping approaches, such as STAR [11] or
GSNAP [12], use their own alignment methods to identify
spliced reads without fragmenting read sequences.
Independent of the strategy for identifying spliced
reads, existing RNA-seq mapping approaches were imple-
mented to use only specific short read alignment pro-
grams, in most cases Bowtie. Thus, they cannot be easily
extended to make use of novel developments in short read
alignment, e.g. Bowtie 2 [10] or BWA [13], which improve
alignment speed, recall or precision [14]. Furthermore,
they generally identify the best alignment for each read
based only on the number of mismatches and do not take
into account information provided by alignments of other
reads. We recently proposed a different approach, Con-
textMap, to identify the most likely mapping for a read
based on all reads aligned to the same general location,
the so-called context [15]. This approach also has the
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advantage that it allows parallel mapping against several
reference genomes in a straightforward way [16].

In this article, we present ContextMap 2, an extension
of the ContextMap strategy, which among other improve-
ments addresses the problem of integrating different short
read alignment programs. The key novel features of Con-
textMap 2 are:

(i) It provides an easy-to-use plug-in interface for inte-
grating different short read alignment programs into the
mapping workflow. This flexibility guarantees that Con-
textMap can be quickly adapted to newly developed read
alignment algorithms.

(ii) It extensively uses local read alignment options of
novel short read alignment programs such as Bowtie 2 or
BWA to accurately detect spliced reads.

(iii) It precisely predicts the exact position of deletions
or insertions (indels) by using the information provided by
all reads in the same context.

We evaluated the performance of ContextMap 2 using
Bowtie, Bowtie 2 and BWA as integrated alignment pro-
grams on both simulated and real-life RNA-seq data used
by the RGASP consortium in a recent evaluation of RNA-
seq mapping programs [17]. The comparison of Con-
textMap 2 to the best performers of this study showed that
it combined high recall with high precision on read place-
ment, splice junctions, multi-junction reads and indels.
While individual competing RNA-seq mapping programs
outperformed ContextMap 2 on some of these tasks,
none was consistently better or performed comparably
well in all of them. Furthermore, ContextMap 2 was
generally at least twice as fast as the best competing
methods.

Implementation

Overview of ContextMap 2

ContextMap 2 is based on the ContextMap approach
for RNA-seq read mapping [15]. Here, the central con-
cept is the so-called read context, which is defined as a
set of reads all originating from the same stretch of the
genome and likely corresponding to transcripts of the
same or overlapping genes. The first implementation of
ContextMap was focused on improving initial mappings
provided by other RNA-seq mapping programs, but has
more recently been extended into a standalone version
that also allows parallel mapping against several reference
genomes [16].

Similar to other mapping approaches, this first Con-
textMap implementation used a modified version of
Bowtie for alignment. Thus, it suffered from the same
problem as most state-of-the-art mapping approaches
that newly developed short read alignment programs
could not be easily integrated to replace the used Bowtie
version. Furthermore, variable read lengths were not sup-
ported and reads crossing multiple exon-exon junctions or
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containing indels were not mapped. All of these problems
are addressed by ContextMap 2.

In the following, an overview of the five steps of the
ContextMap 2 workflow is presented (see Figure 1). The
details of each step are described following this overview
and in Additional file 1: Supplementary methods.

Step 1: Determination of initial alignments
This step includes both the determination of ungapped
read alignments against one or several genomes using the
integrated short read alignment program, e.g. BWA, as
well as the extension of these alignments to alignments
containing a splice junction (= split read alignments, see
Figure 1A). For this purpose, ContextMap 2 first per-
forms a seeded alignment of all reads against the reference
sequences with user defined seed values of 20-30 nt. Here,
ContextMap 2 can use programs that determine only
end-to-end alignments (e.g. Bowtie) as well as programs
that also determine local alignments (e.g. Bowtie 2 and
BWA). An end-to-end alignment starts at the read start
and ends with the read end. In contrast, a local align-
ment allows unaligned prefixes or suffixes of the read if
this improves the alignment score. In case an alignment
program allows alignment of the seed only at the start of
the read, such as Bowtie, a “backward” alignment with the
reversed read is also performed for reads for which no
alignment beginning at the read start could be found.
Parameters of the underlying alignment program are
set such that all alignments for which the seed can be
aligned are retained, allowing for multiple alignments of
each read. The resulting alignments are then classified
into four categories:

1. Full alignment: if the read could be aligned
end-to-end to the genome with a maximum number
of mismatches (defined by the user).

2. Candidate single-split alignment: if the seed could be
aligned at the start or end of the read, the end-to-end
alignment of the read contains more than the
allowed number of mismatches and the last allowed
mismatch is at least a predefined distance from the
end of the alignment. If the integrated short read
alignment program also produces local alignments,
unaligned read positions are counted as mismatches
for this classification.

3. Partial alignment: if the same criteria apply as in (2)
but the last allowed mismatch is less than the
predefined distance from the alignment end.

4. Candidate multi-split alignment: if only a local
alignment could be determined with both a prefix
and suffix of the read unaligned.

