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Abstract

We develop a novel theory of real estate foreclosure auctions, which have the special fea-
ture that the lender acts as a seller for low and as a buyer for high prices. The theory yields
several empirically testable predictions concerning the strategic behavior of the agents, both
under symmetric and asymmetric information. Using novel data from Palm Beach County
(FL, US), we find evidence of both strategic behavior and asymmetric information, with
the lender being the informed party. Moreover, the data are consistent with moral hazard
in mortgage securitization: banks collect less information about the value of the mortgage
collateral.

Keywords: foreclosure auctions, asymmetric information, bunching, discontinuous strategies,

securitization
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1 Introduction

Foreclosures of real estate have a substantial economic impact. In 2013, 609,000 residential

sales in the U.S. were foreclosure related (foreclosure auctions or sales of real estate owned by
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a lender), amounting to 10.3% of total residential sales.1 Foreclosures played an even larger

role during the 2007 and 2008 financial crisis, when “four million families [...] lost their homes

to foreclosure and another four and a half million [...] slipped into the foreclosure process or

[were] seriously behind on the mortgage payments” (Financial Crisis Inquiry Report, Angelides

et al., 2011, p. xv). Preceding the foreclosure wave, the securitization of mortgages increased

from 30 per cent in 1995 to 80 per cent in 2006 (Dewatripont et al., 2010, p. 19). It is widely

believed that the securitization of mortgages led to moral hazard for originating banks and

that “collapsing mortgage-lending standards and the mortgage securitization pipeline lit and

spread the flame of contagion and crisis” (Angelides et al., 2011, p. xxiii).2

We develop a novel theory of foreclosure auctions, incorporating the institutional details

of foreclosures. Our theory both serves a better understanding of the foreclosure process and

provides insight about the moral hazard involved in securitization.

A foreclosure auction is run by a government agency after a mortgagee stopped making

payments to the lender. The lender (typically a bank) and third-party bidders (typically real

estate brokers) participate in this auction. An important feature of foreclosure auctions is that

only payments up to the judgment amount (which is basically the amount owed) are paid to the

lender.3 Payments above the judgment amount, if any, are paid to the owner of the property.

The owner typically does not participate. In such an auction, the bank essentially acts as a

seller below the judgment amount, and as a buyer above the judgment amount.

Another important feature of foreclosure auctions is that the bank is likely to have superior

information about the quality of the property. There are several reasons for this. First, lenders

typically spend large resources on appraisals to get a more precise value of the collateral before

granting mortgages. Second, banks also typically put significant effort in assessing the prob-

ability of default of potential borrowers, which is well known to be negatively correlated with

the value of the collateral (see Qi and Yang, 2009, and the references therein).

Unlike in a regular real estate sale, this information is not readily available to the buyers.

The owner is neither obligated nor may have an incentive to cooperate with the foreclosing

1See http://www.realtytrac.com/Content/foreclosure-market-report/december-and-year-end-2013-

us-residential-and-foreclosure-sales-report-7967.
2See Brunnermeier (2009); Mian and Sufi (2009); Keys et al. (2010); Tirole (2011) for the academic literature.
3The judgment amount chosen by the court is by and large the amount owed to the bank. It can additionally

include unpaid utilities fees, legal fees, etc.
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lender in providing access to the property to the potential buyers. Moreover, the properties

in foreclosure are sometimes abandoned by their owners, making buyer access and physical

inspection problematic.

In contrast to the bank, which is mostly interested in reselling the property and may have

superior information about quality, brokers typically participate with the intent of renovating

the property.4 The costs of renovation are to a much larger degree driven by brokers’ idiosyn-

cratic components, which, at least to a first approximations, may be independent from the

bank’s information about the quality.5 In our model, the broker’s valuation generally depends

both on the quality and its own idiosyncratic component.

We derive participants’ equilibrium bidding strategies in a foreclosure auction with a com-

mon value component on the bank’s side. However, as a benchmark, we first analyze a sym-

metric information environment, where the bank’s information is known to the brokers. In this

environment brokers bid their own type as in a standard English auction. The bank bids its

valuation plus a markup for valuations far below the judgment amount. The bank’s bid is equal

to the reserve price a seller would set. The bank’s bid takes into account the classical trade-off

of a seller: a higher bid lowers the bank’s probability of selling the house, but increases the

bank’s revenue in case of sale. However, one side of this trade-off disappears for banks that

bid exactly the judgment amount: a higher bid still lowers the probability of sale, but does not

lead to higher revenues for the bank, since the additional revenue goes to the original owner.

This change of the trade-off causes a bunching of banks’ bids at the judgment amount. If the

bank’s valuation is sufficiently high – higher than the judgment amount – the bank does not

want to sell the property, but would want to keep it. Hence, for high valuations, the bank bids

its own type, just as a buyer would do in an English auction.

A bank intent on selling the property will bid more in an asymmetric information environ-

ment than in a symmetric information environment. The reason is that there is another effect

in the bank’s trade-off: the bank’s bid also serves as a costly signal about the quality of the

4When visiting websites of several brokers participating in the foreclosure auctions in our data set, we could
see that they often specialize in renovating foreclosed properties.

5Assuming private values also helps us to focus on the common value component on the seller’s side, which
has been ignored so far in the empirical literature. Our theoretical results are likely to extend to a setup in
which buyers also have information about the common value component. However, such a setup would add
an additional layer of complexity to our model. Further, for a better understanding of moral hazard in the
securitization process, what matters is the common value component on the seller’s side.
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property. Intuitively, the bank is willing to incur the cost of an excessively low probability of

sale (given the price conditional on sale), in order to prove that the quality of the house is

high. This cost has to be sufficiently high, so that banks with lower qualities do not have an

incentive to imitate banks with higher qualities. This signalling premium means that the bank

charges more than what it would have charged in a symmetric information environment.

The bunching result from the symmetric information setup holds also with asymmetric

information. Now, however, bunching has a surprising implication: there cannot be an equi-

librium where the bank’s bidding strategy is continuous around the bunch. The reason for

this is that brokers who are supposed to drop slightly below the judgment amount will instead

prefer to wait for the price to rise above the judgment amount, as they would then be certain to

obtain a significantly higher quality house at a slightly higher price. Since brokers will not have

an incentive to drop out at prices slightly below the judgment amount, neither will the bank:

increasing the bid to the judgment amount will lead to a higher revenue for the bank, while

not changing the probability of sale. This logic implies that there has to be a discontinuity

in the bank’s bidding strategy below the judgment amount. We show in this paper that the

bank’s equilibrium bidding strategy is strictly increasing and continuous for low valuations,

then exhibits a discontinuous jump to the judgment amount and bunching at the judgment

amount, and is equal to the bidding strategy of a buyer for valuations above the judgment

amount.

Our model has two striking empirically testable implications. First, there is bunching of

banks’ bids at the judgment amount. Second, in the presence of both auctions with symmetric

and asymmetric information, one should expect to observe the following. For values slightly

below the judgment amount, the probability of sale (the probability of the bank selling the house

to a third-party bidder) first increases with the bank’s bid and then drops down discontinuously

at the judgment amount. The explanation for this consists of two pieces. First, with asymmetric

information there is a gap in the bank’s bid distribution just below the judgment amount

(corresponding to the discontinuous bidding strategy), whereas for symmetric information there

is no gap. Hence, bids observed just below the judgment amount will be from symmetric

information auctions. For other bids, one will observe a mixture of symmetric and asymmetric

information. Second, under asymmetric information, the signalling premium leads to higher
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bids by the bank and hence a lower probability of sale. Putting the two pieces together reveals

that the probability of sale will be lower in the gap than just below and just above the gap. This

implies a probability of sale which is non-monotonic with the bank’s bid at the lower bound of

the gap and decreases discontinuously at the upper bound of the gap (which is the judgment

amount). This non-monotonicity (which appears like a violation of the law of demand, but

is really a consequence of sample selection) and demand discontinuity are empirically testable

implications of our theory.

To bring our theory to the data, we have collected a novel data set with foreclosure auctions

from Palm Beach County in Florida. We have data on 12,788 auctions from 2010 to 2013 with a

total judgment amount of $4.2bn. The data reveal that bunching indeed occurs at the judgment

amount. We also observe that the probability of sale increases with the bank’s bid just below

the judgment amount. Further, demand exhibits a downward discontinuity at the judgment

amount. This points, as we have argued, to the presence of auctions with both symmetric and

asymmetric information in our data set.

Our theory and our data allow us to investigate how securitization affects the information

about the mortgage collateral. Moral hazard in the securitization of mortgages was a major

concern during the financial crisis. Originating banks securitized their mortgages and sold the

mortgage backed securities on the capital market. This reduced banks’ “skin in the game”

and thus led to moral hazard: banks did not exert sufficient effort in gathering information

before granting mortgages and hence excessively granted mortgages (see Mian and Sufi, 2009;

Dewatripont et al., 2010; Keys et al., 2010).6

The connection between moral hazard at the stage of granting a mortgage and asymmetric

information at the time of the foreclosure is the following. In the presence of moral hazard

for securitized mortgages, a bank will exert less effort in collecting information both about the

value of the collateral and the financial situation of the borrower. One effect of this is that the

bank will be less informed about the probability of default – this is indeed what the literature

has focused on so far. However, there is also another effect: once a mortgage defaults, the loss

given default (and hence the value of the collateral) matters. If the originating bank spent less

6Besides moral hazard, informational asymmetries can also lead to adverse selection. However, as argued in
the literature (see Keys et al., 2010), the institutional details of the securitization process suggest that adverse
selection is much less important than moral hazard.
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effort gathering the information about the value of the collateral when granting the mortgage,

it will also have less of an informational advantage during the foreclosure auction.7

One would therefore expect the bank to have less private information about the quality of

the house for securitized mortgages than for non-securitized mortgages. This implies that the

non-monotonicity and the discontinuity of the probability of sale as a function of the bank’s

bid should be present for non-securitized mortgages, but not for securitized mortgages (or at

least only present to a smaller extent). An analysis of the data reveals that this is indeed the

case.

We provide further evidence for banks having less information for securitized than for

non-securitized mortgages by considering bank’s bidding strategies. Because of the signalling

premium, a bank bids higher under asymmetric information given the same opportunity cost of

selling. In order to estimate banks’ bidding strategies for securitized and non-securitized mort-

gages and to correct for possible selection effects, we collected additional data on the resale

prices and the tax assessment values of foreclosed properties.8 These two additional vari-

ables allow us to deal with the selection effect while simultaneously controlling for unobserved

heterogeneity. We then estimate banks’ bidding functions for securitized and non-securitized

mortgages. We show that for a given opportunity cost, a bank holding a non-securitized mort-

gage bids more than a bank holding a securitized mortgage. This provides additional evidence

for different levels of asymmetric information at the foreclosure stage and is consistent with

moral hazard at the mortgage underwriting stage.

Related Literature. To the best of our knowledge, this is the first paper providing an eco-

nomic analysis of the bidding behavior in foreclosure auctions. So far, the details of foreclosure

auctions have been mainly analyzed in the law literature (see e.g. Nelson and Whitman (2004)).

For our theoretical analysis, we build on two strands of literature. The first analyzes bidding

behavior of buyers with information about a common value component, starting with Milgrom

and Weber (1982). The second, more recent, literature analyzes auctions in which the seller

7The originating bank typically also acts as the servicer of the mortgage, i.e. it bids in the foreclosure auction.
This makes an alternative explanation – that information is collected by originating banks, but lost when the
mortgage backed securities are sold – less plausible.

8A different distribution of banks’ bids for securitized and non-securitized mortgages could be either due to
the signalling premium or due to banks having a different distribution of opportunity costs for securitized and
non-securitized mortgages.
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has superior information, see Jullien and Mariotti (2006), Cai et al. (2007), and Lamy (2010).

For bids above the judgment amount, we can use results from the former; for bids sufficiently

below the judgment amount, we can use results from the latter literature. Our theoretical

contribution is to show that there are surprising predictions for the intermediate range of bids,

which are between the informed seller and the informed buyer regions.

This is also the first paper to provide empirical evidence for a common value component

on the seller’s side in an auction. In this sense, it complements the existing empirical auction

literature which has considered testable predictions for models with a common value component

on the buyer’s side, see Hendricks and Porter (1988) and Hendricks et al. (2003) for offshore

oil auctions, and Nyborg et al. (2002) and Hortaçsu and Kastl (2012) for treasury auctions.

Foreclosure auctions are particularly well suited to analyze the presence of a common value

component on the seller’s side. This is because (i) participation in the sales is required by

law and (ii) the seller is a private organization. Without (i) (i.e. with voluntary participation)

submarkets with particularly strong adverse selection would operate at a low scale or might even

completely break down by an Akerlof (1970) type of argument. Hence, if one cannot perfectly

separate submarkets with symmetric and asymmetric information, there is a selection effect

working against finding asymmetric information.9 Point (ii) matters, because governments are

less likely to have superior information. Much of the literature has analyzed markets in which

either (i) or (ii) was not satisfied, hence even if one had looked for a common value component

on the seller’s side rather than on the buyer’s side, it would have been difficult to find it.

