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In dieser Bachelorarbeit werden verschiedene Methoden zur Datenimputation vorge-
stellt, durchgefiihrt und miteinander verglichen. Das Hauptaugenmerk liegt dabei auf
einer einfachen Imputationmethode, bei der fehlende Werte mithilfe von Regression im-
putiert werden. Die Ergebnisse werden anschliefend mit bekannten Methoden zur mul-
tiplen Datenimputation verglichen.

Um diesen Vergleich durchfiihren zu kénnen, werden die Daten zu Beginn nach einem
vorgegebenen Algorithmus simuliert, danach fehlende Werte erzeugt und die Daten an-
schlieBend mit den verschiedenen Methoden wieder imputiert.

Die interessierenden Gréfien, ndmlich die Koeffizienten einer Regression auf Grundlage
des imputierten Datensatzes, werden anschliefend untereinander und mit den wahren
Koeffizienten verglichen.

Es stellt sich heraus, dass die Imputation kategorialer Variablen bei der Regressionsim-
putation Schwierigkeiten bereitet. Ebenso wird der wahre Zusammenhang in den Daten
fiir die multiplen Imputationsmethoden tendenziell besser abgebildet als fiir die einfache

Imputationsmethode.
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1. Einleitung

Ein haufiges Problem bei Umfragen und Datenerhebungen ist die Unvollstdndigkeit der
Antworten. Oft geben Befragte bewusst keine Auskunft zu bestimmten Themen, vor
allem bei delikaten Fragen wie etwa zum Gehalt.

Durch die fehlenden Antworten kann es zu Verzerrungen kommen, bei einer Analyse nur
auf Grundlage der vorhandenen Daten wird die Situation oft falsch dargestellt. Ein Ver-
fahren, das diese Verzerrung verringern soll, ist die Datenimputation. Dabei werden die
fehlenden Werte im Datensatz durch moglichst plausible Werte vervollstandigt. Dafiir

existieren mehrere Anséitze, wovon einige in dieser Arbeit genauer vorgestellt werden.

In dieser Bachelorarbeit sollen verschiedene Methoden zur Datenimputation angewen-
det und die Ergebnisse miteinander verglichen werden. Die Auswertungen basieren auf
selbst simulierten Datensétzen, da so der wahre Zusammenhang in den Daten bekannt
ist und mit den geschéatzten Zusammenhéngen verglichen werden kann. Angewendet wer-
den dabei ein selbst programmierter Algorithmus der einfachen Regressionsimputation
sowie einige Modifikationen dieses Algorithmus, die mit zwei multiplen Imputations-
methoden aus den bestehenden R-Paketen Amelia und mice verglichen werden. Alle
Auswertungen werden dabei mit dem Programmpaket R (R Development Core Team;
2008) durchgefiihrt.

In Kapitel 2 wird zundcht die genaue Simulation der Daten erklért und die zwei erzeug-

ten Datensétze beschrieben. Zusétzlich wird auf die Durchfithrung in R eingegangen.

Kapitel 3 befasst sich mit der Klassifikation fehlender Werte, der kiinstlichen Erzeugung
der Missings, der Durchfithrung in R und den letztendlichen mittleren Feherraten in den

Datensétzen.

Die allgemein existierenden Arten von Imputationsmethoden werden in Kapitel 4 dar-

gestellt. Ebenso wird auf den genauen Vorgang der Imputationen in dieser Arbeit ein-



gegangen sowie auf deren Umsetzung in R.

In Kapitel 5 wird zuerst das R-Paket Amelia vorgestellt und der zugrundeliegende Im-
putationsmechanismus erklart. Zusétzlich werden die Durchfiihrung in R sowie die Er-

gebnisse fiir die beiden Datenséitze dargestellt.

Kapitel 6 ist analog aufgebaut wie Kapitel 5, nur dass die Imputation mit dem R-Paket

mice durchgefiithrt wird.

Kapitel 7 befasst sich mit der zu testenden Regressionsimputation, die mit den multiplen
Imputationsmethoden verglichen werden soll. Der Aufbau des Kapitels ist analog wie in
Kapitel 5 und 6.

In Kapitel 8 werden die Ergebnisse der verschiedenen Imputationsmethoden miteinander
verglichen. Ebenso wird kurz auf die Vor- und Nachteile der Imputationsmethoden bei

der Umsetzung in R eingegangen.

Kapitel 9 fasst schlussendlich die wichtigsten Punkte dieser Arbeit noch einmal zusam-

men.



2. Simulation der Daten

Der Vergleich der verschiedenen Imputationsmethoden wird mithilfe selbst simulierter
Datensétze durchgefiihrt. Erzeugt werden dabei zwei verschieden grofie Datensétze. Der
erste Datensatz hat einen Umfang von zehn Variablen mit jeweils 1000 Beobachtungen,
der zweite Datensatz ist etwas grofler und umfasst 20 Variablen und 1000 Beobachtungen.
Die Erzeugung der Daten folgt dabei einem vorgegebenem Schema, welches in diesem

Kapitel genauer beschrieben wird.

2.1. Algorithmus zur Erzeugung der Daten

Zur Erzeugung der ersten Variablen des Datensatzes werden einfache Zufallszahlen ge-
zogen. Zur Auswahl stehen normal-, poisson-, gamma- und binomial-verteilte Variablen
sowie fiir multinomial-verteilte Variablen nominal- und ordinal-skalierte Daten. Es wer-

den dabei, je nach Verteilungstyp, die benttigten Parameter beliebig festgelegt:

Verteilungstyp Ubergabeparameter

Normal Erwartungswert p
Standardabweichung o
Poisson Erwartungswert A
Gamma Shape-Parameter v
Scale-Parameter £
Binomial P(X;=0),P(X;=1)
Multinomial P(X;=1),...P(X; =k)

(nominal oder ordinal)

Tabelle 2.1.: Verteilungstypen und bendtigte Ubergabeparameter zur Simulation der

ersten Variable.



Soll also beispielsweise eine standardnormal-verteilte Variable erzeugt werden, miissen
der Erwartungswert © = 0 sowie die Standardabweichung o = 1 festgelegt werden.
Fiir kategoriale Variablen miissen die Wahrscheinlichkeiten fiir jede Kategorie 1,...,k
angegeben werden, die Wahrscheinlichkeiten miissen sich dabei insgesamt zu eins auf-

summieren.

In jedem weiteren Schritt wird die neue Variable aus einem Regressionsmodell simuliert.
Fiir normal-, poisson-, gamma- und binomial-verteilte Variablen wird dabei aus einem
generalisierten linearen Modell simuliert, bei nominalen und ordinalen Variablen aus ei-
nem multikategorialen Modell. Die Theorie zu diesem Kapitel stiitzt sich auf (Fahrmeir
et al.; 2009).

Zur Erzeugung der Variable werden zuerst die nétigen Regressionskoeffizienten fy, ..., 3,
beliebig, aber sinnvoll festgelegt. Eine sinnvolle Festlegung bedeutet dabei, dass bei-
spielsweise fiir kategoriale Variablen auch schlussendlich jede Kategorie im Datensatz
vorkommt, beziehungsweise die Wahrscheinlichkeiten nicht zu extreme Werte nahe 0
oder 1 annehmen.

Fiir jede Beobachtung wird dann der Pradiktor n mithilfe des festgelegten Koeffizienten-

vektors # und der schon erzeugten Variablen errechnet:
n=2a'p (2.1)

Mithilfe der Linkfunktion g wird der Erwartungswert g anschliefend transformiert:

g(w) =n=1a'8 (2.2)

Fiir normal-, poisson- und binomial-verteilte Variablen wird dabei die natiirliche Link-
funktion verwendet. Um zu gewdéhrleisten, dass bei gamma-verteilten Variablen nur po-

sitive Werte simuliert werden, wird hier der Log-Link angewendet.