Following this classification, candidate single-split and
multi-split alignments are extended to complete split
alignments as described further below.
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Figure 1 Workflow of ContextMap 2. (A) Reads are aligned to the reference sequence(s) using the integrated short read alignment program and
the resulting alignments are classified into 4 different categories (top box, right side: full alignment, candidate single-split alignment, candidate
multi-split alignment, and partial alignment). Dashed lines indicate unaligned sequence parts resulting from local alignments. Candidate single- and
multi-split alignments are extended to split alignments using the sliding window approach (Figure 2). (B) Alignments less than dp, apart are
assigned to the same context. The maximum context size dmqyx can be defined by the user (default is the average length of a mammalian mRNA).
(C) Alignment extension of full (green box) and split alignments (see Additional file 1: Supplementary methods) to determine all valid alignments for
aread. (D) + (E) Resolution of the best alignment for each read first within each context (D, local resolution) and then between all contexts (E,
global resolution). For this purpose, a support score is calculated based on closely located alignments of other reads (bottom box, right side, and
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Step 2: Context definition

The alignments identified in the previous step are used
to define contexts. For this purpose, read alignments
are clustered into a context if their start or end posi-
tions on the genome are at most a maximum distance
apart (Figure 1B). Contexts are treated independently of
each other until step 5. This allows both mapping read
sequences against several reference genomes, e.g. of the
human host and infecting pathogens [16], as well as
efficient parallelization of steps 3 and 4. Here, multiple
alignments of each read to the same context or differ-
ent contexts are allowed, which will be resolved in steps
4 and 5.

Step 3: Alignment extension

Once contexts have been defined, additional alignments
are determined for each read based on the alignments
found in the first step (Figure 1C). This alignment exten-
sion is performed in parallel for different contexts. Its
objective is to identify all valid alignments for each read
with a maximum number of mismatches, such that the
best supported alignment can be selected in the subse-
quent steps.

For this purpose, full and partial read alignments are
checked for an overlap with split alignments of other
reads. If overlaps are found, additional split alignments
are created for the corresponding reads using the splice
junctions indicated by the overlapping split alignments.
Furthermore, all possible split alignments are generated
for each read for which at least one split alignment was
identified in step 1 (see Additional file 1: Supplementary
methods for details). In both cases, only alignments are
used that do not exceed the maximum mismatch crite-
rion. At the end of this step, several different alignments
have been created for each read, resulting in multiple
alignments both within and between contexts.

Step 4: Local resolution of alignments within contexts

In this step, the best alignment for each read is determined
within each context by taking other read alignments into
account (Figure 1D). For this purpose, the three best
supported splice sites among overlapping splice sites are
determined first. For this purpose, the following evidence
score for each splice site is used:

m
evidence = Z (Wi . ni) (1)

i=0
Here, #; is the number of reads (full, split or partial) with
i mismatches supporting the splice site, m the maximum
number of mismatches allowed and w a value < 1 (default
w = 0.3) (see Additional file 1: Supplementary methods

for details).

Split read alignments not using any of the best sup-
ported splice sites are discarded. Subsequently, a support
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score is calculated for the remaining read alignments
based on the number of reads aligned within and around
the read alignment. In principle, the support score is a
weighted sum of maximum read coverages in predefined
windows around the read alignment (see Additional file 1:
Supplementary methods for details). Among several alter-
native alignments for the same read within each context,
the one with the largest support score is then chosen.

Step 5: Global resolution of alignments between contexts

In this final step, multiple read alignments to several dif-
ferent contexts are resolved as in step 4 after recalculating
support scores based on the read alignments chosen for
each context (Figure 1E). Thus, at the end of each step,
each read is aligned to only one position in (at most) one
context. If more than one reference sequence was pro-
vided, this will also automatically result in the choice of
one reference sequence of origin for each read.

Plug-in structure of ContextMap 2

ContextMap 2 provides a plug-in interface which allows
integrating any short read alignment program without
modification if it meets the following requirements:

1. The alignment program has to support seeded
alignments with adjustable seed lengths to allow use
of different seed lengths in different steps of
ContextMap 2.

2. The alignment program has to provide a tool to
prepare an index of any reference sequence. Indexing
reference sequences is a common strategy of all
state-of-the-art short read alignment programs to
speed up alignment.

3. If the read alignment program includes an option to
identify indels, it must be possible to deactivate this
option. ContextMap 2 uses its own context-based
strategy for predicting the exact position of indels.

4. The output has to be in SAM format [18].

The interface for plugging in a short read alignment pro-
gram into ContextMap 2 is composed of three methods,
two for performing alignments at different steps of Con-
textMap 2 and one for indexing reference sequences.

Implementing the interface requires implementing
methods for managing the external program calls. In
addition, the alignment methods have to collect the deter-
mined alignments. For this purpose, two classes can be
reused that perform these tasks for Bowtie, Bowtie 2
and BWA, which have already been integrated in Con-
textMap 2.

Detection of single-split alignments

As part of step 1, ContextMap 2 extends candidate
split alignments to single-split alignments, i.e. alignments
crossing one exon-exon junction only, using a so-called
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sliding window approach (Figure 2A). This sliding win-
dow approach works in the following way: The sliding
window is initiated at the left-most candidate split align-
ment on a chromosome and is extended to contain any
overlapping alignment until a pre-defined maximum win-
dow length is exceeded. All candidate single-split align-
ments within this window are then extended to complete
split alignments as described below. Afterwards, the cur-
rent window is discarded and the next window is deter-
mined starting at the next candidate split alignment not
completely contained in the previous window. This is
repeated until all candidate split-alignments have been
processed.

