LUDWIG-

MAXIMILIANS-
LMU UNIVERSITAT
MONCHEN
= 1

BACHELORARBEIT

Implementierung und Evaluation erginzender

Korrekturmethoden fiir statistische Lernverfahren

bei unbalancierten Klassifikationsproblemen

Tobias Kiihn

Betreuung:
Prof. Dr. Bernd Bischl

Institut fiir Statistik
Ludwig-Maximilians-Universitiat Miinchen
15. Oktober 2014

Eidesstattliche Erklarung

Hiermit versichere ich, dass ich die vorliegende Bachelorarbeit selbststéndig verfasst und

alle verwendeten Quellen und Hilfsmittel benannt habe.

Miinchen, den 15. Oktober 2014

(Tobias Kiihn)

Danksagung

Diese Bachelorarbeit entstand am Institut fiir Statistik der Ludwig-Maximilians-Universitét
Miinchen. An dieser Stelle mochte ich mich bei meinem Betreuer, Prof. Dr. Bernd Bischl,
der mir die Arbeit an diesem interessanten Thema ermdoglicht hat, fiir die freundliche und
engagierte Betreuung, die Unterstiitzung bei der Durchfithrung der Experimente sowie

die vielen hilfreichen Anregungen und Ideen bedanken.

Abstract

Im Falle bindrer Klassifikationsprobleme liefern statistische Lernverfahren bei Vorliegen
stark unbalancierter Klassen oftmals keine zufriedenstellenden Ergebnisse insbesondere
hinsichtlich der Vorhersage von Beobachtungen aus der kleinen Klasse. Diese sind jedoch
in vielen Beispielen aus der Praxis wie z.B. Credit Scoring, Betrugserkennung oder Stor-
novorhersage gerade von groflem Interesse. Ziel dieser Arbeit ist daher die Evaluation
und der Vergleich verschiedener Methoden zur Korrektur des Klassenungleichgewichts,
die in Kombination mit einem Lernverfahren als Klassifikator auf unbalancierte Daten
angewendet werden konnen. Zu diesem Zweck wurden im Rahmen dieser Arbeit mehrere
Korrekturmethoden in R implementiert sowie in das iiber CRAN verfiighbare Paket mlr
(Machine Learning in R) integriert. Die betrachteten Methoden lassen sich dabei allgemein
in Sampling- und kostenbasierte Ansétze unterscheiden, wobei der Fokus dieser Arbeit auf
den Sampling-basierten Korrekturmethoden liegt. Als Giitemafe fiir die Performance der
Verfahren werden AUC (Flidche unter der ROC-Kurve) sowie der F1-Score betrachtet,
welche fiir unbalancierte Klassifikationsprobleme besser geeignet sind als beispielsweise
die Gesamtgenauigkeit der Vorhersagen tiber alle Klassen (Accuracy).

In einer Vielzahl von Experimenten wurden insgesamt 23 6ffentlich zugéngliche Datensétze
evaluiert - dabei wurden jeweils die betrachteten Lernverfahren (Logistische Regression,
Klassifikationsbaum, Random Forest, Gradient Tree Boosting, Support Vector Machine)
mit und ohne Parameter-Tuning sowie in Kombination mit verschiedenen Korrekturme-
thoden auf die einzelnen Datensétze angewendet. Es zeigt sich, dass bereits durch ge-
eignete Wahl des Lernverfahrens, ggf.mit erginzendem Tuning der Hyperparameter, sehr
gute Ergebnisse erzielt werden kénnen. Auch die zusétzliche Verwendung der Korrektur-
methoden fithrt haufig zu weiteren Verbesserungen des AUC und F1-Score. Hierbei liefern
insbesondere das SMOTE-Verfahren sowie Class Weighting fiir verschiedene Datensétze

und unter zusétzlicher Beriicksichtigung der Laufzeit gute Ergebnisse.

Inhaltsverzeichnis

1. Einleitung

2. Methoden und Verfahren
2.1. Statistische Lernverfahren .
2.1.1. Logistische Regression

2.1.2. Entscheidungsbaum (CART)
2.1.3. Random Forest
2.1.4. Gradient (Tree) Boosting
2.1.5. Support Vector Machine (SVM)
2.2. Methoden zur Korrektur des Klassenungleichgewichts
2.2.1. Uberblick
2.2.2. Sampling-Methoden L.
2.2.3. Kostenbasierte Methoden
2.3. Giitemafe fiir die Performance
2.3.1. Kennzahlen der Konfusionsmatrix
2.3.2. Fl-Score

2.3.3. ROC-Kurve und AUC

3. Experimente
3.1. Daten
3.2. Verfahren und Parameter . .
3.3. Parameter-Tuning

3.4. Durchfiihrung und Evaluation

4. Diskussion der Ergebnisse
4.1. Datenbasis
4.2. Ergebnisse je Datensatz . .
4.2.1. Bestes Verfahren . .
4.2.2. Alle Verfahren
4.3. Ergebnisse je Verfahren . . .

4.3.1. Tuning- und Korrektur-Effekte
4.3.2. Vergleich Oversampling-Methoden

4.3.3. Analyse der Laufzeit

5. Zusammenfassung und Ausblick

31
31
32
34
35

39
39
40
40
43
47
47
48
51

54

ANHANG

A. Ubersicht der kleinen Klassen
B. Ubersicht der fehlerhaften Jobs

C. Ergebnisse je Durchlauf

54

55
56
57

Abbildungsverzeichnis

2.1.

2.2.

2.3.
2.4.
2.5.
2.6.
2.7.
2.8.
2.9.

3.1.

4.1.
4.2.
4.3.
4.4.
4.5.
4.6.

4.7.
4.8.

Partitionierung und Klassifikationsbaum mittels CART (vgl. Hastie et al.,

S.806 [16]) .« o e
Ansatz der Support Vector Machines inklusive Schlupfvariablen (vgl. Hastie

etal,, S. 418 [16]
Transformation nicht linear trennbarer Klassen (R* - R?)
Random Undersampling
Oversampling
Synthetic Minority Oversampling Technique (SMOTE)
Overbagging
Weighting o
ROC Kurve

Resampling mit stratifizierter 5-facher Kreuzvalidierung und Holdout

Ubersicht aller Verfahren fiir Datensatz abalonel9
Ubersicht aller Verfahren fiir Datensatz coil2000
Ubersicht aller Verfahren fiir Datensatz mammography
AUC-Differenzen (Oversampling - SMOTE)
AUC-Differenzen (Oversampling - Overbagging)
Vergleich von RandomForest /Oversampling und CART /Overbagging je Da-
tensatz oL
Regressionsbaum zur Laufzeit in Stunden
AUC vs. Runtime

Tabellenverzeichnis

2.1.
2.2.

3.1.
3.2.
3.3.

3.4.

4.1.
4.2.
4.3.
4.4.
4.5.
4.6.

4.7.

Al
B.1.

C.1.
C.2.
C.3.
CA4.
C.5.
C.6.
C.7.

Kostenmatrix Lo 16
Konfusionsmatrix L 26
Ubersicht Datensitze 32
Ubersicht der Lernverfahren sowie der Tuning-Parameter und -Bereiche . . 33
Ubersicht der Korrekturverfahren sowie der Tuning-Parameter im Paket

mlr [1] mit Optimierungsbereich00 33
Ubersicht der Experimente o . oo i 35
Datensétze und Lernverfahren mit AUC >0.99 39
Ubersicht der besten Verfahren je Datensatz (AUC) 40
Ubersicht Gesamtergebnisse F1 42
Top 10 Verbesserungen des AUC-Wertes durch Tuning und Korrekturver-

fahren 47
Durchschnittliche und maximale Verbesserungen des AUC durch Anwen-

dung der Korrekturmethoden 48
Anzahlen und Anteile gemé&fl der besseren Performance (AUC) je Lernver-

fahren (Oversampling/SMOTE) 49
Anzahlen und Anteile geméfl der besseren Performance je Lernverfahren

(Oversampling/Overbagging) 50
Festlegung der kleinen Klasse bei Multi-Klassen-Problemen 55
Ausgeschlossene Experimente bei der Analyse der Laufzeit 56
Ergebnisse Baseline oo 57
Ergebnisse Tuning Lo 58
Ergebnisse Undersampling 58
Ergebnisse Oversampling 59
Ergebnisse SMOTE 59
Ergebnisse Overbagging L. 60
Ergebnisse Class Weighting 60

1. Einleitung

Bei der Betrachtung von Klassifikationsproblemen kommt dem Verhéltnis der vorliegen-
den Klassen eine entscheidende Bedeutung zu. Im Idealfall steht je Klasse etwa die gleiche
Anzahl an Beobachtungen zur Verfiigung. Typischerweise ist es jedoch der Fall, dass be-
stimmte Klassen in den Daten deutlich unterreprisentiert sind. Auch bei der binéren
Klassifikation, d.h. bei Klassifikationsproblemen mit nur zwei Klassen (z.B. positive und
negative Klasse) kommt es hiufig vor, dass die Anzahl der Beobachtungen einer Klas-
se (i.d.R. der negativen Klasse) die der Anderen (i.d.R. der positiven Klasse) deutlich
iibertrifft. Beziiglich der Notation und den Bezeichnungen der beiden Klassen innerhalb
der bindren Klassifikation soll fortan gelten — kleine Klasse < positive Klasse < 1 sowie
grofe Klasse < negative Klasse < 0 oder -1. Als einfithrendes Beispiel seien hierzu Kre-
ditwiirdigkeitspriifungen im Bankenbereich (Credit Scoring) genannt — im Vorfeld einer
Kreditvergabe soll dabei anhand der Daten des jeweiligen Kreditnehmers vorhergesagt
werden, ob ein Kredit zuriickgezahlt wird oder nicht. Zu beachten ist hierbei, dass Kre-
ditausfille zum einen deutlich seltener auftreten (kleine Fallzahl der positiven Klasse) und
zum anderen die filschliche Einstufung eines Kreditnehmers als kreditfdhig (mit spaterem
Kreditausfall) i.d.R. mit hoheren Kosten verbunden ist als die Ablehnung eines eigentlich
kreditwiirdigen Kunden. Somit sind die Félle der kleinen bzw. positiven Klasse, die Kre-
ditausfille, von grofferem Interesse und verursachen bei Fehlklassifikation hohere Kosten.
Im Fokus dieser Arbeit stehen somit im Allgemeinen bindre Klassifikationsprobleme, wel-
che eine stark unbalancierte Verteilung der Klassen vorweisen und bei denen dariiber
hinaus die jeweiligen Fehlklassifikationen bei der Prognose unterschiedlich bewertet wer-
den, d.h. Fehlklassifikationen innerhalb der kleinen Klasse werden als teurer eingestuft
als Fehlklassifikationen innerhalb der grofien Klasse. Neben dem bereits genannten Be-
reich des Credit Scoring sind derartige Klassifikationsprobleme in einer Vielzahl weiterer
Bereiche wie beispielsweise medizinische Diagnostik [21], Fehlerdiagnose bei Transforma-
toren [26], Betrugserkennung [10,25], Stornovorhersage [7] oder Erkennung von Objekten
auf Satellitenbildern [?] anzutreffen.

Die Prognosegiite von statistischen Verfahren und Algorithmen in Bezug auf binédre Klas-
sifikationsprobleme wird im Allgemeinen anhand der Vorhersagegenauigkeit (Accuracy)

oder Fehlklassifikationsrate (1 - Accuracy) iiber alle Klassen hinweg bewertet. Je hoher

dabei die Genauigkeit bzw. je geringer die Fehlklassifikationsrate, desto besser das Verfah-
ren. Im Falle unbalancierter Klassen sind diese Mafle eher ungeeignet, da z.B. trotz sehr
guter Vorhersagegenauigkeit {iber beide Klassen, speziell die Beobachtungen der kleinen
Klasse nur sehr schlecht erkannt werden. Liegen beispielsweise Daten mit einem Klassen-
verhéltnis von 1:99 vor, d.h. pro Beobachtung der kleinen Klassen existieren 99 Beobach-
tungen der groBen Klasse, so wird bereits eine Vorhersagegenauigkeit von 99% allein durch
die ausschlieiliche Prognose der grofien Klasse erreicht. Beobachtungen der kleinen Klas-
se, die jedoch wie am Beispiel Credit Scoring verdeutlicht, hdufig zusétzlich von groflerem
Interesse sind, werden in diesem Fall zu 100% fehlklassifiziert. Das Problem der beiden
genannten Mafle — Accuracy und Fehlklassifikationsrate — besteht somit darin, dass nicht
zwischen den Fehlklassifikationen je Klasse unterschieden, sondern die Fehlklassifikations-
rate iiber alle Beobachtungen (und somit Klassen) aggregiert betrachtet wird. Durch die
Dominanz der grofien Klasse neigen statistische Lernverfahren bei Optimierung beziiglich
Accuracy oder Fehlklassifikationsrate dazu, vorhandene Beobachtungen der kleinen Klas-
se als Rauschen zu ignorieren und dementsprechend fiir neue Beobachtungen verstarkt die
grofie Klasse vorherzusagen [13]. Um jedoch insbesondere die Beobachtungen der kleinen
Klasse gut erkennen zu koénnen, existieren zahlreiche Methoden, um dem Problem un-
balancierter Klassen entgegen zu wirken. Grundsétzlich kann hierbei zwischen Sampling-
und kostenbasierten Verfahren unterschieden werden. Als geeignetere Performance-Mafle
zur Schitzung der Prognosegiite wird i.d.R. die Receiver Operating Characteristic (ROC)-

Kurve und die dazugehorige ,,Area under curve“ (AUC) sowie der F1-Score verwendet.

Der Hauptteil dieser Arbeit ist in insgesamt vier Kapitel aufgeteilt. In Kapitel 2 wer-
den zunéchst die angewendeten Lernverfahren sowie die Methoden zur Korrektur des
Klassenungleichgewichts vorgestellt. Beziiglich den kostenbasierten Korrekturmethoden
und der damit verbundenen Einfithrung von Fehlklassifikationskosten ist i.d.R. grundle-
gendes Fachwissen notwendig, um diese sinnvoll bzw. korrekt festlegen zu kénnen. Da
die tatséchlich anfallenden Fehlklassifikationskosten in vielen Fallen unbekannt sind, liegt
der Schwerpunkt dieser Arbeit auf den alternativ genannten Sampling-basierten Metho-
den. Kapitel 2 enthélt des Weiteren eine Beschreibung der verwendeten Performance-
MaBe — Area Under Curve (AUC) und F1-Score. In Kapitel 3 werden die in den durch-
gefiihrten Experimenten verwendeten Datensétze und Parametereinstellungen dargestellt.
Des Weiteren wird eine kurze Ubersicht zu den genutzten R-Paketen und Funktionen ge-
geben. In den im Rahmen dieser Arbeit betrachteten Experimenten werden statistische
Lernverfahren sowohl mit als auch ohne vorheriges Parameter-Tuning (mittels Iteraed F-
Racing [20]) und in Kombination mit Korrekturmethoden fiir insgesamt 23 unbalancierte
Datensétze evaluiert und verglichen. Die mafigebliche Fragestellungen stellen dabei die

folgenden Punkte dar:

e Gegeniiberstellung und Beurteilung der Lernverfahren

e Analyse des Tuning-Effektes, d.h. Vergleich der Ergebnisse der Lernverfahren mit

und ohne vorheriges Tuning der Hyperparameter

e Analyse des Effektes der Korrekturmethoden, d.h. Vergleich der Lernverfahren mit

und ohne Einsatz verschiedener Korrekturmethoden

Hierbei soll insbesondere analysiert werden, in welchen Fillen die passende Wahl des
Lernverfahrens (inklusive Tuning) ggf. bereits ausreichend ist, d.h. in welchen Féllen der
Einsatz zusétzlicher Korrekturmethoden eher hilfreich oder eher vernachléssigbar ist. Ei-
ne entsprechende Vorstellung und Diskussion der Ergebnisse findet sich in Kapitel 4.
Die Arbeit schliefft mit einer kurzen Zusammenfassung sowie einem Ausblick mit wei-

terfithrenden Fragestellungen in Kapitel 5.

Diese Arbeit stellt eine Fortfithrung der Analysen und Experimente des Konferenzberich-
tes ,,On Class Imbalancy Correction for Classification Algorithms in Credit Scoring® [1]

dar. Erweiterungen und Unterschiede zum Bericht sind in Abschnitt 3.4 dargestellt.

2. Methoden und Verfahren

2.1. Statistische Lernverfahren

2.1.1. Logistische Regression

Die logistische Regression [12] stellt das wohl am weitesten verbreitete und bekannteste
statistische Lernverfahren fiir bindre Klassifikationsprobleme dar. Im Unterscheid zur li-
nearen Regression wird hierbei der Erwartungswert einer binéren bzw. Bernoulli-verteilten

Zielgrofle Y (bedingt auf den Kovariablenvektor «) durch ein Modell angepasst.

0 : negative Klasse

€{0,1
ye{ol} 1: positive Klasse

(2.1)

Y ~ Ber(n), E(Y|z)=P(Y =1lz) =7 €[0,1]

Der Erwartungwert der Zielgrofle Y entspricht dabei gerade der Wahrscheinlichkeit 7
(vgl. Formel 2.1), so dass letztendlich die Wahrscheinlichkeit fiir das Eintreten der po-
sitiven Klasse (,Y = 1“) modelliert wird. Da der Wertebereich der Wahrscheinlichkeit
7 im Intervall [0,1] liegt, der lineare Pradiktor '@ jedoch prinzipiell auch Werte aufler-
halb dieses Intervalls annehmen kann, werden die beiden Groflen © und «’3 durch eine

Responsefunktion h bzw. eine Linkfunktion g = h~! miteinander verkniipft:

Der lineare Pradiktor 7; = «3 besteht wie auch bei der linearen Regression aus mehre-
ren unabhéngigen Variablen bzw. Features, die sowohl metrisch als auch kategorial sein
konnen. Bei der Responsefunktion h handelt es sich grundsétzlich um eine streng mono-

ton wachsende Verteilungsfunktion. Im Rahmen dieser Arbeit wird dabei Logit-Modell

betrachtet, bei dem die logistische Funktion als Responsefunktion verwendet wird. Als
Umkehrfunktion ergibt sich hierbei die logarithmierte Chance (log-odds oder ,,Logit*) als
Linkfunktion:

1
M= —————
1+ exp(m;)

Uy

& logit(m;) = In () =n =z, (2.3)

1—71'1'

Wie in Formel 2.3 dargestellt, ergibt sich bei Verwendung des Logit-Links ein lineares
Modell fiir die logarithmierten Chancen In (%) sowie durch weitere Transformation
mit der Exponentialfunktion ein (exponentiell-)multiplikatives Modell fiir die so genann-
ten Chancen bzw. Odds lf—m Die Modellanpassung bzw. Schéitzung der Parameter er-
folgt iiblicherweise iiber die Maximum-Likelihood-Schétzung. Da hierbei nach Nullset-
zen der Score-Gleichungen ein mehrdimensionales, nichtlineares Gleichungsystem ent-
steht, kommt zur Losung der ML-Gleichungen i.d.R. ein iteratives Verfahren wie z.B.
Newton-Raphson- oder Fisher-Scoring-Algorithmus zum FEinsatz. Nach der Schitzung
der Koeffizienten B lisst sich fiir neue Beobachtungen die geschéitzte Wahrscheinlich-
keit 711 = P(ynt1 = 1|@ny1), d.h. die Wahrscheinlichkeit, dass eine neue Beobachtung
der positiven Klassen zuzuordnen ist, durch Einsetzen von !, +1,[§ in die Responsefunk-
tion berechnen. Die entsprechende Klasse, d.h. 3,11 = 1 (positive Klasse) oder 4,1 = 0
(negative Klasse), wird anhand der prognostizierten Wahrscheinlichkeit sowie eines fest-
gelegten Schwellenwertes ¢ (i.d.R. ¢ = 0.5) abgeleitet. Im Allgemeinen wird somit g = 1

vorhergesagt, falls 7 > ¢ und alternativ g = 0, falls 7 < c.