Fiir nominale, ungeordnete Variablen wird ein multinomiales Logit-Modell mit der letz-
ten Kategorie k als Referenz aufgestellt. Die Wahrscheinlichkeit fiir jede Kategorie (aufler

der Referenzkategorie) errechnet sich dabei wie folgt:

exp(z'f,)
14+ S5 eap(a'y)’

Ply=r|z)=m =



Die Wahrscheinlichkeit fiir die Referenzkategorie k errechnet sich durch:

1
h—1 ,
14321 exp(a'fs)

Py =k|z) =7, = (2.4)

Fiir ordinale Variablen wird ein kumulatives Logit-Modell verwendet. Die Wahrschein-

lichkeit fiir Kategorie r oder einer niedrigeren Kategorie errechnet sich dabei durch:

exp(vor + ')
1+ exp(yor + ')’

Py <rlx) = r=1,..,k—1 (2.5)

Daraus lassen sich dann einfach die nicht kumulierten Wahrscheinlichkeiten errechnen:

Ply<r|z) firr=1
Ply=rlz)=m =9 Ply<rlz)—Ply<r—1lz) firr=2,..,k—1 (2.6)
1-Ply<k—1lz) firr==k

Mithilfe des errechneten Erwartungswertes p, beziehungsweise der jeweiligen Wahr-
scheinlichkeiten fiir die Kategorien, werden nun Zufallszahlen aus der zugrundeliegen-
den Verteilung der Variablen gezogen. Fiir jede Beobachtung der Variablen ist dabei der
Erwartungswert oder der Wahrscheinlichkeitsvektor unterschiedlich, abhingig von dem

errechneten Pradiktor.

Eine Zusammenfassung iiber die Verteilungstypen, gewéhlten Linkfunktionen und den
schematischen Vorgang der Zufallsziehung in R wie in Kapitel 2.1 beschrieben, wird in

folgender Tabelle gegeben:



Verteilung Link Zufallsziehung in R
Normal Identitdt: u = 2'3 y ~ rnorm(z'5, o)
Poisson Log: log(p) = 2'p y ~ rpois(exp(z’'))
Gamma Log: log(p) = 2'p y ~ rgamma(v, M)
Binomial Logit: log(ﬁ) =2'p y ~ sample(my, mp)
Mulitnomial (nominal) | Logit: log(igzag) =2'B, y ~ sample(my, ..., Tg)
Multinomial (ordinal) | Logit: log(ingﬂg) =or + 2’y | y ~ sample(my, ..., )

Tabelle 2.2.: Verteilungstypen, zugrundeliegende Linkfunktion und Zufallsziehung in

R fiir die Simulation aus Regressionsmodellen.

Ein Beispiel zur Erzeugung der binomial-verteilten Variable X sei folgendes:
Die normal-verteilte Variable X; hat fiir die erste Beobachtung den Wert xz1; = 4.57.
Die Koeflizienten werden beliebig festgelegt als 5y = 1.2, 81 = 0.2.

Der Pradiktor errechnet sich somit zu
m =P+ B a1 =12+02-457=211 (2.7)

Die Wahrscheinlichkeit P(zy; = 1) errechnet sich durch Auflésen der Link-Funktion

nach p zu

ex exp(2.11
P<x21 _ 1) =y = p(nl) p( )

= = = 0.89 2.8

1+exp(m) 1+ exp(2.11) (2:8)
Hieraus werden in R nun Zufallszahlen gezogen, dabei gilt
089 firi=1

P(zy =1) = 2.9

(o2 = 1) {0.11 fiir i = 0 (29)

Dieser Vorgang wird anschliefend fiir jede Beobachtung wiederholt, um die Variable X5

komplett zu erzeugen.



2.2. Umsetzung der Simulation in R

In diesem Kapitel wird kurz auf die Implementierung der Gamma-Verteilung in R einge-
gangen, da hier eine spezielle Parametrisierung vorliegt. Zusétzlich wurde eine Funktion
geschrieben, mit der mithilfe weniger Ubergabeparameter die Daten nach dem Algo-
rithmus aus Kapitel 2.1 erzeugt werden konnen. Die notigen Ubergabeparameter der

Funktion werden kurz vorgestellt.

2.2.1. Gamma-Verteilung in R

Da die Gamma-Verteilung in R nicht in der Darstellung der Exponentialfamilie pa-
rametrisiert ist, miissen die Ubergabeparameter entsprechend angepasst werden. Die
Exponentialfamilien-Darstellung ist wie folgt:

flylp,v) = F(ly) -(2)” Tt eafp(—g X (2.10)

Dabei entspricht © dem Erwartungswert und v dem Shape-Parameter.

Bei der Parametrisierung in R wird y dagegen bedingt auf den Shape-Parameter a und
den Scale-Parameter s dargestellt:

Flola,s) = oty - eap(=Y) (211)
’ s?-T'(a) s '

Durch Umformung lassen sich die beiden Gleichungen jedoch leicht ineinander iiberfiihren,
es gilt a =v und s = L.
So kann in R also wie gewiinscht eine gamma-verteilte Variable aus einem generalisier-
ten linearen Modell mit festgelegtem » und abhéngig von dem errechneten Pradiktor

n = g(u) simuliert werden.

2.2.2. Funktion zur Durchfithrung der Simulation

Zur vereinfachten Umsetzung in R wurde eine Funktion geschrieben, die Daten nach
dem Algorithmus aus Kapitel 2.1 erzeugt.

Der Funktion muss zum einen ein Vektor wariable.type mit dem Typ der jeweiligen
Variable iibergeben werden, mogliche Angaben sind “normal®, “poisson®, “gamma®,
“binomial®, “nominal® und “ordinal“. Dieser Vektor hat logischerweise dieselbe Linge

wie Variablen erzeugt werden sollen.



Desweiteren benétigt die Funktion einen Vektor wvariable.cat, der bei kategorialen Va-
riablen die Anzahl an Kategorien angibt und fiir metrische Variablen den Eintrag NA
enthélt.

Der dritte Ubergabeparameter first.param enthilt die nétigen Informationen zur Erzeu-
gung der ersten Variablen, vergleiche Tabelle 2.1.

Zur Erzeugung von normal- und gamma-verteilten Variablen wird die Standardabwei-
chung ¢ beziehungsweise der Shape-Parameter v benotigt. Dazu wird der Funktion ein
Vektor sigma iibergeben, der an der Position solcher Variablen eine Zahl, sonst den Ein-
trag NA enthélt.

Desweiteren bendtigt die Funktion eine Liste coeff.list, in der jeder Listeneintrag den Ko-
effizienten zur FErzeugung einer Variablen entspricht. Diese Koeffizienten sind wie schon
angesprochen frei wahlbar, sollten aber sinnvoll sein, um realitéitsnahe Werte erzeugen
zu konnen. Fiir normal-, poisson-, gamma- und binomial-verteile Variablen entspricht
dieser Eintrag einem Vektor, fiir nominal- und ordinal-skalierte Daten einer Matrix mit
k — 1 Zeilen.

Der Ubergabeparameter n gibt die Anzahl an Beobachtung im Datensatz an.

Falls gewiinscht kann der Funktion zur Reproduzierbarkeit noch ein seed iibergeben

werden, falls nicht wird dieser auf NA gesetzt.

2.3. Datensatze

Zum Testen und Vergleichen der Imputationsmethoden wurden zwei Datensétze nach
dem Algorithmus aus Kapitel 2.1 und mithilfe der Funktion aus Kapitel 2.2.2 erzeugt.
Der erste, kleinere Datensatz hat zehn Variablen mit je 1000 Beobachtungen, der zweite
Datensatz hat 20 Variablen mit je 1000 Beobachtungen.

Im Datensatz aufgenommen wurden dabei schlussendlich nur normal-, poisson-, gamma-
und binomial-verteilte Variablen, da kategoriale Variablen bei der Imputation zu Pro-
blemen und letztendlich zum Funktionsabbruch fiihrten. Die Instabilitdt multinomialer
Modelle ist ein bekanntes Problem, um Ergebnisse zu erhalten wurden diese also raus-

gelassen.



Im kleineren Datensatz sind die 10 Variablen wie folgt verteilt:

Xy ‘ Xs ‘ X3 ‘ Xy ‘ X5

normal ‘ binomial ‘ gamma ‘ normal ‘ poisson

XX x| x| X

binomial ‘ poisson ‘ gamma ‘ binomial ‘ normal

Im groBeren Datensatz sind die 20 Variablen folgendermaflen verteilt:

Xl X2 X3 X4 X5

binomial | normal | gamma | poisson | binomial

X X Xs Xy X1o

normal | gamma | normal | poisson | gamma

oo | Xe X | Xu | X

binomial ‘ poisson ‘ normal ‘ normal ‘ gamma

Xi6 ‘ X7 ‘ Xis ‘ X9 ‘ Xoo

poisson ‘ binomial ‘ gamma ‘ poisson ‘ binomial



3. Fehlende Werte

Um spéter die Imputationsmethoden testen zu konnen, miissen in den simulierten Da-
tensatzen zuerst Werte entfernt werden. Dafiir gibt es verschiedene Ansétze und Metho-

den, die im Folgenden dargestellt werden.

3.1. Klassifikation fehlender Werte

Eine anerkannte und héufig verwendete Klassifikation von fehlenden Werten geht auf
Donald B. Rubin zuriick. Danach kann der Mechanismus, durch den fehlende Werte
entstehen (sogenannter Missingmechanismus), in drei Gruppen eingeteilt werden. Dies

wird in (Spiess; 2008) genauer beschrieben.

