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Abstract

Abstract

Im Lasso-Verfahren wird die Groke der Regressionskoeffizienten so restringiert, dass
der Effekt mancher Kovariablen auf Null geschatzt wird. Durch diese Verkniipfung
von Variablenselektion und Schiatzung der Regressionskoeffizienten bietet das Lasso-
Verfahren besonders fiir p > n eine gute Alternative zum weit verbreiteten KQ-
Schitzer. Damit auch unter vergleichsweise schwachen Annahmen eine konsisten-
te Schatzung hervorgeht, wurden in der Literatur Methoden vorgeschlagen, in de-
nen das Lasso-Verfahren auf Bootstrap- beziehungsweise Subsampling-Stichproben
durchgefiihrt wird. Zudem ist aus der Literatur bekannt, dass Modellselektionsver-
fahren angewandt auf Bootstrap-Stichproben meist sehr komplexe Modelle liefern.
Dies soll auch fiir die Anwendung des Lasso-Verfahrens auf Bootstrap-Stichproben
untersucht werden. Dazu werden die resultierenden Modelle basierend auf Bootstrap-
Stichproben mit denen fiir Original-Datensétze verglichen. Zusétzliche werden die
Modelle betrachtet, die bei der Anwendung vom Lasso-Verfahren auf Subsampling-
Stichproben entstehen. Ziel dieser Arbeit ist es, zu priifen, ob die Resampling-
Methoden verbunden mit dem Lasso-Verfahren wiinschenswerte Ergebnisse erzie-
len. Dazu werden nach einer theoretischen Einfiihrung in das Lasso-Verfahren die
Ergebnisse fiir Bootstrap und Subsampling basierend auf simulierten Daten gegen-
iibergestellt. Hierbei werden die Modellkomplexitéit, die Inclusion Frequencies und
die Pradiktionsgiite betrachtet. Alle durchgefiihrten Analysen basieren auf unkorre-
lierten, normalverteilten Variablen, die zuvor simuliert wurden.

Die vorgenommenen Auswertungen zeigen, dass keine Resampling-Methode klar zu
bevorzugen ist. Fiir Modelle, die moglichst alle relevanten Variablen enthalten und
gute Vorhersagen treffen sollten, sollten eher Bootstrap-Stichproben der Gréfe n
verwendet werden. Einen Kompromiss zwischen Interpretierbarkeit und guter Pra-

diktionsgiite bietet Subsampling.
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Kapitel 1 Einleitung

1. Einleitung

Besonders in der Genetik {ibersteigt die Menge potentieller Einflussvariablen oft-
mals die Zahl der Beobachtungen um ein Vielfaches. Dieses Problem wird als p > n
bezeichnet, wobei p die Anzahl an Variablen und n die Anzahl an Beobachtungen be-
schreibt. Klassische statistische Methoden wie der Kleinste-Quadrate-Schitzer sind
in diesem Fall bei der Schitzung der S-Koeffizienten nicht mehr stabil und somit
ungeeignet. Ein weiteres Risiko birgt die Aufnahme aller p Kovariablen in ein Re-
gressionsmodell. Dadurch konnte zwar eine sehr gute Modellanpassung an die zur
Schétzung genutzten Daten erreicht werden, aber das Modell ware aufgrund eines re-
sultierenden Overfittings zur Prognose kaum geeignet. Dariiber hinaus wire es durch
die Vielzahl an Kovariablen sehr schwer interpretierbar. (Fahrmeir et al., 2013; Biihl-

mann und van de Geer, 2011)

Eine komfortable Losung dieser Probleme schlug Tibshirani (1996) mit dem soge-
nannte Least Absolute Shrinkage and Selection Operator, kurz Lasso, vor. Hierbei
werden die absoluten Werte der -Koeffizienten geschrumpft und simultan eine Va-
riablenselektion durchgefiihrt. Diese Kombination aus Schétzung und Variablense-
lektion macht das Lasso-Verfahren fiir den Anwender sehr attraktiv. Als ungiinstig
erweist sich jedoch, dass bei Verwendung des Penalisierungsparameters, der den
kleinsten Préadiktionsfehler liefert, neben den relevanten auch meist irrelevante Va-
riablen nach der Selektion im Modell enthalten bleiben. Zudem stellt sich die Frage,
ob prinzipiell ein Penalisierungsparameter existiert, fiir den die selektierten Varia-
blen auch genau den relevanten entsprechen. Existiert solch ein Parameter, sodass
fiir n gegen unendlich die Wahrscheinlichkeit, nur genau die relevanten Variablen
zu selektieren, gegen 1 geht, so wiirde man die Selektion als konsistent bezeichnen.
Dies ist jedoch nur unter vergleichsweise strengen Annahmen gegeben. (Biihlmann
und van de Geer, 2011; Meinshausen und Biihlmann, 2006)

Um auch unter schwécheren Annahmen eine konsistente Schétzung erreichen zu
kénnen, wurden zahlreiche Modifikationen des urspriinglichen Verfahrens entwi-
ckelt. Eine Moglichkeit ist die Anwendung des Lasso-Verfahrens auf Bootstrap-
Stichproben. Im Bootstrap-Verfahren werden durch zufillige Ziehungen aus dem
Original-Datensatz mehrere Pseudo-Datenséitze generiert. Diese Ziehungen erfolgen
mit Zuriicklegen. Alternativ kénnen auch Pseudo-Datensitze iiber Subsampling,

das heifst Ziehen ohne Zuriicklegen, erzeugt werden. Somit stehen dem Anwender
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Kapitel 1 Einleitung

zur Variablenselektion nicht nur einer, sondern mehrere Datensétze zur Verfiigung.
Dies ermoglicht nicht nur die Unsicherheit eines Selektionsverfahrens zu quantifi-
zieren, sondern auch die Stabilitdt zu vergrofern und Konsistenz zu schaffen. So
zeigt Bach (2008), dass unter bestimmten Annahmen das Lasso-Verfahren alle re-
levanten Variablen mit einer Wahrscheinlichkeit, die fiir n gegen unendlich gegen
1 geht, identifiziert. Wahrenddessen besteht fiir irrelevante Variablen lediglich eine
echt positive Wahrscheinlichkeit, in das geschitzte Modell aufgenommen zu werden.
Dementsprechend befinden sich nach Anwendung des Lasso-Verfahrens auf verschie-
dene Bootstrap-Stichproben die relevanten Variablen in allen Modellen, wahrend die
irrelevanten nur zufillig aufgenommen werden. Durch Betrachtung der Modelle al-
ler Bootstrap-Stichproben konnen somit relevante Variablen identifiziert und eine
konsistente Variablenselektion erreicht werden. Eine weitere Moglichkeit, das Lasso-
Verfahren zu verbessern, begriinden Meinshausen und Biihlmann (2010) mit ihrem
Konzept der Stability Selection. Hierbei werden mittels Subsampling verschiedene
Pseudo-Datensétze gebildet. Nach Anwendung des Lasso-Verfahrens auf jeden der
Pseudo-Datensiitze wird fiir verschiedene Penalisierungsparameter die empirische
Wahrscheinlichkeit bestimmt, dass der Effekt einer bestimmten Variable ungleich
Null geschitzt wird. Ubersteigt diese Wahrscheinlichkeit einen gewihlten Wert, so
wird die jeweilige Variable als relevant angesehen. (Biithlmann und van de Geer,
2011; Henderson, 2005)

Motiviert durch diese Publikationen wird im Rahmen der vorliegenden Arbeit un-
tersucht, wie sich das Lasso-Verfahren bei Anwendung auf verschiedene Resampling-
Methoden verhélt. Da aktuelle Verdffentlichungen (Janitza et al., in Druck; Binder
und Schumacher, 2008) zeigen, dass Selektionsverfahren fiir Bootstrap-Stichproben
tendenziell komplexere Modelle liefern als fiir Original-Datensétze, steht besonders
ein Vergleich mit dem alternativen Subsampling im Vordergrund. Dazu werden 1 000
Datensétze generiert und daraus Bootstrap-Stichproben der Grofen m und n sowie
Subsamples der Grofe m gezogen. Anschliefend wird das Lasso-Verfahren auf alle
Datensétze zur Variablenselektion angewandt. Hierfiir wird fiir jeden Datensatz der
Penalisierungsparameter A verwendet, der den kleinsten Pradiktionsfehler liefert.
Zur Evaluation der verschiedenen Resampling-Methoden wird die resultierende Mo-
dellkomplexitét betrachtet. Diese beschreibt die Anzahl aufgenommener Variablen
in einzelnen Modellen. Des Weiteren werden die Pradiktionsgiite und sogenannte
Inclusion Frequencies fiir die verschiedenen Methoden verglichen. Die Inclusion Fre-

quencies beschreiben hierbei fiir jede Variable den Anteil der Modelle, in denen ihr
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Effekt ungleich Null geschétzt wird. Durch Untersuchung der verschiedenen Charak-
teristika konnen sowohl die Vorteile als auch Probleme der Anwendung von Lasso
fiir verschiedene Resampling-Methoden analysiert wird. Diese konnen bei der Ent-

wicklung neuer Methoden beriicksichtigt werden. (De Bin et al., in Druck)

Die vorliegende Arbeit ist folgendermafen gegliedert: In Kapitel 2 wird die verwende-
te Methodik vorgestellt. Dazu werden das Lasso-Verfahren ausfiihrlich erldutert und
die Resampling-Methoden Bootstrap und Subsampling vorgestellt. Anschlieffend er-
folgt in Kapitel 3 eine Anwendung der vorgestellten Methoden auf simulierte Daten.
Hierfiir wird zundchst auf die Vorgehensweise bei der Datensimulation nédher einge-
gangen. Die Darstellung und der Vergleich der verschiedenen Resampling-Methoden
erfolgen im Anschluss. Abschliefend werden in Kapitel 4 die vorliegenden Ergebnisse

kritisch diskutiert und weiterfithrende Gedanken formuliert.
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Kapitel 2 Methodik

2. Methodik

Grundlage der Analysen dieser Arbeit ist das Lasso-Verfahren. Bevor dieses genauer
ausgefiihrt wird, ist der im linearen Regressionsmodell standardmifig verwende-
te KQ-Schéitzer zu erlautern. Basierend auf diesem wird anschlieffend das Lasso-
Verfahren motiviert. Des Weiteren werden mdogliche Probleme des Lasso-Verfahrens
und Losungsansitze durch die Kombination mit Bootstrap beschrieben. Obwohl das
Lasso-Verfahren prinzipiell auch fiir generalisierte lineare Modelle anwendbar ist,
beschranken sich die folgenden Erlduterungen und Analysen lediglich auf klassische

lineare Modelle.

2.1. KQ-Schatzer

Der Einfluss von p erkliarenden Kovariablen 1, ..., z, auf eine interessierende Variable

y wird haufig durch ein multiples lineares Regressionsmodell der Form
vi=Bo+ Bixa+ oo+ ...+ Bpript+e, i=1,..n

dargestellt. Oftmals wird auch die alternative Matrixnotation

y=XB+e
A1 €1
mit dem Vektor der Zielgroken y = | : | und dem der Storgrofen € = | : | und
Yn €n
1 ZTi1 0 Tip
der Designmatrix X = | : : verwendet. Fiir das lineare Regressions-
1 Tp1 - xnp

modell miissen folgende Annahmen gelten:
1. Die Storgrofen sind im Mittel Null, d.h. E(¢;) =0

2. Die Storgrofen sind homoskedastisch und unkorreliert, d.h.
Cov(e) =E(ee?) = 0?1

3. Die Storgréfen sind normalverteilt, d.h. ¢; 5 A/(0, 02)
4. Die Designmatrix X besitzt vollen Spaltenrang, d.h. rg(X) = p

Zur Schitzung der unbekannten Regressionskoeffizienten (; wird in der Regel der

Kleinste-Quadrate-Schitzer, im folgenden als KQ-Schitzer bezeichnet, verwendet.
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Hierbei wird zunéchst die Summe der quadrierten Abweichungen gebildet, welche in

Matrix-Schreibweise tiber

KEQ(B) = (y —XB)'(y - XpB)=¢€"e (1)
dargestellt wird. Diese wird anschlieffend minimiert, indem die erste Ableitung

OKQ(B)

_ _owT T
55— X'y+2X'Xp (2)

mit Null gleichgesetzt wird. Um zu gewihrleisten, dass es sich hierbei um ein Mini-

mum handelt, wird zusétzlich die zweite Ableitung

*KQ(B)

W - 2XTX

betrachtet. Durch die vierte Modellannahme kann direkt gefolgert werden, dass die
Matrix X?X positiv definit ist. Somit wird eine Minimierung genau dann erreicht,
wenn die Ableitung in (2) gleich Null ist. Da positive Definitheit Invertierbarkeit

impliziert, ist das Minimierungsproblem eindeutig mit
BKQ = (XTX)_leY

16sbar. (Fahrmeir et al., 2009)

2.2. Motivation Shrinkage-Verfahren

Der KQ-Schéatzer ist erwartungstreu und damit unverzerrt. Zudem weist er laut
Gauk-Markov-Theorem unter allen linearen erwartungstreuen Schétzern die kleins-
te Varianz auf. Somit gilt er als BLUE (Best Linear Unbiased Estimator), das heift
als bester linearer unverzerrter Schitzer. Kritisch wird die Verwendung des KQ-
Schétzers allerdings, wenn Spalten der Designmatrix nicht linear unabhéngig sind
oder mehr Kovariablen als Beobachtungen (p > n) vorliegen. In diesen Féllen be-
sitzt die Designmatrix keinen vollen Spaltenrang und XX ist nicht invertierbar.
Infolgedessen ist die Losung des KQ-Schétzers nicht mehr eindeutig und die Varianz
der resultierenden [S-Schéitzer steigt stark an. (Fahrmeir et al., 1996; Fahrmeir et al.,
2013)

Um auch in solchen Situationen addquate Schétzer zu erhalten, wurden sogenann-

te Shrinkage-Verfahren entwickelt. Diese nehmen eine Verzerrung des Schéitzers in
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Kauf, um eine eindeutige Losung bestimmen zu kénnen. Dazu wird im Vergleich
zur herkommlichen KQ-Schitzung noch ein zusitzlicher Penalisierungsterm pen((3)

eingefiihrt. Insgesamt wird also der Schétzer
Bricq = argmin{(y — X8)"(y ~XB)}, mit pen(8) <t (3)

gebildet. Der Penalisierungsterm pen(3), welcher ein Maf fiir die Komplexitit des
Vektors der Regressionskoeffizienten darstellt, wird durch die Konstante ¢ in sei-
ner Grofe beschrankt. Er steuert den Ausgleich zwischen Varianz und Bias des
Schétzers (Bias-Varianz-Trade-off) und ist so konstruiert, dass er fiir wachsende (-
Koeffizienten ansteigt. Dementsprechend wird die Grofe der S-Koeffizienten durch

t restringiert und die Varianz im Vergleich zum KQ-Schétzer verkleinert. (Fahrmeir
et al., 2013)

2.3. Uberblick Lasso-Verfahren

Mogliche Formen des Shrinkage-Verfahrens sind die Ridge-Regression von Hoerl und
Kennard (1970) und das von Tibshirani (1996) vorgestellte Lasso-Verfahren. Die Ab-
kiirzung Lasso steht hierbei fiir Least Absolute Shrinkage and Selection Operator.
Dieses Verfahren bildet die Grundlage der vorliegenden Arbeit und wird im Folgen-

den genauer erldutert.

2.3.1. Definition
Wiéhrend fiir die Ridge-Regression die Ly - Norm zur Penalisierung verwendet wird,
greift man fiir das Lasso-Verfahren auf die L; - Norm zuriick. Dementsprechend wird

der penalisierte KQ-Schétzer fiir das Lasso-Verfahren durch
R p
Brusso = argmin{(y = XB)"(y = Xg)}, mit 3 _|5] <t (4)
j=1

dargestellt. Wie der Name des Verfahrens bereits erkennen lisst, werden hierbei die
absoluten Werte der (-Koeffizienten durch die zusétzliche Restriktion geschrumpft
und teilweise gleich Null gesetzt. Somit findet bei diesem Verfahren simultan zur

Schétzung eine Variablenselektion statt. Eine weitere, dquivalente Darstellung des
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Lasso-Problems ist
A p
/BLasso = argmﬁin{(y - X/B)T(y - X/B) + )‘ Z |6]|}7 (5)
j=1

wobei A > 0 einen Penalisierungsparameter bezeichnet. Die beiden Darstellungs-
formen (4) und (5) sind insofern #dquivalent, dass fiir jedes A € [0,00) ein ¢ > 0
existiert, sodass beide Probleme die gleiche Lisung besitzen. (Leng et al., 2006;
Fahrmeir et al., 2013)

An dieser Stelle gilt es zu beachten, dass sowohl in Gleichung (4) als auch in Glei-
chung (5) der Intercept fy nicht in den Penalisierungsterm mit eingeht. Andernfalls
ware die Schatzung der S-Koeffizienten von der Skalierung von Y abhéngig. So wiir-
de eine Verschiebung aller Werte y; um eine Konstante ¢ nicht eine Verschiebung der
Pradiktion um die gleiche Konstante, sondern eine verdnderte Schitzung bewirken.
Stattdessen werden im Vorhinein alle Kovariablen und der Response zentriert, so-
dass y = 0 und & = 0. Dies fiihrt automatisch zu Bo = 0. Alternativ konnen auch nur
die Variablen x;; zentriert und der Intercept iiber Bo = y geschitzt werden. Da die
resultierenden Schéitzer keine Skaleninvarianz aufweisen, ist es zudem sinnvoll, die
Kovariablen zu standardisieren. Aus Griinden der Ubersichtlichkeit wird im Folgen-
den von standardisierten Kovariablen und einem zentrierten Response ausgegangen.
(Hastie et al., 2009; Fahrmeir et al., 2013)

2.3.2. Allgemeine Eigenschaften

Wie bereits erldutert, besteht zwischen der Konstante ¢ aus Gleichung (4) und dem
Penalisierungsparameter A > 0 aus Gleichung (5) eine eins-zu-eins Beziehung, sie
sind jedoch nicht dquivalent. Beide Parameter steuern die Stérke der Penalisierung
und dementsprechend auch den Grad der Schrumpfung. Wird X sehr klein gewéhlt,
so werden grofse Werte fiir Bj kaum bestraft und die Schéatzer BLL&SSO werden den
KQ-Schétzern Bj, k@ sehr dhnlich sein. Wird X hingegen sehr gro gewahlt, so werden
grofe Werte fiir Bj stiarker bestraft. Die geschitzten Werte ij Lasso Werden dement-
sprechend verhaltnisméafig klein oder gleich Null sein. Fiir ¢ ist das Schrumpfungs-
verhalten gegensétzlich. So fiihren groke Werte von ¢ zu einer schwachen und kleine

Werte von ¢ zu einer starken Schrumpfung. (Fahrmeir et al., 2013)

Abbildung 1 zeigt, basierend auf einem simulierten Datensatz, wie die Schiatzung der
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25 22 15 7 1

0.4

0.2

geschétzte Koeffizienten

log (A)

Abbildung 1: Verdnderung von mit Hilfe des Lasso-Verfahrens geschitzten (-
Koeffizienten in Abhéngigkeit von log(\)

B-Koeffizienten in Abhangigkeit vom gewahlten A variieren kann. Hierbei wird die
Darstellung der Verdnderung eines einzelnen [-Koeffizienten als Regularisierungs-
pfad bezeichnet. Aus Griinden der Ubersichtlichkeit wird fiir A hiufig eine log-Skala
verwendet. Da die Logarithmus-Funktion streng monoton steigend ist, bedeutet ei-
ne Zunahme von log(\) auch eine Zunahme von A\. Wie zu erwarten werden [-
Koeflizienten mit steigendem A unterschiedlich schnell Richtung Null geschrumpft,
bis schlussendlich alle Koeffizienten gleich Null geschitzt werden. Zusétzlich zum
Penalisierungsparameter befindet sich noch eine weitere horizontale Achse in der
Grafik. Diese gibt an, wie viele Koeffizienten sich noch im Modell befinden, das

heift ungleich Null geschétzt werden. Somit verschafft diese Darstellungsweise einen
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schnellen Uberblick, fiir welche Werte von A die einzelnen Variablen im Modell ent-
halten sind. (Friedman et al., 2010)

Da im Lasso-Verfahren die absoluten Werte in den Penalisierungsterm eingehen, ist
das penalisierte KQ-Kriterium aus Gleichung (5) nicht differenzierbar. Zur Bestim-

mung des Minimums miisste die Gleichung

k
2X"XB+2X"y + 1) sign(8;) =0

J=1

gelost werden. Diese Gleichung besitzt Sprungstellen und ist nur numerisch losbar.
Somit gibt es keine explizite Form fiir den Schitzer 3 Lasso» Sondern er muss rech-
nergestiitzt iiber spezielle Algorithmen bestimmt werden. Dementsprechend ist auch
die Herleitung statistischer Kenngrofen, wie Varianz und Bias, vergleichsweise kom-
plex. Im Vergleich zu dem KQ-Schiitzer kann festgestellt werden, dass 3 Lasso ZWar

verzerrt ist, aber eine kleinere Varianz aufweist. (Fahrmeir et al., 2013)

2.3.3. Geometrische Eigenschaften

Im Vergleich zu anderen Shrinkage-Verfahren ist ein Vorteil von Lasso, dass (-
Koeftizienten exakt gleich Null geschitzt werden konnen. Somit wird simultan zur
Schétzung eine Variablenselektion durchgefiihrt. Dieses Verhalten wird im Folgenden
fiir p = 2 mit Hilfe der geometrischen Eigenschaften des penalisierten KQ-Schétzer
genauer erliutert. Eine Ubertragung der Ergebnisse auf den mehrdimensionalen Fall
ist ohne Probleme moglich. Es wird weiterhin von standardisierten Kovariablen und
einem zentrierten Response ausgegangen, weshalb der Intercept nicht weiter betrach-
tet wird. (Fahrmeir et al., 2009)

Das KQ-Kriterium aus Gleichung (1) kann unter Vernachldssigung einer Konstante

als quadratische Funktion von 3
LS(B) = (B~ B)'X"X(B ~ B)

umformuliert werden. Als Losung des Problems LS(8) = ¢, fiir beliebige Konstanten
¢, resultieren fiir die Werte von 3 ellipsenférmige Konturlinien. Diese werden in Ab-
bildung 2 dargestellt. Das Zentrum aller Ellipsen bildet der KQ-Schétzer B Kxg> das
heifst der Schétzer, fiir den die Summe der quadratischen Abweichungen am kleins-

ten ist. Ein steigender Ellipsendurchmesser spricht fiir eine grofere Abweichung.
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2

Abbildung 2: Geometrische Visualisierung des penalisierten KQ-Schétzers
links: Ridge-Regression; rechts: Lasso-Verfahren
(Fahrmeir et al., 2013)

Die spezifische Form der Ellipsen wird durch die Matrix X*X festgelegt. Zusétzlich
befinden sich in Abbildung 2 Schattierungen um den Nullpunkt des Koordinaten-
systems. Diese stellen verschiedene Stufen der Restriktion fiir die 5-Schéitzer dar.
Fiir das Lasso-Verfahren ist die Form der Restriktion |5;]+ 52| < t die eines um 90°
gedrehten Quadrates mit der Seitenlinge v/2¢. Im Vergleich dazu bildet die Restrik-
tion 37 + B¢ < t der Ridge-Regression einen Kreis. Die Losung des penalisierten
Minimierungsproblems aus Gleichung (3) ist der Punkt, an dem die kleinstmogliche

Konturlinie eine gewéhlte Restriktion beriihrt. (Fahrmeir et al., 2013)

Dementsprechend wird im Lasso-Verfahren einer der Koeffizienten auf Null geschétzt,
wenn der Beriihrungspunkt genau an einer Ecke des Quadrates, das heifst auf ei-
ner Koordinatenachse liegt. Wird der Wert der Restriktionsparameter ¢ ausreichend
klein gewahlt, so befinden sich die Beriihrungspunkte zwangslaufig auf einer oder
mehreren Koordinatenachsen. Da, wie in Abbildung 2 ersichtlich, bei der Ridge-
Regression keine Ecken als Beriihrungspunkte zur Verfiigung stehen, ist es duferst
unwahrscheinlich, dass Koeffizienten auf Null geschitzt werden. Dies erklart, wes-
halb die vorteilhafte Variablenselektion zwar beim Lasso-Verfahren, nicht aber bei
der Ridge-Regression erfolgt. In Abbildung 2 werden diese Zusammenhinge anhand
eines hypothetischen Werts fiir den KQ-Schétzer von B KQ = (6,3)T verdeutlicht.
(Fahrmeir et al., 2013)
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Durch die Standardisierung der Kovariablen befinden sich im zweidimensionalen
Fall die Hauptachsen aller Ellipsen im 45°-Winkel zu den Koordinatenachsen. Somit
liegen in diesem Fall die Beriihrungspunkte und folglich die Losungen des Lasso-
Schiitzers im selben Quadranten wie die des KQ-Schiitzers 3 kg Dementsprechend
sind die Vorzeichen der beiden Schétzer gleich. Fiir den mehrdimensionalen Fall ist
diese Eigenschaft jedoch nicht gegeben. (Tibshirani, 1996)

2.3.4. Wahl des Penalisierungsparameters
Je nach Wahl des Penalisierungsparameters ¢ kann die Schitzung der g-Koeffizienten
stark variieren. Wird ¢ grofer oder gleich der Summe der absoluten KQ-Schétzer

p ~

to = > |8 kgl gewdhlt, so ist die Losung des Minimierungsproblems zwangsldu-
j=1

fig Brusso = Brg- Werte von ¢ < g fiihren hingegen zu einer Schrumpfung der

t .
Koeftizienten gegen Null. So werden im Fall t = 50 zur Schitzung der 3; 1450 die

5}7 k¢ durchschnittlich um 50% geschrumpft. Um den Penalisierungsterm moglichst
sinnvoll zu wahlen, konnen verschiedene Verfahren angewandt werden. Dazu stellt
Tibshirani (1996) drei verschiedene Methoden vor: die Kreuzvalidierung, die ge-
neralisierte Kreuzvalidierung und die analytische, unverzerrte Risikoschatzung. Im
Rahmen dieser Arbeit wird nur auf die Kreuzvalidierung genauer eingegangen, da

diese bei der spiteren Analyse verwendet wird. (Hastie et al., 2009)

Zur Kreuzvalidierung wird der Datensatz zufillig in K gleich grofte Pseudo-Da-
tensdtze aufgeteilt. Eine gingige Wahl hierbei ist K = 10. Nun wird der erste
Pseudo-Datensatz D, gewéhlt. Dieser wird fiir die anschlieffende Parameterschit-
zung ausgeschlossen, das heifst es wird eine Schéitzung auf Basis der anderen K — 1
Pseudo-Datensitze durchgefiithrt. Die Schitzung von BLGSSO’,DI(A), wobei ,,— D
den ausgeschlossenen Pseudo-Datensatz darstellt, kann nun mit Hilfe des Pseudo-
Datensatzes D, evaluiert werden. Dazu werden die wahren Werte des Response mit

den gefitteten verglichen, das heifst der mittlere quadratische Fehler der Schatzung

1 ~
CV(A)Dl N m Z (yl - Xi/BLasso,—Dl ()‘>)2

i€Dq

bestimmt. Diese Vorgehensweise wird fiir alle K Pseudo-Datensétze wiederholt, um

das zugehorige C'V () p, zu ermitteln. Somit kann anschliefend der gesamte mittlere
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quadratische Fehler (Mean Squared Error)

]~

CV(\) = CV(N)p,,

1
K
k=1

im Folgenden als MSE bezeichnet, berechnet werden. (Fahrmeir et al., 2009)

Zur Wahl eines optimalen A\ wird dieses Verfahren fiir verschiedene Werte von A
wiederholt. Zur Veranschaulichung kann der MSE in Abhéngigkeit von A grafisch
dargestellt werden. So zeigt Abbildung 3 anhand simulierter Daten, wie sich der
MSE nach 10-facher Kreuzvalidierung in Abhangigkeit von A verhalten kann. Hierbei
kennzeichnen die roten Punkte den MSE, die grauen Markierungen dessen Standard-
abweichung fiir das jeweilige \. Die Standardabweichung wird dazu im Allgemeinen

iber

K

7=\ T SOV~ VO
berechnet. Zur Darstellung wurde aus Griinden der Ubersichtlichkeit fiir \, wie in
Abbildung 1, eine Log-Skala verwendet. Der Wert von \,,;, befindet sich an der
Stelle, an der der MSE minimal wird und wird in der Regel fiir die Lasso-Schitzung
gewihlt. Eine weitere Moglichkeit ist es, Ag als Penalisierungsparameter zu nutzen.
Dieser bezeichnet den Wert, bei dem sich der MSE noch innerhalb einer Standardab-
weichung des minimalen Fehlers befindet, aber das Modell am stirksten restringiert
wird. Die obere horizontale Achse gibt, wie in Abbildung 1, die Komplexitit des
Modells je nach Wahl des Penalisierungsparameters A an. Dabei ist gut erkennbar,
wie die Anzahl der ins Modell aufgenommenen Parameter mit steigendem A sinkt.
(Friedman et al., 2010)

2.3.5. Besonderheiten im orthonormalen Fall

Einen besonderen Fall zur Berechnung der [S-Koeffizienten stellt der orthonormale
dar. Hierbei ist die Designmatrix orthonormal, das heift X7 X = I. Die Kon-
turlinien in Abbildung 2 wéren nun kreisférmig. In diesem Ausnahmefall sind die
[-Koeffizienten fiir Lasso explizit iiber die Gleichung

) o : A
B Lasso(X) = sign(B; kq) [|5j,KQ| - 5} ,
+
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Abbildung 3: Berechnung der MSE fiir verschiedene Werte von \
Amin = minimaler MSE
Ase = MSE innerhalb einer Standardabweichung

schitzbar, wobei [z], = max(0,z). Diese Gleichung verdeutlicht das typische Ver-

+
halten des Lasso-Schitzers: Der KQ-Schitzer wird geschrumpft und ab einem be-

stimmten Wert fiir A gleich Null geschétzt. Im orthonormalen Design befindet sich
dieser Wert bei | Bﬁ kol < % Abbildung 4 visualisiert dieses Schrumpfungsverhalten,
indem der Lasso-Schitzer als Funktion des KQ-Schitzers beispielhaft fiir einen Wert
von A = 2 dargestellt wird. Da der KQ-Schétzer nicht geschrumpft wird, sondern
sich selbst abbildet, stellt dieser eine Winkelhalbierende dar. Der Lasso-Schétzer
bildet fiir |3, x| > 5 eine um % = 1 verschobene Gerade und ist sonst gleich Null.
(Fahrmeir et al., 2013; Hardle und Simar, 2015)
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Abbildung 4: Zusammenhang von BKQ mit BLasso im Orthonormalfall

2.3.6. Grenzen des Lasso-Verfahrens

Insgesamt weist das Lasso-Verfahren viele positive Eigenschaften auf. So kann es im
Vergleich zum KQ-Schétzer die Varianz der Schéitzer reduzieren und die Interpretier-
barkeit der Modelle durch Variablenselektion steigern. Trotzdem sind dem Verfahren
auch Grenzen gesetzt. Befinden sich mehr Kovariablen als Beobachtungen im Da-
tensatz, das heifst p > n, so werden hochstens n davon in das geschéitzte Modell
aufgenommen. Dies stellt besonders fiir den Fall p > n eine deutliche Einschran-
kung dar. Dementsprechend befinden sich bei einem Datensatz mit sehr wenigen
Beobachtungen gegebenenfalls nicht alle relevanten Variablen im Regressionsmo-

dell. Dies ist eine eher ungiinstige Eigenschaft fiir ein Variablenselektionsverfahren.
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Zudem stellen sich hohe paarweise Korrelationen zwischen mehreren Kovariablen als
problematisch heraus. Hierbei tragen die einzelnen Variablen kaum zusitzlich zur
Erklarung bei, erhohen aber den Penalisierungsterm. Infolgedessen neigt das Lasso-
Verfahren dazu, nur eine beliebige der korrelierten Variablen auszuwéhlen. Befinden
sich im Extremfall zwei identische Kovariablen im Datensatz, so hat das Lasso-
Verfahren keine eindeutige Losung. Somit sollte bei starken Korrelationsstrukturen
im Datensatz die Verwendung einer anderen Methode in Betracht gezogen werden.
(Zou und Hastie, 2005)

2.3.7. Konsistenzbeschriankungen und LGsungsansitze

Eine weitere Einschrankung des Lasso-Verfahrens ist, dass eine konsistente Modell-
schitzung nur in bestimmten Féllen mdglich ist. Konsistenz bedeutet in diesem
Zusammenhang, dass die Wahrscheinlichkeit, die richtigen Variablen ins Modell auf-
zunehmen, fiir n gegen unendlich gegen 1 geht. Formal wird Konsistenz folgender-
maken definiert: Sei S(A) = {j : ;(\) # 0,5 = 1, ..., p}, so wird das Lasso-Verfahren
genau dann als konsistent bezeichnet, wenn

lim P(S(\) =8) =1,

wobel S = {j: 5; # 0,5 = 1,...,p}. Damit diese Konsistenz gegeben ist, muss die
sogenannte ,Irrepresentable Condition“ nach Zou (2006) und Zhao und Yu (2006)
erfiillt sein. Dafiir wird die geschitzte Kovarianz-Matrix S = n!X"X definiert.
Ohne Beschriankung der Allgemeinheit wird angenommen, dass sich die relevanten
Variablen aus den ersten s Variablen, das heikt S = {1, ..., s}, zusammensetzen.

Unter dieser Voraussetzung wird 5 als

dargestellt. Hierbei entspricht 21,1 der geschitzten s x s Kovarianzmatrix der rele-
vanten Variablen, 21’2 = f]zT , der s X (p — s) Kovarianzmatrix von relevanten und
irrelevanten Variablen und 35 der (p—s) x (p—s) Kovarianzmatrix der irrelevanten

Variablen. Die  Irrepresentable Condition® ist unter diesen Annahmen als

Hiz,liff sign(fi,...,0)|| <6, 0<6<1 (6)

e}

definiert, wobei ||z||,, = max;|z;| und sign(fi, ..., 3,) = (sign(51),...,sign(5,))".

Um im Lasso-Verfahren eine konsistente Modellschéitzung erreichen zu konnen ist
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die ,JIrrepresentable Condition“ hinreichend und im Grunde genommen notwendig.
Die Einschrankung ,im Grunde genommen® gilt deshalb, weil die notwendige Bedin-
gung lediglich ein ,, < 1% die hinreichende Bedingung aber ein ,, < 8“ mit 0 < 6 < 1
fordert. Eine dquivalente Formulierung zur ,Irrepresentable Condition® ist die so-
genannte ,Neighbourhood Stability”, welche im Rahmen dieser Arbeit jedoch nicht

weiter ausgefithrt wird. (Biihlmann und van de Geer, 2011)

Bedingung (6) verdeutlicht, dass die Lasso-Schitzung in vielen Féllen nicht konsis-
tent ist. So kann sich beispielsweise eine starke Korrelation zwischen relevanten und
irrelevanten Variablen als problematisch erweisen. Um auch unter weniger stren-
gen Annahmen eine konsistente Modellschdtzung zu erhalten, kénnen verschiedene
Methoden verwendet werden. Eine mogliches Verfahren hierfiir ist die Kombinati-
on von Lasso mit Resampling-Methoden. So stellen Meinshausen und Biihlmann
(2010) mit ihrem Konzept der ,Stability Selection“ ein Verfahren vor, das oftmals
zu einer starken Verbesserung der Ergebnisse fiihrt. Hierbei werden zunéchst durch
Resampling mehrere Pseudo-Datensitze gebildet und anschlieffend wird auf diese
fiir verschiedene Werte von \ das Lasso-Verfahren angewandt. Somit resultieren fiir
jeden Pseudo-Datensatz in Abhéngigkeit von A verschiedene Modelle mit einer un-
terschiedlichen Anzahl an Variablen. Dementsprechend kann fiir jede Variable z; in
Abhéngigkeit von A die empirische Wahrscheinlichkeit, in ein Modell aufgenommen
zu werden, 7?;‘ bestimmt werden. Um mit Hilfe dieser Wahrscheinlichkeiten einen
Grofsteil der relevanten Variablen zu identifizieren, wird ein Grenzwert 7 festgelegt.
Die Menge relevanter Variablen wird anschlieRend iiber S = {j : max frj’\ > 7} ge-
schitzt. Folglich hingen die Ergebnisse der Stability Selection wenig von der Wahl
eines einzelnen Penalisierungsparameters ab. Zudem konnen deutlich stabilere Er-
gebnisse erzielt werden als bei einmaliger Anwendung des Lasso-Verfahrens auf den

urspriinglichen Datensatz.

Als weiteres stabiles Verfahren wurde von Bach (2008) das sogenannte ,Bolasso® ent-
wickelt. Dieses kombiniert das Lasso-Verfahren mit Bootstrap und liefert somit trotz
nicht erfiillter  Irrepresentable Condition* eine konsistente Variablenselektion. Als
Motivation erliutert Bach, dass falls fiir den Penalisierungsparameter \, = \gn=°°
mit Ay € (0,00) gilt, das Lasso-Verfahren fiir alle relevanten Variablen die richtigen
Vorzeichen mit einer Wahrscheinlichkeit, die fiir n gegen unendlich gegen 1 geht,
liefert. Folglich geht auch die Wahrscheinlichkeit dafiir, den Effekt aller relevanten

Variablen ungleich Null zu schétzen, gegen 1. Fiir alle nicht relevanten Variablen
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besteht lediglich eine echt positive Wahrscheinlichkeit, in das Modell aufgenommen
zu werden. Wird das Lasso-Verfahren fiir mehrere Datensétze aus der gleichen Ver-
teilung wiederholt, so befindet sich jede relevante Variable mit einer Wahrscheinlich-
keit, die gegen 1 geht, und zusétzlich noch weitere, irrelevanten Variablen im Modell.
Dementsprechend liegen dem Anwender im Anschluss verschiedene Mengen S; vor,
von der jede mit hoher Wahrscheinlichkeit alle relevanten Variablen enthalt. Wird
nun der Schnitt aus allen Mengen S; gebildet, so befinden sich in der resultierenden
Schnittmenge S = NS; im Idealfall alle relevanten Variablen. Die irrelevanten Varia-
blen, die sich zuféllig in einzelnen Mengen S; befinden, sind durch die Bildung des
Schnitts darin nicht enthalten. Dies erlaubt, alle relevanten Variablen zu identifizie-
ren. Da in der praktischen Anwendung im Normalfall nur ein Datensatz vorliegt,
werden aus dem urspriinglichen Datensatz iiber Bootstrap Pseudo-Datensétze fiir
die spitere Analyse gebildet. Mit Hilfe dieser Vorgehensweise kann auch ohne Be-
dingung (6) eine konsistente Modellschédtzung erreicht werden (wenn log (Anzahl

Pseudo-Datensétze) langsamer gegen unendlich geht als n).

2.4. Moglichkeiten des Resamplings

Die beiden oben erlauterten Beispiele verdeutlichen, dass auch unzureichende Er-
gebnisse des Lasso-Verfahrens leicht verbessert werden kénnen, indem Resampling-
Methoden verwendet werden. Hierbei ist es moglich auf Basis eines Original-Daten-
satzes beliebig viele Pseudo-Datensétze zu generieren. Dabei kann auf verschiedene

Weise vorgegangen werden.

2.4.1. Bootstrap

Das wohl bekannteste Verfahren des Resamplings, welches inzwischen sehr vielfil-
tig verwendet wird, ist das von Efron (1979) vorgestellte Bootstrap-Verfahren. Bei
dieser Methode kann die Generierung der Pseudo-Datensétze sowohl iiber den non-
parametrischen als auch iiber den parametrischen Ansatz erfolgen. Im Rahmen dieser
Arbeit wird jedoch nur auf das nonparametrische Bootstrap-Verfahren eingegangen.
(Henderson, 2005)

Im nonparametrischen Verfahren werden aus dem Original-Datensatz zufillig n Be-
obachtungen mit Zuriicklegen gezogen, um einen Pseudo-Datensatz zu erhalten.
Somit werden manche Beobachtungen mehrmals, andere iiberhaupt nicht in den

Pseudo-Datensatz gezogen. Insgesamt konnen (Q”n_l) verschiedene Pseudo-Datensétze
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resultieren. Diese Vorgehensweise wird b- mal wiederholt und somit werden b Pseudo-
Datensiitze generiert. Die darauffolgenden, statistischen Analysen werden anschlie-
fend auf Basis aller b Pseudo-Datensétze durchgefiihrt. (Henderson, 2005)

Die Vorziige des Bootstrap-Verfahrens im Allgemeinen kénnen folgendermafien er-
klart werden: Da die Verteilung der gesamten Population im Normalfall unbekannt
ist, wird die der zufilligen Stichprobe aus der Gesamtpopulation als Hinweis auf
die wahre Verteilung gesehen. Werden nun aus dieser Stichprobe weitere Bootstrap-
Stichproben gezogen, so kann die eigentliche Verteilung mit Hilfe dieser approximiert
werden. Dementsprechend bringen Sprent und Smeeton (2007) zufolge Bootstrap-
Verfahren einen besonders groken Mehrgewinn, wenn wenig iiber die wahre Vertei-

lung in der Gesamtpopulation bekannt ist. (Henderson, 2005)

In der Praxis wird Bootstrap hiufig dazu genutzt, Standardfehler, Konfidenzinter-
valle oder auch den Bias eines Schitzers zu quantifizieren. Besonders fiir die Analyse
kleiner Datensétze kann dies sehr hilfreich sein. Als Vorteil sehen Efron und Tibs-
hirani (1998), dass bei Verwendung des Bootstrap-Verfahrens fiir die statistische
Analyse notwendige Annahmen reduziert werden konnen. Dies gilt, wie in Kapitel
2.3.7 erldutert, auch fiir das Lasso-Verfahren. (Henderson, 2005)

Eine Modifizierung des Bootstrap-Verfahrens ist der m-out-of-n Bootstrap. Hierbei
werden nicht wie beim urspriinglichen Bootstrap n sondern m < n Beobachtungen
aus dem Original-Datensatz mit Zuriicklegen gezogen. Somit kann das urspriingliche
Bootstrap-Verfahren im Fall von Inkonsistenz oftmals verbessert werden. (Davison
et al., 2003)

2.4.2. Subsampling

Aktuellen Studien zufolge neigen Modellselektionsverfahren angewandt auf Boot-
strap-Stichproben dazu, tendenziell zu viele Variablen auszuwdhlen (Janitza et al.,
in Druck; Binder und Schumacher, 2008). Ein alternatives, dem m-out-of-n Boot-
strap angelehntes Verfahren ist das sogenannte Subsampling. Auch dieses weist in
Fillen, in denen das urspriingliche Bootstrap-Verfahren keine zufriedenstellenden
Ergebnisse mehr liefert, asymptotische Konsistenz auf. Prinzipiell wird beim Sub-

sampling wie im Bootstrap-Verfahren vorgegangen, diesmal werden jedoch die m
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Beobachtungen aus dem Original-Datensatz ohne Zuriicklegen gezogen. (Davison
et al., 2003)

Fiir die Wahl von m gibt es verschiedene M&glichkeiten, die das Ergebnis stark be-
einflussen konnen. Wird m zu grofs gewéhlt, sind sich die einzelnen Stichproben sehr
dhnlich. Zwar kénnte somit der Lasso-Schétzer fiir die einzelnen Stichproben bessere
Ergebnisse erzielen, aber eine potentielle Instabilitit des Selektionsverfahrens durch
Ausreifer wiirde durch diese Ahnlichkeit nicht erkannt werden. Wird m jedoch zu
klein gewahlt, so liefert die Stichprobe zu wenig Information und relevante Variablen
werden moglicherweise nicht als solche identifiziert. Zum Vergleich von Bootstrap
und Subsampling wird oftmals der Wert m = 0.632n verwendet. Dieser setzt sich
folgendermafsen zusammen:

Wird aus einem Datensatz der Grofe n eine Bootstrap-Stichprobe der Grofe n ge-
zogen, so kann die Wahrscheinlichkeit, dass die Beobachtung ¢ mindestens einmal in
der Stichprobe B enthalten ist, iiber

1
PieB)=1—-(1-—-)"
n
berechnet werden. Geht der Stichprobenumfang n gegen unendlich, so nimmt der

Grenzwert dieser Wahrscheinlichkeit den Wert

nh_}rgol - (1- %)" =1—-¢'~0.632
an. Somit betrédgt fiir eine Bootstrap-Stichprobe der Grofe n die erwartete Anzahl
verschiedener Beobachtungen 0.632 n. Damit fiir spatere Vergleiche durchschnittlich
die gleiche Anzahl verschiedener Beobachtungen in Bootstrap- und Subsampling-
Stichproben enthalten sind, wird fiir die weitere Analyse der Wert m = 0.632n
verwendet. (Davison et al., 2003; De Bin et al., in Druck)
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3. Anwendung auf simulierte Daten

Da bekannt ist, dass Variablenselektionsverfahren fiir Bootstrap-Stichproben oft-
mals sehr komplexe Modelle liefern, gilt es, dies auch fiir das Lasso-Verfahren zu
untersuchen. Zudem werden die resultierenden Modelle beziiglich weiterer Giitekri-
terien gepriift. Die dabei erzielten Ergebnisse werden sowohl mit dem alternativen
Subsampling verglichen als auch denen auf Basis der Original-Datensétze gegeniiber-
gestellt. Dementsprechend kénnen mogliche Vorziige und Nachteile der Kombination
aus Lasso-Verfahren und verschiedenen Resampling-Methoden herausgearbeitet wer-
den. Diese sollten fiir die Entwicklung neuer, kombinierter Methoden wie Bolasso

beriicksichtigt werden.

3.1. Datensimulation
Die statistischen Auswertungen zum Vergleich der verschiedenen Resampling-Metho-
den werden anhand eines simulierten Datensatzes durchgefiihrt. Somit ist bekannt,
welche der potenziellen Pradiktoren tatséchlich einen Einfluss auf den Response ha-
ben. Dies ermdglicht nicht nur einen Vergleich zwischen den verschiedenen Metho-
den, sondern auch eine Gegeniiberstellung mit dem wahren Modell. Um die spétere
Auswertung zu erleichtern, werden im Rahmen dieser Arbeit Daten ohne Korrela-
tionsstruktur simuliert. Dafiir wird die statistische Software R (Version 3.0.2) ver-
wendet. Fiir die Simulation wird folgendermaflen vorgegangen:
Der zu analysierende Datensatz soll n = 100 Beobachtungen und p = 200 Kovaria-
blen beinhalten. Zu diesem Zweck werden unabhéngig voneinander, zufillig 20 000
Werte aus der Standardnormalverteilung A(0, 1) gezogen. Mit diesen wird die De-
signmatrix X befiillt. Der Response wird anschliefsend durch die Gleichung

Yi = Bo + Br it + Ba iz + oo+ Pavo Tizo + €&, €~ N(0,1)
generiert. Dazu werden die Werte von ¢; ebenso zufillig aus der Standardnormalver-
teilung N(0,1) gezogen. Die Werte fiir 5; werden so festgelegt, dass die ersten 30
Variablen einen Effekt auf den metrischen Response haben, die iibrigen 170 keinen.

Diese Effekte sind unterschiedlich stark ausgepréigt, wobei jeweils fiinf Variablen den
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gleichen Einfluss auf den Response haben. Demnach haben die 3; folgende Werte:

Bo =0

b = P =..= B = 025
Be = pr =..= P = 05
i = P2 =..= fis = 075
Bie = Bir =..= By = 10
fBor = B =..= [z = 125
Bas = Por =..= B = 15
Py = P2 =..= Pao = 0

Da sich in einer einzelnen Designmatrix zuféllige Strukturen befinden koénnten,
die die spitere Analyse moglicherweise beeintrichtigen, wird das Verfahren 1000
mal wiederholt. Demnach werden insgesamt 1000 Datensétze nach obiger Vorge-
hensweise generiert. Anschliefend werden aus jedem der 1000 Datensitze Pseudo-
Datensitze, mit Hilfe der in Kapitel 2.4 erlauterten Verfahren, erstellt. Hierbei wird
b =1 gesetzt, das heifst fiir jeden Original-Datensatz eine Bootstrap-Stichprobe der
Grofse n, eine Bootstrap-Stichprobe der Grofe m und eine Subsampling-Stichprobe
der Groke m gezogen. Diese werden zur vereinfachten Darstellung im weiteren Ver-
lauf als ,Bootstrap(n)“, ,Bootstrap(m)“ und ,Subsample(m)* bezeichnet, die Original-
Datensiitze als ,Daten“. Um die Ergebnisse von Subsampling und Bootstrap basie-
rend auf gleicher Stichprobengrofe vergleichen zu kénnen, wird fiir beide Verfahren

m = 0.632n gesetzt. Dementsprechend liegen zur Analyse folgende Datensétze vor:
e 1000 Original-Datensédtze mit jeweils 100 Beobachtungen

e 1000 Pseudo-Datensétze mit jeweils 100 Beobachtungen, generiert durch Boot-
strap

e 1000 Pseudo-Datensitze mit jeweils 63 Beobachtungen, generiert durch m-

out-of-n Bootstrap

e 1000 Pseudo-Datensitze mit jeweils 63 Beobachtungen, generiert durch Sub-

sampling

Fiir jeden dieser 4000 Datensitze wird anschlieflend das Lasso-Verfahren durchge-
fiihrt. Dabei wird, wie in Kapitel 2.3.4 erlautert, das entsprechende A\ jeweils so

gewihlt, dass der MSE minimal wird.
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3.2. Auswertung

Da sich die (Pseudo-)Datensitze in der Regel alle unterscheiden, werden fiir jeden
Datensatz nach Anwendung des Lasso-Verfahrens verschiedene Ergebnisse erwartet.
Es liegt jedoch die Vermutung nahe, dass die relevanten Variablen in den meisten
Modellen enthalten sind, wahrend die irrelevanten je nach Pseudo-Stichprobe unter-
schiedlich oft aufgenommen werden. Um die verschiedenen Resampling-Methoden
vergleichen und bewerten zu kénnen, werden unterschiedliche Kriterien untersucht.
Im Fokus der Analyse stehen hierbei der detaillierte Vergleich der Pradiktionsgii-
te, der Inclusion Frequencies und der Modellkomplexitét fiir Bootstrap(n), Boot-
strap(m) und Subsample(m). Zur Einordnung der Giite der Charakteristika fiir die
berechneten Modelle erfolgt zuséitzlich eine Gegeniiberstellung mit den Ergebnissen
fiir 1000 Original-Datensatze. Zudem sind durch die Simulation der Daten die wah-
ren Modelle bekannt, das heifst auch ein Vergleich mit diesen ist mdoglich. Alle im
Folgenden ausgewerteten Modelle wurden mit Hilfe des R-Pakets ,,glmnet* berech-
net. (Friedman et al., 2010)

3.2.1. Modellkomplexitit

Zunichst wird die Komplexitdt der resultierenden Modelle betrachtet. Diese be-
schreibt die Anzahl an Variablen die nach Anwendung des Lasso-Verfahrens noch
im Modell enthalten sind. Ein moglichst gutes Modell sollte sparsam sein, das heifst
so wenig Variablen wie moglich beinhalten. Somit wird die Gefahr eines Overfittings
vermieden und die Interpretierbarkeit des Modells steigt. Trotzdem sollten keine
relevanten Variablen unnotig aus dem Modell entfernt werden, da dies zu einem Un-
derfitting fithren konnte. Bei der weiteren Betrachtung der Modellkomplexitit muss
beriicksichtigt werden, dass auch hohe Werte noch keine Aussage dariiber geben,

wie viele relevante Variablen in das Modell aufgenommen wurden. (De Bin et al., in
Druck)

Abbildung 5 stellt die Modellkomplexitdt in Form von Boxplots dar. Hierbei be-
schreibt die y-Achse, wie viele Variablen nach Anwendung des Lasso-Verfahrens in
den Modellen enthalten sind. Jeder der vier Boxplots verkorpert die auftretenden
Modellkomplexitiaten innerhalb eines Resampling-Verfahrens und wird somit auf Ba-
sis von 1000 berechneten Modellen erstellt. Die fetten, schwarzen Linien innerhalb
der einzelnen Boxen kennzeichnen den Median der jeweiligen Gruppe, die Boxen
selbst das 25% - und das 75% - Quantil. Dementsprechend stellen sie den Interquar-

tilsabstand dar. An den Boxen befinden sich sogenannte Whiskers. Diese markieren
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Abbildung 5: Vergleich der Modellkomplexitét fiir Original-Datensétze und verschie-
dene Resampling-Methoden

die Werte der Modellkomplexitéit, die nicht weiter als der 1.5-fache Interquartils-
abstands von den Randern der Box entfernt sind. Alle Werte die auferhalb der

Whiskers liegen, werden als Ausreiffer bezeichnet.

Vergleicht man die Mediane der einzelnen Methoden, so ist der fiir die Original-
Datensitze am grofiten. Dies bedeutet, dass das Lasso-Verfahren, angewandt auf
die Original-Datensitze, die komplexesten Modelle liefert. Der Median liegt in die-
sem Fall bei 77. Die maximale Modellkomplexitdt betragt 102, die minimale 46.
Da in der Literatur fiir das Lasso-Verfahren als maximale Anzahl an aufgenommen
Variablen min (p=200, n—=100) angegeben ist (siche Kapitel 2.3.6), sollte diese h6chs-
tens 100 betragen. Der Wert von 102 ist verwunderlich. Insgesamt sind die aus dem

Original-Datensatz resultierenden Modelle deutlich zu komplex. Die wahre Anzahl
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an relevanten Variablen betragt lediglich 30.

Weniger komplexe Modelle liefert das Lasso-Verfahren fiir Bootstrap(n). Der Medi-
an der Modellkomplexitat liegt hier mit 58 deutlich niedriger als bei den Original-
Datensétzen. Sogar die maximale Modellkomplexitdt von 73 liegt unter dem Median
fiir die Original-Datensétze. Das kleinste resultierende Modell weist 32 Variablen
auf. Insgesamt liefert das Lasso-Verfahren also auch fiir Bootstrap(n) zu komplexe

Ergebnisse.

Wird das Lasso-Verfahren auf Bootstrap(m) angewandt, so erhiilt man die spar-
samsten Modelle. Der Median der Modellkomplexitat betrigt lediglich 40. Maximal
werden 58 Variablen vom Lasso-Verfahren ausgewihlt. Dies legt die Schlussfolgerung
nahe, dass Bootstrap(m) beziiglich der Modellkomplexitét fiir das Lasso-Verfahren
gut geeignet ist. Hierbei miissen jedoch auch die minimalen Werte der Modellkom-
plexitat betrachtet werden. Das kleinste resultierende Modell beinhaltet nur noch
eine Variable. Somit wére es deutlich zu sparsam. Auch wenn es sich hierbei um
Ausreiffer handelt, ist zu beriicksichtigen, dass insgesamt 189 der 1000 Modelle we-
niger als 30 Variablen beinhalten. Dementsprechend befinden sich in mindestens
18.9% der Modelle nicht alle relevanten Variablen. Hierbei wird von ,mindestens®
gesprochen, da auch in Modellen mit 30 oder mehr Variablen, nicht zwangsldufig

alle relevanten enthalten sind.

Die grokten Unterschiede der Modellkomplexitét innerhalb einer Resampling-Metho-
de existieren fiir Subsample(m). Hierbei reicht die Anzahl aufgenommener Variablen
von 1 bis 70. Wie bei Bootstrap(m) werden fiir viele Modelle (mindestens 180 von
1000) nicht alle relevanten Variablen aufgenommen. Der Median liegt mit 46 iiber
dem von Bootstrap(m). Insgesamt erweist sich fiir Subsample(m) eine Einordnung
im Vergleich zu den anderen Methoden durch die grofte Spanne der Ergebnisse als
schwierig. Bei Betrachtung des unteren und oberen Quartils wéren jedoch Subsam-
ple(m) und Bootstrap(m) den anderen Verfahren beziiglich ihrer Komplexitéit vor-
zuziehen, da diese tendenziell nur wenig mehr als die relevante Anzahl an Variablen
aufnehmen. Dabei ist jedoch zu beachten, dass, obwohl in manchen Modellen die
Modellkomplexitiat der des wahren Modells entsprach, in keinem Fall das wahre Mo-

dell identifiziert werden konnte.
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3.2.2. Inclusion Frequencies

Um nicht nur die Anzahl aufgenommener Variablen, sondern auch die Aufnahme
relevanter Variablen zu quantifizieren, werden zusétzlich Inclusion Frequencies be-
trachtet. Diese geben fiir jede Variable den Anteil der Modelle an, in denen ihr
Effekt ungleich Null geschatzt wird. Somit stellen Inclusion Frequencies einen In-
dikator fiir die geschétzte Relevanz einzelner Variablen dar. Dabei ist zu beachten,
dass die hier betrachteten Inclusion Frequencies nicht wie in der Literatur iiblich
anhand von 1000 Pseudo-Datensétzen aus einem Original-Datensatz ermittelt wer-
den. Stattdessen erfolgt die Berechnung basierend auf 1 000 Pseudo-Datensétzen aus
1000 verschiedenen Original-Datensdtzen. Nach Anwendung des Lasso-Verfahrens
wird erwartet, dass die relevanten Variablen fast immer im resultierenden Modell
enthalten sind. Irrelevanten Variablen hingegen sollte nur in wenigen Féllen ein
Effekt zugesprochen werden. Dementsprechend haben im Idealfall relevante Varia-
blen eine Inclusion Frequency von 1, irrelevante Variablen eine von 0. Besonders
die Aufnahme von Variablen mit schwachem Effekt ist in der praktischen Anwen-
dung jedoch eher zufillig. So liegt unter Beriicksichtigung der zuvor beschriebenen
Modellkomplexitit die Vermutung nahe, dass oftmals irrelevante Variablen aufge-
nommen werden. Trotzdem kann davon ausgegangen werden, dass Variablen mit
starkem Effekt eine Inclusion Frequency nahe 1 und Variablen ohne Effekte eine In-
clusion Frequency nahe 0 aufweisen. Fiir Variablen mit schwicheren Effekten wird
eine mittlere Inclusion Frequency zwischen 0 und 1 erwartet. Durch die Kenntnis des
wahren Modells konnen nicht nur die beobachteten Inclusion Frequencies der ver-
schiedenen Resampling-Methoden miteinander verglichen, sondern diese auch den

erwarteten Inclusion Frequencies gegeniibergestellt werden. (De Bin et al., in Druck)

Insgesamt liegen, der Anzahl an Variablen entsprechend, 200 Inclusion Frequencies
fiir jede Resampling-Methode zur Analyse vor. Um diese grafisch iibersichtlicher
darstellen zu kénnen, werden die Inclusion Frequencies von Variablen mit gleichem
Effekt zusammengefasst. So werden beispielsweise die Inclusion Frequencies fiir Va-
riablen mit Effekt 0.25 als eine Gruppe betrachtet. Dementsprechend kann eine
Reduktion auf sieben verschiedene Gruppen fiir jede Resampling-Methode erreicht
werden. Abbildung 6 zeigt die mittleren Inclusion Frequencies fiir jeweils eine Grup-
pe von Variablen mit gleichem Effekt. Zum direkten Vergleich wurden die mittle-
ren Inclusion Frequencies der verschiedenen Resampling-Methoden jeweils fiir den
gleichen Effekt nebeneinander zu einem Block angeordnet. Diese Blocke wurden so

sortiert, dass der Effekt der Variablen von links nach rechts schwécher wird. Erwar-
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Abbildung 6: Vergleich der mittleren Inclusion Frequencies anhand verschieden ge-
nerierter Datensitze fiir unterschiedlich starke Effekte

tungsgemél weisen alle Methoden fiir den grofsten Effekt auch die hochsten Inclusion
Frequencies auf. Dabei werden fiir die Original-Datensétze alle Variablen mit einem
Effekt von 1.5 immer in das resultierende Modell aufgenommen. Doch auch fiir die
Resampling-Methoden konnen diese Variablen in den meisten Féllen als relevant
identifiziert werden. Nur Bootstrap(m) fallt mit einer mittleren Inclusion Frequency
von 0.73 deutlich im Vergleich zu den anderen ab. Trotzdem ist fiir alle Methoden
ein stufenformiger Verlauf erkennbar. Dieser verdeutlicht, dass bei allen Methoden
Variablen mit hoherem Effekt o6fter aufgenommen werden, als Variablen mit niedri-
gem oder keinem Effekt. Dabei ist fiir alle Effekte eine klare Abstufung zwischen den
unterschiedlichen Methoden erkennbar. Die mittleren Inclusion Frequencies fiir die
Original-Datensétze sind fiir alle Effekte am hochsten. Darauf folgen Bootstrap(n)
und Subsample(m). Fiir Bootstrap(m) resultieren in jedem Fall die kleinsten mittle-
ren Inclusion Frequencies. Somit werden fiir Bootstrap(n) relevante Variablen haufi-
ger identifiziert als fiir Subsample(m) und Bootstrap(m), dafiir aber auch irrelevante
Variablen vermehrt in die Modelle aufgenommen. Auch fiir die Original-Datensétze
identifiziert das Lasso-Verfahren zwar sehr gut die relevanten Variablen, nimmt je-
doch eine irrelevante Variable im Schnitt in jedes dritte Modell auf. Da im Rahmen

dieser Auswertung Mediane und Mittelwerte der Inclusion Frequencies zu nahezu
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identischen FErgebnissen fiihrten, wurde in obiger Beschreibung nur auf den Mit-
telwert eingegangen. Die entsprechende Darstellung der Mediane befindet sich im
Anhang (Abbildung 9).

Um genauer zu untersuchen, welche Resampling-Methoden sich dazu eigenen, hin-
sichtlich relevanter und irrelevanter Variablen zu differenzieren, werden die Inclusion
Frequencies einzelner Variablen &hnlich wie in De Bin et al. (in Druck) miteinander
verglichen. Im Idealfall sollten die Inclusion Frequencies einer Variable mit Effekt
immer grofser sein als die einer Variable ohne Effekt. Auf Basis der hier verwende-
ten Datensitze ist dies fiir Variablen mit einem stirkerem Effekt als 0.25 fiir alle
Resampling-Methoden gegeben. Fiir Variablen mit dem Effekt 0.25 hingegen ist ei-
ne eindeutige Abgrenzung zu den irrelevanten Variablen anhand der resultierenden
Inclusion Frequencies nicht in allen Féllen mdglich. Dementsprechend werden zur
weiteren Analyse ausschliefslich die Inclusion Frequencies der Variablen mit einem
Effekt von 0.25 mit denen der irrelevanten Variablen verglichen. Hierbei ist zu beach-
ten, dass Variablen mit gleichem Effekt nicht mehr wie zuvor gruppenweise sondern
nun einzeln betrachtet werden. Um die verschiedenen Resampling-Methoden gegen-
iiberzustellen, werden jeweils die Inclusion Frequencies aller Variablen mit Effekt
0.25 mit denen aller Variablen ohne Effekt paarweise verglichen. Dies bedeutet es
werden insgesamt 5 *x 170 = 850 Paare untersucht. Anschliefsend wird die relative
Haufigkeit der Paare berechnet, fiir die eine Variable mit Effekt 0.25 eine grofere In-
clusion Frequency als eine Variable ohne Effekt hat. Betrigt die relative Haufigkeit
1, so kann problemlos zwischen relevanten und irrelevanten Variablen abgegrenzt
werden. Nimmt sie einen Wert um 0.5 an, so kann davon ausgegangen werden, dass
das Lasso-Verfahren nicht zwischen Variablen mit Effekt 0.25 und irrelevanten Va-

riablen unterscheiden konnte. (De Bin et al., in Druck)

Die resultierenden relativen Haufigkeiten werden in Abbildung 7 in Form von Bal-
kendiagrammen dargestellt. Dabei ist darauf zu achten, dass zur detaillierteren An-
sicht die y-Achse erst bei 0.9 beginnt. Die Grafik verdeutlicht, dass ausschlieklich
fiir die Original-Datensitze die Inclusion Frequencies der relevanten Variablen in
allen Fallen grofer sind, als die der irrelevanten. Doch auch auf Basis von Boot-
strap(n) ist eine Abgrenzung zwischen relevanten und irrelevanten Variablen gut
moglich. Lediglich eine der Variablen mit Effekt 0.25 hat eine kleinere Inclusion
Frequency als eine der irrelevanten Variablen. Die relative Haufigkeit betrégt hier

0.999. Etwas schlechter in der Abgrenzung zeigt sich Subsample(n). Hierbei betrégt
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Abbildung 7: Anteil der Variablen mit Effekt 0.25 mit groferer Inclusion Frequency
als Variablen ohne Effekt

die relative Haufigkeit 0.962. Insgesamt war somit in 32 Fillen die Inclusion Fre-
quency einer irrelevanten Variable grofier als die einer relevanten. Im Vergleich zu
den Original-Datensétzen fillt Bootstrap(m) am stirksten ab. Hierbei betrdgt die
relative Haufigkeit nur noch 0.919, das heiftt in 69 der 850 paarweisen Vergleiche
war die Inclusion Frequency einer irrelevanten Variable grofer als die einer Variable
mit Effekt. Somit lasst sich schlussfolgern, dass das Lasso-Verfahren auf Basis von
Bootstrap(m) am schlechtesten zwischen relevanten Variablen mit niedrigem Effekt
und irrelevanten Variablen unterscheiden kann. Unter den untersuchten Resampling-
Methoden kann fiir Bootstrap(n) die beste Abgrenzung erzielt werden. Hierbei sind

die Ergebnisse mit denen der Original-Datensétze vergleichbar.

3.2.3. Pradiktionsgiite
Wihrend die obigen Analysen dazu dienen, die verschiedenen Resampling-Methoden

beziiglich der aufgenommenen Variablen zu vergleichen, werden in diesem Kapitel
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deren Auswirkungen auf die pradiktiven Eigenschaften des Lasso-Verfahrens unter-
sucht. Dementsprechend wird gepriift, fiir welche Resampling-Methode die jeweils
geschitzten Modelle die besten Vorhersagen fiir neue Datensétze liefern. De Bin et
al. (in Druck) zufolge erlaubt die Analyse der Prédiktionsgiite es nicht nur, Riick-
schliisse auf die Leistung der Prédiktion zu ziehen, sondern auch indirekt auf die
Eignung der ausgewéhlten Variablen. Als Maf fiir die Pradiktionsgiite wird hier die
quadratische Abweichung zwischen wahren und gefitteten Werten betrachtet. Dazu
wird in der Regel, wie in Kapitel 2.3.4 erlautert, eine Kreuzvalidierung durchge-
fiihrt und somit der mittlere, quadratische Pradiktionsfehler (MSE) bestimmt. Da
in diesem speziellen Fall das wahre Modell bekannt ist, werden hier alle Modelle
auf Basis der vollstdndigen Pseudo-Datensitze berechnet, das heift der komplette
Pseudo-Datensatz als Trainings-Datensatz verwendet. Anschliefsend wird fiir jeden
Pseudo-Datensatz zur Evaluation ein eigener Test-Datensatz mit 100000 Beobach-
tungen generiert. Dies garantiert, dass die berechneten Pradiktionsfehler nicht alle
von dem selben Test-Datensatz abhingen, wodurch das Ergebnis verfilscht werden
kénnte. Zur Berechnung des Prédiktionsfehlers wird fiir jeden Test-Datensatz der
Response mit Hilfe des fiir die Trainings-Daten gefitteten Modells geschétzt. Dieser
wird mit den zuvor simulierten, wahren Werten verglichen. Dementsprechend wird
der MSE bei n Beobachtungen iiber
1 < X 1 & R
MSE = — Z(yz —5i)? = n Z(yz — z;)°

n < -
=1 =1

gebildet. Durch die quadratische Form werden grofe Abweichungen noch weiter ver-
grokert, wihrend sehr kleine Fehler (< 1) verkleinert werden. Dementsprechend wer-
den bei Verwendung des quadrierten Fehlers grofle Abweichungen stirker bestraft.
Eine weitere Moglichkeit wire die Verwendung des absoluten Priadiktionsfehlers. Da-
durch wiirden alle Abweichungen gleich stark in den mittleren Fehler eingehen. Da
im Rahmen dieser Auswertung die quadratischen und die absoluten Fehler zu ver-
gleichbaren Ergebnissen fiihrten, wird im Folgenden nur auf den MSE eingegangen.
Die Darstellung der absoluten Préadiktionsfehler befindet sich im Anhang (Abbil-
dung 10). (Fahrmeir et al., 2013)

Abbildung 8 stellt die berechneten MSE fiir die verschiedenen Resampling-Methoden
in Form von Boxplots dar. Jeder Boxplot wird dementsprechend durch die MSE von
1000 Test-Datensétzen gebildet. Der obigen Definition entsprechend eignet sich ein

geschitztes Modell umso besser zur Priadiktion, desto niedriger der MSE ist. Die
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Abbildung 8: Vergleich des MSE fiir Original-Datensitze und verschiedene
Resampling-Methoden

Modelle auf Basis der Original-Datensétze liefern deutlich erkennbar die kleinsten
MSE. Da Variablen mit grofsem Effekt in alle Modelle und Variablen mit mittlerem
Effekt in fast alle Modelle aufgenommen wurden (vergleiche Abbildung 6), liefern
die Modelle sehr gute Ergebnisse fiir die Pradiktion. Auch die vielen irrelevanten
Variablen, die filschlicherweise im Modell enthalten sind (vergleiche Abbildung 5),
scheinen keine Uberanpassung an den jeweiligen Test-Datensatz zur Folge zu haben.
Fiir Bootstrap(n) steigen die MSE deutlich an. Zudem streuen die Werte stérker als
fiir die Original-Datensétze. Wihrend fiir Bootstrap(n) Variablen mit sehr hohem
Effekt in fast alle Modelle aufgenommen werden, sinken die Inclusion Frequencies
fiir Variablen mit mittleren Effekten stark ab (vergleiche Abbildung 6). Somit wer-
den fiir mittlere Effekte Variablen haufig nicht als relevant identifiziert. Dies erklart
die Verschlechterung der Pradiktionsgiite. Vergleichbare Ergebnisse werden fiir Sub-
sample(m) erzielt. Obwohl fiir Subsample(m) Variablen mit starkem Effekt selte-
ner erkannt werden als bei Bootstrap(n), werden hier dhnliche MSE erzielt, die im

gleichen Ausmafs streuen. Dies konnte bedeuten, dass die tendenziell komplexeren
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Modelle fiir Bootstrap(n) zu keiner Verbesserung der Pridiktion fithren. Eine wei-
tere Ursache hierfiir konnte sein, dass Subsample(m) tendenziell weniger irrelevante
Variablen aufnimmt als Bootstrap(n). Somit werden die geschétzten Modelle an we-
niger irrelevante Variablen angepasst. Die mit Abstand schlechteste Pradiktionsgiite
wird fiir Bootstrap(m) erzielt. Dies war insofern zu erwarten, dass hier relevante Va-
riablen in den wenigsten Fillen identifiziert werden, irrelevante jedoch fast genauso

oft wie fiir Subsample(m).
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4. Fazit und Ausblick

Alle Ergebnisse dieser Arbeit basieren auf Daten, die nach dem in Kapitel 3.1 be-
schriebenen Setting simuliert wurden. Im ersten Schritt wurde die Modellkomplexi-
tédt fiir verschiedene Resampling-Methoden untersucht. Grundlage war die Annah-
me, dass auf Bootstrap-Stichproben basierende Modelle deutlich mehr Variablen
beinhalten als auf Original-Datensétzen basierende. Diese Annahmen konnten fiir
das Lasso-Verfahren im Rahmen der vorliegenden Analysen nicht bestétigt werden.
So lieferten die Original-Datenséitze mit Abstand die komplexesten Modelle. Fiir
Bootstrap(m) und Subsample(m) konnten die sparsamsten Modelle erzielt werden.
Hierbei muss jedoch beriicksichtigt werden, dass diese Modelle teilweise zu spar-
sam waren. So enthielten einige weitaus weniger Variablen als fiir die Erklarung
des Response relevant gewesen wéren. Zudem variierte besonders fiir Subsample(m)
die Modellkomplexitit stark. Da mit Hilfe der Modellkomplexitit nur die Anzahl
aufgenommener Variablen, aber nicht der Anteil davon relevanter Variablen be-
stimmt werden kann, ist es nicht moglich auf Grundlage der Modellkomplexitét eine

Resampling-Methode klar zu favorisieren.

Im weiteren Verlauf wurden die Inclusion Frequencies fiir alle Variablen verglichen.
Erwartungsgemiftg konnten sowohl fiir die Original-Datenséitze als auch fiir alle
Resampling-Methoden mit sinkendem Effekt sinkende Inclusion Frequencies beob-
achtet werden. Fiir die Original-Datensétze wurden jeweils deutlich h6here Inclusion
Frequencies erzielt als fiir die Resampling-Methoden. Den Ergebnissen der Original-
Datensiitze am dhnlichsten sind die von Bootstrap(n). Hier werden Variablen mit
starkem Effekt im Vergleich zu den anderen Resampling-Methoden am héaufigsten
aufgenommen. Dafiir werden jedoch, wie bereits die Modellkomplexitit zeigen konn-
te, vermehrt irrelevante Variablen aufgenommen. Dementsprechend zeigen die Er-
gebnisse, dass vor Verwendung einer Resampling-Methode genaue Uberlegungen
notwendig sind, fiir welchen Zweck die Modelle benétigt werden. Da fiir Boot-
strap(m) Variablen mit starkem Effekt vergleichsweise selten aufgenommen werden,
ist diese Methode nur mit Vorsicht zu verwenden. Insgesamt konnte jedoch gezeigt
werden, dass in dem betrachteten Simulationssetting im Schnitt alle Verfahren sehr
gut zwischen relevanten und irrelevanten Variablen differenzieren kénnen. Als pro-
blematisch kénnte es sich in der Anwendung jedoch erweisen, den Wert der Inclusion
Frequencies zu finden, ab dem eine Variable nicht mehr als relevant angesehen wer-

den sollte.
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Zuletzt wurde die Pradiktionsgiite fiir die verschiedenen Datensétze betrachtet. Hier-
bei wurden fiir die Resampling-Methoden deutlich schlechtere Ergebnisse als fiir die
Original-Datensétze erzielt. Die MSE fiir Bootstrap(n) und Subsample(m) hatten
in etwa die gleiche Grofse, betrugen aber ein Vielfaches der MSE fiir die Original-
Datensétze. Dies verdeutlicht, dass die fiir Bootstrap(n) zusétzlich aufgenommenen
Variablen im Vergleich zu Subsample(m) zu keiner Verbesserung der Pridiktion
fithren. Die schlechtesten Ergebnisse wurden fiir Bootstrap(m) erzielt. Somit sollte
Modellen, die zur Préadiktion dienen, besser auf Grundlage von Bootstrap(n) oder

Subsample(m) geschitzt werden.

Zusammenfassend ldsst sich feststellen, dass keine Resampling-Methode fiir das
Lasso-Verfahren klar bevorzugt werden kann. Vor Verwendung einer dieser Metho-
den sollte sich der Anwender in jedem Fall genau iiberlegen, wozu die Modelle spater
verwendet werden beziehungsweise auf welche Art das eigentliche Modell aus den
Resampling-Ergebnissen gebildet wird. Sollen die Modelle moglichst alle relevan-
ten Variablen beinhalten und gute Vorhersagen treffen, so wire Bootstrap(n) das
geeignete Verfahren. Einen guten Kompromiss zwischen Interpretierbarkeit und Pra-
diktion bietet Subsample(m).

Bei Betrachtung der vorliegenden Ergebnisse muss beriicksichtigt werden, dass diese
nicht im Allgemeinen giiltig sind, sondern sich auf den hier betrachteten, speziellen
Fall beziehen. So wurden alle Daten unabhéngig voneinander aus einer Standardnor-
malverteilung gezogen. Dementsprechend lagen zur Auswertung nur unkorrelierte,
metrische Variablen vor. In der praktischen Anwendung ist es ist dufserst unwahr-
scheinlich, dass diese vereinfachte Datenkonstellation auftritt. Folglich sollten die
beschriebenen Resultate nur als Grundlage fiir weitere Untersuchungen angesehen
werden. Ein interessanter Ansatz wire beispielsweise die Betrachtung von paarweise
hoch korrelierten Variablen. Diese werden im Lasso-Verfahren héufig nur abwech-
selnd aufgenommen, das heifst das resultierende Modell beinhaltet immer nur eine
der Variablen. Somit wiirden die Inclusion Frequencies deutlich geringere Werte
annehmen als im unkorrelierten Fall. Da in der Praxis oftmals komplexe, hoherdi-
mensionale Beziehungen vorkommen, wire es zudem interessant zu wissen, wie sich
die Ergebnisse der einzelnen Resampling-Methoden in diesem Fall verdndern. Als

weitere Modifikation der hier analysierten Daten wére die zusétzlich Aufnahme bi-
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nirer Variablen moglich. Auch diese finden in der Praxis haufig Anwendung. Da das
Lasso-Verfahren zudem auf generalisierte lineare Modelle erweiterbar ist, wére ne-
ben der Analyse fiir einen normalverteilten Response auch die Betrachtung anderer

Verteilungsstrukturen denkbar.

Doch nicht nur eine Variation in der Datenstruktur, sondern auch eine Abwand-
lung der Vorgehensweise kann zu stark verdnderten Ergebnissen fithren. So wurde in
den vorliegenden Analysen die Stichprobengréfe m = 0.632n fest gewahlt und de-
ren Auswirkung auf die Ergebnisse nicht weiter betrachtet. Ein groferer Wert von m
konnte jedoch gegebenenfalls stabilere Ergebnisse erzielen. Wiirden die Werte von m
allerdings sehr grofl gewihlt, so wiren die Pseudo-Datenséitze vermutlich zu dhnlich
und es konnte durch das Resampling kaum eine Verbesserung der Ergebnisse im Ver-
gleich zur Anwendung des Lasso-Verfahrens auf einen einzigen Original-Datensatz
erzielt werden. Auch fiir zu kleine m sind unzureichende Ergebnisse zu erwarten,
da die einzelnen Pseudo-Datenséitze nur sehr wenig Information enthalten wiirden.
(De Bin et al., in Druck)
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A. Anhang zusatzlicher Grafiken

Abbildung 9 zeigt den Median der Inclusion Frequencies fiir jeweils eine Gruppe
von Variablen mit gleichem Effekt. Es besteht kein merklicher Unterschied zwischen

dem Median und dem Mittelwert der Inclusion Frequencies innerhalb einer Gruppe
(vergleiche Abbildung 6).
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Abbildung 9: Vergleich Median der Inclusion Frequencies anhand verschieden gene-
rierter Datensétze fiir unterschiedlich starke Effekte
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Abbildung 10 stellt den absoluten Pradiktionsfehler dar. Dieser unterscheidet sich
zwar in der Grofe vom quadratischen Pradiktionsfehler, die Verhéltnisse der ver-

schiedenen Methoden zueinander stimmen jedoch iiberein.

absolute Pradiktionsgute

T T I
Daten Bootstrap(n)  Bootstrap(m) Subsample(m)

Abbildung 10: Vergleich des absoluten Pradiktionsfehlers fiir Original-Datensétze
und verschiedene Resampling-Methoden
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B. Elektronischer Anhang

Der elektronische Anhang besteht aus 3 Ordnern und einer Datei.

Der Ordner ,,Daten"beinhaltet die simulierten Original-Datenséitze ,data.RData’ so-
wie die daraus gezogenen Pseudo-Datensitze ,bootstrap n.RData®,

,bootstrap m.RData” und ,subsample.RData*

Der Ordner ,,Programme® enthélt den RCode ,Simulation zur Simulation der Origi-
nal-Datensétze und zur Ziehung der Pseudo-Datensitze. Die Anwendung des Lasso-
Verfahrens und die Auswertung der resultierenden Modelle befinden sich in dem
RCode ,Lasso_Verfahren“. Der RCode zur anschliefienden, grafischen Auswertung
ist unter dem Namen ,Grafische Auswertungen® gespeichert. Alle anderen Grafiken

wurden mit Hilfe des RCodes ,,Weitere Grafiken“ erzeugt.

Die ausgewerteten Modelle nach Anwendung des Lasso-Verfahrens liegen unter den
Dateinamen ergebnisse data.RData", .ergebnisse bootstrap n.RData®,
sergebnisse _bootstrap m.RData“ und ,ergebnisse subsample.RData“ in dem Ord-

ner ,Ergebnisse®.

Zusatzlich zu den drei Ordnern befindet sich die vollstandige vorliegende Arbeit

unter dem Namen ,Bachelorarbeit Volkl.pdf* im elektronischen Anhang.
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