Eine ausfiihrliche Beschreibung zur logistischen Regression findet sich bei Fahrmeir et al.,
S. 270 - 293 [12]. Fiir die Umsetzung der Experimente im Rahmen dieser Arbeit wurde
die Implementierung der logistischen Regression im R-Paket stats (Funktion glm() mit

family=binomial(link=logit)) verwendet.

2.1.2. Entscheidungsbaum (CART)

Bei der Verwendung eines Entscheidungsbaums (bei binédrer Zielgrofe auch: Klassifika-
tionsbaum) werden die vorliegenden Daten anhand der jeweiligen Variablen und deren
Auspréagungen schrittweise in disjunkte und mdoglichst homogene Untergruppen (— Par-
titionen) zerlegt. Das von Breiman et al. [6] eingefithrte CART-Verfahren (Classification
And Regression Tree) zéhlt hierbei zu einem der géngisten Implementierungen. Es han-
delt sich um ein nicht-parametrisches Verfahren, bei dem die Aufteilung der Daten in
jedem Schritt in zwei disjunkte Gruppen (,,bindre Splits“) sowie anhand eines der Featu-

res erfolgt. Durch die wiederholte Anwendung der Vorgehensweise auf die entstehenden

Partitionen ergibt sich eine wie beispielhaft in Abbildung 2.1 dargestellte Baumstruktur.

Fis

- Rq
Lo HL

R

Abbildung 2.1.: Partitionierung und Klassifikationsbaum mittels CART (vgl. Hastie et
al., S. 306 [16])

Die linke Grafik in Abbildung 2.1 veranschaulicht die Aufteilung eines zweidimensiona-
len Raumes, d.h. eines Modell mit zwei Features X, X5 mittels CART-Verfahren. In der
rechten Grafik ist der zugehorige Klassifikationsbaum dargestellt. Zur Aufteilung der Trai-
ningsdaten in moglichst homogene Gruppen sowie zur Ermittlung der besten Variable z;
sowie des dazugehorigen besten Punktes/Merkmalsauspragung s wird bei kategorialen
und bindren Zielgroflen je Split ein so genanntes Unreinheitsmafl wie z.B. Fehlklassifi-
kationsrate, Devianz oder Gini-Index berechnet. Der im Rahmen dieser Arbeit genutzte
Gini-Index ergibt sich fiir einen Knoten m bei der bindren Klassifikation (Anzahl Klassen

K = 2) vereinfacht wie folgt:

[
M)~

1

mO(]- _ﬁmO) +]3m1(]- _ﬁml)

(2.4)

I
[N R N

Aml(l _ﬁml)a pml =1 _ﬁmO

Im Zwei-Klassen-Fall bezeichnen p,,0 und p,,; in Formel 2.4 die relativen Haufigkeiten
der Klassen 0 und 1 im Knoten m. Das Minimum fiir G,,, (— Gy, = 0) wird jeweils er-
reicht, wenn alle Beobachtungen auschliellich einer der beiden Klassen angehéren. Fiir alle
moglichen, resultierenden Partitionen mj; und mpg ,,unterhalb®“ des Knoten m lassen sich

nun die Gini-Indizes berechnen und anschlieSend gewichtet mit der Anzahl der Beobach-

tungen in den neuen Partitionen Ny, und Ny summieren. Letztendlich wird dann derjenige
Split, d.h. diejenige Kovariable x; sowie der dazugehorige Punkt/Merkmalsausprégung s
gewihlt, welche die gewichtete Summe der Gini-Indizes in den resultierenden Partitionen

minimiert (vgl. Formel 2.5).

N N
min (7, s)[WLGL + WRGR] (2.5)

Die sukzessive Zerlegung der Daten kann prinzipiell so lange fortgefiihrt werden bis in
jedem End- bzw. Terminalknoten des Baumes jeweils nur Beobachtungen einer der bei-
den Klassen oder im Extremfall nur noch genau eine Beobachtung vorliegt. Da hier-
durch jedoch die Komplexitiat und damit auch die Gefahr des Overfitting des Modells an
die zugrunde liegenden Trainingsdaten erheblich ansteigt, existieren verschiedene Stopp-
Kriterien, die vor Erzeugung des Baumes gesetzt werden und so die Anzahl der Knoten
und Splits begrenzen. Alternativ kann der Klassifikationsbaum zunéchst komplett kon-
struiert und anschliefend gemaf bestimmter Kriterien wieder gestutzt werden (Pruning).
Im Rahmen dieser Arbeit wurde auf Pruning verzichtet und stattdessen diverse Stopp-
Kriterien wie die vorgegebene minimale Anzahl an Beobachtungen pro Knoten und die

minimale Verbesserung der Anpassungsgiite, die je Split erreicht werden muss, vorgegeben.

Die Vorhersage der Klassenzugehorigkeit fiir neue Beobachtungen erfolgt anhand des an-
gepassten Baumes, indem dieser fiir die neuen Daten sowie deren Merkmale und Aus-
pragungen durchlaufen wird. Im jeweiligen Terminalknoten wird die Klassifizierung an-
hand einer Mehrheitswahl (Majority Vote) durchgefiihrt, d.h. die Klasse mit der grofiten
relativen Haufigkeit im Terminalknoten wird vorhergesagt.

Weiterfithrende Information zu Entscheidungs- bzw. Klassifikationsbdumen sind bei Has-
tie et al., S.305ff [16] zu finden. Fiir die durchgefiihrten Experimente wurde das R-Paket
rpart mit der gleichnamigen Funktion rpart() als Implementierung des CART-Verfahrens

genutzt.

2.1.3. Random Forest

Random Forests [5] zéhlen zu den so genannten (homogenen) Ensemble-Methoden. Die
Klassifizierung erfolgt hierbei grundsétzlich durch wiederholte Anwendung eines Lernver-
fahrens auf Bootstrap-Samples der Trainingsdaten sowie der anschlieenden Aggregation
der einzelnen Ergebnisse (— Bagging = ,Bootstrap-Aggregation“). Der Random Forest

stellt dabei im Speziellen eine Erweiterung der in Abschnitt 2.1.2 vorgestellten Klassi-

fikationsbaume dar. Die Bagging-Methode wird hierbei auf Badume angewendet, so dass
mehrere Klassifikationsbdume an die Daten angepasst werden. Die Klassifizierung neuer
Daten erfolgt anschlieBend durch Betrachtung aller angepassten Modelle/Béume sowie
entsprechender Mehrheitswahl (Majority Vote), d.h. die Klasse, welche in den meisten
Modellen vorhergesagt wurde, wird auch insgesamt prognostiziert (— Modus der Vorher-

sagen der einzelnen Modelle). Jedes Modell erhélt somit grundsétzlich das gleiche Gewicht.

Beziiglich der Vorgehensweise werden zunéchst mehrere Bootstrap-Stichproben durch
zufilliges Ziehen mit Zuriicklegen aus den Trainingsdaten erzeugt und diese jeweils per
Klassifikationsbaum angepasst. Durch die Vielzahl der angepassten Baume und deren Ag-
gregation wird die Varianz der resultierenden Vorhersagen i.d.R. grundsatzlich verringert.
Sind die angepassten Badume jedoch stark miteinander korreliert, kann die Varianz der
Vorhersagen fiir neue Daten ggf. ansteigen. Um die Klassifikationsbdume moglichst zu de-
korrelieren, wird daher (neben dem Bootstrapping) in den einzelnen Splits der Béume eine
zufillige Selektion der in Frage kommenden Merkmale bzw. Features durchgefiihrt. An-
statt der urspriinglichen p Variablen werden je Split somit nur m < p zufillig ausgewéhlte,
potentielle Split-Variablen betrachtet. Je kleiner der Parameter m, desto geringer i.d.R.
die Korrelation zwischen den Baumen bzw. desto unterschiedlicher auch die Struktur der
Baume. Der Parameter m kann grundsétzlich frei gew#hlt oder iiber ein Tuning-Verfahren
bestimmt werden — als Faustregel wird bei p verfiigbaren Features haufig m = /p als
Faustregel angegeben (vgl. Hastie et al., S. 592 [16]). Wie bereits beschreiben, erfolgt die
finale Vorhersage der Klasse abschliefend per Mehrheitswahl (Majority Vote) aller an-
gepassten Baume. Ist eine Vorhersage der Klassenwahrscheinlichkeiten erforderlich, kann
die relative Haufigkeit der vorhergesagten Klassen der einzelnen Modelle herangezogen

werden.

Die Anzahl der Modelle/Béume ist frei wéhlbar oder kann iiber ein Tuning-Verfahren
bestimmt werden. Alternativ lédsst sich die Anzahl der Baume auch aus dem so genannten
OOB-Error (Out-Of-Bag Error) ableiten. Dabei handelt es sich um die mittlere Fehlklas-
sifikationsrate je Beobachtung, wobei die Vorhersagen ausschliellich auf Basis der Baume
gebildet werden, bei deren Aufbau die jeweilige Beobachtung nicht verwendet wurde. Der
OOB-Error wird parallel zur Durchfiihrung des Verfahrens berechnet und stellt damit so-
zusagen ein im Algorithmus integriertes Kreuzvalidierungsverfahren dar. Prinzipiell sind
bei Betrachtung des OOB-Errors nur so viele Modellanpassungen notwendig bis sich die-
ser stabilisiert hat (vgl. Hastie et al., S. 592/593 [16]).

Weiterfiihrende Informationen zu Random Forests finden sich bei Hastie et al., S. 587ff [16].
Im Rahmen dieser Arbeit wurde zur Durchfithrung der Experimente die Funktion ran-

domForest() basierend auf CARTs aus dem gleichnamigen R-Paket verwendet.

2.1.4. Gradient (Tree) Boosting

Gradient Boosting [16] stellt neben dem Random Forest (vgl. Abschnitt 2.1.3) eine weitere,
so genannte Ensemble-Methode dar. Hierbei wird somit wiederum ein Lernverfahren bzw.
eine Basis-Methode mehrfach auf die vorliegenden Trainingsdaten angewendet. Im Unter-
schied zum Random Forest werden die einzelnen Modelle jedoch nicht separat betrachtet
und angepasst, sondern in einem iterativen Verfahren zu einem additiven Gesamtmodell
mit mehreren Basisfunktionen b(x;; v,,) zusammengefasst (vgl. Formel 2.6). Die Parameter

Ym kennzeichnen dabei die jeweiligen Modellparameter der m-ten Basis-Methode.

F(l’) = 6mb($zv'7m) (26)

1[1=

Die einzelnen Basisfunktionen b(x;;~,,) werden iiber die Koeffizienten £, gewichtet. Die
Schétzung der Koeffizienten erfolgt dabei iiber die Minimierung des Verlustes fiir eine zu

bestimmende Verlustfunktion L:

N N M
ar%mz'n Z L(y;, F(x;)) = Z L(y;, Z Binb (x5 m)) (2.7)
T =1 i=1 m=1

Als Basis-Methoden sind grundsétzlich beliebige Verfahren und Funktionen denkbar. Bei
dem im Rahmen dieser Arbeit betrachteten Gradient Tree Boosting werden Regressi-
onsbdume (— CART) bzw. Baumstiimpfe, d.h. Bdume mit geringer Tiefe, verwendet.
Baume bieten dabei den grundsétzlichen Vorteil, dass sie an sich bereits eine additive
Struktur besitzen (vgl. Hastie et al., S. 359ff [16]). Die Tiefe des Baumes stellt im Rah-
men des Modells grundsétzlich einen frei wahlbaren bzw. iiber ein Tuning-Verfahren zu
bestimmenden Modellparameter dar.

Anstatt nun das komplette Modell, d.h. die komplette Funktion F(z) anzupassen, wird
der erwartete Verlust sukzessive in jeder Iteration nur beziiglich einer Basisfunktion mini-
miert. Bereits im Modell enthaltene Komponenten werden nicht mehr veréndert. In Jeder
Iteration wird eine weitere additive Komponente zum Modell hinzugefiigt, so dass der
erwartete Verlust dadurch weiter reduziert wird.

Zur Bestimmung der Modellparameter in Iteration m, wird zunéchst ausgehend von der
aktuellen Funktion F},,_; die Richtung des negativen Gradienten des Verlustes anhand der

so genannten Pseudo-Residuen r; berechnet:

o {aL(ymFmﬂ%)

TR] i=1,.,n (2.8)

In Formel 2.8 bezeichnet r;, dabei das Pseudo-Residuum in Iteration m beziiglich der
i-ten Beobachtung. Im Falle der binédren Klassifikation wird zur Berechnung der Pseudo-
Residuen i.d.R. der binomiale Verlust (— Devianz) als Verlustfunktion verwendet, welcher

zugleich der negativen Log-Likelihood der logistischen Regression entspricht.

L(y, f(z)) = —log (1 + exp(—2y f(x))) (2.9)

Fiir die berechneten Pseudo-Residuen r;,,, wird anschlieffend ein Regressionsbaum 2}721 Yiml (z €
R;,,) angepasst, wobei R;,, die j-te Partition des m-ten Baumes und +,,, den in dieser Par-
tition konstant vorhergesagten Wert — i.d.R. den Mittelwert der Daten in dieser Partition
— bezeichnet. Die Schiatzung der Parameter v;,, erfolgt dabei i.d.R. iiber die Minmierung

des quadratischem Verlustes.

Vo = argzm'n Z(nm —b(zi,7))* = Z(rlm — Z%I(I € R)) (2.10)

Nach der m-ten Iteration wird die Funktion F;, somit geméafl Formel 2.11 durch eine neue,
additive Komponente erweitert. Dieser neu hinzugefiigt Regressionbaum ijlfyjf (x €
R;) bewegt das Modell durch die Anpassung an die Pseudo-Residuen sozusagen einen

Schritt in die Richtung der starksten Verringerung des Verlust.

Foa(2) = Py (&) + Bublis9n) = fnor(2) + B0 Syl € By (2.11)

j=

Die optimale Anzahl an Iterationen stellt einen weiteren Parameter des Gesamtmodells
dar und wird i.d.R. durch Kreuzvalidierung oder vorheriges Tuning bestimmt. Zur Ver-
meidung von Overfitting kann die Anzahl der Iterationen / die Anzahl der additiven
Komponenten grundsétzlich beschréankt werden. Alternativ besteht die Moglichkeit durch
Multiplikation der einzelnen Komponenten mit einem Shrinkage-Parameter v € (0, 1] der
Uberanpassung an die Daten entgegen zu wirken. Der Shrinkage-Parameter (oder auch
Lernrate) v bewirkt, dass das Modell in jeder Iteration nicht mit der optimalen Schritt-
weite, sondern nur ein entsprechend kiirzeres Stiick in Richtung des negativen Gradienten
bewegt wird. Die optimalen Einstellungen beziiglich der Anzahl der Iterationen m sowie
der Lernrate v héngen dabei stark voneinander ab (— kleinere Lernrate fithrt zu groBerer

Anzahl an notwendiger Iterationen um ein bestimmtes Ergebnis zu erreichen und umge-

kehrt).

10

Eine einfache Erweiterung des Gradient Boosting stellt das Stochastic Gradient Boos-
ting dar. Anstatt in den einzelnen Iterationen stets alle zur Verfiigung stehenden Trai-
ningsdaten zu verwenden, wird je Iteration nur eine per Subsampling zuféllig generierte
Teilmenge der Trainingsdaten angepasst. Hierdurch wird das Gradient (Tree) Boosting

zusétzlich um die Vorteile (allerdings auch die Nachteile) der Bagging-Verfahren erweitert.

Eine ausfiihrlichere Beschreibung zu Boosting-Verfahren allgemein sowie zum Gradient
Tree Boosting findet sich bei Hastie et al., S. 337ff [16]. Fiir die in dieser Arbeit durch-
gefithrten Experimente wurde die Funktion ghm() aus dem gleichnamigen R-Paket ghm

verwendet.

2.1.5. Support Vector Machine (SVM)

Support Vector Machines [16] sind so genannte ,,Large Margin Classifier, bei denen zwei
Klassen derart durch eine Hyperebene getrennt werden, dass zusétzlich der Abstand zwi-
schen den Klassen und der Hyperebene maximal wird. Mittels des maximal breiten Ab-
standes soll insbesondere gewéhrleistet werden, dass auch neue Beobachtungen moglichst
gut klassifiziert werden konnen.

Der mit Vorzeichen versehene Abstand eines Punktes x; € R? von der in Abbildung 2.2

X'B+fo=0

margin

Abbildung 2.2.: Ansatz der Support Vector Machines inklusive Schlupfvariablen (vgl. Has-
tie et al., S. 418 [16]

dargestellten Hyperebene '3 + 5, = 0 mit Einheitsvektor 5 (— ||8]| = 1) kann mit-
tels f(x;) = =B + [bestimmt werden (vgl. Hastie et al., S. 418 [16]). Wird weiterhin

11

eine bindre Zielgrofe als y; € {—1,1} (1: positive Klasse, -1: negative Klasse) kodiert,
entspricht in diesem Fall ein positiver Wert von f(z;), d.h. ein positiver Abstand von x;
zur Hyperebene, der Zuordnung der Beobachtung i zur positiven Klasse (— y; = 1). Als
Klassifizierungsregel ergibt sich somit g; = sign(f(x;)).

Sind die beiden Klassen linear trennbar, so lésst sich eine Hyperebene an die Daten an-
passen, so dass fiir alle Beobachtungen gilt: y; - f(z;) > 0, d.h. alle Beobachtungen kénnen
anhand der Hyperebene korrekt klassifiziert werden. Mittels des in Formel 7?7 dargestell-
ten Optimierungsproblems ist des Weiteren eine Maximierung des absoluten Abstandes

(= y;- f(x;)) zwischen der Hyperebene und den Klassen (und somit zwischen den Klassen)

moglich.
max -y
B:Bo,l1B]|=1 (2.12)
Durch Umskalierung kann weiterhin der Wegfall der Annahme ||5]| = 1 erreicht werden.

Die Daten werden hierbei i.d.R. so skaliert, dass der Abstand der so genannten Support-
vekoren zur Hyperebene genau 1 betréigt. Als Supportvektoren werden die Beobachtungen
bzw. Vektoren bezeichnet, deren Abstand zur Hyperebene minimal ist (— min(y; - f(x;)))
und die dadurch den Verlauf der Hyperebene maf3geblich beeinflussen. In Azbbildung 2.2
sind die Supportvektoren mit schwarzer Umrandung dargestellt. Nach Skalierung ergibt

sich das zu Formel 2.12 dquivalente Optimierungsproblem:

1
minz|| B[
8,80 2 (2.13)

mit NB: gy, - (2}8+5y) >1, i=1,..,N

Fiir den Fall nicht linear trennbarer Klassen kann die in Formel 2.13 dargestellte Op-
timierung durch die Einfiihrung so genannter Schlupfvariablen (slack variables) & > 0
erweitert werden. Diese erlauben eine Fehlklassifizierung von Beobachtungen, wobei die
Anzahl der Fehlklassifizierungen bzw. die Abstédnde der fehlklassifizierten (§; > 1) und
innerhalb der Margin liegenden (0 < & < 1) Beobachtungen vom Rand der Margin so
gering wie moglich gehalten werden. In Abbildung 2.2 sind beispielhaft drei entsprechende
Beobachtungen dargestellt — &; liegt dabei zwischen 0 und 1, fiir die fehlklassifizierten
Beobachtungen gehdrenden Schlupfvariablen &, &5 gilt: & > 1 bzw. {3 > 1. Zusammenge-
fasst werden somit zwei Ziele verfolgt — zum einen die Anpassung einer Hyperebene mit
grofftmoglichem Abstand zu den beiden Klassen und zum anderen die Minimierung der
iiber die Schlupfvariablen erlaubten Fehlklassifizierungen. Diese prinzipiell gegensétzlichen

Ziele werden i.d.R. innerhalb des Optimierungsproblems in Form einer gewichteten Sum-

12

me ausgedriickt (vgl. Formel 2.14).

N
1
Z +C - i
man |15 ;5 (214

mit NB: ;- (2i8+50) >1-&, & >0

Die in Formel 7?7 dargestellte, positive Konstante C' steuert dabei den Ausgleich zwischen
den beiden genannten Zielen. Die Wahl des Parameters C' wird i.d.R. durch Anwendung
eines Tuning-Verfahren bestimmt. Je grofler C' dabei gew#hlt wird, umso kleiner wird die
Margin bzw. umso stédrker wird der Fokus auf die korrekte Klassifizierung der Beobach-
tungen gelegt. Da es sich in Formel 7?7 um ein konvexes Optimierungsproblem handelt,
kann iiber die Lagrange-Funktion und weitere Optimalitdtsbedingungen eine Losung fiir
83, By bestimmt werden: — 3 = Zf\il &;y;x; (vel. Hastie et al., S. 420f [16]).

Bei dem bis hierher beschriebenen Vorgehen handelt es sich prinzipiell um ein lineares
Klassifikationsverfahren, d.h. die Klassifizierung ist nur anhand einer linearen Funkti-
on moglich und bei nicht linear trennbaren Klassen kommen die Schlupfvariablen zum
Einsatz. Dieser Ansatz kann jedoch erweitert werden, in dem die Trainingsdaten bzw. -
vektoren in einen héherdimensionalen Raum transformiert werden. Mit steigender Anzahl
der Dimension lassen sich dadurch selbst sehr verschachtelte bzw. sich stark iiberlappende
Klassen linear trennen. Somit kann die gesuchte Hyperebene prinzipiell in einem héherdimensionalen
Raum bestimmt und anschlieSend wieder in den Ursprungs-Vektorraum zuriicktransformiert
werden. In Abbildung 2.3 ist beispielhaft die Transformation zweier nicht linear trennba-
ren Klassen im R? in den héherdimensionalen R? dargestellt.

Da die Transformation des gesamten Ursprungs-Vektorraums in einen hoherdimensionalen
Raum i.d.R. viel zu aufwindig und rechenintensiv ist, kommt hierbei der so genannte
Kernel-Trick zum Einsatz. Fiir eine existierende Transformation bzw. Basisfunktion ¢ der
Ursprungsdaten in einen hoherdimensionalen Raum (¢ : X — H) wird hierbei iiber den
so genannten Kernel bzw. eine Kernelfunktion k das Skalarprodukt je zweier Vektoren im

transformierten Raum berechnet:

k: X xX >R, k(xg,z) = (¢(x1), p(x2)) (2.15)

Wird der Kernel nun selbst auch als Basisfunktion verwendet, d.h. ¢(x) = k(z,-), so
ist das Skalarprodukt zweier transformierter Vektoren gerade gleich der Kernelfunktion
mit den jeweiligen Ursprungsvektoren als Funktionsargumente (,,reproducing property*,

vgl. Formel 2.16). Die Berechnung der Skalarprodukte kann aufgrund dieser Eigenschaft

13

] a o
@ o "
r &
! @ @ o
O - —_—
\ @
'
. @ o
LD @
@
]

Abbildung 2.3.: Transformation nicht linear trennbarer Klassen (R* — R?)

implizit mittels Kernelfunktion und Ursprungsvektoren erfolgen ohne dass eine Hin- und

Riicktransformation der Vektoren durchgefiihrt werden muss.

k(xy,z0) = (k(xq,..), k(xs,..)) (2.16)

Werden nun in Formel 77 alle Punkte x; durch die entsprechenden Basisfunktionen ersetzt

(xr; = k(x;,-)) sowie f = Zf\;l ayxi ergibt sich als ,neues“ Optimierungsproblem:

N N
o1
'3 g)+ O 28
’ N (2.17)
mit NB: g - (Z ajk(z,z;) >1-§&, &>0
j=1
Die Klassifizierung einer Beobachtung kann des Weiteren erfolgen mittels:

N

flai) = Zaik(xal'i) + Bo (2.18)
i=1

Diese in den Formeln 2.17 und 2.18 dargestellte,, kernelisierte* Support Vector Machine
stellt nun ein nicht-lineares Lernverfahren dar, welches auf beliebig verteilte Klassen an-
gewendet werden kann. Es zeigt sich, dass die Koeffizienten «; i.d.R. nur fiir genau die

Beobachtungen ungleich 0 sind, welche die Nebenbedingung exakt erfiillen. Dabei handelt

14

es sich wiederum um die so genannten Supportvektoren, welche die resultierende Hyper-
ebene auch in diesem Fall mafigeblich bestimmen.

Bei der verwendeten Kernelfunktion muss es sich prinzipiell ,lediglich“ um eine symmetri-
sche, positiv definite Funktion handeln, wodurch eine Vielzahl an verschiedenen Kernels
existieren. Im Rahmen dieser Arbeit wurde der so genannte Radial Basis Kernel bzw.
Gauss-Kernel verwendet (k(x;, x;) = exp(—~ - ||a;x;][*,v > 0), mit welchem die zugrunde
liegenden Daten theoretisch in einen unendlich dimensionalen Raum abgebildet werden
konnen. Da dadurch wiederum die perfekte Trennung aller Klassen méglich ist, dienen
die urspriinglich zur Separierung nicht linear-trennbarer Klassen eingefiihrten Schlupfva-
riablen hauptséchlich zur Vermeidung der Uberanpassung des Modells an die zugrunde
liegenden Trainigsdaten.

Weitere ausfiihrlichere Informationen zu Support Vector Machines finden sich bei Hastie
et al., S. 417ff [16]. Im Rahmen dieser Arbeit wurde zur Durchfithrung der Experimente die
Funktion ksvm() aus dem R Paket kernlab verwendet, welches automatisch auch katego-
riale Features verarbeitet sowie die Ausgabe von Klassenwahrscheinlichkeiten unterstiitzt,

die zur Berechnung der betrachteten Giitemafle benotigt werden (vgl. Abschnitt 2.3).

2.2. Methoden zur Korrektur des

Klassenungleichgewichts

2.2.1. Uberblick

Aufgrund der groflen Anzahl bindrer Klassifikationsprobleme mit unbalancierten Klas-
sen existiert eine ebenso grofie Vielfalt an Verfahren, um diesem Problem zu begegnen.
Beziiglich des methodischen Ansatzes lassen sich diese im Folgenden allgemein als Kor-
rekturmethoden bezeichneten Verfahren in zwei Gruppen aufteilen — Sampling-basierte
sowie kostenbasierte Methoden. Alternativ ist ebenso eine Einteilung in Algorithmus-
interne und Algorithmus-externe Verfahren moglich, wobei bei Erstgenannten die Kor-
rektur des Klassenungleichgewichts sozusagen in den jeweiligen Algorithmus integriert ist.
Es handelt sich dabei i.d.R um Anpassungen bestehender Lernverfahren fiir das konkrete
Problem unbalancierter, bindrer Klassen (z.B. AdaCost oder RUSBoost als Anpassun-
gen des AdaBoost-Algorithmus [13]). Da fiir einen Grofiteil dieser Algorithmus-internen
Verfahren keine Implementierungen im Programmpaket R zur Verfiigung stehen und die
Anpassungen bestehender Lernverfahren unter Umsténden sehr aufwéndig sein konnen,

beschrianken sich die Implementierungen und Untersuchungen innerhalb dieser Arbeit aus-

15

schlieflich auf externe Sampling- und kostenbasierte Korrekturmethoden (Wrapper-Based
Approaches). Diese bieten insbesondere den Vorteil, dass sie unabhéingig von eingesetz-
ten Lernverfahren angewendet und dadurch auch mit beliebigen Lernverfahren kombiniert

werden konnen.

Sampling-basierte Korrekturmethoden (vgl. Abschnitt 2.2.2) greifen unmittelbar in die
vorliegenden Trainingsdaten ein und ,verdndern® diese entsprechend, um der Unbalan-
ciertheit der Klassen entgegen zu wirken. Grundsétzlich ldsst sich hierbei zwischen Undersampling-
, Oversampling- und Hybrid-Verfahren unterscheiden, wobei letztere eine Mischform zwi-
schen Under- und Oversampling darstellen. Beim Undersampling wird versucht, die unter-
schiedlichen Héaufigkeiten zwischen den Klassen durch Eliminierung von Beobachtungen
der groflen Klasse auszugleichen. Im Falle des Oversampling geschieht dies entsprechend
durch Vervielfaltigung von Beobachtungen der kleinen Klasse. Die vorliegenden Daten
werden dabei grundsétzlich vor Anwendung des eigentlichen Lernverfahrens — sozusagen
in der Vorverarbeitung — angepasst.

Im Gegensatz hierzu bleiben die zugrunde liegenden Daten bei den kostenbasierten Me-
thoden (Cost-Sensitive Methods) unberiihrt. Durch Zuweisung unterschiedlicher Kosten
fiir die beiden Fehlklassifikationen €y, (wahre Klasse 0, Vorhersage 1) sowie €;y (wahre
Klasse 1, Vorhersage 0) wird i.d.R. die Fehlklassifikation von Beobachtungen der klei-
nen Klasse stéirker gewichtet und deren korrekter Klassifikation somit eine héhe Prioritét
verschafft. Auch hierbei konnen sowohl Lernverfahren angewendet werden, bei denen der
Einbezug vorgegebener Kosten unmittelbar in den Algorithmus integriert ist (z.B. Ent-
scheidungsbédume mit kostenbasiertem Unreinheitsmafl [19]) als auch Methoden, die un-
abhéngig vom jeweiligen Lernverfahren eingesetzt werden kénnen (vgl. Abschnitt 2.2.3).

Wie auch beim Sampling wird der Fokus auf den Fall der unabhéingigen Methoden gelegt.

Sampling- und kostenbasierte Korrekturmethoden unterscheiden sich zwar beziiglich ih-
res methodischen Ansatzes, sind jedoch grundsétzlich eng miteinander verkniipft. Sofern
Fehlklassifikationskosten Cp; und ¢ bekannt sind, werden diese i.d.R. in einer Kosten-

matrix dargestellt:

positive prediction | negative prediction
positive class Ch Co
negative class Cor Coo

Tabelle 2.1.: Kostenmatrix

C;; bezeichnet dabei die Kosten, die entstehen, wenn eine Beobachtung aus Klasse j

féalschlicherweise der Klasse ¢ zugeordnet wird. Mittels der beschriebenen Sampling-Verfahren

16

lassen sich diese unterschiedlichen Fehlklassifikationskosten nun insofern nachbilden, da
sich das Kostenverhéltnis der jeweilgenen Fehlklassifikationen in den Sampling-Raten wie-
derspiegelt. D.h. eine Anpassung der Klassenverteilung in den Daten via Sampling ent-
spricht einer Anpassung des Verhéltnisses der Fehlklassifikationskosten, so dass besipiels-
weise eine Verdopplung der Beobachtungen der kleinen Klasse mit der Verdopplung der
Fehlklassifikationskosten fiir Beobachtungen der kleinen Klasse bzw. Halbierung der Fehl-
klassifikationskosten fiir Beobachtungen der grofien Klasse korrespondiert [11,18].

Zu beachten ist, dass sich durch das Sampling lediglich das Kostenverhéltnisses ,, wiederge-
ben* lasst. Die exakten, absoluten Kosten (sofern bekannt) bleiben bei Sampling-basierten
Verfahren unberiicksichtigt und flieen nicht direkt in das Verfahren mit ein. Sampling-
Verfahren sind daher auch dann gut geeignet, wenn die wahren Fehlklassifikationskosten
unbekannt sind. Ein weiterer Unterschied zwischen Sampling- und kostenbasierten Metho-
den besteht darin, dass die betrachteten Daten bei kostenbasierten Methoden unverandert
bleiben, d.h. die Daten selbst werden nicht manipuliert, sondern lediglich mit weiteren

Informationen (Kosten bzw. Gewichten) angereichert.

2.2.2. Sampling-Methoden

2.2.2.1. Random Undersampling

Sampling-Methoden werden grundsétzlich zur Anpassung der Klassenverhéltnisse in den
vorliegenden Daten verwendet, um dadurch den Anteil bzw. das Gewicht der kleinen
Klasse zu erhohen. Einer der grundlegenden Ansétze stellt das Random Undersampling
(RUS) dar. Hierbei wird eine festgelegte Anzahl zufillig ausgewihlter Beobachtungen
der groflen Klasse (majority class) aus den Daten entfernt. Die genaue Anzahl ergibt
sich dabei anhand der Undersampling-Rate, welche als frei wéhlbarer Parameter vorab
eingestellt oder durch Anwendung eines Tuning-Verfahrens bestimmt werden kann. Die
Beobachtungen der kleinen Klasse (minority class) hingegen bleiben unverdndert (vgl.
Abbildung 2.4).

Da die Anzahl der Beobachtungen im Datensatz durch die Anwendung des Undersampling
reduziert wird, verringert sich i.d.R. auch die Laufzeit des jeweils angewendeten Lernver-
fahrens. Der Nachteil des Random Undersampling besteht in der Eliminierung und damit
dem Verlust von ggf. informativen bzw. charakteristischen Beobachtungen der grofien
Klasse. Des Weiteren konnen je nach Undersampling-Rate auch unverhéltnisméBig viele

Beobachtungen verworfen werden — entspricht die Rate beispielweise der so genannten

17

Random Undersampling
ariginal data (imbalanced} data after
Mmsgj * Nmin imbalance correction
- randomby chosen -
maj chs are
- discarded -
majority class] - =
{MNmg observations)
+
.3
m\ﬁdo +
f— N
+
minority class
{Nmin observations)
+

Abbildung 2.4.: Random Undersampling

inversen ,imbalance ratio“ (IR) (— Anzahl Beobachtungen der kleinen Klasse N,,;, divi-
diert durch die Anzahl Beobachtungen der grofien Klasse N,,,;) ergibt sich die Grofle des
resultierenden Datensatzes nach Korrektur mit N = Nyin+ Ninaj* (Nmin/Nmaj) = 2 Nonin.-
Das Verhiltnis der beiden Klassen ist in diesem Fall nach Durchfiihrung des Undersamp-
ling ausgeglichen, je nach Grad der Unbalanciertheit verbleiben jedoch deutlich unter 50%
der urspriinglichen Beobachtungen in den Daten.

Uber erweiterte Ansiitze des Undersampling wie z.B. Condensed Nearest Neighbors [9]
wird versucht, Beobachtungen der grofien Klasse nicht zufillig, sondern ,intelligent® zu
selektieren, so dass vorzugsweise die Beobachtungen entfernt werden, die entweder redun-
dant oder ,,verrauscht sind. Eine weitere Moglichkeit stellt das so genannte Underbagging
dar. Gemafl dem Bagging-Ansatz werden hierbei das Undersampling der Daten sowie das
anschlieBende Lernverfahren mehrfach ausgefiihrt. Da in jeder Iteration / jedem Modell
zufillig andere Teilmengen der grofien Klasse fiir die Modellanpassung verbleiben, wird
mit steigender Anzahl der Modelle umso wahrscheinlicher, dass jede Beobachtung in zu-

mindest eines der Modelle einflieft und somit nicht komplett verworfen wird.

18

2.2.2.2. Oversampling

Im Gegensatz zum Undersampling verdndern Oversampling-Verfahren die Beobachtun-
gen der kleinen Klasse (minority class). Beim klassischen Oversampling wird diese dabei
kiinstlich vergrofiert, in dem ,neue” Beobachtungen durch zufillige Vervielfaltigung, d.h.
Ziehen mit Zuriicklegen aus den urspriinglichen Beobachtungen, zur kleinen Klasse hin-
zugefiigt werden. Jede Beobachtung der kleinen Klasse ist somit mindestens einmal in
den Daten enthalten. Die Anzahl der Ziehungen, d.h. der replizierten Beobachtungen
richtet sich nach der Oversampling-Rate — diese kann frei gewéhlt oder mittels Tuning-
Verfahren bestimmt werden. Die Beobachtungen der grofen Klasse (majority class) blei-

ben unverandert.

Oversampling
original data (imbalanced) data after
Nmaj = Nmin imbalance correction
= all maj obs -
majority class -
(Nmg observations) -
+ all min obs +
minority class
(Nmin observations)
+ L +
— in addition, 7 f-------------
copies of randomly
chosen min obs are
created | s+
+

Abbildung 2.5.: Oversampling

Durch die zuféllige Vervielfaltigung von Beobachtungen und dem daraus folgenden Vorlie-
gen exakter Kopien kann es bei Anwendung des Lernverfahrens leichter zu einer Uberanpassung

an die Trainingsdaten (Overfitting) kommen. Des Weiteren erhtht sich durch die Ver-

19

groferung des betrachteten Datensatzes die Laufzeit fiir die Durchfithrung des jeweiligen
Lernverfahrens. Entspricht die Oversampling-Rate beispielsweise der ,jimbalance ratio®
(IR) (— Anzahl Beobachtungen der grofien Klasse N,,,; dividiert durch die Anzahl Beob-
achtungen der Klasse N,,;,) steigt die Anzahl der Beobachtungen des Datensatzes nach
Korrektur auf N = Npin * (Nimaj/Nmin) + Nimaj = 2 - Npgj. Je nach Grad der Unbalan-
ciertheit kann sich die Grofle des Datensatzes im Extremfall dadurch knapp verdoppeln.
Erweiterungen und Alternativen zum klassischen Oversampling stellen z.B. das Overbag-
ging sowie SMOTE dar, welche in den beiden folgenden Abschnitten 2.2.2.3 und 2.2.2.4

beschrieben werden.

2.2.2.3. SMOTE

Das SMOTE-Verfahren (Synthetic Minority Oversampling Technique) [8] stellt eine Va-
riante des Oversampling dar, bei dem insbesondere versucht wird, mogliches Overfitting
durch die Erzeugung exakter Kopien der Beobachtungen der kleinen Klasse zu vermeiden.
Anstelle der Replikation der Beobachtungen, werden neue Beobachtungen durch Interpola-
tion zuféllig ausgewéahlter Beobachtungen der kleinen Klasse (minority class) kiinstlich er-
zeugt. Die Anzahl der neuen Beobachtungen richtet sich wie auch beim Oversampling nach
der frei wihlbaren bzw. durch Tuning-Verfahren zu bestimmenden Oversampling-Rate.

Die Beobachtungen der groBen Klasse (majority class) bleiben wiederum unveréndert.