Missing completely at random (MCAR)

Unter der MCAR-Annahme ist ein beobachtetes Fehlermuster sowohl unabhéngig von
den beobachteten Daten D° als auch von den unbeobachteten Daten D™#. Anders

ausgedriickt unterliegen fehlende Daten also der MCAR-Annahme, falls
p(M|D) = P(M) (3.1)

M ist dabei die Fehlermatrix, mit Eintragen m;; = 1 falls d;; € D™ und m;; = 0 sonst.
Das Fehlen einer Beobachtung unterliegt also komplett dem Zufall. Wiirde man in einem
Datensatz also komplett beliebig und unabhéngig von anderen Variablen Beobachtungen
16schen, wire die MCAR-Annahme erfiillt.

Insgesamt ist MCAR der unproblematischste Fehler-Mechanismus, unter dem keine Ver-

zerrung der wahren Daten entsteht.

Missing at random (MAR)

Unter der MAR-Annahme ist ein beobachtetes Fehlermuster zwar wie bei MCAR, un-
abhiingig von den unbeobachteten Werten D™ jedoch abhiingig von den beobachteten
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Werten D°b:
p(M|D) = p(M|D**) (3.2)

Das Fehlermuster ist unter MAR also abhéngig von anderen Variablen, beispielsweise
wenn die Angabe des Einkommens vom Alter einer bestimmten Person abhéngt. Ver-
nachléssigt man die fehlenden Werte, wird das Gesamtbild bei der Betrachtung zwar
verzerrt, die wahre Regressionsbeziehung bleibt unter MAR jedoch erhalten.

MCAR und MAR sind zufillige (at random) Fehlermuster, und werden oft als Voraus-

setzung fiir Methoden zur multiplen Imputation wie beispielsweise bei Amelia benotigt.

Not missing at random (NMAR)

Unter der NMAR-Annahme ist ein beobachtetes Fehlermuster sowohl von D als auch
von D™ abhingig, das Fehlermuster ist also nicht zufiillig. Dies trifft beispielsweise zu,
falls haufiger die Angaben von Personen mit hohem Einkommen fehlen. Die Daten sowie

die Regressionsbeziehung werden bei NMAR verzerrt dargestellt.

3.2. Erzeugen der fehlenden Werte

In dieser Arbeit werden die fehlenden Werte so erzeugt, dass die MAR-Annahme erfiillt
ist. Dafiir bleibt die zuletzt erzeugte Variable, welche beim Durchfiihren der Regression
nach der Imputation die abhéngige Y-Variable darstellt, vollstdndig. Die Wahrschein-
lichkeit, dass eine Beobachtung einer unabhéngigen Variable fehlt, ist immer abhéngig
von der Y-Variablen.

Dabei wird folgende Formel verwendet:

1

Pl = NA) =1— —~
(o = NA) =1 = o T 5

i1=1,...n,j=1,...,p (3.3)
n entspricht dabei der Anzahl an Beobachtungen im Datensatz und p der Anzahl an
Variablen.

Dabei muss darauf geachtet werden, dass keine negativen Wahrscheinlichkeiten errechnet

werden. Unter der Bedingung ; > 1 V7 ist dieses Problem sicher behoben.

Insgesamt sind die Missing-Wahrscheinlichkeiten fiir alle Beobachtungen einer Variablen
immer gleich, von Variable zu Variable jedoch unterschiedlich. Fiir den Datensatz mit

zehn Variablen existieren also ag, ..., a9 und Sy, ..., Bio-
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3.3. Mittlere Fehlerraten in den Datensatzen

Die Imputationsmethoden werden fiir beide Datensétze jeweils einmal fiir geringere Feh-
lerraten und einmal mit etwas hoheren Fehlerraten durchgefiihrt. Bei der Erzeugung feh-
lender Werte liegt die mittlere Fehlerrate fiir beide Datensétze also jeweils einmal knapp
unter 10 % und einmal knapp unter 20 %. Viel hohere Fehlerraten sind im Allgemeinen

kritisch zu betrachten und werden deswegen nicht getestet.

Ein Problem bei zu hoher Fehlerrate, das beispielsweise bei der Anwendung von Amelia
auftreten kann, betrifft kategoriale Variablen. Mit steigender Anzahl an fehlenden Wer-
ten sinken logischerweise die Ausprigungen pro Kategorie. Wie spéter in Kapitel 5.1
genauer beschrieben wird, verwendet Amelia Bootstrapping, das heifit es werden mit
Zuriicklegen Stichproben mit gleichem Umfang aus dem urspriinglichen Datensatz gezo-
gen. Dadurch kann es also vorkommen, dass eine bestimmte Ausprigung der kategorialen
Variable gar nicht in der Bootstrap-Stichprobe vorkommt. Dies fiihrt beispielsweise dazu,
dass von einer kategoriale Variable mit drei Auspragungen in der Bootstrap-Stichprobe
nur zwei Auspriagungen existieren. Dadurch kommt es in Amelia zu einem Problem bei
der Imputation und zum Funktionsabbruch.

Fiir geringere Fehlerraten kann dieses Problem rein theoretisch natiirlich ebenso auftre-

ten, die Wahrscheinlichkeit ist jedoch viel geringer.

Die verschiedenen Imputationsmethoden werden jeweils 500 mal durchlaufen, wobei je-
de Runde die fehlenden Werte mit selber Wahrscheinlichkeit neu erzeugt werden. Der
genaue Ablauf wird in Kapitel 4 noch néher erklédrt. Dabei werden in jeder Runde die
Anzahl an fehlenden Werten im Datensatz abgespeichert, um schlussendlich einen Uber-

blick tiber die mittlere Fehlerrate zu bekommen.
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Fiir den kleineren Datensatz mit zehn Variablen und einer mittleren Fehlerrate knapp
unter 20 % fiir jede Variable ergibt sich folgendes Bild:
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Abbildung 3.1.: Ubersicht iiber den Anteil fehlender Werte pro Variable in jeder Run-
de. Es wird der Datensatz mit zehn Variablen betrachtet, wobei die mittlere Fehler-

rate knapp unter 20 % liegt.

Die minimale Fehlerrate aus allen Durchgéingen liegt bei 13.6 % (Variable X5), die ma-
ximale bei 22.1% (Variable X3). Die Mittelwerte der Fehlerraten iiber alle Durchgénge
liegen zwischen 17.1 % und 18.5 %, der Wertebereich der Mediane ist sehr dhnlich, wie in
Abbildung 3.1 zu erkennen ist. Die Werte weisen fiir alle Variablen eine dhnliche Spann-

weite auf, es existieren keine extremen Ausreifer.
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Fiir eine geringere mittlere Fehlerrate knapp unter 10 % ergibt sich folgende Abbildung;:
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Abbildung 3.2.: Ubersicht iiber den Anteil fehlender Werte pro Variable in jeder Run-
de. Es wird der Datensatz mit zehn Variablen betrachtet, wobei die mittlere Fehler-

rate knapp unter 10 % liegt.

Hier liegt der Wertebereich zwischen einem minimalen Anteil fehlender Werte von 5 %
(Variable X35) und einem maximalen Anteil von 12.6 % (Variable X;). Die Mittelwerte
der Fehlerraten liegen zwischen 7.9 % und 9.7 %, die Mediane liegen erneut in einem
ahnlichen Wertebereich. Auch in Abbildung 3.2 ist zu erkennen, dass die Anteile fehlen-
der Daten iiber alle Variablen hinweg eine dhnliche Spannweite aufweisen und auch hier

keine extremen Ausreif3er vorhanden sind.
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Die mittleren Fehlerraten fiir den grofleren Datensatz liegen erneut knapp unter 10 %

und knapp unter 20 %, die Abbildungen befinden sich im Anhang.
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4. Imputation fehlender Daten

Um mit unvollstindigen Datensétzen Analysen durchzufithren gibt es verschiedene An-
sitze. Beispielsweise gibt es die sogenannte Complete Case Analyse, ein Ad-hoc-
Verfahren, bei dem alle Beobachtungen mit einem oder mehreren fehlenden Werten
in einer beliebigen Variable nicht in die Analyse mit einbezogen werden (,listwise dele-
tion“). Nur in allen Variablen vollstandige Beobachtungen werden also beriicksichtigt.
Fiir Datensétze mit vielen fehlenden Werten ist dieses Vorgehen problematisch, da es
einen hohen Informationsverlust zur Folge hat. Wiirde theoretisch fiir jede Beobachtung
nur die Angabe einer Variable von vielen fehlen, wiirde fiir die Auswertung keine Beob-
achtung mehr {ibrig bleiben. Ebenso ist ein MCAR-Fehlermuster zwar unproblematisch,
falls dies jedoch nicht gilt kommt es meist zu einer Verzerrung der Schétzer.