To determine the complete split alignments within each
window, an index is built for the used short read align-
ment program covering the part of the reference sequence
within the current window. This sequence is extended by
x nucleotides (x = average intron size, can be defined
by the user) downstream of the window if a candidate
split alignment with the seed at the read start ends too
close to the window end (i.e. the distance is less than
the average intron size x). This allows finding split align-
ments that start within the window but end downstream
of the window end. Similarly, an upstream sequence is
added to the index if a candidate split alignment with
the seed at the read end begins too close to the window
start.
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Using this dynamically built index and the correspond-
ing short read alignment program, completing align-
ments of the unaligned read part are determined for
each candidate split alignment within the sliding window
(Figure 2A). This restricts the search space to a region
covering only one or very few genes, allowing the use of
smaller seed lengths of 10-15 nt. Since the window is very
small and only a relatively small number of reads is cov-
ered by the window, this step is very fast. The original
candidate split alignment and the completing alignment
for each read are then combined into one split alignment
and included in the set of initial alignments in addition to
the full and partial alignments.

Detection of multi-split alignments

The detection of multi-split alignments, i.e. alignments
crossing more than one exon-exon junction, is a novel
feature of ContextMap 2. It is based on local alignment
options of recently developed alignment programs such
as Bowtie 2 or BWA. Essentially, the local alignments
are used to fragment the reads into smaller segments
for which single-split alignments are then determined
(see Figure 2B). In contrast to other approaches that
fragment all reads into smaller equal-sized segments,
only reads for which a local alignment was determined,
i.e. candidate multi-split alignments, are fragmented by
ContextMap 2.

(A) Detection of single—split alignments
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Figure 2 Detection of single-split and multi-split alignments in ContextMap 2. (A) Detection of single-split alignments as part of step 1. First, reads
are aligned to the genome and candidate split alignments (A;) are identified. Second, reads with candidate split alignments are re-aligned within a
window around the initial alignment to determine a completing alignment (A). The use of smaller seed lengths than in the initial alignment allows
recovering completing alignments shorter than the seed length used for the initial alignment. Finally, the alignments are combined to a complete
split alignment. (B) Detection of multi-split alignments. For every candidate multi-split alignment, ContextMap 2 creates two fragments of the
respective read sequence (i.e. f; and f, for Ay and f3 and f4 for A;). Subsequently, single-split alignments are detected for these fragments. Finally,
overlaps of single-split alignments are combined to obtain a complete multi-split alignment after first identifying the best splice site for each split
alignment as part of the resolution of overlapping splice sites in step 4 of ContextMap 2.
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For this purpose, candidate multi-split alignments
(= local alignments with suffix and prefix of the read not
aligned) to the same genomic region are collected using
the same sliding window approach used for the single-split
alignment detection. In fact, ContextMap uses a single run
of the sliding window approach to process single- as well
as multi-split alignments.

For each candidate multi-split alignment in the current
sliding window, two fragments of the read sequence are
generated. If read r = r;...7; (I = read length) has
been aligned at positions r; ... rj, the first fragment con-
sists of the subsequence fi = 7 ,...7ri_17;...7j, where
e is the predefined minimum exon size (default 20 nt). If
the unaligned prefix (r; . . . ;1) of the read is smaller than
the minimum exon size ¢, fi = 71 ...7;. Similarly, the sec-
ond fragment is defined as f = r;...7j7j11 ... Tjye. If the
unaligned suffix of the read (rjy1...7;) is shorter than e,
fo=ri...m.

The original local alignment then provides candidate
split alignments for f; and f,. The completing alignments
to these candidate split alignments are found within the
sliding window as described in the previous section. This
results in single-split alignments for the fragments, which
are added to the list of initial alignments determined in
step 1 of ContextMap 2 and extended to all valid single-
split alignments of the fragments in step 3.

The complete multi-split alignment of the whole read is
determined in step 4 by merging overlaps of the single-
split alignments for fragments of the same read after the
resolution of pairwise overlapping splice sites. Thus, the
precise location of the splice sites is first determined
for the single-split alignments of the fragments before
combining them to the complete multi-split alignments.

Detection of indels
Essentially, the prediction of reads containing a deletion
to the reference is the same as detecting spliced reads with
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a very small intron size (see Figure 3A). Similarly, a read
containing an insertion to the reference can be consid-
ered as a special case of a spliced read spanning an intron
with negative length (see Figure 3B). Thus, detection
of deletions and insertions could be incorporated seam-
lessly into the single- and multi-split alignment detection
procedure of ContextMap 2 by allowing both small and
negative intron lengths, respectively. Conveniently, this
also allows the mapping of reads containing both indels
and splice sites by finding the corresponding multi-split
alignment.

The distinction between indels and splice sites is only
applied when preparing the output at the very end of the
ContextMap 2 run. At this point, the gap size is deter-
mined for each split position in a single- or multi-split
alignment (see Figure 3). The gap size is defined as d — /,
where d is the alignment length on the reference genome
and / is the read length. If the gap size is negative and its
absolute value at most a user defined maximum insertion
size (default = 10 nt), this split position is classified as an
insertion. If the gap size is between 1 and a user defined
maximum deletion size (default = 10 nt), it is classified
as a deletion. If the gap size is between a user defined
minimum intron size (default = 50 nt) and a user defined
maximum intron size (default = 300,000 nt), the split is
classified as an intron. Split alignments with gap sizes that
do not fall into these ranges are not determined when
detecting single- and multi-split alignments.

