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Summary

A unified framework for visualization and inference in item response theory (IRT) models

is developed within this Master’s thesis and implemented in the R package psychotools

(Zeileis et al., 2014).

For this purpose, a theoretical framework is established in a first step by introducing

the generalized partial credit model (GPCM, Muraki, 1992), one of the most general

parametric IRT models for polytomous items. In addition, the relations to several other

popular IRT models, existing parametrizations and parameter estimation approaches as

well as the issue of parameter identifiability are discussed. In a second step, four contex-

tually different structural components of IRT models are identified based on the GPCM:

Person parameters, item discrimination parameters, item location parameters and ab-

solute or relative item threshold parameters. For each of these structural components,

a suitable representation is developed and implemented in the R package psychotools.

Starting with the estimated parameters of the IRT models already implemented in the

package, the computation of each structural component and its variance-covariance ma-

trix are derived and additionally implemented. In a third step, several established vi-

sualization techniques and tools for inference are implemented on top of the structural

components thus providing a unified framework for visualization and inference in IRT

models.

Advantages and possibilities of the provided framework such as numerical and graphi-

cal model comparisons, model selection and hypotheses tests as well as applications when

detecting differential item functioning are illustrated in several examples. Limitations

and directions for further research are pointed out in the final discussion of this Master’s

thesis.



Contents

1. Introduction 1

2. A Unified Framework: The Generalized Partial Credit Model 4

2.1. Related Models and Other Parametrizations . . . . . . . . . . . . . . . . 5

2.2. Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3. Parameter Identifiability . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3. Structural Components and Their Implementation 13

3.1. Structural Components of the GPCM and Related IRT Models . . . . . . 13

3.2. An Implementation in the R Package psychotools . . . . . . . . . . . . . . 14

4. Visualization of IRT Models 30

4.1. Strategies to Visualize IRT Models . . . . . . . . . . . . . . . . . . . . . 30

4.2. An Implementation Based on the Unified Framework . . . . . . . . . . . 35

4.3. Advantages and Application Examples . . . . . . . . . . . . . . . . . . . 40

5. Inference in IRT Models 47

5.1. Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2. Hypotheses Tests and Confidence Intervals . . . . . . . . . . . . . . . . . 50

5.3. Testing for DIF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6. Discussion and Outlook 59

A. Existing Parametrizations in the GPCM 61

B. Individual Score Contributions 62

i



List of Figures

2.1. Category response curves under the GPCM for two polytomous items. . . 5

2.2. Illustration of the absolute and relative item threshold parametrization in

the GPCM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4.1. Visualization of the category response curves under a PCM in a matrix

of “curve plots”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2. Visualization of the estimated absolute item threshold parameters δ̂ of a

PCM in a “region plot”. . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3. Visualization of the estimated item location parameters β̂ of a PCM in a

“profile plot”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.4. Joint visualization of the estimated person parameters θ̂ and the esti-

mated absolute item threshold parameters δ̂ of a PCM in a “person-item

plot”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.5. Visualization of the item information under a PCM in an “information

plot”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.6. Visualization of the category response curves of the 13th item as predicted

under a RSM and a PCM. . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.7. Graphical comparison of the estimated item location parameters β̂ of a

dichotomous Rasch Model, a RSM and a PCM. . . . . . . . . . . . . . . 43

4.8. Profile plots of the estimated absolute item threshold parameters δ̂ of a

RSM and a PCM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.9. Visualization of the item information under a dichotomous RM and a PCM. 45

4.10. Visualization of the category information under a PCM. . . . . . . . . . 46

5.1. Visualization of a Rasch tree (Strobl et al., 2013). . . . . . . . . . . . . . 58

ii



List of Tables

3.1. The four contextually differentiated structural components of the GPCM

and their suggested corresponding R classes. . . . . . . . . . . . . . . . . 14

4.1. Summary of the different visualization techniques, the necessary struc-

tural components and the name of the implemented R function to create

them. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.1. Summary of the illustrated methods and functions for statistical inferences

in IRT models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

A.1. Overview of the different parametrizations in the GPCM (and hence all

related IRT models) as well as their relations to each other. . . . . . . . . 61

iii



List of Code Segments

3.1. Interface of the generic function personpar(). . . . . . . . . . . . . . . . 15

3.2. Interface of the generic function discrpar(). . . . . . . . . . . . . . . . . 17

3.3. Interface of the generic function threshpar(). . . . . . . . . . . . . . . . 22

4.1. Interface of the function curveplot(). . . . . . . . . . . . . . . . . . . . 36

4.2. Interface of the function regionplot(). . . . . . . . . . . . . . . . . . . . 37

4.3. Interface of the function profileplot(). . . . . . . . . . . . . . . . . . . 38

4.4. Interface of the function piplot(). . . . . . . . . . . . . . . . . . . . . . 39

4.5. Interface of the function infoplot(). . . . . . . . . . . . . . . . . . . . . 40

iv



1. Introduction

In psychological testing, a series of items is typically administered to subjects to measure

psychological, i.e., non-observable constructs like abilities or attitudes. The results of

such assessments are then used in a variety of situations like “screen[ing] applicants

for jobs [. . . , . . . ] counsel[ing . . . ] individuals for educational, vocational, and personal

counseling purposes, [. . . or . . . ] diagnos[ing] and prescrib[ing] psychological and physical

treatments in clinics and hospitals [. . . ].” (Aiken, 1994, p. 11–12).

Item response theory (IRT) and the various statistical models subsumed under this

theoretical framework provide means to develop, assess and validate the items used

in psychological testing in the first place. This is done by probabilistic modeling of the

subjects’ responses to the administered items as a function of characteristics of the items

and the subjects. The parameter estimates and various test statistics of a fitted IRT

model then allow conclusions about the properties of the administered items as well as

the attitudes or abilities of the tested subjects. Depending on the specific formulation

of item and subject characteristics, the type of response observed and whether or not a

parametric form of the response curve is assumed, a variety of different IRT models can

be distinguished (for an overview see, e.g., Fischer & Molenaar, 1995; Van der Linden &

Hambleton, 1997).

To carry out an IRT analysis, several add-on packages for the R system for statistical

computing (R Core Team, 2014) exist. An up-to-date overview can be found on the

Comprehensive R Archive Network task view (Mair, 2014) on Psychometric Models

and Methods. A recent review about available packages which are accompanied by a

peer-reviewed publication is given by Rusch et al. (2013). One well-known package for

“computing Rasch models [i.e., a certain class of IRT models,] and several extensions”

(Mair & Hatzinger, 2007, p. 1) is the R package eRm (Mair et al., 2014). It provides

the functionality to fit a series of related IRT models based on an “unified CML [i.e.,

conditional maximum likelihood] approach” (Mair & Hatzinger, 2007, p. 4). While this

approach is elegant as a general framework is established, the resulting functions to

compute the various IRT models are rather slow due to the computational overhead. In

addition, the framework used only comprises a small number of IRT models and cannot
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be easily extended. The R package psychotools (Zeileis et al., 2014) on the other hand

follows a different approach: It provides fast and highly specialized implementations of

various IRT models. The model-fitting functions are specifically designed for a certain

IRT model and can be used as building blocks for further, more complex, psychometric

methods like Rasch trees (Strobl et al., 2013) or Rasch mixtures (Frick et al., 2012).

While this approach avoids the computational overhead which is present in more general

approaches, a unified theoretical and computational framework for tasks like inference

or visualizing a fitted IRT model is missing.

The motivation of this Master’s thesis is to fill this gap in the R package psychotools and

thereby make a synthesis between the two approaches illustrated above, i.e., a top-down

approach like in the R package eRm which provides an elegant but limited framework

and a bottom-up approach like in the R package psychotools which (so far) only provides

fast and highly specialized model-fitting functions but no unified theoretical and compu-

tational framework. To achieve the aforementioned goal, the theoretical background and

the generalized partial credit model by Muraki (1992) are first introduced in Chapter 2.

In Chapter 3, the unifying structural components of different IRT models are identified

based on the generalized partial credit model as theoretical framework and a suitable

representation of these components is developed and implemented in the R package psy-

chotools. Based on these structural components, tools for visualization (Chapter 4) and

inference (Chapter 5) are developed and also implemented in the R package psychotools.

Overall, a theoretical and computational framework for visualization and inference in

IRT models is provided which is detached from a specific model and can be easily ex-

tended. Throughout this Master’s thesis, the usage and the advantages of the provided

framework are illustrated within several application examples. The data set used in

these application examples is introduced in more detail in the following.

The Verbal Aggression Data

The example data set used in this Master’s thesis was collected by Vansteelandt (2000)

in a study on verbally aggressive behaviors. It consists of the responses of 316 subjects to

24 items. In each item, one out of four frustrating situations was presented to a subject

which was asked to judge on a three point likert scale with response categories “yes”,

“perhaps” and “no” whether it would react with a specific verbal aggressive behavior in

the given situation. The four frustrating situations used were missing a bus because it

fails to stop, missing a train because a clerk gave faulty information, standing in front of a
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grocery store which just closed when one was about to enter and being disconnected in a

phone call by the operator after the last ten cents have been used up. The possible verbal

aggressive behaviors resulted from a combination of two behavioral modes (wanting or

doing something) and three verbally aggressive responses (cursing, scolding or shouting).

The factorial combination of the two behavioral modes, the three verbally aggressive

responses and the four frustrating situations make up the given 24 items. In the following,

a version of this data set available in the R package psychotools is used. In addition to the

responses on the three point likert scale, this data set contains a dichotomized version of

the responses with the categories “yes” and “perhaps” merged together. In a first step,

the R package and the data set are loaded in the following:

> library("psychotools")

> data("VerbalAggression", package = "psychotools")

In a second step, a subset of the verbal aggression data consisting only of the items 13-

18 is extracted and stored in a R object named dat. Within this object, the dichotomized

responses are stored in an element named dich and the original responses on the three

point likert scale are stored in an element named poly:

> dat <- data.frame(dich = rep(NA, nrow(VerbalAggression)),

+ poly = rep(NA, nrow(VerbalAggression)))

> dat$dich <- VerbalAggression$resp2[, 13:18]

> dat$poly <- VerbalAggression$resp[, 13:18]

The items of this subset all contain the same frustrating situation of standing in front

of a grocery store which just closed when one was about to enter and will be used in

the following illustrations. In addition, the gender and an anger score measuring the

momentarily anger of each subject is extracted and stored in corresponding elements

named gender and anger:

> dat$gender <- VerbalAggression$gender

> dat$anger <- VerbalAggression$anger

In a last step, custom labels describing the behavioral mode and the verbal aggressive

response posed within an item are set for readability:

> lbs <- c("Want-Curse", "Do-Curse",

+ "Want-Scold", "Do-Scold", "Want-Shout", "Do-Shout")

> colnames(dat$dich) <- colnames(dat$poly) <- lbs
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2. A Unified Framework: The Generalized

Partial Credit Model

Focusing on parametric IRT models for ordered polytomous items, the generalized partial

credit model (GPCM) by Muraki (1992) is one of the most general models. The GPCM,

P (Xij = xij|θi, αj, δj) =

exp

[
xij∑
k=1

aj(θi − δjk)

]
pj∑
`=1

exp

[∑̀
k=1

aj(θi − δjk)

] , (2.1)

describes the probability that subject i with ability θi chooses one of the pj ordered

categories of item j. Subjects are characterized by a single parameter θi in the GPCM,

i.e., a uni-dimensional latent trait is assumed. Items however are characterized by two

types of parameters: the item discrimination parameter αj and the absolute item thresh-

old parameters δjk (with k = 1, . . . , pj). While the item discrimination parameter αj

describes the steepness of the category response curves, i.e., the impact an increase in the

latent trait has on the probability of choosing a certain category k on item j, the absolute

item threshold parameters δjk indicate the locations on the ability axis where the prob-

ability of choosing category k is equal to the probability of choosing category k− 1, i.e.,

the intersection of the category response curves of two adjacent categories. This is illus-

trated in Figure 2.1 where the category response curves, i.e., the predicted probabilities

under the GPCM, for two items with three categories, item discrimination parameters

α1 = 1.3 and α2 = 1.6 and absolute item threshold parameters δ1 = (−1.2, 1.2, 1.8)>

and δ2 = (0.5,−1, 1.5)> are depicted.

As can be seen from Figure 2.1, even in the case of unordered absolute item threshold

parameters δj as in item two, the absolute item threshold parameters δj still indicate the

locations of the intersections of the category response curves of two adjacent categories.

In this case, however, not every category has a region on the latent trait axis where this

category is the single most probable category.
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Figure 2.1. Category response curves under the GPCM for two polytomous items. Item 1
(left figure) has characteristics α1 = 1.3 and δ1 = (−1.2, 1.2, 1.8)>, item 2 (right figure) has
characteristics α2 = 1.6 and δ2 = (0.5,−1, 1.5)>.

2.1. Related Models and Other Parametrizations

With certain restrictions on the parameters of the GPCM from Equation (2.1), several

popular IRT models result as special cases of this very general model. For polytomous

items, the partial credit model by Masters (PCM, 1982),

P (Xij = xij|θi, δj) =

exp

[
xij∑
k=1

(θi − δjk)

]
pj∑
`=1

exp

[∑̀
k=1

(θi − δjk)

] , (2.2)

results as special case when the item discrimination parameters αj are restricted to

one. For dichotomous items, the GPCM from Equation (2.1) specializes to the 2-PL or

Birnbaum model (Birnbaum, 1968). If additionally the item discrimination parameters

αj are restricted to one, the popular 1-PL or dichotomous Rasch model (Rasch, 1960)

results.