The application of our theory to securitization relates to the literature dealing with moral

hazard in the securitization process, such as Mian and Sufi (2009), Keys et al. (2010), Tirole

(2011). Our analysis is consistent with the view that securitization led to moral hazard. Our

analysis is complementary to the analysis in the existing literature that provides evidence for

moral hazard with respect to the probability of default. Our analysis highlights the importance

of moral hazard with respect to the other determinant of the expected shortfall of a mortgage:

the loss given default (which is determined by the value of the mortgage collateral).

In a wider sense, our article relates to the growing literature that uses insights from auctions

9It is plausible that one cannot perfectly separate different submarkets. At least in our data set, we find
evidence consistent with both symmetric and asymmetric information auctions being present.
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to analyze important questions in financial markets, such as Heller and Lengwiler (1998),

Hortacsu and McAdams (2010), Cassola et al. (2013), Zulehner et al. (2013), where our novelty

is to apply it to mortgages.

2 Foreclosure Process

Property foreclosure is a remedy allowed by law to the lender if the borrower defaults on the

mortgage. While it generally transfers the ownership of the property to the lender, the process

may be a lengthy one and the details depend on the jurisdiction. In the United States, roughly

40% of the states adopt what is called a judicial foreclosure, while the rest is comprised of

the nonjudicial foreclosure states. In the following, we will restrict our attention to judicial

foreclosures, since we are using a data set from a state with this foreclosure system (Florida).10

When the borrower defaults on a mortgage, the court grants the lender a judgment of

foreclosure. The judgment will specify the date of the foreclosure sale. The judgment holder is

often required to advertise the sale in a local newspaper. The title is transferred to the highest

bidder, and certain liens and encumbrances may survive the foreclosure sale. Finding out this

information is the sole responsibility of the prospective buyers.

Unlike in a regular real estate sale, the bank is not allowed to run an open house, or provide

individual access to prospective buyers in a foreclosure sale. The reason for this is that until

the sale is complete, any access to the property usually needs owner permission. The owner,

however, may have little incentive to cooperate with the foreclosing lender, or may even have

abandoned the property.

The sale is conducted through a public auction. The bank is an active participant and is

allowed to bid with credit up to the amount owed (also called the judgment amount), while

other participants (usually real estate brokers) are required to submit bids in cash or cash

equivalent.11 The auction is usually conducted in an open format. The property title is awarded

to the highest bidder, and the auction price is equal to the highest bid. The proceedings of

10 The main legal difference between judicial and nonjudicial foreclosure is that in the former, the process takes
place in the court system, while in the latter, it takes place outside the courts. Judicial foreclosures always result
in the property being sold at a public auction, the foreclosure auction. This and other information concerning
judicial and nonjudicial foreclosures can be found in Nelson and Whitman (2004).

11The bidders are often required to make an advance deposit as a certain percentage of the judgment amount.
This deposit will be credited towards the bid, should the bidder win the auction.

8



the auction are collected by the court. The court transfers any payments up to the judgment

amount to the lender. In case the auction price exceeds the judgment amount, the additional

proceedings are paid to junior liens holders and to the owner of the property.12

We use foreclosure auction data from Palm Beach County (FL). Palm Beach County moved

to an online foreclosure auction system in 2010. Bidders bid in an Internet English auction

through an electronic bidding proxy. The lender can submit their bid one week prior to the

auction, while third-party bidders can start bidding on the day of the auction. The web interface

shows the leading bid and the identity of the leading bidder (in particular also whether the

leading bidder is the lender’s representative).

In the next section, we present a stylized model of the foreclosure auction that captures

the main institutional details. First, the payment to the lender in the auction is capped at the

judgment amount. As we show, this will result in a differential role of the lender, effectively

making it a seller of the property if the bid is lower than the judgment amount, and a buyer

otherwise. Second, the bank will have private information about the quality of the house.

This information is also relevant to the brokers, but their valuations will also depend on other

idiosyncratic factors.

3 Model

Consider the bank (also called the seller, S) and n real estate brokers (or buyers, B) who

participate in the foreclosure auction. The original owner of the property is not modeled as

a strategic player, since he typically lacks the resources to participate in the auction.13 The

judgment amount (i.e. the balance of the mortgage) is denoted as vJ . The foreclosure auction

is modeled as variant of the (button) English auction as in Milgrom and Weber (1982). The

auction website expedites bidding by allowing the participants to employ automatic bidding

agents. The bidders provide their agents the maximum price they are willing to pay (their

dropout price), and the agent then bids on their behalf. These proxy bids can be updated at

12If the broker wins the auction but the sale price falls short of the judgment amount, the lender can then
ask the court for a deficiency judgment, to be applied against the borrower’s other assets. Deficiency judgments
are relatively rare, as they are only pursued when the borrower owns other significant assets. But in that case,
absent a sudden crash of the real estate market, the borrower is better off selling these assets and avoiding a
costly foreclosure that is likely to reduce the borrower’s credit rating.

13In legal documents, the bank (or lender) is referred to as the plaintiff. The original owner is referred to as
the defendant.
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any time.14 The brokers are able to observe if the bank’s maximum bid has been exceeded,

while a broker’s dropout price is unobservable to the bank. The broker may therefore change

its maximum bid upon observing the bank’s dropout price. As for the bank, we assume that

it commits to its dropout price.15

The key difference from a standard auction is that the proceeding of the foreclosure auction

up to the judgment amount goes to the bank. Anything above the judgment amount goes to

the original owner.16 This effectively turns the bank into a seller for prices below and into a

buyer for prices above the judgment amount.

The winner pays the auction price p. If the price exceeds the judgment amount, p ≥ vJ ,

then the bank gets vJ and the owner pockets the difference p − vJ . If the price is below the

judgment amount, p < vJ , then the bank gets p and the owner gets nothing. The property is

transferred to a broker only if a broker wins; otherwise, the bank keeps the property. It follows

that if the bank wins the auction, it effectively pays the auction price to itself. So in reality

no money changes hands in this case. But if a broker wins, then money is actually transferred,

from the broker to the bank and possibly the owner as well (if the auction price exceeds the

judgment amount).

As usual, we model the foreclosure sale (auction) as a game of incomplete information. As

explained in the empirical section of the paper, banks and brokers buy houses for different

purposes. While banks mostly simply sell the houses, brokers typically renovate the property

before reselling. Motivated by this, we make the following assumption concerning the informa-

tion of the bank and the brokers. First, we assume that the ith broker’s idiosyncratic signal,

denoted asXi
B ∈ R+, only concerns its renovation value added to the house. Second, we assume

that the bank’s signal XS ∈ R+ concerns the baseline resale value of the house. The signals

Xi
B and XS will be sometimes referred to as buyers’ and seller’s types. Their realizations will

be denoted as xiB and xS , respectively.

Since the bank has typically collected information about the value of the collateral before

14Such proxy bidding makes the button model even more applicable here, as it alleviates the need to model
difficult features such as e.g. jump bidding that may be present in the traditional open auctions.

15As it will become apparent later, the bank does not have an incentive to change its dropout price during
the auction, so that the assumption of commitment is irrelevant in equilibrium.

16Or, junior liens holders. The distinction between payments to the original owner and to junior liens holders
does not matter for our purposes.

10



granting the mortgage, it is assumed to be the informed party.17 Its signal XS is normalized

to equal the expected value of the house in the market, so the bank’s valuation is

uS(xS) = xS .

The brokers do not observe XS ; they only privately observe their own signals Xi
B. Broker i’s

expected value of the house, given its own signal xiB and the bank’s signal xS , is denoted as

uB(x
i
B, xS).

We make the following assumptions concerning the expected valuations of the brokers.

Assumption 1 (Broker valuations). A broker’s expected valuation is differentiable and strictly

increasing in its own signal xB, and nondecreasing in the bank’s signal xS,

∂uB(xB, xS)

∂xB
≥ θ,

∂uB(xB, xS)

∂xS
≥ 0,

for some constant θ > 0. Moreover, the derivatives satisfy the single crossing condition

∂uB(xB, xS)

∂xS
<

duS(xS)

dxS
.

This single crossing condition is sufficient to ensure that the broker’s dropout strategy in

the open (button) auction is increasing in the broker’s signal. If uB does not depend on xS , we

have a special case of private values. Otherwise, the valuations are interdependent. For reasons

that will be clear in the sequel, we normalize the broker signals so that the value conditional

on winning the auction is equal to the signal,

uB(xB, xB) = xB. (1)

This normalization is without loss of generality because Assumption 1 ensures that uB(xB, xB)

is continuous and strictly increasing in xB.
18

We make the following assumption regarding the distribution of the signals.

17The bank also typically collects information about the financial situation of the borrower, which is correlated
with the value of the collateral.

18To see that the normalization is indeed without loss of generality, consider the general case uB(xB , xB) =
v(xB) for some function v. We can define the transformed signal x̃B = v(xB) and the transformed utility function
ũB(x̃B , xS) = uB(v

−1(x̃B), v
−1(xS)). Then, for the transformed utility function and signal, the normalization

holds: ũB(x̃B , x̃B) = x̃B .
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Assumption 2 (Signals). The bank’s signal XS is drawn from a distribution FS supported on

R+, with density fS continuous and positive on the support. The broker signals Xi
B, i = 1, ..., n,

are identically and independently distributed, and drawn from the distribution FB, supported

on R+, with density fB continuous and positive on the support.

The independence assumption is made to simplify the analysis of the game, by eliminating

the need to consider adjustments that brokers would otherwise make to their proxy bids follow-

ing dropouts by other brokers. Under independence, we shall see that the information in the

auction will be transmitted only from the bank to the brokers, following the bank’s dropout

from the auction. After that, the brokers essentially have independent private values. They

simply enter those values as their (updated) proxy bids, and there will be no updating from

brokers’ dropout prices.19

The Myerson virtual value is defined in the present setting as

JB(xB, xS) = uB(xB, xS)−
∂uB(xB, xS)

∂xB

1− FB(xB)

fB(xB)
. (2)

We make the standard monotonicity assumption concerning JB(xB, xS), a variant of the My-

erson regularity condition. This assumption ensures quasi-concavity of the profit functions, so

that the second order conditions are fulfilled.

Assumption 3 (Virtual value monotonicity). The function JB(xB, xS) is strictly increasing

in xB.

In the following, we will use x(1) and x(2) for the highest and second highest order statistics

among n brokers’ signals. Further, we will use F(1) and F(2) for the corresponding distributions.

All technical proofs are banned to the Appendix.

We have two reasons to focus on a model in which the seller’s superior information about the

quality of the property being auctioned is at the center of interest. First, the bank is likely to

have better information due to having gathered information about the property when granting

the mortgage. Information about the mortgagee can also serve as an indicator of how well the

mortgagee maintains the house. Second, we will later consider securitized and non-securitized

19Independence is also assumed in Jullien and Mariotti (2006), while Cai et al. (2007) and Lamy (2010) allow
the buyer signals to be correlated, but still independent of the seller’s signal.
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mortgages. As it will become clear later, it is reasonable to believe that the informativeness of

the bank’s signal about the quality of the house is different for securitized and non-securitized

mortgages.

4 Symmetric Information

It is useful to start with the case of symmetric information, where the bank’s information is

known to the brokers. This independent private values (IPV) setup is particularly useful to

highlight the role of the judgment amount, below which the bank acts as a seller and above

which the bank acts as a buyer.

Standard arguments imply that it is a weakly dominant strategy for the broker to choose

its valuation as the drop-out price, so

pB(xB) = uB(xB, xS).

The bank’s bidding behavior can be best derived by first considering two hypothetical cases.

First, nothing is owed to the bank (vJ = 0) and hence the bank always acts as a buyer. Second,

an infinite amount is owed to the bank (vJ = ∞) and hence the bank always acts as a seller.

After deriving these two hypothetical cases, we can put the two pieces together and additionally

derive the bank’s bidding behavior for the transitional region in which the bank turns from a

seller to a buyer.

First, consider the case in which the bank always acts as a buyer (vJ = 0). By standard

arguments for English auctions, the bank’s optimal strategy is to bid its own type, i.e. pS(xS) =

xS .

Next, consider the case when vJ = ∞, i.e. the standard auction where the bank acts as the

seller. The brokers will drop out at prices uB(x
i
B, xS). If the bank decides to drop out at price

p, its auction revenue will be equal to p if there is one, and only one broker that is active in

the auction at that price. If there are multiple brokers active at p, the bank’s revenue will be

equal to the second-highest dropout broker price, i.e. uB(x(2), xS). Denote by x̂B the broker’s

type indifferent between staying in or dropping out at p, so that p = uB(x̂B, xS). Then the

bank’s expected profit is the usual expression from auction theory

ΠS(xS , x̂B) = uB(x̂B, xS)nFB(x̂B)
n−1(1− FB(x̂B)) +

∫ ∞

x̂B

uB(y, xS)dF(2)(y) + xSFB(x̂B)
n,
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where the first term in the sum is the revenue if the property is sold at the bank’s bid. Observe

that the bank bid can be viewed as a reserve price in this context. The second term is the

revenue if the property is sold above the reserve, and the third is the bank’s utility if it retains

the property. (If there is only one broker, n = 1, then the integral term should be excluded

from the above formula.)