Sinnvoller ist teilweise die sogenannte Available Case Analyse, bei der alle Beob-
achtungen verwendet werden, die fiir die interessierende Variable einer Auswertung
vollsténdig sind. Auch hier existiert jedoch die Problematik der verzerrten Schéitzung,
falls die MCAR-Annahme nicht zutrifft.

Um diese Verzerrungen zu vermeiden, ist es manchmal sinnvoll, die fehlenden Werte
durch moglichst plausible Werte zu ersetzen. Dieses Vorgehen wird auch als Imputation
bezeichnet, die moglichen Methoden werden in diesem Kapitel dargestellt. Die Grund-

lagen zu diesem Kapitel sind aus (Spiess; 2008) und koénnen dort nachgelesen werden.

4.1. Einfache Imputationsverfahren

Bei einfachen Imputationsverfahren wird fiir jeden fehlenden Wert genau eine Imputation

erzeugt. Ein paar mogliche Methoden lauten wie folgt:

e Mittelwertsimputation
Dabei wird fiir jeden fehlenden Wert das arithmetische Mittel der beobachte-
ten Werte der Variablen eingesetzt. Bei nicht-metrischen Daten kann alternativ
auch der Median oder Modus imputiert werden. Der Variablen-Mittelwert (be-

ziehungsweise -Modus oder -Median) bleibt dabei gleich, die Varianz wird jedoch
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unterschéitzt ebenso wie die Kovarianz mit einer anderen Variablen. Auflerdem
bleibt die Problematik der verzerrten Schétzung bestehen, oft sogar selbst unter

der MCAR-Annahme.

e Regressionsimputation
Dabei wird der fehlende Wert durch den Vorhersagewert eines Regressionsmo-
dells auf Basis der beobachteten Werte anderer Variablen ersetzt. Eine konsistente
Schétzung von Erwartungswerten ist mit dieser Methode unter schwachen Annah-
men moglich, unter anderem muss die MCAR- oder MAR-Annahme erfiillt sein.
Zur Schétzung von Varianzen und Kovarianzen hingegen miissen Korrekturen vor-

genommen werden, da diese sonst unterschéitzt werden.

e Hot Deck Imputation

Bei der Mittelwerts- und Regressionsimputation konnen Werte geschétzt werden,
die auBerhalb des Wertebereichs der wahren Daten liegen. Die Hot Deck Imputa-
tion ist eine alternative Imputationsmethode, bei der dieses Problem nicht auftre-
ten kann. Dabei werden fehlende Werte durch in den Daten tatséchlich beobachtete
Werte ersetzt. Eine Mdéglichkeit hierfiir ist die ,,Random Overall“-Imputation, bei
der absolut zufillig mit oder ohne Zuriicklegen beziehungsweise mithilfe spezieller
Ziehungsdesigns ein Wert aus den beobachteten Daten ausgewéhlt wird. Dieses
Verfahren fithrt nur zu einer konsistenten Schétzung, falls die MCAR-Annahme
zutrifft.

e Cold Deck Imputation
Diese ist sehr dhnlich zur Hot Deck Imputation, nur werden die Werte aus denen
gezogen wird nicht aus den wahren Daten, sondern aus anderen Datensétzen oder

Quellen gewonnen.

Bei den meisten einfachen Imputationsmethoden, aufler der stochastischen Regressions-
imputation, wird die Unsicherheit in den Daten nicht angemessen beriicksichtigt. Dies

fithrt unter anderem dazu, dass die wahre Varianz in den Daten unterschétzt wird.

4.2. Multiple Imputationsverfahren

Im Gegensatz zur einfachen Imputation, bei der fiir jeden fehlenden Wert nur eine Im-

putation erzeugt wird, werden bei der multiplen Imputation fiir jeden Wert mehrere
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Imputationen erzeugt. Dadurch entstehen mehrere vollstandige Exemplare des urspriing-
lich unvollstédndigen Datensatzes, wobei die beobachteten Werte jeweils gleich sind. Das

Verfahren lasst sich in drei Schritten darstellen:

e 1. Imputation:
Im ersten Schritt werden mithilfe eines ausgewihlten Verfahrens m imputierte
Datensétze erstellt. Dabei entspricht m der Anzahl an Werten, die fiir ein fehlendes

Feld erzeugt werden sollen.

e 2. Analyse:
Im zweiten Schritt werden die Datensétze einzeln analysiert, wodurch m Auswer-

tungen entstehen.

e 3. Kombination:
Im letzten Schritt werden die Einzelergebnisse zu einem Gesamtergebnis zusam-
mengefasst. Fiir (), eine beliebige statistische Grofle von Interesse, kann man dabei
die separaten Schétzer ¢; (j = 1,...,m) beispielsweise durch den Mittelwert zu ei-

nem Gesamtergebnis zusammenfassen:

m

= %qu (4.1)

Jj=1

Multiple Imputationsmethoden haben ein paar Vorteile gegeniiber den einfachen. Zum
einen wird durch das mehrmalige Schétzen die Unsicherheit in den Daten beriicksichtigt
und als Konsequenz daraus die wahre Varianz der Daten besser abgebildet. Zusétzlich
sind die Ergebnisse aus multipler Imputation der Erfahrung nach meistens besser als die

Ergebnisse aus einfacher Imputation.

4.3. Umsetzung in R

Folgend wird auf den genauen Ablauf der Imputationen und die Gewinnung der Auswer-
tungen eingegangen. Zu Beginn steht der vollstindige Datensatz, simuliert wie in Ka-
pitel 2.1 beschrieben. In diesem Datensatz werden anschlieend fehlende Werte erzeugt.
Dies funktioniert wie in Kapitel 3.2 erklért, also mit einer Wahrscheinlichkeit abhéngig
von der zuletzt erzeugten Variablen, die als einzige vollstéandig bleibt. Dieser Datensatz
mit den fehlenden Werten wird anschlieBend auf mehreren Wegen imputiert, die zugrun-

deliegenden R-Pakete und Methoden werden in Kapitel 5, 6 und 7 genauer vorgestellt.
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Durch diesen Schritt entsteht ein vollstéandiger Datensatz fiir jede einfache Imputations-
methode, fiir jede multiple Imputationsmethode entstehen je nach Angabe m Stiick. Die
Qualitat der Imputation soll letztendlich dahingehend getestet werden, wie gut der Zu-
sammenhang in den imputierten Daten dem wahren Zusammenhang angenédhert wird.
Deswegen wird mithilfe jedes Datensatzes ein Regressionsmodell berechnet, in dem die
letzte Variable (X0 im Falle des kleineren Datensatzes, Xy im Falle des grofieren) die
abhéngige Grofle ist und alle anderen Variablen als Einflussgrofien aufgenommen werden.
Fiir die multiplen Imputationsverfahren werden die m Schétzer anschliefend zu einem
Gesamtergebnis zusammengefasst. Fiir jede Imputationsmethode wird letztendlich ein
Parametervektor 5 = (o, ..., 5,) in einer Ergebnismatrix abgespeichert.

Dieser Vorgang wird anschlieBend 500 mal wiederholt, mit der einzigen Anderung, dass
die abhéngige Variable des Modells vor der Erzeugung fehlender Werte neu simuliert
wird. Durch diese erneute Simulation werden mithilfe der aus dem Préadiktor 7 errech-
neten Erwartungswerte in jeder Runde neue Zufallszahlen gezogen. Dadurch kann insge-
samt ein besseres Abbild der wahren Situation dargestellt werden. Die Erzeugung erfolgt
dabei genau wie bei der Simulation des Datensatzes, also auf Grundlage eines Regres-
sionsmodells mit allen anderen Variablen als Einflussgroflen, wobei genau die selben
Koeffizienten verwendet werden.

Aus jedem Schleifendurchgang resultiert ein Parametervektor fiir jede Imputationsme-
thode, dieser wird in der jeweiligen Ergebnismatrix abgespeichert. Fiir jedes f, ..., 3, fiir
jede Imputationsmethode resultieren also 500 Schitzer, die zusammengefasst in einem
Boxplot dargestellt werden. Der Intercept wird dabei herausgelassen, da dieser fiir die
Interpretation eher unwichtig ist. Die wahren Koeffizienten aus der Simulation werden

jeweils mit eingezeichnet und dienen zum Vergleich.
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Der schematische Ablauf eines Schleifendurchganges ist im Folgenden noch einmal ver-

einfacht dargestellt:

vollstéandiger Datensatz

!