Sometimes, the absolute item threshold parameters δjk of the GPCM from Equa-

tion (2.1) or the PCM from Equation (2.2) are reparametrized into an item-specific
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Figure 2.2. Illustration of the absolute (left figure) and relative (right figure) item threshold
parametrization in the GPCM for an item j with four categories.

location parameter βj,

βj =
1

pj

pj∑
k=1

δjk, (2.3)

and several category-specific “relative” item threshold parameters τjk,

τjk = δjk − βj. (2.4)

This reparametrization, labeled as “rating [scale] formulation” by Van der Ark (2001,

p. 275), is illustrated along with the usual parametrization in Figure 2.2. Whereas the

absolute item threshold parameters δjk indicate the“absolute”location of the intersection

of two adjacent categories on the theta axis (left figure), the relative item threshold

parameters τjk indicate the location of this intersection “relative” to the item location

parameter βj, which describes the “center” of an item on the theta axis (right figure).

A very similar but slightly different parametrization has been suggested by Andrich

(1978) as rating scale model (RSM),

P (Xij = xij|θi, βj, τ ) =

exp

[
xij∑
k=1

(θi − (βj + τk))

]
p∑
`=1

exp

[∑̀
k=1

(θi − (βj + τk))

] , (2.5)
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and similarly for the GPCM by Muraki (1992, p. 164) as GPCM-RSM,

P (Xij = xij|θi, αj, βj, τ ) =

exp

[
xij∑
k=1

aj (θi − (βj + τk))

]
pj∑
`=1

exp

[∑̀
k=1

aj (θi − (βj + τk))

] . (2.6)

The subtle difference between the reparametrization discussed before and the para-

metrization in the RSM from Equation (2.5) and the GPCM-RSM from Equation (2.6)

is that the relative item threshold parameters τk are assumed to be identical over the

items in the latter two models, while they can vary between the items in the “rating

[scale] formulation” (Van der Ark, 2001, p. 275) from Equation (2.4).

Two other parametrizations exist which are less frequently used and which have no

such intuitive interpretation as the two parametrizations discussed above, but should

nevertheless briefly be mentioned here. Both parametrizations can be seen as “cumula-

tive”parametrizations. The first is cumulative in the absolute item threshold parameters

δjk. Instead of the absolute item threshold parameters δjk, cumulative absolute item

threshold parameters,

ηj` =
∑̀
k=1

δjk, (2.7)

are considered. This parametrization is discussed in, e.g., Andersen (1977); Wilson

& Masters (1993); Fischer & Ponocny (1994); Adams et al. (2012) and the cumulative

absolute item threshold parameters ηjk are sometimes called item-category parameters

(see, e.g. Punzo, 2008, p. 5).

The second “cumulative parametrization” is cumulative in the relative item threshold

parameters τk (RSM) or τjk (G/PCM). Similar to the absolute item threshold parameters

δjk and the item-catergory parameters ηjk, a cumulative parametrization,

κ(j)` =
∑̀
k=1

τ(j)k (2.8)

exists here too (see, e.g., Andrich, 1978; Fischer & Molenaar, 1995). Table A.1 in

Appendix A gives an overview of the different parametrizations discussed above and

their relations to each other.
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2.2. Parameter Estimation

Several approaches have been suggested to estimate the person and item parameters

in IRT models (for an overview see, e.g., Baker & Kim, 2004). In the following, three

frequently used likelihood-based approaches are briefly illustrated and the issue of param-

eter identifiability is discussed. Under the assumption of independence of the responses

of a given subject to different items (local independence) and the assumption of inde-

pendence of the responses of different subjects, the joint likelihood of the GPCM is given

as

L(α, δ,θ|x) =
n∏
i=1

m∏
j=1

P (xij|θi, αj, δj)

=
n∏
i=1

m∏
j=1

exp

[
xij∑
k=1

aj(θi − δjk)

]
pj∑
`=1

exp

[∑̀
k=1

aj(θi − δjk)

]

=

exp

[
n∑
i=1

m∑
j=1

xij∑
k=1

aj(θi − δjk)

]
n∏
i=1

m∏
j=1

pj∑
`=1

exp

[∑̀
k=1

aj(θi − δjk)

] . (2.9)

In the joint maximum likelihood approach (JML), the joint likelihood given in Equa-

tion (2.9) is maximized and both types of parameters are estimated together. As the

number of person parameters to estimate increases with the sample size, a major draw-

back of this approach is that the item parameter estimators are not consistent (Andersen,

1973; Gosh, 1995).

To overcome this problem, a distribution f(θi|ξ) is assumed for the person parame-

ters in the marginal maximum likelihood approach (MML). Hence, instead of viewing

them as fixed quantities as in the JML approach, the person parameters are regarded

as random quantities coming from a certain distribution f with parameters ξ (if a para-

metric distribution is assumed, see below). In a second step, the marginal likelihood is

computed by integrating over the the person parameters. For the GPCM from Equa-

tion (2.1) with the joint likelihood from Equation (2.9) the marginal likelihood follows

as

8



L(α, δ, ξ|x) =
n∏
i=1

∫ m∏
j=1

P (xij|θi, αj, δj)f(θi|ξ)dθi

=
n∏
i=1

∫ m∏
j=1

exp

[
xij∑
k=1

aj(θi − δjk)

]
pj∑
`=1

exp

[∑̀
k=1

aj(θi − δjk)

]f(θi|ξ)dθi

=
n∏
i=1

∫ exp

[
m∑
j=1

xij∑
k=1

aj(θi − δjk)

]
m∏
j=1

pj∑
`=1

exp

[∑̀
k=1

aj(θi − δjk)

]f(θi|ξ)dθi. (2.10)

The marginal likelihood is then maximized with respect to the parameters α, δ and

ξ. Typically, a parametric distribution f(θ|ξ) is assumed for the person parameters (for

example a standard-normal distribution as in, e.g., Bock & Lieberman, 1970; Bock &

Aitkin, 1981) but there are also suggestions for non- or semi-parametric approaches (see,

e.g., Heinen, 1996). The disadvantages of the MML approach are on the one hand the

necessity and possible misspecification of the distributional assumption for the person

parameters θi, and, on the other hand, that no analytical solution exists for the integral

in the marginal maximum likelihood function and hence numerical approximations have

to be used when maximizing the marginal likelihood.

In addition to the JML and MML approach, Andersen (1972) suggested a conditional

maximum likelihood approach (CML). In this approach, the person parameters are elim-

inated out of the joint likelihood by conditioning on the sum scores si =
∑m

j=1 xij as

sufficient statistic for the person parameter. The resulting conditional likelihood is then

maximized with respect to the item parameters. It can be shown that under certain reg-

ularity conditions, the resulting item parameter estimators are “asymptotically efficient,

and [...] the loss of information [by conditioning on the total scores of the persons] be-

comes negligible when [... the sample size approaches infinity]” (Molenaar, 1995, p. 47).

The person parameters are then estimated in a second step by plugging the estimated

item parameters into the joint likelihood and maximizing it with respect to the person

parameters. A disadvantage of this approach is that the uncertainty associated with

the estimation of the item parameters is not considered when the person parameters

are estimated. Another disadvantage is that this approach is only applicable to models
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where a sufficient statistic for the person parameter exists. Especially for models where

the item discrimination parameter αj is not fixed to unity, like in the GPCM, this is not

the case. For these models, a MML approach is recommended (see, e.g., Baker & Kim,

2004).

In the R package psychotools, a CML approach is implemented for fitting dichotomous

Rasch, rating scale and partial credit models. For each of these three models, a highly-

specialized model-fitting function exists which is called in the following based on the

previously extracted subset of the verbal aggression data:

> rmmod <- raschmodel(dat$dich)

> rsmod <- rsmodel(dat$poly)

> pcmod <- pcmodel(dat$poly)

In the next section, the issue of parameter identifiability is discussed in more detail.

2.3. Parameter Identifiability

The item and person parameters in IRT models are typically not identifiable, i.e., no

unique solution exists when the joint, conditional or marginal likelihood is maximized to

estimate the parameters (for a more formal definition of parameter identifiability, see,

e.g., Casella & Berger, 2001, p. 24). This can be easily seen, e.g., in the dichotomous

Rasch model,

P (Xij = xij|θi, δj) =
exp (θi − δj)

1 + exp (θi − δj)
.

If one replaces the parameters θi and δj with parameters θ̃i = θi + c and δ̃j = δj − c
where c is an arbitrary selected constant c, the probability distribution described by the

model remains the same. Hence, the parameters in the dichotomous Rasch model are

only identified up to a certain constant c and some restriction is necessary to ensure that a

unique solution exists when estimating the parameters of the model. The exact definition

of the necessary restriction depends on which IRT model and estimation technique is

used precisely. In the following, the restriction(s) necessary in the Rasch, RSM and

PCM, estimated via the conditional maximum likelihood approach as implemented in

the R package psychotools are discussed in more detail. As shown above, the parameters

in the dichotomous Rasch model are only identified up to a constant, i.e., a single

restriction is necessary which fixes the origin of the scale (for more details, see Fischer,

1981). In the CML approach, this means that typically one or more of the m absolute
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item threshold parameters δj are fixed at a certain value. In the implementation of

the dichotomous Rasch model in the R package psychotools, it is the first absolute item

threshold parameter δ1 which is set to zero. But this is arbitrary and as Eggen & Verhelst

(2006) discussed, any restriction of the form

d0 +
m∑
j=1

djδj = 0 with dj ∈ R and
m∑
j=1

dj 6= 0 (2.11)

could be used to ensure parameter identifiability in the dichotomous Rasch model. As

Kopf et al. (2013, p. 4) pointed out, the general form depicted in Equation (2.11) includes

all of the typically used restrictions in the dichotomous Rasch model. For example, the

restriction used in the model-fitting function raschmodel() is a special case and results

with d0 ≡ 0 and d = (d1, d2, . . . , dm)T = (1, 0, 0, . . . , 0)>.

Similar as in the dichotomous Rasch model, only
∑m

j=1(pj−1)−1 of the
∑m

j=1(pj−1)

absolute item threshold parameters δjk can be freely estimated in the PCM depicted in

Equation (2.2) and it is again a single restriction necessary such that a set of unique

parameter estimates exists. In the implementation of the PCM in the R package psy-

chotools, a CML approach is used which estimates the cumulative absolute item threshold

parameters ηjk (see Section 2.1). As for the absolute item threshold parameters δjk, a

single restriction is necessary and it is again the first cumulative absolute item threshold

parameter η11 which is set to zero to ensure parameter identifiability, but this is, of

course, again arbitrary and other restrictions could be used instead.

In the RSM from Equation (2.5) with its two types of item parameters, two restrictions

are necessary, one for the item location parameters βj and one for the relative item

threshold parameters τk. If only one restriction is used, e.g., for the item location

parameters βj, a shift of the person parameters θi by a constant c can be still captured

by a similar shift of the relative item threshold parameters τk. Hence, only (m−1)+(p−2)

item parameters can be freely estimated in the RSM (with p as the number of categories).

In the implemented CML approach in the R package psychotools, it is the first item-

specific parameter (the term item location parameter is avoided here as the estimated

parameters cannot be interpreted as the center of an item due to the cumulative relative

item threshold parametrization used in the implementation in the function rsmodel())

and the first cumulative relative item threshold parameter κ1 which is set to zero, but

this is, of course, again arbitrary and other restrictions could be used instead.

The relation of the two restrictions necessary in the RSM and the single restriction in

the dichotomous Rasch model or the PCM can be seen by the following reformulation

11



of the number of free parameters in the PCM:

m∑
j=1

(pj − 1)− 1︸ ︷︷ ︸
Free absolute item threshold parameters

=
m∑
j=1

(pj − 1)−m+m− 1 (2.12)

= (m− 1) +
m∑
j=1

(pj − 1)−m

= (m− 1)︸ ︷︷ ︸
Free item-specific parameters

+
m∑
j=1

(pj − 2).︸ ︷︷ ︸
Free relative item threshold parameters

This reformulation is interesting in two aspects. First, it relates two perspectives to

each other which are present in all three models and are also reflected by the different

parametrizations mentioned in Section 2.1, but which are rarely discussed explicitly:

An absolute perspective reflected by the absolute item threshold parameters δjk and

a relative perspective reflected by the relative item threshold parameters τjk. While

the RSM in Equation (2.5) is formulated in the relative perspective and the PCM in

Equation (2.2) is formulated in the absolute perspective, the transformations shown in

Table A.1 easily allow to convert the parameters from one perspective to the parameters

in another perspective. These two perspectives can be also found in the dichotomous

Rasch model. As there are two categories per item, only a single relative item threshold

parameter τ1 exists which is always (implicitly) set to zero. Under this condition, the

absolute item threshold parameters δj and the item location parameters βj are equivalent

in this model.

The second interesting aspect to note in the reformulation shown in Equation (2.12)

is that in the relative item threshold parametrization, the single restriction placed upon

the relative item threshold parameters in the RSM generalizes to m restrictions in

the PCM, i.e., one for each set of item-specific relative threshold parameters τj =

(τj1, τj2, . . . , τjpj)
>.
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3. Structural Components and Their

Implementation

In this chapter, the unifying structural components of different IRT models are first iden-

tified based on the GPCM as one of the most general parametric IRT models for ordered

polytomous items. For each identified structural component, a suitable representation

and implementation in the R package psychotools is then discussed in more detail. Over-

all, a unified framework for a wide class of IRT models is constructed and implemented

for the three IRT models of the R package psychotools. Several application examples of

this framework are illustrated in the following and in addition in the Chapters 4 and 5.

3.1. Structural Components of the GPCM and Related

IRT Models

The two main “ingredients” of the GPCM (and hence of all the related IRT models, see

Section 2.1) are the subjects, characterized by the person parameters, and the items,

characterized by the item discrimination parameters and either by a set of (cumulative)

absolute item threshold parameters or by a single item location parameter and a set

of (cumulative) relative item threshold parameters (see Section 2.1 and Table A.1 for

more details on the different parametrizations). As discussed in Chapter 2, the item

discrimination parameter modulates the impact of the latent trait on the probability of

choosing a certain category k on item j while the item location parameter as well as the

item threshold parameters ([cumulative] absolute or [cumulative] relative) characterize

positions on the latent trait axis. Because of these contextual differences, the item

discrimination parameters will be viewed and represented separately in the following. In

addition, the item location parameters will also be viewed and represented separately

from the item threshold parameters (either [cumulative] absolute or [cumulative] relative)

as they provide a characterization of an item by a single parameter in contrast to the

item threshold parameters which characterize an item in more detail.