Results and discussion

Data sets and methods for evaluation

Evaluation of ContextMap 2 was performed on simulated
and real data previously used by the RGASP consortium
for the systematic evaluation of RNA-seq mapping pro-
grams [17] (see Additional file 1: Table S1 for a summary).
The simulated data was generated using the simulation
program BEERS, which is provided with the RUM pipeline
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Figure 3 Deletions and insertions in reads as special cases of spliced reads. (A) Example of a read with a deletion compared to the reference
sequence. In this case, the alignment length d is larger than the read length / and the gap size is positive. (B) Example of a read with an insertion
compared to the reference sequence. Here, the alignment length d on the reference sequence is smaller than the read length / and the gap size is
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[19]. Two data sets were simulated, each containing 80
million 76-nucleotide paired-end reads (= 40 million read
pairs). The second data set is more challenging than the
first as higher rates of substitution errors, indel poly-
morphisms and reads from unannotated isoforms were
simulated. The real data consists of RNA-seq data of
the human K562 cell line (whole cell, cytoplasmic and
nuclear fraction) from the ENCODE project [20] (2 repli-
cates each, resulting in 6 samples). Each sample consisted
of ~200 million 76-nucleotide paired-end reads (~100
million read pairs).

We compared ContextMap 2 against the best per-
forming RNA-seq mapping approaches identified in the
RGASP study. These included MapSplice [8], STAR [11],
and GSNAP [12]. We also included TopHat [6] (denoted as
TopHatl in the following) and Tophat2 [7] as these are the
most commonly used RNA-seq mapping programs. Map-
ping results of these programs on the used data sets as well
as evaluation scripts were provided by the authors of the
RGASP study (https://github.com/RGASP-consortium/).
For all programs, we evaluated the performance without
and with an annotation (indicated by “ann”). For STAR,
we evaluated both the 1- and 2-pass version. In the 2-pass
version of STAR, splice junctions detected in the first run
(1-pass) are taken as an input for a second run to improve
mapping.

We applied the same evaluation scripts to evaluate Con-
textMap 2 mapping runs using Bowtie (version 0.12.7),
Bowtie 2 (version 2.1.0), or BWA (version 0.7.8) as internal
short read alignment programs. Additionally, we evalu-
ated the performance of ContextMap 2 using BWA and an
annotation. Here, the annotation is only used for scoring
splice junctions when resolving overlapping splice sites
(see Additional file 1: Supplementary methods). As for
the RGASP evaluation, the annotation was taken from
Ensembl version 62. Although we also performed evalua-
tion of the original ContextMap implementation, we did
not include it in the article as it performed worse in all
evaluated metrics than ContextMap 2.

For runtime comparison, we applied all RNA-seq map-
ping programs with the same parameter settings as
described in the RGASP study. The only exception was
MapSplice. In this case, an internal version of MapSplice
was used in the RGASP study, which is not available
for download. Most likely it was an unfinished pre-
decessor of MapSplice 2, which has since been made
publicly available (http://www.netlab.uky.edu/p/bioinfo/
MapSplice2). It was not the published MapSplice 1.x ver-
sion as options were used (e.g. detection of indels with
length > 3) that this version does not support. We thus
included an evaluation of MapSplice 2 in this article
by applying it to all data sets using default parameters.
Since MapSplice 2 uses the annotation only to detect
fusion junctions between different genes, which was not
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simulated in the RGASP data sets, MapSplice 2 was only
applied without annotation.

Alignment yield

As a first metric, we evaluated the fraction of mapped
reads for both simulated data sets (see Additional file 1:
Table S2). This showed significant differences between
RNA-seq mapping programs with GSNAP having the
highest mapping rates (~99% and 98% of the reads for
simulation 1 and 2) and TopHat1/2 and ContextMap 2
having lowest mapping rates (89-96% of reads mapped in
simulation 1 and 78-88% in simulation 2).

When investigating the fraction of reads mapped either
perfectly, part correctly or with no base correct (Figure 4
and Additional file 1: Table S2), it became apparent that
mapping rates alone are not meaningful for comparing the
performance of algorithms. Despite GSNAP’s high overall
mapping rate, the fraction of perfectly mapped reads was
only 89% and 76% of reads of simulation 1 and 2, respec-
tively. In contrast, ContextMap 2 using BWA mapped
almost 95% and 87% of reads perfectly, which was better
than for all other evaluated methods except MapSplice 2.
Consistently, both the fraction of part correctly mapped
reads and reads with no base mapped correctly were lower
than for all other methods (see also Figure 4). Thus, the
higher mapping rates of other programs came at the cost
of higher error rates.

To investigate whether performance differed between
unspliced and spliced reads, mapping rates were also cal-
culated separately for both types of reads (Figure 4 and
Additional file 1: Tables S3 and S4). Indeed, the evaluated
programs differed considerably in performance between
spliced and unspliced reads but not in any consistent fash-
ion. For ContextMap 2 using Bowtie, MapSplice, STAR
1-pass, TopHatl and GSNAP (and TopHat2 on simula-
tion 1), the fraction of reads mapped completely wrong
increased by more than 0.5 percentage points for spliced
reads compared to unspliced reads. In contrast, this frac-
tion did increase less for ContextMap 2 using Bowtie 2 or
BWA (and TopHat2 on simulation 2) and even decreased
for the remaining tools. In all cases, however, the number
of part correctly mapped reads increased for spliced reads,
but least for ContextMap 2 and TopHat2. This was likely
due to a part of the read on one side of the splice junc-
tion not being mapped correctly or not at all (e.g. in case
of STAR, which can also output clipped alignments). In
particular for STAR and GSNAP, this lead to 10-50% part
correctly mapped reads.