The bank will choose the price, or, equivalently, the broker’s marginal cutoff x̂B, optimally.

The optimal marginal cutoff is given by the first order condition

JB(x
∗
B(xS), xS) = xS , (3)

which can be derived by setting ∂ΠS/∂x̂B = 0. It can be verified that the second order

condition is satisfied because of Assumption 3.

This is, of course, a well-known result in auction theory concerning the optimal reserve

price, adapted to the setting where the buyer’s valuations depend on the seller’s information

xS , observable to the buyers.20 A sufficient condition for the bank’s optimal strategy to be

monotone is

∂JB(xB, xS)

∂xS
< 1, (4)

which can be obtained by totally differentiating (3) with respect to xS . It can be checked that

(4) is implied by the stronger but more intuitive conditions

∂uB(xB, xS)

∂xS
< 1,

∂2uB(xB, xS)

∂xB∂xS
≥ 0. (5)

Now consider the case of our primary interest, 0 < vJ < ∞. If the bank has valuation

xS ≤ vJ , it will not drop out at the price above vJ : the bank is not entitled to any revenue

in excess of vJ , so staying in the auction beyond vJ will only reduce the probability of sale.

So effectively, the bank’s problem is to maximize its profit with the additional constraint

p ≤ vJ , or, equivalently, uB(x̂B, xS) ≤ vJ . As we have seen, the bank’s profit is quasiconcave

in x̂B, so the optimal price p0S(xS) is equal to uB(x
∗
B(xS), xS) if xS < xS and vJ otherwise,

where the border between the separating and the bunching region xS is implicitly defined by

uB(x
∗
B(xS), xS) = vJ .

20See Myerson (1981).
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Figure 1: The bank’s bidding strategy pS(xS) under independent private values. For xS < xS
the bank bids its valuation xS plus a markup, for xS > vJ the bank bids its valuation. The
bids of banks with xS ∈ [xS , vJ ] are bunched at vJ .

If, on the other hand, xS > vJ , then the bank is not willing to sell the house at a price below

xS , but also will not benefit from a price above xS as the excess p − vJ will go to the owner.

It follows that the bank’s optimal strategy in this case is to drop out at xS , pS(xS) = xS .

We summarize these findings in the proposition below.

Proposition 1. The bank’s optimal strategy is given by

p0S(xS) =


uB(x

∗
B(xS), xS) if xS < xS,

vJ if xS ∈ [xS , vJ ]

xS , if xS > vJ

where x∗B(xS) is uniquely determined from JB(x
∗
B(xS), xS) = xS and xS is implicitly given by

uB(x
∗
B(xS), xS) = vJ . The optimal strategy is strictly increasing in xS for xS < xS provided

(4) or (5) hold, in which case the bank’s prices are pooled over an interval [xS , vJ ].

The bank’s equilibrium behavior is different depending on whether the bank’s valuation is

below or above the judgment amount. The bank acts in a seller role in the former case, and

in a buyer role in the latter. The most interesting feature of the equilibrium is the bunching

region. In this region, the bank’s dropout prices are pooled at the judgment amount. This is

illustrated in Figure 1.
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The following intuition can be given for the bunching of banks’ bids at the judgment amount.

Consider comparative statics with respect to the bank’s valuation xS . For low valuations xS ,

the bank bids its valuation plus the monopoly markup. The optimal bid of the bank balances

two effects in a trade-off: a higher bid increases the bank’s expected profits conditional on sale,

but also lowers the probability of selling the house to a third party. As we increase xS , this

trade-off changes in a way that makes higher bids more attractive to the bank. Hence, the

bank’s bid increases with xS . However, at the point where the bank’s bid reaches vJ , one part

of the trade-off disappears for price increases (but not decreases): a higher bid by the bank

does not increase the bank’s profit conditional on selling, since any additional revenues go to

the original owner. Therefore, as xS increases, the bank’s optimal bid stays at vJ . Once xS

surpasses vJ , the bank actually prefers retaining the property, since it is worth more than the

amount owed. Therefore, the bank’s bid will again increase with xS for xS above vJ . The flat

piece in the bank’s bidding function corresponds to a mass point in banks’ bid distributions.

5 Asymmetric Information

We now consider the general environment with common values, where the bank will be the

informed party. As we shall see, there are some novel features in this setting compared to the

symmetric information setup. The main new feature is that the equilibrium will involve a gap

below the judgment amount.

As with symmetric information, the bank will act as a seller for lower types, and as a buyer

for higher types. Again, we begin by considering the extreme cases vJ = 0, where the bank

always acts as a buyer, and vJ = ∞, when the bank always acts as a seller.

5.1 Bank-buyer Equilibrium (vJ = 0)

If vJ = 0, both the bank and the brokers act as buyers bidding in a standard English auction.

The solution can be found by adapting a Milgrom and Weber (1982) type of argument to

our setup. The bank knows its valuation xS , so will drop out at the price equal to xS . In a

symmetric equilibrium, a broker’s dropout strategy pB(xB) is found through the inverse bidding
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strategy XB(p), which in turn is found through the following standard indifference condition.21

uB(XB(p), p) = p (6)

The intuition is that, given the auction has reached price p, if a broker decided to drop out at

price p instead of p+ ϵ, this decision will change the broker’s expected payoff only if the bank

(and the other brokers) dropped out at prices p ∈ (p, p+ ϵ). If the bank drops out at p = xS ,

then in the limit as ϵ → 0, the expected value of the house to the broker will be uB(xB, p). In

equilibrium, the broker will drop out at a price such that he is indifferent between dropping out

and continuing, while single crossing ∂uB/∂xS < ∂uS/∂xS = 1 implies that the broker will not

benefit from waiting and dropping out at higher prices. Also, the same single crossing condition

implies that brokers with higher types will prefer to continue. Thus, a broker’s type XB(p)

dropping out at price p is (uniquely) found from the condition (6). Given our normalization

uB(x, x) = x, we see that XB(p) = p, so the broker, even though uninformed, in equilibrium

will also drop out at the price equal to its type.

If the bank drops out while there are at least two brokers remaining in the auction, the

auction becomes essentially an independent private values auction, since all the information

about the common value component is public. In this case, each remaining broker i revises his

drop-out price to p̃iB = uB(x
i
B, p̃), where p̃ is the drop-out price of bank.

This equilibrium is described in the proposition below.

Proposition 2 (Bank-buyer equilibrium). In a broker-symmetric equilibrium, both the bank

and each broker i will drop out at the prices equal to their signals,

pS(xS) = xS , piB(x
i
B) = xiB for all i.

If the bank drops out at price p̃ and at least two brokers remain in the auction, then the

remaining brokers’ drop-out prices are p̃iB = uB(x
i
B, p̃) for each broker i remaining in the

auction.

5.2 Bank-seller Equilibrium (vJ = ∞)

Auctions in which the seller has information about the common value component have been

considered in Jullien and Mariotti (2006), Cai et al. (2007) and Lamy (2010). These papers

21By symmetry here, we mean that the brokers adopt the same strategy.
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consider the case of a public reserve price and characterize a separating equilibrium in strictly

increasing, continuous and differentiable strategies. We begin by adapting the equilibrium

characterization results in the aforementioned papers to our setting.

We restrict attention to equilibria where the bank adopts an increasing and continuous

equilibrium dropout strategy p∗S(xS), with a differentiable inverseX∗
S(p). Given our assumption

that broker signals are independent, only the bank’s dropout price is relevant for information

updating. Denote a broker’s dropout strategy as p∗B(xB), with the inverse denoted as X∗
B(p).

As in Milgrom and Weber (1982), X∗
B(p) is found by equating the object’s expected value to

the broker assuming the bank drops out at p, to the price p:

uB(X
∗
B(p), X

∗
S(p)) = p (7)

After a drop-out of the bank at a price p̃, a broker’s dropout strategy is simply uB(xB, XS(p̃))

as the brokers will then have independent private values.

The following proposition describes the separating equilibrium in our model.

Proposition 3 (Bank-seller equilibrium). There is a unique equilibrium in monotone differ-

entiable strategies. The bank’s inverse bidding strategy X∗
S(p) and the brokers’ inverse bidding

strategies X∗
B(p) before a drop-out of the bank are given by the (unique) solutions to the differ-

ential equation system

dX∗
S(p)

dp
=

(JB(X
∗
B, X

∗
S)−X∗

S)]f(1)(X
∗
B)

∂uB(X∗
B ,X∗

S)
∂xS

(uB(X∗
B, X

∗
S)−X∗

S)f(1)(X
∗
B) +

∂uB(X∗
B ,X∗

S)
∂xB

∫∞
X∗

B

∂uB(x,X∗
S)

∂xS
f(2)(x)dx

,

(8)

dX∗
B(p)

dp
=

∂uB(X∗
B ,X∗

S)
∂xS

(F(2)(X
∗
B)− F(1)(X

∗
B)) +

∫∞
X∗

B

∂uB(x,X∗
S)

∂xS
f(2)(x)dx

∂uB(X∗
B ,X∗

S)
∂xS

(uB(X∗
B, X

∗
S)−X∗

S)f(1)(X
∗
B) +

∂uB(X∗
B ,X∗

S)
∂xB

∫∞
X∗

B

∂uB(x,X∗
S)

∂xS
f(2)(x)dx

,

(9)

subject to the initial conditions X∗
S(p) = 0 and X∗

B(p) = p. The lowest price offered by the bank

p is given by p = pS(0) = uB(xB, 0), where xB is the lowest broker type that purchases with

positive probability, given by the unique solution to JB(xB, 0) = 0. For an out-of-equilibrium

reserve price p < p, brokers believe that the bank’s type is the lowest possible.

If the bank drops out of the auction, the remaining bidders bid up to uB(xB, XS(p̃)), where

p̃ is the bank’s drop-out price.
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The proof adapts Cai et al. (2007) to our setting where the bank is an active bidder in the

open auction. We also show that the full-information price is the only price that can be offered

by the lowest-type bank in such a separating equilibrium. Thus the equilibrium outcome is

unique (assuming that the strategies are differentiable and monotone). The out-of-equilibrium

beliefs for prices lower than p are indeterminate, but must be sufficiently pessimistic so as

to provide the bank with an incentive not to drop out at lower prices. The most pessimistic

beliefs (i.e. believing that the bank’s type is the lowest possible) are reasonable, and they

indeed support this unique equilibrium outcome.

We note in the following Corollary a noteworthy property of this separating equilibrium. In

comparison with the symmetric information setup considered in Section 4, there is signalling

premium in the asymmetric information equilibrium.

Corollary 1 (Signalling premium). Under asymmetric information, the bank bids higher,

p∗S(xS) > p0S(xS) for xS > 0 and p∗S(0) = p0S(0); brokers’ bids are lower, p∗B(xB) < p0B(xB).

The probability of sale to the broker as a function of the seller’s price is lower under asymmetric

information than under symmetric information.

The intuition for the bank bidding more under asymmetric information is that bidding

more is a costly signal about quality, since it decreases the bank’s probability of sale: a lower

probability of selling hurts a bank with a low opportunity cost of selling more than a bank with

a high opportunity cost of selling. The intuition for brokers bidding less under asymmetric

information is a variant of the standard winner’s curse: a broker is more likely to win the

auction if the bank knows that the quality is low. Observe that the signalling premium and

the winner’s curse lead to welfare losses, since less gains from trade are exploited than under

symmetric information.22 This is illustrated in Figure 2.

Motivated by our empirical application, we now investigate how the bank’s strategy is

affected as its information concerning the common value component becomes less precise, and

hence less relevant to the brokers. Following Cai et al. (2007), we consider a linear specification

in the form

uB(xB, xS) = xB + αxS , α ∈ [0, 1).

22This is on top of an existing distortion due to the seller’s market power.
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Figure 2: Bank-seller equilibrium (vJ = ∞) under asymmetric information. The thick line rep-
resents the bank’s bidding strategy p∗S(xS), the thin line represents a broker’s bidding strategy
p∗B(xB). The dashed line represents the bank’s strategy p0S(xS) under symmetric information.

Here, α reflects the relevance of the bank’s information for the broker.23 As α decreases,

the bank’s information becomes progressively less relevant to the broker. The case α = 0

corresponds to independent private values. Note that this is different from the symmetric

information case considered above since now the bank’s information becomes irrelevant rather

than being revealed to the brokers. Denoting the bank’s strategy as pS(xS ;α), we can write

the following Proposition.

Proposition 4 (Equilibrium of the linear model). The bank’s strategy in the linear model is

given by

p∗S(xS ;α) = s−1(xS) + αxS ,

where

s(xB) :=
1

α
(1− F(1)(xB))

1
α
−1

∫ xB

xB

(1− F(1)(t))
− 1

α f(1)(t)

(
t− 1− FB(t)

fB(t)

)
dt

is the maximal bank’s type that trades with a broker of type xB, and xB, the lowest broker

participating type, is the same as under symmetric information, i.e. given implicitly by

xB − 1− FB(xB)

fB(xB)
= 0.