Based on these considerations, four structural components will be differentiated from
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Table 3.1. The four contextually differentiated structural components of the GPCM (and hence
of all related IRT models) and their suggested corresponding R classes.

Description Formal representation Corresponding R class

Person parameters θi personpar

Item discrimination parameters αj discrpar

Item location parameters βj itempar

Item threshold parameters δjk, ηjk, τ(j)k or κ(j)k threshpar

here on: Person parameters, item discrimination parameters, item location parameters

and item threshold parameters in one of the four forms discussed in Section 2.1. Each of

the four structural components will be represented by a R class together with a generic

function of the same name to extract a particular component of a fitted model object.

Table 3.1 summarizes the outlined framework. The implementation of this framework

in the R package psychotools will be discussed in the following.

3.2. An Implementation in the R Package psychotools

Until now, three IRT models are implemented in the R package psychotools: The dichoto-

mous RM, the RSM and the PCM. All three IRT models are special cases of the GPCM

and are estimated with the CML approach (see Chapter 2 for more details) through

highly-specialized model-fitting functions raschmodel(), rsmodel() and pcmodel().

To implement the unified framework outlined above in the R package psychotools, the R

classes for each structural component are implemented in a first step. In a second step,

specific methods for the generic functions of these classes are implemented for each of

the three IRT models. These methods allow the extraction of a structural component

from a fitted RM, RSM or PCM object. The structure of the four implemented classes as

well as some details on the implemented model-specific extractor methods are discussed

in the following separately for each of the four structural components.

3.2.1. Person Parameters

Person parameters θ are represented by the R class personpar. Objects of this class con-

sist of a named numeric vector with the estimated person parameters θ̂ of a dichotomous

RM, RSM or PCM. In addition, a label referring to the underlying IRT model and, if

requested, the estimated variance-covariance matrix Σ̂θ̂ are attached as attributes. The

interface of the generic function personpar() is shown in code segment 3.1. Besides
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personpar(object, ref = NULL, vcov = TRUE,

start = NULL, tol = 1e-6, ...)

Code segment 3.1. Interface of the generic function personpar().

a fitted model object of class raschmodel, rsmodel or pcmodel, a restriction for the

estimated absolute item threshold parameters δ̂ can be specified in the argument ref

(see below for more details). With the argument vcov, the estimation of the variance-

covariance matrix Σ̂θ̂ of the estimated person parameters θ̂ can be turned on or off.

With the arguments start and tol, starting values and the precision when estimating

the person parameters θ can be specified.

As discussed in Chapter 2, under a CML approach, the person parameters θ are typ-

ically estimated by maximizing the joint likelihood with the estimated item parameters

given. This approach is implemented in the three model-specific personpar() methods

personpar.raschmodel(), personpar.rsmodel() and personpar.pcmodel(). The joint

likelihoods of the three IRT models as a function of the person parameters θ and con-

ditioned on the estimated absolute item threshold parameters δ̂ are depicted in the

following. For the dichotomous RM the joint likelihood is given as

L(θ|x, δ̂) =

exp

(
n∑
i=1

m∑
j=1

(θi − δ̂j)

)
n∏
i=1

m∏
j=1

(
1 + exp (θi − δ̂j)

) ,

for the RSM it is given as

L(θ|x, δ̂) =

exp

(
n∑
i=1

m∑
j=1

xij∑
k=1

(θi − δ̂jk)

)
n∏
i=1

m∏
j=1

p∑
`=1

exp

(∑̀
k=1

(θi − δ̂jk)

)
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with δ̂jk = β̂j + τ̂k and for the PCM it is given as

L(θ|x, δ̂) =

exp

(
n∑
i=1

m∑
j=1

xij∑
k=1

(θi − δ̂jk)

)
n∏
i=1

m∏
j=1

pj∑
`=1

exp

(∑̀
k=1

(θi − δ̂jk)

) .

If argument vcov is TRUE (the default), one of the above likelihood functions is max-

imized with the R-internal function nlm(), i.e., a newton-type algorithm is used and

the variance-covariance matrix Σθ̂ of the estimated person parameters θ̂ is numeri-

cally approximated (see the help page of the function nlm() for more details). If no

variance-covariance matrix Σθ̂ is requested by the user, i.e., argument vcov is FALSE,

the equations given in Hoijtink & Boomsma (1995, p. 55, Eq. 4.8) and Andersen (1995,

p. 286, Eq. 15.43) are used and solved with the R-internal function uniroot() with

respect to each θi, i = 1, . . . ,m−1. This root-searching approach is typically faster than

the maximization of the joint likelihood but no estimation of the variance-covariance

matrix Σθ̂ is available.

Several utility functions are provided for extracted personpar objects: A coef()

method allows the extraction of the estimated person parameters θ̂ without any addi-

tional attributes, a vcov() method extracts the estimated variance-covariance matrix

Σ̂θ̂ of a personpar object. A print() method provides an overview of the estimated

person parameters θ̂.

Hence, the person parameters θ of the PCM fitted in the previous chapter can be

estimated by a call to the generic function personpar():

> pp <- personpar(pcmod)

As the argument vcov is set to TRUE per default, the variance-covariance matrix Σ̂θ̂

of the estimated person parameters θ̂ is numerically approximated. It can be easily

extracted with a call to the provided vcov() method:

> vcpp <- vcov(pp)

3.2.2. Item Discrimination Parameters

Item discrimination parameters α are represented by the R class discrpar. Objects

of this class consist of a named numeric vector with the estimated item discrimination
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discrpar(object, ref = NULL, alias = TRUE, vcov = TRUE, ...)

Code segment 3.2. Interface of the generic function discrpar().

parameters α̂ of a fitted model object. A label referring to the underlying IRT model,

the restriction used, if chosen, the removed aliased parameters and, if requested, the es-

timated variance-covariance matrix Σ̂α̂ are attached as attributes. The interface of the

generic function discrpar() is shown in code segment 3.2. As before, the first argument

is a fitted model object of class raschmodel, rsmodel or pcmodel. In the second argu-

ment ref, a restriction to be applied to the estimated item discrimination parameters α̂

can be specified. As the item discrimination parameters α are fixed to unity in all three

IRT models, this argument is currently not used. With the argument alias, the user

can choose whether aliased, i.e., restricted, item discrimination parameters α should be

included in the result object. The argument vcov provides control over the attachment

of the estimated variance-covariance matrix Σ̂α̂ of the estimated item discrimination

parameters α̂.

The model-specific discrpar() methods are rather simple as the item discrimination

parameters α in all three IRT models of the R package psychotools are fixed to unity (see

Section 2.1). Hence, these functions only set up a numeric vector of length m filled with

integers of value 1. If vcov is TRUE, a numeric matrix of dimension m×m is constructed

and filled with zeros as the item discrimination parameters α are fixed quantities without

any random variation. As for the other structural components, various utility functions

(coef(), vcov(), . . . ) are provided for extracted discrpar objects.

3.2.3. Item Location Parameters

Item location parameters β are represented by the R class itempar. The structure of

objects of this class as well as the interface of the generic function is identical to that

of the objects of R class discrpar. To specify a restriction to be used in itempar()

methods, the argument ref can be either a numeric vector of item indices or a character

vector of item labels which specifies the items to be used as restriction, i.e., any restriction

of the form depicted in Equation (2.11) with d0 ≡ 0 and any real-valued vector d with

dj ∈ {0, 1}, j = 1, . . .m can be specified through the argument ref. In addition, an

arbitrary contrast matrix can be specified in the argument ref (see below for more

details). Hence, it is possible to extract the estimated item location parameters β̂

from a fitted model object under any arbitrary restriction and therefore separating the
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estimated item location parameters β̂ from the specific characteristics of the estimation

approach used in a model-fitting function.

For the dichotomous RM, those item location parameters ˜̂β which are adjusted with re-

spect to the restriction specified in the argument ref, are derived based on the estimated

item location parameters β̂ within the model-specific method itempar.raschmodel()

as
˜̂
βj = β̂j −

1

|ref|

m∑
k∈ref

β̂k. (3.1)

In addition, the adjusted variance-covariance matrix Σ̂ ˜̂β
is derived with the multivari-

ate delta method (see, e.g., Casella & Berger, 2001, p. 61) as

Σ̂ ˜̂β
= CΣ̂β̂C

> (3.2)

where

(C)ab =
∂

˜̂
βa

∂β̂b
=



1 if a = b ∧ b /∈ ref

1− 1
|ref| if a = b ∧ b ∈ ref

− 1
|ref| if a 6= b ∧ b ∈ ref

0 else

a = 1, . . . ,m, b = 1, . . . ,m. (3.3)

If a contrast matrix C is specified in the argument ref, the estimated item location

parameters β̂ are directly adjusted by applying the specified contrast matrix C, i.e.,

˜̂β = Cβ̂,

and the estimated (or derived) variance-covariance matrix Σ̂β̂ is adjusted as shown in

Equation (3.2) with the user-specified contrast matrix C plugged in.

For the RSM and the PCM, no direct estimates of the item location parameters β

exist in the implementation of these models in the R package psychotools. The model-

fitting function rsmodel() for the RSM estimates an item-specific parameter (labeled

as ξ in the following to avoid confusion), but this parameter is estimated under the cu-

mulative relative item threshold parametrization (see Section 2.1 for more details) with

restrictions such that it cannot be reasonably interpreted as a characterization of the

center of an item. With respect to the PCM, the model-fitting function pcmodel() esti-

mates cumulative absolute item threshold parameters η̂ which also cannot be reasonably

interpreted as a characterization of the center of an item. To nevertheless provide a char-
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acterization of an item by a single parameter for these models, item location parameters

β as introduced in Equation (2.3), i.e.,

β̂j =
1

pj

pj∑
k=1

δ̂jk,

are computed as “mean” absolute item threshold parameters in the model-specific item-

par() methods of the RSM and the PCM. As discussed in Chapter 2 and illustrated

in Figure 2.2, these parameters characterize the position of the center of a polytomous

item on the latent dimension.

Based on the estimated item-specific parameters ξ̂ and the estimated cumulative rel-

ative item threshold parameters τ̂ , the item location parameters β as formulated in

Equation (2.3) are computed in the RSM as

β̂j =
1

p

p∑
k=1

(
ξ̂j + (κ̂k − κ̂k−1)

)
= ξ̂j +

1

p

p∑
k=1

(κ̂k − κ̂k−1)

= ξ̂j +
κ̂p
p

with κ0 ≡ 0 for notational purposes. Their variance-covariance matrix Σ̂β̂ is derived

with the multivariate delta method as

Σ̂β̂ = CΣ̂ξ̂,κ̂C
>

where

C = (C1 C2)

with

(C1)ab =
∂β̂a

∂ξ̂b
=

1 if a = b

0 else
a, b = 1, . . . ,m,

and

(C2)ab =
∂β̂a
∂κ̂b

=

1
p

b = p

0 else
a = 1, . . . ,m, b = 1, . . . , p,

19



and Σ̂ξ̂,κ̂ is given as

Σ̂ξ̂,κ̂ =



0 0 0 . . . 0 0 0 . . . 0

0 σ̂2
ξ̂2

σ̂ξ̂2,ξ̂3 . . . 0 σ̂ξ̂2,κ̂2 σ̂ξ̂2,κ̂3 . . . σ̂ξ̂2,κ̂p
0 σ̂ξ̂3,ξ̂2 σ̂2

ξ̂3
. . . 0 σ̂ξ̂3,κ̂2 σ̂ξ̂3,κ̂3 . . . σ̂ξ̂3,κ̂p

...
...

...
. . .

...
...

...
...

...

0 0 0 . . . 0 0 0 . . . 0

0 σ̂κ̂2,ξ̂2 σ̂κ̂2,ξ̂3 . . . 0 σ̂2
κ̂2

σ̂κ̂2,κ̂3 . . . σ̂κ̂2,κ̂p

0 σ̂κ̂3,ξ̂2 σ̂κ̂3,ξ̂3 . . . 0 σ̂κ̂3,κ̂2 σ̂2
κ̂3

. . . σ̂κ̂3,κ̂p
...

...
...

...
...

...
...

. . .
...

0 σ̂κ̂p,ξ̂2 σ̂κ̂p,ξ̂3 . . . 0 σ̂κ̂p,κ̂2 σ̂κ̂p,κ̂3 . . . σ̂2
κ̂p



. (3.4)

The zeros in the estimated variance-covariance matrix Σ̂ξ̂,κ̂ of Equation (3.4) arise from

the restrictions ξ1 ≡ 0 and κ1 ≡ 0 used in the model-fitting function rsmodel() to

ensure parameter identifiability (see Section 2.3 for more details).

In the PCM, item location parameters β as introduced in Equation (2.3) are computed

from the estimated cumulative absolute item threshold parameters η̂ as

β̂j =
1

pj

pj∑
k=1

(
η̂jk − η̂j(k−1)

)
=
η̂jpj
pj

with ηj0 ≡ 0 for notational purposes. Their variance-covariance matrix Σ̂β̂ is derived

with the multivariate delta method as

Σ̂β̂ = CΣ̂η̂C
>

where

(C)ab =
∂β̂a
∂η̂b

=

 1
pj

if η̂b = η̂apa

0 else
a = 1, . . . ,m, b = 1, . . . ,

m∑
j=1

pj.

After computing the item location parameters β̂ in the RSM and the PCM, the restric-

tion specified in the argument ref is applied. As in the function itempar.raschmodel(),

this is done by applying the transformation given in Equation (3.1) to the computed item

location parameters β̂. Their adjusted variance-covariance matrix Σ̂β̂ is derived by the
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multivariate delta method as shown in Equation (3.2) with the contrast matrix given in

Equation (3.3). If an arbitrary contrast matrix C is specified in the argument ref, the

adjustment is identical to that in the function itempar.raschmodel() described before.