In summary, these results show that ContextMap 2
using BWA had the lowest rate of incorrectly mapped
reads among all evaluated programs. Furthermore, it
mapped more reads perfectly than any of the other
programs except MapSplice 2. However, MapSplice 2
had ~2-fold higher rates of incorrectly mapped reads.
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Figure 4 Fraction of perfectly mapped, part correctly mapped and incorrectly mapped reads for simulated unspliced (A) and spliced (B) reads of
simulation 1 and 2, respectively. “CM Bwt1”, “CM Bwt2", "CM Bwa" denote ContextMap 2 used with Bowtie, Bowtie 2, and BWA as underlying
alignment program, respectively. If a gene annotation was provided, “ann” was added to the name of the respective program.

Interestingly, we observed that the choice of the under-
lying alignment program had a significant influence on the
performance in RNA-seq mapping. Both rates of perfectly
and incorrectly mapped reads are improved significantly
when using BWA within ContextMap 2 instead of either
Bowtie or Bowtie 2. The reduced number of perfectly
mapped reads for Bowtie is mostly due to its lower over-
all recall [14] and the fact that it does not determine
local alignments and thus does not support the detection
of multi-split read alignments and indels within Con-
textMap 2. The higher number of incorrectly mapped
spliced reads results from spliced reads for which the seed
at the read start cannot be aligned at the correct posi-
tion, e.g. because the splice site in the read is closer to
the read start than the seed length, but the seed can be
aligned to a wrong position. In this case, no backward
alignment is performed for the read in order to reduce
runtime and only the incorrect alignments are further
analyzed.

The lower mapping quality using Bowtie 2 compared to
BWA resulted from the fact that — in contrast to Bowtie
and BWA — Bowtie 2 has a dramatically increased run-
time if the maximum number of valid alignments reported
per read (-k option) is set to even moderately high values.
Thus, per default we used a relatively low value of k = 3.
Using a value of kK = 10 resulted in comparable mapping
quality to ContextMap 2 with BWA (see Additional file 1:
Tables S2, S3 and S4) but runtime increased by at least 8 h
compared to BWA or Bowtie 2 with k = 3 (Table 1).

Table 1 Runtime in CPU hours for each program on
simulation 1 and 2

Program Simulation 1 Simulation 2
ContextMap Bwt1 11.67 11.02
ContextMap Bwt2 (k = 3, default) 1647 15.58
ContextMap Bwt2 (k = 10) 24.98 24.55
ContextMap Bwa 11.58 14.00
ContextMap Bwa ann 11.92 14.15
MapSplice 2 3143 2862
STAR 1-pass 0.82 1.28
STAR 1-pass ann 1.05 1.58
STAR 2-pass 9.60 10.28
STAR 2-pass ann 9.57 10.80
TopHat1 20.1 2843
TopHat1 ann 20.53 29.03
TopHat2 2517 2723
TopHat2 ann 3432 39.68
GSNAP 147.73 128.15
GSNAP ann 160.78 140.27

All methods were run using 8 cores on the same machines and with the same
parameter settings as in the RGASP evaluation [17]. ContextMap 2 with Bowtie 2
was run with the maximum number of alignments reported per read (k) set to 3
(default setting used for evaluating mapping quality) and 10, respectively.
Runtime of STAR 2-pass includes the time required for running STAR 1-pass,
indexing the genome with splice sites found in the first STAR run and re-running
STAR.
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Alignment yield on real-life RNA-seq data

Consistent with evaluation results on simulated data,
alignment yield of ContextMap 2 was lower on all sam-
ples for the K562 cell line than for MapSplice 2, STAR or
GSNADP, but similar or slightly higher than for TopHat1/2
(Figure 5 and Additional file 1: Figure S4). This was only
partly due to the relatively small number of mismatches
(= 4) allowed per default in ContextMap 2.

Nevertheless, the ranking of algorithms with regard to
the number of mapped reads is quite similar to the rank-
ing on the simulated data. Thus, if we also extrapolate the
results on perfectly and incorrectly mapped reads from
the simulation to the real-life data, this would suggest that
the difference in mapped reads between ContextMap 2
and most other mapping programs are to a large extent
due to incorrect mappings identified by the other pro-
grams.

Spliced alignment

Since performance on spliced reads showed the largest
differences among the mapping approaches, these were
analyzed in more detail (Figure 6A and Additional file 1:
Figure S5). For this purpose, splice recall and false discov-
ery rate (FDR) were calculated as in the original RGASP
study. Here, splice recall is defined as

#true positive splices

Il =
reca #simulated splices @

#true positive splices

~ #true pos. splices + #false neg. splices’

In this case, a splice is defined as one junction in one
particular read. Thus, if a simulated junction within a read
is recovered by the alignment for this read, it is considered
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a true positive splice. If it is not recovered, it is a false neg-
ative splice. If the alignment contains a junction that was
not simulated for this read, it is considered a false positive
splice. FDR is then defined as 1 - precision, with

#true positive splices

recision =
P #predicted splices

#true positive splices

= #true pos. splices + #false pos. splices’

3)

For the real data, recall and FDR could not be calcu-
lated as the correct mapping was not known. Instead, the
fraction of reads mapping to an annotated splice junction
(=: frequency of annotated splices) was compared to the
fraction of reads mapping to a novel splice junction (=:
frequency of novel splices).

Consistent with the evaluation of alignment yield, this
analysis showed that ContextMap 2 combined low FDR
with high recall. Again the combination with BWA per-
formed best. Although some of the other mapping pro-
grams showed higher recall, this was always accompanied
by significantly higher FDR. Generally, the increase in
recall compared to ContextMap 2 was only modest with
the exception of annotation-based GSNAP on simula-
tion 2.