Moreover, p∗S(xS ;α) is increasing in α.

23This specification does not satisfy our normalization uB(xB , xB) = xB , but it would if we change the broker’s
signal to x̃B = xB

1−α
.
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This result shows that, as the bank’s information becomes more relevant to the broker, the

bank bids higher. In this model, α affects the bank’s bidding incentives through two channels.

First, there is a direct channel since the bank’s information directly affects the broker’s payoff.

Second, there is an indirect channel due to the signalling premium, as we have discussed

previously.

5.3 General Case: vJ ∈ (0,∞)

In a foreclosure auction with vJ ∈ (0,∞), the equilibrium will combine the features of the

bank-seller equilibrium for lower xS , where the bank will drop out at p∗S(xS) as described for

the vJ = ∞ case, and bank-buyer equilibrium for higher xS , where the bank will drop out at

p∗S(xS) = xS . However, “stitching” these two equilibria under common values is by no means a

simple matter. To see the difficulties that arise, suppose we have a bunching equilibrium with

common values where the bank types over a certain interval bid vJ :

pS(xS) = vJ , xS ∈ [xS , xS ].

To begin, we observe that there does not exist an equilibrium in continuous strategies

that involves bunching. If the bank’s dropout strategy pS(xS) were continuous and involved

bunching, then the brokers’ dropout strategy pB(xB) would involve a gap below vJ . Otherwise,

the brokers who would contemplate bidding slightly below vJ , would prefer to wait and drop

out at a price slightly above vJ , to take advantage of a dramatically higher quality of the

house they would be able to get from banks in the bunching region. Such a gap in broker

bids, however, creates an incentive for the bank types that bid somewhat below vJ to deviate

to the bid vJ , since this deviation leads to a higher expected price, but does not change the

probability of sale.

In order to prevent such deviations, an equilibrium with bunching must involve a gap below

vJ , with xS , the seller at the lower bound of support of the bunching region, being indifferent

between bidding vJ and bidding p
S
< vJ . Sellers with valuations slightly below xS will strictly

prefer bidding slightly below p
S
to bidding vJ . The bank’s strategy in our (semi-)separating

foreclosure equilibrium coincides with p∗S(xS) derived previously for vJ = ∞ when xS < xS ,

involves a jump at xS to vJ , bunching at vJ , and truthful bidding for xS > vJ .
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(a) Bank’s bid (b) Broker’s bid

Figure 3: Equilibrium under asymmetric information. The left panel shows the bank’s bidding
strategy pS(xS). The right panel shows a broker’s bidding strategy pB(xB) when the bank has
not dropped out.

The broker’s dropout strategy will be a best response to the bank’s strategy. It will coincide

with p∗B(xB) derived for the vJ = ∞ case for xB < x∗B, where x∗B is implicitly defined by

p∗B(x
∗
B) = p

S
. Then, the types xB ∈ (x∗B, xB) will drop out as soon as the price has surpassed

p
S
. These brokers realize that they cannot beat the bank profitably at any higher price. The

types xB ≥ xB will continue, and bid up to their values. We must have xB > vJ , since otherwise

the broker bidding slightly above vJ would prefer a deviation to a bid slightly above p in order

to avoid a loss due to a lower average quality over the bunch.

So the bank’s dropout strategy pS(xS) and the broker’s dropout strategy when the bank

has not dropped out, pB(xB), are given respectively by

pS(xS) =


p∗S(xS), xS ∈ [0, xS ],

vJ , xS ∈ [xS , vJ ],

xS , xS > vJ ,

pB(xB) =


p∗B(xB), xB ∈ [xB, x

∗
B),

p
S
, xB ∈ [x∗B, xB],

xB, xB > xB.

(10)

See Figure 3, showing the bank’s and a broker’s bidding strategies.

As before, if the bank drops out and at least two brokers remain in the auction, the auction

becomes essentially an independent private values auction. The only difference to the previous

sections is that if the bank drops out at vJ , the brokers do not know the exact value of xS , but
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only that it is in the interval [xS , vJ ]. The remaining brokers’ drop-out prices are hence

p̃B(x
i
B) =


uB(x

i
B, X

∗
S(p̃)), p̃ ∈ [p∗S(0), p

∗
S(xS),∫ vJ

xS
uB(x

i
B, xS)

dFS(xS)
FS(vJ )−FS(xS)

, p̃ = vJ ,

uB(x
i
B, p̃), p̃ > vJ ,

where p̃ is the bank’s drop-out price.

We now introduce the two key conditions that will uniquely pin down the cutoff types xS

and xB and therefore an equilibrium. First, the xB-type broker must be indifferent between

dropping out at a price slightly above p or staying in up to xB. By deviating to a higher bid

xB, the broker would gain the property value uB(xB, xS) at a price equal to vJ if xS ∈ [xS , vJ ],

and xS if xS ∈ [vJ , xB]. So the broker’s indifference condition takes the form

0 =

∫ xB

xS

(
uB(xB, xS)−max{vJ , xS}

) dFS(xS)

FS(xB)− FS(xS)
, (11)

where fS(xS)/(FS(xB)−FS(xS)) is the density of the bank’s types conditional on xS ∈ [xS , xB].

The second condition specifies that the xS-type bank is either indifferent between bidding

p
S
= pS(xS) or p = vJ (if xS > 0), or weakly prefers the bid at vJ to p

S
(if xS = 0):

ΠS(xS , pS) = ΠS(xS , vJ), (xS > 0) (12)

ΠS(0, pS) ≤ ΠS(0, vJ), (xS = 0) (13)

where ΠS(xS , p) is the bank’s expected equilibrium profit if its type is xS and it bids p.24

Our first result is a technical lemma below that shows existence of cutoffs xS , xB that solve

the indifference conditions (11) and (12). Note that it could happen that xS = 0, in which case

the bunch extends all the way to the left.

Lemma 1 (Existence and uniqueness of the cutoffs). There exists a unique solution (xS , xB)

to the broker’s and bank’s indifference conditions (11), (12), and (13).

Given the existence of the cutoffs, we now establish existence (and uniqueness) of a semi-

pooling equilibrium under asymmetric information of the kind described above.

Proposition 5 (Equilibrium existence). There exists a unique equilibrium in the class of strate-

gies given by (10).

24See the Appendix for the explicit formula for ΠS(xS , p).
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6 Testable Hypotheses

Our theory predicts bunching of banks’ bids at vJ for both symmetric and asymmetric infor-

mation. Denoting the distribution of bank’s bids as GS(·), we therefore have the following

testable hypothesis.

Hypothesis 1 (Bunching at vJ). Under both symmetric and asymmetric information, the

distribution GS(p) has an atom at p = vJ , formally,

lim
p↑vJ

GS(p) < GS(vJ).

In a hypothetical world, the econometricians could perfectly observe all forms of heterogene-

ity. It would then be straightforward to test for asymmetric information: our theory predicts

a gap in banks’ bid distributions just below vJ for asymmetric information auctions, but not

for symmetric information auctions. Hence, the presence of a gap could serve as a test for

asymmetric information.

However, one should not expect a gap if there is unobserved heterogeneity with respect to

informational asymmetry, as one certainly would expect in reality. To what extent informational

asymmetries play a role typically depends on characteristics of the property. For example,

empirical studies show that there is little uncertainty about the quality of condominiums and

hence symmetric information is likely to be a good approximation. For single family houses

(especially in poor neighborhoods), on the other hand, there is more uncertainty about quality

and asymmetric information is likely to play more of a role.25 Another reason for differences in

asymmetric information can be that for some properties, the owner cooperates with the lender

by allowing access to the property, thereby making the information essentially symmetric.

If the sales of some of the houses are characterized by asymmetric information (ASI),

whereas for others the auction is essentially under symmetric information (SI), then the SI

auction will fill out the gap. Here, by SI we mean the houses where the bank’s information is

also available to the broker; in our model, this implies that xS is observable to the broker.

25For example, Allen et al. (1995) find that for condominiums observable characteristics explain a large part of
the rent (adjusted R2 = 0.911 in a regression with the rent as the dependent and different property characteristics,
such as the number of square feet and bathrooms, and central air conditioning, as independent variables). For
single family houses observable characteristics explain a much smaller fraction of the rent (adjusted R2 = 0.685).
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But heterogeneity with respect to informational asymmetry does have empirically testable

implications. The testable implication can be derived from Corollary 1 (signaling premium),

by observing that for ASI houses the probability of sale is lower than for SI houses for a given

bid by the bank. The empirically testable implication stems from a selection due to the gap

for ASI auctions as described below.

For SI houses, the bank and the brokers are symmetrically informed. In our framework,

this means that the bank’s information xS is observable to the broker and that there is no gap

below vJ . For ASI houses, xS is not observable to the broker and there is a gap in banks’ bids in

the interval (p
S
, vJ) for pS = pS(xS). For bank’s bids below the gap for ASI houses (pS < p

S
),

we will observe a mixture of SI and of ASI houses. The probability of sale for such prices is

the average of the high SI and the low ASI probability of sale. In the gap (pS ∈ (p, vJ)), we

only observe high probability of sale SI houses. This selection effect leads to an increase of the

probability of sale at p
S
. For pS = vJ and above, we again observe both SI and ASI houses,

hence a downward jump in the probability of sale at pS = vJ . This is illustrated in Figure 4.

In reality, one would expect that there are more than two types of properties, that there are

different degrees of informational asymmetry and hence different lower bounds p
S
for the gaps

(p
S
, vJ). This will smooth out the discontinuity at p

S
in Figure 4, but we should still expect

that the probability of sale to increase in the bank’s maximum bid in an interval below vJ , and

jump downwards at vJ . Note that the upper bound of the gap vJ is the same irrespective of

the degree of asymmetric information, hence the discontinuity at vJ will not be smoothed out.

We thus arrive at the following testable hypothesis concerning the probability of sale to the

broker, denoted as ρ(pS). We assume that the prices are normalized by vJ , so that all houses

have the same effective vJ .

Hypothesis 2 (Probability of sale). If all auctions in the data are under symmetric informa-

tion, the probability of sale ρ(pS) is a continuous, decreasing function of pS. If, on the other

hand, the data exhibit a mixture of auctions with a varying degree of informational asymmetry,

including SI auctions with a positive probability, then we should expect the probability of sale to

the broker ρ(pS) to exhibit the following pattern. Initially, ρ(pS) decreases in pS. Then, over

a certain interval pS ∈ [p̃, vJ), where p̃ < vJ , ρ(pS) increases in pS. At pS = vJ , ρ(pS) drops

discontinuously to a lower value, ρ(vJ) < limpS↑vJ ρ(pS), and from that point on, decreases in
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Figure 4: Probability of sale to the broker as a function of the bank’s maximum bid for
symmetric information houses (dotted, blue), asymmetric information houses (red, dashed),
and a mixture of both types of houses (black, solid).
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Figure 5: Monte Carlo simulation for the probability of sale to the broker with linear payoffs
and lognormal distributions of signals.
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a continuous fashion.

We further illustrate the predicted pattern in Hypothesis 2 through a Monte Carlo simula-

tion. In this example, we assume that there is one broker in each auction. Her payoff is linear in

the signals, uB(xB, xS) = (1− β)xB + βxS . The signals are lognormally distributed. β, which

is the weight on the bank’s information xS , represents the degree of asymmetric information.

It is assumed to be uniformly distributed on [0, 1/2], with β = 0 corresponding to symmetric

information.

To detect the discontinuity at vJ , we split the sample at vJ in two subsets. The first subset

contains the observations with the bank’s bid below vJ , while in the second one contains all

observations with the bank’s bid above vJ . Then we apply a local linear regression estimator

to each subset by following Fan and Gijbels (1996). The well-known advantage of this method

is that it provides automatic correction of the boundary bias.26 It allows us to consistently

estimate the regression curve ρ(p) not only for p < vJ and p > vJ , but also their limits at the

boundary, i.e., limp↑vJ ρ(p) and limp↓vJ ρ(p).

We choose the Epanechnikov kernel function, and follow the rule-of-thumb bandwidth se-

lection by Fan and Gijbels (1996), which offers the asymptotically optimal constant bandwidth

by minimizing the conditional weighted mean integrated squared error.27 The estimated prob-

ability of sale functions are plotted in Figure 5. We took overall 50,000 random draws. The

shaded region is the 95% confidence interval. The figure shows both a discontinuity at vJ and

an upward sloping probability of sale function in the left neighborhood of vJ .

7 Data

Palm Beach County (FL) switched to an electronic system for foreclosure auctions follow-

ing Administrative Policy 10-01, effective January 6, 2010.28 The foreclosure auction website

https://mypalmbeachclerk.clerkauction.com/ allows plaintiffs (typically banks) and third-

party bidders (typically brokers) to bid for property being foreclosed. The ClerkAuction online

platform conducts foreclosure sales on all business days, which provides a large amount of data.

26See, e.g., the discussion in Fan and Gijbels (1996), pp. 69-70.
27See section 4.2 on pp. 110-113 in Fan and Gijbels (1996) for details.
28Administrative Policy 10-01 was later superceded by Administrative Policy 11-01, effective June 17, 2011.
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Furthermore, the auction data are electronically available.

We collected data from the website for foreclosure sales between January 21, 2010 and

November 27, 2013. Our data record all transaction details on these sales, including winning

bid, winner identities, and judgment amounts. Our data set contains 12,788 auctions with

a total judgment amount of $4.2bn.29 Table 1 reports the summary statistics for the main

variables. The variable bank winning indicates that 81% of auctions under study ended up

having properties transferred to bank’s ownership.

Banks are required to submit a bid for the foreclosed property. We have data on the

maximum bid the bank entered in the bidding proxy. Closing times for auctions conducted on

the same day differ by 1-2 minutes, so that bidding is not simultaneous.30 Further, the data

suggest that bidding by the original owner plays a negligible role if any.31

Table 1: Summary statistics

Variable Mean Std. Dev. Min Max

bank winning 0.813 0.390 0 1
number of brokers 1.065 1.362 0 14

Variable Mean Std. Dev. 1st Percentile 99th Percentile

Variables with original scales
bank’s bid 210,996 1,294,181 4,200 1,476,989
judgment amount 329,951 1,953,172 4,985 2,380,127

Variables normalized by judgment amount
bank’s bid 0.766 1.363 0.096 1.167

We now turn to empirical tests of our hypotheses. Bunching at the judgment amount

(Hypothesis 1) can be easily checked by plotting the cumulative distribution function of banks’

bids. Figure 6 shows the distribution of banks’ maximum bids. Bunching shows up very clearly:

there are roughly 4,000 observations bunched at the judgment amount.

2925,725 auctions in this period were canceled. For 30,976 auctions, information on the bank’s maximum bid
is not available.

30If the leading bid in the auction increases in the last minute, then the closing time of the auction and all
subsequent auctions is extended by a minute.

31We have run a comparison between the names of the defendant and the winning bidder in the auction. Out
of 12,788 auctions, the defendant’s last name only shows up in the name of the winning bidder for four auctions.
For three out of these four auctions, the first names do not match (which could mean either relatives of the
defendant bidding or coincidentally matching last names).
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Figure 6: Distribution of the bank’s maximum bids (normalized by the judgment amounts).
Number of observations: 12,788.

Next, we turn to the non-monotonicity and the discontinuity in the probability of sale

as a function of the bank’s maximum bid. This is plotted in Figure 7. Figure 7 shows the

same kernel regression as the one shown for the Monte Carlo simulation in Figure 5. It is a

local linear kernel regression, the sample being split into observations below (pS < vJ) and

weakly above (pS ≥ vJ) the judgment amount. The most striking feature of the graph is that

the probability of sale increases with the bank’s bid just before the judgment amount and

drops down discontinuously at vJ . This is exactly what theory predicts in case that there is

heterogeneity in terms of asymmetric information (see Figures 4, 5, and Hypothesis 2).

The data suggest that there is indeed asymmetric information involved in foreclosure auc-

tions: banks seem to have indeed an informational advantage. This appears plausible: banks

collect information about the value of the collateral before granting mortgages.

Asymmetric information has been recognized to be highly relevant for the understanding

of how markets work, on policy implications, and on welfare analyses, at least since Akerlof’s

seminal contribution on the lemon’s market (Akerlof, 1970). In the following section, we will

describe one important application in which asymmetric information plays a crucial role.
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Figure 7: Probability of sale as a function of the bank’s maximum bid. Local linear kernel
regression with the data split at p/vJ = 1 (confidence interval: 95%, Epanechnikov kernel and
rule-of-thumb (ROT) bandwidth selection, see Fan and Gijbels (1996)).

8 Securitization

The securitization of mortgages massively increased before and moved to the forefront of at-

tention during the financial crisis. While only 30% of mortgages were securitized in 1995, this

fraction increased to 80% in 2006 (Dewatripont et al., 2010, p. 19). Angelides et al. (2011)

considered “collapsing mortgage-lending standards and the mortgage securitization pipeline [to

have] lit and spread the flame of contagion and crisis” (see p. xxiii). The academic literature

has confirmed this view and found that mortgage securitization led to moral hazard and to

banks excessively granting mortgages, which later caused a collapse of the mortgage backed

securities market (Mian and Sufi, 2009; Dewatripont et al., 2010; Keys et al., 2010). See Gor-

ton and Metrick (forthcoming) for an overview of the theory and of the empirical evidence for

moral hazard.

Securitization can take many forms. We provide a description of the typical procedure here

that captures the basic aspects of securitization.

The relevant actors in the securitization process are the originator, the issuer, the special

purpose vehicle, the mortgage trust, and the servicer.32 Securitization typically involves the

32Additional actors are the underwriter, the rating agency, and the trustee. However, they are not relevant
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following steps. First, the originating bank grants a mortgage to the home owner. Second, the

issuer pools mortgages and sells the pool to a special purpose vehicle. Third, the special purpose

vehicle transfers the assets to a trust that is specially created for a particular securitization deal.

Fourth, the trust issues security shares backed by the assets in the pool, which are then bought

by investors. Interest payments by mortgagees are collected by the servicer and transferred to

the investors through the trust. Fifth, if a mortgagee defaults, the servicer sues for foreclosure

on behalf of the trust.33 Proceedings from the foreclosure are collected by the servicer and

transferred to investors through the trust. For our purposes, the only actors that are relevant

are the originating bank and the servicer, which is typically the same bank: the originating

bank collects information about the value of the collateral when granting the mortgage and

uses this information when acting as a servicer in the foreclosure auction. For more details

on the securitization process and the different variations of securitization, see Cetorelli and

Peristiani (2012); Gorton and Metrick (forthcoming).

To avoid adverse selection, several measures are usually taken. First, only mortgages can be

securitized for which the credit score (the FICO score) of the borrower is above a threshold.34

Second, the originating bank has to offer all properties with similar observable characteris-

tics eligible for securitization and the special purpose vehicles randomly pick mortgages to be

securitized (Keys et al., 2010).

However, these measures do not prevent moral hazard, since the credit score is not a perfect

signal about the expected loss of a mortgage – which is what the originating bank or the

investors buying the mortgage backed securities ultimately care about. One reason is that the

expected loss is the product of the probability of default and the loss given default. The credit

score is only a proxy for the probability of default, but not the loss given default. Before the

crisis, banks were known to grant mortgages with a high loan-to-value ratio – the mortgage

sometimes even exceeding the value of the house. Since this means that only a small fraction

of the mortgage can be recovered in case of a foreclosure, this led to high losses given default.

for our analysis and hence left out.
33Court documents show the trustee of the mortgage trust as the plaintiff in the foreclosure auction. However,

the servicer acts as plaintiff on behalf of the trust.
34This is a somewhat simplified account, since securitization agencies chose two cutoffs for FICO scores:

above a FICO score of 620, banks can securitize low documentation mortgages, below a score of 600, it is very
difficult to securitize mortgages. Between 600 and 620, banks can securitize mortgages, but have to provide full
documentation.
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Another reason is that the credit score is not a perfect signal about the probability of default of a

borrower. Banks typically need to collect additional (soft) information to assess the probability

of default.

The securitization of mortgages reduces a bank’s incentive to collect more information on

additional components of the expected loss (i.e. the loss given default and soft information

about the probability of default), which in turn leads to moral hazard. Keys et al. (2010)

have shown that moral hazard led to banks collecting insufficient soft information about the

probability of default.

While the literature so far has mainly focused on the probability of default, it is reasonable

to suspect that moral hazard also led to banks collecting insufficient information about the

other component of the expected loss, the loss given default. This is, first, because a high

loan-to-value ratio is known to be positively correlated both with the probability of default

and the loss given default (see Qi and Yang, 2009, and the references therein).35 Second, a

more careful investigation of a potential borrower should also directly reveal information about

the value of the property.

Our theory and our data allow us to look more carefully at the question of moral hazard

with respect to the loss given default: if a bank collected information about the value of the

collateral (and hence the loss given default) when it granted the mortgage, it is likely to have

an informational advantage over third-party bidders during the foreclosure auction.

In particular, we can use information on whether a foreclosed mortgage was securitized or

not. If securitization leads to moral hazard, we should expect the bank to have no (or only a

minor) informational advantage over third-party bidders for the case of securitized mortgages.

This means an independent private value auction (or only a small common value component).

For non-securitized mortgages we should expect the bank to have an informational advantage.

This means an auction with a common value component on the bank’s side. This leads us to

the empirically testable implication that is an adaptation of Hypothesis 2:

Hypothesis 3 (Probability of sale for securitized and non-securitized mortgages). For se-

35In which direction the causality goes is not important for our analysis. It could (and mostly likely does)
go both ways: a high loan-to-value ratio makes strategic default more likely. At the same time, borrowers with
financial difficulties are less likely to invest in the maintenance of the property, which decreases its value and
increases the loss given default.
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curitized mortgages, the probability of sale ρ(pS) is a continuous, decreasing function of pS.

For non-securitized mortgages, we should expect the probability of sale to the broker ρ(pS) to

exhibit the following pattern. Initially, ρ(pS) decreases in pS. Then, over a certain interval

pS ∈ [p̃, vJ), where p̃ < vJ , ρ(pS) increases in pS. At pS = vJ , ρ(pS) drops discontinuously to a

lower value, ρ(vJ) < limpS↑vJ ρ(pS), and from that point on, decreases in a continuous fashion.

The hypothesis that the bank’s information concerning the common value component is

less precise for the securitized mortgages can also be tested using banks’ estimated bidding

strategies. We do so assuming the linear model

uB(xB, xS) = xB + αxS .

Proposition 4 shows that the bank’s strategy pS(xS ;α) is increasing in α. If banks holding

securitized mortgages are less informed than banks holding non-securitized mortgages, then α

is expected to be smaller for the former. This leads to the following testable hypothesis.

Hypothesis 4. For bids below the judgment amount vJ , a bank holding a non-securitized

mortgage chooses a higher bid pnonsec than a bank holding a securitized mortgage psec given the

same opportunity cost xS. Formally,

pnonsecS (xS) > psecS (xS), xS > 0.

In the following, we test these hypotheses with our data.

8.1 Data

Since we have the name of the plaintiff in each foreclosure auction, we can categorize mortgages

as securitized vs non-securitized. We use a simple classification rule. We classify a mortgage as

securitized if the name of the plaintiff contains at least one of the following keywords: “trust”,

“asset backed”, “asset-backed”, “certificate”, “security”, “securities”, “holder”.36 This simple

36Two examples of plaintiff’s names that are classified as securitized are “US BANK NATIONAL ASSOCI-
ATION AS TRUSTEE ON BEHALF OF THE HOLDERS OF THE ASSET BACKED SECURITIES COR-
PORATION HOME EQUITY LOAN TRUST SERIES AEG 2006-HE1 ASSET BACKED PASS-THROUGH
CERTIFICATES SERIES AEG 2006-HE1 HSBC MORTGAGE SERVCIES INC” and “DEUTSCHE BANK
NATIONAL TRUST COMPANY AS TRUSTEE FOR ARGENT SECURITIES INC ASSET-BACKED PASS-
THROUGH CERTIFICATES SERIES 2006-W2”. It should be noted that on legal documents the name of the
trustee of the mortgage backed securities fund shows up. However, trustees typically do not bid themselves, but
are rather represented by the servicer of the mortgage (typically the originating bank) in the foreclosure process.
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Figure 8: Distribution of the bank’s maximum bid as a fraction of the judgment amount pS/vJ
for securitized (dashed line) and non-securitized (solid line) mortgages.

categorization does give false negatives (for some securitized mortgages none of the keywords

shows up in the name of the plaintiff), but almost no false positives.

We have classified 3,249 mortgages as securitized and the remaining 9,539 as non-securitized.37

Figure 8 plots the distributions of banks’ bids for securitized and non-securitized mortgages.

The average difference of the bank’s bid as a fraction of the judgment amount is much lower

for securitized than for non-securitized mortgages, roughly 40 percentage points. This could

be explained by two effects. First, a selection effect: houses used as collateral for securitized

mortgages may be of lower quality than houses used as collateral for non-securitized mort-

gages. Second, the signaling premium leads to banks bidding higher for non-securitized than

for securitized mortgages, since for non-securitized mortgages the bank may have more of an

informational advantage than for securitized mortgages.

One cannot directly disentangle these two effects, hence it cannot be seen immediately

whether there is more asymmetric information for non-securitized than for securitized mort-

gages. However, we can use our theory as a tool to uncover evidence of asymmetric information.

37We only considered private label securitization, since only 218 of the mortgages in our sample were securitized
by Government Sponsored Enterprises. We identified mortgages as securitized by a Government Sponsored
Enterprise as those for which the name of the plaintiff contains one of the following: “Federal National Mortgage
Assoc[iation]”, “Fannie Mae”, “Federal Home Loan Mortgage Corp[oration]”, or “Freddie Mac”.
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We will take two approaches for this purpose. The first relies on our theoretical results on the

discontinuity of the probability of sale at the judgment amount. For the second approach, we

use additional data that we hand-collected for a subsample of the data set to correct for the

selection effect.

8.2 Discontinuity

Our theoretical results on the judgment amount and the effect of the common value component

help us gain more insight on asymmetric information. Recall that in the presence of asymmetric

information, we should expect an increase and then a discontinuity in the probability of sale

as a function of the bank’s bid (Hypothesis 3).

Figures 9 and 10 show the probability of sale as a function of the bank’s bid for securitized

and non-securitized mortgages. For securitized mortgages, there is no increase in the probability

of sale below the judgment amount. Further, the discontinuity at vJ is much less pronounced

and indeed not statistically significant. For non-securitized mortgages, we still see the same

pattern as in Figure 7. This is consistent with the theory that asymmetric information plays

less of a role for securitized mortgages, since the servicer of a securitized mortgage pool is less

likely to have an informational advantage over brokers than a bank bank servicing its own

mortgage.

8.3 Bidding Strategy

Figures 9 and 10 provide indirect evidence for asymmetric information for non-securitized

mortgages, while there is no such evidence for the securitized mortgages. In this section, we

develop and implement a direct test of banks bidding more for houses used as collateral for

non-securitized rather than securitized mortgages, formally pnonsecS (xS) > psecS (xS) (Hypothesis

4).

While the theoretical predictions are clear, the empirical strategy is more involved. It is

not sufficient to observe that banks’ bids are higher for non-securitized than for securitized

mortgages as depicted in Figure 8. The reason for a different distribution of bids may be either

the signaling premium (higher pS(xS) for a given xS), a selection effect (different distributions

of xS for securitized and non-securitized mortgages), or a combination of both. We have to
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Figure 9: Probability of sale as a function of the bank’s maximum bid for securitized mort-
gages. Local linear kernel regression with the data split at p/vJ = 1 (confidence interval:
95%, Epanechnikov kernel and rule-of-thumb (ROT) bandwidth selection, see Fan and Gijbels
(1996)).
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Figure 10: Probability of sale as a function of the bank’s maximum bid for non-securitized
mortgages. Local linear kernel regression with the data split at p/vJ = 1 (confidence interval:
95%, Epanechnikov kernel and rule-of-thumb (ROT) bandwidth selection, see Fan and Gijbels
(1996))
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control for xS in order to identify the signaling premium.

In order to be able to control for xS , we have hand-collected additional information for a

subsample of our data set, namely for properties foreclosed in September 2011. In particular,

we collected the information on property transactions after foreclosure sales from a different

data source, a website powered by the Palm Beach County Property Appraiser (a government

agent). The information regarding the property transactions are for ad valorem tax assessment

purposes, as stated in the disclaimer of the website. This implies the appraiser exercises auditing

procedures strictly to ensure the validity of any transaction received and posted by that office.

For each foreclosure case, we first traced back the original legal documents, from which

we found the property address. We then used the address to search in the database for the

detailed features regarding the property and its transaction history. The property appraiser

database provides information regarding the type of property (single family, townhouse, zero

lot line, etc.), its appraisal values for the most recent three years, the next sale date, the next

sale price,and information on the next owner. Using this information, we were able to recover

some of the next sale prices of the properties at foreclosure.

A comparison of the data on foreclosed properties and the data from the Property Ap-

praiser’s database revealed that a perfect matching of observations in the two data sets is not

possible, since the address listed in the legal documents is not always of the same format (or

containing the same details) as the information recorded in the appraisal database. In order

to err on the side of caution, we only used observations for which we can be certain about the

matching.

We identified 332 properties among 644 foreclosed cases in the month.38 The next sale of

the foreclosed properties happened mostly in the year of 2012, though a few of the properties

were not resold until early 2013. This leaves us with 250 observations for which the resale price

is available. Since our aim is to get an estimate of the bank’s valuation distribution, we only

used the data from the foreclosure auctions in which the bank won. This restricts our sample

to 199 observations, with 77 of them in the category of securitized mortgages and 122 cases of

non-securitized mortgages.

38There were 983 properties listed for foreclosure for September 2011, but 339 of them were canceled prior to
the auction dates.
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Table 2 provides descriptive statistics of the data collected. The table suggests that part

of the difference in sales prices between securitized and non-securitized mortgages is explained

by a selection effect: the bank’s resale price in case it wins the auction is higher for non-

securitized than for securitized mortgages. In the following, we will disentangle the selection

and the signaling premium effects.

Table 2: Descriptive statistics for securitized and non-securitized mortgages.

Resale Price/Judgment Amount Mean #
All auctions 0.391 199
Securitized 0.349 77
Non-securitized: 0.417 122

The bank’s bidding behavior is determined by its opportunity cost of selling xS , which is

the expected resale price.39 We identify the distribution of the unobservable xS by specifying

the following correlation structure between xS , the observable resale price r and the (also

observable) tax assessment value a:

r̃ = x̃S + ϵr, ã = x̃S + ϵa

where x̃S := lnxS − E[lnxS ] is the de-meaned log-opportunity cost of the bank, and r̃, ã are

the de-meaned log-resale price and tax assessment, respectively. In this specification, the noise

terms ϵr and ϵS have zero mean, are mutually independent, and are also independent of x̃S .

Following Li and Vuong (1998) and Krasnokutskaya (2011), the underlying distribution of xS is

non-parametrically identifiable under this assumption. One could use standard non-parametric

deconvolution techniques based on Fourier transforms to obtain the distribution of xS .

However, because of sample size issues, we take a semi-parametric approach and para-

metrically deconvolute the noise in the following way. We can identify the variance of x̃S by

considering the variance of different linear combinations of r and a. A simple example for this

is the following set of variances and the corresponding equations:

Var [wr̃ + (1− w)ã] = w2σ2
r + (1− w)2σ2

a + 2w(1− w)σ2
S , w ∈ {0, 1

2
, 1},

39To be more precise, the bank’s opportunity cost is the difference between the expected price and the admis-
trative costs of conducting a sale. However, for our purposes, this distinction is irrelevant.
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where σ2
S , σ

2
r , and σ2

a are the variances of x̃S , ϵr, and ϵa, respectively. The above is a system

of three linear equations with three unknowns σ2
i , i ∈ {S, r, a}, and has a unique solution.

The empirical variances of r̃, ã, and r̃/2 + ã/2 will thus lead to a consistent estimate of

σS . Further, we use the empirical mean of r as an estimate for the mean of xS , which is also

consistent. We further make the parametric assumption that xS , r, and a are log-normally

distributed. Estimates of the distributions of xS are reported in Table 3. The difference in

means reveals that there is indeed a selection effect: securitized mortgages have a lower resale

price to judgment amount ratio xS/vJ than non-securitized mortgages. In the following, we

will show that this selection effect cannot explain all the difference between securitized and

non-securitized mortgages.

Table 3: Distribution of xS/vJ for securitized and non-securitized mortgages. The estimate is
based on a log-normal distribution xS/vJ ∼ lnN(µS , σS).

µS σS mean std

securitized -1.17236 0.429416 0.33954 0.152791
non-securitized -1.01577 0.588605 0.430615 0.277086

Next, observe that the distribution of banks’ bids satisfies GS(pS(xS)) = FS(xS) for

pS(xS) < vJ if there is homogeneity with respect to asymmetric information.40 Since we

only observe the distribution of the bank’s resale prices if the bank wins the auction, it is

useful to define F̃S(xS) and G̃S(pS) the distributions of xS and pS conditional on winning the

auction. Because F̃S(xS) = G̃S(pS(xS)), we can write pS(xS) = G̃−1
S (F̃S(xS)). Given that we

have estimates of G̃S and F̃S both for securitized and for non-securitized mortgages, we can

estimate pS for both types of mortgages.

Note that comparing the bidding functions pS(xS) for bids below vJ is difficult, since the

bidding function below vJ has a different support for securitized and non-securitized mortgages,

[0, xsecS (vJ)] and [0, xnon-secS (vJ)], respectively. It is more practical to compare the inverse bidding

function xS(pS) for securitized and non-securitized mortgages, as the support is [0, vJ ] in both

cases. The inverse bidding functions are shown in Figure 11a. Computing the 90% confidence

interval of the difference of the inverse bidding functions for securitized and non-securitized

40We state results under the assumption of homogeneity of asymmetric information for the sake of expositional
clarity. These results trivially extend to mixtures of symmetric and asymmetric auctions.
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Figure 11: Inverse bidding function xS(pS) relating the bank’s opportunity cost of selling xS
and the bank’s bid pS for securitized (dashed line) and non-securitized (solid line) mortgages
(left panel). Difference between banks’ inverse bidding functions (i.e. the bank’s opportunity
cost of selling xS as a function of its bid pS) for securitized and non-securitized mortgages
(solid line) and the 90% confidence interval of the estimates (dashed lines) (right panel). The
estimates are constructed by matching quantiles, the confidence intervals are computed using
a bootstrap estimate.

mortgages reveals that the difference is significant for high values of pS , see Figure 11b. The

estimates were computed using matching quantiles, the confidence interval was computed using

bootstrap estimation.

8.4 Implications

The above analysis provides evidence for the existence of asymmetric information in mortgage

markets. The analysis uncovers a difference between securitized and non-securitized mortgages

and is consistent with the hypothesis that banks holding securitized mortgages are indeed

less informed about the quality of the foreclosed property than banks holding non-securitized

mortgages.

This is consistent with the hypothesis of moral hazard in the securitization process: if a

mortgage is expected to be securitized, then the originating bank has less incentives to collect

information about the quality of the mortgage and hence will be less informed. While the

literature so far has focused on moral hazard with respect to acquiring information about the

probability of default, our analysis has uncovered another dimension of moral hazard: the bank
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exerts insufficient effort to collect information about the collateral value, which directly affects

the loss given default. Our results suggest that the effect of securitization on the loss given

default is equally important for the expected loss as the effect on the probability of default. The

bank’s resale price as a fraction of the judgment amount is 21% lower for securitized than for

non-securitized mortgages (0.340 vs 0.431).41 This is comparable to the 10% to 20% increase of

the probability of default for securitized versus non-securitized mortgages (5.5% to 6% versus

5%) estimated by Keys et al. (2010).

The alternative explanation of adverse selection rather than moral hazard is implausible

because of the institutional details of the securitization described at the beginning of this

section.42 In particular, the random selection rules according to which mortgages are typically

chosen to be transferred to the special purpose vehicles prevent originating banks from cherry

picking the mortgages they want to securitize. See Keys et al. (2010) for more details.

Another alternative explanation is that originating banks do collect information about the

loss given default, but this information is lost at a later stage. However, this is also implausible,

because the originating bank typically serves as the servicer of the mortgage and hence deals

with the foreclosure process (see e.g. Cetorelli and Peristiani, 2012). Since the originating bank

is required to hold tranches of the securitized mortgage pool, they have an incentive to make

use of their information about quality of the collateral.

Another possible concern is a selection effect. Our first approach relies on patterns showing

up in the data (the non-monotonicity and discontinuity of the probability of default) and

does not rely on the assumption that there is no selection effect. Our second approach – the

estimation of the bidding function – explicitly corrects for a selection effect in the quality

of securitized and non-securitized mortgages. However, there is a selection effect we cannot

control for with our foreclosure data: we only observe mortgages that defaulted. An alternative

hypothesis to moral hazard is that securitized mortgages were less likely to default and hence

it was less important to collect information about the value of the collateral. However, the

41We provide results for the resale prices rather than losses given default, since there is more reliable data
on this. A rough estimate of the difference in terms of the loss given default can be obtained by assuming
that the loss given default is vJ − xS . This would mean a 16% higher loss given default for securitized than
for non-securitized mortgages (1-0.340 versus 1-0.431). The loss given default is typically higher than vJ − xS ,
because of administrative costs.

42The candidate for an alternative explanation would be adverse selection with a pooling equilibrium, which
leads to loss of information. For adverse selection and a separating equilibrium, no information is lost.
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existing literature actually finds the very opposite of this: securitized mortgages are more

likely to default.43 Hence more effort should be exerted when investigating the collateral of

securitized mortgages.

Yet another possible concern is that the bidding behavior of the servicing bank in the

foreclosure auction might be different depending on whether the mortgage is securitized or

not. The idea is that if the originating bank (which typically acts as the servicer) holds on to

fraction µ < 1, then its payoff is µΠS rather than ΠS , which might affect its bidding behavior.

However, this is not the case, since µΠS is a linear transformation of ΠS , represents hence the

same von Neumann-Morgenstern preferences, and leads to the same bidding behavior by the

bank.44

In the following, we will state the additional insight about policy questions that can be

gained from our analysis of foreclosure auctions. The usual caveats apply: we are using data

from Palm Beach County (FL) from 2010 to 2013. While it appears reasonable that data from

other regions should reveal similar patterns, more research is needed. Our theoretical results

and empirical techniques should facilitate such future research. Data from other periods of

time is likely to reveal other patterns, since we are picking up foreclosures in the aftermath

of the financial crisis in our data set. Such data should provide additional insight about the

evolution of asymmetric information over time.

Another caveat is that policy should be guided by the bigger picture rather than individual

pieces of the picture, such as foreclosure auctions. Therefore, we will mostly discuss policy

recommendations made in the previous literature based on the bigger picture and state how

our insights contribute to these.

43Keys et al. (2010) show that mortgages for which the borrower had a credit score just sufficient for the
mortgage to be securitized were more likely to default than borrowers whose credit score was just below the
securiitzation threshold. Also see Elul (2011) for evidence that securitized mortgages were more likely to default
on average than non-securitized mortgages.

44The originating bank often does not hold the same fraction of the junior, the senior, and the mezzanine
tranches of the mortgage pool. This means that the payoff of the originating bank is a piecewise linear function
of the proceedings from the foreclosure auctions and interest rate payments from the mortgage pool. The kinks
in this piecewise linear function would lead to distortions in the bank’s bidding behavior. However, one should
expect the effect of the kinks to be negligible in practice, since a mortgage pool typically contains mortgages
worth several billion dollars, whereas the value of an individual mortgage is much smaller (roughly $300,000 in
our data). It is very unlikely that a single foreclosure auction would move a bank to the other side of a kink.
To put it differently: a non-linear (here piecewise linear) von Neumann-Morgenstern utility function of the bank
does mean non-risk-neutrality, but given that the money at stake is very small in relative terms for the bank,
risk neutrality is a good approximation.
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Our results provide further support for the concern about moral hazard in the securitization

process. Our findings hence speak in favor of policies seeking to reduce moral hazard, such

as requiring better documentation for securitized mortgages, reducing tax benefits for securi-

tization, or holding the originating bank liable in case a mortgagee defaults (as is the case for

European covered bonds), see e.g. Keys et al. (2010), Dewatripont et al. (2010), Tirole (2011),

Campbell (2013).

Further, our results emphasize a new aspect of moral hazard in the securitization process:

the value of the collateral, which directly affects the loss given default. This suggests that docu-

mentation not just of the characteristics of the borrower, but also of the property is important.

At the same time, our findings also highlight some of the difficulties in new regulations: new

regulatory requirements set criteria for the documented loan-to-value ratio of mortgages, e.g.

the new Solvency II Directive of the European Union requires mortgages in the securitization

pool to meet certain requirements on the loan-to-value ratio.45 However, our results suggest

that there is asymmetric information about the value of properties and hence also about the

loan-to-value ratio, which reduces the effectivity of such regulation.

9 Conclusions

We develop a novel theory of foreclosure auctions and test some of its predictions with data

from Palm Beach county (Florida, US). We find evidence for strategic bidding and asymmetric

information, with the bank being the informed party. First, the data reveal bunching in bids at

the judgment amount as the theory predicts both under symmetric and asymmetric information.

Second, there is a non-monotonicity and discontinuity in the probability of sale to the brokers,

as the theory predicts under asymmetric information.

Our theory and empirical techniques have practical relevance: the presence of asymmet-

ric information is crucial for mortgage securitization. We look separately at securitized and

non-securitized mortgages and find that for securitized mortgages, the bank has less of an

informational advantage, for two reasons. First, non-monotonicity and discontinuity are not

present for securitized mortgages. Second, banks bid lower for securitized mortgages.

This is consistent with the hypothesis that moral hazard is involved in the securitization

45See the Commission Delegated Regulation (EU) 2015/35, Article 177(1)(h).
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process: the banks may exert less effort collecting information about the value of the property

used as collateral for a mortgage. These findings complement the findings in Keys et al. (2010)

that banks collect less information about the probability of default for securitized than for

non-securitized mortgages.

Our results can also be used for other policy relevant questions. One such question is a

welfare comparison of judicial and non-judicial foreclosures. Roughly 40% of the states in the

U.S. (including Florida) only allow judicial foreclosures, i.e. the foreclosure auction has to be

run by a court with rules as the ones described in this article (see Nelson and Whitman (2004)).

The other states allow for both judicial and non-judicial foreclosures. Mortgage contracts with

a so-called “power of sale” clause allow the bank to choose a non-judicial foreclosure if the

borrower defaults, i.e. the bank can directly seize the property and sell it without going

through a court.

The power of sale clause allows the bank to market the property, and to verifiably dis-

close, through inspections, some of the information regarding its condition. This reduces the

signalling premium, but introduces another distortion. The bank, acting as a de facto owner

of the property, is no longer obligated to pay the owner back any auction proceedings above

the judgment amount. Thus the monopoly price distortion now extends to prices above the

judgment amount. So the overall welfare effect of the power of sale is ambiguous. We plan to

estimate this effect in future work.
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Online Appendix

A Omitted Proofs

Proof of Proposition 3. For the exposition, we assume n ≥ 2. The proof for n = 1 is parallel. It

turns out convenient to restate the problem a bit differently. Consider the bank of type xS that

contemplates a dropout price p, and assume that the brokers hold the belief x̂S concerning the

bank’s type following the bank’s dropout. For now, this belief is not necessarily the equilibrium

belief.
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We restrict attention to equilibria where the broker’s dropout strategy (if the bank has not

dropped out) is a continuous, strictly increasing function, with a differentiable inverse X∗
B(p).

Then the bank’s expected profit, as a function of own type xS , the perceived type x̂S , and the

price p is given by

Π̂(xS , x̂S , p) = p(F(2)(X
∗
B(p))− F(1)(X

∗
B(p)))

+

∫ ∞

X∗
B(p)

uB(x, x̂S)f(2)(x)dx+ xSF(1)(X
∗
B(p)). (14)

A direct calculation shows that

∂Π̂S

∂p
= (p− uB(X

∗
B(p), x̂S))f(2)(X

∗
B(p))X

∗′
B (p)

+ (xS − p)f(1)(X
∗
B(p))X

∗′
B (p)

+ F(2)(X
∗
B(p))− F(1)(X

∗
B(p)) (15)

and

∂Π̂S

∂x̂S
=

∫ ∞

X̂B(p)

∂uB(x, x̂S)

∂x̂S
f(2)(x)dx. (16)

The bank’s expected profit following a deviation from the equilibrium price to some other

price p̂ is equal to Π̂S(xS , XS(p̂), p̂). In equilibrium, such a deviation should not be profitable,so

that the following first-order condition (FOC) must hold for p ∈ (p,∞):

∂Π̂S(xS , XS(p), p)

∂p
= 0.

Substituting into this FOC the bank’s type that bids p, xS = X∗
S(p), we obtain the following

differential equation:

dX∗
S(p)

dp
= −

∂Π̂S(X
∗
S(p), X

∗
S(p), p)/∂p

∂ΠS(X∗
S(p), X

∗
S(p), p)/∂x̂S

(17)

We now turn to the broker’s equilibrium dropout strategy if the bank has not yet dropped

out. We claim that the broker’s strategy X∗
B(p) defined as the solution (which will be shown

unique later in the proof) to

uB(X
∗
B(p), X

∗
S(p)) = p, (18)
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is a best response. Consider first the scenario when it is known to the broker that the bank will

drop out at price p. Then it is optimal for the broker to drop out at the price uB(xB, X
∗
S(p)),

and the brokers with xB < X∗
B(p) will drop out at prices lower than p, while the brokers with

xB > X∗
B(p) will drop out at higher prices. If X∗

B(p) defined by (18) is increasing, it follows

that it is optimal to drop out at price p′ for a broker of type X∗
B(p

′). Since this best response

does not depend on p, we see that X∗
B(p

′) is a best response also when the broker does not

know the bank’s dropout price p.

Totally differentiating (18) yields another differential equation linking X∗
S(p) and X∗

B(p):

∂uB
∂xB

dX∗
B(p)

dp
+

∂uB
∂xS

dX∗
S(p)

dp
= 1. (19)

Equations (17) and (19) form a linear system for
dX∗

S(p)
dp and

dX∗
B(p)
dp ; solving this system yields

(8) and (9) in Proposition 3:

dX∗
S(p)

dp
=

(JB(X
∗
B, X

∗
S)−X∗

S)]f(1)(X
∗
B)

∂uB
∂xS

(uB(X∗
B, X

∗
S)−X∗

S)f(1)(X
∗
B) +

∂uB
∂xB

∫∞
X∗

B

∂uB
∂xS

f(2)(x)dx
, (20)

dX∗
B(p)

dp
=

F(2)(X
∗
B)− F(1)(X

∗
B) +

∫∞
X∗

B

∂uB
∂xS

f(2)(x)dx

∂uB
∂xS

(uB(X∗
B, X

∗
S)−X∗

S)f(1)(X
∗
B) +

∂uB
∂xB

∫∞
X∗

B

∂uB
∂xS

f(2)(x)dx
, (21)

subject to the initial conditions X∗
S(p) = 0 and X∗

B(p) = x, where the cutoff x is uniquely

determined from uB(x, 0) = p. With a given value for x, the solution to the system (20) and

(21) is unique by standard results in the theory of differential equations.

We now show that the broker who is indifferent between staying in and dropping out at p

will not have an incentive to wait for a price higher than p. It will be sufficient to demonstrate

that the rate of increase in the expected utility from trading with higher quality seller types is

less than the rate of increase in the price, i.e. less than 1. By differentiating

uB(xB, X
∗
S(p))− p

with respect to p, we indeed get the slope less than 1,

∂uB
∂xS

dX∗
S(p)

dp
<

JB −X∗
S

uB −X∗
S

< 1,
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where the first inequality can be obtained by substituting in the left-hand-side of (20) and

observing that the integral in (20) is positive. The second inequality follows from the definition

of JB in (2).

Next, we claim that the only value of x compatible with equilibrium is the one given in

the proposition, namely with x = xB, uniquely determined from JB(xB, 0) = 0. This value

corresponds to the full information outcome.

Since X̂ ′
B(p) > 0, it follows that the expected profit function Π̂(xS , x̂S , p) satisfies the

following single-crossing condition: the ratio of the slopes

∂Π̂S(xS , x̂S , p)/∂p

∂Π̂S(xS , x̂S , p)/∂x̂S
(22)

is increasing in xS . This single-crossing condition implies that there are no profitable within-

equilibrium deviations. Indeed, if p̂ ≥ p is such a deviation, then differntial equation (17)

implies

dX∗
S(p̂)

dp
= −

∂Π̂S(X
∗
S(p̂), X

∗
S(p̂), p̂)/∂p

∂Π̂S(X∗
S(p̂), X

∗
S(p), p)/∂x̂S

This, however, contradicts the single-crossing condition, according to whichX∗
S(p̂) < xS implies

∂ΠS(X
∗
S(p̂), X

∗
S(p̂), p̂)/∂p

∂ΠS(X∗
S(p̂), X

∗
S(p̂), p̂)/∂x̂S

<
∂ΠS(xS , X

∗
S(p̂), p̂)/∂p

∂ΠS(xS , X∗
S(p̂), p̂)/∂x̂S

Similarly, we can rule out an within-equilibrium deviation to a price p̂ ∈ (p,∞).

We now claim that only the full information cutoff x = xB is compatible with the separating

equilibrium. First, observe that any value x < xB corresponds to the solution of the system that

is not monotonically increasing and therefore cannot correspond to a separating equilibrium.

Next, if x > xB, then it is profitable for the type xS = 0 to deviate to p < p even when the

brokers’ beliefs are the most pessimistic, x̂S = 0. Indeed, if x > xB, the slope of the expected

profit (15) at p = p is of the same sign as

−JB(x, 0) < −JB(xB, 0) = 0.

The cutoff x = xB does indeed yield the solution (X∗
B(p), X

∗
S(p)) in which each function is

monotonically increasing in p. First, note that equations (20) and (21) form an autonomous

system of differential equations. Every solution curve that is entirely contained in the region

M := {(xB, xS) : xS ≥ 0, JB(xB, xS)− xS ≥ 0
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corresponds to a monotone increasing solution because the r.h.s. of (20) and (21) are non-

negative in (positive in the interior of) M. Next, observe that the solution curve that starts at

the point (xB, xS) = (xB, 0), i.e. in the south-west corner of M will never leave M. The left

boundary ofM is given by the full information outcome, {(xB, xS) : JB(xB, xS)−xS = 0}. This

boundary is an increasing locus because JB(xB.xS) is assumed increasing in xB. The vector

field of the system points inside M, with dX∗
S(p)/dp = 0 and dX∗

B(p)/dp ≥ 0. Therefore, any

solution with the initial condition in M will stay in M. Since the initial condition (xB, 0) ∈ M,

we conclude that X∗
B(p) and X∗

S(p) are increasing in p.

Finally, in order to ensure that the bank with xS = 0 indeed prefers to choose xB, it is

sufficient to assume that for any lower (out of equilibrium) price, the brokers believe that the

bank’s type that deviated is the lowest one, x̂S = 0. Then (15) implies that the slope of the

expected profit is positive for p < p.

Proof of Corollary 1. Our previous analysis in that section implies that the bank with valuation

xS will set the price so that the marginal broker type willing to purchase at this price, X0
B(p),

is found from the “marginal revenue equals cost” equation JB(X
0
B(p), xS)− xS = 0. The price

strategy itself is given by p0S(xS) = uB(X
0
B(p), xS). How does this price compare to the one

with asymmetric information, p∗S(xS)? Proposition 3 shows that there is no distortion at the

bottom, so that the two price are equal: p∗S(0) = p0S(0).

For xS > 0, we have dX∗
S(p)/dp > 0. Going back the differential equation (8), this means

that for p = p∗S(xS), we must have JB(X
∗
B(p), xS) > xS , which, by the monotonicity of

JB(xB, xS) in xB, impliesX∗
B(p) > X0

B(p). Since uB(X
0
B(p), X

0
S(p)) = p and uB(X

∗
B(p), X

∗
S(p)) =

p, with uB(xB, xS) being monotone increasing in both arguments (under common values), we

must have

X∗
S(p) < X0

S(p) =⇒ p∗S(xS) > p0S(xS)

for xS > 0. Finally, to show that the probability of sale is lower under asymmetric information,

note that

uB(X
∗
B(p), X

∗
S(p)) = p, uB(X

0
B(p), X

0
S(p)) = p,

X∗
S(p) < X0

S(p) =⇒ X∗
B(p) > X0

B(p). (23)
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Since the probabilities of sale under asymmetric and symmetric information are given by 1 −

F(1)(X
∗
B(p)) and 1−F(1)(X

0
B(p)) respectively, we see that the latter is higher than the former.

Further, (23) implies p∗B(xB) < p0B(XB).

Proof of Proposition 4. Instead of the bank’s bid strategy directly, in this proof it turns out

convenient to work with the function s(xB), which gives the the bank’s type s as a function

of the broker’s type xB that would drop out at the same price as the bank. Then the bank’s

bidding strategy is given by

pS(xS) = uB(s
−1(xS), xS) (24)

= s−1(xS) + αxS . (25)

Dividing equation (8) by (9), we get the following differential equation for s(xB),

ds

dxB
=

(J̄(xB)− (1− α)s)f(1)(xB)

αF̄(1)(xB)

where

J̄(t) = t− 1− FB(t)

fB(t)

and F̄(1)(xB) = 1− F(1)(xB).

This equation can be integrated explicitly46

s(xB) = γF̄(1)(xB)
γ−1

∫ xB

xB

F̄(1)(t)
−γf(1)(t)J̄(t)dt

where

γ =
1

α

and xB is the lowest broker participating type, the same as under symmetric information,

J̄(xB) = 0.

The slope of s(xB) is given by

s′(xB) = γ(γ−1)f(1)(xB)F̄(1)(xB)
γ−2

∫ xB

xB

F̄(1)(t)
−γf(1)(t)J̄(t)dt+γF̄(1)(xB)

−1f(1)(xB)J̄(xB)

(26)

46The integration method is essentially the same as in the proof of Theorem 3 in Cai et al. (2007). However,

our linear specification is different and is not a special case of the linear specification in Cai et al. (2007).
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With a change of variable

y = log
F̄(1)(xB)

F̄(1)(t)
,

we have

s′(xB) = f(1)(xB)

∫ 0

y
γ(γ − 1)e(γ−1)yJ̃(y)dy + γF̄(1)(xB)

−1f(1)(xB)J̄(xB)

where J̃(y) = J̄(t(y)),

y < 0, J̃(y) = 0.

Taking the derivative of the slope s′(xB) with respect to γ, and using the estimate

d

dγ

(
γ(1− γ)e(γ−1)y

)
=

(
2γ − 1 + γ(γ − 1)

)
e(γ−1)y

≥
(
1 + (γ − 1)y

)
e(γ−1)y

we obtain the estimate

ds′(xB)

dγ
≥ f(1)(xB)

∫ 0

y

(
1 + (γ − 1)y

)
e(γ−1)yJ̃(y)dy + F̄(1)(xB)

−1f(1)(xB)J̄(xB).

The second term above is positive. As far as the first term, the extended mean-value theorem

for integrals implies for some a ∈ [y, 0]47∫ 0

y

(
1 + (γ − 1)y

)
e(γ−1)yJ̃(y)dy = J̃(0)

∫ 0

y

(
1 + (γ − 1)y

)
e(γ−1)ydy

= J(xB)

∫ 0

y
d
(
ye(γ−1)y

)
= −J(xB)ae

(γ−1)a ≥ 0

where the last line follows from a < 0. So we conclude

ds′(xB)

dγ
> 0.

Since γ = 1/α, this implies ds′(xB)
dα < 0, which in turn implies that the slope of the inverse

s−1(xS) is increasing in α. Since pS(xS ;α) = s−1(xS) + αxS , we conclude that the slope of

47The second mean-value theorem for integrals states that
∫ b

a
f(t)g(t)dt = g(a)

∫ c

a
f(t)dt+g(b)

∫ b

c
f(t)dt when-

ever f, g are continuous functions on [a, b]. See Theorem 2.12.17 on p.150 in Bogachev (2007). Here, this theorem

is applied with g(t) = J̃(t), taking into account J̃(y) = 0.
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pS(xS ;α) is increasing in α. Since pS(0) = xB is independent of α, this implies pS(xS ;α)

increases in α.

Proof of Lemma 1. Define

H(xS , xB) :=

∫ xB

xS

(
uB(xB, xS)−max{vJ , xS}

)
f∗
S(xS)dxS ,

and

f∗
S(xS) =

fS(xS)

FS(xB)− FS(xS)
.

Indifference condition (12) can be equivalently stated as

(p̂(p
S
)− xS)(1− F(1)(X

∗
B(p

∗
S(xS)))) = (p̂(vJ)− xS)(1− F(1)(xB)), (27)

where p̂(p) denotes the equilibrium price received by the bank conditional on winning the

auction with a reserve p. The bank’s indifference condition (27) defines xB as an implicit

function of xS . This function is denoted as yB(·). The indifference condition (27) can be

re-written as

F(1)(xB) = 1− ΠS(xS)

p̂(vJ)− xS

where we denoted the broker’s type that corresponds to xS as x̃B(xS) = XB(p
∗
S(xS))), and

ΠS(xS) = (p̂(p∗S(xS))− xS)(1− F(1)(x̃B(xS)).

Next, we show that ΠS(xS)/(p̂(vJ)−xS) is increasing in xS , which implies that xB is decreasing

in xS . The derivative of this function is

d

dxS

ΠS(xS)

p̂(vJ)− xS
=

Π′
S(xS)(p̂(vJ)− xS) + ΠS(xS)

(p̂(vJ)− xS)
2

The envelope theorem implies Π′
S(xS) = −(1−F(1)(x̃B(xS))). So the numerator is equal to

ΠS(xS)− (p̂(vJ)− xS)(1− F(1)(x̃B(xS)))

= ΠS(xS)− (p̂(p1)− xS)(1− F(1)(x̃B(xS)))− (p̂(vJ)− p̂(p1))(1− FB(x̃B(xS)))

= −(p̂(vJ)− p1)(1− F(1)(x̃B(xS))) < 0
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where the inequality follows since p1 < vJ and p̂(·) is a an increasing function. Hence, yB(xS)

is a decreasing function.

The broker’s indifference condition (11), H(xS , xB) = vJ , defines xB as an implicit function

of xS ,

xB = z(xS).

Indeed, we have H(xS , vJ) < 0 and, for xB ≥ vJ ,

∂H(xS , xB)

∂xB
=

(
uB(xB, xB)− xB

)
fS(xB) +

∫ xB

xS

∂uB(xB, xS)

∂xB
fS(xS)dxS

=

∫ xB

xS

∂uB(xB, xS)

∂xB
fS(xS)dxS

≥ θ(FS(xB)− FS(vJ)),

where we have used the assumption that ∂uB/∂xB ≥ θ > 0. By integration, it then follows

that for xB ≥ vJ ,

H(xS , xB) ≥ H(xS , vJ) +

∫ xB

vJ

(FS(y)− FS(vJ))dy → ∞

as xB → ∞. So for a given xS < vJ , H(xS , xB) is an increasing function of xB, tending to ∞,

with H(xS , vJ) < 0. This implies that the equation H(xS , xB) = 0 defines xB as an implicit

function of xS . This function will be denoted as z(xS),

H(xS , zB(xS)) = 0.

We now show that zB(·) is an increasing function. This will follow from the fact that

H(xS , xB) defined in (11) is an increasing function in first two arguments. We have already

shown that H(xS , xB) is increasing in xB for xB ≥ vJ . Now

∂H(xS , xB)

∂xS
= (vJ − uB(xB, xS))fS(xS).

We claim that uB(xB, xS) < vJ , so that H(xS , xB) is indeed increasing in xS . We argue by

contradiction. If not, we would have

H(xS , xB) ≥
∫ xB

vJ

(
uB(xB, xS)− xS

)
fS(xS)dxS , (28)
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Given our assumption ∂uB/∂xS < 1, we have for xS < xB,

uB(xB, xS) = uB(xB, xB)−
∫ xB

xS

∂uB(xB, xS)

∂xS
dxS

> xB −
∫

xSxBdxS = xS .

Substituting this bound into (28), we get

H(xS , xB) >

∫ xB

vJ

(
uB(xB, xS)− xS

)
fS(xS)dxS

> 0,

a contradiction to H(xS , xB) = 0. So we conclude

∂H(xS , xB)

∂xS
> 0.

The Implicit Function Theorem now implies that zB(·) is increasing:

z′B(xS) = − ∂H/∂xS
∂H/∂xB

> 0.

x̂S

x̂B

xB

xS

yB(xS)

zB(xS)

Figure 12: Functions yB(·) and zB(·).
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Thus yB(xS) and zB(xS) are both continuous, and are, respectively, decreasing and increas-

ing functions. Continuing with the proof, let x̂S = X∗
S(vJ) and x̂B = X∗

B(vJ) be the bank’s and

broker’s types in the bank-seller equilibrium (vJ = 0). The lower cutoff values are restricted

between the lowest possible value 0, and x̂S . Both mapping yB(·) and zB(·) are defined on the

domain [0, x̂S ].

Since the x̂B type breaks even if the bank drops out at vJ in the bank-seller equilibrium

(vJ = 0), we must have H(x̂S , x̂B) > 0. The monotonicity of H(xS , xB) in xB implies zB(x̂S) <

x̂B. At the same time, the definition of yB(·) implies x̂B = yB(x̂S), and it follows that zB(x̂S) <

yB(x̂S). Refer to Figure 12. In view of the monotonicity of yB(·) and zB(·), there are two

possibilities. First, if zB(0) ≥ yB(0), then type-0 bank prefers to bid p rather than vJ . In this

case, the curves yB(xS) and zB(xS) have a unique intersection given by

xB = yB(xS) = zB(xS), (29)

with xS ∈ (0, x̂S). If, on the other hand, zB(0) < yB(0), then type-0 bank prefers to bid vJ , so

that the equilibrium involves xB = 0 and the bunching extends all the way to xS = 0.

Proof of Proposition 5. We begin with the bank’s equilibrium strategy pS(xS). The arguments

from the section preceding the Proposition imply that pS(xS) is an equilibrium best response

for xS ≤ xS and xS ≥ xB, so in this proof we only consider xS ∈ (xS , xB). For xS ∈ (vJ , xB),

the bank acts as a buyer, and it is a best response for it to bid its value, xS . So it only remains

to consider xS ∈ (xS , vJ ]. These types will prefer to bid vJ over any bid in (p
S
, vJ). The reason

is that brokers with values xB < xB drop out immediately once the price has gone over p
S
.

The brokers who remain will bid up to their values xB ≥ xS . The bank will prefer to bid vJ

over any (p
S
, vJ) since doing so will not reduce the probability of selling to a broker, but will

at least weakly increase the price conditional on sale.48

Having shown equilibrium incentives for the bank, we now turn to the broker. The results

in the previous section imply that, for xB ≤ x∗B, pB(xB) dominates any other bid p ≤ p
S
=

pB(x
∗
B). Since bidding p ∈ (p

S
, vJ) will not affect the broker’s expected profit due to the fact

48The price conditional on sale will be strictly higher vJ > p if there is only one broker who is active, i.e. has

xB ≥ xS . If there is more than one broker, the expected price conditional on sale will be unchanged.
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that no other participant bids there, it remains to be shown that a broker with xB < xB will

not have an incentive to deviate to a p ≥ vJ . It is clear that such a broker will not have an

incentive to deviate to a bid p > xB, since this would lead the broker to buy at prices that

are too high and would result in a loss. Indeed, by single crossing, uB(xB, p) < p for p > xB,

which implies uB(xB, p) < p for p > xB.

The incremental expected profit from deviation to a price p ∈ [vJ , xB] is

∆ΠB =

∫ p

xS

(uB(xB, xS)−max{vJ , xS})fS(xS)dxS

<

∫ p

xS

(uB(xB, xS)−max{vJ , xS})fS(xS)dxS

≤
∫ xB

xS

(uB(xB, xS)−max{vJ , xS})fS(xS)dxS = 0

where the first inequality follows from the fact that uB(xB, xS) is increasing in xB, while the

second inequality follows from the definition of xB as the type that is indifferent This shows

that the broker with xB < xB will not have an incentive to deviate to a p ≥ vJ , and it also

follows that the broker types xB ∈ [x∗B, xB] will bunch at p
S
.

The equilibrium uniqueness follows because there are unique cutoff types xS and xS ac-

cording to Lemma 1.
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