Erzeugen von fehlenden Werten

l

unvollstéandiger Datensatz
L
Imputation
Methode 1  Methode 2 ... Methode [
d
ein vollstdandiger Datensatz bei einfacher Imputation
m vollstandige Datensétze bei multipler Imputation
1
jeweils Aufstellen einer Regressionsgleichung,

letzte Variable im Datensatz ist die abhéngige

l
Zusammenfassen der Ergebnisse bei multipler Imputation
l
Modell 1 Modell 2 ... Modell
R - o
Burethoder  Biethode2 -+ BMethode,

Desweiteren werden verschieden hohe Fehlerraten an unterschiedlichen Datensétzen ge-
testet. Deshalb werden schlussendlich vier dieser Auswertungen mit jeweils 500 Durch-

giangen ausgefiihrt. Diese sind die moglichen Verkniipfungen aus
e Anteil fehlender Werte knapp unter 10 % beziehungsweise knapp unter 20 %

e Datensatz mit zehn Variablen beziehungsweise Datensatz mit 20 Variablen
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5. Imputation mit Amelia Il

5.1. Theorie

Amelia ist ein R-Paket zur multiplen Imputation, es werden fiir jeden fehlenden Wert
also mehrere imputierte Werte erzeugt.

Es wird der sogenannte EMB-Algorithmus (expectation-maximization with bootstrap-
ping) verwendet. Hierbei wird der EM-Algorithmus auf mehrere durch Bootstrapping
ermittelte Datensétze, gezogen aus dem urspriinglichen, unvollstdndigen Datensatz, an-
gewendet. Die fehlenden Werte in den Datensétzen werden daraufhin durch die gezoge-
nen Imputationen ersetzt.

Die zugrundeliegenden Annahmen, der Algorithmus und die Durchfithrung in R sind

entnommen aus (Honaker et al.; 2011) und werden dort genauer beschrieben.

5.1.1. Annahmen

Das Annahme-Modell unter Amelia besagt, dass die kompletten Daten multivariat nor-

malverteilt sind mit Mittelwertsvektor ;1 und Kovarianzmatrix >:
D ~ Ny(p, %) (5.1)

Auch wenn diese Annahme fiir viele Daten nicht immer sinnvoll erscheint, ermoglichen
verschiedene Variablentransformationen eine Annéherung an diese Voraussetzung.
Desweiteren wird die sogenannte MAR-Annahme (missing at random) getroffen, diese
wurde in Kapitel 3.1 genauer beschrieben.

Auch der speziellere Fall, die sogenannte MCAR-Annahme (missing completely at ran-

dom), ist natiirlich ausreichend.
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5.1.2. Algorithmus

Eine schematischer Ablauf der Imputation ist in folgender Grafik dargestellt:

e incomplete data
/ \ bootstrap
||l|l | ! IIII|
o+ + : ‘J.f L
, 7 = . 7 bootst 1‘211'31';1_%[ data
L1 ] | EM

imputed datasets
J, l | | J analysis
- _“\ /" - o '“\\ N
( ) ) L '. nj | separate results
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Abbildung 5.1.: Schematische Darstellung der Imputation mit Amelia mithilfe des
EMB-Algorithmus aus (Honaker et al.; 2011).

Am Anfang steht der unvollstindige Datensatz D, der sich zusammensetzt aus den be-
obachteten Daten D° und den fehlenden Daten D™,

Anschliefend wird Bootstrapping angewandt, um die Unsicherheit der Schétzung nach-
zubilden.

Dabei wird n-mal (wobei n der Anzahl an Beobachtungen im Datensatz entspricht) mit
Zuriicklegen aus dem urspriinglichen Datensatz gezogen, wodurch eine Stichprobe des
Datensatzes entsteht. Eine Beobachtung kann also einmal, mehrmals oder gar nicht in
der Bootstrap-Stichprobe vorkommen. (Heumann und Schmid; 2013)

Durch mehrmaliges Durchfiihren von Bootstrapping erhédlt man mehrere Stichproben

des Datensatzes, wie in Abbildung 5.1 zu sehen ist.

Im néchsten Schritt sollen aus der Posteriori Werte gezogen werden, um damit schluss-
endlich abhingig von den gezogenen Parameterschitzern und von D die unvollstindi-

gen Bootstrap-Stichproben zu imputieren. Die Posteriori lasst sich aus folgenden Schrit-
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ten errechnen:

Die Likelihood der beobachteten Daten D ist p(D°, M|6), wobei § = (u,Y) und M
der Fehlermatrix entspricht wie in Kapitel 3.1 definiert, also mit den Eintragen m,;; =1
falls d;; € D™ und m;; = 0 sonst. Unter der MAR-Annahme (und der weiteren Annah-
me, dass M nicht von ¢ abhéngt) gilt:

p(D*, M0) = p(M|D**) - p(D*|) (5:2)

Da nur die Inferenz der Parameter der kompletten Daten von Interesse ist, lasst sich die
Likelihood auch darstellen als

L(6] D™*) o< p(D**|0) (5:3)

Mit dem ,,Satz vom iterierten Erwartungswert kann das wiederum umgeschrieben wer-

den zu

Mmewa/MDWMDWS (5.4)

Durch diese Likelihood, verbunden mit der flachen Priori von 6 (dabei handelt es sich

um die nicht-informative Gleichverteilungspriori), ergibt sich die Posteriori zu
610 o p(D™16) = [ p(DIYD™ (55)

Um aus dieser Posteriori Werte zu ziehen und mithilfe des damit erhaltenen Para-
meterschitzers § und den beobachteten Daten D die fehlenden Werte D™ zu ver-
vollstandigen, wird nun der EM-Algorithmus angewendet. Dieser wird genauer beschrie-
ben in (Honaker und King; 2010).

Der EM-Algorithmus setzt sich zusammen aus dem Estimation-Schritt (E-Schritt) und
dem Maximization-Schritt (M-Schritt). Im E-Schritt werden die fehlenden Daten D™
mithilfe der beobachteten Werte D°* und des Parameters é, bei dem es sich um einen
Schétzer auf Grundlage der letzten Imputation handelt, aufgefiillt. Fiir den ersten Durch-
gang wird dabei fiir den Parameter 6 ein zufélliger Startwert generiert, da noch keine
aktuelle Imputation vorhanden ist. Im M-Schritt wird anschliefend der Parameter des
Modells auf Grundlage der neuen Imputation mit der Maximum-Likelihood-Methode
geschitzt. Der Algorithmus iteriert so lange zwischen dem E-Schritt und dem M-Schritt
bis Konvergenz eintritt, also bis sich der Parameterschitzer 0 im Vergleich zum vorhe-

rigen Durchgang nur noch minimal veréndert.

23



Mithilfe der Funktion zelig aus dem R-Paket Zelig (Imai et al.; 2015) kénnen nun die feh-
lenden Schritte aus Abbildung 5.1 einfach durchgefiihrt werden. Mithilfe der vollsténdi-
gen, imputierten Datensétze werden Analysen, in diesem Falle eine Regression, durch-

gefithrt und die Einzelergebnisse zu einem Gesamtergebnis kombiniert.

5.2. Umsetzung in R

Fiir die Durchfiihrung der multiplen Imputation mit dem R-Paket Amelia muss der
Funktion der unvollstédndige Datensatz, die gewiinschte Anzahl an Imputationen m und
die Information, bei welchen Variablen es sich um nominale beziehungsweise ordinale
Variablen handelt, iibergeben werden.

Desweiteren gibt es die Moglichkeit, die Imputationen einer Variablen auf einen be-
stimmten Wertebereich zu beschrinken. Dies wiirde beispielsweise verhindern, dass fiir
eine gamma-verteilte Variable negative Werte imputiert werden kénnen. In (Honaker
et al.; 2011) wird jedoch empfohlen, auf das Verwenden dieser Restriktionen zu verzich-
ten, da durch das Uberschreiten der logischen Beschriinkung einer Variablen ein Teil der
Unsicherheit beim Imputieren wiedergespiegelt wird. Da die Werte der Variablen selbst
hier letztendlich nicht weiter interessant sind, sondern nur die Regressionskoeffizienten
betrachtet werden, wird auf diese Einschrankung verzichtet.