The analysis of known and novel splices identified in the
real data set showed that ContextMap 2 mapped reads to
novel splices with similar frequency as most other pro-
grams except STAR 2-pass (Figure 6A and Additional
file 1: Figure S5). In contrast, reads were mapped to known
splice junctions less frequently compared to most pro-
grams using an annotation and more frequently than most
programs without annotation. Unfortunately, these results
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CM Bwa ann

MapSplice 2
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STAR 1 pass ann
STAR 2 pass
STAR 2 pass ann
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K562 whole cell replicate 2
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Mapped Reads (%)
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Figure 5 Percentage of mapped reads and mismatch distribution for the mapped reads for both replicates of the K562 whole cell RNA-seq
samples. Results for all real-life samples are shown in Additional file 1: Figure S4.
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Figure 6 Evaluation of splice junction prediction. (A) Comparison of splice recall (y-axis) versus splice false discovery rate (FDR=1-precision, x-axis)
on simulation 1 and 2 (see equations 2 and 3 for definitions). For the human data sets, the frequency of predicted novel splices was compared to the
frequency of annotated splices for the Ensembl annotation (see text for definitions, Additional file 1: Figure S5 for results for all real-life data sets).
Furthermore, the number of identified annotated and novel junctions was evaluated (see Additional file 1: Figure S6 for results for all data sets). To
obtain receiver operation characteristic (ROC)-like curves, numbers were also calculated at increasing thresholds on the number of supporting reads
for each junction. (B) Number of correctly predicted (true) and incorrectly (false) junctions were compared for all junctions and annotated and novel
junctions separately. In contrast to the RGASP evaluation, we also included junctions covered by only 1 read. ROC-like curves were calculated as in
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are difficult to interpret as alignments to novel junctions
are not necessarily wrong and alignments to annotated
junctions not necessarily right.

To address this problem we also compared the number
of novel and annotated junctions predicted by all methods
between the simulations and the real data sets (Figure 6A
and Additional file 1: Figure S6). Here, the same junc-
tion (in terms of the genomic coordinates) identified for
several reads was counted only once. This consistently
showed that ContextMap 2 predicted significantly fewer
novel junctions than STAR and GSNAP (>50% less). Here,
ContextMap 2 using BWA or Bowtie 2 and MapSplice
showed quite similar performance, whereas annotation-
based ContextMap 2 using BWA and, in particular,
annotation-based TopHat2 predicted significantly more
annotated junctions. Interestingly, annotation-based Con-
textMap 2 identified almost precisely the correct number
of annotated and novel junctions for both simulations.
The high similarity of the results between simulation and
real data indicates that recall and FDR from the simula-
tions can again be extrapolated to the real data sets. This
would suggest that ContextMap 2 using BWA (both with
and without an annotation) correctly identifies more reads
with known junctions than programs not using an anno-
tation but is less biased towards annotated junctions than
other programs using an annotation.

This conclusion is also supported by the comparison
of the number of correctly predicted junctions to false
junctions (Figure 6B and Additional file 1: Figure S7).
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This again shows that ContextMap 2 (in particular when
using BWA) predicts much fewer false junctions than
approaches using an annotation, while missing relatively
few of the true junctions. For novel junctions Con-
textMap 2 is only outperformed in terms of recall and FDR
by MapSplice 2, but the difference in performance is rel-
atively small. For annotated junctions, the ContextMap 2
version without annotation performs almost as good as
MapSplice 2, which has the lowest FDR, whereas the ver-
sion using the annotation has a significantly higher recall
but also predicts more false junctions. Again, this high-
lights the problem in using an annotation, which might
bias the results towards known junctions. Nevertheless,
ContextMap 2 appears to be less biased by the annotation
than STAR, GSNAP or Tophat?2.

Detection of multi-junction reads

Since ContextMap 2 now also supports mapping of reads
crossing multiple junctions, we calculated recall and pre-
cision separately for reads containing different number
of junctions (Table 2 and Additional file 1: Table S5).
For this purpose, a read was considered a true posi-
tive if all junctions in this read were identified correctly
and no additional junctions were predicted. If a different
number of junctions were predicted than correct, it was
considered a false negative for this junction number and
a false positive for the junction number predicted by the
alignment. If the correct number of junctions were pre-
dicted for the read, but some of the junctions were wrong,

Table 2 F-measure [in %] for spliced reads with different number of spanned junctions for simulation 1

Program Number of junctions spanned

1(13808336) 2(598297) 3(11781) 2*(548382) 3* (6908)
CM Bwt1 91.47 14.24 - 15.16 -
CM Bwt2 94.03 7847 50.21 8237 72.66
CM Bwa 95.03 8273 53.33 86.67 76.46
CM Bwa ann 95.74 84.65 539 88.47 76.79
MapSplice 2 9242 79.18 27.27 80.65 344
STAR 1-pass 77.63 30.91 5.01 31.91 149
STAR 1-pass ann 93.55 81.65 7571 82.57 82.17
STAR 2-pass 95.0 85.55 82.07 86.59 87.29
STAR 2-pass ann 95.07 86.28 82.55 87.02 86.49
TopHat1 87.83 77.51 63.57 8042 75.56
TopHat1 ann 88.02 78.99 68.13 81.06 76.1
TopHat2 91.71 87.0 76.92 89.66 88.51
TopHat2 ann 94.84 90.79 85.92 92.05 90.35
GSNAP 83.13 4345 18.52 42.35 12.29
GSNAP ann 96.47 88.59 79.51 89.86 84.67

“The last two columns show results only for reads for which all exons except the first and last exon had length > 20 nt. For this evaluation, read alignments were only
considered a true positive if all simulated splice junctions in the read were recovered and no additional splice junctions were identified. Indels were ignored for this
purpose. Recall and precision values for both simulations can be found in Additional file 1: Table S5.
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it was considered a false positive for this junction number.
To evaluate the trade-off between precision and recall, we
calculated F-measure values defined as

precision - recall

(4)

F —measure =2 - ——.
precision + recall

This showed that ContextMap 2 using BWA (both with
and without annotation) outperformed all other programs
on reads containing only one junction except STAR 2-
pass and annotation-based GSNAP. This includes the vast
majority of all spliced reads. Here, only annotation-based
GSNAP performed significantly better, at least on simu-
lation 2. In general, F-measure decreased with increasing
number of junctions for all programs, mostly due to lower
recall values. Precision generally remained above 90%. For
reads with two junctions, ContextMap 2 with BWA was
still only outperformed by STAR 2-pass, annotation-based
GSNAP and now also annotation-based Tophat2, but the
difference in recall to these programs increased.

For three junctions, however, recall and thus F-measure
of ContextMap 2 using BWA or Bowtie 2 dropped dra-
matically, such that only MapSplice 2, STAR 1-pass and
GSNAP (both without annotation) performed worse.
Since Bowtie does not perform local alignment, Con-
textMap using Bowtie cannot identify multi-split align-
ments and therefore had zero recall on three-junction
reads. A small number of two-junction reads were
mapped as single-split alignments are extended to multi-
split alignments in step 3 of ContextMap 2 if they overlap
an additional splice site.

Since ContextMap 2 by default only determines multi-
split alignments for which internal exons are at least
20 nt long (= minimum exon size e), we repeated the
analysis only for multi-junction reads fulfilling this con-
dition. The results of this analysis are shown in the last
two columns of Table 2 and Additional file 1: Table S5.
Here, ContextMap 2 using BWA showed a significant
improvement, resulting in similar or better performance
for two-junction reads than all programs except TopHat2
on simulation 1 and annotation-based GSNAP. For three-
junction reads, recall of ContextMap 2 was almost dou-
bled, whereas for other programs improvements were less
pronounced and recall of MapSplice 2 actually decreased
to < 2%. In addition, ContextMap 2 using BWA generally
showed a significantly higher precision than the programs
with particularly high recall.

Indel accuracy

Precision, recall and F-measure values were also calcu-
lated separately for reads containing insertions and dele-
tions (Figure 7, Additional file 1: Figure S8, and Additional
file 1: Tables S6 and S7). These results show that Con-
textMap 2 using BWA outperforms all other approaches
on both insertions and deletions except for GSNAP
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(both with and without annotation) and annotation-based
TopHat2. Furthermore, the latter programs only per-
formed comparably well to ContextMap 2 on reads with
small indel size (1-4, depending on the method). In almost
all cases, precision of ContextMap 2 using BWA was above
90% and higher than for the best competing programs.
Similar to multi-junction reads, the integration of Bowtie
or Bowtie 2 in ContextMap 2 resulted in worse perfor-
mance on indels than for BWA, in particular for longer
insertions.

Numbers of detected indels and indel length were also
evaluated on the real-life sequencing data (Figure 8 and
Additional file 1: Figures S9 and S10). Consistent with
their higher recall on the simulations, ContextMap 2
using BWA, TopHat2 and GSNAP mapped at least twice
as many reads with insertions than the other programs.
Interestingly, numbers of mapped insertions generally
decreased significantly for TopHat2 and GSNAP when
not using an annotation, while there were hardly changed
for ContextMap 2 using BWA. Since simulation results
showed higher precision for annotation-based GSNAP
and TopHat2 compared to the runs without annotation
but not lower recall, this indicates that the lost map-
pings were largely false positive results. Furthermore, even
compared to annotation-based GSNAP and TopHat2, pre-
cision of ContextMap 2 was higher on the simulations (in
particular for long insertions, which were enriched among
TopHat2 results) indicating that many of the insertions
additionally identified by these competing tools were not
correct.

With regard to deletions, only GSNAP consistently
recovered more reads with deletions than ContextMap 2
using BWA and again numbers decreased for annotation-
based GSNAP. As the latter had both higher recall and
precision on the simulations than GSNAP alone, this again
suggests that the difference in mapped reads between
GSNAP with and without annotation were false positives.
Compared to ContextMap 2, annotation-based GSNAP
identified a higher fraction of longer deletions. As the
simulations showed a significantly lower precision, in
particular on long deletions, for GSNAP, this again indi-
cates that a significant fraction of the additional reads
with deletions identified by annotation-based GSNAP are
incorrectly mapped.

Runtime comparison

Finally, we compared runtime between all evaluated pro-
grams on the simulated data sets (Table 1). Here, Con-
textMap 2 was much faster than all evaluated programs
except STAR 1- and 2-pass. Here, STAR 1-pass was
extremely fast, whereas STAR 2-pass was only ~20-24%
faster than ContextMap 2. However, the evaluation on the
RGASP data showed that this improved runtime came
at the cost of both lower precision and recall for all
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Simulation 1
Insertions Deletions
CM Bwt1 71.46 74.34 70.89 7525 74.26 71.06 69 79.41 65.78 63.14
CM Bwt2 82.66 86.8 82.64 84.75 83.6 82.33 73.9 86.54 75.76 64.08 73.69
CM Bwa 87.41 90.27 88.78 72.82 82.31 87.55 86.04 86.29 78.92 88.75 75.65 63.34 72.17
CM Bwa ann 87.6 90.47 89.04 72.82 82.25 87.77 86.41 86.46 80.67 88.85 75.69 65.91 72.88
MapSplice 2 83.9 74.81 73.94 86.96 85.88 86.75 79.76 90.63 77.82
STAR 1-pass 65.96 65.83 64.29 7212 71.23 73.21 63.12 69.62 59.5
STAR 1-pass ann 71.09 70.12 67.43 77.92 75.84 77.66 67.92 71.82 60.52
STAR 2-pass 69.92 69.55 67.06 77.04 74.48 76.98 67.92 70.43 60.48

78.23 76.15 78.21
80.49 80.48 80.34
82.44 8278 822
80.19 79.89 78.08 75.6
89.43 88.58 87.3 81.64 87.05 71.87 82

89.33 85.72 77.72 59.47-71.46 62.94

91.79 89.63 87.29 84.01 74.11 59.61 87.05 68.45

68.26 71.88 60.52

STAR 2-pass ann 71.36 70.48 67.61
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GSNAP 88.03 87.65 75.74
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Figure 7 F-Measure [in %] for insertion and deletions identified by all programs on simulation 1. NaN indicates that no insertion or deletion of that
size was identified. Insertion and deletion size are shown below each column of the heatmap. The numbers in parentheses indicate the number of
simulated reads for each insertion or deletion size. Results for simulation 2 are shown in Additional file 1: Figure S8. Recall and precision values are
listed in Additional file 1: Tables S6 and S7.
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Figure 8 Fraction of mapped reads with different indel sizes among all reads with indels for the first replicate of the K562 whole cell sample.
Numbers next to the barplots indicate the number of mapped reads with indels divided by 10° (i.e. number of reads per 100,000). Results for all
samples are shown in Additional file 1: Figures S9 and S10.
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STAR variants, in particular STAR 1-pass, compared to
ContextMap 2.

Highest runtime of all evaluated approaches was
observed for GSNAP with >128 CPU hours, i.e. more
than 5 days. Thus, although it performed well on the
detection of multi-junction reads and indels, runtime is
too large for practical purposes. Among the remaining
competing approaches, MapSplice 2 performed best in the
evaluation of alignment quality, but not consistently better
than ContextMap 2 using BWA. With regard to run-
time, however, it performed significantly worse with ~30
CPU hours on both simulations compared to 11-16 CPU
hours used by ContextMap 2. Here, lowest runtime was
observed when using Bowtie and highest using Bowtie 2,
in particular when increasing the maximum number of
reported alignments & to 10. Thus, BWA is the best choice
as integral alignment algorithm for ContextMap 2 taking
into account mapping quality and runtime.

Conclusion

In this article, we presented ContextMap 2, a new and
improved version of the context-based RNA-seq map-
ping program ContextMap. The key novel features of
ContextMap 2 are the plug-in structure, which allows
integrating new developments in short read alignment, as
well as the detection of multi-split alignments, insertions
and deletions. Performance of ContextMap 2 integrating
either Bowtie, Bowtie 2 or BWA was evaluated on data
sets from the recent RGASP evaluation of RNA-seq map-
ping programs and compared to the best performers of
this study.

This showed that performance of RNA-seq mapping
can be improved substantially by replacing the internal
short read alignment program by more recent methods
or versions. In this case, the use of BWA as integral
alignment program generally improved recall and preci-
sion of ContextMap 2 compared to Bowtie and Bowtie 2
at only slightly higher or even lower runtime, respec-
tively. Here, the plug-in structure of ContextMap 2 allows
the extension to future versions of these alignment pro-
grams or even newly developed short read alignment
programs with improved accuracy or runtime. Further-
more, this extension can also be performed by developers
of such programs or other users of ContextMap 2 by sim-
ply implementing the interface. In contrast, other existing
RNA-seq alignment programs are limited to one or at
most two short read alignment programs. For instance,
MapSplice 2 still uses only Bowtie and TopHat2 only
supports Bowtie and Bowtie 2.

ContextMap 2 with BWA performed similarly well or
better than other state-of-the-art RNA-seq mapping pro-
grams with regard to perfectly mapped reads on simu-
lated data, while having at least ~2-fold lower rates of
reads mapped only part correctly or at completely wrong
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positions. Thus, reduced mapping rates of ContexMap 2
on both simulated and real data can be mostly explained
by lower rates of incorrectly mapped reads. ContextMap 2
using BWA showed high precision and recall on all eval-
uated tasks, in particular on the detection of long inser-
tions and deletions. Furthermore, runtime was generally
at least 50% lower than for the best competing programs.
Only STAR 1- and 2-pass were faster, but showed sig-
nificantly lower precision, in particular on spliced reads
and splice junctions, and low recall on reads containing
indels.

Availability and requirements

Project name: ContextMap 2

Project home page: http://www.bio.ifi.lmu.de/ContextMap
Operating system(s): Platform independent
Programming language: Java

Other requirements: Java 7 or higher; one of the follow-
ing: Bowtie version 0.12.7 or higher, Bowtie 2 version 2.1.0
or higher, BWA version 0.7.8 or higher

License: Artistic License

Any restrictions to use by non-academics: none
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Additional file 1: Supplementary material. Supplementary material
contains Supplementary methods, Figures and Tables.
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