Zur Konstruktion der neuen, kiinstlichen Beobachtungen werden zunéchst eine Beobach-
tung der kleinen Klasse sowie jeweils einer der n ndchsten Nachbarn dieser Beobachtung
zufillig ausgewihlt. Die Anzahl der betrachteten néchsten Nachbarn stellt dabei neben
der Sampling-Rate einen weiteren frei wihlbaren Parameter des Verfahrens dar. Liegen

ausschliefSlich metrische Merkmale vor, werden die néichsten Nachbarn anhand der eu-

klidischen Distanz d(z;, ;) \/ Zk ((@ikzjx)? bestimmt. Je nach Kontext sollten die
Variablen dabei ggf. vorher standardisiert werden. Sind sowohl kategoriale als auch metri-
sche Variablen in den Daten enthalten, kann z.B. die Gower Distanz [14] zur Ermittlung
der nédchsten Nachbarn verwendet werden (vgl. Formel 2.19). Zur Bestimmung des ,,Ab-
standes“ bzw. der Ahnlichkeit zweier Beobachtungen wird dabei je Variable k = 1,..,p
zunéchst in Abhéngigkeit vom Skalenniveau ein Distanzmafl d(z;, «;x) berechnet, welches
im Intervall [0,1] liegt. Fiir kategoriale und binére Variablen betréigt die Distanz dabei z.B.
0, wenn beide Werte identisch sind und 1, falls sich diese unterscheiden. Fiir metrische
Variablen wird der Li-Abstand zwischen den jeweiligen Ausprigungen berechnet und an-
schlieflend durch die Spannweite 7, des Merkmals dividiert — d(z, xj;) = ‘x““—kx”‘l Die

Gower Distanz berechnet sich anschlieend geméfl Formel 2.19 als gewichtetes Mittel der

20

SMOTE (Synthetic Minority Oversampling TEchnique)

original data (imbalanced) data after
Nmzj * Nmin imbalance correction

all maj ohs

majority class
- - N -

(Nmg observations)

in addition, each
new min obs is

constructed by +
= - interpolation of a +

randomly chosen

— min obsand a
+
+ Il min ob randomly chosen +
inori &l min abs + -] nearest neighbor
S -
minarity class _J
(Nmin observations)
+ + —
_____________ SMOTE
H_ algorithm
+ /
+ “«]
+

Abbildung 2.6.: Synthetic Minority Oversampling Technique (SMOTE)

Distanzen der einzelnen Variablen. Da diese alle im Intervall [0,1] liegen, ergibt sich auch

fiir die Gower Distanz ein Wertebereich zwischen 0 und 1.

P
_ wkd Liky Lk
d([Ei,l’j):Zk 1 . (Rk

k=1 Wk

p
) €01, > uwp=1 ij=1.n (2.19)
k=1

Nach Berechnung der n nédchsten Nachbarn je Beobachtung, wird anschliefend mehr-
fach (je nach Oversampling-Rate) zufillig eine Beobachtung der kleinen Klasse sowie ein
zufalliger, nachster Nachbar selektiert und daraus eine neue, ,synthetische® Beobachtung
erzeugt. Dabei werden die Werte der metrischen Variablen der neuen Beobachtung durch
zufillige Konvexkombination der Ausprigungen der Ausgangs-Beobachtungen berechnet
(Tnew = A Togn + (1 — N)Zoa2, A ~ U(0,1)), fir kategoriale Variablen wird die neue
Auspriagung per Zufallswahl (Bernoulli-Experiment mit p = 0.5) aus den beiden Ausgangs-
Beobachtungen abgeleitet.

Da die zugrunde liegenden Daten auch bei Anwendung des SMOTE-Verfahrens kiinstlich

vergrofert werden, kommt es i.d.R. wie beim Oversampling zu einer Erhéhung der Lauf-

21

zeit bei Anwendung des Lernverfahrens. Im Extremfall (— Oversampling-Rate entspricht
IR und sehr starke Unbalanciertheit) kann die Anzahl der Beobachtungen nahezu verdop-
pelt werden (vgl. Abschnitt 2.2.2.2).

Als mogliche Erweiterung ldsst sich SMOTE mit Random Undersampling zu einem hybri-
den Verfahren kombinieren [8]. Neben der Erzeugung neuer, kiinstlicher Beobachtungen,
werden dabei zusétzlich zufillig Beobachtungen der grofien Klasse verworfen. Modified
SMOTE [13] sowie Borderline-SMOTE [15] stellen weitere Optimierungen des SMOTE-
Verfahrens dar. Hierbei wird bei der Generierung der neuen Beobachtungen zusétzlich die
Verteilung bzw. die Lage der Beobachtungen in der kleinen Klasse beriicksichtigt. Ent-
weder werden nur bestimmte Beobachtungen zur Generierung neuer Beobachtungen in
Betracht gezogen oder die Selektion der nédchsten Nachbarn ist abhéngig von der Lage
der jeweils ausgewéahlten Beobachtung. Eine kurze Beschreibung des Ensemble-basierten
SMOTEBagging als weitere ALternative findet sich im folgenden Abschnitt 2.2.2.4.

Im Rahmen dieser Arbeit wird SMOTE als reines Oversampling-Verfahren betrachtet, um
das Verfahren insbesondere mit dem Oversampling vergleichen zu kénnen. Die genann-
ten Erweiterungen — SMOTE inklusive Undersampling sowie Modified- und Borderline-
SMOTE wurden in die durchgefiihrten Experimenten soit nicht beriicksichtigt.

2.2.2.4. Overbagging

Oversampling kann durch Anwendung der Bagging-Methode zum so genannten Over-
bagging erweitert werden. Das Oversampling der kleinen Klasse sowie die anschlieflen-
de Modellanpassung durch das Lernverfahren werden dabei mehrfach durchgefiihrt. Die
Klassifizierung neuer Beobachtungen erfolgt per Mehrheitswahl (majority vote) der Er-
gebnisse der einzelnen Modelle, d.h. die Klasse, welche am h#ufigsten vorhergesagt wurde,

wird auch final prognostiziert.

Fiir jedes Modell wird zunéchst die kleine Klasse (minority class) per Oversampling ver-
grofert. Im Unterschied zum klassischen Oversampling 2.2.2.2 flielen jedoch nicht alle
Beobachtungen der kleinen Klasse in jedes Modell ein. Stattdessen wird nach Oversamp-
ling der kleinen Klasse wiederum je Modell eine Bootstrap-Stichprobe erzeugt (vgl. Vorge-
hensweise Random Forest in Abschnitt 2.1.3). Um die Variabilitidt zwischen den Modellen
zusatzlich zu erhohen, werden auch die Beobachtungen der grofien Klasse per Bootstrap
gezogen. Die Anzahl der Beobachtungen der grofien Klasse bleibt dabei unverédndert. Bei
Verwendung des Imbalance Ratio (IR) als Oversampling-Rate steuert jede Klasse somit

beispielhaft N,,,; Beobachtungen je Iteration bei.

22

OverBagging (Oversampling and Bagging)

imbal. correction is executed multiple
times (once for each model)

original data (imbalanced) data after
Nmzj * Nmin imbalance correction

modell — predl —
Nnew1 = Nmgj maj obs
are bootstrapped

I _—
majority class _ model2 = pred2 —

(Nmsj observations)

model3 = pred3

|
pred

modeld [PrEdd ey vote)

Npew2 * Nmin min obs
are sampled

+ _—

minority class
{MNmin observations)

+ + + +

modeln |— predn —

Abbildung 2.7.: Overbagging

Da auch beim Overbagging die Anzahl der Beobachtungen vergréflert wird, wirkt sich
dies i.d.R. negativ auf die Laufzeit des jeweiligen Lernverfahrens aus. Des Weiteren hangt
die Laufzeit insbesondere auch von der Anzahl der Overbagging-Iterationen ab, welche
wie bei anderen Bagging-Verfahren einen frei wéhlbaren Parameter darstellt.

Entsprechend der Verkniipfung von Bagging und Oversampling existiert mit SMOTE-
Bagging auch eine weitere Variante des in Abschnitt 2.2.2.3 beschriebenen SMOTE-
Verfahrens. Dieses unterscheidet sich im Vergleich zu Overbagging zum einen durch die al-
ternative Erzeugung der neuen Beobachtungen. Da auch beim SMOTEBagging die Beob-
achtungen der kleinen Klasse je Iteration durch Ziehen mit Zurticklegen bestimmt werden,
kann des Weiteren der Anteil der (wahren) Ursprungs-Beobachtungen sowie der Anteil
der per SMOTE (kiinstlich) erzeugten Beobachtungen variiert werden. Diese so genannte
SMOTE Resampling-Rate a € (0, 1] kann dabei z.B. von Modell zu Modell variiert wer-
den, so dass sich die Daten fiir die einzelnen Modellen mdoglichst stark unterscheiden [13].
Die Beobachtungen der grofien Klasse werden wie auch beim Overbagging per Bootstrap

gezogen, um die Variabilitdt zwischen den einzelnen Modellen zusétzlich zu erhéhen.

23

2.2.3. Kostenbasierte Methoden

2.2.3.1. (Class) Weighting

Als einzige kostenbasierte Korrekturmethode wird im Rahmen dieser Arbeit das so ge-
nannte Weighting bzw. Class Weighting [23] betrachtet. Dieses Verfahren stellt eine der
wenigen kostenbasierten und zugleich verfahrensunabhéngigen Korrekturmethoden dar.
Anstelle einer Kostenmatrix mit unterschiedlichen Fehlklassifikationskosten C1g, Cp; wer-
den diese allen Beobachtungen der jeweiligen Klasse direkt als Gewicht zugeordnet und
anschlieSsend eine gewichtete Klassifikation durchgefiihrt. Das vergebene Gewicht je Be-
obachtung (case weight) w; richtet sich demnach ausschliellich nach der Auspriagung der
Klasse sowie dem entsprechenden Klassengewicht (class weight) wy,in bzw. wy,,;. Das ver-
wendete Lern- bzw. Klassifikationsverfahren muss somit lediglich Gewichte verarbeiten
konnen, um zu einem kostensensitiven Verfahren zu werden. Da die meisten Klassifikati-
onsverfahren in der Lage sind mit case weights umzugehen, léasst sich das Weighting genau
wie die beschriebenen Sampling-Verfahren mit einer Vielzahl an Lernverfahren kombinie-

remn.

Weighting (class weights)
original data (imbalanced) data after
Nz = Nmin imbalance correction
= = Wmaj
= - Wmaj
- weight wmgj added - Wi
o for all maj obs
majority class
- JR— - - Wmaj
(Nmg observations)
- | . - W)
Wnin * Wnaj ’
______________________________ - Wmaj
+ weight wWin added + Wmin
minority class for all min obs
(Mmin observations)
+ +
Wmin

Abbildung 2.8.: Weighting

24

Die in Abbildung 2.8 dargestellten Gewichte wy,q; und wy,:, entsprechen grundsétzlich
den Fehlklassifikationskosten C1y sowie Cy; (vgl. Abschnitt 2.2.1). Sind die wahren Kosten
unbekannt, kann anstelle der tatsdchlichen Kosten auch das Kostenverhéltnis (— durch
Division mit den i.d.R. geringeren Kosten fiir falsch klassifizierte negative Beobachtungen,
d.h. Wy = g_fi = 1 und Wy, = g—;?) iibergeben oder die Gewichte alternativ mittels
Tuning-Verfahren bestimmt werden.

Im Unterschied zu den vorgestellten Sampling-Methoden werden die Beobachtungen der
Klassen und dadurch die Gréfle des Datensatzes beim Weighting nicht veréndert. Des
Weiteren gehen alle verfiigharen Beobachtungen auch in das Modell ein, so dass kein

Informationsverlust entsteht.

2.3. GitemalBe fiir die Performance

2.3.1. Kennzahlen der Konfusionsmatrix

Die Wahl des GiitemafBles zur Beurteilung eines Verfahrens ist von entscheidender Bedeu-
tung, da die Bewertung je nach betrachteter Grofle stark variieren kann. Im Zwei-Klassen-
Fall eignet sich i.d.R. zunéchst die Betrachtung der Konfusionsmatrix (vgl. Tabelle 2.2),
welche sozusagen die Basis fiir die Analyse der Performance des jeweiligen Verfahrens
darstellt. Zur Erstellung der Konfusionsmatrix wird zunéchst fiir jede Beobachtung eines
festgelegten Testdatensatzes die Klassenzugehorigkeit prognostiziert und daraufhin mit
den wahren Klassen der jeweiligen Beobachtungen verglichen. Bei der Vorhersage kann
dabei entweder die Klasse direkt geschétzt oder alternativ zunéchst die Klassenwahr-
scheinlichkeiten bestimmt und die entsprechende Klasse anschlieflend iiber einen festge-
legten Schwellenwertes (Threshold) ¢ abgeleitet werden. Ublicherweise wird der dabei der
Threshold ¢ = 0.5 verwendet, d.h. ist die vorhergesagte Wahrscheinlichkeit einer Beob-
achtung fiir z.B. die positive Klasse grofier als 0.5 (P(y; = 1) > ¢ = 0.5), so wird fir diese
Beobachtung die positive Klasse bzw. Klasse 1 vorhergesagt. Prinzipiell ist der Threshold
im Intervall [0,1] frei wihlbar. Je kleiner ¢ dabei gewéhlt wird (¢ — 0), desto hoher ist die
Anzahl der anhand der Klassenwahrscheinlichkeiten als positiv klassifizierten Beobach-
tungen. Fiir den Fall ¢ = 0 werden alle Beobachtungen der positiven Klasse zugeordnet,

fiir ¢ = 1 der negativen Klasse.

Die Konfusionsmatrix beschreibt grundsétzlich, wie gut ein Verfahren die einzelnen Klas-
sen prognostiziert. Im Falle der bindren Klassifikation ergibt sich somit die in Tabelle 2.2

darstgestellte 2 x 2-Matrix. Die Anzahlen der je Klasse korrekt klassifizierten Beobachtun-

25

positive prediction | negative prediction
positive class | true positives (TP) | false negatives (FN)
negative class | false positives (FP) | true negatives (TN)

Tabelle 2.2.: Konfusionsmatrix

gen sind dabei auf der Hauptdiagonalen dargestellt (TP und TN). Die ,, True Positives“
ergeben sich dabei aus den Beobachtungen der positiven Klasse, die korrekt als positiv
klassifiziert wurden. , True Negatives® bezeichnen entsprechend die korrekt klassifizierte
Beobachtungen der negativen Klasse. Bei den , False Positives“ handelt es sich hingegen
um die fehlerhaft als positiv klassifizierten Beobachtungen, d.h. die Beobachtungen, die
eigentlich zur negativen Klasse zéhlen, aber als positiv klassifiziert wurden. , False Nega-
tives“ stellen die fehlerhaft als negativ klassifizierten Beobachtungen dar.

Aus der Konfusionsmatrix ldsst sich zunéchst die Gesamtgenauigkeit (Accuracy) bzw.
Fehlklassifikationsrate € (1-Accuracy) ableiten. Dabei handelt es sich um den Anteil der
korrekt bzw. der fehlerhaft prognostizierten Beobachtungen an der Gesamtzahl der Beob-
achtungen in den zugrunde liegenden (Test-)Daten. Die Berechnung der Fehlklassifikati-
onsrate ist besipielhaft in Formel 2.20 dargestellt.

TP+TN FP+FN

¢ « TP+ FP+FN+TN TP+ FP+FN+TN

(2.20)

Da bei der Fehlklassifikationsrate jedoch nicht mehr zwischen den Fehlklassifikationen
der einzelnen Klassen (FN und FP) unterschieden wird, sind sowohl diese als auch die
die Accuracy als Giitemafle insbesondere fiir stark unbalancierte Daten eher ungeeignet.
So wiirde z.B. bei Daten mit einem 98%-igen Anteil der Beobachtungen der negativen
Klasse bereits eine Genauigkeit von 98% durch ausschlieSliche Vorhersage der negativen
Klasse erreicht. D.h. trotz sehr hoher Gesamtgenauigkeit, ist die Genauigkeit beziiglich
der kleinen Klasse in diesem Beispiel gleich 0, d.h. keine positive Beobachtung wird kor-
rekt erkannt. Neben Accuracy und Fehlklassifikationsrate lassen sich daher weitere Werte
aus der Konfusionsmatrix ableiten, die als Grundlage fiir die im Rahmen dieser Arbeit
betrachteten Mafle - F1-Score (vgl. Abschnitt 2.3.2) und AUC (vgl. Abschnitt 2.3.3) die-
nen:
e True-Positive-Rate (PR = TPZ%)
Anteil der korrekt als positiv klassifizierten Beobachtungen unter allen tatséchlich
positiven Beobachtungen. Die True-Positive-Rate wird auch als Sensitivitat, Tref-

ferquote oder Recall bezeichnet.

e False-Negative-Rate (FNR =1—TPR)

26

Anteil der falschlich als negativ klassifizierten Beobachtungen unter allen tatséchlich
positiven Beobachtungen.

e True-Negative-Rate (TNR = %)
Anteil der korrekt als negativ klassifizierten Beobachtungen unter allen tatséchlich
negativen Beobachtungen. Die True-Negative-Rate wird auch als Spezifitit bezeich-

net.

e False-Positive-Rate (FPR=1—TNR)
Anteil der félschlich als positiv klassifizierten Beobachtungen unter allen tatséchlich
negativen Beobachtungen.

e Positive-Predictive-Value (PPV = T},TJF—PFP)
Anteil der korrekt als positiv klassifizierten Beobachtungen unter allen als positiv
klassifizierten Beobachtungen. Der Positive-Predictive-Value wird auch als Precision
oder Genauigkeit bezeichnet. Um eine Verwechselung mit der in Formel 2.20 enthal-
tenen (Gesamt-)Genauigkeit (Accuracy) zu vermeiden, wird der Positive-Predictive-

Value fortan als Precision bezeichnet.

2.3.2. F1-Score

Fiir den so genannte F-Score (oder F-Maf}) werden True-Positive-Rate (— Recall) und

Precision in Form eines gewichteten Mittels verkniipft:

precision - recall

Fs=(1+5)- (2.21)

B - precision + recall

Der Wertebereich des in Formel 2.21 dargestellten F-Scores liegt dabei im Intervall [0,1],
wobei 0 dem schlechtesten und 1 dem besten Wert (— Recall = 1 und Precision = 1)
entspricht. Die Gewichtung der beiden Gréfien erfolgt iiber den Parameter 8. Fiir =1
ergibt sich dabei das balancierte F-Mafl oder auch F1-Maf§ / F1-Score als harmonisches
Mittel, bei dem Recall und Precision gleich gewichtet sind. Fiir § > 1 lésst sich der Recall,
fiir 8 < 1 die Precision entsprechend hoéher gewichten.

_ 2-precision - recall TP

= precision + recall (TP+FP)42r(TP+FN) (2.22)

Die alternative Schreibweise in Formel 2.22 verdeutlicht, dass das F1-Score die True Po-

27

sitives sozusagen auf das arithmetische Mittel aus allen positiv vorhergesagten Beob-
achtungen und den wahren positiven Beobachtungen bezieht. Die True Negatives flielen
hingegen nicht in den F1-Score ein bzw. werden nur indirekt iiber die False Positives
beriicksichtigt. Bei Betrachtung des F1-Score wird somit der Fokus mafigeblich auf die
Prognosegiite beziiglich der positiven, d.h. i.d.R. der kleinen Klasse gelegt und die Per-

formance beziiglich der groflen Klasse eher vernachléssigt.

2.3.3. ROC-Kurve und AUC

Die Fliache unter der Receiver-Operater-Characteristic(ROC)-Kurve, die ,,Area under
Curve“ (AUC), stellt eines der am haufigsten verwendeteten Giitemafle insbesondere im
Rahmen der bindren Klassifikation dar. Mittels der ROC-Kurve werden hierbei zunéchst
True-Positive-Rate (TPR) und False-Positive-Rate (FPR) (vgl. Abschnitt 2.3.1) gegeniibergestellt.
Die True-Positive-Rate wird dabei auf der Ordinate, die False-Positive-Rate auf der Ab-
szisse abgetragen. Aus den Elementen der Konfusionsmatrix ldsst sich somit exakt ein
Punkt mit Koordinaten (z,y) = (FPR,TPR) berechnen. Wie bereits in Abschnitt 2.3.1
beschrieben, ist bei Prognose der Klassenwahrscheinlichkeiten durch Anpassung des Thres-
holds ¢ € [0,1] prinzipiell die Berechnung mehrerer alternativer Konfusionsmatrizen
und damit auch verschiedener Koordinaten fiir True-Positive- und False-Positive-Rates
moglich. Der optimale Punkt fiir True-Positive- und False-Positive-Rate liegt bei (0,1),
da hier alle Beobachtungen korrekt klassifiziert wurden. Die Punkte (0,0) bzw. (1,1) ent-
sprechen den Thresholds ¢ = 1 bzw. ¢ = 0, bei denen jeweils ausschliellich eine der
beiden Klassen fiir alle Beobachtungen vorhergesagt wird. Die ROC-Kurve lésst sich nun
ableiten, indem die durch ein Verfahren bzw. Modell vorhergesagten Klassenwahrschein-
lichkeiten fiir eine Folge von Thresholds betrachtet und die entsprechenden True-Positive-
und False-Positive-Rates berechnet und in Form einer Kurve dargestellt werden (vgl. Ab-
bildung 2.9).

Verlauft die ROC-Kurve entlang oder in der Ndhe der Diagonalen, so ist das zu eva-
luierende Verfahren in etwa so ,gut® wie ein Zufallsprozess und damit gewissermaflen
wertlos. Eine nahezu optimale ROC-Kurve steigt zundchst vom Punkt (0,0) sehr stark
senkrecht an, d.h. die True-Positive-Rate liegt moglichst nahe bei 1 bei verhéltnismafig
kleiner False-Positive-Rate. Erst danach erhoht sich langsam die False-Positive-Rate bis
die Kurve den Punkt(1,1) erreicht.

Die Fliche unterhalb der ROC-Kurve, die ,,Area under Curve® (AUC), fasst die gesamte
Kurve sowie deren Verlauf in einer einzigen Kennzahl zusammen. Der AUC-Wert be-

schreibt damit allgemein, wie gut ein Modell im Mittel, d.h. unabhéngig vom Threshold

28

1.0

True positive rate

00 02 04 06 08

04 06 0.8 1.0

False positive rate

Abbildung 2.9.: ROC Kurve

¢, sowohl Beobachtungen der positiven als auch der negativne Klasse korrekt klassifiziert.
Der AUC berechnet sich als Fliache zwischen der ROC-Kurve und der Abszisse.
14+TPR—- FPR

AUC = 5 € [0,1] (2.23)

Obwohl der Wertebereich des AUC-Wertes prinzipiell im Intervall [0, 1] liegt, stellt ein
Wert von 0.5 das schlechteste Ergebnis dar, da die entsprechende ROC-Kurve in diesem
Fall wiederum entlang bzw. in der Ndhe der Diagonalen verlduft. Fiir AUC-Werte kleiner
0.5 kann die Vorhersage des entsprechenden Modells im Zwei-Klassen-Fall durch Negation
der Vorhersagen in einen Wert gréfler 0.5 umgewandelt werden. Bei optimalem Verlauf
der ROC-Kurve erreicht der AUC den Wert 1.

Anschaulich bedeutet ein hoher AUC, dass fiir eine geeignete Wahl des Thresholds ein gu-
tes Ergebnis mit dem jeweiligen Modell erreicht werden kann. Der Vorteil des AUC-Wertes
gegeniiber der Fehlklassifikationsrate besteht somit darin, dass zum einen durch Betrach-
tung der True-Positive-Rate und der False-Positive-Rate die Prognosegiite beziiglich bei-
der Klassen betrachtet wird. Aufgrund der Unabhéngigkeit vom Threshold ¢ ist des Wei-
teren eine allgemeinere Aussage zur Performance des Modells moglich. Die Fehlklassifi-
kationsrate wie auch der F1-Score (vgl. Abschnitt 2.3.2) werden jeweils nur anhand eines
konkreten Thresholds (i.d.R. ¢ = 0.5) berechnet. Aufgrund der Thrshold-iibergreifenden
Bewertung der Perfomance eignet sich der AUC-Wert dadurch insbesondere fiir einen ge-
nerelle Vergleiche zwischen zwei oder mehreren, ggf. sehr unterschiedlichen Modellen (—

verschiedene Modellparameter, verschiedene Lernverfahren etc.). Hierbei gilt jedoch zu

29

beachten, dass wiederum fiir einen konkreten Threshold ein Modell mit eigentlich kleine-
rem AUC-Wert besser geeignet ist als ein Modell mit hoherem AUC, da keine der beiden
entsprechenden ROC-Kurven gleichmflig besser als die andere. Da Die ROC-Kurve durch
den AUC in einem Wert zusammengefasst wird und damit Informationen verloren gehen,
bei Interesse eines bestimmten Thresholds bzw. eines bestimmten Bereichs die Betrach-
tung des AUC ggf. eher ungeeignet und es empfiehlt sich stattdessen z.B. die Analyse des
Partial AUC [22].

30

3. Experimente

3.1. Daten

Zur Analyse und zum Vergleich der Performance der verschiedenen Lern- und Korrektur-
verfahren werden im Rahmen dieser Arbeit 23 Datensétze (vgl. Tabelle 3.1) betrachtet,
welche tiber die Machine Learning Plattform Open ML (http://www.openml.org/) [24]
zugénglich und abrufbar sind. Da es sich zum Grofiteil urspriinglich um Multi-Klassen-
Probleme handelt, wurde jeweils eine der vorhandenen Klassen als , kleine Klasse® aus-
gewahlt und die anderen zu einer groflen Klasse zusammengefasst. Die Reduktion auf
die resultierenden Zwei-Klassen-Probleme lésst sich als One-vs-All bzw. One-vs-Rest Fra-
gestellung ansehen, d.h. es soll prognostiziert wird, ob eine Beobachtung zu einer ent-
sprechenden Klasse gehort oder nicht. Eine Ubersicht der festgelegten kleinen Klassen je
Datensatz findet sich in ANHANG A.

In Tabelle 3.1 sind die mafigeblichen Eigenschaften der untersuchten Datensétze darge-
stellt. Diese sind dabei aufsteigend nach dem Imbalance Ratio (IR) (Spalte ir), d.h. dem
Quotient aus der Anzahl der Beobachtungen der grofien Klasse und der Anzahl der Beob-
achtungen der kleinen Klasse sortiert. Die Anzahl der Beobachtungen insgesamt (Spalte
n) schwankt zwischen 336 (ecoli4) und 28.056 (kropt16), der Anteil der kleinen Klasse
(Spalte pct.min) an allen Beobachtungen zwischen 0.8% (abalone19) und 15% (scenesun-
set), was einem IR von 5.6 bis 129.5 entspricht.

In den Datensétzen sind sowohl metrische als auch kategoriale Features enthalten (Spalten
num, cat). Konstante Features, d.h. Variablen mit nur einer einzigen Auspriagung wurden
vorab aus dem jeweiligen Datensatz entfernt (Spalte rem). Die resultierende Anzahl der
betrachten Features (Spalte feat) reicht schlieBlich von 4 (balance?2) bis 294 (scenesunset).
Bei der Auswahl der Datensétze und Zusammenfassung der Klassen wurde vornehmlich
auf den Grad der Unbalanciertheit (— IR > 5) geachtet. Andere Aspekte wie die Trenn-
barkeit der Klassen oder die Verteilung der Beobachtungen innerhalb der Klassen wurden
bei der Selektion nicht betrachtet.

http://www.openml.org/

dsname n n.min n.max pct.min ir num cat rem feat

scenesunset, 2407 364 2043 0.15 5.61 294 0 0 294
ecoli4 336 35 301 0.10 8.60 7 0 0 7
optdigitsO 5620 554 5066 0.10 9.14 64 0 2 62
satelliteimaged 6435 626 5809 0.10 9.28 36 0 0 36
pendigits9 10992 1055 9937 0.10 9.42 16 0 0 16
vowell 990 90 900 0.09 10.00 10 2 0 12
spectrometer4?2 531 45 486 0.08 10.80 100 1 1 100
balance2 625 49 576 0.08 11.76 4 0 0 4
annealb 898 67 831 0.07 12.40 6 32 7 31
coil2000 9822 586 9236 0.06 15.76 85 0 0 85
arrhythmia6 452 25 427 0.06 17.08 206 73 17 262
oilspill 937 41 896 0.04 21.85 49 0 1 48
solarflareb 1066 43 1023 0.04 23.79 0 12 1 11
card 1728 65 1663 0.04 25.58 0 6 0 6
letter26 20000 734 19266 0.04 26.25 16 0 0 16
yeasth 1484 51 1433 0.03 28.10 8 0 0 8
winequality4 6497 216 6281 0.03 29.08 11 0 0 11
ozonelevel 2536 73 2463 0.03 33.74 72 0 0 72
nursery3 12960 328 12632 0.03 38.51 0 8 0 8
mammography 11183 260 10923 0.02 42.01 6 0 0 6
pageblocksb 5473 115 5358 0.02 46.59 10 0 0 10
kropt16 28056 390 27666 0.01 70.94 0 6 0 6
abalonel9 4177 32 4145 0.01 129.53 7 1 0 8

Tabelle 3.1.: Ubersicht Datensiitze

3.2. Verfahren und Parameter

In den durchgefithrten Experimenten kommen die in Abschnitt 2.1 beschriebenen Klassi-
fikationsverfahren — Logistische Regression (logreg), Klassifikationsbaum (cart), Random
Forest (rf), Gradient Tree Boosting (gbm) und Support Vector Machine (svm) — zum
Einsatz. Als Methoden zur Korrektur des Klassenungleichgewichts werden des Weiteren
Random Undersampling (us), Oversampling (os), Oversampling anhand SMOTE (sm),
Overbagging (ob) und Class Weighting (cw) untersucht.

Die Klassifikationsverfahren wurden dabei sowohl mit den jeweiligen Standardeinstellun-
gen als auch mit vorherigem Tuning bestimmter Parameter betrachtet. Je Lernverfahren
wurden dabei die in Tabelle 3.2 aufgelisteten Parameter mit jeweiligem Optimierungs-
bereich (Spalte tuning) berticksichtigt. In der Spalte pkg ist zusétzlich das entsprechend

verwendete R-Paket zum jeweiligen Lernverfahren angegeben.

Fiir die betrachteten Sampling-Methoden Undersampling (us), Oversampling (os), SMO-
TE (sm) und Overbagging (ob) wird jeweils zusétzlich die Sampling-Rate per Tuning-

32

Irn pkg tuning

cart rpart cp (0.0001, 0.1) / minsplit (1, 50)

gbm gbhm n.trees (100, 5000) / interaction.depth (1, 3) / shrinkage (1e-05, 0.1) / bag.fraction (0.7, 1)
logreg stats -

rf randomForest ntree (10, 500) / mtry (1, 10)

svm kernlab C (2712 2'%) / sigma (2712, 212)

Tabelle 3.2.: Ubersicht der Lernverfahren sowie der Tuning-Parameter und -Bereiche

Verfahren bestimmt. Fiir das Weighting wird das Klassengewicht der kleinen Klasse per
Tuning bestimmt, das Klassengewicht der grofien Klasse wird jeweils fest auf 1 gesetzt.
Als Grenzen fiir die Oversampling-Raten (os, sm, ob) sowie fiir das Klassengewicht der
kleinen Klasse (cw) wurde datensatzabhéngig das Intervall [1,IR] (vgl. Tabelle 3.1) fest-
gelegt. Bei Auswahl von IR als obere Grenze wird die Anzahl der Beobachtungen der
kleinen Klasse auf die Anzahl der Beobachtungen der groflen Klasse erhoht, so dass genau
gleich viele Beobachtungen je Klasse im Datensatz enthalten sind. Entsprechendes gilt fiir
die Undersampling-Rate, deren Optimierungsbereich im Intervall [IR ', 1] liegt. Hierbei
wird die Fallzahl der groBen Klasse bei Auswahl von IR™! auf die Fallzahl der kleinen
Klasse reduziert.

Als ein weiterer, konstanter Parameter wurden 10 Iterationen fiir das Overbagging fest-
gelegt. Fiir das SMOTE-Verfahren wird neben der Oversampling-Rate zusétzlich ein logi-
scher Parameter (TRUE, FALSE) zur Ablaufsteuerung des Algorithmus iiber das Tuning
bestimmt. Dieser Parameter steuert, ob fiir jede neu zu erzeugende Beobachtung sowohl
die urspriingliche Beobachtung als auch der entsprechende néchste Nachbar per Zufall
bestimmt werden (FALSE) oder ob alternativ jede Beobachtung der kleinen Klasse in
Abhéngigkeit von der Sampling-Rate mehrfach fiir die Erzeugung einer neuen Beobach-
tung herangezogen und nur der néchste Nachbar per Zufall bestimmt wird. Die Anzahl
der betrachteten néchsten Nachbarn ist mit £ = 5 fest angegeben und wird nicht inner-

halb des Tuning beriicksichtigt.

method additional tuning parameters
undersampling usw.rate (IR™',1)
oversampling osw.rate (1,IR)

smote sw.rate (1,IR) / sw.alt.logic (TRUE,FALSE)
overbagging obw.rate (1,IR)
weighting wew.weight (1,IR)

Tabelle 3.3.: Ubersicht der Korrekturverfahren sowie der Tuning-Parameter im Paket
mlr [1] mit Optimierungsbereich

33

3.3. Parameter-Tuning

Das Tuning der in Abschnitt 3.2 aufgelisteten Parameter wird mittels Iterated F-Racing [?]
(R-Paket irace) durchgefiihrt. Bei diesem Tuning-Verfahren werden iterativ mehrere, zuféllig
gezogene Konfigurationen, d.h. Kombinationen von Parametereinstellungen, miteinander
verglichen. Je Durchgang wird je betrachteter Konfigurationen ein Modell angepasst und
eine Evaluierung auf einem Testdatensatz vorgenommen. Konfigurationen, die hinsicht-
lich ihrer Performance deutlich unterlegen sind (— Bestimmung z.B. anhand des nicht-
parametrischen Friedman-Tests) werden aus dem Pool an Konfiguration entfernt und
an deren Stelle neue, wiederum zufillig gezogene Konfigurationen hinzugefiigt. Die nach
jedem Durchgang im Pool verbleibenden Konfigurationen werden als so genannte Elite-
Konfigurationen bezeichnet.

Die Auswahl der betrachteten Konfigurationen erfolgt in der ersten Iteration je Parameter
iiber dessen gesamten Tuning-Bereich, d.h. die Konfigurationen werden initial aus einer
Gleichverteilung iiber den kompletten Parameterraum gezogen. In den folgenden Itera-
tionen wird diese initiale Verteilung sukzessive angepasst, so dass insbesondere die Um-
gebungen der Elite-Konfigurationen intensiver untersucht werden. Fiir numerische Para-
meter werden hierbei trunkierte Normalverteilungen genutzt, welche um die entsprechen-
den Werte der Elite-Konfigurationen zentriert sind und deren Varianz mit der Anzahl
der Iterationen abnimmt. Im Falle kategorialer Parameter wird die Wahrscheinlichkeit
je Auspragung geméfl der Haufigkeiten der Ausprigungen in den Elite-Konfigurationen
erhoht bzw. reduziert. Durch dieses Vorgehen wird prinzipiell gewéhrleistet, dass anfangs
zunéchst der komplette Parameterraum moglichst gut abgedeckt und in den folgenden
Iterationen insbesondere die Umgebung guter Konfigurationen im Detail untersucht wird
(— exploration and exploitation).

[.d.R wird das Verfahren so lange durchgefiihrt bis eine vorab festgelegte, maximale An-
zahl an (tiber alle Iterationen iibergreifend durchzufiihrenden) Modellanpassungen und
Evaluationen erreicht wird. Sobald dieses Budget ausgeschopft ist, wird die Konfiguration
aus dem aktuellen Pool an Elite-Konfigurationen zuriickgegeben, welche den grofiten Mit-
telwert aller bisherigen Evaluationen, d.h. der Ergebnisse aus allen Iterationen, in denen
die Konfiguration enthalten war, vorweist.

In den durchgefiihrten Experimenten bestehen die einzelnen Konfigurationen aus den
Kombinationen der entsprechenden Parameter der Lernverfahren sowie den ggf. zusétzlichen
Parametern der Korrekturmethoden (vgl. Abschnitt 3.2). Fiir die durchzufithrenden Eva-
luation wird der jeweilige Trainingsdatensatz einmalig in 80% Tuning-Trainingsdaten so-
wie 20% Tuning-Testdaten aufgeteilt (Holdout). Als Budget werden maximal 300 Eva-
luationen festgelegt, d.h. {iber alle Iterationen werden maximal 300 Modelle angepasst

und evaluiert. Das Giitemaf} innerhalb des Tuning entpricht dem jeweiligen Giitemaf fiir

34

die spétere Evaluation des Modells, d.h. es wird entweder der F1-Score oder der AUC

verwendet.

3.4. Durchfithrung und Evaluation

Im Rahmen dieser Arbeit wurde eine Vielzahl an Experimenten durchgefithrt, um die
betrachteten Klassifikationsverfahren sowohl alleinstehend und mit und ohne vorheriges
Parameter-Tuning als auch in Kombination mit den einzelnen Korrekturverfahren zu eva-
luieren. Um alle Kombinationen aus Lern-, Tuning- und Korrekturverfahren abzudecken
wurden daher je Datensatz mehrere Durchldufe absolviert (vgl. Tabelle 3.4). Im ersten
Durchlauf wurden zunichst fiir die in Abschnitt 3.1 aufgelisteten Datensétze nur die
Lernverfahren mit ihren jeweiligen Standardeinstellungen verwendet. Fiir alle weiteren
Durchléufe wurden sowohl die relevanten Parameter der Lernverfahren als die auch der

Korrekturmethoden (vgl. Abschnitt 3.2) per Tuning bestimmt.

Durchlauf Daten Lernverfahren Tuning Korrekturmethode

1 alle alle nein -

2 alle* alle ja -

3 alle® alle ja Undersampling
4 alle* alle ja Oversampling
5 alle* alle ja SMOTE

6 alle* alle ja Overbagging

7 alle® alle ja Weighting

*alle Datensitze, deren AUC im 1.Durchlauf immer < 0.99

Tabelle 3.4.: Ubersicht der Experimente

Als Giitemafle werden sowohl der in Abschnitt 2.3.2 vorgestellte F1-Score als auch der
in Abschnitt 2.3.3 beschriebene AUC-Wert verwendet. Die Datensétze, fiir welche bereits
im ersten Durchlauf mit mindestens einem der Lernverfahren ein AUC-Wert groier 0.99
erreicht werden konnte, wurden in den folgenden Durchldufen nicht mehr betrachtet.

Als Resampling-Strategie wird eine geschachtelte Kreuzvalidierung verwendet, um eine
moglichst unverzerrte Schiatzung der Giitemafle zu gewihrleisten (vgl Abbildung 3.1). In
einer dufleren Schleife wird dabei zunéchst eine wiederholte, stratifizierte 5-fache Kreuz-
validierung (repeated stratified 5-fold Cross-Validation) durchgefiihrt. Die Daten werden
dabei zufillig in 5 disjunkte, ungeféhr gleich grofie Blocke (folds) aufgeteilt, von denen
jeder der Blocke einmal als Testdatensatz fungiert, wiahrend das zugehorige Modell auf

Basis der jeweils vier anderen Blocke angepasst wird. Dadurch wird gewéhrleistet, dass

35

alle Beobachtungen sowohl fiir die Modellanpassung (Training) als auch fiir die Vorhersa-
ge (Test) beriicksichtigt und somit effizient genutzt werden. Aufgrund der Stratifizierung
bei der Generierung der Blocke wird zusétzlich sichergestellt, dass das Klassenverhéltnis
in den Blocken ungefiahr dem Klassenverhéltnis in den gesamten Daten entspricht. Die
Anzahl der Blocke / Folds bei der Kreuzvalidierung kann grundsétzlich frei gewéhlt wer-
den. Fiir die durchgefithrten Untersuchungen wurde die Anzahl dabei auf fiinf Blocke
festgelegt, so dass sich die jeweiligen Trainingsdaten nicht zu dhnlich () sind und somit
moglichst unabhéngige Modelle entstehen.

Der Tuning-Prozess (vgl. Abschnitt 3.3) ist als ”innere Schleife* in die stratifizierte 5-fache
Kreuzvalidierung eingebettet. Die jeweiligen Trainigsdaten werden dabei zur Evaluation
innerhalb des Tuning nochmals in Tuning-Trainingsdaten (80%) sowie Tuning-Testdaten
(20%) aufgeteilt (Holdout). Die Aufteilung wird dabei ebenfalls mittels Stratifizierung
vorgenommen, so dass das Klassenverhéltnis auch hier ungefihr dem Klassenverhéltnis

im gesamten Datensatz entspricht.

. . all observations in 5 folds

iteration | < o
1 Training Training Training Training Test
2 Training Training Training Test Training

L Test Training Training Training Training

Abbildung 3.1.: Resampling mit stratifizierter 5-facher Kreuzvalidierung und Holdout

36

Fiir jeden Block wird im Rahmen der Kreuzvalidierung anhand der Vorhersagen fiir die
einzelnen Beobachtungen der F1-Score bzw. der AUC-Wert berechnet. Als zusammenge-
fasstes Giitemaf fiir den kompletten Datensatz werden diese fiinf berechneten Werte an-
schliefend gemittelt. Um des Weiteren den Einfluss zufélliger Effekte bei der Bildung der
Blocke zu verringern, wird die stratifizierte 5-fache Kreuzvalidierung insgesamt fiinfmal
wiederholt (repeated cross-validation). Fiir jede der funf Wiederholungen wird der Da-
tensatz dabei zufillig in jeweils andere Blocke unterteilt. Die fiinf Ergebnisse aus den
Wiederholungen werden abschliefend wiederum zu einem Gesamtwert fiir die (moglichst

unverzerrte) Prognosegiite gemittelt.

5 5 5
AUChean = AUCheani = » Y AUCy; (3.1)

i=1 =1 j=1

Fiir das Beispiel des AUC steht in Formel 3.1 der Laufindex ¢ fiir die Wiederholungen und
der Index j fiir die einzelnen Blocke innerhalb der Kreuzvalidierung. AUC;; stellt somit
den AUC im j-ten Block in der i-ten Wiederholung dar. Um zusétzlich die Unsicherheit
der Schétzer zu quantifizieren, werden neben dem Mittelwert entweder der minimale und
maximale AUC aus den fiinf Wiederholungen der Kreuzvalidierung oder alternativ die 25
einzelnen AUC-Werte aus allen Wiederholungen und Iterationen als Spannweite betrach-
tet.

Fiir die Umsetzung der Experimente im Programmpaket R wurden hauptséichlich die Pa-
kete mlr [1], BatchJobs [3] und BatchExperiments [2,3] verwendet. Das R Paket mlr bietet
dabei eine Sammlung an Klassifikations- und Regressionsverfahren sowie deren Evaluation
und Optimierung mittels verschiedener Resampling-Strategien und Tuning-Verfahren und
bildet somit eine zentrale Schnittstelle fiir eine Vielzahl an géngigen und in R verfiigharen
Lernverfahren. Dariiber hinaus wurden die im Rahmen dieser Arbeit vorgestellten und
betrachteten Korrekturmethoden in R implementiert und in das Paket mlr integriert.
Uber die Funktionen makeUndersampleWrapper, makeOversampleWrapper, makeSMO-
TEWrapper, makeOverbaggingWrapper sowie makeUndersampleWrapper kénnen dabei
beliebige Lernverfahren mit den jeweiligen Korrekturmethoden kombiniert bzw. erweitert
werden. Die aktuelle Version von mlr ist iiber CRAN (http://cran.r-project.org/
web/packages/mlr/index.html) verfiighar.

Die Pakete BatchExperiments und BatchJobs bieten in Kombination eine Infrastruktur
fiir die Verwaltung und Durchfithrung umfassender Experimente. Die betrachteten Pro-
bleme (— Datensitze) und Algorithmen werden dabei zunéchst definiert und in einer
Registry erfasst. Im Anschluss lassen sich aus Kombination von Problemen und Algo-

rithmen die jeweiligen Experimente bzw. einzelne Jobs generieren. Die Ausfithrung der

37

http://cran.r-project.org/web/packages/mlr/index.html
http://cran.r-project.org/web/packages/mlr/index.html

generierten Jobs ldsst sich dabei iiber Funktionen des Pakets BatchJobs parallelisieren.

Zur Sicherstellung der Reproduzierbarkeit der Ergebnisse sind innerhalb der Registry ver-
schiedene Seeds gesetzt. Fiir die im Rahmen dieser Arbeit durchgefiihrten Experimente
wurde zunéchst ein {ibergreifender Seed fiir die gesamte Registry festgelegt. Des Weiteren
wurde fiir jeden Datensatz ein weiterer ,, problem seed“ festgelegt, wodurch gewéhrleistet
wird, dass fiir die verschiedenen Algorithmen (Kombinationen aus Lern-, Tuning- und
Korrekturverfahren) die (stochastischen) Rahmenbedingungen prinzipiell gleich sind. Le-
diglich die Aufteilung der Datensétze in die einzelnen Blocke bzw. Folds im Rahmen der

Kreuzvalidierung ist fiir jedes einzelne Experiment unterschiedlich.

Diese Arbeit stellt grundsétzlich eine Fortfiihrung des Konferenzberichtes ,,On Class Im-
balancy Correction for Classification Algorithms in Credit Scoring® [1] dar. Im Vergleich
zu den dort durchgefiihrten Untersuchungen kam es bei den Experimenten im Rahmen

dieser Arbeit zu folgenden Anderungen:

e Verwendung neuer Datensétze (vgl. Abschnitt 3.1) iiber die Machine Learning Platt-
form Open ML (http://www.openml.org/) [24]

e zusitzliche Betrachtung des F1-Score (neben AUC)
e Modifikationen der Korrekturmethoden Oversampling und SMOTE

e Evaluation der Giitemasse anhand wiederholter 5x 5-fach Kreuzvalidierung anstelle

yeinfacher® 5-fach Kreuzvalidierung

e Anpassung der Optimierungsbereiche der Sampling-Paramter innerhalb des Tuning

(— minimale Undersampling-Rate = IR, maximale Oversampling-Rate = IR)

38

http://www.openml.org/

4. Diskussion der Ergebnisse

4.1. Datenbasis

Im Rahmen der durchgefiihrten Experimente wurden in einem ersten Durchlauf fiir alle in
Abschnitt 3.1 dargestellten Datenséitze nur die Lernverfahren mit ihren jeweiligen Stan-
dardeinstellungen fiir Modellanpassung und Prognose verwendet. Bei insgesamt 9 der 23
Datensétze konnte hierbei bereits durch mindestens eines der Lernverfahren ein nahezu
perfekter AUC-Wert groBer 0.99 erreicht werden (vgl. Tabelle 4.1). Diese wurden daher
fiir die folgenden Durchldufe (vgl. Tabelle 3.4) nicht mehr beriicksichtigt, wodurch 14 Da-

tensatze in den weiteren untersucht wurden.

Data Learner AUC
annealb cart 1.000
card rf 1.000
kropt16 rf 0.996
letter26 rf 1.000
nursery3 rf 1.000
optdigitsO svm 1.000
pendigits9 rf 0.999
scenesunset rf 0.995
vowell svim 1.000

Tabelle 4.1.: Datensatze und Lernverfahren mit AUC > 0.99

In Summe wurden insgesamt 26750 Experimente / Jobs durchgefiihrt. Dieser Wert er-
gibt aus dem Produkt der Anzahl der Datensétze je Durchlauf, den fiinf Lernverfahren,
zwei Evalutionsmaflen sowie 5 Wiederholungen mit 5 Blocken innerhalb der Kreuzvali-
dierungen, welche aufgrund ihrer Unabhéngigkeit und zum Zwecke der Paralellisierung
als separate Jobs angelegt wurden. Zu insgesamt 702 Experimenten konnten dabei keine

Ergebnisse generiert werden:

e in 65 Fillen (ca. 0.24%) traten Fehler innerhalb des Tuning auf

e in 566 Fillen (ca. 2.1%) konnte keine Modellanpassung oder Prognose erfolgen

e weitere 71 Experimente (ca. 0.27%) wurden aufgrund Uberschreitung der maxima-

len Laufzeit von 48 Stunden abgebrochen. Hierbei handelt sich ausschliefSlich um

Experimente, bei den Overbagging als Korrekturverfahren angewendet wurde. Des

Weiteren handelt es sich auschlieelich um den Datensatz coil2000 sowie die Lern-

verfahren Gradient Tree Boosting (25 Experimente) sowie SVM (46 Experimente).

Eine Ubersicht der betroffen Datensitze sowie der jeweiligen Verfahren ist in ANHANG B
aufgelistet. Die Resultate der verbleibenden Jobs bilden die Grundlage fiir die in den

folgenden Kapiteln dargestellten Ergebnisse und Analysen.

4.2. Ergebnisse je Datensatz

4.2.1. Bestes Verfahren

In Tabelle 4.2 sind zunéchst die Verfahren mit den besten Ergebnissen beziiglich des AUC

je Datensatz zusammengefasst.

Data IR n Feat DBase Tuning Imbal

ecoli4 8.60 336 7 0.939 (rf) 0.944 (svm) 0.947 (svm, cw)
satelliteimage4 9.28 6435 36 0.962 (rf) 0.965 (svm) 0.967 (svm, sm)
spectrometer42 10.80 531 100 0.955 (rf) 0.955 (svm) 0.968 (rf, sm)
balance2 11.76 625 4 0.896 (svm) 0.926 (svm) 0.946 (svm, sm)
0il2000 15.76 9822 85 0.735 (logreg) 0.755 (ghm) 0.760 (gbm, cw)
arrhythmia6 17.08 452 262 0.967 (gbm) 0.976 (xf) 0.979 (rf, sm)
oilspill 21.85 937 48 0.933 (xf) 0.927 (xf) 0.939 (xf, 0s)
solarflare5 23.79 1066 11 0.909 (logreg) 0.909 (logreg) 0.925 (logreg, us)
yeasth 28.10 1484 8 0.926 (rf) 0.924 (rf) 0.927 (rf, us)
winequality4 ~ 29.08 6497 11 0.873 (xf) 0.874 (xf) 0.878 (xf, sm)
ozonelevel 3374 2536 72 0.902 (xf) 0.807 (xf) 0.906 (gbm, cw)
mammography 42.01 11183 6 0.948 (rf) 0.949 (gbm) 0.956 (ghm, cw)
pageblocksb 46.59 5473 10 0.986 (rf) 0.985 (rf) 0.989 (rf, cw)
abalonel9 129.53 4177 8 0.810 (logreg) 0.810 (logreg) 0.845 (logreg, os)

Tabelle 4.2.: Ubersicht der besten Verfahren je Datensatz (AUC)

Die Datensitze (Spalte Data) sind dabei aufsteigend geméf des Imbalance Ratio (Spalte

40

IR) sortiert und iiber die horizontalen Linien in drei Gruppen unterteilt (— IR < 15,IR <
30 und IR > 30). Je groBer der IR, desto kleiner entsprechend der Anteil der kleinen
Klasse an der Gesamtzahl der Beobachtungen — dabei entspricht IR > 30 ungefédhr einem
Anteil kleiner 3% und ein IR > 15 einem Anteil kleiner 6% (vgl. Tabelle 3.1). Neben
dem IR als Kennzahl fiir das Ungleichgewicht der Klassen sind des Weiteren die Anzahl
Beobachtungen (Spalte n) sowie die Anzahl der Merkmale bzw. Features (Spalte Feat)
je Datensatz aufgelistet. Die drei folgenden Spalten enthalten die AUC-Werte des jeweils

besten Verfahrens (— in Klammern) fiir:

e die Lernverfahren mit Standardeinstellungen sowie ohne Tuning und Korrekturme-
thoden (Spalte Base)

e die Lernverfahren inklusive Tuning (Spalte Tuning)

e die Lernverfahren inklusive Tuning und in Kombination mit allen Korrekturmetho-
den (Spalte Imbal)

Fiir die erste Zeile (Datensatz ecolij) bedeutet dies beispielhaft, dass bei Anwendung
der Lernverfahren mit Standardeinstellungen der Random Forest mit einem AUC von
0.939 das beste Ergebnis erzielen konnte. Wird zusétzlich bei allen Lernverfahren ein
Parameter-Tuning durchgefiihrt, liefert hingegen die SVM mit einem AUC von 0.944 das
beste Ergebnis. Eine weitere, (geringe) Optimierung des AUC-Wertes kann durch Kom-
bination von SVM und Class Weighting erreicht werden (AUC = 0.947). Der beste Wert
je Datensatz ist zusétzlich fett markiert.

Die Betrachtung der Spalte Base zeigt, dass bereits durch eine geeignete Auswahl des
Lernverfahrens hohe AUC-Werte erreicht werden konnten. In den dargestellten Féllen
wurden insbesondere durch Anwendung des Random Forest gute Ergebnisse beziiglich
des AUC erzielt. Durch zusétzliches Parameter-Tuning konnte der AUC nur fiir einen
Teil der Datensiitze verbessert werden. Da sich in bestimmten Fillen (Datensétze oilspill,
yeasts, ozonelevel, pageblocks5) nach Durchfithrung des Tuning leicht schlechtere Ergeb-
nisse ergeben als ohne Tuning, ist es ggf. sinnvoll, das Tuning-Budget, d.h. die Anzahl
der Experimente innerhalb des des Iterated F-Racing (vgl. Abschnitt 3.3), zu erhthen.
Beziiglich der Ergebnisse in Spalte Tuning konnten mit Random Forest und Support Vec-
tor Machine, letzteres insbesondere in der Gruppe mit IR < 15), die besten Ergebnisse
erzielt werden. Durch die zusétzliche Anwendung der Korrekturmethoden wurde in allen
betrachteten Féllen durch mindestens eine der Methoden eine weitere Verbesserung des
AUC erreicht. Die besten Ergebnisse konnten dabei insbesondere durch Class Weighting
in Kombination mit Gradient Boosting sowie durch SMOTE mit Random Forest oder
SVM erreicht werden. Die groite Steigerung des AUC konnte fiir den stark unbalancier-

41

ten Datensatz abalone19 mit einer Erhohung von 0.035 durch Anwendung der logistischen
Regression in Verbindung mit Oversampling gegeniiber der logistischen Regression ohne
Korrekturmethode erzielt werden.

Die dargestellten Ergebnisse entsprechen grundsétzlich den Resultaten der vorhergehen-
den Experimente und Analysen [1].

In Tabelle 4.3 sind die entsprechenden Ergebnisse fiir den F1-Score (und einen festen
Threshold von 0.5) dargestellt. Fiir die Spalte Base ergeben sich hierbei zum Teil sehr
geringe Werte bzw. in zwei Fillen (Datensétze balance2 und abalonel9) ein F1-Score
von 0. Dies bedeutet, dass fiir den Threshold von 0.5 keine True Positives existieren,
d.h. hierbei konnte keine Beobachtung der kleinen Klasse korrekt vorhergesagt werden.

Durch Anwendung des Tuning konnte im Unterschied zum AUC-Wert in fast allen Fallen

Data IR n Feat Base Tuning Imbal

ecolid 8.60 336 7 0.616 (svm) 0.640 (gbm) 0.674 (logreg, ob)
satelliteimage4 9.28 6435 36 0.642 (rf) 0.708 (svm) 0.727 (svm, ob)
spectrometer42 10.80 531 100 0.614 (svm) 0.590 (svm) 0.734 (svm, sm)
balance2 11.76 625 4 0.000 (svm) 0.166 (gbm) 0.661 (svim, sm)
coil2000 1576 9822 85 0.073 (xf) 0.108 (gbm) 0.251 (gbm, ob)
arrhythmia6 17.08 452 262 0.685 (cart) 0.764 (xf) 0.783 (gbm, sm)
oilspill 21.85 937 48 0.539 (svim) 0.525 (svim) 0.561 (svm, os)
solarflareb 23.79 1066 11 0.189 (logreg) 0.216 (cart) 0.391 (rf, os)
yeasth 28.10 1484 8 0.339 (cart) 0.417 (rf) 0.397 (logreg, sm)
winequality4 29.08 6497 11 0.187 (rf) 0.239 (gbm) 0.305 (rf, sm)
ozonelevel 33.74 2536 72 0.230 (logreg) 0.230 (logreg) 0.363 (ghm, cw)
mammography — 42.01 11183 6 0.674 (rf) 0.698 (gbm) 0.709 (rf, sm)
pageblockss 4659 5473 10 0.723 (xf) 0.723 (xf) 0.727 (xf, ob)
abalonel9 129.53 4177 8 0.000 (logreg) 0.051 (ghm) 0.070 (rf, sm)

Tabelle 4.3.: Ubersicht Gesamtergebnisse F1

eine Verbesserung erzielt werden. In ebenfalls nahezu allen Fillen (Ausnahme: Daten-
satz yeast5) konnte durch Anwendung mindestens eines Korrekturverfahrens eine weite-
re Verbesserung des F1-Score erreicht werden. Fiir den Datensatz balance?2 ergibt sich
nach Anwendung der Support Vector Machine inklusive Parameter-Tuning und SMOTE-
Verfahren eine Verbesserung des F1-Score von ca. 0.5 gegeniiber der alleinigen Anwendung
der SVM inklusive Tuning. Im Gegensatz dazu konnte fiir den Datensatz abalonel9 auch
durch das beste Verfahren (— Random Forest und SMOTE)nur maximaler Wert von 0.07
erreicht werden. Der Anteil der True Positives ist diesem Fall somit nach wie vor deutlich
geringer als der Anteil der falsch klassifizierten Beobachtungen (False Negatives und Fal-
se Positives) (vgl. Formel 2.22). Auch fiir einige weitere Datensétze (coil2000, solarflars,
yeastd und ozonelevel) konnten mit den besten Verfahren eher geringe Werte fiir den F1-

Score erzielt werden. In den genannten Fillen empfiehlt sich ggf. eine Herabsetzung des

Thresholds.

42

4.2.2. Alle Verfahren

Fiir den Vergleich aller Verfahren wurden zur besseren Veranschaulichung und aus Griinden
der Ubersichtlichkeit beispielhaft drei Datensitze (abalonel9, coil2000, mammography)
ausgewahlt, zu denen insbesondere bereits vergleichbare Ergebnisse aus anderen Arbeiten

vorliegen.

Fiir den Datensatz abalonel9 sind alle zugehorigen Ergebnisse der Experimente in Ab-
bildung 4.1 aufgefiihrt. Hierbei sind fiir jedes Lernverfahren in einer separaten Grafik die
AUC-Werte bei Verwendung des Lernverfahrens mit Standardeinstellungen (bl), inklusive
Tuning (tune) sowie in Verbindung mit den einzelnen Korrekturmethoden (us, os, sm, ob,
cw) in Form eines Boxplots dargestellt. Dieser ergibt sich aus den jeweils 25 Werten der
5x 5-fachen Kreuzvalidierung (vgl. Abschnitt 3.4).

Wie in Abschnitt 4.2.1 beschrieben konnte fiir diesen Datensatz iiber die Kombination aus
logistischer Regression und Oversampling der beste mittlere AUC erreicht werden. Wie
in der oberen linken Grafik zu sehen, konnten auch durch Verkniipfung der logistischen
Regression mit dem SMOTE-Verfahren dhnlich gute Ergebnisse erzielt werden. Insgesamt
zeigt sich, dass die logistische Regression (ggf. mit Ausnahme des Overbagging) fiir alle
Varianten ein gutes Lernverfahren fiir den Datensatz darstellt. Weiterhin ist auffallig, dass
vor allem Random Forest und Gradient Boosting in diesem Fall nicht gut mit Overbag-
ging , harmonieren“. An der oberen,rechten Grafik fiir den Entscheidungsbaum zeigt sich
die Steigerung der Performance durch Tuning und Korrekturmethoden am deutlichsten.
In vergleichbaren Studien konnte fiir den Datensatz abalone19 durch Verwendung des
C4.5-Algorithmus (— Implementierung fiir Entscheidungsbéume, d.h. Alternative zu CART)
mit komplexeren Korrekturverfahren ein maximaler AUC von 0.7206 erreicht werden [13].
Dieser Wert wird bereits durch Anwendung der logistischen Regression (0.810), Gradient
Tree Boosting (0.748), Support Vector Machines (0.738) oder des Random Forest (0.729)

jeweils mit den Standardeinstellungen {ibertroffen.

Der Datensatz coil2000 wird u.a. bei Kuhn und Johnson, S.419ff [17] diskutiert. Da-
bei wird der Fokus insbesondere auf den Random Forest als Lernverfahren in Verbindung
mit Under- und Oversampling Methoden gelegt. Die im Rahmen dieser Arbeit auf Basis
des Random Forest erzielten Ergebnisse beziiglich des AUC liegen unter den bei Kuhn
und Johnson erreichten Werten. Der maximale AUC von 0.764 wurde dort mit dem dem

Random Forest in Kombination mit einer Variante des Undersampling erreicht. In Abbil-

43

= =
=T =
- — T T T - T
] e | — T B
o | BT == o | ;
1 [
0 o ! o 1 | 1 1
= @0 -4 I o — -4 | 4 1
= O o 4L -+ *
L L
S [
o] o]
= =
= =g
=1 T T T T T T T =1 T T T T T T T
bl tune us o0z =m ob cw bl tune us o0z =m ob cw
rf gbm
= =
a a
— —
- T 0 e T T
. — T - s
T 1
L L
S EEE = h_EE$EE |
=1 T L+ = | =1 R s "
.
0 o -+ n . L o T
- moH — [ro - 1
ax o (=1 -+
L L
™ H ™ H
o] o]
= =
o o
=1 T T T T T T T =1 T T T T T T T
bl tune us o0z =m ob cw bl tune us o0z =m ob cw
svm
0
- 3 T T T
1
: B =
n — a1 L !
[.
] +]
4 . -+

ALIC
oo 025 050 075 1.00
1

T T T T T T T
bl tune us o0z =m ob cw

Abbildung 4.1.: Ubersicht aller Verfahren fiir Datensatz abalonel9

dung 4.2 sind die Ergebnisse aus den Experimenten dieser Arbeit wiederum je Lernverfah-
ren dargestellt. Fiir den Random Forest stellt auch hierbei das Undersampling mit einem
mittleren AUC von 0.713 die beste Korrekturmethode dar. Insgesamt liefert fiir diesen
Datensatz jedoch das Gradient Boosting leicht bessere Ergebnisse ab. Der beste AUC wird
mit einem Wert von 0.760 durch Gradient Boosting in Kombination mit Class Weighting
erreicht. Grundsétzlich ist die Streuung der einzelnen AUC-Werte je Verfahren sehr ge-
ring. Die grofiten Steigerung des AUC lassen sich wiederum fiir Entscheidungsbdume in
der oberen rechten Grafik erzielen, wiahrend die Verbesserungen fiir die logistische Re-
gression, Random Forest und Gradient Boosting eher gering sind. Bei der SVM in der
untersten Grafik lédsst sich weiterhin eine Verbesserung des AUC durch die Anwendung

der Korrekturmethoden erkennen. Fiir das Overbagging konnten hierbei keine Ergebnisse

44

dargestellt werden, da die entsprechenden Experimente aufgrund der Uberschreitung der

maximalen Laufzeit nicht erfolgreich beendet werden konnten. In Untersuchungen zum

logreg cart

7| ———— e . 7 Eéééiﬁ

ALIC
oo 025 050 075 1.00
|
oo 025 050 075 1.00
|

bl tune us o0z =m ob cw bl tune us o0z =m ob cw

rf gbm

i

ALIC
oo 025 050 075 1.00
|
oo 025 050 075 1.00
|

bl tune us o0z =m ob cw bl tune us o0z =m ob cw

5vVim

1 = e
= =

ALIC
oo 025 050 075 1.00
1

T T T T T T T
bl tune us o0z =m ob cw

Abbildung 4.2.: Ubersicht aller Verfahren fiir Datensatz coil2000

Datensatz mammography durch Chawla et. al [8] konnte auf Basis des C4.5-Algorithmus
(— Entscheidungsbaum) und SMOTE ein AUC von 0.933 erreicht werden. Die Ergebnisse
dieser Arbeit sind in Abbildung 4.3 dargestellt. Die Streuung der einzelnen AUC-Werte
ist dabei wiederum sehr gering und fiir eine Vielzahl an Verfahren bzw. Kombinationen
konnte ein hoher AUC erreicht werden. Das Maximum der mittleren AUC-Werte weist
dabei wiederum das Gradient Boosting in Kombination mit Class Weighting vor () AUC
= 0.956). Aufgrund der leicht geringeren Streuung der einzelnen AUC-Werte aus der
Kreuzvalidierung eignet sich hierbei insbesondere auch der Random Forest in Verbindung

mit SMOTE (0@ AUC = 0.952) oder Oversampling (0 AUC = 0.951) sehr gut. Bei Be-

45

logreg cart

| i i i o i e

ALIC
oo 025 050 075 1.00
|
oo 025 050 075 1.00
|

bl tune us o0z =m ob cw bl tune us o0z =m ob cw

rf gbm

7| —— —— —— - m e e o

ALIC
oo 025 050 075 1.00
|
oo 025 050 075 1.00
|

bl tune us o0z =m ob cw bl tune us o0z =m ob cw

5vVim

L =

=

ALIC
oo 025 050 075 1.00
1

T T T T T T T
bl tune us o0z =m ob cw

Abbildung 4.3.: Ubersicht aller Verfahren fiir Datensatz mammography

trachtung des Random Forest in der mittleren linken Grafik fillt wiederum auf, dass in
Verbindung mit Overbagging schlechtere Ergebnisse erzielt werden als mit den anderen
Verfahren. Beim Gradient Boosting sowie der SVM liefert vor allem die zusétzliche An-
wendung des Tuning eine Steigerung des AUC. Durch die Korrekturmethoden wurden

beziiglich des Datensatzes mammography eher nur geringe Verbesserungen erreicht.

46

4.3. Ergebnisse je Verfahren

4.3.1. Tuning- und Korrektur-Effekte

In Tabelle 4.4 sind die grofiten, erreichten Verbesserungen zum einen durch Parameter-
Tuning gegeniiber der Anwendung des entsprechenden Verfahrens ohne Tuning (link
Ubersicht) sowie zum anderen durch zusitzliche Verwendung einer Korrekturmethode
(Spalte Method) im Vergleich zur Anwendung des Lernverfahrens ohne Korrekturmetho-
de (jedoch inklusive Parameter-Tuning) (rechte Ubersicht) dargestellt.

Es zeigt sich, dass in Abhéngigkeit von Datensatz und Lernverfahren sowohl durch das

Data Learner Base Tuning Data Learner Tuning Imbal Method
balance2 ghm 0.30 0.81 abalonel9 cart 0.56 0.75 ob
mammography gbm 0.72 0.95 winequality4 cart 0.62 0.79 ob
satelliteimage4 gbm 0.78 0.96 balance2 cart 0.50 0.67 ob
solarflareb cart 0.67 0.81 coil2000 cart 0.58 0.71 ob
pageblocksh ghm 0.87 0.98 oilspill cart 0.71 0.84 ob
spectrometer42 gbm 0.83 0.94 spectrometer42 cart 0.79 0.92 ob
winequality4 svm 0.73 0.83 ozonelevel cart 0.72 0.85 ob
winequality4 ghm 0.71 0.80 solarflareb svm 0.79 091 os
coil2000 cart 0.50 0.58 abalonel9 svim 0.73 0.83 os
ozonelevel gbm 0.82 0.90 balance2 logreg 040 050 ob

Tabelle 4.4.: Top 10 Verbesserungen des AUC-Wertes durch Tuning und
Korrekturverfahren

Tuning als auch durch die Korrekturmethoden deutliche Verbesserungen hinsichtlich des
AUC erreicht werden kénnen. So ist in den betrachteten Féllen insbesondere bei Verwen-
dung des Gradient Boosting (gbm) ein zusétzliches Tuning in einigen Féllen sehr wirksam.
Bei ergénzender Verwendung der Korrekturmethoden 148t sich in bestimmten Féllen bei
Support Vector Machines (svm) durch zusétzliches Oversampling (os) sowie insbesonde-
re bei Entscheidungsbdumen (cart) mit Overbagging (ob) eine deutliche Steigerung des
AUC-Wertes erreichen.

In Tabelle 4.5 sind die durchschnittlichen, absoluten Verbesserungen des AUC durch Tu-
ning (Spalte Mean Tuning Opt.) sowie durch die jeweils besten Korrekturmethode je Lern-
verfahren (Spalte Mean Imbal Opt.) datensatziibergreifend dargestellt. Fiir die logistische
Regression (logreg) wird hierbei durch das Tuning keine Verbesserung erreicht, da sich
die Tuning-Ergebnisse aufgrund nicht vorhandener Tuning-Parameter (vgl. Tabelle 3.2)

nicht von den Ergebnissen des Verfahrens ohne Tuning unterscheiden.

Insbesondere beim Gradient Tree Boosting (ghm) konnte durch das Tuning im Mittel eine

Verbessung des AUC erreicht werden. Fiir Klassifikationsbdume (cart), Support Vector

47

Learner Mean Tuning Opt. Mean Imbal Opt.

cart 0.026 0.104
gbm 0.107 0.011
logreg ~ 0.000 0.026
rf 0.001 0.018
svm 0.015 0.038

Tabelle 4.5.: Durchschnittliche und maximale Verbesserungen des AUC durch Anwendung
der Korrekturmethoden

Machines und Random Forest sind die Steigerungen des AUC durch zusétzliches Tuning
im Mittel eher gering. Fiir alle Lernverfahren konnte dariiber hinaus im Mittel eine weite-
re Steigerung des AUC durch Anwendung der Korrekturmethoden erreicht werden. Diese
zeigt sich insbesondere bei Verwendung der Entscheidungsbdume als sehr wirksam, was
jedoch wiederum vor allem auf die Kombinationen von Entscheidungsbdumen mit Over-
bagging zuriickzufiihren ist. Diese Verbindung entspricht grundsétzlich der Kombination
von Random Forest (— Bagging mit Entscheidungsbdumen, vgl. Abschnitt 2.1.3) und
Oversampling, was bedeutet, dass die Steigerungen des AUC hierbei hauptséchlich von
der Anwendung der Bagging-Methode und weniger vom wiederholten Oversampling aus-
gehen.

Fiir die anderen Lernverfahren konnten durch die Korrekturverfahren im Mittel Steige-
rungen des AUC zwischen 0.011 bis 0.038 gegeniiber der Anwendung der Lernverfahren

inklusive Tuning ,,herausgeholt® werden.

4.3.2. Vergleich Oversampling-Methoden

Bei einem datensatziibergreifenden Vergleich der Oversampling-Methoden, zeigt sich bei
der Gegeniiberstellung von Oversampling und SMOTE je Lernverfahren mit Ausnahme
der SVM ein leichter Vorteil zugunsten des SMOTE-Verfahrens. In Tabelle 4.6 sind die
Anzahlen der Félle dargestellt, in denen das jeweilige Korrekturverfahren bessere Ergeb-
nisse beziiglich des AUC liefern konnte als das andere. Die entsprechenden prozentualen

Anteile sind in Klammern dargestellt.

In Abbildung 4.4 wurden die einzelnen Differenzen zwischen den beiden AUC-Werten
(AUC,s — AUC4,,) in Form eines Boxplot dargestellt. Hierbei sind die resultierenden
Werte (ggf. mit Ausnahme der Entscheidungsbdume zugunsten von SMOTE) ungefihr
um den Wert 0 zentriert, was dafiir spricht, dass sich die beiden Methoden nur sehr gering
unterscheiden. Eine Auswahl ist daher eher in Abhéngigkeit des betrachteten Datensatzes

zu treffen.

48

Learner os sm

cart 5(0.36) 9 (0.64)
ghm 4 (0.29) 10 (0.71)
logreg 5 (0.38) 8 (0.62)
of 5 (0.36) 9 (0.64)
svm 9 (0.64) 5 (0.36)

Tabelle 4.6.: Anzahlen und Anteile geméf der besseren Performance (AUC) je Lernver-
fahren (Oversampling/SMOTE)

[(n]
o] o]
L}
[0
o o] o] —_
L} 1
O ' ' —
:) —] $ —l— ;
{ g 1 ’ L y : —1
—] 1
‘:li | E—
[(n]
C:'I] 0
= i i i i i
logreg cart rf gbm Svm

Abbildung 4.4.: AUC-Differenzen (Oversampling - SMOTE)

Bei einem Vergleich von Oversampling und Overbagging ergeben sich aus den Ergebnissen
hingegen eher Priferenzen beziiglich der zu kombinierenden Lern- und Korrektuverfahren

(vgl. Tabelle 4.7 sowie Boxplot der Differenzen AUC,; — AUC,;, in Abbildung 4.5).

Wiéhrend Overbagging als ergénzende Methode insbesondere bei Entscheidungsbdumen
sehr gut funktioniert, konnten mittels Oversampling bei Random Forest, Gradient Boos-
ting und SVM in allen Fillen bessere Ergebnisse erzielt werden. Da es sich bei Overbagging
Namen geméfl um ein Bagging-Verfahren handelt, ist dieses ggf. nicht immer sinnvoll mit
beliebigen Lernverfahren kombinierbar, sondern insbesondere eher fiir schwache Lernver-
fahren geeignet. Eine Kombination aus Overbagging und einem stabilen Verfahren wie
dem Random Forest kann dessen Prognosegiite ggf. nicht weiter verbessern (vgl. Brei-
man [4]) oder wie im Fall der durchgefiihrten Ergebnisse zum Teil sogar verschlechtern.

Grundsétzlich stellen Overbagging mit Entscheidungsbdumen sowie Oversampling mit

49

Learner os ob

cart 14 (1.00) 0 (0.00)
gbm 0 (0.00) 14 (1.00)
logreg 4 (0.31) 9 (0.69)
of 0 (0.00) 14 (1.00)
svm 0 (0.00) 13 (1.00)

Tabelle 4.7.: Anzahlen und Anteile geméfi der besseren Performance je Lernverfahren
(Oversampling/Overbagging)

L] —T
o] 1
o i o
1
— o
[o
3 °] T —
I T []

‘q:] ' : : B
L] —1
C:-I] T T
[: 1

1 1
1
o : :
o | | | | I
I
logreg cart rf gbm Svm

Abbildung 4.5.: AUC-Differenzen (Oversampling - Overbagging)

Random Forest die gleiche Methode dar (— Oversampling sowie Bagging mit Baumen).
Bei Vergleich der beiden Kombinationen hinsichtlich der mittleren AUC-Werte sowie dem
minimalen der maximalen AUC aus den 5-fachen Kreuzvalidierungen je Datensatz (vgl.
Abbildung 4.6 erzielen Oversampling und Random Forest in den meisten Féllen die bes-
seren Ergebnisse. Es sei jedoch darauf hingewiesen, dass fiir dass Overbagging aufgrund
der festen Voreinstellung jeweils nur 10 Modelle erstellt wurden, wihrend der Optimie-
rungsbereich im Rahmen des Tuning fiir die Anzahl der Modelle beim Random Forest
zwischen 10 bis 500 schwankt.

20

o
T = =‘;"“-o—
> 5 e N T
o | jj\ "
. I—I
o ° |
2
< o= +
o "
_ —— Random Forest / Qversampling
—*— CART / Overbagging
oo
o

A
I A I
F & & ¢ & & &
b & Q & o N
& & 5

Abbildung 4.6.: Vergleich von RandomForest/Oversampling und CART /Overbagging je
Datensatz

4.3.3. Analyse der Laufzeit

Wie in Abschnitt 4.1 beschrieben, konnte ein Teil der Experimente aufgrund von Fehlern
und Zeitiiberschreitungen nicht erfolgreich durchgefithrt werden. Da des Weiteren zum
Zweck der Parallelisierung der Experimente die Kreuzvalidierungsblocke und Wiederho-
lungen (vgl. Abschnitt 3.4) in separate Jobs aufgeteilt wurden, wurden zur Betrachtung
der Laufzeit nur die Ergebnisse beriicksichtigt, bei denen alle Iterationen innerhalb der
Kreuzvalidierung vollstdndig durchlaufen konnten. Die Laufzeiten wurden anschlieend
iiber die Iterationen der betrachteten Kombination aus Datensatz und Gesamt-Verfahren
(— Lern-/Tuning- /Korrekturverfahren) summiert. In ANHANG B sind die entsprechen-
den Experimente, die nicht beriicksichtigt wurden, inklusive der Anzahl der nicht erfolg-
reichen Iterationen aufgelistet.

Zur allgemeinen Analyse der Laufzeit wurde zunéchst ein kompletter Regressionsbaum
(ohne Pruning) mit den EinflussgroBen Lernverfahren, Methode (Tuning- und Korrek-
turverfahren), Anzahl Beobachtungen in der kleinen Klasse sowie der Features und IR
der jeweiligen Daten angepasst (vgl. Abbildung 4.7). Die Laufzeit ist dabei in Stunden
dargestellt.

Im ersten Split erfolgt zunéchst eine Aufteilung nach der Methode - der komplette rechte
Ast des Baumes bezieht sich somit nur auf Overbagging, bei dessen Anwendung ein Job

im Mittel ungefahr 11.4 Stunden lauft. In Kombination mit Gradient Boosting erhoht

ol

Method = bl, cw, os, sm, tune, us

e

\

n.min < 570 Learner = cart, logreg, rf, svm
Learner = cart, logreg, rf n.min < 423 n.min < 238
Method = bl, cw, tune, us Learner = cart, logreg, svm feat < 60
ir<12.52 n.min < 83

o

e w

Learner = gbm

Abbildung 4.7.: Regressionsbaum zur Laufzeit in Stunden

sich die mittlere Laufzeit weiter auf 34.7 Stunden. Fiir die restlichen Methoden im linken
Ast betrégt die mittlere Laufzeit ca. 1.5 Stunden.

In Abbildung 4.8 sind abschliefend AUC und Laufzeit fiir die einzelnen Verfahren ge-
geniiberstellt. Unter Beriicksichtigung beider Grofien lédssen sich die besten Ergebnisse
per SMOTE und Class Weighting erzielen.

52

AUC

0.6

0.4

bl

cW
ob
0s
sm
tune
us

=l I Er - 1)
T

I I I I
2000 4000 6000 8000

Runtime (sec.)

Abbildung 4.8.: AUC vs. Runtime

10000

53

5. Zusammenfassung und Ausblick

Im Rahmen der bindren Klassifikation stellt im Falle unbalancierter Klassen insbesonde-
re die korrekte Vorhersage der Beobachtungen der kleinen Klasse eine Herausforderung
dar. Wie anhand der in dieser Arbeit durchgefithrten Experimente gezeigt wurde, konnen
jedoch bereits zum Teil sehr gute Ergebnisse durch die Auswahl eines geeigneten Lern-
verfahrens erzielt werden. Bei iibergreifender Betrachtung zeigte sich hierbei z.B. der
Random Forest fiir verschiedene Datensétze als wirksam. Nach zusédtzlichem Parameter-
Tuning fiithrten zudem Gradient Boosting und Support Vector Machines in vielen Féllen
bereits ohne erginzende Korrekturmethoden zu guten Ergebnissen. Sowohl durch das Tu-
ning als auch durch die zusétzliche Anwendung der implementierten Korrekturmethoden
konnten jedoch in nahezu allen Féllen weitere, zumindest geringe Verbesserungen der Pro-
gnosegiite erreicht werden. Somit eignen sich selbst , einfachere* Korrekturmethoden wie
Undersampling oder Class Weighting als Ergénzung bzw. als Verfeinerung fiir gute und
stabile Lernverfahren. Die Kombination aus gutem Lernverfahren und ergénzender Kor-
rekturmethode erscheint insbesondere auch aus Sicht der Laufzeit geeigneter als komplexe-
re Korrekturmethoden wie z.B. Overbagging in Verbindung mit schwachen Lernverfahren.
In den durchgefiihrten Experimenten konnten insbesondere durch das SMOTE-Verfahren
sowie durch Class Weighting gute Ergebnisse mit akzeptabler Laufzeit erzielt werden.

Zur weiterfithrenden Analyse empfiehlt sich die Betrachtung weiterer, einfacher Korrektur-
verfahren oder Erweiterungen der bis hierhin untersuchten Methoden. Interessant wére
dabei, ob z.B. durch ,intelligentes Undersampling” der Kombination von SMOTE mit

Undersampling weitere Verbesserungen entstehen.

A. Ubersicht der kleinen Klassen

Da es sich bei den betrachteten Datensétzen grofitenteils um Multi-Klassen-Probleme
handelt, wurde im Rahmen der Vorverarbeitung eine der vorhandenen Klassen als kleine
Klasse selektiert und alle anderen Klassen zu einer grofien Klasse zusammengefasst. Die

Auswahl der kleinen Klasse je Datensatz ist in folgender Ubersicht dargestellt:

Data y minClass
abalone Classnumberofrings 19
arrhythmia class 6
anneal class)
balancescale class B

car class vgood
coil2000 CARAVAN 1

ecoli class imU
kropt game sixteen
letter class Z
mammography class 1
nursery class veryrecom
oilspill class 1
optdigits class 0
ozonelevel Class 1
pageblocks class 5
pendigits class 9

scene sunset, 1
satelliteimage class 4
solarflare class F
spectrometer LRS.class 42
vowel Class hid
winequality quality 4

yeast classproteinlocalization ME2

Tabelle A.1.: Festlegung der kleinen Klasse bei Multi-Klassen-Problemen

B. Ubersicht der fehlerhaften Jobs

Data Learner Method NrExcluded Data Learner Method NrExcluded
abalonel9 cw gbm 1 satelliteimaged cw ghm 1
abalonel9 ob ghm 2 satelliteimaged os ghm 1
abalonel9 0s svm 1 solarflareb bl logreg 5
abalonel9 tune gbm 2 solarflareb cw logreg 5
abalonel9 us ghm 2 solarflareb ob ghm 1
annealb bl logreg 5 solarflareb ob logreg 5
arrhythmia6 tune gbm 1 solarflareb 0s logreg 5
balance2 sm gbm 1 solarflareb sm ghm 1
balance2 tune ghm 1 solarflareb sm logreg 5
coil2000 cW ghm 1 solarflareb tune logreg 5
coil2000 ob gbm 5 solarflareb us logreg 5
mammography cw gbm 1 spectrometerd2 cw gbm 1
mammography os gbm 1 spectrometer42 tune ghm 1
mammography us logreg 1 winequality4 ob ghm 1
ozonelevel 08 gbm 1 winequality4 us ghm 2
ozonelevel tune gbhm 1 yeastd cw ghm 1
ozonelevel us cart 1 yeastd ob ghm 1
ozonelevel us svim 1 yeasth 0s ghm 1
pageblocksh 08 gbm 1 yeasth tune gbm 1
pageblocksb us gbm 3 yeasth us ghm 1

Tabelle B.1.: Ausgeschlossene Experimente bei der Analyse der Laufzeit

C. Ergebnisse je

Durchlauf

prob n feat ir Irn.auc mean.auc Irn.fl mean.fl mean.mmce
scenesunset 2407 294 5.61 rf 0.99 svm 0.92 0.03
ecoli4 336 7 8.60 rf 0.94 svm 0.62 0.07
optdigitsO 5620 62 9.14 svm 1.00 svm 1.00 0.00
satelliteimaged 6435 36 9.28 rf 0.96 rf 0.64 0.06
pendigits9 10992 16 9.42 rf 1.00 svm 0.99 0.00
vowell 990 12 10.00 svm 1.00 svm 0.99 0.00
spectrometer42 531 100 10.80 rf 0.96 svm 0.61 0.06
balance2 625 4 11.76 svm 0.90 svm 0.00 0.08
annealb 898 31 12.40 cart 1.00 cart 1.00 0.00
¢0il2000 9822 85 15.76 logreg 0.74 rf 0.07 0.07
arrhythmia6 452 262 17.08 gbm 0.97 cart 0.68 0.03
oilspill 937 48 21.85 rf 0.93 svm 0.54 0.03
solarflareb 1066 11 23.79 logreg 0.91 logreg 0.19 0.05
card 1728 6 25.58 rf 1.00 svm 0.93 0.01
letter26 20000 16 26.25 rf 1.00 rf 0.95 0.00
yeastd 1484 8 28.10 «rf 0.93 cart 0.34 0.03
winequality4 6497 11 29.08 rf 0.87 rf 0.19 0.03
ozonelevel 2536 72 33.74 «f 0.90 logreg 0.23 0.04
nursery3 12960 8 38.51 f 1.00 svm 0.95 0.00
mammography 11183 6 42.01 «f 0.95 rf 0.67 0.01
pageblocksb 5473 10 46.59 «f 0.99 «f 0.72 0.01
kropt16 28056 6 7094 of 1.00 svm 0.70 0.01
abalonel9 4177 8 129.53 logreg 0.81 logreg 0.00 0.01

Tabelle C.1.: Ergebnisse Baseline

prob n feat ir Irn.auc mean.auc Irn.fl mean.fl mean.mmce
ecoli4 336 7 8.60 svm 0.94 gbm 0.64 0.06
satelliteimage4d 6435 36 9.28 svm 0.97 svm 0.71 0.05
spectrometer42 531 100 10.80 svm 0.96 svm 0.59 0.06
balance2 625 4 11.76 svm 0.93 gbm 0.17 0.10
coil2000 9822 85 15.76 gbm 0.76 gbm 0.11 0.07
arrhythmia6 452 262 17.08 rf 0.98 rf 0.76 0.03
oilspill 937 48 21.85 rf 0.93 svm 0.52 0.03
solarflareb 1066 11 23.79 logreg 0.91 cart 0.22 0.05
yeasth 1484 8 28.10 rf 0.92 rf 0.42 0.03
winequality4 6497 11 29.08 rf 0.87 gbm 0.24 0.03
ozonelevel 2536 72 33.74 «f 0.90 logreg 0.23 0.04
mammography 11183 6 4201 gbm 0.95 gbm 0.70 0.01
pageblocksb 5473 10 46.59 rf 0.98 rf 0.72 0.01
abalonel9 4177 8 129.53 logreg 0.81 gbhm 0.05 0.01
Tabelle C.2.: Ergebnisse Tuning
prob n feat ir Irn.auc mean.auc Irn.fl mean.fl mean.mmce
ecoli4 336 7 8.60 svm 0.94 logreg 0.64 0.09
satelliteimaged 6435 36 9.28 gbm 0.96 svm 0.72 0.05
spectrometer42 531 100 10.80 svm 0.96 svm 0.66 0.06
balance2 625 4 1176 svm 0.91 svm 0.22 0.19
coil2000 9822 85 15.76 gbm 0.76 gbm 0.23 0.13
arrhythmia6 452 262 17.08 rf 0.98 gbm 0.78 0.03
oilspill 937 48 21.85 «f 0.92 rf 0.51 0.04
solarflareb 1066 11 23.79 logreg 0.92 rf 0.38 0.08
yeastb 1484 8§ 28.10 rf 0.93 rf 0.39 0.04
winequality4 6497 11 29.08 rf 0.87 rf 0.30 0.06
ozonelevel 2536 72 33.74 «f 0.90 rf 0.35 0.04
mammography 11183 6 42.01 gbhm 0.95 rf 0.69 0.01
pageblocksb 5473 10 46.59 rf 0.99 rf 0.72 0.01
abalonel9 4177 8 129.53 logreg 0.82 logreg 0.06 0.08

Tabelle C.3.: Ergebnisse Undersampling

prob n feat ir Irn.auc mean.auc Irn.fl mean.fl mean.mmce
ecolid 336 7 8.60 svm 0.94 svm 0.66 0.09
satelliteimage4d 6435 36 9.28 svm 0.97 gbm 0.72 0.05
spectrometer42 531 100 10.80 svm 0.97 svm 0.70 0.05
balance2 625 4 11.76 svm 0.94 svm 0.60 0.09
¢oil2000 9822 85 15.76 gbm 0.76 gbm 0.25 0.15
arrhythmia6 452 262 17.08 rf 0.97 gbm 0.78 0.03
oilspill 937 48 21.85 «f 0.94 svm 0.56 0.04
solarflareb 1066 11 23.79 rf 0.91 of 0.39 0.08
yeastd 1484 8 28.10 rf 0.92 logreg 0.39 0.06
winequality4 6497 11 29.08 rf 0.88 gbm 0.29 0.06
ozonelevel 2536 72 33.74 svm 0.90 gbm 0.34 0.05
mammography 11183 6 4201 gbm 0.96 rf 0.70 0.01
pageblocksb 5473 10 46.59 rf 0.98 rf 0.71 0.01
abalonel9 4177 8 129.53 logreg 0.84 gbhm 0.06 0.08
Tabelle C.4.: Ergebnisse Oversampling
prob n feat ir Irn.auc mean.auc Irn.fl mean.fl mean.mmce
ecoli4 336 7 8.60 gbm 0.94 logreg 0.67 0.08
satelliteimaged 6435 36 9.28 svm 0.97 gbm 0.71 0.05
spectrometer42 531 100 10.80 rf 0.97 svm 0.73 0.05
balance2 625 4 11.76 svm 0.95 svm 0.66 0.07
coil2000 9822 8, 15.76 gbm 0.75 svm 0.23 0.16
arrhythmia6 452 262 17.08 rf 0.98 gbm 0.78 0.03
oilspill 937 48 21.85 «f 0.94 gbm 0.55 0.04
solarflareb 1066 11 23.79 logreg 0.91 svm 0.32 0.09
yeastd 1484 8§ 28.10 rf 0.92 logreg 0.40 0.05
winequality4 6497 11 29.08 rf 0.88 rf 0.30 0.04
ozonelevel 2536 72 33.74 «f 0.91 svm 0.35 0.05
mammography 11183 6 42.01 «f 0.95 of 0.71 0.01
pageblocksb 5473 10 46.59 rf 0.99 rf 0.72 0.01
abalonel9 4177 8 129.53 logreg 0.84 rf 0.07 0.02

Tabelle C.5.: Ergebnisse SMOTE

prob n feat ir Irn.auc mean.auc Irn.fl mean.fl mean.mmce
ecolid 336 7 8.60 cart 0.92 logreg 0.67 0.08
satelliteimage4d 6435 36 9.28 svm 0.93 svm 0.73 0.05
spectrometer42 531 100 10.80 svm 0.93 svm 0.72 0.05
balance2 625 4 11.76 svm 0.92 svm 0.63 0.09
coil2000 9822 85 15.76 cart 0.71 gbm 0.25 0.13
arrhythmia6 452 262 17.08 gbm 0.95 gbm 0.77 0.03
oilspill 937 48 21.85 logreg 0.89 svm 0.55 0.04
solarflareb 1066 11 23.79 cart 0.86 logreg 0.39 0.07
yeasth 1484 8 28.10 cart 0.86 rf 0.38 0.05
winequality4 6497 11 29.08 cart 0.79 gbm 0.29 0.06
ozonelevel 2536 72 33.74 cart 0.86 ghm 0.34 0.05
mammography 11183 6 4201 gbm 0.92 rf 0.71 0.01
pageblocksb 5473 10 46.59 logreg 0.96 rf 0.73 0.01
abalonel9 4177 8 129.53 svm 0.75 gbm 0.06 0.07
Tabelle C.6.: Ergebnisse Overbagging
prob n feat ir Irn.auc mean.auc Irn.fl mean.fl mean.mmce
ecoli4 336 7 8.60 svm 0.95 svm 0.67 0.08
satelliteimage4 6435 36 9.28 svm 0.97 gbm 0.72 0.05
spectrometer4?2 531 100 10.80 svm 0.96 gbm 0.69 0.05
balance2 625 4 1176 svm 0.94 gbm 0.24 0.14
coil2000 9822 85 15.76 gbm 0.76 gbhm 0.25 0.14
arrhythmia6 452 262 17.08 gbm 0.97 gbm 0.78 0.03
oilspill 937 48 21.85 svm 0.93 svm 0.56 0.03
solarflareb 1066 11 23.79 logreg 0.91 svm 0.34 0.08
yeasth 1484 8 28.10 rf 0.92 gbm 0.38 0.05
winequality4 6497 11 29.08 =f 0.85 gbm 0.29 0.06
ozonelevel 2536 72 33.74 gbm 0.91 gbm 0.36 0.05
mammography 11183 6 42.01 gbm 0.96 gbm 0.70 0.01
pageblocksb 5473 10 46.59 rf 0.99 gbm 0.70 0.01
abalonel9 4177 8 129.53 svm 0.82 gbm 0.06 0.07

Tabelle C.7.: Ergebnisse Class Weighting

Literaturverzeichnis

1]

[10]

B. Bischl, T. Kiihn, and G. Szepannek. On class imbalancy correction for classification

algorithms in credit scoring. 2014.

B. Bischl, M. Lang, and O. Mersmann. BatchFExperiments: Statistical experiments

on batch computing clusters., 2014.

B. Bischl, M. Lang, O. Mersmann, J. Rahnenfuehrer, and C. Weihs. Computing on
high performance clusters with r: Packages batchjobs and batchexperiments. Tech-
nical Report 1, TU Dortmund, 2011.

L. Breiman. Bagging predictors. Mach. Learn., vol. 24, no. 2, pp. 123-140, 1996.
L. Breiman. Random forests. Machine Learning, vol. 45, no. 1, pp. 5-32, 2001.

L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and
Regression Trees. Wadsworth International Group, 1984.

J. Burez and D. Van den Poel. Handling class imbalance in customer churn prediction.
Expert Syst. Appl., vol. 36, no. 3, pp. 4626-4636, 2009.

N.V. Chawla, K.W. Bowyer, L.O. Hall, and W.P. Kegelmeyer. Smote: Synthetic
minority over-sampling technique. J. Artif. Int. Res., vol. 16, no. 1, pp. 321-357,
2002.

T.M. Cover and P.E. Hart. Nearest neighbor pattern classification. IEEE Trans.
Information Theory, vol. 13, no. 1, pp. 21-27, 1967.

M. Di Martino, F. Decia, J. Molinelli, and A. Ferndndez. Improving electric fraud
detection using class imbalance strategies. In ICPRAM 2012 - Proceedings of the 1st
International Conference on Pattern Recognition Applications and Methods, Volume
2, Vilamoura, Algarve, Portugal, 6-8 February, 2012, pages 135-141, 2012.

[11]

[17]

[18]

[20]

[21]

C. Elkan. The foundations of cost-sensitive learning. In In Proceedings of the Se-
venteenth International Joint Conference on Artificial Intelligence, pages 973-978,
2001.

L. Fahrmeir, T. Kneib, S. Lang, and B. Marx. Regression. Models, Methods and
Applications. Springer Verlag, 2013.

M. Galar, A. Fernandez, E. Barrenechea Tartas, H. Bustince Sola, and F. Herrera.
A review on ensembles for the class imbalance problem: Bagging-, boosting-, and
hybrid-based approaches. IFEE Transactions on Systems, Man, and Cybernetics,
Part C, vol. 44, no. 4, pp. 463—484, 2012.

J. C. Gower. A general coefficient of similarity and some of its properties. Biometrics
27: pp. 857-874, 1971.

H. Han, W.-Y. Wang, and B.-H. Mao. Borderline-smote: A new over-sampling me-
thod in imbalanced data sets learning. In Proceedings of the 2005 International
Conference on Advances in Intelligent Computing - Volume Part I, pages 878-887.
Springer-Verlag, 2005.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning:
Data Mining, Inference and Prediction - Second Edition. Springer, 2009.

M. Kuhn and K. Johnson. Applied Predictive Modeling. Springer, 2013.

C.X. Ling and V.S. Sheng. Class imbalance problem. In Encyclopedia of Machine
Learning, page 171. 2010.

C.X. Ling, Q. Yang, J. Wang, and S. Zhang. Decision trees with minimal costs. In
Machine Learning, Proceedings of the Twenty-first International Conference (ICML
2004), Banff, Alberta, Canada, July 4-8, 2004, 2004.

M. Loépez-Ibanez, J. Dubois-Lacoste, T. Stiitzle, and M. Birattari. The irace packa-
ge, iterated race for automatic algorithm configuration. Technical report, IRIDIA,

Université Libre de Bruxelles, Belgium, 2011.

M.A. Mazurowski, P.A. Habas, J.M. Zurada, J.Y. Lo, J.A. Baker, and G.D. Tourassi.
Training neural network classifiers for medical decision making: The effects of imba-

lanced datasets on classification performance. Neural Networks, vol. 21, no. 2-3, pp.

427-436, 2008.

62

[22]

[23]

[24]

[25]

D.K. McClish. Analyzing a portion of the roc curve. Medical Decision Making., vol.
9, no. 3, pp. 190-195, 2002.

K.M. Ting. Inducing cost-sensitive trees via instance weighting. In Principles of
Data Mining and Knowledge Discovery, Second European Symposium, PKDD 798,
Nantes, France, September 23-26, 1998, Proceedings, pages 139-147, 1998.

J. Vanschoren, J.N. van Rijn, B. Bischl, and L. Torgo. Openml: Networked science
in machine learning. SIGKDD FEzplor. Newsl., vol. 15, no. 2, pp. 49-60, 2014.

W. Wei, J. Li, L. Cao, Y. Ou, and J. Chen. Effective detection of sophisticated online
banking fraud on extremely imbalanced data. World Wide Web, vol. 16, no. 4, pp.
440-475, 2013.

Z.B. Zhu and Z.H. Song. Fault diagnosis based on imbalance modified kernel fisher
discriminant analysis. Chemical Engineering Research and Design, vol. 88, no. 8, pp.
956951, 2010.

63

	Einleitung
	Methoden und Verfahren
	Statistische Lernverfahren
	Logistische Regression
	Entscheidungsbaum (CART)
	Random Forest
	Gradient (Tree) Boosting
	Support Vector Machine (SVM)

	Methoden zur Korrektur des Klassenungleichgewichts
	Überblick
	Sampling-Methoden
	Kostenbasierte Methoden

	Gütemaße für die Performance
	Kennzahlen der Konfusionsmatrix
	F1-Score
	ROC-Kurve und AUC

	Experimente
	Daten
	Verfahren und Parameter
	Parameter-Tuning
	Durchführung und Evaluation

	Diskussion der Ergebnisse
	Datenbasis
	Ergebnisse je Datensatz
	Bestes Verfahren
	Alle Verfahren

	Ergebnisse je Verfahren
	Tuning- und Korrektur-Effekte
	Vergleich Oversampling-Methoden
	Analyse der Laufzeit

	Zusammenfassung und Ausblick
	ANHANG
	Übersicht der kleinen Klassen
	Übersicht der fehlerhaften Jobs
	Ergebnisse je Durchlauf