Fiir den grofleren Datensatz mit einem Anteil fehlender Werte knapp unter 20 % war es
notig, den Befehl incheck=FALSE einzufiigen. Dadurch werden die Ubergabeparameter
der Funktion vor der Imputation nicht tiberpriift. Ohne diesen Befehl resultierte eine
Fehlermeldung, nach der mehrere Variablen im Datensatz perfekt kollinear zu anderen
Variablen seien. Auch mithilfe des Ubergabeparameters empri, durch den die Kovarianz
zwischen den Variablen gesenkt wird, konnte dieses Problem nicht behoben werden. Wie
in Kapitel 5.3.2 noch gezeigt wird, scheint die Giite der Imputation darunter jedoch
nicht zu leiden.

Es sind noch einige weitere Ubergabeparameter vorhanden, welche eine bessere An-
passung an verschiedene Datengrundlagen ermdoglichen. Diese sind fiir die betrachteten
Datensétze jedoch nicht von Relevanz und werden deswegen weggelassen, konnen aber

in (Honaker et al.; 2011) nachgelesen werden.

Die Funktion zelig aus dem R-Paket Zelig benétigt als Ubergabeparameter wiederum
die m imputierten Datensétze, den Pradiktor der Regressionsgleichung und die Art der

Regression.
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Mogliche Angaben fiir das Regressionsmodell sind nach (Owen et al.; 2013) folgende:

smodel*“ in R | Regression Skalierung der abhingigen Variable
gamma Gamma stetig, positiv

logit Binomial (Logit) dichotom

ls linear (KQ-Methode) | stetig

negbinom Negativ Binomial Zahldaten

normal linear (ML-Methode) | stetig

POISSON Poisson Zahldaten

probit Binomial (Probit) dichotom

Tabelle 5.1.: Liste moglicher Angaben fiir das Regressionsmodell bei der Funktion

zelig.

Die Methoden [s und normal unterscheiden sich dabei lediglich in der Schétzung fiir den
Parameter o.

Die Theorie zu den generalisierten linearen Modellen kann nachgelesen werden in (Fahr-
meir et al.; 2009).

5.3. Ergebnisse

Die Ergebnisse nach der Imputation mit Amelia werden getrennt nach den beiden Da-

tensétzen und fiir verschiedene Fehlerraten dargestellt.

5.3.1. Kleinerer Datensatz

Fiir einen Anteil fehlender Daten knapp unter 10 % werden die 500 Schitzungen der

Regressionskoeffizienten in einem Boxplot dargestellt:
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Abbildung 5.2.: Ubersicht iiber die geschitzten Regressionskoeffizienten nach der Im-
putation mit Amelia aus 500 Durchgéngen. Es wird der Datensatz mit zehn Variablen

und einer mittleren Fehlerrate knapp unter 10 % betrachtet.

Sehr auffillig ist hierbei, dass die Koeffizienten fiir die binomial-verteilten Variablen X,
X und Xy viel mehr streuen als die Koeffizienten fiir numerische Variablen. Insgesamt
lasst sich jedoch erkennen, dass der Median der Schétzwerte in allen Féllen ziemlich
nah am wahren Koeffizienten liegt. Auch existieren fiir keinen Koeffizienten extreme

Ausreifler.
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Fiir einen hoheren Anteil fehlender Daten knapp unter 20 % ergibt sich ein dhnliches
Bild:
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Abbildung 5.3.: Ubersicht iiber die geschitzten Regressionskoeffizienten nach der Im-
putation mit Amelia aus 500 Durchgéingen. Es wird der Datensatz mit zehn Variablen

und einer mittleren Fehlerrate knapp unter 20 % betrachtet.

Auch in Abbildung 5.3 streuen die Schétzer der binomial-verteilten Variablen weit mehr
als die Schétzer der numerischen Variablen. Wéhrend bei geringerer Fehlerrate in Ab-
bildung 5.2 die Koeffizienten der dichotomen Variablen jedoch tendenziell nur leicht
unterschitzt werden, ist diese Tendenz fiir eine hohere Fehlerrate schon deutlicher zu
erkennen. Auch ist insgesamt zu sehen, dass die Spannweite der Schétzer fiir alle Koef-

fizienten grofer ist als bei der geringeren Fehlerrate.
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5.3.2. GroBerer Datensatz

Fiir den Datensatz mit 20 Variablen sowie einem Anteil fehlender Daten knapp unter

20 % werden die 500 Schétzungen der Regressionskoeffizienten erneut in einem Boxplot

dargestellt:
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Abbildung 5.4.: Ubersicht iiber die geschitzten Regressionskoeffizienten nach der Im-
putation mit Amelia aus 500 Durchgéngen. Es wird der Datensatz mit 20 Variablen

und einer mittleren Fehlerrate knapp unter 20 % betrachtet.

Auch in Abbildung 5.4 ist deutlich zu erkennen, dass die Koeffizientenschétzer der
binomial-verteilten Variablen X, X5, X1; und X7 eine deutlich hohere Spannweite und

auch Varianz aufweisen als die Koeffizientenschitzer aller numerischen Variablen. Der

28



wahre Koeffizient wird jedoch erneut fiir alle Schiatzer im Mittel relativ gut angenéhert,
der Median entspricht meistens etwa dem wahren Koeffizienten. Ebenso existieren er-

neut keine extremen Ausreifler.

Fiir die geringere Fehlerrate ergibt sich ein dhnliches Bild, wobei die Koeffizienten analog
zu Kapitel 5.3.1 etwas besser angendhert werden sowie die Spannweite der Schétzer

tendenziell geringer ist. Die zugehorige Grafik befindet sich im Anhang.
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6. Imputation mit mice

6.1. Theorie

mice ist ein R-Paket zur multiplen Datenimputation. Hier werden, ebenso wie bei Ame-
lia, fir jeden fehlenden Wert mehrere imputierte Werte erzeugt. mice steht dabei fiir
,multivariate imputation by chained equations®, auch bekannt als FCS (fully conditional
specification).

Eine bekannte Ansatzweise bei multipler Imputation ist das sogenannte ,joint mode-
ling“, bei dem die multivariate Verteilung der fehlenden Daten spezifiziert wird und
anschliefend mithilfe von MCMC-Verfahren (Markov Chain Monte Carlo) aus den be-
dingten Verteilungen Imputationen gezogen werden. Dieses Verfahren ist sinnvoll, falls
die spezifizierte multivariate Verteilung die Daten gut beschreibt. Kann jedoch keine
passende multivariate Verteilung gefunden werden, ist die Verwendung von mice eine
mogliche Alternative. Dabei wird fiir jede unvollstéindige Variable die bedingte Vertei-
lung definiert, welche auf einem univariaten Regressionsmodell basiert. Dann werden
mithilfe des FCS-Algorithmus Imputationen erzeugt, wobei wiederholt mithilfe der be-
dingten Verteilungen Werte gezogen werden.

Die zugrundeliegende Theorie sowie die Durchfithrung in R werden genauer beschrieben

in (van Buuren und Groothuis-Oudshoorn; 2011).

6.1.1. Annahmen

Es wird angenommen, dass der Datensatz D einer p-variaten Verteilung P(D|#) folgt,
welche durch den unbekannten Parametervektor 6 komplett spezifiziert ist. Das eigent-
liche Problem, ndmlich die multivariate Verteilung von 6 zu erhalten, wird dabei mit
bayesianischen Verfahren gelost.

mice kann, im Gegensatz zu Amelia, mit MAR- und NMAR-Daten umgehen. Jedoch
muss vor der Auswertung entschieden werden welche Annahme sinnvoll ist, da unter
Giiltigkeit des NMAR-Falls eventuell zusétzliche Modifikationen vorgenommen werden

miissen.
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6.1.2. Algorithmus

Der zugrundeliegende Algorithmus der Funktion mice kann in vier generelle Schritte

eingeteilt werden und wird in (Azur et al.; 2011) genauer beschrieben:

e Im ersten Schritt wird fiir jeden fehlenden Wert einer Variablen eine einfache
Stichprobe aus den beobachteten Werten gezogen. Dieser Wert wird statt des NA-
Eintrags eingesetzt, sodass schlussendlich jede Beobachtung vollstindig ist. Die

eingesetzten Werte kénnen dabei als ,,Platzhalter® gesehen werden.

e Die ,Platzhalter” einer einzigen Variablen werden wieder geloscht, sodass sie sich
wieder im urspriinglichen Zustand befindet. Alle anderen Variablen bleiben ver-
vollstandigt. Die Variable im urspriinglichen Zustand wird im Folgenden als Y

bezeichnet.

e Es wird eine Regressionsgleichung auf Grundlage der beobachteten Werte von Y
durchgefiihrt, die bedingt wird auf alle anderen Variablen im Datensatz. Bei Y han-
delt es sich also um die abhéingige Variable, die restlichen sind unabhéngige Ein-
flussgroBien. Bei der Aufstellung des Regressionsmodells wird dabei die Verteilung
der abhéngigen Variablen beriicksichtigt. Gilt Y also beispielsweise als normal-
verteilt, wird ein einfaches lineares Modell aufgestellt, fiir ein ordinal-skaliertes Y
wird hingegen ein kumulatives Logit-Modell berechnet. Mdogliche Angaben in R

werden in Kapitel 6.2 genauer beschrieben.

e Die fehlenden Werte von Y werden mithilfe von Vorhersagen auf Grundlage des
aufgestellten Regressionsmodells ersetzt. Bei den unabhingigen Variablen wird als
Datengrundlage zur Vorhersage fiir jede Beobachtung der wahre Wert verwendet,

falls dieser vorhanden ist, sonst der imputierte Wert.

Die Schritte zwei bis vier werden nun fiir jede Variable im Datensatz, die imputiert
werden soll, durchgefiihrt. Danach ist ein Durchgang der Imputation abgeschlossen. Die
Schritte zwei bis vier werden nun mehrere Durchgénge lang wiederholt, wobei die Im-
putationen in jedem Durchgang aktualisiert werden. Eine sinnvolle Anzahl an Impu-
tationsdurchgéingen ist dabei von Situation zu Situation unterschiedlich. Ziel ist aber
immer, Konvergenz in dem Sinne zu erhalten, dass Parameter und Regressionskoeffizi-
enten am Ende der Durchgénge keine grofien Verdnderungen zum vorherigen Durchgang

mehr aufweisen.
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6.2. Umsetzung in R

Eine schematische Darstellung der Datenimputation mit dem R-Paket mice ist in fol-

gender Grafik zu sehen:

incomplete data imputed data analysis results pooled results

mice() ﬂ with() m pool()

C
C

data frame mids mira mipo

Abbildung 6.1.: Schematische Darstellung der Imputation mit mice in R aus (van Bu-
uren und Groothuis-Oudshoorn; 2011).

Zau Beginn steht also der unvollstandige Datensatz D, welcher der Funktion als ein Data-
frame iibergeben wird. Mithilfe der Funktion mice werden nun m imputierte Datensétze
erzeugt. Standardméfig werden pro Imputation fiinf Durchgénge des in Kapitel 6.1.2
beschriebenen Algorithmus durchgefiihrt. Eine Erh6hung dieser Zahl zum Erreichen bes-
serer Ergebnisse ist oftmals sinnvoll und muss von Fall zu Fall betrachtet werden.

Der Funktion kann auch die jeweilige Imputationsmethode iibergeben werden, bei feh-
lendem Ubergabeparameter werden je nach Datentyp default-Werte verwendet. Folgende

Angaben sind moglich:
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Methode | Regressionsmodell Skalierung der Variable
pmm predictive mean matching numerisch

norm bayesianische lineare Regression | numerisch

logreg logistische Regression nominal (2 Level)

polyreg multinomiales Logit-Modell nominal (> 2 Level)

polr kumulatives Logit-Modell ordinal (> 2 Level)

Tabelle 6.1.: Liste einiger univariaten Imputationsmethoden der Funktion mice in R.

Beim , predictive mean matching“ handelt es sich um eine semi-parametrische Imputa-
tionsmethode mit dem Vorteil, dass die Imputationen auf den Wertebereich der beob-
achteten Werte eingegrenzt werden. Ebenso kénnen nicht-lineare Beziehungen erhalten
werden, auch wenn der strukturelle Teil des Imputationsmodells nicht korrekt ist. Es
handelt sich damit um eine gute Methode iiber alle numerischen Datentypen, kann aber
auch bei kategorialen Daten angewendet werden. Die bayesianische lineare Regression
ist eine effiziente Imputationsmethode falls die Modell-Residuen annéhernd normalver-
teilt sind. Das multinomiale Logit-Modell wird mit der Funktion multinom aus dem
nnet-Paket (Venables und Ripley; 2002) aufgestellt und ist gedacht fiir ungeordnete,
kategoriale Variablen mit zwei oder mehr Kategorien. Dabei wird immer die erste Kate-
gorie als Referenz verwendet. Fiir geordnete, kategoriale Variablen mit zwei oder mehr
Kategorien wird mithilfe der polr-Funktion aus dem MASS-Paket (Venables und Ripley;
2002) ein kumulatives Logit-Modell aufgestellt, wobei auch hier die erste Kategorie als
Referenz verwendet wird. Es existieren noch einige weitere Moglichkeiten, die in (van
Buuren und Groothuis-Oudshoorn; 2011) nachgelesen werden kénnen. Diese sind fiir die
hier betrachteten Datensétze jedoch nicht von Relevanz und werden deswegen der Ein-
fachheit halber weggelassen.

Ein weiterer Ubergabeparameter fiir die Funktion mice ist die Angabe, in welcher Rei-
henfolge die Imputationen in jedem Durchgang durchgefiithrt werden sollen. Standard-
méafBig werden die Variablen im Datensatz von links nach rechts imputiert. Um eine
schnellere Konvergenz des Algorithmus zu erreichen ist es manchmal sinnvoll, die Rei-
henfolge der Imputationen anzupassen. Eine Moglichkeit ist es, die Variablen mit auf-

steigender Anzahl an fehlenden Werten zu imputieren, beginnend mit der geringsten
Anzahl.
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Es existieren einige weitere Ubergabeparameter, die eine bessere Anpassung an verschie-
dene Datengrundlagen erméglichen. Diese sind fiir die zugrundeliegenden Daten jedoch
nicht von Relevanz und werden deswegen weggelassen, kénnen aber in (van Buuren und

Groothuis-Oudshoorn; 2011) nachgelesen werden.

Die imputierten Datensétze, in Abbildung 6.1 sind es drei Stiick, werden dabei abge-
speichert als ein Objekt der Klasse mids. Die drei Imputationen sind dabei identisch fiir
die existierenden Werte und unterscheiden sich in den imputierten Werten. Das mira-
Objekt wird anschlieBend der Funktion with iibergeben, zusétzlich mit der gewiinschten
Auswertung wie beispielsweise einer Regressionsgleichung. Das entstehende Objekt der
Klasse mira enthélt mehrere unterschiedliche Analyseresultate, die letztendlich mit der
Funktion pool zu einem Gesamtergebnis zusammengesetzt werden konnen. Das Gesamt-
ergebnis stellt dabei den Mittelwert aus allen Einzelergebnissen dar, die Varianz des

Schétzers wird dabei nach einem Vorschlag von Donald B. Rubin errechnet.

6.3. Ergebnisse

Die Ergebnisse werden erneut getrennt nach den Datensdtzen und fiir unterschiedliche

Fehlerraten dargestellt.

6.3.1. Kleinerer Datensatz

Fiir einen Anteil fehlender Daten knapp unter 10 % werden die 500 geschétzten Regres-

sionskoeffizienten in einem Boxplot zusammengefasst.
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Abbildung 6.2.: Ubersicht iiber die geschitzten Regressionskoeffizienten nach der Im-
putation mit mice aus 500 Durchgédngen. Es wird der Datensatz mit zehn Variablen

und einer mittleren Fehlerrate knapp unter 10 % betrachtet.

Analog zu den Ergebnissen aus Kapitel 5.3 ist eine erhohte Varianz der Koeffizien-
tenschétzer fiir die binomial-verteilten Variablen X5, Xg und Xy im Vergleich zu den
Koeffizientenschitzern numerischer Variablen zu erkennen. Es werden jedoch alle wah-
ren Koeffizienten tendenziell weder unter- noch iiberschétzt, ebenso wie keine extremen

Ausreifler existieren.
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Fiir eine hohere Fehlerrate sind die Ergebnisse sehr dhnlich. Die Koeffizientenschétzer
streuen zwar etwas mehr, der wahre Wert der Koeffizienten wird jedoch im Mittel nahezu

genauso gut angendhert. Die zugehorige Grafik befindet sich im Anhang.

6.3.2. GroBerer Datensatz

Betrachtet man die Ergebnisse fiir eine Fehlerrate knapp unter 20 % bei der Imputation

des Datensatzes mit 20 Variaben ergibt sich folgendes Bild:
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Abbildung 6.3.: Ubersicht iiber die geschitzten Regressionskoeffizienten nach der Im-
putation mit mice aus 500 Durchgéingen. Es wird der Datensatz mit 20 Variablen

und einer mittleren Fehlerrate knapp unter 20 % betrachtet.
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Erneut ist die Spannweite der Koeffizientenschétzer binomial-verteilter Variablen weitaus
groffer als die der Koeffizientenschétzer numerischer Variablen. Fiir die dichotomen Va-
riablen wird der wahre Wert von 51 und 55 tendenziell leicht unterschétzt, fiir 517 leicht
iiberschétzt. Jedoch handelt es sich in absoluten Zahlen um sehr geringe Differenzen
nahe 0. Fiir die numerischen Variablen ist im Mittel eine sichere Schitzung des wah-
ren Regressionskoeffizienten zu erkennen, die maximalen absoluten Abweichungen der

Schatzer vom wahren Wert sind dabei nahe 0.

