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The nicotinic acetylcholine receptor alpha 4
subunit contains a functionally relevant SNP
Haplotype
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Abstract

Background: Non-coding single nucleotide polymorphisms within the nicotinic acetylcholine receptor alpha 4 subunit
gene (CHRNA4) are robustly associated with various neurological and behavioral phenotypes including schizophrenia,
cognition and smoking. The most commonly associated polymorphisms are located in exon 5 and segregate as part of
a haplotype. So far it is unknown if this haplotype is indeed functional, or if the observed associations are an indirect
effect caused by linkage disequilibrium with not yet identified adjacent functional variants. We therefore analyzed the
functional relevance of the exon 5 haplotype alleles.

Results: Using voltage clamp experiments we were able to show that the CHRNA4 haplotype alleles differ with respect
to their functional effects on receptor sensitivity including reversal of receptor sensitivity between low and high
acetylcholine concentrations. The results indicate that underlying mechanisms might include differences in codon
usage bias and changes in mRNA stability.

Conclusions: Our data demonstrate that the complementary alleles of the CHRNA4 exon 5 haplotype are
functionally relevant, and might therefore be causative for the above mentioned associations.
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Background
Cholinergic effects on cortical information processing
and related cognitive performance are partly mediated
through stimulation of high-affinity heteromeric α4β2
nicotinic acetylcholine receptors (nAChRs) [1-4]. α4β2
receptors are abundantly expressed in human cortex and
hippocampus and possess high affinity to (partial) ago-
nists including nicotine and varenicline [5-7]. Receptor
upregulation occurs with chronic exposure to agonists
and is thought to be regulated on the translational/post-
translational rather than transcriptional level [8-10].
In earlier work, we reported a causative relationship

between mutations in exon 5 of CHRNA4 (the nAChR
α4-subunit coding gene) and the autosomal dominant
nocturnal frontal lobe epilepsy (ADNFLE) - a rare seiz-
ure disorder that is frequently associated with neurocog-
nitive deficits or psychiatric affections [11-14]. We then
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explored in a more recent study, whether association also
might exist between human information processing and
common CHRNA4 exon 5 single nucleotide polymor-
phisms (SNPs). Using functional magnetic resonance
imaging (fMRI), association, especially for SNP rs1044396,
was observed with prefrontal/parietal information pro-
cessing during a selective attention-requiring task [15].
Complementary behavioral, electrophysiological and neu-
roimaging studies from other groups have later provided
converging evidence supporting the validity of this associ-
ation. [16-25] Furthermore, we and others repeatedly ob-
served that the common exon 5 SNPs are also associated
with endophenotypes of nicotine dependence [26-29].
The CHRNA4 SNPs that repeatedly showed association

with neurological and behavioral traits all have in com-
mon that they are silent mutations, i.e. are not changing
codons and therefore have no apparent effect on the pro-
tein sequence. However, during the last decade it has be-
come obvious that not all silent SNPs are functionally
neutral. In the present study, we therefore addressed
the question if silent CHRNA4 exon 5 SNPs are able to
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modulate mRNA or receptor properties. For this pur-
pose we conducted experiments on receptor sensitivity
and mRNA stability, and performed in silico analysis re-
garding possible codon usage differences introduced by
the haplotype alleles.
Results
Receptor sensitivity analysis
Exon 5 of the CHRNA4 gene contains a linkage group
(haplotype) of synonymous variants (haplotype 5’-rs1044393,
rs1044394, rs2229959, rs2229960, rs1044396, rs1044397-3’)
of hitherto unknown functional relevance. This haplo-
type rather than single SNPs was chosen for the here
reported functional studies because exon 5 SNPs are in
linkage disequilibrium with each other. It is therefore
not possible to decide if, for example, associations found
for a specific SNP are indeed caused by this SNP or by an-
other one located on the same haplotype. Analysis of the
haplotype therefore allowed us to simultaneously include
all major exon 5 SNPs into our search for functional
effects.
Figure 1 Graphical representation of electrophysiological experiments. a) C
receptors. To minimize scatter, data were collected from large batches of cells
stars whereas circles correspond to results collected for 65 cells expressing th
obtained with the sum of two Hill equations for the α4(hap2)β2 and dashed
30 μM ACh are illustrated in the lower panel. For comparison responses have
illustrate the differential, i.e. inverse, sensitivity at the two concentrations betw
Haplotype allele hap1 (T-T-G-T-C-G) corresponds to
the NCBI reference sequence (NM000744.5) and has a
frequency of 9% in the general population, while the
complementary hap2 allele (C-C-T-C-T-A) accounts for
52% of all alleles (according to our reference student
population). Hap 1 and Hap 2 differ in each single SNP
position. Besides hap1 and hap2 at least six other alleles
of this haplotype are present in the normal population.
These haplotypes share one or more SNP allele with the
major haplotypes Hap1 and Hap2 and can therefore be
expected to produce intermediate results in functional
analysis. They were therefore not included in the present
study.
Heterologous expression experiments showed that α4β2-

receptors with both haplotypes yield functional receptors
with current amplitudes that increased in a dose-dependent
manner with the ACh concentrations (Figure 1). For
low ACh doses the currents from hap2 receptors (incl.
rs1044396 T-allele) were up to 130% larger than those
from hap1 receptors (incl. rs1044396 C-allele), resulting in a
shift of the hα4(hap2)β2 curve towards lower concentrations
with respect to the curve for hα4(hap1)β2. For higher doses
oncentration activation curves for the α4(hap1)β2 and α4(hap2)β2
. Data obtained from 70 cells expressing the α4(hap1)β2 are indicated by
e α4(hap2)β2. Bars indicate the SEM. Continuous curve is the best fit
line for the α4(hap1)β2. Representative currents evoked by 100 nM and
been normalized to 100% for the largest evoked current. These data
een the two haplotype alleles of the α4β2 receptor.
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of ACh the opposite effect was found with currents for
hα4(hap2)β2 that were about 13% lower than those ob-
tained for hα4(hap1)β2. The EC50L for hα4(hap2)β2
(0.33 μM± 0.017) differed significantly (P ≤ 0.001, n = 65)
from hα4(hap1)β2 (0.72 ± 0.04), indicating a higher sensi-
tivity to ACh for hα4(hap2)β2 at low ACh concentrations.
Interestingly, the EC50H data demonstrate a switch in
this behavior, pointing to a lower sensitivity to ACh for
hα4(hap2)β2 (42.5 μM± 3) compared to hα4(hap1)β2
(33.6 μM± 2.3, P ≤ 0.05, n = 65) in case of high ACh
concentrations (Figure 1).

mRNA stability analysis
When comparing the mRNA decay time difference of
hap 1 and 2, none of the time differences for the four up-
stream fragments were significant. However, regarding the
time difference 0 to 24 hrs for the most downstream frag-
ment, our results revealed that the 3’ end of hap 1 mRNA
was significantly more slowly degraded than that of hap 2
(P = 0.03) (Table 1).

mRNA secondary structure prediction and codon usage
analysis
Analysis of the predicted mRNA secondary structure
showed marked differences between the two haplotype
alleles (see Additional file 1: Figure S1). Codon usage ana-
lysis showed that most SNPs introduced changes from fre-
quently to more rarely used codons or vise versa. These
effects were most pronounced for rs2229959, rs1044396
and rs1044397 (see Table 2).

Discussion
Taken together, our experimental data show that the
CHRNA4 haplotype alleles exert different functional
effects on mRNA stability as well as on receptor sensi-
tivity including reversal of receptor sensitivity between
low and high ACh concentrations. Furthermore, in
silico analysis predict that the haplotype alleles also
differ with respect to codon usage and mRNA second-
ary structure. The experiments were conducted using
clones that contained identical fragments from the
CHRNA4 coding region, the only differences between
the clones being the respective alleles of the five SNPs
composing the haplotype. Thus the variation observed
in both ACh sensitivity and mRNA stability should be
attributable to the SNPs within the haplotype. Our re-
sults therefore strongly suggest that one or more of
the synonymous SNPs that constitute the haplotype
are functionally relevant. Such a conclusion would not
be too surprising, given that several examples exist in
which silent SNPs have been found to modulate gene
function, for example by altering mRNA stability, transla-
tion efficiency or protein conformation [30-32].
Various mechanisms could explain the distinctive dose-
response curves of the two haplotypes. It is a possibility
that the observed changes in mRNA stability are one
of the mechanisms that contribute to the haplotype-
dependent differences in ACh sensitivity. One explan-
ation could be that the altered mRNA stability may
lead to an increased translation rate of CHRNA4 mRNA
carrying the more stable haplotype 1. Such an increased
translation rate would expand the amount of α4 subunit
protein in hap 1 carriers while the amount of β2 subunit
protein would remain constant. This in turn could alter
the nAChRs stoichiometry so that more (α4)3(β2)2 than
(α4)2(β2)3 receptor subtypes are assembled. Such changes
in stoichiometry are a factor known to influence several
functional receptor characteristics and to increase recep-
tor affinity [33,34]. It is also possible that, apart from
mRNA stability, additional mechanisms are responsible
for the observed differences in agonist sensitivity. For ex-
ample, changes in the mRNA sequence are known to
affect its folding which in turn can influence the efficiency
and speed of protein synthesis [35]. This mechanism
would also be able to affect the ratio of α4 versus β2
subunits within the mature nAChR. Furthermore, codon
bias is discussed as mechanism for a gene expression
regulation because it has been observed that genes with
lower expression levels prefer codons which are recog-
nized by tRNAs with lower gene copy numbers [36].
Another factor that might play a role would be codon

bias at the ribosome. It is assumed that the speed at
which a given mRNA is decoded at the ribosomes largely
depends on the availability of individual tRNA molecules.
However, most amino acids can be encoded by more than
one base pair triplet, and there are significant differences
with respect to the frequency with which individual co-
dons occur in genes. In fact, synonymous codons are used
at nonrandom frequencies, a phenomenon termed codon
usage bias. Such differences in codon usage are not only
found between species, but in some examples also have
been described for different tissues from the same indi-
vidual [37]. Both codon usage and tRNA gene numbers
evolved together, and, consequently, tRNAs that recognize
frequently used codons are usually more abundant at the
ribosome and are therefore more readily available for
translation [37,38]. Thus a silent SNP changing a fre-
quently used codon into a rarer one can slow down the
speed of mRNA translation. In fact, synonymous codon
usage is recognized as the primary cause of non-uniform
translation rates, a mechanism known to cause for differ-
ential maturation and folding of nascent polypeptides
[39]. These differences in polypeptide processing are
possible because the time newly synthesized polypep-
tides spend at the ribosome is used to introduce various
modifications that are important for protein folding, sta-
bility, and interaction with binding partners [40]. The



Table 1 Delta Cq mean values and p-values for qPCR fragments 1 to 5

mRNA decay
time difference

qPCR fragment

1 2 3 4 5

Δ Cq mean p-value Δ Cq mean p-value Δ Cq mean p-value Δ Cq mean p-value Δ Cq mean p-value

hap 1 hap 2 hap1/2 hap 1 hap 2 hap1/2 hap 1 hap 2 hap1/2 hap 1 hap 2 hap1/2 hap 1 hap 2 hap1/2

0 to 3 hrs 1.16 0.29 0.242 1.91 0.09 0.0291 1.61 0.26 0.066 1.07 -0.07 0.08 1.17 0.37 0.436

(-0.72 - 3.04) (-1.57 -2.15) (-0.31 -4.12) (-1.77 -1.94) (-0.73 -3.95) (-1.61 -2.13) (-0.70 -2.83) (-1.66 -1.51) (-1.48 -3.81) (-1.73 -2.47)

0 to 6 hrs 2.54 1.95 0.403 3.34 2.41 0.313 3.04 2.48 0.546 2.23 1.7 0.503 3.69 3.34 0.821

(0.49-4.58) (0.63-3.27) (0.79-5.89) (0.77-4.04) (0.43-5.65) (0.75-4.21) (0.26-4.19) (0.29-3.11) (0.72-6.66) (0.71-5.97)

0 to 24 hrs 5.74 5.64 0.918 6.18 6.24 0.952 5.06 4.77 0.778 5.21 4.77 0.679 8.16 10.73 0.0362

(3.86-7.62) (3.22-8.06) (4.02-8.33) (3.84-8.63) (2.79-7.34) (2.55-7.00) (3.55-6.87) (2.23-7.32) (5.42-10.90) (6.03-13.44)

Δ Cq mean, delta Cq mean: difference of the mean quantification cycle; confidence intervals are given in brackets.
1confidence interval for delta Cq-mean values of hap1 and hap2 are not significant.
2confidence interval for delta Cq-mean values of hap1 and hap2 are significant.
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Table 2 Changes of codon usage frequencies within the
haplotype

dbSNP ID amino acid
positions

Alleles (hap
1/hap 2)

Codon usage frequencies
(hap 1/hap 2)

rs1044393 D213 GAT/GAC 21,8/25,1

rs1044394 C226 TGT/TGC 10,6/12,6

rs2229959 P403 CCG/CCT 6,9/17,5

rs2229960 C409 TGT/TGC 10,6/12,6

rs1044396 S543 AGC/AGT 19,5/12,1

rs1044397 A553 G/A 7,4/15,8

Data source for codon usage: http://www.kazusa.or.jp/codon/.
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silent SNPs that constitute the CHRNA4 haplotype
introduce several changes from frequent to rarer used
codons (or vise versa, see Table 2) and could therefore
alter, by the above discussed mechanisms, functional
characteristics of the nAChR such as stoichiometry,
surface expression or function. Pathomechanisms like
this have already been reported for other silent SNPs
associated with human disorders [31,35,41].
It appears remarkable that, within our experimental

setting, mRNA stability was only altered in the down-
stream (3’) region of the cloned CHRNA4 coding region
fragment. These observations suggest that it is the SNPs
in the 3’ part of the haplotype that are able to alter
mRNA stability. Interestingly, the 3’ end of the CHRNA4
haplotype harbors the two silent SNPs that have most
consistently shown association with clinical phenotypes.
For example, recent work from several groups includ-
ing our own reported association between rs1044396/
rs1044397 and endophenotypes of schizophrenia as well
as nicotine addiction. Both SNPs are significantly associ-
ated with cognitive endophenotypes such as brain activa-
tion (N100-amplitude – in particular in prefrontal cortex)
during selective-attention-requiring tasks [15-19,21,23-26].
With a minor allele frequency above 0.45 both SNPs would
be common enough to contribute considerably to the
inter-individual variability in the processing of cognitive
tasks, addictive behavior and psychiatric disorders within
Figure 2 Schematic representation of the CHRNA4 gene. The positions of SN
above, the fragments used for mRNA stability testing below the transcript.
the general population. Additional studies are needed to
shed light on the complex interactions between these si-
lent nAChR variants, differences in nAChR function, and
the inter-individual variability of neurological and behav-
ioral traits in humans.

Conclusions
Our experimental and in silico data demonstrate that the
complementary alleles of the CHRNA4 exon 5 haplotype
differ with respect to mRNA stability, codon usage, and
agonist sensitivity. These results render it possible that
one or more of the haplotype-constituting SNPs are
causative for the previously reported associations with
neurological and behavioral phenotypes.

Materials and Methods
Receptor sensitivity analysis
The cDNAs with either one of the two complementary
CHRNA4 haplotypes and with the CHRNB2 wild type
sequence were injected in Xenopus oocytes in equal
amounts and the electrophysiological properties of the
α4β2 nAChR channel were determined using a two-
electrode voltage clamp technique (HiClamp, Multichannel
System®, Reutlingen Germany) and applying different
concentrations of acetylcholine (ACh). Concentration-
activation curves were fitted using a Hill equation in
the form Y = 1/1 + (EC50/ x)^ nH(1) where: y = the frac-
tion of evoked current, EC50 = concentration for 50%
activation of the high affinity, nH = the apparent coop-
erativity for the high affinity, x = agonist concentration.
Concentration-inhibition curves are fit with a compar-
able equation Y = 1/1 + (x/IC50)^nH(2) where: y = the
fraction of remaining current, IC50 = concentration for
50% inhibition, nH = the apparent cooperativity, x = an-
tagonist concentration.

mRNA stability testing
The Tet-Off® advanced inducible gene expression system
was purchased from Clontech (Saint-Germain-en-Laye,
France). The coding sequence of CHRNA4 hap 1, respect-
ively hap 2 was obtained by PCR amplification of human
Ps that constitute the CHRNA4 haplotype (see main text) are indicated

http://www.kazusa.or.jp/codon/
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DNA. After KpnI and EcorV digestion of the pTRE-Tight-
BI-AcGFP1 vector, the coding sequence of CHRNA4 hap
1, respectively hap 2 (1884 nt) was ligated into the mul-
tiple cloning site of pTRE-Tight-BI-AcGFP1 downstream
of the doxycycline-dependent promoter. The resulting
construct had the following structure (origin of frag-
ments given in brackets): (pTRE-Tight) …GCTCGGTAC
(pTRACER) CGAGCTCGGATCCA (CHRNA4 uncoding)
CTAGTAGTGCGCC (CHRNA4 coding) ATG…TAG
(CHRNA4 uncoding) GAATAG (pTRACER) GAATTC
TGCAGAT (pTRE-Tight) ATCTC… After cloning the
inserts were confirmed by sequencing. Culturing of
Tet-Off® human embryonic kidney cells (HEK) 293
(Clontech, Saint-Germain-en-Laye, France) was per-
formed using standard protocols. HEK 293 cells were
transfected with 10 ng plasmid pTRE-Tight-BI-AcGFP1
containing the coding sequence of CHRNA4 haplotype 1
and 2, respectively, using 3 μl of TransIT ®-LT1 Transfec-
tion Reagent (MoBiTec GmbH, Göttingen, Germany) with
24 h transfection prior to medium change and addition of
1 μg doxycycline. RNA was extracted after 0; 3; 6 and
24 hours of doxycycline incubation by using QIAshredder
and RNeasy kit, including DNase treatment of 10 min
in solution, according to the manufacturer’s protocol
(Qiagen, Hilden, Germany). Real-time PCR was performed
targeting five fragments of the CHRNA4 coding sequence
(primer sequences: 1 F GCTCATTGACGTGGATGAGA,
1R CCCGTCAGCATTGTTGTAGA, 2 F GCTGGACTT
CTGGGAGAGTG, 2R AGGGGATGATGAGGTTGATG,
3 F TGCTCATCACCGAGATCATC, 3R ATGACGATG
GACAGGGTGAC, 5 F AAGGAGCCCTCTTCGGTGTC,
5R CTTCGGCCTTCAGGTGGTCT, 5 F GGCTGGCAT
GATCTAGGAAT, 5R GGGAGGTGTGGGAGGTTTTT,
AcGFP_F ATGATGTATCGCCCTCGAAC, AcGFP R CA
CATGAAGCAGCACGACTT) (Figure 2). Amplification
efficiency and test linearity (correlation coefficient R2)
were assessed for each primer pair. The reactions were
carried out in the Mini Opticon CFD-3120 cycler (Bio-Rad,
Munich, Germany). All experiments were repeated inde-
pendently three times with triplicate biological and tripli-
cate technical samples (nine experiments each in total).
Statistical analysis was performed with program R to com-
pare the haplotype 1 and 2 RNA degradation rate for each
target fragment. A p value of p < 0.05 was considered statis-
tically significant.
Prediction of mRNA secondary structure and codon usage
Changes in the minimum free energy (MFE) secondary
structure caused by the haplotype alleles were predicted
by the use of the RNA fold web server, Vienna RNA
package (http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi).
A prediction software was employed for the codon usage
analysis (http://www.kazusa.or.jp/codon).
Additional file

Additional file 1: Figure S1. Minimum free energy structure of CHRNA4
haplotype mRNAs. The minimum free energy secondary structures for both
CHRNA4 haplotypes were calculated from base-pairing probabilities, using
the share ware program RNAfold web server (http://rna.tbi.univie.ac.at/cgi-
bin/RNAfold.cgi). The prediction shows the optimal secondary structure [42].
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