With the implemented interface for the item location parameters β, the same restric-

tion can be easily applied to the estimated item location parameters β̂ of the different

IRT models. For example, the estimated item location parameters β̂ of the fitted di-

chotomous Rasch model, the fitted RSM and the fitted PCM with the first item location

parameter β1 restricted to zero, can be extracted with the following call to the generic

function itempar():

> iprm <- itempar(rmmod, alias = FALSE, ref = 1)

> iprsm <- itempar(rsmod, alias = FALSE, ref = 1)

> ippcm <- itempar(pcmod, alias = FALSE, ref = 1)

By setting the argument alias to FALSE, the aliased, i.e., restricted item location

parameter β1 is omitted from the result object. Based on the extracted estimated item

location parameters β̂, a numerical comparison of the three IRT models fitted in the

previous chapter is easily obtained by, e.g., binding them to a single matrix:

> print(cbind(RM = iprm, RSM = iprsm, PCM = ippcm), digits = 5)

RM RSM PCM

Do-Curse 0.79149 0.69856 0.72758

Want-Scold 1.33350 1.08845 1.08268

Do-Scold 2.26493 1.79282 1.69005

Want-Shout 2.28973 1.85656 1.82664

Do-Shout 3.87750 3.17708 2.96675

As can be seen from the results, the estimated item location parameters β̂ of the RSM

and the PCM are relatively similar, whereas the estimated item location parameters β̂

of the dichotomous Rasch model are substantially higher for almost all items.

3.2.4. Item Threshold Parameters

Item threshold parameters δ are represented by the R class threshpar. In contrast to

the other structural components, estimated item threshold parameters δ̂ are represented

as a named list. This format is chosen because the number of estimated item threshold

parameters δ̂ can in some models, e.g., in the PCM, vary per item. A label referring to the
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threshpar(object, type = c("mode", "mean", "median"), ref = NULL,

alias = TRUE, relative = FALSE, cumulative = FALSE, vcov = TRUE, ...)

Code segment 3.3. Interface of the generic function threshpar().

underlying IRT model, the restriction used, if chosen, the removed aliased parameters,

if requested, the estimated (and adjusted) variance-covariance matrix Σ̂δ̂, the type of

the extracted estimated item threshold parameters δ̂ and the information whether they

are relative or not and cumulative or not are attached as attributes to the named list of

class threshpar.

The interface of the generic function threshpar() is shown in code segment 3.3. As

in the other generic functions, the first argument object is a fitted model object of

class raschmodel, rsmodel or pcmodel. With the argument type, item threshold pa-

rameters δ̂ based on different definitions can be extracted. Within this Master’s thesis

only item threshold parameters δ̂ of type mode are considered. These correspond to

the item threshold parameters δ̂ discussed in Chapter 2 and illustrated in Figure 2.2.

As before, the argument alias allows to choose whether the aliased, i.e., restricted

parameters should be included in the result object. With the logical argument rela-

tive, the extraction of absolute (FALSE) or relative (TRUE) item threshold parameters

can be requested. With the logical argument cumulative, cumulative item threshold

parameters η̂ as discussed in Section 2.1 can be requested. The argument vcov controls

whether the adjusted variance-covariance matrix Σ̂δ̂ is attached as attribute. The ad-

justment with respect to the restriction specified in the argument ref is based on the

multivariate delta method. The specification of the argument ref is dependent on the

underlying IRT model and will be discussed in the following together with the details

of the three model-specific methods threshpar.raschmodel(), threshpar.rsmodel()

and threshpar.pcmodel().

In the dichotomous Rasch model as implemented in the R package psychotools and

discussed in Section 2.3, the estimated absolute item threshold parameters δ̂ directly

correspond to the estimated item location parameters β̂. Therefore, the estimated (and

possibly adjusted) item location parameters β̂ are returned if absolute item threshold

parameters δ are requested. The adjustment and the specification of the argument ref is

identical to that in the function itempar.raschmodel() and described in Section 3.2.3.

If relative item threshold parameters τ are requested, itempar.raschmodel() returns a

numeric vector of length m filled with zeros as there is only one relative item threshold

parameter τ1 which is (arbitrarily) restricted to zero. Other restrictions can be applied
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by supplying a contrast matrix C in the argument ref. The relative item threshold

parameters τ are then adjusted by multiplying the unmodified parameter vector with

the supplied contrast matrix. The variance-covariance matrix Στ of the relative item

threshold parameters τ is always a m × m matrix filled with a zero as there is no

relative item threshold parameter to be estimated in the dichotomous Rasch model. In

addition, cumulative or non-cumulative absolute or relative item threshold parameters

are identically in the dichotomous Rasch model as there is only one parameter per item.

In the implementation of the RSM and the PCM in the R package psychotools, the

absolute or relative item threshold parameters are not estimated directly and therefore

the following steps are carried out in the functions threshpar.rsmodel() and thresh-

par.pcmodel() to arrive at the parameters requested by the user:

1. Based on the estimated parameters, absolute or relative item threshold parameters

and their variance-covariance matrix are computed.

2. The restriction specified in the argument ref is applied on the computed param-

eters and their variance-covariance matrix is adjusted accordingly.

3. If requested, cumulative absolute or relative item threshold parameters and their

variance-covariance matrix are computed.

These steps are explained in more detail in the following separately for the RSM and

the PCM.

For the RSM, absolute item threshold parameters δ̂ are computed based on the esti-

mated item-specific parameters ξ̂ and the estimated cumulative relative item threshold

parameters κ̂ as

δ̂jk = ξ̂j + (κ̂k − κ̂k−1)

with j = 1, . . . ,m, k = 1, . . . , p and κ0 ≡ 0 for notational purposes. Their variance-

covariance matrix Σ̂δ̂ is derived with the multivariate delta method as

Σ̂δ̂ = CΣ̂ξ̂,κ̂C
>

where

C = (C1 C2)

with

(C1)ab =
∂δ̂a

∂ξ̂b
=

1 if δ̂a ∈ {δ̂b1, δ̂b2, . . . , δ̂bp}

0 else
a = 1, . . . ,m · p, b = 1, . . .m,
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and

(C2)ab =
∂δ̂a
∂κ̂b

=


1 if δ̂a ∈ {δ̂1b, . . . , δ̂mb}

−1 if δ̂a ∈ {δ̂1(b−1), . . . , δ̂m(b−1)} ∧ b > 1

0 else

with a = 1, . . . ,m · p, b = 1, . . . , p and Σ̂ξ̂,κ̂ given as in Equation (3.4). Relative item

threshold parameters τ̂ are computed based on the estimated cumulative relative item

threshold parameters κ̂ as

τ̂k = κ̂k − κ̂k−1

with k = 1, . . . , p and κ0 ≡ 0 for notational purposes. Their variance-covariance matrix

Σ̂κ̂ is derived with the multivariate delta method as

Σ̂τ̂ = CΣ̂κ̂C
>

where

Σ̂κ̂ =



0 0 0 . . . 0

0 σ̂2
κ̂2

σ̂κ̂2,κ̂3 . . . σ̂κ̂2,κ̂p

0 σ̂κ̂3,κ̂2 σ̂2
κ̂3

. . . σ̂κ̂3,κ̂p
...

...
...

. . .
...

0 σ̂κ̂p,κ̂2 σ̂κ̂p,κ̂3 . . . σ̂2
κ̂p


and

(C)ab =
∂τ̂a
∂κ̂b

=


1 if a = b

−1 if a = b− 1 ∧ b > 1

0 else

a, b = 1, . . . , p.

For both, absolute and relative item threshold parameters a restriction identical to that of

the item location parameters β can be specified through the argument ref, i.e., ref can

be again either a character vector of absolute or relative item threshold parameter labels

or a numeric vector with absolute or relative item threshold parameter position indices.

In both cases, the particular parameters are adjusted as the item location parameters

β in the dichotomous Rasch model, i.e., a transformation identically to that in Equa-

tion (3.1) is applied on the computed absolute or relative item threshold parameters and

their variance-covariance matrix is adjusted by the multivariate delta method. For this

purpose, a contrast matrix structurally identical to that in Equation (3.3) is used. Addi-

tionally, as in the itempar() methods, the user can again specify an arbitrary contrast

matrix C which is then directly used to transform the computed absolute or relative
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item threshold parameters and their variance-covariance matrix. If cumulative abso-

lute or relative item threshold parameters are requested by the user, the computed and

transformed absolute or relative item threshold parameters and their variance-covariance

matrix are in a last step adjusted by a block-diagonal contrast matrix

C =



C1 . . . 0 . . . 0
...

. . . . . .
...

0 Cj 0
...

. . . . . .
...

0 . . . 0 . . . Cm


(3.5)

with

Cj =


1 0 . . . 0

1 1 . . . 0
...

...
. . .

...

1 1 . . . 1

 ∈ Rp×p. (3.6)

The block-diagonal contrast matrix C implements a cumulative sum over the absolute

or relative item threshold parameters of an item j (see Table A.1 for an overview of the

different transformations).

For the PCM, absolute item threshold parameters δ̂ are computed based on the esti-

mated cumulative absolute item threshold parameters η̂ as

δ̂jk = η̂jk − η̂j(k−1) (3.7)

with j = 1, . . . ,m, k = 1, . . . , pj and ηj0 ≡ 0 for notational purposes. Their variance-

covariance matrix Σ̂δ̂ is derived with the multivariate delta method as

Σ̂δ̂ = CΣ̂η̂C
>

where

Σ̂η̂ =



0 0 0 . . . 0

0 σ̂2
η̂12

σ̂η̂12,η̂13 . . . σ̂η̂12,η̂mpm

0 σ̂η̂13,η̂12 σ̂2
η̂13

. . . σ̂η̂13,η̂mpm

...
...

...
. . .

...

0 σ̂η̂mpm ,η̂12 σ̂η̂mpm ,η̂13 . . . σ̂2
η̂mpm


(3.8)
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and C is given as block-diagonal matrix

C =



C1 . . . 0 . . . 0
...

. . . . . .
...

0 Cj 0
...

. . . . . .
...

0 . . . 0 . . . Cm


with

(Cj)ab =
∂δ̂ja
∂η̂jb

=


1 if a = b

−1 if a = b− 1 ∧ b > 1

0 else

a, b = 1, . . . , pj.

Based on the transformations discussed in Section 2.1 and shown in Equation (2.3),

Equation (2.4) and Equation (3.7), relative item threshold parameters τ̂ are computed

in the PCM from the estimated cumulative absolute item threshold parameters η̂ as

τ̂jk = δ̂jk − β̂j

= δ̂jk −
1

pj

pj∑
k=1

δ̂jk

=
(
η̂jk − η̂j(k−1)

)
− 1

pj

pj∑
k=1

(
η̂jk − η̂j(k−1)

)
=
(
η̂jk − η̂j(k−1)

)
−
η̂jpj
pj

with j = 1, . . . ,m, k = 1, . . . , pj and ηj0 ≡ 0 for notational purposes. Their variance-

covariance matrix Σ̂τ̂ is derived with the multivariate delta method as

Σ̂τ̂ = CΣ̂η̂C
>
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where Σ̂η̂ is given as in Equation (3.8) and C is given as block-diagonal matrix

C =



C1 . . . 0 . . . 0
...

. . . . . .
...

0 Cj 0
...

. . . . . .
...

0 . . . 0 . . . Cm


with

(Cj)ab =
∂τ̂ja
∂η̂jb

=



1 if a = b ∧ a < pj

1− 1
pj

if a = b ∧ a = pj

−1 if a = b− 1 ∧ 1 < b < pj

0 else

a, b = 1, . . . , pj.

In the case of absolute item threshold parameters δ, a restriction identical as above for

the RSM can be specified through the argument ref in the function itempar.pcmodel().

In the case of relative item threshold parameters τ , m restrictions have to be specified as

was discussed in Section 2.3. The argument ref in this case can be either again a single

character vector of relative item threshold parameter labels or a single numeric vector

with relative item threshold parameter position indices or a list withm different character

or numeric vectors. In the case a single restriction was specified, this restriction is used for

all m sets of relative item threshold parameters τ j. As before in the RSM, the absolute or

relative item threshold parameters are adjusted by applying a transformation identically

to that in Equation (3.1) and their variance-covariance matrix is again adjusted by

the multivariate delta method with a contrast matrix structurally identical to that in

Equation (3.3). Additionally, the user can again specify an arbitrary contrast matrix

C which then will be used instead. If cumulative absolute or relative item threshold

parameters are requested by the user, these parameters and their variance-covariance

matrix are computed as in the RSM, i.e., by applying a block-diagonal contrast matrix

similar to that shown in Equation (3.5) and Equation (3.6) on the computed and adjusted

absolute or relative item threshold parameters.

Similar as the estimated item location parameters β̂, the estimated absolute item

threshold parameters δ̂ can be extracted from a fitted RSM and a fitted PCM with the

following calls to the generic function threshpar():
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> atprsm <- threshpar(rsmod, relative = FALSE, ref = 1)

> atppcm <- threshpar(pcmod, relative = FALSE, ref = 1)

As before, the first absolute item threshold parameter δ1 is restricted to zero and this

time is included in the result object. The extracted estimated absolute item threshold

parameters δ̂ can be again used for a numerical comparison of the two IRT models. The

coef() method allows the extraction of the estimated absolute item threshold parame-

ters δ̂ in a matrix format which can be easily binded together to provide a convenient

summary of the two IRT models:

> print(cbind(coef(atprsm, type = "matrix"),

+ coef(atppcm, type = "matrix")), digits = 5)

C1 C2 C1 C2

Want-Curse 0.00000 1.5038 0.00000 1.5779

Do-Curse 0.69856 2.2024 0.65786 2.3752

Want-Scold 1.08845 2.5923 1.12687 2.6164

Do-Scold 1.79282 3.2966 1.92399 3.0340

Want-Shout 1.85656 3.3604 1.91094 3.3202

Do-Shout 3.17708 4.6809 3.26369 4.2477

As can be seen from the results, there is a rather strong variation in the estimated

absolute item threshold parameters δ̂ between the two IRT models. E.g., the first abso-

lute item threshold parameter δ̂21 of the second item “Do-Curse” is smaller for the PCM

compared to the RSM where instead the second absolute item threshold parameter δ̂22 is

larger for the PCM compared to the RSM. This variation in the estimated absolute item

threshold parameters δ̂jk between the two IRT models can be used as a first indication

when selecting an appropriate IRT model.