Fiir die geringere Fehlerrate sind die Ergebnisse erneut sehr dhnlich, die zugehorige

Grafik kann im Anhang betrachtet werden.
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/. Regressionsimputation

In diesem Kapitel wird eine Methode zur einfachen Imputation mithilfe von Regressions-
gleichungen vorgestellt. Fiir jeden fehlenden Wert im Datensatz wird eine Imputation
erzeugt, woraus ein einziger, vollstandiger Datensatz resultiert. Das Ergebnis muss also
nicht wie in Kapitel 5 und 6 aus Einzelergebnissen zusammengesetzt werden. Die beob-
achteten Daten D bleiben natiirlich auch hier unberiihrt.

Diese Imputationsmethode ist keine sehr verbreitete oder vielgetestete Moglichkeit zur

Vervollstandigung von Datensétzen und soll mit bekannten Methoden verglichen werden.

7.1. Theorie

7.1.1. Annahmen

Wie schon in Kapitel 4.1 erwdhnt, muss bei den meisten einfachen Imputationsmethoden
die MCAR- oder MAR-Annahme erfiillt sein, um moglichst unverzerrte Schétzer zu
erhalten. Zusatzlich wurde in Kapitel 4.1 das Problem angesprochen, dass die wahre
Variabilitat der Daten durch einfache Imputationsmethoden oft unterschéatzt wird. Auf
dieses Problem wird reagiert durch das kiinstliche Erzeugen von Zufallsfehlern im Laufe

der Imputation, ndher beschrieben in Kapitel 7.1.2.

7.1.2. Algorithmus

Im Grunde basiert diese Imputationsmethode auf der Definition bedingter Dichten, die

wie folgt aussieht:

~ fz,y)
f(zly) = W) (7.1)
Dies lasst sich umformen zu:
f(z,y) = f(zly) - fy) (7.2)
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Die gemeinsame Dichte von X und Y ldsst sich auch darstellen als ein Produkt aus
der Dichte von Y und der bedingten Dichte von X auf Y. Dies lédsst sich fiir mehrere

Variablen weiterfithren, fiir vier Variablen X7, ..., X, gilt also beispielsweise

(@1, 29,23, 24) = f(24]21, T2, 73) - f23]71, 22) - f(22]21) - f (1) (7.3)

Ebenso konnte theoretisch die Reihenfolge beliebig vertauscht werden und die gemein-

same Dichte dargestellt werden als

f(x1, 20, w3, 24) = f(21|72, 3, 24) - f(22|73, 24) - f23]24) - f(24) (7.4)

Der Einfluss der Reihenfolge auf das Endergebnis wird ebenfalls untersucht.

Grundsatzlicher Algorithmus

Aufbauend auf dieser Definition werden die fehlenden Werte jeder Variablen mithilfe ei-
ner Regression imputiert. Nach der Reihenfolge in Formel 7.3 wiirde beispielsweise zuerst
X mithilfe von einfachen Zufallszahlen erzeugt werden. X5 wird anschlieBend mit einer
Regression mit X; als unabhéngiger Variable imputiert. Dabei wird das Regressions-
modell passend zum Verteilungstyp der abhéingigen Variablen gewéhlt, beispielsweise
ein kumulatives Logit-Modell fiir ein ordinal-skaliertes X,. X3 wird anschlieBend durch
ein Regressionsmodell mit den unabhéngigen Variablen X; und X, erzeugt, die Impu-
tation von X, funktioniert analog.

Dieser Imputationsvorgang dhnelt sehr der urspriinglichen Erzeugung der Daten wie
in Kapitel 2.1 beschrieben. Die Koeffizienten des Regressionsmodells werden jedoch
nicht fest vorgegeben, da der wahre Zusammenhang in realen Situationen nicht bekannt
ist. Stattdessen werden die Regressionskoeffizienten mithilfe der nicht fehlenden Daten
geschéatzt.

Genau an dieser Stelle wird auch auf das Problem der tendenziellen Varianzunter-
schiatzung bei einfachen Imputationsmethoden eingegangen. Zu den errechneten Re-
gressionskoeffizienten auf Grundlage der vorhandenen Daten wird ein Zufallsfehler ad-
diert. Dazu wird aus einer multivariaten Normalverteilung gezogen mit Mittelwertsvek-
tor = B = (Bo, b1, ..., Bp) und der geschiitzten Varianz-Kovarianz-Matrix & = cov (),
die den Zusammenhang zwischen den Koeffizienten auf Grundlage des Regressionsmo-

dells wiedergibt:

~

B ~ N,(B, cov(B)) (7.5)
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Ab hier verlauft der Imputationsvorgang komplett analog zur Simulation in Kapitel 2.1.
Mithilfe der Koeffizienten wird ein Regressionsmodell aufgestellt und mit dem dadurch
errechneten Erwartungswert werden schlussendlich Zufallszahlen gezogen. Hierbei wird
verwiesen auf Tabelle 2.2, in der genau die moglichen Variablentypen, die verwendeten
Linkfunktionen sowie der Vorgang der Zufallsziehung in R beschrieben werden.

Auch bei der Zufallsziechung wird erneut auf das Problem der Varianzunterschétzung
eingegangen, da durch das Ziehen von Zufallszahlen zusétzliche Variabilitét entsteht.
Bei der Ausfithrung bleibt lediglich zu beachten, dass die Standardabweichung o fiir
normal-verteilte Variablen sowie der Shape-Parameter v fiir gamma-verteilte Variablen
in realen Situationen natiirlich ebenso wie die wahren Regressionskoeffizienten nicht be-
kannt sind. Deshalb werden diese Parameter aus den Daten geschéatzt. Dazu wird der
geschétzte Dispersionsparameter ngS des Regressionsmodells betrachtet und folgenderma-

Ben transformiert, siehe (Fahrmeir et al.; 2009):

e normal-verteilte Variable:
der Dispersionsparameter ¢ entspricht der Varianz o2. Um die Standardabweichung

o zu erhalten, wird die Wurzel aus dem Dispersionsparameter gezogen:
o=1/9 (7.6)

e gamma-verteilte Variable:
der Dispersionsparameter ¢ entspricht dem Kehrwert des Shape-Parameters v,
umgekehrt gilt

1
v=—

(7.7)
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Im Folgenden sind die einzelnen Schritte fiir dieses Imputationsverfahren an einer poisson-

verteilten Variablen zu sehen:

p = exp(n)
!
y ~ rpois(lambda = 1)

Die Imputation wird analog fiir jede Variable der Reihe nach durchgefiihrt bis der Daten-
satz vollstindig ist, wobei die Anzahl an unabhéngigen Variablen im Modell mit jedem
mal um eins steigt. Dabei wird das zugrundeliegende Regressionsmodell natiirlich an die
unabhéngige Variable angepasst, ebenso wie die Errechnung des Erwartungswertes und

der Zufallsziehungsprozess.

Die Ergebnisse dieses Imputationsverfahrens sind, wie spéter in Kapitel 7.3 gezeigt wird,
im Vergleich zur multiplen Imputation mit Amelia oder mice, eher keine Verbesserung.
Auch tauchten im Laufe der Durchfiithrung einige Probleme auf, die eine Auswertung
unmoglich machten. Deswegen wurden Modifikationen an den Daten und am Algorith-
mus vorgenommen und untersucht, ob unter diesen die wahre Situation eventuell besser

dargestellt wird.

Weglassen von kategorialen Variablen im Datensatz

Wie schon in Kapitel 2.3 erwéhnt, wurden schlussendlich nur normal-, poisson-, gamma-
und binomial-verteilte Variablen in den Datensatz aufgenommen. Problematischer Schritt
bei kategorialen Variablen ist das Aufstellen des Regressionsmodells, um daraus den Ko-
effizientenschiitzer 3 = (Bl, s Bp) zu erhalten.

Schwierigkeiten treten beispielsweise auf, falls bei der Maximum-Likelihood-Schétzung
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der Koeffizienten in einem beliebigen Durchgang k kein Maximum fiir ein endliches 3
existiert, also mindestens eine Komponente von B(k) gegen unendlich geht (Fahrmeir
et al.; 2009). