
BACHELORARBEIT

Implementierung und Evaluation ergänzender

Korrekturmethoden für statistische Lernverfahren

bei unbalancierten Klassifikationsproblemen

Tobias Kühn

Betreuung:

Prof. Dr. Bernd Bischl

Institut für Statistik
Ludwig-Maximilians-Universität München

15. Oktober 2014





Eidesstattliche Erklärung

Hiermit versichere ich, dass ich die vorliegende Bachelorarbeit selbstständig verfasst und

alle verwendeten Quellen und Hilfsmittel benannt habe.

München, den 15. Oktober 2014

..................................................
(Tobias Kühn)



Danksagung

Diese Bachelorarbeit entstand am Institut für Statistik der Ludwig-Maximilians-Universität

München. An dieser Stelle möchte ich mich bei meinem Betreuer, Prof. Dr. Bernd Bischl,

der mir die Arbeit an diesem interessanten Thema ermöglicht hat, für die freundliche und

engagierte Betreuung, die Unterstützung bei der Durchführung der Experimente sowie

die vielen hilfreichen Anregungen und Ideen bedanken.



Abstract

Im Falle binärer Klassifikationsprobleme liefern statistische Lernverfahren bei Vorliegen

stark unbalancierter Klassen oftmals keine zufriedenstellenden Ergebnisse insbesondere

hinsichtlich der Vorhersage von Beobachtungen aus der kleinen Klasse. Diese sind jedoch

in vielen Beispielen aus der Praxis wie z.B. Credit Scoring, Betrugserkennung oder Stor-

novorhersage gerade von großem Interesse. Ziel dieser Arbeit ist daher die Evaluation

und der Vergleich verschiedener Methoden zur Korrektur des Klassenungleichgewichts,

die in Kombination mit einem Lernverfahren als Klassifikator auf unbalancierte Daten

angewendet werden können. Zu diesem Zweck wurden im Rahmen dieser Arbeit mehrere

Korrekturmethoden in R implementiert sowie in das über CRAN verfügbare Paket mlr

(Machine Learning in R) integriert. Die betrachteten Methoden lassen sich dabei allgemein

in Sampling- und kostenbasierte Ansätze unterscheiden, wobei der Fokus dieser Arbeit auf

den Sampling-basierten Korrekturmethoden liegt. Als Gütemaße für die Performance der

Verfahren werden AUC (Fläche unter der ROC-Kurve) sowie der F1-Score betrachtet,

welche für unbalancierte Klassifikationsprobleme besser geeignet sind als beispielsweise

die Gesamtgenauigkeit der Vorhersagen über alle Klassen (Accuracy).

In einer Vielzahl von Experimenten wurden insgesamt 23 öffentlich zugängliche Datensätze

evaluiert - dabei wurden jeweils die betrachteten Lernverfahren (Logistische Regression,

Klassifikationsbaum, Random Forest, Gradient Tree Boosting, Support Vector Machine)

mit und ohne Parameter-Tuning sowie in Kombination mit verschiedenen Korrekturme-

thoden auf die einzelnen Datensätze angewendet. Es zeigt sich, dass bereits durch ge-

eignete Wahl des Lernverfahrens, ggf.mit ergänzendem Tuning der Hyperparameter, sehr

gute Ergebnisse erzielt werden können. Auch die zusätzliche Verwendung der Korrektur-

methoden führt häufig zu weiteren Verbesserungen des AUC und F1-Score. Hierbei liefern

insbesondere das SMOTE-Verfahren sowie Class Weighting für verschiedene Datensätze

und unter zusätzlicher Berücksichtigung der Laufzeit gute Ergebnisse.



Inhaltsverzeichnis

1. Einleitung 1

2. Methoden und Verfahren 4
2.1. Statistische Lernverfahren . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1. Logistische Regression . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2. Entscheidungsbaum (CART) . . . . . . . . . . . . . . . . . . . . . . 5
2.1.3. Random Forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.4. Gradient (Tree) Boosting . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.5. Support Vector Machine (SVM) . . . . . . . . . . . . . . . . . . . . 11

2.2. Methoden zur Korrektur des Klassenungleichgewichts . . . . . . . . . . . . 15
2.2.1. Überblick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2. Sampling-Methoden . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.3. Kostenbasierte Methoden . . . . . . . . . . . . . . . . . . . . . . . 24

2.3. Gütemaße für die Performance . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.1. Kennzahlen der Konfusionsmatrix . . . . . . . . . . . . . . . . . . . 25
2.3.2. F1-Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.3. ROC-Kurve und AUC . . . . . . . . . . . . . . . . . . . . . . . . . 28

3. Experimente 31
3.1. Daten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2. Verfahren und Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3. Parameter-Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4. Durchführung und Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 35

4. Diskussion der Ergebnisse 39
4.1. Datenbasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2. Ergebnisse je Datensatz . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2.1. Bestes Verfahren . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2.2. Alle Verfahren . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3. Ergebnisse je Verfahren . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3.1. Tuning- und Korrektur-Effekte . . . . . . . . . . . . . . . . . . . . 47
4.3.2. Vergleich Oversampling-Methoden . . . . . . . . . . . . . . . . . . . 48
4.3.3. Analyse der Laufzeit . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5. Zusammenfassung und Ausblick 54



ANHANG 54

A. Übersicht der kleinen Klassen 55

B. Übersicht der fehlerhaften Jobs 56

C. Ergebnisse je Durchlauf 57



Abbildungsverzeichnis

2.1. Partitionierung und Klassifikationsbaum mittels CART (vgl. Hastie et al.,
S. 306 [16]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2. Ansatz der Support Vector Machines inklusive Schlupfvariablen (vgl. Hastie
et al., S. 418 [16] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3. Transformation nicht linear trennbarer Klassen (R2 → R3) . . . . . . . . . 14
2.4. Random Undersampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5. Oversampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.6. Synthetic Minority Oversampling Technique (SMOTE) . . . . . . . . . . . 21
2.7. Overbagging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.8. Weighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.9. ROC Kurve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1. Resampling mit stratifizierter 5-facher Kreuzvalidierung und Holdout . . . 36

4.1. Übersicht aller Verfahren für Datensatz abalone19 . . . . . . . . . . . . . 44
4.2. Übersicht aller Verfahren für Datensatz coil2000 . . . . . . . . . . . . . . 45
4.3. Übersicht aller Verfahren für Datensatz mammography . . . . . . . . . . . 46
4.4. AUC-Differenzen (Oversampling - SMOTE) . . . . . . . . . . . . . . . . . 49
4.5. AUC-Differenzen (Oversampling - Overbagging) . . . . . . . . . . . . . . . 50
4.6. Vergleich von RandomForest/Oversampling und CART/Overbagging je Da-

tensatz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.7. Regressionsbaum zur Laufzeit in Stunden . . . . . . . . . . . . . . . . . . . 52
4.8. AUC vs. Runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53



Tabellenverzeichnis

2.1. Kostenmatrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2. Konfusionsmatrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1. Übersicht Datensätze . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2. Übersicht der Lernverfahren sowie der Tuning-Parameter und -Bereiche . . 33
3.3. Übersicht der Korrekturverfahren sowie der Tuning-Parameter im Paket

mlr [1] mit Optimierungsbereich . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4. Übersicht der Experimente . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1. Datensätze und Lernverfahren mit AUC > 0.99 . . . . . . . . . . . . . . . 39
4.2. Übersicht der besten Verfahren je Datensatz (AUC) . . . . . . . . . . . . . 40
4.3. Übersicht Gesamtergebnisse F1 . . . . . . . . . . . . . . . . . . . . . . . . 42
4.4. Top 10 Verbesserungen des AUC-Wertes durch Tuning und Korrekturver-

fahren . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.5. Durchschnittliche und maximale Verbesserungen des AUC durch Anwen-

dung der Korrekturmethoden . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.6. Anzahlen und Anteile gemäß der besseren Performance (AUC) je Lernver-

fahren (Oversampling/SMOTE) . . . . . . . . . . . . . . . . . . . . . . . . 49
4.7. Anzahlen und Anteile gemäß der besseren Performance je Lernverfahren

(Oversampling/Overbagging) . . . . . . . . . . . . . . . . . . . . . . . . . 50

A.1. Festlegung der kleinen Klasse bei Multi-Klassen-Problemen . . . . . . . . . 55

B.1. Ausgeschlossene Experimente bei der Analyse der Laufzeit . . . . . . . . . 56

C.1. Ergebnisse Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
C.2. Ergebnisse Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
C.3. Ergebnisse Undersampling . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
C.4. Ergebnisse Oversampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
C.5. Ergebnisse SMOTE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
C.6. Ergebnisse Overbagging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
C.7. Ergebnisse Class Weighting . . . . . . . . . . . . . . . . . . . . . . . . . . 60



1. Einleitung

Bei der Betrachtung von Klassifikationsproblemen kommt dem Verhältnis der vorliegen-

den Klassen eine entscheidende Bedeutung zu. Im Idealfall steht je Klasse etwa die gleiche

Anzahl an Beobachtungen zur Verfügung. Typischerweise ist es jedoch der Fall, dass be-

stimmte Klassen in den Daten deutlich unterrepräsentiert sind. Auch bei der binären

Klassifikation, d.h. bei Klassifikationsproblemen mit nur zwei Klassen (z.B. positive und

negative Klasse) kommt es häufig vor, dass die Anzahl der Beobachtungen einer Klas-

se (i.d.R. der negativen Klasse) die der Anderen (i.d.R. der positiven Klasse) deutlich

übertrifft. Bezüglich der Notation und den Bezeichnungen der beiden Klassen innerhalb

der binären Klassifikation soll fortan gelten – kleine Klasse ⇔ positive Klasse ⇔ 1 sowie

große Klasse ⇔ negative Klasse ⇔ 0 oder -1. Als einführendes Beispiel seien hierzu Kre-

ditwürdigkeitsprüfungen im Bankenbereich (Credit Scoring) genannt – im Vorfeld einer

Kreditvergabe soll dabei anhand der Daten des jeweiligen Kreditnehmers vorhergesagt

werden, ob ein Kredit zurückgezahlt wird oder nicht. Zu beachten ist hierbei, dass Kre-

ditausfälle zum einen deutlich seltener auftreten (kleine Fallzahl der positiven Klasse) und

zum anderen die fälschliche Einstufung eines Kreditnehmers als kreditfähig (mit späterem

Kreditausfall) i.d.R. mit höheren Kosten verbunden ist als die Ablehnung eines eigentlich

kreditwürdigen Kunden. Somit sind die Fälle der kleinen bzw. positiven Klasse, die Kre-

ditausfälle, von größerem Interesse und verursachen bei Fehlklassifikation höhere Kosten.

Im Fokus dieser Arbeit stehen somit im Allgemeinen binäre Klassifikationsprobleme, wel-

che eine stark unbalancierte Verteilung der Klassen vorweisen und bei denen darüber

hinaus die jeweiligen Fehlklassifikationen bei der Prognose unterschiedlich bewertet wer-

den, d.h. Fehlklassifikationen innerhalb der kleinen Klasse werden als teurer eingestuft

als Fehlklassifikationen innerhalb der großen Klasse. Neben dem bereits genannten Be-

reich des Credit Scoring sind derartige Klassifikationsprobleme in einer Vielzahl weiterer

Bereiche wie beispielsweise medizinische Diagnostik [21], Fehlerdiagnose bei Transforma-

toren [26], Betrugserkennung [10,25], Stornovorhersage [7] oder Erkennung von Objekten

auf Satellitenbildern [?] anzutreffen.

Die Prognosegüte von statistischen Verfahren und Algorithmen in Bezug auf binäre Klas-

sifikationsprobleme wird im Allgemeinen anhand der Vorhersagegenauigkeit (Accuracy)

oder Fehlklassifikationsrate (1 - Accuracy) über alle Klassen hinweg bewertet. Je höher



dabei die Genauigkeit bzw. je geringer die Fehlklassifikationsrate, desto besser das Verfah-

ren. Im Falle unbalancierter Klassen sind diese Maße eher ungeeignet, da z.B. trotz sehr

guter Vorhersagegenauigkeit über beide Klassen, speziell die Beobachtungen der kleinen

Klasse nur sehr schlecht erkannt werden. Liegen beispielsweise Daten mit einem Klassen-

verhältnis von 1:99 vor, d.h. pro Beobachtung der kleinen Klassen existieren 99 Beobach-

tungen der großen Klasse, so wird bereits eine Vorhersagegenauigkeit von 99% allein durch

die ausschließliche Prognose der großen Klasse erreicht. Beobachtungen der kleinen Klas-

se, die jedoch wie am Beispiel Credit Scoring verdeutlicht, häufig zusätzlich von größerem

Interesse sind, werden in diesem Fall zu 100% fehlklassifiziert. Das Problem der beiden

genannten Maße – Accuracy und Fehlklassifikationsrate – besteht somit darin, dass nicht

zwischen den Fehlklassifikationen je Klasse unterschieden, sondern die Fehlklassifikations-

rate über alle Beobachtungen (und somit Klassen) aggregiert betrachtet wird. Durch die

Dominanz der großen Klasse neigen statistische Lernverfahren bei Optimierung bezüglich

Accuracy oder Fehlklassifikationsrate dazu, vorhandene Beobachtungen der kleinen Klas-

se als Rauschen zu ignorieren und dementsprechend für neue Beobachtungen verstärkt die

große Klasse vorherzusagen [13]. Um jedoch insbesondere die Beobachtungen der kleinen

Klasse gut erkennen zu können, existieren zahlreiche Methoden, um dem Problem un-

balancierter Klassen entgegen zu wirken. Grundsätzlich kann hierbei zwischen Sampling-

und kostenbasierten Verfahren unterschieden werden. Als geeignetere Performance-Maße

zur Schätzung der Prognosegüte wird i.d.R. die Receiver Operating Characteristic (ROC)-

Kurve und die dazugehörige
”
Area under curve“ (AUC) sowie der F1-Score verwendet.

Der Hauptteil dieser Arbeit ist in insgesamt vier Kapitel aufgeteilt. In Kapitel 2 wer-

den zunächst die angewendeten Lernverfahren sowie die Methoden zur Korrektur des

Klassenungleichgewichts vorgestellt. Bezüglich den kostenbasierten Korrekturmethoden

und der damit verbundenen Einführung von Fehlklassifikationskosten ist i.d.R. grundle-

gendes Fachwissen notwendig, um diese sinnvoll bzw. korrekt festlegen zu können. Da

die tatsächlich anfallenden Fehlklassifikationskosten in vielen Fällen unbekannt sind, liegt

der Schwerpunkt dieser Arbeit auf den alternativ genannten Sampling-basierten Metho-

den. Kapitel 2 enthält des Weiteren eine Beschreibung der verwendeten Performance-

Maße – Area Under Curve (AUC) und F1-Score. In Kapitel 3 werden die in den durch-

geführten Experimenten verwendeten Datensätze und Parametereinstellungen dargestellt.

Des Weiteren wird eine kurze Übersicht zu den genutzten R-Paketen und Funktionen ge-

geben. In den im Rahmen dieser Arbeit betrachteten Experimenten werden statistische

Lernverfahren sowohl mit als auch ohne vorheriges Parameter-Tuning (mittels Iteraed F-

Racing [20]) und in Kombination mit Korrekturmethoden für insgesamt 23 unbalancierte

Datensätze evaluiert und verglichen. Die maßgebliche Fragestellungen stellen dabei die

folgenden Punkte dar:

2



• Gegenüberstellung und Beurteilung der Lernverfahren

• Analyse des Tuning-Effektes, d.h. Vergleich der Ergebnisse der Lernverfahren mit

und ohne vorheriges Tuning der Hyperparameter

• Analyse des Effektes der Korrekturmethoden, d.h. Vergleich der Lernverfahren mit

und ohne Einsatz verschiedener Korrekturmethoden

Hierbei soll insbesondere analysiert werden, in welchen Fällen die passende Wahl des

Lernverfahrens (inklusive Tuning) ggf. bereits ausreichend ist, d.h. in welchen Fällen der

Einsatz zusätzlicher Korrekturmethoden eher hilfreich oder eher vernachlässigbar ist. Ei-

ne entsprechende Vorstellung und Diskussion der Ergebnisse findet sich in Kapitel 4.

Die Arbeit schließt mit einer kurzen Zusammenfassung sowie einem Ausblick mit wei-

terführenden Fragestellungen in Kapitel 5.

Diese Arbeit stellt eine Fortführung der Analysen und Experimente des Konferenzberich-

tes
”
On Class Imbalancy Correction for Classification Algorithms in Credit Scoring“ [1]

dar. Erweiterungen und Unterschiede zum Bericht sind in Abschnitt 3.4 dargestellt.

3



2. Methoden und Verfahren

2.1. Statistische Lernverfahren

2.1.1. Logistische Regression

Die logistische Regression [12] stellt das wohl am weitesten verbreitete und bekannteste

statistische Lernverfahren für binäre Klassifikationsprobleme dar. Im Unterscheid zur li-

nearen Regression wird hierbei der Erwartungswert einer binären bzw. Bernoulli-verteilten

Zielgröße Y (bedingt auf den Kovariablenvektor x) durch ein Modell angepasst.

y ∈ {0, 1}
0 : negative Klasse

1 : positive Klasse

Y ∼ Ber(π), E(Y |x) = P(Y = 1|x) = π ∈ [0, 1]

(2.1)

Der Erwartungwert der Zielgröße Y entspricht dabei gerade der Wahrscheinlichkeit π

(vgl. Formel 2.1), so dass letztendlich die Wahrscheinlichkeit für das Eintreten der po-

sitiven Klasse (
”
Y = 1“) modelliert wird. Da der Wertebereich der Wahrscheinlichkeit

π im Intervall [0,1] liegt, der lineare Prädiktor x′β jedoch prinzipiell auch Werte außer-

halb dieses Intervalls annehmen kann, werden die beiden Größen π und x′β durch eine

Responsefunktion h bzw. eine Linkfunktion g = h−1 miteinander verknüpft:

h(ηi) = h(x′
iβ) = πi, g(πi) = ηi = x′

iβ, i = 1, .., n (2.2)

Der lineare Prädiktor ηi = x′
iβ besteht wie auch bei der linearen Regression aus mehre-

ren unabhängigen Variablen bzw. Features, die sowohl metrisch als auch kategorial sein

können. Bei der Responsefunktion h handelt es sich grundsätzlich um eine streng mono-

ton wachsende Verteilungsfunktion. Im Rahmen dieser Arbeit wird dabei Logit-Modell



betrachtet, bei dem die logistische Funktion als Responsefunktion verwendet wird. Als

Umkehrfunktion ergibt sich hierbei die logarithmierte Chance (log-odds oder
”
Logit“) als

Linkfunktion:

πi =
1

1 + exp(ηi)
⇔ logit(πi) = ln

(
πi

1− πi

)
= ηi = x′

iβ (2.3)

Wie in Formel 2.3 dargestellt, ergibt sich bei Verwendung des Logit-Links ein lineares

Modell für die logarithmierten Chancen ln
(

πi
1−πi

)
sowie durch weitere Transformation

mit der Exponentialfunktion ein (exponentiell-)multiplikatives Modell für die so genann-

ten Chancen bzw. Odds πi
1−πi . Die Modellanpassung bzw. Schätzung der Parameter er-

folgt üblicherweise über die Maximum-Likelihood-Schätzung. Da hierbei nach Nullset-

zen der Score-Gleichungen ein mehrdimensionales, nichtlineares Gleichungsystem ent-

steht, kommt zur Lösung der ML-Gleichungen i.d.R. ein iteratives Verfahren wie z.B.

Newton-Raphson- oder Fisher-Scoring-Algorithmus zum Einsatz. Nach der Schätzung

der Koeffizienten β̂ lässt sich für neue Beobachtungen die geschätzte Wahrscheinlich-

keit π̂n+1 = P(yn+1 = 1|xn+1), d.h. die Wahrscheinlichkeit, dass eine neue Beobachtung

der positiven Klassen zuzuordnen ist, durch Einsetzen von x′
n+1β̂ in die Responsefunk-

tion berechnen. Die entsprechende Klasse, d.h. ŷn+1 = 1 (positive Klasse) oder ŷn+1 = 0

(negative Klasse), wird anhand der prognostizierten Wahrscheinlichkeit sowie eines fest-

gelegten Schwellenwertes c (i.d.R. c = 0.5) abgeleitet. Im Allgemeinen wird somit ŷ = 1

vorhergesagt, falls π̂ ≥ c und alternativ ŷ = 0, falls π̂ < c.

Eine ausführliche Beschreibung zur logistischen Regression findet sich bei Fahrmeir et al.,

S. 270 - 293 [12]. Für die Umsetzung der Experimente im Rahmen dieser Arbeit wurde

die Implementierung der logistischen Regression im R-Paket stats (Funktion glm() mit

family=binomial(link=logit)) verwendet.

2.1.2. Entscheidungsbaum (CART)

Bei der Verwendung eines Entscheidungsbaums (bei binärer Zielgröße auch: Klassifika-

tionsbaum) werden die vorliegenden Daten anhand der jeweiligen Variablen und deren

Ausprägungen schrittweise in disjunkte und möglichst homogene Untergruppen (→ Par-

titionen) zerlegt. Das von Breiman et al. [6] eingeführte CART-Verfahren (Classification

And Regression Tree) zählt hierbei zu einem der gängisten Implementierungen. Es han-

delt sich um ein nicht-parametrisches Verfahren, bei dem die Aufteilung der Daten in

jedem Schritt in zwei disjunkte Gruppen (
”
binäre Splits“) sowie anhand eines der Featu-

res erfolgt. Durch die wiederholte Anwendung der Vorgehensweise auf die entstehenden

5



Partitionen ergibt sich eine wie beispielhaft in Abbildung 2.1 dargestellte Baumstruktur.

Abbildung 2.1.: Partitionierung und Klassifikationsbaum mittels CART (vgl. Hastie et
al., S. 306 [16])

Die linke Grafik in Abbildung 2.1 veranschaulicht die Aufteilung eines zweidimensiona-

len Raumes, d.h. eines Modell mit zwei Features X1, X2 mittels CART-Verfahren. In der

rechten Grafik ist der zugehörige Klassifikationsbaum dargestellt. Zur Aufteilung der Trai-

ningsdaten in möglichst homogene Gruppen sowie zur Ermittlung der besten Variable xj

sowie des dazugehörigen besten Punktes/Merkmalsausprägung s wird bei kategorialen

und binären Zielgrößen je Split ein so genanntes Unreinheitsmaß wie z.B. Fehlklassifi-

kationsrate, Devianz oder Gini-Index berechnet. Der im Rahmen dieser Arbeit genutzte

Gini-Index ergibt sich für einen Knoten m bei der binären Klassifikation (Anzahl Klassen

K = 2) vereinfacht wie folgt:

Gm =
K∑
k=1

p̂mk(1− p̂mk)

= p̂m0(1− p̂m0) + p̂m1(1− p̂m1)

= 2p̂m1(1− p̂m1), p̂m1 = 1− p̂m0

(2.4)

Im Zwei-Klassen-Fall bezeichnen p̂m0 und p̂m1 in Formel 2.4 die relativen Häufigkeiten

der Klassen 0 und 1 im Knoten m. Das Minimum für Gm (→ Gm = 0) wird jeweils er-

reicht, wenn alle Beobachtungen auschließlich einer der beiden Klassen angehören. Für alle

möglichen, resultierenden Partitionen mL und mR ”
unterhalb“ des Knoten m lassen sich

nun die Gini-Indizes berechnen und anschließend gewichtet mit der Anzahl der Beobach-

6



tungen in den neuen Partitionen NL und NL summieren. Letztendlich wird dann derjenige

Split, d.h. diejenige Kovariable xj sowie der dazugehörige Punkt/Merkmalsausprägung s

gewählt, welche die gewichtete Summe der Gini-Indizes in den resultierenden Partitionen

minimiert (vgl. Formel 2.5).

min(j, s)[
NL

N
GL +

NR

N
GR] (2.5)

Die sukzessive Zerlegung der Daten kann prinzipiell so lange fortgeführt werden bis in

jedem End- bzw. Terminalknoten des Baumes jeweils nur Beobachtungen einer der bei-

den Klassen oder im Extremfall nur noch genau eine Beobachtung vorliegt. Da hier-

durch jedoch die Komplexität und damit auch die Gefahr des Overfitting des Modells an

die zugrunde liegenden Trainingsdaten erheblich ansteigt, existieren verschiedene Stopp-

Kriterien, die vor Erzeugung des Baumes gesetzt werden und so die Anzahl der Knoten

und Splits begrenzen. Alternativ kann der Klassifikationsbaum zunächst komplett kon-

struiert und anschließend gemäß bestimmter Kriterien wieder gestutzt werden (Pruning).

Im Rahmen dieser Arbeit wurde auf Pruning verzichtet und stattdessen diverse Stopp-

Kriterien wie die vorgegebene minimale Anzahl an Beobachtungen pro Knoten und die

minimale Verbesserung der Anpassungsgüte, die je Split erreicht werden muss, vorgegeben.

Die Vorhersage der Klassenzugehörigkeit für neue Beobachtungen erfolgt anhand des an-

gepassten Baumes, indem dieser für die neuen Daten sowie deren Merkmale und Aus-

prägungen durchlaufen wird. Im jeweiligen Terminalknoten wird die Klassifizierung an-

hand einer Mehrheitswahl (Majority Vote) durchgeführt, d.h. die Klasse mit der größten

relativen Häufigkeit im Terminalknoten wird vorhergesagt.

Weiterführende Information zu Entscheidungs- bzw. Klassifikationsbäumen sind bei Has-

tie et al., S.305ff [16] zu finden. Für die durchgeführten Experimente wurde das R-Paket

rpart mit der gleichnamigen Funktion rpart() als Implementierung des CART-Verfahrens

genutzt.

2.1.3. Random Forest

Random Forests [5] zählen zu den so genannten (homogenen) Ensemble-Methoden. Die

Klassifizierung erfolgt hierbei grundsätzlich durch wiederholte Anwendung eines Lernver-

fahrens auf Bootstrap-Samples der Trainingsdaten sowie der anschließenden Aggregation

der einzelnen Ergebnisse (→ Bagging =
”
Bootstrap-Aggregation“). Der Random Forest

stellt dabei im Speziellen eine Erweiterung der in Abschnitt 2.1.2 vorgestellten Klassi-

7



fikationsbäume dar. Die Bagging-Methode wird hierbei auf Bäume angewendet, so dass

mehrere Klassifikationsbäume an die Daten angepasst werden. Die Klassifizierung neuer

Daten erfolgt anschließend durch Betrachtung aller angepassten Modelle/Bäume sowie

entsprechender Mehrheitswahl (Majority Vote), d.h. die Klasse, welche in den meisten

Modellen vorhergesagt wurde, wird auch insgesamt prognostiziert (→ Modus der Vorher-

sagen der einzelnen Modelle). Jedes Modell erhält somit grundsätzlich das gleiche Gewicht.

Bezüglich der Vorgehensweise werden zunächst mehrere Bootstrap-Stichproben durch

zufälliges Ziehen mit Zurücklegen aus den Trainingsdaten erzeugt und diese jeweils per

Klassifikationsbaum angepasst. Durch die Vielzahl der angepassten Bäume und deren Ag-

gregation wird die Varianz der resultierenden Vorhersagen i.d.R. grundsätzlich verringert.

Sind die angepassten Bäume jedoch stark miteinander korreliert, kann die Varianz der

Vorhersagen für neue Daten ggf. ansteigen. Um die Klassifikationsbäume möglichst zu de-

korrelieren, wird daher (neben dem Bootstrapping) in den einzelnen Splits der Bäume eine

zufällige Selektion der in Frage kommenden Merkmale bzw. Features durchgeführt. An-

statt der ursprünglichen p Variablen werden je Split somit nur m < p zufällig ausgewählte,

potentielle Split-Variablen betrachtet. Je kleiner der Parameter m, desto geringer i.d.R.

die Korrelation zwischen den Bäumen bzw. desto unterschiedlicher auch die Struktur der

Bäume. Der Parameter m kann grundsätzlich frei gewählt oder über ein Tuning-Verfahren

bestimmt werden – als Faustregel wird bei p verfügbaren Features häufig m =
√
p als

Faustregel angegeben (vgl. Hastie et al., S. 592 [16]). Wie bereits beschreiben, erfolgt die

finale Vorhersage der Klasse abschließend per Mehrheitswahl (Majority Vote) aller an-

gepassten Bäume. Ist eine Vorhersage der Klassenwahrscheinlichkeiten erforderlich, kann

die relative Häufigkeit der vorhergesagten Klassen der einzelnen Modelle herangezogen

werden.

Die Anzahl der Modelle/Bäume ist frei wählbar oder kann über ein Tuning-Verfahren

bestimmt werden. Alternativ lässt sich die Anzahl der Bäume auch aus dem so genannten

OOB-Error (Out-Of-Bag Error) ableiten. Dabei handelt es sich um die mittlere Fehlklas-

sifikationsrate je Beobachtung, wobei die Vorhersagen ausschließlich auf Basis der Bäume

gebildet werden, bei deren Aufbau die jeweilige Beobachtung nicht verwendet wurde. Der

OOB-Error wird parallel zur Durchführung des Verfahrens berechnet und stellt damit so-

zusagen ein im Algorithmus integriertes Kreuzvalidierungsverfahren dar. Prinzipiell sind

bei Betrachtung des OOB-Errors nur so viele Modellanpassungen notwendig bis sich die-

ser stabilisiert hat (vgl. Hastie et al., S. 592/593 [16]).

Weiterführende Informationen zu Random Forests finden sich bei Hastie et al., S. 587ff [16].

Im Rahmen dieser Arbeit wurde zur Durchführung der Experimente die Funktion ran-

domForest() basierend auf CARTs aus dem gleichnamigen R-Paket verwendet.

8



2.1.4. Gradient (Tree) Boosting

Gradient Boosting [16] stellt neben dem Random Forest (vgl. Abschnitt 2.1.3) eine weitere,

so genannte Ensemble-Methode dar. Hierbei wird somit wiederum ein Lernverfahren bzw.

eine Basis-Methode mehrfach auf die vorliegenden Trainingsdaten angewendet. Im Unter-

schied zum Random Forest werden die einzelnen Modelle jedoch nicht separat betrachtet

und angepasst, sondern in einem iterativen Verfahren zu einem additiven Gesamtmodell

mit mehreren Basisfunktionen b(xi; γm) zusammengefasst (vgl. Formel 2.6). Die Parameter

γm kennzeichnen dabei die jeweiligen Modellparameter der m-ten Basis-Methode.

F (x) =
M∑
m=1

βmb(xi; γm) (2.6)

Die einzelnen Basisfunktionen b(xi; γm) werden über die Koeffizienten βm gewichtet. Die

Schätzung der Koeffizienten erfolgt dabei über die Minimierung des Verlustes für eine zu

bestimmende Verlustfunktion L:

argmin
β,γ

N∑
i=1

L(yi, F (xi)) =
N∑
i=1

L(yi,
M∑
m=1

βmb(xi; γm)) (2.7)

Als Basis-Methoden sind grundsätzlich beliebige Verfahren und Funktionen denkbar. Bei

dem im Rahmen dieser Arbeit betrachteten Gradient Tree Boosting werden Regressi-

onsbäume (→ CART) bzw. Baumstümpfe, d.h. Bäume mit geringer Tiefe, verwendet.

Bäume bieten dabei den grundsätzlichen Vorteil, dass sie an sich bereits eine additive

Struktur besitzen (vgl. Hastie et al., S. 359ff [16]). Die Tiefe des Baumes stellt im Rah-

men des Modells grundsätzlich einen frei wählbaren bzw. über ein Tuning-Verfahren zu

bestimmenden Modellparameter dar.

Anstatt nun das komplette Modell, d.h. die komplette Funktion F (x) anzupassen, wird

der erwartete Verlust sukzessive in jeder Iteration nur bezüglich einer Basisfunktion mini-

miert. Bereits im Modell enthaltene Komponenten werden nicht mehr verändert. In Jeder

Iteration wird eine weitere additive Komponente zum Modell hinzugefügt, so dass der

erwartete Verlust dadurch weiter reduziert wird.

Zur Bestimmung der Modellparameter in Iteration m, wird zunächst ausgehend von der

aktuellen Funktion Fm−1 die Richtung des negativen Gradienten des Verlustes anhand der

so genannten Pseudo-Residuen ri berechnet:

rim = −
[
∂L(yi, Fm−1(xi)

∂Fm−1(xi)

]
, i = 1, .., n (2.8)

9



In Formel 2.8 bezeichnet rim dabei das Pseudo-Residuum in Iteration m bezüglich der

i-ten Beobachtung. Im Falle der binären Klassifikation wird zur Berechnung der Pseudo-

Residuen i.d.R. der binomiale Verlust (→ Devianz) als Verlustfunktion verwendet, welcher

zugleich der negativen Log-Likelihood der logistischen Regression entspricht.

L(y, f(x)) = −log (1 + exp(−2yf(x))) (2.9)

Für die berechneten Pseudo-Residuen rim wird anschließend ein Regressionsbaum
∑J

j=1 γjmI(x ∈
Rjm) angepasst, wobei Rjm die j-te Partition des m-ten Baumes und γjm den in dieser Par-

tition konstant vorhergesagten Wert – i.d.R. den Mittelwert der Daten in dieser Partition

– bezeichnet. Die Schätzung der Parameter γjm erfolgt dabei i.d.R. über die Minmierung

des quadratischem Verlustes.

γm = argmin
γ

N∑
i=1

(rim − b(xi, γ))2 =
N∑
i=1

(rim −
J∑
j=1

γjI(x ∈ Rj) (2.10)

Nach der m-ten Iteration wird die Funktion Fm somit gemäß Formel 2.11 durch eine neue,

additive Komponente erweitert. Dieser neu hinzugefügt Regressionbaum
∑J

j=1 γjI(x ∈
Rj) bewegt das Modell durch die Anpassung an die Pseudo-Residuen sozusagen einen

Schritt in die Richtung der stärksten Verringerung des Verlust.

Fm(x) = Fm−1(x) + βmb(xi; γm) = fm−1(x) + βm

J∑
j=1

γjI(x ∈ Rj) (2.11)

Die optimale Anzahl an Iterationen stellt einen weiteren Parameter des Gesamtmodells

dar und wird i.d.R. durch Kreuzvalidierung oder vorheriges Tuning bestimmt. Zur Ver-

meidung von Overfitting kann die Anzahl der Iterationen / die Anzahl der additiven

Komponenten grundsätzlich beschränkt werden. Alternativ besteht die Möglichkeit durch

Multiplikation der einzelnen Komponenten mit einem Shrinkage-Parameter ν ∈ (0, 1] der

Überanpassung an die Daten entgegen zu wirken. Der Shrinkage-Parameter (oder auch

Lernrate) ν bewirkt, dass das Modell in jeder Iteration nicht mit der optimalen Schritt-

weite, sondern nur ein entsprechend kürzeres Stück in Richtung des negativen Gradienten

bewegt wird. Die optimalen Einstellungen bezüglich der Anzahl der Iterationen m sowie

der Lernrate ν hängen dabei stark voneinander ab (→ kleinere Lernrate führt zu größerer

Anzahl an notwendiger Iterationen um ein bestimmtes Ergebnis zu erreichen und umge-

kehrt).

10



Eine einfache Erweiterung des Gradient Boosting stellt das Stochastic Gradient Boos-

ting dar. Anstatt in den einzelnen Iterationen stets alle zur Verfügung stehenden Trai-

ningsdaten zu verwenden, wird je Iteration nur eine per Subsampling zufällig generierte

Teilmenge der Trainingsdaten angepasst. Hierdurch wird das Gradient (Tree) Boosting

zusätzlich um die Vorteile (allerdings auch die Nachteile) der Bagging-Verfahren erweitert.

Eine ausführlichere Beschreibung zu Boosting-Verfahren allgemein sowie zum Gradient

Tree Boosting findet sich bei Hastie et al., S. 337ff [16]. Für die in dieser Arbeit durch-

geführten Experimente wurde die Funktion gbm() aus dem gleichnamigen R-Paket gbm

verwendet.

2.1.5. Support Vector Machine (SVM)

Support Vector Machines [16] sind so genannte
”
Large Margin Classifier“, bei denen zwei

Klassen derart durch eine Hyperebene getrennt werden, dass zusätzlich der Abstand zwi-

schen den Klassen und der Hyperebene maximal wird. Mittels des maximal breiten Ab-

standes soll insbesondere gewährleistet werden, dass auch neue Beobachtungen möglichst

gut klassifiziert werden können.

Der mit Vorzeichen versehene Abstand eines Punktes xi ∈ Rp von der in Abbildung 2.2

Abbildung 2.2.: Ansatz der Support Vector Machines inklusive Schlupfvariablen (vgl. Has-
tie et al., S. 418 [16]

dargestellten Hyperebene x′β + β0 = 0 mit Einheitsvektor β (→ ||β|| = 1) kann mit-

tels f(xi) = x′
iβ + β0 bestimmt werden (vgl. Hastie et al., S. 418 [16]). Wird weiterhin

11



eine binäre Zielgröße als yi ∈ {−1, 1} (1: positive Klasse, -1: negative Klasse) kodiert,

entspricht in diesem Fall ein positiver Wert von f(xi), d.h. ein positiver Abstand von xi

zur Hyperebene, der Zuordnung der Beobachtung i zur positiven Klasse (→ yi = 1). Als

Klassifizierungsregel ergibt sich somit ŷi = sign(f(xi)).

Sind die beiden Klassen linear trennbar, so lässt sich eine Hyperebene an die Daten an-

passen, so dass für alle Beobachtungen gilt: yi ·f(xi) > 0, d.h. alle Beobachtungen können

anhand der Hyperebene korrekt klassifiziert werden. Mittels des in Formel ?? dargestell-

ten Optimierungsproblems ist des Weiteren eine Maximierung des absoluten Abstandes

(→ yi ·f(xi)) zwischen der Hyperebene und den Klassen (und somit zwischen den Klassen)

möglich.

max
β,β0,||β||=1

γ

mit NB: yi · f(xi) = yi · (x′iβ + β0) ≥ γ, i = 1, .., N
(2.12)

Durch Umskalierung kann weiterhin der Wegfall der Annahme ||β|| = 1 erreicht werden.

Die Daten werden hierbei i.d.R. so skaliert, dass der Abstand der so genannten Support-

vekoren zur Hyperebene genau 1 beträgt. Als Supportvektoren werden die Beobachtungen

bzw. Vektoren bezeichnet, deren Abstand zur Hyperebene minimal ist (→ min
i

(yi ·f(xi)))

und die dadurch den Verlauf der Hyperebene maßgeblich beeinflussen. In Abbildung 2.2

sind die Supportvektoren mit schwarzer Umrandung dargestellt. Nach Skalierung ergibt

sich das zu Formel 2.12 äquivalente Optimierungsproblem:

min
β,β0

1

2
||β||2

mit NB: yi · (x′iβ + β0) ≥ 1, i = 1, .., N

(2.13)

Für den Fall nicht linear trennbarer Klassen kann die in Formel 2.13 dargestellte Op-

timierung durch die Einführung so genannter Schlupfvariablen (slack variables) ξi ≥ 0

erweitert werden. Diese erlauben eine Fehlklassifizierung von Beobachtungen, wobei die

Anzahl der Fehlklassifizierungen bzw. die Abstände der fehlklassifizierten (ξi > 1) und

innerhalb der Margin liegenden (0 < ξi < 1) Beobachtungen vom Rand der Margin so

gering wie möglich gehalten werden. In Abbildung 2.2 sind beispielhaft drei entsprechende

Beobachtungen dargestellt – ξ1 liegt dabei zwischen 0 und 1, für die fehlklassifizierten

Beobachtungen gehörenden Schlupfvariablen ξ2, ξ3 gilt: ξ2 > 1 bzw. ξ3 > 1. Zusammenge-

fasst werden somit zwei Ziele verfolgt – zum einen die Anpassung einer Hyperebene mit

größtmöglichem Abstand zu den beiden Klassen und zum anderen die Minimierung der

über die Schlupfvariablen erlaubten Fehlklassifizierungen. Diese prinzipiell gegensätzlichen

Ziele werden i.d.R. innerhalb des Optimierungsproblems in Form einer gewichteten Sum-

12



me ausgedrückt (vgl. Formel 2.14).

min
β,β0

1

2
||β||2 + C ·

N∑
i=1

ξi

mit NB: yi · (x′iβ + β0) ≥ 1− ξi, ξi ≥ 0

(2.14)

Die in Formel ?? dargestellte, positive Konstante C steuert dabei den Ausgleich zwischen

den beiden genannten Zielen. Die Wahl des Parameters C wird i.d.R. durch Anwendung

eines Tuning-Verfahren bestimmt. Je größer C dabei gewählt wird, umso kleiner wird die

Margin bzw. umso stärker wird der Fokus auf die korrekte Klassifizierung der Beobach-

tungen gelegt. Da es sich in Formel ?? um ein konvexes Optimierungsproblem handelt,

kann über die Lagrange-Funktion und weitere Optimalitätsbedingungen eine Lösung für

β, β0 bestimmt werden: → β̂ =
∑N

i=1 α̂iyixi (vgl. Hastie et al., S. 420f [16]).

Bei dem bis hierher beschriebenen Vorgehen handelt es sich prinzipiell um ein lineares

Klassifikationsverfahren, d.h. die Klassifizierung ist nur anhand einer linearen Funkti-

on möglich und bei nicht linear trennbaren Klassen kommen die Schlupfvariablen zum

Einsatz. Dieser Ansatz kann jedoch erweitert werden, in dem die Trainingsdaten bzw. -

vektoren in einen höherdimensionalen Raum transformiert werden. Mit steigender Anzahl

der Dimension lassen sich dadurch selbst sehr verschachtelte bzw. sich stark überlappende

Klassen linear trennen. Somit kann die gesuchte Hyperebene prinzipiell in einem höherdimensionalen

Raum bestimmt und anschließend wieder in den Ursprungs-Vektorraum zurücktransformiert

werden. In Abbildung 2.3 ist beispielhaft die Transformation zweier nicht linear trennba-

ren Klassen im R2 in den höherdimensionalen R3 dargestellt.

Da die Transformation des gesamten Ursprungs-Vektorraums in einen höherdimensionalen

Raum i.d.R. viel zu aufwändig und rechenintensiv ist, kommt hierbei der so genannte

Kernel-Trick zum Einsatz. Für eine existierende Transformation bzw. Basisfunktion φ der

Ursprungsdaten in einen höherdimensionalen Raum (φ : X → H) wird hierbei über den

so genannten Kernel bzw. eine Kernelfunktion k das Skalarprodukt je zweier Vektoren im

transformierten Raum berechnet:

k : X ×X → R, k(x1, x2) = 〈φ(x1), φ(x2)〉 (2.15)

Wird der Kernel nun selbst auch als Basisfunktion verwendet, d.h. φ(x) = k(x, ·), so

ist das Skalarprodukt zweier transformierter Vektoren gerade gleich der Kernelfunktion

mit den jeweiligen Ursprungsvektoren als Funktionsargumente (
”
reproducing property“,

vgl. Formel 2.16). Die Berechnung der Skalarprodukte kann aufgrund dieser Eigenschaft

13



Abbildung 2.3.: Transformation nicht linear trennbarer Klassen (R2 → R3)

implizit mittels Kernelfunktion und Ursprungsvektoren erfolgen ohne dass eine Hin- und

Rücktransformation der Vektoren durchgeführt werden muss.

k(x1, x2) = 〈k(x1, ..), k(x2, ..)〉 (2.16)

Werden nun in Formel ?? alle Punkte xi durch die entsprechenden Basisfunktionen ersetzt

(xi → k(xi, ·)) sowie β =
∑N

i=1 αixi ergibt sich als
”
neues“ Optimierungsproblem:

min
α,ξi

1

2

N∑
i,j=1

αiαjk(xi, xj) + C ·
N∑
i=1

ξi

mit NB: yi · (
N∑
j=1

αjk(xi, xj) ≥ 1− ξi, ξi ≥ 0

(2.17)

Die Klassifizierung einer Beobachtung kann des Weiteren erfolgen mittels:

f(xi) =
N∑
i=1

αik(x, xi) + β0 (2.18)

Diese in den Formeln 2.17 und 2.18 dargestellte,
”
kernelisierte“ Support Vector Machine

stellt nun ein nicht-lineares Lernverfahren dar, welches auf beliebig verteilte Klassen an-

gewendet werden kann. Es zeigt sich, dass die Koeffizienten αi i.d.R. nur für genau die

Beobachtungen ungleich 0 sind, welche die Nebenbedingung exakt erfüllen. Dabei handelt

14



es sich wiederum um die so genannten Supportvektoren, welche die resultierende Hyper-

ebene auch in diesem Fall maßgeblich bestimmen.

Bei der verwendeten Kernelfunktion muss es sich prinzipiell
”
lediglich“ um eine symmetri-

sche, positiv definite Funktion handeln, wodurch eine Vielzahl an verschiedenen Kernels

existieren. Im Rahmen dieser Arbeit wurde der so genannte Radial Basis Kernel bzw.

Gauss-Kernel verwendet (k(xi, xj) = exp(−γ · ||xixj||2, γ > 0), mit welchem die zugrunde

liegenden Daten theoretisch in einen unendlich dimensionalen Raum abgebildet werden

können. Da dadurch wiederum die perfekte Trennung aller Klassen möglich ist, dienen

die ursprünglich zur Separierung nicht linear-trennbarer Klassen eingeführten Schlupfva-

riablen hauptsächlich zur Vermeidung der Überanpassung des Modells an die zugrunde

liegenden Trainigsdaten.

Weitere ausführlichere Informationen zu Support Vector Machines finden sich bei Hastie

et al., S. 417ff [16]. Im Rahmen dieser Arbeit wurde zur Durchführung der Experimente die

Funktion ksvm() aus dem R Paket kernlab verwendet, welches automatisch auch katego-

riale Features verarbeitet sowie die Ausgabe von Klassenwahrscheinlichkeiten unterstützt,

die zur Berechnung der betrachteten Gütemaße benötigt werden (vgl. Abschnitt 2.3).

2.2. Methoden zur Korrektur des

Klassenungleichgewichts

2.2.1. Überblick

Aufgrund der großen Anzahl binärer Klassifikationsprobleme mit unbalancierten Klas-

sen existiert eine ebenso große Vielfalt an Verfahren, um diesem Problem zu begegnen.

Bezüglich des methodischen Ansatzes lassen sich diese im Folgenden allgemein als Kor-

rekturmethoden bezeichneten Verfahren in zwei Gruppen aufteilen – Sampling-basierte

sowie kostenbasierte Methoden. Alternativ ist ebenso eine Einteilung in Algorithmus-

interne und Algorithmus-externe Verfahren möglich, wobei bei Erstgenannten die Kor-

rektur des Klassenungleichgewichts sozusagen in den jeweiligen Algorithmus integriert ist.

Es handelt sich dabei i.d.R um Anpassungen bestehender Lernverfahren für das konkrete

Problem unbalancierter, binärer Klassen (z.B. AdaCost oder RUSBoost als Anpassun-

gen des AdaBoost-Algorithmus [13]). Da für einen Großteil dieser Algorithmus-internen

Verfahren keine Implementierungen im Programmpaket R zur Verfügung stehen und die

Anpassungen bestehender Lernverfahren unter Umständen sehr aufwändig sein können,

beschränken sich die Implementierungen und Untersuchungen innerhalb dieser Arbeit aus-

15



schließlich auf externe Sampling- und kostenbasierte Korrekturmethoden (Wrapper-Based

Approaches). Diese bieten insbesondere den Vorteil, dass sie unabhängig von eingesetz-

ten Lernverfahren angewendet und dadurch auch mit beliebigen Lernverfahren kombiniert

werden können.

Sampling-basierte Korrekturmethoden (vgl. Abschnitt 2.2.2) greifen unmittelbar in die

vorliegenden Trainingsdaten ein und
”
verändern“ diese entsprechend, um der Unbalan-

ciertheit der Klassen entgegen zu wirken. Grundsätzlich lässt sich hierbei zwischen Undersampling-

, Oversampling- und Hybrid-Verfahren unterscheiden, wobei letztere eine Mischform zwi-

schen Under- und Oversampling darstellen. Beim Undersampling wird versucht, die unter-

schiedlichen Häufigkeiten zwischen den Klassen durch Eliminierung von Beobachtungen

der großen Klasse auszugleichen. Im Falle des Oversampling geschieht dies entsprechend

durch Vervielfältigung von Beobachtungen der kleinen Klasse. Die vorliegenden Daten

werden dabei grundsätzlich vor Anwendung des eigentlichen Lernverfahrens – sozusagen

in der Vorverarbeitung – angepasst.

Im Gegensatz hierzu bleiben die zugrunde liegenden Daten bei den kostenbasierten Me-

thoden (Cost-Sensitive Methods) unberührt. Durch Zuweisung unterschiedlicher Kosten

für die beiden Fehlklassifikationen ε01 (wahre Klasse 0, Vorhersage 1) sowie ε10 (wahre

Klasse 1, Vorhersage 0) wird i.d.R. die Fehlklassifikation von Beobachtungen der klei-

nen Klasse stärker gewichtet und deren korrekter Klassifikation somit eine höhe Priorität

verschafft. Auch hierbei können sowohl Lernverfahren angewendet werden, bei denen der

Einbezug vorgegebener Kosten unmittelbar in den Algorithmus integriert ist (z.B. Ent-

scheidungsbäume mit kostenbasiertem Unreinheitsmaß [19]) als auch Methoden, die un-

abhängig vom jeweiligen Lernverfahren eingesetzt werden können (vgl. Abschnitt 2.2.3).

Wie auch beim Sampling wird der Fokus auf den Fall der unabhängigen Methoden gelegt.

Sampling- und kostenbasierte Korrekturmethoden unterscheiden sich zwar bezüglich ih-

res methodischen Ansatzes, sind jedoch grundsätzlich eng miteinander verknüpft. Sofern

Fehlklassifikationskosten C01 und C10 bekannt sind, werden diese i.d.R. in einer Kosten-

matrix dargestellt:

positive prediction negative prediction
positive class C11 C10

negative class C01 C00

Tabelle 2.1.: Kostenmatrix

Cij bezeichnet dabei die Kosten, die entstehen, wenn eine Beobachtung aus Klasse j

fälschlicherweise der Klasse i zugeordnet wird. Mittels der beschriebenen Sampling-Verfahren

16



lassen sich diese unterschiedlichen Fehlklassifikationskosten nun insofern nachbilden, da

sich das Kostenverhältnis der jeweilgenen Fehlklassifikationen in den Sampling-Raten wie-

derspiegelt. D.h. eine Anpassung der Klassenverteilung in den Daten via Sampling ent-

spricht einer Anpassung des Verhältnisses der Fehlklassifikationskosten, so dass besipiels-

weise eine Verdopplung der Beobachtungen der kleinen Klasse mit der Verdopplung der

Fehlklassifikationskosten für Beobachtungen der kleinen Klasse bzw. Halbierung der Fehl-

klassifikationskosten für Beobachtungen der großen Klasse korrespondiert [11,18].

Zu beachten ist, dass sich durch das Sampling lediglich das Kostenverhältnisses
”
wiederge-

ben“ lässt. Die exakten, absoluten Kosten (sofern bekannt) bleiben bei Sampling-basierten

Verfahren unberücksichtigt und fließen nicht direkt in das Verfahren mit ein. Sampling-

Verfahren sind daher auch dann gut geeignet, wenn die wahren Fehlklassifikationskosten

unbekannt sind. Ein weiterer Unterschied zwischen Sampling- und kostenbasierten Metho-

den besteht darin, dass die betrachteten Daten bei kostenbasierten Methoden unverändert

bleiben, d.h. die Daten selbst werden nicht manipuliert, sondern lediglich mit weiteren

Informationen (Kosten bzw. Gewichten) angereichert.

2.2.2. Sampling-Methoden

2.2.2.1. Random Undersampling

Sampling-Methoden werden grundsätzlich zur Anpassung der Klassenverhältnisse in den

vorliegenden Daten verwendet, um dadurch den Anteil bzw. das Gewicht der kleinen

Klasse zu erhöhen. Einer der grundlegenden Ansätze stellt das Random Undersampling

(RUS) dar. Hierbei wird eine festgelegte Anzahl zufällig ausgewählter Beobachtungen

der großen Klasse (majority class) aus den Daten entfernt. Die genaue Anzahl ergibt

sich dabei anhand der Undersampling-Rate, welche als frei wählbarer Parameter vorab

eingestellt oder durch Anwendung eines Tuning-Verfahrens bestimmt werden kann. Die

Beobachtungen der kleinen Klasse (minority class) hingegen bleiben unverändert (vgl.

Abbildung 2.4).

Da die Anzahl der Beobachtungen im Datensatz durch die Anwendung des Undersampling

reduziert wird, verringert sich i.d.R. auch die Laufzeit des jeweils angewendeten Lernver-

fahrens. Der Nachteil des Random Undersampling besteht in der Eliminierung und damit

dem Verlust von ggf. informativen bzw. charakteristischen Beobachtungen der großen

Klasse. Des Weiteren können je nach Undersampling-Rate auch unverhältnismäßig viele

Beobachtungen verworfen werden – entspricht die Rate beispielweise der so genannten

17



Abbildung 2.4.: Random Undersampling

inversen
”
imbalance ratio“ (IR) (→ Anzahl Beobachtungen der kleinen Klasse Nmin divi-

diert durch die Anzahl Beobachtungen der großen Klasse Nmaj) ergibt sich die Größe des

resultierenden Datensatzes nach Korrektur mit N = Nmin+Nmaj∗(Nmin/Nmaj) = 2·Nmin.

Das Verhältnis der beiden Klassen ist in diesem Fall nach Durchführung des Undersamp-

ling ausgeglichen, je nach Grad der Unbalanciertheit verbleiben jedoch deutlich unter 50%

der ursprünglichen Beobachtungen in den Daten.

Über erweiterte Ansätze des Undersampling wie z.B. Condensed Nearest Neighbors [9]

wird versucht, Beobachtungen der großen Klasse nicht zufällig, sondern
”
intelligent“ zu

selektieren, so dass vorzugsweise die Beobachtungen entfernt werden, die entweder redun-

dant oder
”
verrauscht“ sind. Eine weitere Möglichkeit stellt das so genannte Underbagging

dar. Gemäß dem Bagging-Ansatz werden hierbei das Undersampling der Daten sowie das

anschließende Lernverfahren mehrfach ausgeführt. Da in jeder Iteration / jedem Modell

zufällig andere Teilmengen der großen Klasse für die Modellanpassung verbleiben, wird

mit steigender Anzahl der Modelle umso wahrscheinlicher, dass jede Beobachtung in zu-

mindest eines der Modelle einfließt und somit nicht komplett verworfen wird.

18



2.2.2.2. Oversampling

Im Gegensatz zum Undersampling verändern Oversampling-Verfahren die Beobachtun-

gen der kleinen Klasse (minority class). Beim klassischen Oversampling wird diese dabei

künstlich vergrößert, in dem
”
neue“ Beobachtungen durch zufällige Vervielfältigung, d.h.

Ziehen mit Zurücklegen aus den ursprünglichen Beobachtungen, zur kleinen Klasse hin-

zugefügt werden. Jede Beobachtung der kleinen Klasse ist somit mindestens einmal in

den Daten enthalten. Die Anzahl der Ziehungen, d.h. der replizierten Beobachtungen

richtet sich nach der Oversampling-Rate – diese kann frei gewählt oder mittels Tuning-

Verfahren bestimmt werden. Die Beobachtungen der großen Klasse (majority class) blei-

ben unverändert.

Abbildung 2.5.: Oversampling

Durch die zufällige Vervielfältigung von Beobachtungen und dem daraus folgenden Vorlie-

gen exakter Kopien kann es bei Anwendung des Lernverfahrens leichter zu einer Überanpassung

an die Trainingsdaten (Overfitting) kommen. Des Weiteren erhöht sich durch die Ver-

19



größerung des betrachteten Datensatzes die Laufzeit für die Durchführung des jeweiligen

Lernverfahrens. Entspricht die Oversampling-Rate beispielsweise der
”
imbalance ratio“

(IR) (→ Anzahl Beobachtungen der großen Klasse Nmaj dividiert durch die Anzahl Beob-

achtungen der Klasse Nmin) steigt die Anzahl der Beobachtungen des Datensatzes nach

Korrektur auf N = Nmin ∗ (Nmaj/Nmin) + Nmaj = 2 · Nmaj. Je nach Grad der Unbalan-

ciertheit kann sich die Größe des Datensatzes im Extremfall dadurch knapp verdoppeln.

Erweiterungen und Alternativen zum klassischen Oversampling stellen z.B. das Overbag-

ging sowie SMOTE dar, welche in den beiden folgenden Abschnitten 2.2.2.3 und 2.2.2.4

beschrieben werden.

2.2.2.3. SMOTE

Das SMOTE-Verfahren (Synthetic Minority Oversampling Technique) [8] stellt eine Va-

riante des Oversampling dar, bei dem insbesondere versucht wird, mögliches Overfitting

durch die Erzeugung exakter Kopien der Beobachtungen der kleinen Klasse zu vermeiden.

Anstelle der Replikation der Beobachtungen, werden neue Beobachtungen durch Interpola-

tion zufällig ausgewählter Beobachtungen der kleinen Klasse (minority class) künstlich er-

zeugt. Die Anzahl der neuen Beobachtungen richtet sich wie auch beim Oversampling nach

der frei wählbaren bzw. durch Tuning-Verfahren zu bestimmenden Oversampling-Rate.

Die Beobachtungen der großen Klasse (majority class) bleiben wiederum unverändert.

Zur Konstruktion der neuen, künstlichen Beobachtungen werden zunächst eine Beobach-

tung der kleinen Klasse sowie jeweils einer der n nächsten Nachbarn dieser Beobachtung

zufällig ausgewählt. Die Anzahl der betrachteten nächsten Nachbarn stellt dabei neben

der Sampling-Rate einen weiteren frei wählbaren Parameter des Verfahrens dar. Liegen

ausschließlich metrische Merkmale vor, werden die nächsten Nachbarn anhand der eu-

klidischen Distanz d(xi, xj) =
√∑p

k=1(xikxjk)
2 bestimmt. Je nach Kontext sollten die

Variablen dabei ggf. vorher standardisiert werden. Sind sowohl kategoriale als auch metri-

sche Variablen in den Daten enthalten, kann z.B. die Gower Distanz [14] zur Ermittlung

der nächsten Nachbarn verwendet werden (vgl. Formel 2.19). Zur Bestimmung des
”
Ab-

standes“ bzw. der Ähnlichkeit zweier Beobachtungen wird dabei je Variable k = 1, .., p

zunächst in Abhängigkeit vom Skalenniveau ein Distanzmaß d(xik, xjk) berechnet, welches

im Intervall [0,1] liegt. Für kategoriale und binäre Variablen beträgt die Distanz dabei z.B.

0, wenn beide Werte identisch sind und 1, falls sich diese unterscheiden. Für metrische

Variablen wird der L1-Abstand zwischen den jeweiligen Ausprägungen berechnet und an-

schließend durch die Spannweite rk des Merkmals dividiert → d(xik, xjk) =
|xik−xjk|

rk
. Die

Gower Distanz berechnet sich anschließend gemäß Formel 2.19 als gewichtetes Mittel der

20



Abbildung 2.6.: Synthetic Minority Oversampling Technique (SMOTE)

Distanzen der einzelnen Variablen. Da diese alle im Intervall [0,1] liegen, ergibt sich auch

für die Gower Distanz ein Wertebereich zwischen 0 und 1.

d(xi, xj) =

∑p
k=1wkd(xik, xjk)∑p

k=1wk
∈ [0, 1],

p∑
k=1

wk = 1, i, j = 1, .., n (2.19)

Nach Berechnung der n nächsten Nachbarn je Beobachtung, wird anschließend mehr-

fach (je nach Oversampling-Rate) zufällig eine Beobachtung der kleinen Klasse sowie ein

zufälliger, nächster Nachbar selektiert und daraus eine neue,
”
synthetische“ Beobachtung

erzeugt. Dabei werden die Werte der metrischen Variablen der neuen Beobachtung durch

zufällige Konvexkombination der Ausprägungen der Ausgangs-Beobachtungen berechnet

(xnew = λ · xold,1 + (1 − λ)xold,2, λ ∼ U(0, 1)), für kategoriale Variablen wird die neue

Ausprägung per Zufallswahl (Bernoulli-Experiment mit p = 0.5) aus den beiden Ausgangs-

Beobachtungen abgeleitet.

Da die zugrunde liegenden Daten auch bei Anwendung des SMOTE-Verfahrens künstlich

vergrößert werden, kommt es i.d.R. wie beim Oversampling zu einer Erhöhung der Lauf-

21



zeit bei Anwendung des Lernverfahrens. Im Extremfall (→ Oversampling-Rate entspricht

IR und sehr starke Unbalanciertheit) kann die Anzahl der Beobachtungen nahezu verdop-

pelt werden (vgl. Abschnitt 2.2.2.2).

Als mögliche Erweiterung lässt sich SMOTE mit Random Undersampling zu einem hybri-

den Verfahren kombinieren [8]. Neben der Erzeugung neuer, künstlicher Beobachtungen,

werden dabei zusätzlich zufällig Beobachtungen der großen Klasse verworfen. Modified

SMOTE [13] sowie Borderline-SMOTE [15] stellen weitere Optimierungen des SMOTE-

Verfahrens dar. Hierbei wird bei der Generierung der neuen Beobachtungen zusätzlich die

Verteilung bzw. die Lage der Beobachtungen in der kleinen Klasse berücksichtigt. Ent-

weder werden nur bestimmte Beobachtungen zur Generierung neuer Beobachtungen in

Betracht gezogen oder die Selektion der nächsten Nachbarn ist abhängig von der Lage

der jeweils ausgewählten Beobachtung. Eine kurze Beschreibung des Ensemble-basierten

SMOTEBagging als weitere ALternative findet sich im folgenden Abschnitt 2.2.2.4.

Im Rahmen dieser Arbeit wird SMOTE als reines Oversampling-Verfahren betrachtet, um

das Verfahren insbesondere mit dem Oversampling vergleichen zu können. Die genann-

ten Erweiterungen – SMOTE inklusive Undersampling sowie Modified- und Borderline-

SMOTE wurden in die durchgeführten Experimenten soit nicht berücksichtigt.

2.2.2.4. Overbagging

Oversampling kann durch Anwendung der Bagging-Methode zum so genannten Over-

bagging erweitert werden. Das Oversampling der kleinen Klasse sowie die anschließen-

de Modellanpassung durch das Lernverfahren werden dabei mehrfach durchgeführt. Die

Klassifizierung neuer Beobachtungen erfolgt per Mehrheitswahl (majority vote) der Er-

gebnisse der einzelnen Modelle, d.h. die Klasse, welche am häufigsten vorhergesagt wurde,

wird auch final prognostiziert.

Für jedes Modell wird zunächst die kleine Klasse (minority class) per Oversampling ver-

größert. Im Unterschied zum klassischen Oversampling 2.2.2.2 fließen jedoch nicht alle

Beobachtungen der kleinen Klasse in jedes Modell ein. Stattdessen wird nach Oversamp-

ling der kleinen Klasse wiederum je Modell eine Bootstrap-Stichprobe erzeugt (vgl. Vorge-

hensweise Random Forest in Abschnitt 2.1.3). Um die Variabilität zwischen den Modellen

zusätzlich zu erhöhen, werden auch die Beobachtungen der großen Klasse per Bootstrap

gezogen. Die Anzahl der Beobachtungen der großen Klasse bleibt dabei unverändert. Bei

Verwendung des Imbalance Ratio (IR) als Oversampling-Rate steuert jede Klasse somit

beispielhaft Nmaj Beobachtungen je Iteration bei.

22



Abbildung 2.7.: Overbagging

Da auch beim Overbagging die Anzahl der Beobachtungen vergrößert wird, wirkt sich

dies i.d.R. negativ auf die Laufzeit des jeweiligen Lernverfahrens aus. Des Weiteren hängt

die Laufzeit insbesondere auch von der Anzahl der Overbagging-Iterationen ab, welche

wie bei anderen Bagging-Verfahren einen frei wählbaren Parameter darstellt.

Entsprechend der Verknüpfung von Bagging und Oversampling existiert mit SMOTE-

Bagging auch eine weitere Variante des in Abschnitt 2.2.2.3 beschriebenen SMOTE-

Verfahrens. Dieses unterscheidet sich im Vergleich zu Overbagging zum einen durch die al-

ternative Erzeugung der neuen Beobachtungen. Da auch beim SMOTEBagging die Beob-

achtungen der kleinen Klasse je Iteration durch Ziehen mit Zurücklegen bestimmt werden,

kann des Weiteren der Anteil der (wahren) Ursprungs-Beobachtungen sowie der Anteil

der per SMOTE (künstlich) erzeugten Beobachtungen variiert werden. Diese so genannte

SMOTE Resampling-Rate α ∈ (0, 1] kann dabei z.B. von Modell zu Modell variiert wer-

den, so dass sich die Daten für die einzelnen Modellen möglichst stark unterscheiden [13].

Die Beobachtungen der großen Klasse werden wie auch beim Overbagging per Bootstrap

gezogen, um die Variabilität zwischen den einzelnen Modellen zusätzlich zu erhöhen.

23



2.2.3. Kostenbasierte Methoden

2.2.3.1. (Class) Weighting

Als einzige kostenbasierte Korrekturmethode wird im Rahmen dieser Arbeit das so ge-

nannte Weighting bzw. Class Weighting [23] betrachtet. Dieses Verfahren stellt eine der

wenigen kostenbasierten und zugleich verfahrensunabhängigen Korrekturmethoden dar.

Anstelle einer Kostenmatrix mit unterschiedlichen Fehlklassifikationskosten C10, C01 wer-

den diese allen Beobachtungen der jeweiligen Klasse direkt als Gewicht zugeordnet und

anschlies̈send eine gewichtete Klassifikation durchgeführt. Das vergebene Gewicht je Be-

obachtung (case weight) wi richtet sich demnach ausschließlich nach der Ausprägung der

Klasse sowie dem entsprechenden Klassengewicht (class weight) wmin bzw. wmaj. Das ver-

wendete Lern- bzw. Klassifikationsverfahren muss somit lediglich Gewichte verarbeiten

können, um zu einem kostensensitiven Verfahren zu werden. Da die meisten Klassifikati-

onsverfahren in der Lage sind mit case weights umzugehen, lässt sich das Weighting genau

wie die beschriebenen Sampling-Verfahren mit einer Vielzahl an Lernverfahren kombinie-

ren.

Abbildung 2.8.: Weighting

24



Die in Abbildung 2.8 dargestellten Gewichte wmaj und wmin entsprechen grundsätzlich

den Fehlklassifikationskosten C10 sowie C01 (vgl. Abschnitt 2.2.1). Sind die wahren Kosten

unbekannt, kann anstelle der tatsächlichen Kosten auch das Kostenverhältnis (→ durch

Division mit den i.d.R. geringeren Kosten für falsch klassifizierte negative Beobachtungen,

d.h. wmaj = C01

C01
= 1 und wmin = C10

C01
) übergeben oder die Gewichte alternativ mittels

Tuning-Verfahren bestimmt werden.

Im Unterschied zu den vorgestellten Sampling-Methoden werden die Beobachtungen der

Klassen und dadurch die Größe des Datensatzes beim Weighting nicht verändert. Des

Weiteren gehen alle verfügbaren Beobachtungen auch in das Modell ein, so dass kein

Informationsverlust entsteht.

2.3. Gütemaße für die Performance

2.3.1. Kennzahlen der Konfusionsmatrix

Die Wahl des Gütemaßes zur Beurteilung eines Verfahrens ist von entscheidender Bedeu-

tung, da die Bewertung je nach betrachteter Größe stark variieren kann. Im Zwei-Klassen-

Fall eignet sich i.d.R. zunächst die Betrachtung der Konfusionsmatrix (vgl. Tabelle 2.2),

welche sozusagen die Basis für die Analyse der Performance des jeweiligen Verfahrens

darstellt. Zur Erstellung der Konfusionsmatrix wird zunächst für jede Beobachtung eines

festgelegten Testdatensatzes die Klassenzugehörigkeit prognostiziert und daraufhin mit

den wahren Klassen der jeweiligen Beobachtungen verglichen. Bei der Vorhersage kann

dabei entweder die Klasse direkt geschätzt oder alternativ zunächst die Klassenwahr-

scheinlichkeiten bestimmt und die entsprechende Klasse anschließend über einen festge-

legten Schwellenwertes (Threshold) c abgeleitet werden. Üblicherweise wird der dabei der

Threshold c = 0.5 verwendet, d.h. ist die vorhergesagte Wahrscheinlichkeit einer Beob-

achtung für z.B. die positive Klasse größer als 0.5 (P(yi = 1) > c = 0.5), so wird für diese

Beobachtung die positive Klasse bzw. Klasse 1 vorhergesagt. Prinzipiell ist der Threshold

im Intervall [0,1] frei wählbar. Je kleiner c dabei gewählt wird (c→ 0), desto höher ist die

Anzahl der anhand der Klassenwahrscheinlichkeiten als positiv klassifizierten Beobach-

tungen. Für den Fall c = 0 werden alle Beobachtungen der positiven Klasse zugeordnet,

für c = 1 der negativen Klasse.

Die Konfusionsmatrix beschreibt grundsätzlich, wie gut ein Verfahren die einzelnen Klas-

sen prognostiziert. Im Falle der binären Klassifikation ergibt sich somit die in Tabelle 2.2

darstgestellte 2×2-Matrix. Die Anzahlen der je Klasse korrekt klassifizierten Beobachtun-

25



positive prediction negative prediction
positive class true positives (TP) false negatives (FN)
negative class false positives (FP) true negatives (TN)

Tabelle 2.2.: Konfusionsmatrix

gen sind dabei auf der Hauptdiagonalen dargestellt (TP und TN). Die
”
True Positives“

ergeben sich dabei aus den Beobachtungen der positiven Klasse, die korrekt als positiv

klassifiziert wurden.
”
True Negatives“ bezeichnen entsprechend die korrekt klassifizierte

Beobachtungen der negativen Klasse. Bei den
”
False Positives“ handelt es sich hingegen

um die fehlerhaft als positiv klassifizierten Beobachtungen, d.h. die Beobachtungen, die

eigentlich zur negativen Klasse zählen, aber als positiv klassifiziert wurden.
”
False Nega-

tives“ stellen die fehlerhaft als negativ klassifizierten Beobachtungen dar.

Aus der Konfusionsmatrix lässt sich zunächst die Gesamtgenauigkeit (Accuracy) bzw.

Fehlklassifikationsrate ε (1-Accuracy) ableiten. Dabei handelt es sich um den Anteil der

korrekt bzw. der fehlerhaft prognostizierten Beobachtungen an der Gesamtzahl der Beob-

achtungen in den zugrunde liegenden (Test-)Daten. Die Berechnung der Fehlklassifikati-

onsrate ist besipielhaft in Formel 2.20 dargestellt.

ε = 1− Acc = 1− TP + TN

TP + FP + FN + TN
=

FP + FN

TP + FP + FN + TN
(2.20)

Da bei der Fehlklassifikationsrate jedoch nicht mehr zwischen den Fehlklassifikationen

der einzelnen Klassen (FN und FP) unterschieden wird, sind sowohl diese als auch die

die Accuracy als Gütemaße insbesondere für stark unbalancierte Daten eher ungeeignet.

So würde z.B. bei Daten mit einem 98%-igen Anteil der Beobachtungen der negativen

Klasse bereits eine Genauigkeit von 98% durch ausschließliche Vorhersage der negativen

Klasse erreicht. D.h. trotz sehr hoher Gesamtgenauigkeit, ist die Genauigkeit bezüglich

der kleinen Klasse in diesem Beispiel gleich 0, d.h. keine positive Beobachtung wird kor-

rekt erkannt. Neben Accuracy und Fehlklassifikationsrate lassen sich daher weitere Werte

aus der Konfusionsmatrix ableiten, die als Grundlage für die im Rahmen dieser Arbeit

betrachteten Maße - F1-Score (vgl. Abschnitt 2.3.2) und AUC (vgl. Abschnitt 2.3.3) die-

nen:

• True-Positive-Rate (TPR = TP
TP+FN

)

Anteil der korrekt als positiv klassifizierten Beobachtungen unter allen tatsächlich

positiven Beobachtungen. Die True-Positive-Rate wird auch als Sensitivität, Tref-

ferquote oder Recall bezeichnet.

• False-Negative-Rate (FNR = 1− TPR)

26



Anteil der fälschlich als negativ klassifizierten Beobachtungen unter allen tatsächlich

positiven Beobachtungen.

• True-Negative-Rate (TNR = TN
TN+FP

)

Anteil der korrekt als negativ klassifizierten Beobachtungen unter allen tatsächlich

negativen Beobachtungen. Die True-Negative-Rate wird auch als Spezifität bezeich-

net.

• False-Positive-Rate (FPR = 1− TNR)

Anteil der fälschlich als positiv klassifizierten Beobachtungen unter allen tatsächlich

negativen Beobachtungen.

• Positive-Predictive-Value (PPV = TP
TP+FP

)

Anteil der korrekt als positiv klassifizierten Beobachtungen unter allen als positiv

klassifizierten Beobachtungen. Der Positive-Predictive-Value wird auch als Precision

oder Genauigkeit bezeichnet. Um eine Verwechselung mit der in Formel 2.20 enthal-

tenen (Gesamt-)Genauigkeit (Accuracy) zu vermeiden, wird der Positive-Predictive-

Value fortan als Precision bezeichnet.

2.3.2. F1-Score

Für den so genannte F-Score (oder F-Maß) werden True-Positive-Rate (→ Recall) und

Precision in Form eines gewichteten Mittels verknüpft:

Fβ = (1 + β) · precision · recall
β · precision+ recall

(2.21)

Der Wertebereich des in Formel 2.21 dargestellten F-Scores liegt dabei im Intervall [0,1],

wobei 0 dem schlechtesten und 1 dem besten Wert (→ Recall = 1 und Precision = 1)

entspricht. Die Gewichtung der beiden Größen erfolgt über den Parameter β. Für β = 1

ergibt sich dabei das balancierte F-Maß oder auch F1-Maß / F1-Score als harmonisches

Mittel, bei dem Recall und Precision gleich gewichtet sind. Für β > 1 lässt sich der Recall,

für β < 1 die Precision entsprechend höher gewichten.

F1 =
2 · precision · recall
precision+ recall

=
TP

(TP+FP )+(TP+FN)
2

(2.22)

Die alternative Schreibweise in Formel 2.22 verdeutlicht, dass das F1-Score die True Po-

27



sitives sozusagen auf das arithmetische Mittel aus allen positiv vorhergesagten Beob-

achtungen und den wahren positiven Beobachtungen bezieht. Die True Negatives fließen

hingegen nicht in den F1-Score ein bzw. werden nur indirekt über die False Positives

berücksichtigt. Bei Betrachtung des F1-Score wird somit der Fokus maßgeblich auf die

Prognosegüte bezüglich der positiven, d.h. i.d.R. der kleinen Klasse gelegt und die Per-

formance bezüglich der großen Klasse eher vernachlässigt.

2.3.3. ROC-Kurve und AUC

Die Fläche unter der Receiver-Operater-Characteristic(ROC)-Kurve, die
”
Area under

Curve“ (AUC), stellt eines der am häufigsten verwendeteten Gütemaße insbesondere im

Rahmen der binären Klassifikation dar. Mittels der ROC-Kurve werden hierbei zunächst

True-Positive-Rate (TPR) und False-Positive-Rate (FPR) (vgl. Abschnitt 2.3.1) gegenübergestellt.

Die True-Positive-Rate wird dabei auf der Ordinate, die False-Positive-Rate auf der Ab-

szisse abgetragen. Aus den Elementen der Konfusionsmatrix lässt sich somit exakt ein

Punkt mit Koordinaten (x, y) = (FPR, TPR) berechnen. Wie bereits in Abschnitt 2.3.1

beschrieben, ist bei Prognose der Klassenwahrscheinlichkeiten durch Anpassung des Thres-

holds c ∈ [0, 1] prinzipiell die Berechnung mehrerer alternativer Konfusionsmatrizen

und damit auch verschiedener Koordinaten für True-Positive- und False-Positive-Rates

möglich. Der optimale Punkt für True-Positive- und False-Positive-Rate liegt bei (0,1),

da hier alle Beobachtungen korrekt klassifiziert wurden. Die Punkte (0,0) bzw. (1,1) ent-

sprechen den Thresholds c = 1 bzw. c = 0, bei denen jeweils ausschließlich eine der

beiden Klassen für alle Beobachtungen vorhergesagt wird. Die ROC-Kurve lässt sich nun

ableiten, indem die durch ein Verfahren bzw. Modell vorhergesagten Klassenwahrschein-

lichkeiten für eine Folge von Thresholds betrachtet und die entsprechenden True-Positive-

und False-Positive-Rates berechnet und in Form einer Kurve dargestellt werden (vgl. Ab-

bildung 2.9).

Verläuft die ROC-Kurve entlang oder in der Nähe der Diagonalen, so ist das zu eva-

luierende Verfahren in etwa so
”
gut“ wie ein Zufallsprozess und damit gewissermaßen

wertlos. Eine nahezu optimale ROC-Kurve steigt zunächst vom Punkt (0,0) sehr stark

senkrecht an, d.h. die True-Positive-Rate liegt möglichst nahe bei 1 bei verhältnismäßig

kleiner False-Positive-Rate. Erst danach erhöht sich langsam die False-Positive-Rate bis

die Kurve den Punkt(1,1) erreicht.

Die Fläche unterhalb der ROC-Kurve, die
”
Area under Curve“ (AUC), fasst die gesamte

Kurve sowie deren Verlauf in einer einzigen Kennzahl zusammen. Der AUC-Wert be-

schreibt damit allgemein, wie gut ein Modell im Mittel, d.h. unabhängig vom Threshold

28



Abbildung 2.9.: ROC Kurve

c, sowohl Beobachtungen der positiven als auch der negativne Klasse korrekt klassifiziert.

Der AUC berechnet sich als Fläche zwischen der ROC-Kurve und der Abszisse.

AUC =
1 + TPR− FPR

2
∈ [0, 1] (2.23)

Obwohl der Wertebereich des AUC-Wertes prinzipiell im Intervall [0, 1] liegt, stellt ein

Wert von 0.5 das schlechteste Ergebnis dar, da die entsprechende ROC-Kurve in diesem

Fall wiederum entlang bzw. in der Nähe der Diagonalen verläuft. Für AUC-Werte kleiner

0.5 kann die Vorhersage des entsprechenden Modells im Zwei-Klassen-Fall durch Negation

der Vorhersagen in einen Wert größer 0.5 umgewandelt werden. Bei optimalem Verlauf

der ROC-Kurve erreicht der AUC den Wert 1.

Anschaulich bedeutet ein hoher AUC, dass für eine geeignete Wahl des Thresholds ein gu-

tes Ergebnis mit dem jeweiligen Modell erreicht werden kann. Der Vorteil des AUC-Wertes

gegenüber der Fehlklassifikationsrate besteht somit darin, dass zum einen durch Betrach-

tung der True-Positive-Rate und der False-Positive-Rate die Prognosegüte bezüglich bei-

der Klassen betrachtet wird. Aufgrund der Unabhängigkeit vom Threshold c ist des Wei-

teren eine allgemeinere Aussage zur Performance des Modells möglich. Die Fehlklassifi-

kationsrate wie auch der F1-Score (vgl. Abschnitt 2.3.2) werden jeweils nur anhand eines

konkreten Thresholds (i.d.R. c = 0.5) berechnet. Aufgrund der Thrshold-übergreifenden

Bewertung der Perfomance eignet sich der AUC-Wert dadurch insbesondere für einen ge-

nerelle Vergleiche zwischen zwei oder mehreren, ggf. sehr unterschiedlichen Modellen (→
verschiedene Modellparameter, verschiedene Lernverfahren etc.). Hierbei gilt jedoch zu

29



beachten, dass wiederum für einen konkreten Threshold ein Modell mit eigentlich kleine-

rem AUC-Wert besser geeignet ist als ein Modell mit höherem AUC, da keine der beiden

entsprechenden ROC-Kurven gleichmß̈ig besser als die andere. Da Die ROC-Kurve durch

den AUC in einem Wert zusammengefasst wird und damit Informationen verloren gehen,

bei Interesse eines bestimmten Thresholds bzw. eines bestimmten Bereichs die Betrach-

tung des AUC ggf. eher ungeeignet und es empfiehlt sich stattdessen z.B. die Analyse des

Partial AUC [22].

30



3. Experimente

3.1. Daten

Zur Analyse und zum Vergleich der Performance der verschiedenen Lern- und Korrektur-

verfahren werden im Rahmen dieser Arbeit 23 Datensätze (vgl. Tabelle 3.1) betrachtet,

welche über die Machine Learning Plattform Open ML (http://www.openml.org/) [24]

zugänglich und abrufbar sind. Da es sich zum Großteil ursprünglich um Multi-Klassen-

Probleme handelt, wurde jeweils eine der vorhandenen Klassen als
”
kleine Klasse“ aus-

gewählt und die anderen zu einer großen Klasse zusammengefasst. Die Reduktion auf

die resultierenden Zwei-Klassen-Probleme lässt sich als One-vs-All bzw. One-vs-Rest Fra-

gestellung ansehen, d.h. es soll prognostiziert wird, ob eine Beobachtung zu einer ent-

sprechenden Klasse gehört oder nicht. Eine Übersicht der festgelegten kleinen Klassen je

Datensatz findet sich in ANHANG A.

In Tabelle 3.1 sind die maßgeblichen Eigenschaften der untersuchten Datensätze darge-

stellt. Diese sind dabei aufsteigend nach dem Imbalance Ratio (IR) (Spalte ir), d.h. dem

Quotient aus der Anzahl der Beobachtungen der großen Klasse und der Anzahl der Beob-

achtungen der kleinen Klasse sortiert. Die Anzahl der Beobachtungen insgesamt (Spalte

n) schwankt zwischen 336 (ecoli4 ) und 28.056 (kropt16 ), der Anteil der kleinen Klasse

(Spalte pct.min) an allen Beobachtungen zwischen 0.8% (abalone19 ) und 15% (scenesun-

set), was einem IR von 5.6 bis 129.5 entspricht.

In den Datensätzen sind sowohl metrische als auch kategoriale Features enthalten (Spalten

num, cat). Konstante Features, d.h. Variablen mit nur einer einzigen Ausprägung wurden

vorab aus dem jeweiligen Datensatz entfernt (Spalte rem). Die resultierende Anzahl der

betrachten Features (Spalte feat) reicht schließlich von 4 (balance2 ) bis 294 (scenesunset).

Bei der Auswahl der Datensätze und Zusammenfassung der Klassen wurde vornehmlich

auf den Grad der Unbalanciertheit (→ IR > 5) geachtet. Andere Aspekte wie die Trenn-

barkeit der Klassen oder die Verteilung der Beobachtungen innerhalb der Klassen wurden

bei der Selektion nicht betrachtet.

http://www.openml.org/


dsname n n.min n.max pct.min ir num cat rem feat
scenesunset 2407 364 2043 0.15 5.61 294 0 0 294
ecoli4 336 35 301 0.10 8.60 7 0 0 7
optdigits0 5620 554 5066 0.10 9.14 64 0 2 62
satelliteimage4 6435 626 5809 0.10 9.28 36 0 0 36
pendigits9 10992 1055 9937 0.10 9.42 16 0 0 16
vowel1 990 90 900 0.09 10.00 10 2 0 12
spectrometer42 531 45 486 0.08 10.80 100 1 1 100
balance2 625 49 576 0.08 11.76 4 0 0 4
anneal5 898 67 831 0.07 12.40 6 32 7 31
coil2000 9822 586 9236 0.06 15.76 85 0 0 85
arrhythmia6 452 25 427 0.06 17.08 206 73 17 262
oilspill 937 41 896 0.04 21.85 49 0 1 48
solarflare5 1066 43 1023 0.04 23.79 0 12 1 11
car4 1728 65 1663 0.04 25.58 0 6 0 6
letter26 20000 734 19266 0.04 26.25 16 0 0 16
yeast5 1484 51 1433 0.03 28.10 8 0 0 8
winequality4 6497 216 6281 0.03 29.08 11 0 0 11
ozonelevel 2536 73 2463 0.03 33.74 72 0 0 72
nursery3 12960 328 12632 0.03 38.51 0 8 0 8
mammography 11183 260 10923 0.02 42.01 6 0 0 6
pageblocks5 5473 115 5358 0.02 46.59 10 0 0 10
kropt16 28056 390 27666 0.01 70.94 0 6 0 6
abalone19 4177 32 4145 0.01 129.53 7 1 0 8

Tabelle 3.1.: Übersicht Datensätze

3.2. Verfahren und Parameter

In den durchgeführten Experimenten kommen die in Abschnitt 2.1 beschriebenen Klassi-

fikationsverfahren – Logistische Regression (logreg), Klassifikationsbaum (cart), Random

Forest (rf), Gradient Tree Boosting (gbm) und Support Vector Machine (svm) – zum

Einsatz. Als Methoden zur Korrektur des Klassenungleichgewichts werden des Weiteren

Random Undersampling (us), Oversampling (os), Oversampling anhand SMOTE (sm),

Overbagging (ob) und Class Weighting (cw) untersucht.

Die Klassifikationsverfahren wurden dabei sowohl mit den jeweiligen Standardeinstellun-

gen als auch mit vorherigem Tuning bestimmter Parameter betrachtet. Je Lernverfahren

wurden dabei die in Tabelle 3.2 aufgelisteten Parameter mit jeweiligem Optimierungs-

bereich (Spalte tuning) berücksichtigt. In der Spalte pkg ist zusätzlich das entsprechend

verwendete R-Paket zum jeweiligen Lernverfahren angegeben.

Für die betrachteten Sampling-Methoden Undersampling (us), Oversampling (os), SMO-

TE (sm) und Overbagging (ob) wird jeweils zusätzlich die Sampling-Rate per Tuning-

32



lrn pkg tuning
cart rpart cp (0.0001, 0.1) / minsplit (1, 50)
gbm gbm n.trees (100, 5000) / interaction.depth (1, 3) / shrinkage (1e-05, 0.1) / bag.fraction (0.7, 1)
logreg stats -
rf randomForest ntree (10, 500) / mtry (1, 10)
svm kernlab C (2−12, 212) / sigma (2−12, 212)

Tabelle 3.2.: Übersicht der Lernverfahren sowie der Tuning-Parameter und -Bereiche

Verfahren bestimmt. Für das Weighting wird das Klassengewicht der kleinen Klasse per

Tuning bestimmt, das Klassengewicht der großen Klasse wird jeweils fest auf 1 gesetzt.

Als Grenzen für die Oversampling-Raten (os, sm, ob) sowie für das Klassengewicht der

kleinen Klasse (cw) wurde datensatzabhängig das Intervall [1, IR] (vgl. Tabelle 3.1) fest-

gelegt. Bei Auswahl von IR als obere Grenze wird die Anzahl der Beobachtungen der

kleinen Klasse auf die Anzahl der Beobachtungen der großen Klasse erhöht, so dass genau

gleich viele Beobachtungen je Klasse im Datensatz enthalten sind. Entsprechendes gilt für

die Undersampling-Rate, deren Optimierungsbereich im Intervall [IR−1, 1] liegt. Hierbei

wird die Fallzahl der großen Klasse bei Auswahl von IR−1 auf die Fallzahl der kleinen

Klasse reduziert.

Als ein weiterer, konstanter Parameter wurden 10 Iterationen für das Overbagging fest-

gelegt. Für das SMOTE-Verfahren wird neben der Oversampling-Rate zusätzlich ein logi-

scher Parameter (TRUE, FALSE) zur Ablaufsteuerung des Algorithmus über das Tuning

bestimmt. Dieser Parameter steuert, ob für jede neu zu erzeugende Beobachtung sowohl

die ursprüngliche Beobachtung als auch der entsprechende nächste Nachbar per Zufall

bestimmt werden (FALSE) oder ob alternativ jede Beobachtung der kleinen Klasse in

Abhängigkeit von der Sampling-Rate mehrfach für die Erzeugung einer neuen Beobach-

tung herangezogen und nur der nächste Nachbar per Zufall bestimmt wird. Die Anzahl

der betrachteten nächsten Nachbarn ist mit k = 5 fest angegeben und wird nicht inner-

halb des Tuning berücksichtigt.

method additional tuning parameters
undersampling usw.rate (IR−1,1)
oversampling osw.rate (1,IR)
smote sw.rate (1,IR) / sw.alt.logic (TRUE,FALSE)
overbagging obw.rate (1,IR)
weighting wcw.weight (1,IR)

Tabelle 3.3.: Übersicht der Korrekturverfahren sowie der Tuning-Parameter im Paket
mlr [1] mit Optimierungsbereich

33



3.3. Parameter-Tuning

Das Tuning der in Abschnitt 3.2 aufgelisteten Parameter wird mittels Iterated F-Racing [?]

(R-Paket irace) durchgeführt. Bei diesem Tuning-Verfahren werden iterativ mehrere, zufällig

gezogene Konfigurationen, d.h. Kombinationen von Parametereinstellungen, miteinander

verglichen. Je Durchgang wird je betrachteter Konfigurationen ein Modell angepasst und

eine Evaluierung auf einem Testdatensatz vorgenommen. Konfigurationen, die hinsicht-

lich ihrer Performance deutlich unterlegen sind (→ Bestimmung z.B. anhand des nicht-

parametrischen Friedman-Tests) werden aus dem Pool an Konfiguration entfernt und

an deren Stelle neue, wiederum zufällig gezogene Konfigurationen hinzugefügt. Die nach

jedem Durchgang im Pool verbleibenden Konfigurationen werden als so genannte Elite-

Konfigurationen bezeichnet.

Die Auswahl der betrachteten Konfigurationen erfolgt in der ersten Iteration je Parameter

über dessen gesamten Tuning-Bereich, d.h. die Konfigurationen werden initial aus einer

Gleichverteilung über den kompletten Parameterraum gezogen. In den folgenden Itera-

tionen wird diese initiale Verteilung sukzessive angepasst, so dass insbesondere die Um-

gebungen der Elite-Konfigurationen intensiver untersucht werden. Für numerische Para-

meter werden hierbei trunkierte Normalverteilungen genutzt, welche um die entsprechen-

den Werte der Elite-Konfigurationen zentriert sind und deren Varianz mit der Anzahl

der Iterationen abnimmt. Im Falle kategorialer Parameter wird die Wahrscheinlichkeit

je Ausprägung gemäß der Häufigkeiten der Ausprägungen in den Elite-Konfigurationen

erhöht bzw. reduziert. Durch dieses Vorgehen wird prinzipiell gewährleistet, dass anfangs

zunächst der komplette Parameterraum möglichst gut abgedeckt und in den folgenden

Iterationen insbesondere die Umgebung guter Konfigurationen im Detail untersucht wird

(→ exploration and exploitation).

I.d.R wird das Verfahren so lange durchgeführt bis eine vorab festgelegte, maximale An-

zahl an (über alle Iterationen übergreifend durchzuführenden) Modellanpassungen und

Evaluationen erreicht wird. Sobald dieses Budget ausgeschöpft ist, wird die Konfiguration

aus dem aktuellen Pool an Elite-Konfigurationen zurückgegeben, welche den größten Mit-

telwert aller bisherigen Evaluationen, d.h. der Ergebnisse aus allen Iterationen, in denen

die Konfiguration enthalten war, vorweist.

In den durchgeführten Experimenten bestehen die einzelnen Konfigurationen aus den

Kombinationen der entsprechenden Parameter der Lernverfahren sowie den ggf. zusätzlichen

Parametern der Korrekturmethoden (vgl. Abschnitt 3.2). Für die durchzuführenden Eva-

luation wird der jeweilige Trainingsdatensatz einmalig in 80% Tuning-Trainingsdaten so-

wie 20% Tuning-Testdaten aufgeteilt (Holdout). Als Budget werden maximal 300 Eva-

luationen festgelegt, d.h. über alle Iterationen werden maximal 300 Modelle angepasst

und evaluiert. Das Gütemaß innerhalb des Tuning entpricht dem jeweiligen Gütemaß für

34



die spätere Evaluation des Modells, d.h. es wird entweder der F1-Score oder der AUC

verwendet.

3.4. Durchführung und Evaluation

Im Rahmen dieser Arbeit wurde eine Vielzahl an Experimenten durchgeführt, um die

betrachteten Klassifikationsverfahren sowohl alleinstehend und mit und ohne vorheriges

Parameter-Tuning als auch in Kombination mit den einzelnen Korrekturverfahren zu eva-

luieren. Um alle Kombinationen aus Lern-, Tuning- und Korrekturverfahren abzudecken

wurden daher je Datensatz mehrere Durchläufe absolviert (vgl. Tabelle 3.4). Im ersten

Durchlauf wurden zunächst für die in Abschnitt 3.1 aufgelisteten Datensätze nur die

Lernverfahren mit ihren jeweiligen Standardeinstellungen verwendet. Für alle weiteren

Durchläufe wurden sowohl die relevanten Parameter der Lernverfahren als die auch der

Korrekturmethoden (vgl. Abschnitt 3.2) per Tuning bestimmt.

Durchlauf Daten Lernverfahren Tuning Korrekturmethode
1 alle alle nein -
2 alle* alle ja -
3 alle* alle ja Undersampling
4 alle* alle ja Oversampling
5 alle* alle ja SMOTE
6 alle* alle ja Overbagging
7 alle* alle ja Weighting
*alle Datensätze, deren AUC im 1.Durchlauf immer < 0.99

Tabelle 3.4.: Übersicht der Experimente

Als Gütemaße werden sowohl der in Abschnitt 2.3.2 vorgestellte F1-Score als auch der

in Abschnitt 2.3.3 beschriebene AUC-Wert verwendet. Die Datensätze, für welche bereits

im ersten Durchlauf mit mindestens einem der Lernverfahren ein AUC-Wert größer 0.99

erreicht werden konnte, wurden in den folgenden Durchläufen nicht mehr betrachtet.

Als Resampling-Strategie wird eine geschachtelte Kreuzvalidierung verwendet, um eine

möglichst unverzerrte Schätzung der Gütemaße zu gewährleisten (vgl Abbildung 3.1). In

einer äußeren Schleife wird dabei zunächst eine wiederholte, stratifizierte 5-fache Kreuz-

validierung (repeated stratified 5-fold Cross-Validation) durchgeführt. Die Daten werden

dabei zufällig in 5 disjunkte, ungefähr gleich große Blöcke (folds) aufgeteilt, von denen

jeder der Blöcke einmal als Testdatensatz fungiert, während das zugehörige Modell auf

Basis der jeweils vier anderen Blöcke angepasst wird. Dadurch wird gewährleistet, dass

35



alle Beobachtungen sowohl für die Modellanpassung (Training) als auch für die Vorhersa-

ge (Test) berücksichtigt und somit effizient genutzt werden. Aufgrund der Stratifizierung

bei der Generierung der Blöcke wird zusätzlich sichergestellt, dass das Klassenverhältnis

in den Blöcken ungefähr dem Klassenverhältnis in den gesamten Daten entspricht. Die

Anzahl der Blöcke / Folds bei der Kreuzvalidierung kann grundsätzlich frei gewählt wer-

den. Für die durchgeführten Untersuchungen wurde die Anzahl dabei auf fünf Blöcke

festgelegt, so dass sich die jeweiligen Trainingsdaten nicht zu ähnlich () sind und somit

möglichst unabhängige Modelle entstehen.

Der Tuning-Prozess (vgl. Abschnitt 3.3) ist als ”innere Schleife“ in die stratifizierte 5-fache

Kreuzvalidierung eingebettet. Die jeweiligen Trainigsdaten werden dabei zur Evaluation

innerhalb des Tuning nochmals in Tuning-Trainingsdaten (80%) sowie Tuning-Testdaten

(20%) aufgeteilt (Holdout). Die Aufteilung wird dabei ebenfalls mittels Stratifizierung

vorgenommen, so dass das Klassenverhältnis auch hier ungefähr dem Klassenverhältnis

im gesamten Datensatz entspricht.

Abbildung 3.1.: Resampling mit stratifizierter 5-facher Kreuzvalidierung und Holdout

36



Für jeden Block wird im Rahmen der Kreuzvalidierung anhand der Vorhersagen für die

einzelnen Beobachtungen der F1-Score bzw. der AUC-Wert berechnet. Als zusammenge-

fasstes Gütemaß für den kompletten Datensatz werden diese fünf berechneten Werte an-

schließend gemittelt. Um des Weiteren den Einfluss zufälliger Effekte bei der Bildung der

Blöcke zu verringern, wird die stratifizierte 5-fache Kreuzvalidierung insgesamt fünfmal

wiederholt (repeated cross-validation). Für jede der fünf Wiederholungen wird der Da-

tensatz dabei zufällig in jeweils andere Blöcke unterteilt. Die fünf Ergebnisse aus den

Wiederholungen werden abschließend wiederum zu einem Gesamtwert für die (möglichst

unverzerrte) Prognosegüte gemittelt.

AUCmean =
5∑
i=1

AUCmean,i =
5∑
i=1

5∑
j=1

AUCij (3.1)

Für das Beispiel des AUC steht in Formel 3.1 der Laufindex i für die Wiederholungen und

der Index j für die einzelnen Blöcke innerhalb der Kreuzvalidierung. AUCij stellt somit

den AUC im j-ten Block in der i-ten Wiederholung dar. Um zusätzlich die Unsicherheit

der Schätzer zu quantifizieren, werden neben dem Mittelwert entweder der minimale und

maximale AUC aus den fünf Wiederholungen der Kreuzvalidierung oder alternativ die 25

einzelnen AUC-Werte aus allen Wiederholungen und Iterationen als Spannweite betrach-

tet.

Für die Umsetzung der Experimente im Programmpaket R wurden hauptsächlich die Pa-

kete mlr [1], BatchJobs [3] und BatchExperiments [2,3] verwendet. Das R Paket mlr bietet

dabei eine Sammlung an Klassifikations- und Regressionsverfahren sowie deren Evaluation

und Optimierung mittels verschiedener Resampling-Strategien und Tuning-Verfahren und

bildet somit eine zentrale Schnittstelle für eine Vielzahl an gängigen und in R verfügbaren

Lernverfahren. Darüber hinaus wurden die im Rahmen dieser Arbeit vorgestellten und

betrachteten Korrekturmethoden in R implementiert und in das Paket mlr integriert.

Über die Funktionen makeUndersampleWrapper, makeOversampleWrapper, makeSMO-

TEWrapper, makeOverbaggingWrapper sowie makeUndersampleWrapper können dabei

beliebige Lernverfahren mit den jeweiligen Korrekturmethoden kombiniert bzw. erweitert

werden. Die aktuelle Version von mlr ist über CRAN (http://cran.r-project.org/

web/packages/mlr/index.html) verfügbar.

Die Pakete BatchExperiments und BatchJobs bieten in Kombination eine Infrastruktur

für die Verwaltung und Durchführung umfassender Experimente. Die betrachteten Pro-

bleme (→ Datensätze) und Algorithmen werden dabei zunächst definiert und in einer

Registry erfasst. Im Anschluss lassen sich aus Kombination von Problemen und Algo-

rithmen die jeweiligen Experimente bzw. einzelne Jobs generieren. Die Ausführung der

37

http://cran.r-project.org/web/packages/mlr/index.html
http://cran.r-project.org/web/packages/mlr/index.html


generierten Jobs lässt sich dabei über Funktionen des Pakets BatchJobs parallelisieren.

Zur Sicherstellung der Reproduzierbarkeit der Ergebnisse sind innerhalb der Registry ver-

schiedene Seeds gesetzt. Für die im Rahmen dieser Arbeit durchgeführten Experimente

wurde zunächst ein übergreifender Seed für die gesamte Registry festgelegt. Des Weiteren

wurde für jeden Datensatz ein weiterer
”
problem seed“ festgelegt, wodurch gewährleistet

wird, dass für die verschiedenen Algorithmen (Kombinationen aus Lern-, Tuning- und

Korrekturverfahren) die (stochastischen) Rahmenbedingungen prinzipiell gleich sind. Le-

diglich die Aufteilung der Datensätze in die einzelnen Blöcke bzw. Folds im Rahmen der

Kreuzvalidierung ist für jedes einzelne Experiment unterschiedlich.

Diese Arbeit stellt grundsätzlich eine Fortführung des Konferenzberichtes
”
On Class Im-

balancy Correction for Classification Algorithms in Credit Scoring“ [1] dar. Im Vergleich

zu den dort durchgeführten Untersuchungen kam es bei den Experimenten im Rahmen

dieser Arbeit zu folgenden Änderungen:

• Verwendung neuer Datensätze (vgl. Abschnitt 3.1) über die Machine Learning Platt-

form Open ML (http://www.openml.org/) [24]

• zusätzliche Betrachtung des F1-Score (neben AUC)

• Modifikationen der Korrekturmethoden Oversampling und SMOTE

• Evaluation der Gütemasse anhand wiederholter 5x 5-fach Kreuzvalidierung anstelle

”
einfacher“ 5-fach Kreuzvalidierung

• Anpassung der Optimierungsbereiche der Sampling-Paramter innerhalb des Tuning

(→ minimale Undersampling-Rate = IR−1, maximale Oversampling-Rate = IR)

38

http://www.openml.org/


4. Diskussion der Ergebnisse

4.1. Datenbasis

Im Rahmen der durchgeführten Experimente wurden in einem ersten Durchlauf für alle in

Abschnitt 3.1 dargestellten Datensätze nur die Lernverfahren mit ihren jeweiligen Stan-

dardeinstellungen für Modellanpassung und Prognose verwendet. Bei insgesamt 9 der 23

Datensätze konnte hierbei bereits durch mindestens eines der Lernverfahren ein nahezu

perfekter AUC-Wert größer 0.99 erreicht werden (vgl. Tabelle 4.1). Diese wurden daher

für die folgenden Durchläufe (vgl. Tabelle 3.4) nicht mehr berücksichtigt, wodurch 14 Da-

tensätze in den weiteren untersucht wurden.

Data Learner AUC
anneal5 cart 1.000
car4 rf 1.000
kropt16 rf 0.996
letter26 rf 1.000
nursery3 rf 1.000
optdigits0 svm 1.000
pendigits9 rf 0.999
scenesunset rf 0.995
vowel1 svm 1.000

Tabelle 4.1.: Datensätze und Lernverfahren mit AUC > 0.99

In Summe wurden insgesamt 26750 Experimente / Jobs durchgeführt. Dieser Wert er-

gibt aus dem Produkt der Anzahl der Datensätze je Durchlauf, den fünf Lernverfahren,

zwei Evalutionsmaßen sowie 5 Wiederholungen mit 5 Blöcken innerhalb der Kreuzvali-

dierungen, welche aufgrund ihrer Unabhängigkeit und zum Zwecke der Paralellisierung

als separate Jobs angelegt wurden. Zu insgesamt 702 Experimenten konnten dabei keine

Ergebnisse generiert werden:



• in 65 Fällen (ca. 0.24%) traten Fehler innerhalb des Tuning auf

• in 566 Fällen (ca. 2.1%) konnte keine Modellanpassung oder Prognose erfolgen

• weitere 71 Experimente (ca. 0.27%) wurden aufgrund Überschreitung der maxima-

len Laufzeit von 48 Stunden abgebrochen. Hierbei handelt sich ausschließlich um

Experimente, bei den Overbagging als Korrekturverfahren angewendet wurde. Des

Weiteren handelt es sich auschließelich um den Datensatz coil2000 sowie die Lern-

verfahren Gradient Tree Boosting (25 Experimente) sowie SVM (46 Experimente).

Eine Übersicht der betroffen Datensätze sowie der jeweiligen Verfahren ist in ANHANG B

aufgelistet. Die Resultate der verbleibenden Jobs bilden die Grundlage für die in den

folgenden Kapiteln dargestellten Ergebnisse und Analysen.

4.2. Ergebnisse je Datensatz

4.2.1. Bestes Verfahren

In Tabelle 4.2 sind zunächst die Verfahren mit den besten Ergebnissen bezüglich des AUC

je Datensatz zusammengefasst.

Data IR n Feat Base Tuning Imbal
ecoli4 8.60 336 7 0.939 (rf) 0.944 (svm) 0.947 (svm, cw)
satelliteimage4 9.28 6435 36 0.962 (rf) 0.965 (svm) 0.967 (svm, sm)
spectrometer42 10.80 531 100 0.955 (rf) 0.955 (svm) 0.968 (rf, sm)
balance2 11.76 625 4 0.896 (svm) 0.926 (svm) 0.946 (svm, sm)
coil2000 15.76 9822 85 0.735 (logreg) 0.755 (gbm) 0.760 (gbm, cw)
arrhythmia6 17.08 452 262 0.967 (gbm) 0.976 (rf) 0.979 (rf, sm)
oilspill 21.85 937 48 0.933 (rf) 0.927 (rf) 0.939 (rf, os)
solarflare5 23.79 1066 11 0.909 (logreg) 0.909 (logreg) 0.925 (logreg, us)
yeast5 28.10 1484 8 0.926 (rf) 0.924 (rf) 0.927 (rf, us)
winequality4 29.08 6497 11 0.873 (rf) 0.874 (rf) 0.878 (rf, sm)
ozonelevel 33.74 2536 72 0.902 (rf) 0.897 (rf) 0.906 (gbm, cw)
mammography 42.01 11183 6 0.948 (rf) 0.949 (gbm) 0.956 (gbm, cw)
pageblocks5 46.59 5473 10 0.986 (rf) 0.985 (rf) 0.989 (rf, cw)
abalone19 129.53 4177 8 0.810 (logreg) 0.810 (logreg) 0.845 (logreg, os)

Tabelle 4.2.: Übersicht der besten Verfahren je Datensatz (AUC)

Die Datensätze (Spalte Data) sind dabei aufsteigend gemäß des Imbalance Ratio (Spalte

40



IR) sortiert und über die horizontalen Linien in drei Gruppen unterteilt (→ IR < 15, IR <

30 und IR > 30). Je größer der IR, desto kleiner entsprechend der Anteil der kleinen

Klasse an der Gesamtzahl der Beobachtungen – dabei entspricht IR > 30 ungefähr einem

Anteil kleiner 3% und ein IR > 15 einem Anteil kleiner 6% (vgl. Tabelle 3.1). Neben

dem IR als Kennzahl für das Ungleichgewicht der Klassen sind des Weiteren die Anzahl

Beobachtungen (Spalte n) sowie die Anzahl der Merkmale bzw. Features (Spalte Feat)

je Datensatz aufgelistet. Die drei folgenden Spalten enthalten die AUC-Werte des jeweils

besten Verfahrens (→ in Klammern) für:

• die Lernverfahren mit Standardeinstellungen sowie ohne Tuning und Korrekturme-

thoden (Spalte Base)

• die Lernverfahren inklusive Tuning (Spalte Tuning)

• die Lernverfahren inklusive Tuning und in Kombination mit allen Korrekturmetho-

den (Spalte Imbal)

Für die erste Zeile (Datensatz ecoli4 ) bedeutet dies beispielhaft, dass bei Anwendung

der Lernverfahren mit Standardeinstellungen der Random Forest mit einem AUC von

0.939 das beste Ergebnis erzielen konnte. Wird zusätzlich bei allen Lernverfahren ein

Parameter-Tuning durchgeführt, liefert hingegen die SVM mit einem AUC von 0.944 das

beste Ergebnis. Eine weitere, (geringe) Optimierung des AUC-Wertes kann durch Kom-

bination von SVM und Class Weighting erreicht werden (AUC = 0.947). Der beste Wert

je Datensatz ist zusätzlich fett markiert.

Die Betrachtung der Spalte Base zeigt, dass bereits durch eine geeignete Auswahl des

Lernverfahrens hohe AUC-Werte erreicht werden konnten. In den dargestellten Fällen

wurden insbesondere durch Anwendung des Random Forest gute Ergebnisse bezüglich

des AUC erzielt. Durch zusätzliches Parameter-Tuning konnte der AUC nur für einen

Teil der Datensätze verbessert werden. Da sich in bestimmten Fällen (Datensätze oilspill,

yeast5, ozonelevel, pageblocks5 ) nach Durchführung des Tuning leicht schlechtere Ergeb-

nisse ergeben als ohne Tuning, ist es ggf. sinnvoll, das Tuning-Budget, d.h. die Anzahl

der Experimente innerhalb des des Iterated F-Racing (vgl. Abschnitt 3.3), zu erhöhen.

Bezüglich der Ergebnisse in Spalte Tuning konnten mit Random Forest und Support Vec-

tor Machine, letzteres insbesondere in der Gruppe mit IR < 15), die besten Ergebnisse

erzielt werden. Durch die zusätzliche Anwendung der Korrekturmethoden wurde in allen

betrachteten Fällen durch mindestens eine der Methoden eine weitere Verbesserung des

AUC erreicht. Die besten Ergebnisse konnten dabei insbesondere durch Class Weighting

in Kombination mit Gradient Boosting sowie durch SMOTE mit Random Forest oder

SVM erreicht werden. Die größte Steigerung des AUC konnte für den stark unbalancier-

41



ten Datensatz abalone19 mit einer Erhöhung von 0.035 durch Anwendung der logistischen

Regression in Verbindung mit Oversampling gegenüber der logistischen Regression ohne

Korrekturmethode erzielt werden.

Die dargestellten Ergebnisse entsprechen grundsätzlich den Resultaten der vorhergehen-

den Experimente und Analysen [1].

In Tabelle 4.3 sind die entsprechenden Ergebnisse für den F1-Score (und einen festen

Threshold von 0.5) dargestellt. Für die Spalte Base ergeben sich hierbei zum Teil sehr

geringe Werte bzw. in zwei Fällen (Datensätze balance2 und abalone19 ) ein F1-Score

von 0. Dies bedeutet, dass für den Threshold von 0.5 keine True Positives existieren,

d.h. hierbei konnte keine Beobachtung der kleinen Klasse korrekt vorhergesagt werden.

Durch Anwendung des Tuning konnte im Unterschied zum AUC-Wert in fast allen Fällen

Data IR n Feat Base Tuning Imbal
ecoli4 8.60 336 7 0.616 (svm) 0.640 (gbm) 0.674 (logreg, ob)
satelliteimage4 9.28 6435 36 0.642 (rf) 0.708 (svm) 0.727 (svm, ob)
spectrometer42 10.80 531 100 0.614 (svm) 0.590 (svm) 0.734 (svm, sm)
balance2 11.76 625 4 0.000 (svm) 0.166 (gbm) 0.661 (svm, sm)
coil2000 15.76 9822 85 0.073 (rf) 0.108 (gbm) 0.251 (gbm, ob)
arrhythmia6 17.08 452 262 0.685 (cart) 0.764 (rf) 0.783 (gbm, sm)
oilspill 21.85 937 48 0.539 (svm) 0.525 (svm) 0.561 (svm, os)
solarflare5 23.79 1066 11 0.189 (logreg) 0.216 (cart) 0.391 (rf, os)
yeast5 28.10 1484 8 0.339 (cart) 0.417 (rf) 0.397 (logreg, sm)
winequality4 29.08 6497 11 0.187 (rf) 0.239 (gbm) 0.305 (rf, sm)
ozonelevel 33.74 2536 72 0.230 (logreg) 0.230 (logreg) 0.363 (gbm, cw)
mammography 42.01 11183 6 0.674 (rf) 0.698 (gbm) 0.709 (rf, sm)
pageblocks5 46.59 5473 10 0.723 (rf) 0.723 (rf) 0.727 (rf, ob)
abalone19 129.53 4177 8 0.000 (logreg) 0.051 (gbm) 0.070 (rf, sm)

Tabelle 4.3.: Übersicht Gesamtergebnisse F1

eine Verbesserung erzielt werden. In ebenfalls nahezu allen Fällen (Ausnahme: Daten-

satz yeast5 ) konnte durch Anwendung mindestens eines Korrekturverfahrens eine weite-

re Verbesserung des F1-Score erreicht werden. Für den Datensatz balance2 ergibt sich

nach Anwendung der Support Vector Machine inklusive Parameter-Tuning und SMOTE-

Verfahren eine Verbesserung des F1-Score von ca. 0.5 gegenüber der alleinigen Anwendung

der SVM inklusive Tuning. Im Gegensatz dazu konnte für den Datensatz abalone19 auch

durch das beste Verfahren (→ Random Forest und SMOTE)nur maximaler Wert von 0.07

erreicht werden. Der Anteil der True Positives ist diesem Fall somit nach wie vor deutlich

geringer als der Anteil der falsch klassifizierten Beobachtungen (False Negatives und Fal-

se Positives) (vgl. Formel 2.22). Auch für einige weitere Datensätze (coil2000, solarflar5,

yeast5 und ozonelevel) konnten mit den besten Verfahren eher geringe Werte für den F1-

Score erzielt werden. In den genannten Fällen empfiehlt sich ggf. eine Herabsetzung des

Thresholds.

42



4.2.2. Alle Verfahren

Für den Vergleich aller Verfahren wurden zur besseren Veranschaulichung und aus Gründen

der Übersichtlichkeit beispielhaft drei Datensätze (abalone19, coil2000, mammography)

ausgewählt, zu denen insbesondere bereits vergleichbare Ergebnisse aus anderen Arbeiten

vorliegen.

Für den Datensatz abalone19 sind alle zugehörigen Ergebnisse der Experimente in Ab-

bildung 4.1 aufgeführt. Hierbei sind für jedes Lernverfahren in einer separaten Grafik die

AUC-Werte bei Verwendung des Lernverfahrens mit Standardeinstellungen (bl), inklusive

Tuning (tune) sowie in Verbindung mit den einzelnen Korrekturmethoden (us, os, sm, ob,

cw) in Form eines Boxplots dargestellt. Dieser ergibt sich aus den jeweils 25 Werten der

5x 5-fachen Kreuzvalidierung (vgl. Abschnitt 3.4).

Wie in Abschnitt 4.2.1 beschrieben konnte für diesen Datensatz über die Kombination aus

logistischer Regression und Oversampling der beste mittlere AUC erreicht werden. Wie

in der oberen linken Grafik zu sehen, konnten auch durch Verknüpfung der logistischen

Regression mit dem SMOTE-Verfahren ähnlich gute Ergebnisse erzielt werden. Insgesamt

zeigt sich, dass die logistische Regression (ggf. mit Ausnahme des Overbagging) für alle

Varianten ein gutes Lernverfahren für den Datensatz darstellt. Weiterhin ist auffällig, dass

vor allem Random Forest und Gradient Boosting in diesem Fall nicht gut mit Overbag-

ging
”
harmonieren“. An der oberen,rechten Grafik für den Entscheidungsbaum zeigt sich

die Steigerung der Performance durch Tuning und Korrekturmethoden am deutlichsten.

In vergleichbaren Studien konnte für den Datensatz abalone19 durch Verwendung des

C4.5-Algorithmus (→ Implementierung für Entscheidungsbäume, d.h. Alternative zu CART)

mit komplexeren Korrekturverfahren ein maximaler AUC von 0.7206 erreicht werden [13].

Dieser Wert wird bereits durch Anwendung der logistischen Regression (0.810), Gradient

Tree Boosting (0.748), Support Vector Machines (0.738) oder des Random Forest (0.729)

jeweils mit den Standardeinstellungen übertroffen.

Der Datensatz coil2000 wird u.a. bei Kuhn und Johnson, S.419ff [17] diskutiert. Da-

bei wird der Fokus insbesondere auf den Random Forest als Lernverfahren in Verbindung

mit Under- und Oversampling Methoden gelegt. Die im Rahmen dieser Arbeit auf Basis

des Random Forest erzielten Ergebnisse bezüglich des AUC liegen unter den bei Kuhn

und Johnson erreichten Werten. Der maximale AUC von 0.764 wurde dort mit dem dem

Random Forest in Kombination mit einer Variante des Undersampling erreicht. In Abbil-

43



Abbildung 4.1.: Übersicht aller Verfahren für Datensatz abalone19

dung 4.2 sind die Ergebnisse aus den Experimenten dieser Arbeit wiederum je Lernverfah-

ren dargestellt. Für den Random Forest stellt auch hierbei das Undersampling mit einem

mittleren AUC von 0.713 die beste Korrekturmethode dar. Insgesamt liefert für diesen

Datensatz jedoch das Gradient Boosting leicht bessere Ergebnisse ab. Der beste AUC wird

mit einem Wert von 0.760 durch Gradient Boosting in Kombination mit Class Weighting

erreicht. Grundsätzlich ist die Streuung der einzelnen AUC-Werte je Verfahren sehr ge-

ring. Die größten Steigerung des AUC lassen sich wiederum für Entscheidungsbäume in

der oberen rechten Grafik erzielen, während die Verbesserungen für die logistische Re-

gression, Random Forest und Gradient Boosting eher gering sind. Bei der SVM in der

untersten Grafik lässt sich weiterhin eine Verbesserung des AUC durch die Anwendung

der Korrekturmethoden erkennen. Für das Overbagging konnten hierbei keine Ergebnisse

44



dargestellt werden, da die entsprechenden Experimente aufgrund der Überschreitung der

maximalen Laufzeit nicht erfolgreich beendet werden konnten. In Untersuchungen zum

Abbildung 4.2.: Übersicht aller Verfahren für Datensatz coil2000

Datensatz mammography durch Chawla et. al [8] konnte auf Basis des C4.5-Algorithmus

(→ Entscheidungsbaum) und SMOTE ein AUC von 0.933 erreicht werden. Die Ergebnisse

dieser Arbeit sind in Abbildung 4.3 dargestellt. Die Streuung der einzelnen AUC-Werte

ist dabei wiederum sehr gering und für eine Vielzahl an Verfahren bzw. Kombinationen

konnte ein hoher AUC erreicht werden. Das Maximum der mittleren AUC-Werte weist

dabei wiederum das Gradient Boosting in Kombination mit Class Weighting vor (Ø AUC

= 0.956). Aufgrund der leicht geringeren Streuung der einzelnen AUC-Werte aus der

Kreuzvalidierung eignet sich hierbei insbesondere auch der Random Forest in Verbindung

mit SMOTE (Ø AUC = 0.952) oder Oversampling (Ø AUC = 0.951) sehr gut. Bei Be-

45



Abbildung 4.3.: Übersicht aller Verfahren für Datensatz mammography

trachtung des Random Forest in der mittleren linken Grafik fällt wiederum auf, dass in

Verbindung mit Overbagging schlechtere Ergebnisse erzielt werden als mit den anderen

Verfahren. Beim Gradient Boosting sowie der SVM liefert vor allem die zusätzliche An-

wendung des Tuning eine Steigerung des AUC. Durch die Korrekturmethoden wurden

bezüglich des Datensatzes mammography eher nur geringe Verbesserungen erreicht.

46



4.3. Ergebnisse je Verfahren

4.3.1. Tuning- und Korrektur-Effekte

In Tabelle 4.4 sind die größten, erreichten Verbesserungen zum einen durch Parameter-

Tuning gegenüber der Anwendung des entsprechenden Verfahrens ohne Tuning (link

Übersicht) sowie zum anderen durch zusätzliche Verwendung einer Korrekturmethode

(Spalte Method) im Vergleich zur Anwendung des Lernverfahrens ohne Korrekturmetho-

de (jedoch inklusive Parameter-Tuning) (rechte Übersicht) dargestellt.

Es zeigt sich, dass in Abhängigkeit von Datensatz und Lernverfahren sowohl durch das

Data Learner Base Tuning
balance2 gbm 0.30 0.81
mammography gbm 0.72 0.95
satelliteimage4 gbm 0.78 0.96
solarflare5 cart 0.67 0.81
pageblocks5 gbm 0.87 0.98
spectrometer42 gbm 0.83 0.94
winequality4 svm 0.73 0.83
winequality4 gbm 0.71 0.80
coil2000 cart 0.50 0.58
ozonelevel gbm 0.82 0.90

Data Learner Tuning Imbal Method
abalone19 cart 0.56 0.75 ob
winequality4 cart 0.62 0.79 ob
balance2 cart 0.50 0.67 ob
coil2000 cart 0.58 0.71 ob
oilspill cart 0.71 0.84 ob
spectrometer42 cart 0.79 0.92 ob
ozonelevel cart 0.72 0.85 ob
solarflare5 svm 0.79 0.91 os
abalone19 svm 0.73 0.83 os
balance2 logreg 0.40 0.50 ob

Tabelle 4.4.: Top 10 Verbesserungen des AUC-Wertes durch Tuning und
Korrekturverfahren

Tuning als auch durch die Korrekturmethoden deutliche Verbesserungen hinsichtlich des

AUC erreicht werden können. So ist in den betrachteten Fällen insbesondere bei Verwen-

dung des Gradient Boosting (gbm) ein zusätzliches Tuning in einigen Fällen sehr wirksam.

Bei ergänzender Verwendung der Korrekturmethoden läßt sich in bestimmten Fällen bei

Support Vector Machines (svm) durch zusätzliches Oversampling (os) sowie insbesonde-

re bei Entscheidungsbäumen (cart) mit Overbagging (ob) eine deutliche Steigerung des

AUC-Wertes erreichen.

In Tabelle 4.5 sind die durchschnittlichen, absoluten Verbesserungen des AUC durch Tu-

ning (Spalte Mean Tuning Opt.) sowie durch die jeweils besten Korrekturmethode je Lern-

verfahren (Spalte Mean Imbal Opt.) datensatzübergreifend dargestellt. Für die logistische

Regression (logreg) wird hierbei durch das Tuning keine Verbesserung erreicht, da sich

die Tuning-Ergebnisse aufgrund nicht vorhandener Tuning-Parameter (vgl. Tabelle 3.2)

nicht von den Ergebnissen des Verfahrens ohne Tuning unterscheiden.

Insbesondere beim Gradient Tree Boosting (gbm) konnte durch das Tuning im Mittel eine

Verbessung des AUC erreicht werden. Für Klassifikationsbäume (cart), Support Vector

47



Learner Mean Tuning Opt. Mean Imbal Opt.
cart 0.026 0.104
gbm 0.107 0.011
logreg 0.000 0.026
rf 0.001 0.018
svm 0.015 0.038

Tabelle 4.5.: Durchschnittliche und maximale Verbesserungen des AUC durch Anwendung
der Korrekturmethoden

Machines und Random Forest sind die Steigerungen des AUC durch zusätzliches Tuning

im Mittel eher gering. Für alle Lernverfahren konnte darüber hinaus im Mittel eine weite-

re Steigerung des AUC durch Anwendung der Korrekturmethoden erreicht werden. Diese

zeigt sich insbesondere bei Verwendung der Entscheidungsbäume als sehr wirksam, was

jedoch wiederum vor allem auf die Kombinationen von Entscheidungsbäumen mit Over-

bagging zurückzuführen ist. Diese Verbindung entspricht grundsätzlich der Kombination

von Random Forest (→ Bagging mit Entscheidungsbäumen, vgl. Abschnitt 2.1.3) und

Oversampling, was bedeutet, dass die Steigerungen des AUC hierbei hauptsächlich von

der Anwendung der Bagging-Methode und weniger vom wiederholten Oversampling aus-

gehen.

Für die anderen Lernverfahren konnten durch die Korrekturverfahren im Mittel Steige-

rungen des AUC zwischen 0.011 bis 0.038 gegenüber der Anwendung der Lernverfahren

inklusive Tuning
”
herausgeholt“ werden.

4.3.2. Vergleich Oversampling-Methoden

Bei einem datensatzübergreifenden Vergleich der Oversampling-Methoden, zeigt sich bei

der Gegenüberstellung von Oversampling und SMOTE je Lernverfahren mit Ausnahme

der SVM ein leichter Vorteil zugunsten des SMOTE-Verfahrens. In Tabelle 4.6 sind die

Anzahlen der Fälle dargestellt, in denen das jeweilige Korrekturverfahren bessere Ergeb-

nisse bezüglich des AUC liefern konnte als das andere. Die entsprechenden prozentualen

Anteile sind in Klammern dargestellt.

In Abbildung 4.4 wurden die einzelnen Differenzen zwischen den beiden AUC-Werten

(AUCos − AUCsm) in Form eines Boxplot dargestellt. Hierbei sind die resultierenden

Werte (ggf. mit Ausnahme der Entscheidungsbäume zugunsten von SMOTE) ungefähr

um den Wert 0 zentriert, was dafür spricht, dass sich die beiden Methoden nur sehr gering

unterscheiden. Eine Auswahl ist daher eher in Abhängigkeit des betrachteten Datensatzes

zu treffen.

48



Learner os sm
cart 5 (0.36) 9 (0.64)
gbm 4 (0.29) 10 (0.71)
logreg 5 (0.38) 8 (0.62)
rf 5 (0.36) 9 (0.64)
svm 9 (0.64) 5 (0.36)

Tabelle 4.6.: Anzahlen und Anteile gemäß der besseren Performance (AUC) je Lernver-
fahren (Oversampling/SMOTE)

Abbildung 4.4.: AUC-Differenzen (Oversampling - SMOTE)

Bei einem Vergleich von Oversampling und Overbagging ergeben sich aus den Ergebnissen

hingegen eher Präferenzen bezüglich der zu kombinierenden Lern- und Korrektuverfahren

(vgl. Tabelle 4.7 sowie Boxplot der Differenzen AUCos − AUCob in Abbildung 4.5).

Während Overbagging als ergänzende Methode insbesondere bei Entscheidungsbäumen

sehr gut funktioniert, konnten mittels Oversampling bei Random Forest, Gradient Boos-

ting und SVM in allen Fällen bessere Ergebnisse erzielt werden. Da es sich bei Overbagging

Namen gemäß um ein Bagging-Verfahren handelt, ist dieses ggf. nicht immer sinnvoll mit

beliebigen Lernverfahren kombinierbar, sondern insbesondere eher für schwache Lernver-

fahren geeignet. Eine Kombination aus Overbagging und einem stabilen Verfahren wie

dem Random Forest kann dessen Prognosegüte ggf. nicht weiter verbessern (vgl. Brei-

man [4]) oder wie im Fall der durchgeführten Ergebnisse zum Teil sogar verschlechtern.

Grundsätzlich stellen Overbagging mit Entscheidungsbäumen sowie Oversampling mit

49



Learner os ob
cart 14 (1.00) 0 (0.00)
gbm 0 (0.00) 14 (1.00)
logreg 4 (0.31) 9 (0.69)
rf 0 (0.00) 14 (1.00)
svm 0 (0.00) 13 (1.00)

Tabelle 4.7.: Anzahlen und Anteile gemäß der besseren Performance je Lernverfahren
(Oversampling/Overbagging)

Abbildung 4.5.: AUC-Differenzen (Oversampling - Overbagging)

Random Forest die gleiche Methode dar (→ Oversampling sowie Bagging mit Bäumen).

Bei Vergleich der beiden Kombinationen hinsichtlich der mittleren AUC-Werte sowie dem

minimalen der maximalen AUC aus den 5-fachen Kreuzvalidierungen je Datensatz (vgl.

Abbildung 4.6 erzielen Oversampling und Random Forest in den meisten Fällen die bes-

seren Ergebnisse. Es sei jedoch darauf hingewiesen, dass für dass Overbagging aufgrund

der festen Voreinstellung jeweils nur 10 Modelle erstellt wurden, während der Optimie-

rungsbereich im Rahmen des Tuning für die Anzahl der Modelle beim Random Forest

zwischen 10 bis 500 schwankt.

50



Abbildung 4.6.: Vergleich von RandomForest/Oversampling und CART/Overbagging je
Datensatz

4.3.3. Analyse der Laufzeit

Wie in Abschnitt 4.1 beschrieben, konnte ein Teil der Experimente aufgrund von Fehlern

und Zeitüberschreitungen nicht erfolgreich durchgeführt werden. Da des Weiteren zum

Zweck der Parallelisierung der Experimente die Kreuzvalidierungsblöcke und Wiederho-

lungen (vgl. Abschnitt 3.4) in separate Jobs aufgeteilt wurden, wurden zur Betrachtung

der Laufzeit nur die Ergebnisse berücksichtigt, bei denen alle Iterationen innerhalb der

Kreuzvalidierung vollständig durchlaufen konnten. Die Laufzeiten wurden anschließend

über die Iterationen der betrachteten Kombination aus Datensatz und Gesamt-Verfahren

(→ Lern-/Tuning-/Korrekturverfahren) summiert. In ANHANG B sind die entsprechen-

den Experimente, die nicht berücksichtigt wurden, inklusive der Anzahl der nicht erfolg-

reichen Iterationen aufgelistet.

Zur allgemeinen Analyse der Laufzeit wurde zunächst ein kompletter Regressionsbaum

(ohne Pruning) mit den Einflussgrößen Lernverfahren, Methode (Tuning- und Korrek-

turverfahren), Anzahl Beobachtungen in der kleinen Klasse sowie der Features und IR

der jeweiligen Daten angepasst (vgl. Abbildung 4.7). Die Laufzeit ist dabei in Stunden

dargestellt.

Im ersten Split erfolgt zunächst eine Aufteilung nach der Methode - der komplette rechte

Ast des Baumes bezieht sich somit nur auf Overbagging, bei dessen Anwendung ein Job

im Mittel ungefähr 11.4 Stunden läuft. In Kombination mit Gradient Boosting erhöht

51



Abbildung 4.7.: Regressionsbaum zur Laufzeit in Stunden

sich die mittlere Laufzeit weiter auf 34.7 Stunden. Für die restlichen Methoden im linken

Ast beträgt die mittlere Laufzeit ca. 1.5 Stunden.

In Abbildung 4.8 sind abschließend AUC und Laufzeit für die einzelnen Verfahren ge-

genüberstellt. Unter Berücksichtigung beider Größen lässen sich die besten Ergebnisse

per SMOTE und Class Weighting erzielen.

52



Abbildung 4.8.: AUC vs. Runtime

53



5. Zusammenfassung und Ausblick

Im Rahmen der binären Klassifikation stellt im Falle unbalancierter Klassen insbesonde-

re die korrekte Vorhersage der Beobachtungen der kleinen Klasse eine Herausforderung

dar. Wie anhand der in dieser Arbeit durchgeführten Experimente gezeigt wurde, können

jedoch bereits zum Teil sehr gute Ergebnisse durch die Auswahl eines geeigneten Lern-

verfahrens erzielt werden. Bei übergreifender Betrachtung zeigte sich hierbei z.B. der

Random Forest für verschiedene Datensätze als wirksam. Nach zusätzlichem Parameter-

Tuning führten zudem Gradient Boosting und Support Vector Machines in vielen Fällen

bereits ohne ergänzende Korrekturmethoden zu guten Ergebnissen. Sowohl durch das Tu-

ning als auch durch die zusätzliche Anwendung der implementierten Korrekturmethoden

konnten jedoch in nahezu allen Fällen weitere, zumindest geringe Verbesserungen der Pro-

gnosegüte erreicht werden. Somit eignen sich selbst
”
einfachere“ Korrekturmethoden wie

Undersampling oder Class Weighting als Ergänzung bzw. als Verfeinerung für gute und

stabile Lernverfahren. Die Kombination aus gutem Lernverfahren und ergänzender Kor-

rekturmethode erscheint insbesondere auch aus Sicht der Laufzeit geeigneter als komplexe-

re Korrekturmethoden wie z.B. Overbagging in Verbindung mit schwachen Lernverfahren.

In den durchgeführten Experimenten konnten insbesondere durch das SMOTE-Verfahren

sowie durch Class Weighting gute Ergebnisse mit akzeptabler Laufzeit erzielt werden.

Zur weiterführenden Analyse empfiehlt sich die Betrachtung weiterer, einfacher Korrektur-

verfahren oder Erweiterungen der bis hierhin untersuchten Methoden. Interessant wäre

dabei, ob z.B. durch
”
intelligentes Undersampling“ der Kombination von SMOTE mit

Undersampling weitere Verbesserungen entstehen.



A. Übersicht der kleinen Klassen

Da es sich bei den betrachteten Datensätzen größtenteils um Multi-Klassen-Probleme

handelt, wurde im Rahmen der Vorverarbeitung eine der vorhandenen Klassen als kleine

Klasse selektiert und alle anderen Klassen zu einer großen Klasse zusammengefasst. Die

Auswahl der kleinen Klasse je Datensatz ist in folgender Übersicht dargestellt:

Data y minClass
abalone Classnumberofrings 19
arrhythmia class 6
anneal class 5
balancescale class B
car class vgood
coil2000 CARAVAN 1
ecoli class imU
kropt game sixteen
letter class Z
mammography class 1
nursery class veryrecom
oilspill class 1
optdigits class 0
ozonelevel Class 1
pageblocks class 5
pendigits class 9
scene sunset 1
satelliteimage class 4
solarflare class F
spectrometer LRS.class 42
vowel Class hid
winequality quality 4
yeast classproteinlocalization ME2

Tabelle A.1.: Festlegung der kleinen Klasse bei Multi-Klassen-Problemen



B. Übersicht der fehlerhaften Jobs

Data Learner Method NrExcluded
abalone19 cw gbm 1
abalone19 ob gbm 2
abalone19 os svm 1
abalone19 tune gbm 2
abalone19 us gbm 2
anneal5 bl logreg 5
arrhythmia6 tune gbm 1
balance2 sm gbm 1
balance2 tune gbm 1
coil2000 cw gbm 1
coil2000 ob gbm 5
mammography cw gbm 1
mammography os gbm 1
mammography us logreg 1
ozonelevel os gbm 1
ozonelevel tune gbm 1
ozonelevel us cart 1
ozonelevel us svm 1
pageblocks5 os gbm 1
pageblocks5 us gbm 3

Data Learner Method NrExcluded
satelliteimage4 cw gbm 1
satelliteimage4 os gbm 1
solarflare5 bl logreg 5
solarflare5 cw logreg 5
solarflare5 ob gbm 1
solarflare5 ob logreg 5
solarflare5 os logreg 5
solarflare5 sm gbm 1
solarflare5 sm logreg 5
solarflare5 tune logreg 5
solarflare5 us logreg 5
spectrometer42 cw gbm 1
spectrometer42 tune gbm 1
winequality4 ob gbm 1
winequality4 us gbm 2
yeast5 cw gbm 1
yeast5 ob gbm 1
yeast5 os gbm 1
yeast5 tune gbm 1
yeast5 us gbm 1

Tabelle B.1.: Ausgeschlossene Experimente bei der Analyse der Laufzeit



C. Ergebnisse je Durchlauf

prob n feat ir lrn.auc mean.auc lrn.f1 mean.f1 mean.mmce
scenesunset 2407 294 5.61 rf 0.99 svm 0.92 0.03
ecoli4 336 7 8.60 rf 0.94 svm 0.62 0.07
optdigits0 5620 62 9.14 svm 1.00 svm 1.00 0.00
satelliteimage4 6435 36 9.28 rf 0.96 rf 0.64 0.06
pendigits9 10992 16 9.42 rf 1.00 svm 0.99 0.00
vowel1 990 12 10.00 svm 1.00 svm 0.99 0.00
spectrometer42 531 100 10.80 rf 0.96 svm 0.61 0.06
balance2 625 4 11.76 svm 0.90 svm 0.00 0.08
anneal5 898 31 12.40 cart 1.00 cart 1.00 0.00
coil2000 9822 85 15.76 logreg 0.74 rf 0.07 0.07
arrhythmia6 452 262 17.08 gbm 0.97 cart 0.68 0.03
oilspill 937 48 21.85 rf 0.93 svm 0.54 0.03
solarflare5 1066 11 23.79 logreg 0.91 logreg 0.19 0.05
car4 1728 6 25.58 rf 1.00 svm 0.93 0.01
letter26 20000 16 26.25 rf 1.00 rf 0.95 0.00
yeast5 1484 8 28.10 rf 0.93 cart 0.34 0.03
winequality4 6497 11 29.08 rf 0.87 rf 0.19 0.03
ozonelevel 2536 72 33.74 rf 0.90 logreg 0.23 0.04
nursery3 12960 8 38.51 rf 1.00 svm 0.95 0.00
mammography 11183 6 42.01 rf 0.95 rf 0.67 0.01
pageblocks5 5473 10 46.59 rf 0.99 rf 0.72 0.01
kropt16 28056 6 70.94 rf 1.00 svm 0.70 0.01
abalone19 4177 8 129.53 logreg 0.81 logreg 0.00 0.01

Tabelle C.1.: Ergebnisse Baseline



prob n feat ir lrn.auc mean.auc lrn.f1 mean.f1 mean.mmce
ecoli4 336 7 8.60 svm 0.94 gbm 0.64 0.06
satelliteimage4 6435 36 9.28 svm 0.97 svm 0.71 0.05
spectrometer42 531 100 10.80 svm 0.96 svm 0.59 0.06
balance2 625 4 11.76 svm 0.93 gbm 0.17 0.10
coil2000 9822 85 15.76 gbm 0.76 gbm 0.11 0.07
arrhythmia6 452 262 17.08 rf 0.98 rf 0.76 0.03
oilspill 937 48 21.85 rf 0.93 svm 0.52 0.03
solarflare5 1066 11 23.79 logreg 0.91 cart 0.22 0.05
yeast5 1484 8 28.10 rf 0.92 rf 0.42 0.03
winequality4 6497 11 29.08 rf 0.87 gbm 0.24 0.03
ozonelevel 2536 72 33.74 rf 0.90 logreg 0.23 0.04
mammography 11183 6 42.01 gbm 0.95 gbm 0.70 0.01
pageblocks5 5473 10 46.59 rf 0.98 rf 0.72 0.01
abalone19 4177 8 129.53 logreg 0.81 gbm 0.05 0.01

Tabelle C.2.: Ergebnisse Tuning

prob n feat ir lrn.auc mean.auc lrn.f1 mean.f1 mean.mmce
ecoli4 336 7 8.60 svm 0.94 logreg 0.64 0.09
satelliteimage4 6435 36 9.28 gbm 0.96 svm 0.72 0.05
spectrometer42 531 100 10.80 svm 0.96 svm 0.66 0.06
balance2 625 4 11.76 svm 0.91 svm 0.22 0.19
coil2000 9822 85 15.76 gbm 0.76 gbm 0.23 0.13
arrhythmia6 452 262 17.08 rf 0.98 gbm 0.78 0.03
oilspill 937 48 21.85 rf 0.92 rf 0.51 0.04
solarflare5 1066 11 23.79 logreg 0.92 rf 0.38 0.08
yeast5 1484 8 28.10 rf 0.93 rf 0.39 0.04
winequality4 6497 11 29.08 rf 0.87 rf 0.30 0.06
ozonelevel 2536 72 33.74 rf 0.90 rf 0.35 0.04
mammography 11183 6 42.01 gbm 0.95 rf 0.69 0.01
pageblocks5 5473 10 46.59 rf 0.99 rf 0.72 0.01
abalone19 4177 8 129.53 logreg 0.82 logreg 0.06 0.08

Tabelle C.3.: Ergebnisse Undersampling



prob n feat ir lrn.auc mean.auc lrn.f1 mean.f1 mean.mmce
ecoli4 336 7 8.60 svm 0.94 svm 0.66 0.09
satelliteimage4 6435 36 9.28 svm 0.97 gbm 0.72 0.05
spectrometer42 531 100 10.80 svm 0.97 svm 0.70 0.05
balance2 625 4 11.76 svm 0.94 svm 0.60 0.09
coil2000 9822 85 15.76 gbm 0.76 gbm 0.25 0.15
arrhythmia6 452 262 17.08 rf 0.97 gbm 0.78 0.03
oilspill 937 48 21.85 rf 0.94 svm 0.56 0.04
solarflare5 1066 11 23.79 rf 0.91 rf 0.39 0.08
yeast5 1484 8 28.10 rf 0.92 logreg 0.39 0.06
winequality4 6497 11 29.08 rf 0.88 gbm 0.29 0.06
ozonelevel 2536 72 33.74 svm 0.90 gbm 0.34 0.05
mammography 11183 6 42.01 gbm 0.96 rf 0.70 0.01
pageblocks5 5473 10 46.59 rf 0.98 rf 0.71 0.01
abalone19 4177 8 129.53 logreg 0.84 gbm 0.06 0.08

Tabelle C.4.: Ergebnisse Oversampling

prob n feat ir lrn.auc mean.auc lrn.f1 mean.f1 mean.mmce
ecoli4 336 7 8.60 gbm 0.94 logreg 0.67 0.08
satelliteimage4 6435 36 9.28 svm 0.97 gbm 0.71 0.05
spectrometer42 531 100 10.80 rf 0.97 svm 0.73 0.05
balance2 625 4 11.76 svm 0.95 svm 0.66 0.07
coil2000 9822 85 15.76 gbm 0.75 svm 0.23 0.16
arrhythmia6 452 262 17.08 rf 0.98 gbm 0.78 0.03
oilspill 937 48 21.85 rf 0.94 gbm 0.55 0.04
solarflare5 1066 11 23.79 logreg 0.91 svm 0.32 0.09
yeast5 1484 8 28.10 rf 0.92 logreg 0.40 0.05
winequality4 6497 11 29.08 rf 0.88 rf 0.30 0.04
ozonelevel 2536 72 33.74 rf 0.91 svm 0.35 0.05
mammography 11183 6 42.01 rf 0.95 rf 0.71 0.01
pageblocks5 5473 10 46.59 rf 0.99 rf 0.72 0.01
abalone19 4177 8 129.53 logreg 0.84 rf 0.07 0.02

Tabelle C.5.: Ergebnisse SMOTE



prob n feat ir lrn.auc mean.auc lrn.f1 mean.f1 mean.mmce
ecoli4 336 7 8.60 cart 0.92 logreg 0.67 0.08
satelliteimage4 6435 36 9.28 svm 0.93 svm 0.73 0.05
spectrometer42 531 100 10.80 svm 0.93 svm 0.72 0.05
balance2 625 4 11.76 svm 0.92 svm 0.63 0.09
coil2000 9822 85 15.76 cart 0.71 gbm 0.25 0.13
arrhythmia6 452 262 17.08 gbm 0.95 gbm 0.77 0.03
oilspill 937 48 21.85 logreg 0.89 svm 0.55 0.04
solarflare5 1066 11 23.79 cart 0.86 logreg 0.39 0.07
yeast5 1484 8 28.10 cart 0.86 rf 0.38 0.05
winequality4 6497 11 29.08 cart 0.79 gbm 0.29 0.06
ozonelevel 2536 72 33.74 cart 0.86 gbm 0.34 0.05
mammography 11183 6 42.01 gbm 0.92 rf 0.71 0.01
pageblocks5 5473 10 46.59 logreg 0.96 rf 0.73 0.01
abalone19 4177 8 129.53 svm 0.75 gbm 0.06 0.07

Tabelle C.6.: Ergebnisse Overbagging

prob n feat ir lrn.auc mean.auc lrn.f1 mean.f1 mean.mmce
ecoli4 336 7 8.60 svm 0.95 svm 0.67 0.08
satelliteimage4 6435 36 9.28 svm 0.97 gbm 0.72 0.05
spectrometer42 531 100 10.80 svm 0.96 gbm 0.69 0.05
balance2 625 4 11.76 svm 0.94 gbm 0.24 0.14
coil2000 9822 85 15.76 gbm 0.76 gbm 0.25 0.14
arrhythmia6 452 262 17.08 gbm 0.97 gbm 0.78 0.03
oilspill 937 48 21.85 svm 0.93 svm 0.56 0.03
solarflare5 1066 11 23.79 logreg 0.91 svm 0.34 0.08
yeast5 1484 8 28.10 rf 0.92 gbm 0.38 0.05
winequality4 6497 11 29.08 rf 0.85 gbm 0.29 0.06
ozonelevel 2536 72 33.74 gbm 0.91 gbm 0.36 0.05
mammography 11183 6 42.01 gbm 0.96 gbm 0.70 0.01
pageblocks5 5473 10 46.59 rf 0.99 gbm 0.70 0.01
abalone19 4177 8 129.53 svm 0.82 gbm 0.06 0.07

Tabelle C.7.: Ergebnisse Class Weighting



Literaturverzeichnis

[1] B. Bischl, T. Kühn, and G. Szepannek. On class imbalancy correction for classification

algorithms in credit scoring. 2014.

[2] B. Bischl, M. Lang, and O. Mersmann. BatchExperiments: Statistical experiments

on batch computing clusters., 2014.

[3] B. Bischl, M. Lang, O. Mersmann, J. Rahnenfuehrer, and C. Weihs. Computing on

high performance clusters with r: Packages batchjobs and batchexperiments. Tech-

nical Report 1, TU Dortmund, 2011.

[4] L. Breiman. Bagging predictors. Mach. Learn., vol. 24, no. 2, pp. 123-140, 1996.

[5] L. Breiman. Random forests. Machine Learning, vol. 45, no. 1, pp. 5-32, 2001.

[6] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and

Regression Trees. Wadsworth International Group, 1984.

[7] J. Burez and D. Van den Poel. Handling class imbalance in customer churn prediction.

Expert Syst. Appl., vol. 36, no. 3, pp. 4626-4636, 2009.

[8] N.V. Chawla, K.W. Bowyer, L.O. Hall, and W.P. Kegelmeyer. Smote: Synthetic

minority over-sampling technique. J. Artif. Int. Res., vol. 16, no. 1, pp. 321-357,

2002.

[9] T.M. Cover and P.E. Hart. Nearest neighbor pattern classification. IEEE Trans.

Information Theory, vol. 13, no. 1, pp. 21-27, 1967.

[10] M. Di Martino, F. Decia, J. Molinelli, and A. Fernández. Improving electric fraud

detection using class imbalance strategies. In ICPRAM 2012 - Proceedings of the 1st

International Conference on Pattern Recognition Applications and Methods, Volume

2, Vilamoura, Algarve, Portugal, 6-8 February, 2012, pages 135–141, 2012.



[11] C. Elkan. The foundations of cost-sensitive learning. In In Proceedings of the Se-

venteenth International Joint Conference on Artificial Intelligence, pages 973–978,

2001.

[12] L. Fahrmeir, T. Kneib, S. Lang, and B. Marx. Regression. Models, Methods and

Applications. Springer Verlag, 2013.

[13] M. Galar, A. Fernández, E. Barrenechea Tartas, H. Bustince Sola, and F. Herrera.

A review on ensembles for the class imbalance problem: Bagging-, boosting-, and

hybrid-based approaches. IEEE Transactions on Systems, Man, and Cybernetics,

Part C, vol. 44, no. 4, pp. 463–484, 2012.

[14] J. C. Gower. A general coefficient of similarity and some of its properties. Biometrics

27: pp. 857-874, 1971.

[15] H. Han, W.-Y. Wang, and B.-H. Mao. Borderline-smote: A new over-sampling me-

thod in imbalanced data sets learning. In Proceedings of the 2005 International

Conference on Advances in Intelligent Computing - Volume Part I, pages 878–887.

Springer-Verlag, 2005.

[16] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning:

Data Mining, Inference and Prediction - Second Edition. Springer, 2009.

[17] M. Kuhn and K. Johnson. Applied Predictive Modeling. Springer, 2013.

[18] C.X. Ling and V.S. Sheng. Class imbalance problem. In Encyclopedia of Machine

Learning, page 171. 2010.

[19] C.X. Ling, Q. Yang, J. Wang, and S. Zhang. Decision trees with minimal costs. In

Machine Learning, Proceedings of the Twenty-first International Conference (ICML

2004), Banff, Alberta, Canada, July 4-8, 2004, 2004.

[20] M. López-Ibáñez, J. Dubois-Lacoste, T. Stützle, and M. Birattari. The irace packa-

ge, iterated race for automatic algorithm configuration. Technical report, IRIDIA,

Université Libre de Bruxelles, Belgium, 2011.

[21] M.A. Mazurowski, P.A. Habas, J.M. Zurada, J.Y. Lo, J.A. Baker, and G.D. Tourassi.

Training neural network classifiers for medical decision making: The effects of imba-

lanced datasets on classification performance. Neural Networks, vol. 21, no. 2-3, pp.

427-436, 2008.

62



[22] D.K. McClish. Analyzing a portion of the roc curve. Medical Decision Making., vol.

9, no. 3, pp. 190-195, 2002.

[23] K.M. Ting. Inducing cost-sensitive trees via instance weighting. In Principles of

Data Mining and Knowledge Discovery, Second European Symposium, PKDD ’98,

Nantes, France, September 23-26, 1998, Proceedings, pages 139–147, 1998.

[24] J. Vanschoren, J.N. van Rijn, B. Bischl, and L. Torgo. Openml: Networked science

in machine learning. SIGKDD Explor. Newsl., vol. 15, no. 2, pp. 49-60, 2014.

[25] W. Wei, J. Li, L. Cao, Y. Ou, and J. Chen. Effective detection of sophisticated online

banking fraud on extremely imbalanced data. World Wide Web, vol. 16, no. 4, pp.

440-475, 2013.

[26] Z.B. Zhu and Z.H. Song. Fault diagnosis based on imbalance modified kernel fisher

discriminant analysis. Chemical Engineering Research and Design, vol. 88, no. 8, pp.

936951, 2010.

63


	Einleitung
	Methoden und Verfahren
	Statistische Lernverfahren
	Logistische Regression
	Entscheidungsbaum (CART)
	Random Forest
	Gradient (Tree) Boosting
	Support Vector Machine (SVM)

	Methoden zur Korrektur des Klassenungleichgewichts
	Überblick
	Sampling-Methoden
	Kostenbasierte Methoden

	Gütemaße für die Performance
	Kennzahlen der Konfusionsmatrix
	F1-Score
	ROC-Kurve und AUC


	Experimente
	Daten
	Verfahren und Parameter
	Parameter-Tuning
	Durchführung und Evaluation

	Diskussion der Ergebnisse
	Datenbasis
	Ergebnisse je Datensatz
	Bestes Verfahren
	Alle Verfahren

	Ergebnisse je Verfahren
	Tuning- und Korrektur-Effekte
	Vergleich Oversampling-Methoden
	Analyse der Laufzeit


	Zusammenfassung und Ausblick
	ANHANG
	Übersicht der kleinen Klassen
	Übersicht der fehlerhaften Jobs
	Ergebnisse je Durchlauf