A comparison of the estimated relative item threshold parameters τ̂ of the two models

allows a more direct assessment whether the more restrictive threshold parametrization

in the RSM compared to the PCM is appropriate for the present data set (see Section 2.1

for a more detailed discussion of the different parametrizations and assumptions). As

the provided interface allows the extraction of the estimated relative item threshold

parameters τ̂ under arbitrary restrictions, such a comparison is easily possible. For

this purpose, the estimated relative item threshold parameters τ̂ are in a first step

extracted from the fitted model objects with the following calls to the generic function

threshpar():
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> rtprsm <- threshpar(rsmod, ref = 1, relative = TRUE)

> rtppcm <- threshpar(pcmod, ref = 1, relative = TRUE)

As before, the same restriction is applied for both models by appropriately setting the

ref argument. In the RSM, this means that the first relative item threshold parameter

τ1 is set to zero. In the PCM, as was described before, this means that each item-specific

relative item threshold parameter τj1 is set to zero. A numerical comparison of the two

IRT models is again easily created by binding the extracted parameter matrices of the

two models together:

> print(cbind(coef(rtprsm, type = "matrix"),

+ coef(rtppcm, type = "matrix")), digits = 5)

C1 C2 C1 C2

Want-Curse 0 1.5038 0 1.57787

Do-Curse 0 1.5038 0 1.71731

Want-Scold 0 1.5038 0 1.48949

Do-Scold 0 1.5038 0 1.10998

Want-Shout 0 1.5038 0 1.40926

Do-Shout 0 1.5038 0 0.98399

The numerical comparison of the estimated relative item threshold parameters τ̂jk

indicates a rather strong variation in the item-specific estimates of the PCM compared

to the global estimate of the RSM. Hence, the more flexible parametrization of the PCM

compared to the RSM might be more appropriate for the present subset of the verbal

aggression data. In the following chapters, the question whether the RSM or the PCM

is more appropriate for the present subset of the verbal aggression data will be pursued

further and additional tools will be presented which facilitate the process of selecting an

appropriate IRT model.

An unified framework for IRT models was introduced in this chapter and implemented

in the R package psychotools. This framework provides an extensible tool to extract the

different parameters of IRT models together with their variance-covariance matrices

independent of the restriction used when estimating them. For the person parameters

θ, a maximum likelihood estimation procedure was additionally implemented for the

three IRT models of the R package psychotools. As was shown in several application

examples, a numerical comparison of IRT models based on their estimated parameters is

easily possible with the provided framework. In addition, it is the foundation for several

additional visual and inferencial tools introduced in the following chapters.
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4. Visualization of IRT Models

This chapter focuses on the visualization of IRT models. Based on the available liter-

ature, existing R packages for IRT modeling and the theoretical background presented

in Chapter 2, several more established visualization techniques for IRT models are in a

first step discussed in the following Section 4.1. In a second step, an implementation of

the discussed visualization techniques which is built upon the unified framework estab-

lished in the previous Chapter 3 is provided in Section 4.2. Several application examples

illustrate the advantages of the provided implementation in more detail in the following.

4.1. Strategies to Visualize IRT Models

The most frequently used visualization of IRT models is the category response curve

visualization exemplarily illustrated in Figure 2.1 and Figure 2.2 for a GPCM. This type

of visualization of an IRT model can be found in nearly all popular IRT text books

(e.g., Hambleton et al., 1991; Van der Linden & Hambleton, 1997; De Boeck & Wilson,

2004; Nering & Ostini, 2010) under various labels, e.g., as trace lines, item or category

operating curves, item or category characteristic curves or item or category response

curves which is also the term used in this Master’s thesis. It is also implemented in several

R packages like the R package eRm (Mair et al., 2014) or the R package ltm (Rizopoulos,

2013). As already discussed in Chapter 2, the probability of choosing a category k of an

item j as predicted under a certain IRT model is illustrated in this type of visualization.

The visualized probabilities directly result from the specific model equation, e.g., for the

GPCM, the probabilities are computed as shown in Equation 2.1. Hence, the category

response curve visualization illustrates all available information as it not only uses the

point estimates of the item parameters but also the assumed structure of the underlying

IRT model. In addition, it is available for every IRT model. If a comparison of different

items is intended, a matrix approach is often used with the category response curve

visualization discussed before. In this approach, the category response curves of different

items are arranged in a matrix such that each cell represents the category response curves

of a certain item as predicted under a certain IRT model. This is illustrated in Figure 4.1
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Figure 4.1. Visualization of the category response curves under a PCM fitted to the items
13-18 of the verbal aggression data in a matrix of “curve plots”.

for a PCM fitted to the items 13-18 of the verbal aggression data.

In a related visualization technique used by Masters & Wright (1997) besides the cat-

egory response curve visualization, each category is visualized only by a single region

instead of a whole curve as in the category response curve visualization. The region of

a category marks the area on the dimension of the latent trait where this category is

the most probable chosen category. Such a “region plot” is illustrated in Figure 4.2 for

the items and the PCM already illustrated in Figure 4.1. As the regions are completely

determined by the estimated absolute item threshold parameters δ̂ and the informa-

tion concerning the specific probabilities of choosing some category k is dismissed, no

knowledge of the underlying IRT model is necessary in this type of visualization. The

only necessity are the estimated absolute item threshold parameters δ̂ of an IRT model.

In addition, by dismissing some information, multiple items can be illustrated more

compactly and a comparison between different items is much easier. The region plot vi-

sualization is related to the “effect plots” suggested by Fox & Hong (2009) in the context
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Figure 4.2. Visualization of the estimated absolute item threshold parameters δ̂ of a PCM
fitted to the items 13-18 of the verbal aggression data in a “region plot”.

of multinomial and a proportional-odds logit models where the proportions of choosing

some option of a categorical item is visualized along the linear predictor of a multinomial

or proportional-odds logit model.

Another strategy to visualize IRT models are “profile plots”. In this approach, each

item is visualized only by its estimated item location parameter β̂j. A profile is displayed

by connecting the individual point estimates by a dashed line thus facilitating the recog-

nition of differences between the items. Hence, as in the region plot visualization, all

information concerning the underlying IRT model is dismissed. In addition, each item

is solely represented by a single point estimate. This type of visualization is available

for all IRT models where an item can be represented by a single parameter. As was

discussed in Chapter 2, this is the case for the GPCM and all related models when a

relative item threshold parametrization is used. Such a “profile plot” of the PCM already

illustrated in Figure 4.1 and Figure 4.2 is illustrated in Figure 4.3.

Besides the introduced approaches, few alternative visualization techniques for IRT

models can be found in the literature or other R packages for IRT modeling. One more

established alternative is the joint visualization of person and item parameters. In this

approach, the distribution of the estimated person parameters θ̂ is visualized against

the locations of the absolute item threshold parameters δ̂. This type of visualization

can be found, e.g., in Andrich (2013) and is also implemented in the R package eRm

(Mair et al., 2014). An example of this type of visualization as implemented in the R
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Figure 4.3. Visualization of the estimated item location parameters β̂ of a PCM fitted to the
items 13-18 of the verbal aggression data in a “profile plot”.

package eRm (Mair et al., 2014) is illustrated in Figure 4.4 for the PCM already shown

in the figures before and will be called “person-item plot” from here on. As the region

and profile plots, person-item plots dismiss the structure of the underlying IRT model

and only visualize point estimates or their frequencies.

A more indirect visualization technique for IRT models is the illustration of the “in-

formation” a category, an item or a whole test provides under a certain IRT model with

respect to the estimation of the person parameters θ. The term “information” here de-

notes the Fisher information, i.e., the negative expectation of the second derivative of

the likelihood function of a certain IRT model. A formal definition of the information

of a category, an item or a test under the GPCM introduced in Section 2 can be found

in Muraki (1993). This type of illustration is also implemented in the R package eRm

(Mair et al., 2014) and will be called “information plot” from here on. It is exemplarily

illustrated in Figure 4.5 for the PCM already shown in the figures before. Similar to the

item or category response curve visualization introduced before, the visualization of the

information is dependent on the structure of the underlying IRT model and is available

for all IRT models.

Two things can be concluded from the above introduction and illustration of several

existing visualization techniques for IRT models: First, they differ in their degree of ab-

stractness and the information visualized, and second, different structural elements are

necessary to create them. All visualization techniques except the item or category oper-

33



Do−Shout

Want−Shout

Do−Scold

Want−Scold

Do−Curse

Want−Curse

−2 −1 0 1 2 3 4 5 6
Latent trait θ

● ●

1 2
●

● ●

1 2
●

● ●

1 2
●

● ●

1 2
●

● ●

1 2
●

● ●

1 2
●

 

 

 

 

 

 
ttx

Person
Parameter

Distribution

Figure 4.4. Joint visualization of the estimated person parameters θ̂ and the estimated absolute
item threshold parameters δ̂ of a PCM fitted to the items 13-18 of the verbal aggression data
in a “person-item plot” as implemented in the R package eRm (Mair et al., 2014).
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Figure 4.5. Visualization of the item information under a PCM fitted to the items 13-18 of the
verbal aggression data in an “information plot”.

ating curves and the visualization of the category, item or test information dismiss the

structure of the underlying IRT model and only depend on one or more of the identified
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Table 4.1. Summary of the different visualization techniques, the necessary structural compo-
nents and the name of the implemented R function to create them.

Visualization technique Necessary structural components Implemented R function

Item or category response
curve (matrix)

Model structure, absolute item
threshold parameters δ

curveplot()

Region plot Absolute item threshold parame-
ters δ

regionplot()

Profile plot Depending on the visualized pro-
file either item location param-
eters β, absolute item threshold
parameters δ or item discrimina-
tion parameters α

profileplot()

Person-item plot Person parameters θ and abso-
lute item threshold parameters δ

piplot()

Information plot Fisher information under a spe-
cific IRT model

infoplot()

structural components of an IRT model. Based on the unified framework introduced in

Chapter 3, an implementation of these visualization techniques independent of a certain

IRT model is suggested in the next Section 4.2. For the item or category operating

curves and the visualization of the information, an additional step is necessary to pro-

vide such a model-independent implementation. A solution for this problem together

with an implementation of these visualization techniques is also discussed in the next

Section 4.2.

4.2. An Implementation Based on the Unified

Framework

Beginning from the category response curve visualization either for a single item as illus-

trated in Figure 2.1 and Figure 2.2 or for multiple items as illustrated in Figure 4.1, the

above introduced visualization techniques successively reduce the amount of information

illustrated and also the elements necessary to create them. This is summarized in Ta-

ble 4.1 where for each visualization technique the necessary structural components and,

in addition, the name of the implemented R function to create a specific visualization

are depicted.

As can be seen from Table 4.1, all visualization techniques except the item or category

response curve visualization and the visualization of the information of a category, item
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curveplot(object, ref = NULL, items = NULL, names = NULL, layout = NULL,

xlim = NULL, ylim = c(0, 1), col = NULL, lty = NULL, main = NULL,

xlab = "Latent trait", ylab = "Probability", add = FALSE, ...)

Code segment 4.1. Interface of the function curveplot().

or test only depend on one or two of the identified structural components. With the

provided unified framework discussed in Section 3.2, an implementation independent of

the underlying IRT model is possible for these visualization techniques. For the item

or category response curve visualization, the structure of the underlying IRT model is

necessary to compute the probabilities illustrated in this type of visualization. For the

visualization of the information, the Fisher information under a certain IRT model is

necessary. Solutions implemented for these two visualization techniques and more details

on the implemented functions to create the different types of visualization are discussed

in the following sections separately for each visualization technique.

4.2.1. Item or Category Response Curves (Curve Plots)

Item or category response curves have been implemented in the function curveplot().

The interface of this function is shown in code segment 4.1.

In the first argument object, a fitted model object of class raschmodel, rsmodel or

pcmodel can be specified for which item or category response curves should be visualized.

Hence, the function curveplot() is implemented model-independent. To nevertheless

compute model-dependent probabilities as needed in the item or category response curve

visualization, a method of the generic function predict() for the fitted model given in

the argument object has to exist, which is called internally in the function curveplot().

This method should be able to compute the category-specific probabilities for a given

value of the person parameter θ and a given restriction for the absolute item threshold

parameters δ which can be specified in the argument ref. Such predict() methods

have been implemented within this Master’s thesis for the dichotomous Rasch model,

the RSM and the PCM in the R package psychotools.

With the function curveplot(), both, a visualization of the item or category response

curves of a single item as well as a matrix of the item or category response curves of

multiple items as shown in Figure 4.1 can be created. This can be controlled with the

argument items where either position indices or names of items of the data set used to

fit the model can be specified. For example, the category response curves only of the
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regionplot(object, thresharg = list(type = NULL, ref = NULL,

alias = TRUE), names = NULL, main = NULL, xlab = "Items",

ylab = "Latent trait", ylim = NULL, off = 0.1, col = NULL, ...)

Code segment 4.2. Interface of the function regionplot().

13th item of the verbal aggression data under the previously estimated PCM can be

visualized with the following call:

> curveplot(pcmod, items = 1)

The category response curve visualization of all six items which is illustrated in Fig-

ure 4.1 can be created with the following call:

> curveplot(pcmod, ref = 1, items = 1:6,

+ layout = matrix(1:6, ncol = 3, nrow = 2, byrow = FALSE))

In the previous call, the arrangement of the category response curves of the six items

visualized was modified by setting the layout argument. In this argument, a matrix

with successive increasing integers can be specified and the category response curves of

different items will be arranged in a matrix with the same dimensions and in the order

as the specified integer values are located within the given matrix. In addition, the first

estimated absolute item threshold parameter δ̂11 was set to zero by using the argument

ref. To increase the readability, additional arguments to control further aspects like

the axis labels have been omitted in the illustrated call. A detailed description of these

arguments can be found on the help site of the function curveplot(). With the ar-

gument add, the category response curves of different models can be overlayed. This

is an advantage of the model-independent implementation of the different visualization

techniques and will be illustrated in more detail in Section 4.3.

4.2.2. Region Plots

Region plots have been implemented in the function regionplot(). The interface of

this function is shown in code segment 4.2.

As discussed before, the region plot visualization is only dependent on the absolute

item threshold parameters δ. Hence, the function regionplot() is independent of a

certain IRT model and only relies on a method for the generic function threshpar() for

the model specified in the first argument object. Such methods have been implemented
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profileplot(object, what = c("items", "thresholds", "discriminations"),

paramarg = list(type = NULL, ref = NULL, alias = TRUE), index = TRUE,

names = NULL, main = NULL, abbreviate = FALSE, ref = TRUE, col = NULL,

pch = NULL, cex = 1, refcol = "lightgray", linecol = "black", lty = 2,

ylim = NULL, xlab = NULL, ylab = NULL, add = FALSE, ...)

Code segment 4.3. Interface of the function profileplot().

for the three IRT models available in the R package psychotools (see Section 3.2 for more

details). Several settings of the internal call of the function threshpar() can be specified

in the argument thresharg. Various aspects concerning the graphical appearence of a

region plot can be controlled by the additional arguments of the function regionplot().

A detailed description of these arguments can be found on the help site of this function.

The region plot shown in Figure 4.2 can be created with the following call:

> regionplot(pcmod, names = lbs, thresharg = list(ref = 1),

+ ylab = expression(paste("Latent trait ", theta)),

+ ylim = c(-1.5, 2.5), col = c("#E495A5", "#ABB065", "#39BEB1"))

As before, the first estimated item threshold parameter δ̂11 has been restricted to zero

by setting the argument ref. In addition, several visual aspects like the axis labels, the

axis range, the item labels and the colors of the illustrated regions have been adjusted

in the above call.

4.2.3. Profile Plots

Profile plots have been implemented in the function profileplot(). The interface of

this function is shown in code segment 4.3.

The function profileplot() is very general. Depending on the specification of the

argument what, a profile plot as shown in Figure 4.3 can be created, but the function

also allows to create profiles of other structural components, e.g., a profile plot of the

discrimination parameters α or a profile plot of the absolute item threshold parame-

ters δ. The requested parameters are retrieved inside the function profileplot() by

a call to one of the generic functions itempar(), threshpar() or discrpar(). Hence,

independent of the requested profiles to visualize, the function profileplot() is also

implemented model-independent as long as methods for the generic functions itempar(),

threshpar() and discrpar() exist for the model object specified in the argument
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piplot(object, ref = NULL, items = NULL, xlim = NULL, names = NULL,

labels = TRUE, main = "Person-Item Map", xlab = "Latent trait",

abbreviate = FALSE, cex.axis = 0.8, cex.text = 0.5,

cex.points = 1.5, ...)

Code segment 4.4. Interface of the function piplot().

object. The argument paramarg of the function profileplot() allows to adjust cer-

tain settings in the call of these functions (see Section 3.2 for a more detailed description

of these arguments). Several further arguments allow to modify the visual appearance

of the created profile plot. As before, a detailed description of these arguments can be

found on the help site of the function profileplot(). Examples of other profile plots

are illustrated in the following Section 4.3.

4.2.4. Person-Item Plots

Person-item plots have been implemented in the function piplot(). The interface of

this function is shown in code segment 4.4.

As listed in Table 4.1, person parameters θ and absolute item threshold parameters δ

are necessary to create an person-item plot as shown in Figure 4.4. These structural com-

ponents are retrieved from the fitted model object specified in the first argument object

by internal calls to the functions personpar() and threshpar(). Hence, as the other

implemented graphical functions, the function piplot() is also model-independent. A

restriction to be used for the absolute item threshold parameters δ, both when estimat-

ing the person parameters θ and in the call of the generic function threshpar(), can

be specified with the argument ref. The items for which the absolute item threshold

parameters δ should be visualized can be specified with the argument items. The spec-

ification of this argument is identical as for the function curveplot() (see Section 4.2.1

for more details). The visual appearance of a person-item plot can be adjusted by several

additional arguments. A detailed description of these arguments can be again found on

the help site of the function piplot().

4.2.5. Information Plots

Information plots have been implemented in the function infoplot(). The interface of

this function is shown in code segment 4.5.

As the function curveplot(), the function infoplot() is implemented model-inde-
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infoplot(object, what = c("categories", "items", "test"), ref = NULL,

items = NULL, names = NULL, layout = NULL, xlim = NULL, ylim = NULL,

col = NULL, lty = NULL, lwd = NULL, main = NULL, legend = TRUE,

xlab = "Latent trait", ylab = "Information", add = FALSE, ...)

Code segment 4.5. Interface of the function infoplot().

pendent. This is again possible by relying on the existence of a model-specific predict()

method which should be able to compute the category, item and test information for the

fitted model specified in the first argument object. Such predict() methods have been

implemented for the three IRT models of the R package psychotools according to the

formal definitions given by Muraki (1993). Similar as in the other plotting functions, a

restriction to be used for the absolute item threshold parameters δ can be specified with

the argument ref. If a visualization of the item or category information is requested,

a subset of items can be selected by appropriately setting the argument items. Similar

as in the function curveplot(), the argument layout allows the modification of the

arrangement of the visualized item or category information curves. If it is set to NULL,

the information curves of different items are overlayed. This is illustrated in more detail

in the following Section 4.3. As in the other functions, the visual appearance of the

information plots can be adjusted by several additional arguments which are described

in more detail on the corresponding help site of the function infoplot().

4.3. Advantages and Application Examples

Based on the proposed unified framework for IRT models in Chapter 3, implementations

for all popular visualization techniques have been suggested in the previous sections

which do not depend on a specific IRT model. The only necessary condition for an

IRT model to be visualized by the introduced graphical functions are the existence of

model-specific methods for the generic functions itempar(), threshpar(), discrpar()

and personpar(). In addition, a model-specific predict() method is necessary for the

item or category response curve visualization and the visualization of the category, item

or test information. As discussed before, all these methods have been implemented for

all IRT models of the R package psychotools within this Master’s thesis.

A major advantage of the implemented visualization approach is its extensibility to

new IRT models. These can be directly visualized by the introduced graphical func-

tions as soon as methods for the generic functions of the various structural components
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(or the generic function predict()) exist. Hence, also the IRT models implemented

in other R packages, e.g., in the R package eRm (Mair et al., 2014) or in the R pack-

age ltm (Rizopoulos, 2013), can be visualized by the introduced graphical functions as

soon as methods for the generic functions itempar(), threshpar(), discrpar() and

personpar() are provided for the models of these packages. Extensibility is also possible

with respect to the visualization techniques provided. Any imaginable visualization of

the different structural components can be easily set up in a R function and if it is build

on the generic extractor functions of these components, it will be immediately applicable

to all models where methods for these functions exist. For example, a histogram of the

person parameters similar to that in the person-item plot illustrated in Figure 3.2 is

easily implemented model-independent in the following function personhist() which is

built around the R-internal function hist() and only relies on a method to the generic

function personpar() for the fitted model specified in the first argument object:

> personhist <- function (object, ...) {

+ pp <- personpar(object)

+ hist(pp, ...)

+ }

Another advantage of the implemented visualization approach is the possibility of

graphical comparisons of different IRT models. By abstracting the visualization tech-

niques from a specific IRT model and relying on shared structural components, the

visualization of different IRT models can be overlayed in the same illustration and hence

compared between each other. Based on the fitted dichotomous Rasch model, the fitted

RSM and the fitted PCM, this is illustrated with some examples in the following.

The category response curves predicted under the RSM and the PCM for a single

item, e.g., the first item, can be easily compared by two successive calls to the function

curveplot():

> curveplot(rsmod, items = 1, ref = 1)

> curveplot(pcmod, items = 1, ref = 1, lty = 2, add = TRUE)

The result is illustrated in Figure 4.6. To make the results comparable to previous

illustrations, the argument ref was again set to one, i.e., the first absolute item threshold

parameter δ11 was restricted to zero. For readability, additional arguments set to modify

the visual appearance and add a legend to the result have been omitted in the above

calls. As can be seen in Figure 4.6, the predicted probabilities for choosing the different
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Figure 4.6. Visualization of the category response curves of the 13th item as predicted under
a RSM and a PCM each fitted to the items 13-18 of the verbal aggression data.

categories under the two models are almost identical for the 13th item of the verbal

aggression data.

While a model comparison with the category response curve visualization in the pro-

vided implementation is only possible for a single item, the profile plot visualization al-

lows to compare IRT models with respect to multiple items. For example, the estimated

item location parameters β̂ of all three models for the items 13-18 of the verbal aggression

data can be easily compared with the following calls to the function profileplot():

> profileplot(rmod, what = "items",

+ paramarg = list(ref = 1), col = "green")

> profileplot(rsmod, what = "items",

+ paramarg = list(ref = 1), col = "blue", add = TRUE)

> profileplot(pcmod, what = "items",

+ paramarg = list(ref = 1), col = "red", add = TRUE)

To provide the comparability of the resulting Figure 4.7 to previous illustrations and

also to provide the comparability between the different models, the same restriction,

i.e., restricting the first item location parameter β1 to zero, was applied to all three IRT

models by setting the ref argument to one. Additional arguments which modify the

visual appearance have been again omitted for readability in the previous calls. While

the estimated absolute item location parameters β̂ of the items 13 and 14 are nearly
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Figure 4.7. Graphical comparison of the estimated item location parameters β̂ of a dichoto-
mous Rasch Model, a RSM and a PCM fitted to the items 13-18 of the verbal aggression
data.

identical between all three IRT models, the estimated item location parameters β̂ of

the remaining items 15-18 are substantially higher in the dichotomous Rasch model

compared to the RSM and the PCM. In contrast, the estimates of the RSM and the

PCM are rather similar. Figure 4.7 is the graphical pendant to the numerical model

comparison based on the estimated item location parameters β̂ shown in Chapter 3.

A more detailed comparison between the RSM and the PCM can be achieved by a

profile plot of the estimated absolute item threshold parameters δ̂ for these two models.

Such a plot can be created by the following two calls to the function profileplot():

> profileplot(rsmod, what = "threshold",

+ paramarg = list(ref = 1), col = c("blue", "blue"))

> profileplot(pcmod, what = "threshold",

+ paramarg = list(ref = 1), col = c("red", "red"), add = TRUE)

The result is illustrated in Figure 4.8 and as before, the same restriction was applied

to both models to make the results comparable. Additional arguments which modify

the visual appearance have been again omitted for readability. In this more detailed

comparison, subtle differences can be seen between the RSM and the PCM. While in

the RSM, the distance between the absolute item threshold parameters δ of an item are

assumed to be equal, these can vary between the items in the PCM (see Section 2.1 for
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Figure 4.8. Profile plots of the estimated absolute item threshold parameters δ̂ of the RSM
and the PCM fitted to the items 13-18 of the verbal aggression data.

a more detailed discussion of the different parametrizations and assumptions). Hence,

the variation between the profiles of the estimated absolute item threshold parameters

δ̂ between the two IRT models illustrated in Figure 4.8 provides insights with respect

to violations of the assumptions and adequacy of the RSM for the analyzed data.

With the implemented visualization of the information of a category, item or test

additional insights concerning the response format can be achieved. For example, the

information of the items 13-18 of the verbal aggression data with respect to the estima-

tion of the person parameter θ under the dichotomous Rasch model and the PCM can

be compared with the following two calls:

> infoplot(rmmod, what = "items", lty = 1, xlim = c(-4, 8))

> infoplot(pcmod, what = "items", lty = 2, add = TRUE)

> legend(x = "topright", legend = c("RM", "PCM"), bty = "n", lty = 1:2)

The result is illustrated in Figure 4.9. As before, additional arguments which modify

the visual appearance have been again omitted for readability in the previous function

calls. As can be seen, the item information is generally much higher under the PCM

compared to the dichotomous RM. This is a consequence of the underlying polytomous

response format of the items under the PCM which allows to capture the response of a

subject in more detail compared to the dichotomous response format of the items under

the dichotomous RM.
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Figure 4.9. Visualization of the item information under a dichotomous RM and a PCM fitted
to the items 13-18 of the verbal aggression data.

The category information of the items 13-18 of the verbal aggression data under a

PCM can be visualized with the following call:

> infoplot(pcmod, what = "categories", items = 1:6, xlim = c(-4, 8)

+ layout = matrix(1:6, ncol = 3, nrow = 2))

The result is illustrated in Figure 4.10. By setting the layout argument, an arrange-

ment of the category information curves of the different items similar to the arrangement

of the category response curve matrix illustrated in Figure 4.1 is achieved. As can be

seen from Figure 4.10, the amount of information the middle category provides is di-

rectly associated with the width of the region on the dimension of the latent trait where

this category is the most probable category.

Overall, the provided and illustrated model-independent implementation of several

more established visualization techniques for IRT models offers an helpful visual tool

in the process of model selection and also item selection. As was illustrated, different

models can be easily compared with respect to their parameters and hence violations

of the underlying model assumptions can be identified. In addition, different items can

be compared with respect to their properties reflected through their item parameters

or their information. As was discussed in the beginning of this section, the provided

toolkit can be easily extended to new IRT models and new visualization techniques can

be added by relying on the provided unified framework for IRT models discussed in the

previous Chapter 3.
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Figure 4.10. Visualization of the category information under a PCM fitted to the items 13-18
of the verbal aggression data.
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5. Inference in IRT Models

In this chapter, tools and strategies for statistical inferences in IRT models are discussed

and illustrated within several application examples. Most of the presented tools and

strategies are based and possible through the unified framework introduced in Chapter 3.

Table 5.1 summarizes the illustrated functions. The remaining chapter is organized as

following: Section 5.1 focuses around the issue of model selection, Section 5.2 covers the

topics Wald coefficient tests, Wald confidence intervals, linear hypotheses and hence,

is centered around the estimated model parameters. Section 5.3 illustrates and points

out further applications in the context of testing for differential item functioning, i.e.,

identifying measurement differences in the items of a psychological questionnaire.

Table 5.1. Summary of the illustrated methods and functions for statistical inferences in IRT
models. The methods in the first block are the foundation for the generic functions in the
second block.

Function Description

coef() Extract the estimated coefficients of a structural component
or a fitted IRT model.

estfun() Extract the individual contributions to the score function
of a fitted IRT model.

logLik() Extract the value of the conditional log likelihood at the
estimated parameter values.

vcov() Extract the estimated variance-covariance matrix of a struc-
tural component or a fitted IRT model.

AIC(), BIC() Compute the AIC/BIC information criterion for a fitted
IRT model.

coeftest() Partial Wald test of model parameters.
confint() Confidence intervals for one or more parameters of a fitted

IRT model.
lrtest() Likelihood ratio test of two nested IRT models.
linearHypothesis() Wald test of linear hypotheses.
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5.1. Model Selection

The process of statistical model selection typically involves the computation of one or

more information criteria for several related models. In a second step, the model with

the smallest value in one or more of the computed information criteria is selected as

favorite model. The two most widely used information criteria for this purpose are the

Akaike information criterion (AIC),

AIC = −2 · log
(
L(θ̂|x)

)
+ 2 · k,

and the Bayesian (or Schwarz) information criterion (BIC),

BIC = −2 · log
(
L(θ̂|x)

)
+ log(n) · k.

Both, the AIC and the BIC, reduce a statistical model to a single number which tries

to reflect the goodness of fit of the model to the data represented by two times the

negative value of the maximized log-likelihood L(θ̂|x) while at the same time penalizing

for the complexity of the model reflected by some function of the number of estimated

parameters k. In the AIC, it is two times the number of estimated parameters k whereas

in the BIC, it is log(n) times the number of estimated parameters k. Hence, given a

sample size larger then 100, the AIC tends to prefer more complex models compared to

the BIC.

For the three IRT models implemented in the R package psychotools, the AIC and

the BIC are computed based on the conditional likelihood LC(β̂|x, s) (see Chapter 2

for more details). With model-specific methods for the generic functions logLik() and

nobs(), both information criteria can be easily computed with the built-in R functions

AIC() and BIC(). Such methods have been implemented for the three IRT models of

the R package psychotools. Hence, the AIC of the fitted RSM and the fitted PCM can

be computed with the following call to the generic function AIC():

> AIC(rsmod, pcmod)

df AIC

rsmod 6 1329.798

pcmod 11 1337.672

Equivalently, the BIC of these models can be computed with a call to the generic

function BIC():
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> BIC(rsmod, pcmod)

df BIC

rsmod 6 1352.333

pcmod 11 1378.985

Both information criteria favor the more parsimonious RSM compared to the more

flexible PCM for the items 13-18 of the verbal aggression data. As expected, this prefer-

ence is stronger in the more conservative BIC compared to the more liberal AIC. Overall,

the above results indicate that the numerical differences between the estimated param-

eters of the two hierarchically related models discussed in Chapter 3 and visualized in

Figure 4.8 of Chapter 4 are negligible.

With the implemented methods for the generic function logLik(), a variety of tools

provided by other R packages are readily available. For example, a more formal com-

parison of the two hierarchically related models based on an asymptotic (conditional)

likelihood ratio test (LRT) is directly possible by using the function lrtest() of the R

package lmtest (Zeileis & Hothorn, 2002):

> library("lmtest")

> lrtest(rsmod, pcmod)

Likelihood ratio test

Model 1: rsmod

Model 2: pcmod

#Df LogLik Df Chisq Pr(>Chisq)

1 6 -658.90

2 11 -657.84 5 2.1264 0.8314

Similar as the two information criteria, the result of the asymptotic LRT indicates

that the more parsimonious RSM is sufficient to adequately describe the responses of

the 316 subjects to the items 13-18 of the verbal aggression data.
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5.2. Hypotheses Tests and Confidence Intervals

On the level of the estimated parameters of an IRT model, Wald coefficient tests, Wald

confidence intervals and linear hypotheses are available as inferential tools. All of these

tools are founded on the asymptotic normality of the estimated model parameters given

in the (conditional) likelihood framework. Based on the implemented methods and

functions shown in Table 5.1, these inferencial tools can be easily applied as shown in

the following.

Wald confidence intervals and Wald coefficient tests are founded on the provided

coef() and vcov() methods for all structural components discussed in Chapter 3 and

are readily available through the application of several built-in or add-on R functions. For

example, Wald confidence intervals for the estimated item location parameters β̂ of the

fitted dichotomous Rasch model can be computed by the built-in R function confint()

as shown in the following. The significance level is set to α = 0.05 per default. By setting

the argument alias to FALSE, the aliased, i.e., restricted, item location parameter β1 is

not included in the output.

> confint(itempar(rmmod, ref = 1, alias = FALSE))

2.5 % 97.5 %

Do-Curse 0.4072442 1.175733

Want-Scold 0.9319176 1.735087

Do-Scold 1.8246728 2.705187

Want-Shout 1.8482788 2.731184

Do-Shout 3.2962717 4.458728

Wald coefficient tests are available by the add-on function coeftest() of the R package

lmtest (Zeileis & Hothorn, 2002). The significance level is again set to α = 0.05 per

default and the null and alternative hypothesis tested for each estimated item location

parameter β̂j is

H0 : β̂j = 0 vs. H1 : β̂j 6= 0.

The aliased, i.e., restricted, item location parameter β1 is again not included in the

output by setting the argument alias to FALSE.

> coeftest(itempar(rmmod, ref = 1, alias = FALSE))

z test of coefficients:
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Estimate Std. Error z value Pr(>|z|)

Do-Curse 0.79149 0.19605 4.0372 5.408e-05 ***

Want-Scold 1.33350 0.20489 6.5083 7.603e-11 ***

Do-Scold 2.26493 0.22463 10.0832 < 2.2e-16 ***

Want-Shout 2.28973 0.22523 10.1660 < 2.2e-16 ***

Do-Shout 3.87750 0.29655 13.0754 < 2.2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Based on the provided coef() and vcov() methods for the different structural compo-

nents, the add-on function linearHypothesis() of the R package car (Fox & Weisberg,

2011) allows to test arbitrary linear hypotheses of the estimated or computed model

parameters. This offers interesting possibilities. For example, the question whether the

more parsimonious RSM is sufficient compared to the more flexible PCM to adequately

describe the responses of the 316 subjects to the items 13-18 of the verbal aggression

data can be checked with the following linear hypothesis on the estimated relative item

threshold parameters τ̂jk of the fitted PCM:

H0 : Cτ̂ = 0 vs. H1 : Cτ̂ 6= 0 (5.1)

with

C =


1 −1 0 0 0 0

1 0 −1 0 0 0

1 0 0 −1 0 0

1 0 0 0 −1 0

1 0 0 0 0 −1

 , τ̂ =



τ̂12

τ̂22

τ̂32

τ̂42

τ̂52

τ̂62


and 0 =


0

0

0

0

0

 .

More specifically, the above formulated linear hypothesis tests whether the estimated

item-specific relative threshold parameters τ̂jk of the fitted PCM are the same across

all items, i.e., whether a single, global, relative item threshold parameter as assumed

in the RSM is sufficient. The hypothesis is formulated under the restriction that the

first relative item threshold parameter τj1 is restricted to zero for all items. With the

implemented interface for the relative item threshold parameters τ , the following call to

the generic function threshpar() extracts the estimated relative item threshold param-

eters τ̂ from the fitted PCM under this restriction. The aliased, i.e., restricted, relative

item threshold parameters τj1 are again omitted from the result object by setting the
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argument alias to FALSE:

> tp <- threshpar(pcmod, type = "mode",

+ relative = TRUE, ref = 1, alias = FALSE)

To test the hypothesis stated in Equation (5.1), the contrast matrix C is constructed

in a first step with the following call:

> C <- cbind(1, diag(-1, nrow = 5, ncol = 5))

In a second step, the R package car is loaded and the linear hypothesis is tested with

a call to the function linearHypothesis():

> library("car")

> linearHypothesis(tp, hypothesis.matrix = C, rhs = rep.int(0, 5))

Linear hypothesis test

Hypothesis:

Want - Curse - C2 - Do - Curse - C2 = 0

Want - Curse - C2 - Want - Scold - C2 = 0

Want - Curse - C2 - Do - Scold - C2 = 0

Want - Curse - C2 - Want - Shout - C2 = 0

Want - Curse - C2 - Do - Shout - C2 = 0

Model 1: restricted model

Model 2: tp

Df Chisq Pr(>Chisq)

1

2 5 2.1839 0.8232

As in the LRT computed in the previous section, the result indicates that the more

parsimonious RSM is sufficient to adequately describe the responses of the 316 subjects

to the items 13-18 of the verbal aggression data.
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5.3. Testing for DIF

Besides the previously discussed inferencial tools and strategies, the unified framework

for IRT models introduced in Chapter 3 provides the foundation for further applications

in the context of testing for differential item functioning. The term differential item

functioning (DIF) here denotes differences in the measurement properties of an item of

a psychological questionnaire between two or more groups of subjects. Due to reasons

of fairness, such differences are tried to be avoided. In an IRT modeling context, DIF is

typically operationalized as differences in the estimated item parameters between two or

more groups of subjects and various statistical procedures have been suggested to detect

DIF (for a review see, e.g., Holland & Wainer, 1993).

5.3.1. Global Likelihood Ratio Tests

One more popular statistical procedure to detect DIF is the likelihood ratio test (LRT).

It provides a global DIF detection procedure testing whether there is DIF between two

or more groups in any of the items under observation. Based on the provided logLik()

method, the LRT can be easily computed. This is illustrated in more detail in the

following example where the items 13-18 of the verbal aggression data are tested for DIF

between the group of male and female subjects. In a first step, a dichotomous Rasch

model is fitted to the responses of all subjects and separately to the responses of male

and female subjects:

> rmall <- raschmodel(dat$dich)

> rmmale <- raschmodel(subset(dat, gender == "male")$dich)

> rmfemale <- raschmodel(subset(dat, gender == "female")$dich)

The LRT test statistic

LRT = −2 · log

(
LC(β̂(a)|x(a), s)

LC(β̂(m)|x(m), s) · LC(β̂(f)|x(f), s)

)

for the above situation is easily computed with the provided logLik() method:

> (LRT <- as.vector(- 2 * (logLik(rmall) -

+ (logLik(rmmale) + logLik(rmfemale)))))

[1] 13.99331
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The corresponding p-value is obtained by the function pchisq():

> pchisq(LRT, df = 5, lower.tail = FALSE)

[1] 0.01565199

As the p-value of the computed LRT is below the significance level of 5%, the null

hypothesis of no DIF between male and female subjects in any of the six items is rejected.

Whereas the LRT as global DIF detection procedure does indicate if there is DIF in

any of the six items of the verbal aggression data set, it does not indicate which items

are affected by the DIF. For this purpose, an item-wise DIF detection procedure as

introduced in the next section can provide further insights.

5.3.2. Item-wise Wald Tests and Anchor Selection

In contrast to the LRT as global DIF detection procedure, the classical Wald test with

test statistic

Tj =
β̂

(m)
j − β̂(f)

j√
V̂ar(β̂

(m)
j ) + V̂ar(β̂

(f)
j )

(5.2)

for the j-th item in the above situation provides an item-wise DIF detection procedure.

However, before individual items can be tested for DIF with the Wald test from Equa-

tion (5.2), a common measurement scale for the estimated item location parameters β̂

of both groups has to be established. This is done by imposing the same restriction in

both groups. In the dichotomous Rasch model, this is also known as anchor selection

and several strategies have been suggested to select the items forming the anchor (for a

recent review and assessment, see Kopf et al., 2014). Both, the process of establishing a

common measurement scale as well as computing the item-wise Wald tests can be done

with the implemented interface for the item location parameters β as illustrated in the

following.

Assuming the second and third item of the analyzed subset of the verbal aggression

data have been detected as the final set of anchor items, a common measurement scale,

i.e., imposing the same restriction on the estimated item location parameters β̂ of both

groups is easily done with the following two calls to the generic function itempar():

> ipmale <- itempar(rmmale, ref = c(2, 3))

> ipfemale <- itempar(rmfemale, ref = c(2, 3))
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In a second step, the test statistic Tj from Equation (5.2) and corresponding p-values

are computed for all m items simultaneously with the following two commands:

> waldtests <- (coef(ipmale) - coef(ipfemale)) /

+ sqrt(diag(vcov(ipmale)) + diag(vcov(ipfemale)))

> pvalues <- 2*pnorm(abs(waldtests), lower.tail = FALSE)

A summary of the test statistics Tj and their corresponding p-values is easily created

by, e.g., binding the two objects together as shown in the following command:

> cbind("Test Statistic" = waldtests, "P-Value" = pvalues)

Test Statistic P-Value

Want-Curse 2.254109205 0.0241893

Do-Curse -0.849600648 0.3955472

Want-Scold 0.849600648 0.3955472

Do-Scold -0.443541733 0.6573739

Want-Shout 2.503493232 0.0122974

Do-Shout 0.007902345 0.9936949

With the second and third item as anchors, the first and fifth item of the verbal ag-

gression data subset have been identified as showing DIF between the group of male and

female subjects in the item-wise Wald tests. However, three limitations of this result

should be noted: First, due to the single restriction necessary when estimating the di-

chotomous Rasch model, only five of the six DIF tests can be meaningfully interpreted

(for more details, see Kopf et al., 2014), secondly, even though multiple item-wise Wald

tests have been computed in the above example, no correction for multiple testing was

applied, and thirdly, the result of the item-wise DIF test is dependent on the chosen

anchor items. In the previous example, the second and third item have been arbitrarily

selected as anchor items. Based on the findings of Kopf et al. (2013, 2014), several more

systematic and established anchor selection strategies have been implemented in the

function anchor(). The function anchortest() combines the functionality of anchor()

and additionally provides the results of item-wise Wald tests implemented in a similar

style as shown above but leaving the first final anchor item with the lowest rank out and

also allowing to apply a correction for the p-values. Hence, in the following call to the

function anchortest(), the anchor items are first selected according to the recommen-

dations in Kopf et al. (2013, 2014), i.e., based on the mean p-value threshold selection
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criterion in combination with the iterative-forward anchor class and in a second step,

item-wise Wald tests are computed to test for DIF between the group of male and female

subjects. In addition, the p-values of the item-wise Wald tests are adjusted according to

the correction suggested by Holm (1979):

> anchortest(rmfemale, rmmale, class = "forward",

+ method = "MPT", adjust = "holm")

Anchor items:

[1] 6 4 2

Anchored item parameters:

Want-Curse_1 Do-Curse_1 Want-Scold_1 Do-Scold_1 Want-Shout_1

-2.60329872 -1.52326466 -1.08032960 -0.02619854 -0.37042813

Want-Curse_2 Do-Curse_2 Want-Scold_2 Do-Scold_2 Want-Shout_2

-1.59174180 -1.59174179 -0.75634267 -0.09009544 0.92504657

Ranking order:

[1] 3 6 4 2 1 5

Criterion values (not sorted):

[1] 4 2 2 2 4 2

Final DIF tests:

Simultaneous Tests for General Linear Hypotheses

Linear Hypotheses:

Estimate Std. Error z value Pr(>|z|)

Want-Curse == 0 -1.01156 0.41330 -2.448 0.0575 .

Do-Curse == 0 0.06848 0.31736 0.216 1.0000

Want-Scold == 0 -0.32399 0.40725 -0.796 1.0000

Do-Scold == 0 0.06390 0.30662 0.208 1.0000

Want-Shout == 0 -1.29547 0.44377 -2.919 0.0175 *

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Adjusted p values reported -- holm method)

56



As can be seen in the above output, the second, fourth and sixth item have been

identified as anchor items according to the mean p-value threshold selection criterion

in combination with the iterative-forward anchor class. Based on these anchor items,

only the sixth item is identified as showing DIF between the group of male and female

subjects, i.e., showing a p-value below the significance level of 5%. This result is in

accordance with the results of the LRT and the item-wise Wald tests reported above.

5.3.3. Trees and Generalized M-Fluctuation Tests

A further application of the provided methods and functions for statistical inference in

IRT models can be found in the DIF detection procedures suggested by Strobl et al.

(2013) and Abou El-Komboz et al. (2014). In contrast to the LRT and the item-wise

Wald tests illustrated above, no pre-specification of the groups tested for DIF is required

in these procedures as they are detected in a data-driven way by relying on the model-

based recursive partitioning (MOB) algorithm suggested by Zeileis et al. (2008). This

algorithm allows to recursively identify DIF groups based on a number of given binary,

categorical or numerical covariates. A crucial aspect of this algorithm are the individual

contributions to the score function of an IRT model. These individual score contributions

are repeatedly ordered with respect to the available covariates and a suitable test of

the class of generalized M-fluctuation tests for parameter instability (Zeileis & Hornik,

2007) is then applied to identify groups with DIF. The derivation of the individual score

contributions of the three IRT models of the R package psychotools can be found in

Appendix B. Their computation has been implemented within model-specific methods

for the generic function estfun(). The generic function is provided by the R package

sandwich (Zeileis, 2006). After loading this package, the individual score contributions

of the fitted dichotomous Rasch model from above can be easily extracted and ordered

with respect to the continuous covariate anger by the following command:

> library("sandwich")

> orderedscores <- estfun(rmall)[order(dat$anger),]

The DIF detection procedures suggested by Strobl et al. (2013) and Abou El-Komboz

et al. (2014) which are based on the above discussed estfun() methods are implemented

in the related R package psychotree (Zeileis et al., 2014). After loading this package, the

function raschtree() allows the application of the DIF detection procedure suggested

by Strobl et al. (2013) in the context of the dichotomous Rasch model. This is illustrated

in more detail in the following. In a first step, the R package psychotree is loaded:
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> library("psychotree")

With the following call to the function raschtree(), the items 13-18 of the verbal

aggression data set are tested for DIF with respect to the two covariates gender and

anger:

> rt <- raschtree(dich ~ gender + anger, data = dat)

A visualization of the resulting Rasch tree is obtained with the following call to the

plot() method where custom item labels are set for readability and the abbreviation of

the item labels is turned off:

> plot(rt, tp_args = list(names = lbs, abbreviate = FALSE))

gender
p = 0.024

1

female male

Node 2 (n = 243)

●

●

●

●

●

●

Want−Curse Want−Scold Want−Shout

−2.34

2.64
Node 3 (n = 73)

● ●

●

●

●

●

Want−Curse Want−Scold Want−Shout

−2.34

2.64

Figure 5.1. Visualization of a Rasch tree (Strobl et al., 2013) fitted to the items 13-18 of the
verbal aggression data.

The resulting Rasch tree is illustrated in Figure 5.1. As there is more than one terminal

node, the null hypothesis of no DIF in any of the items 13-18 of the verbal aggression

data is rejected. In contrast to the previous approaches, both covariates gender and

anger have been used simultaneously here to identify DIF but again, only the covariate

gender was identified to be associated with DIF.
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6. Discussion and Outlook

The objective of this Master’s thesis was to develop a unified framework for visualiza-

tion and inference in IRT models which combines the advantages of highly specialized

model-fitting functions as implemented, e.g., in the R package psychotools, with the ad-

vantages of a general framework as implemented, e.g., in the R package eRm. Based on

the GPCM as theoretical framework, four contextually different structural components

of IRT models have been identified and implemented in a suitable representation in the R

package psychotools. Several established visualization techniques and tools for inference

have been developed on the foundation provided by these structural components. Over-

all, the structural components, the visualization techniques and the tools for inference

form the computational part of the suggested unified framework for visualization and

inference in IRT models.

By separating the tools for visualization and inference from a specific IRT model, the

suggested framework easily allows to compare related IRT models either numerically or

graphically as was illustrated in several application examples throughout this Master’s

thesis. In addition, the implemented tools for inference provide the foundation for further

applications in related areas, e.g., when detecting DIF.

With the GPCM as theoretical foundation, a wide class of parametric IRT models

often labeled as “divide-by-total models” (Sijtsma & Hemker, 2000, p. 404) or “adjacent-

category models” (Mellenbergh, 1995, p. 93) are covered by the suggested framework.

However, two other classes of parametric IRT models also discussed in the literature,

the “cumulative probability models” and the “continuation-ratio models” (Mellenbergh,

1995, p. 93), are not covered. Although the same structural components are existent

in the models of these model classes, the parametrized response and therefore also the

interpretation of the structural components differs. In cumulative probability mod-

els, the cumulative probability of choosing a category k or higher is described by the

model equation and hence, the interpretation of the structural components therefore also

refers to these cumulative probabilities. In continuation-ratio models, the conditional

probability of choosing a category k given a category k or higher is described by the

model equation and hence, the interpretation of the structural components here refers



to these conditional probabilities (see Mellenbergh, 1995, for more details). Because of

these distinctions between the different model classes, cumulative probability models and

continuation-ratio models can not be easily incorporated in the suggested framework.

All three IRT models of the R package psychotools have been integrated into the sug-

gested framework by providing extractor functions for the various structural components.

A crucial aspect here has been the issue of parameter identifiability which was discussed

in more detail in this thesis for the CML approach used for estimating these models. As

was briefly pointed out, often a MML approach instead of the discussed CML approach

is used in more complex IRT models where the item discrimination parameters are not

fixed to unity. In the MML approach, the issue of parameter identifiability becomes more

complex as not only the location but also the scale of the estimated model parameters

has to be fixed. The integration of IRT models estimated with a MML approach into

the suggested framework therefore provides a challenge for future research.

The suggested unified framework can be extended in two ways and thus provides ad-

ditional opportunities for further research: More IRT models related to the GPCM, e.g.,

from other R packages, can be integrated by providing methods for the generic func-

tions of the various structural components. After providing these methods, all existing

tools for visualization and inference are directly available for these models. Another

opportunity for further research is the implementation of new tools for visualization and

inference which can be implemented on top of the structural components and are then

directly applicable to a wide class of IRT models.
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A. Existing Parametrizations in the GPCM

The following Table A.1 gives an overview of the different parametrizations available in

the GPCM (and hence all related models) and the transformations necessary to convert

one type of parameter into another type of parameter.

Table A.1. Overview of the different parametrizations in the GPCM (and hence all related IRT
models) as well as their relations to each other. The direction of the relations is from column to
row, i.e., the operation in cell ij gives the transformation necessary to be applied on the type
of parameter in column j to arrive at the type of parameter in row i. Often, an additional type
of parameter is necessary to transform one type of parameter into another type of parameter.

Item Location Pa-
rameter

Absolute Item
Threshold Parame-
ter

Cumulative Abso-
lute Item Thresh-
old Parameter

Relative Item
Threshold Parame-
ter

Cumulative Rela-
tive Item Thresh-
old Parameter

βj δjk ηjk τ(j)k κ(j)k

βj Identity 1
pj

∑pj
k=1 δjk

1
pj

(
∑pj

k=2(ηjk −
ηj(k−1)) + ηj1)

δjk − τ(j)k δjk − (κ(j)k −
κ(j)k−1)

δjk βj + τ(j)k Identity ηjk − ηj(k−1) βj + τ(j)k βj + (κ(j)k −
κ(j)k−1)

ηjk k · βj +
∑k

`=1 τ(j)`
∑k

`=1 δj` Identity k · βj +
∑k

`=1 τ(j)` k · βj + κ(j)k

τ(j)k δjk − βj δjk − βj (ηjk−ηj(k+1))−βj Identity κ(j)k − κ(j)k−1

κ(j)k
∑k

`=1 δj` − k · βj
∑k

`=1 δj` − k · βj ηjk − k · βj
∑k

`=1 τ(j)` Identity
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B. Individual Score Contributions

Based on the individual contributions to the conditional likelihood, the individual con-

tributions to the (conditional) score function of the dichotomous Rasch model, the RSM

and the PCM are derived in the following. The computation of these individual score

contributions of a fitted model object has been implemented in model-specific methods

for the generic function estfun() in the R package psychotools. An application of these

methods within the context of detecting DIF was illustrated in Chapter 5.

The contribution of subject i to the conditional log likelihood ΨC,i(β|xi, si) of the

dichotomous Rasch model is given as

ΨC,i(β|xi, si) = log(LC,i(β|xi, si))

= log

exp
(
−
∑m

j=1 xij · βj
)

γsi(β)


= −

m∑
j=1

xij · βj − log(γsi(β))

where xi denotes the response vector and si the raw score of subject i and γsi de-

notes the elementary symmetric function of order si. The individual score contributions

ψC,i(β|xi, si) to the item location parameter βj of the j-th item then follow as

ψC,i(β|xi, si)j =
∂ΨC,i(β|xi, si)

∂βj

=
∂ −

∑m
j=1 xij · βj − log(γsi(β))

∂βj

= −xij −
1

γsi(β)
· ∂γsi(β)

∂βj
.

The contribution of subject i to the conditional log likelihood ΨC,i(β, τ |xi, si) of the
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RSM is given as

ΨC,i(β, τ |xi, si) = log(LC,i(β, τ |xi, si))

= log

exp
(
−
∑m

j=1(xij · βj +
∑xij

k=1 τk)
)

γsi(β, τ )


= −

m∑
j=1

(xij · βj +

xij∑
k=1

τk)− log(γsi(β, τ )).

The individual score contributions ψC,i(β, τ |xi, si) to the item location parameter βj of

the j-th item then follow as

ψC,i(β, τ |xi, si)j =
∂ΨC,i(β, τ |xi, si)

∂βj

=
∂ −

∑m
j=1(xij · βj +

∑xij
k=1 τk)− log(γsi(β, τ ))

∂βj

= −xij −
1

γsi(β, τ )
· ∂γsi(β, τ )

∂βj
.

Equivalently, the individual score contributions ψC,i(β, τ |xi, si) to the relative item

threshold parameter τk of the k-th category then follow as

ψC,i(β, τ |xi, si)k =
∂ΨC,i(β, τ |xi, si)

∂τk

=
∂ −

∑m
j=1(xij · βj +

∑xij
k=0 τk)− log(γsi(β, τ ))

∂τk

= −nk −
1

γsi(β, τ )
· ∂γsi(β, τ )

∂τk

where nk denotes the number of times subject i has chosen category k or higher.

The contribution of subject i to the conditional log likelihood ΨC,i(δ|xi, si) of the
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PCM is given as

ΨC,i(δ|xi, si) = log(LC,i(δ|xi, si))

= log

(
exp (−

∑m
j=1

∑xij
k=0 δjk)

γsi(δ)

)

= −
m∑
j=1

xij∑
k=0

δjk − log(γsi(δ))

with δj0 ≡ 0 for notational purposes.

The individual score contributions ψC,i(β, τ |xi, si) to the absolute item threshold pa-

rameter δjk of the j-th item and the k-th category then follow as

ψC,i(δ|xi, si)jk =
∂ΨC,i(δ|xi, si)

∂δjk

=
∂ −

∑m
j=1

∑xij
k=0 δjk − log(γsi(δ))

∂δjk

= −I[xij≥k](xij)−
1

γsi(δ)
· ∂γsi(δ)

∂δjk

with I[xij≥k] as an indicator function returning one if subject i has chosen category k or

higher on item j and zero otherwise.
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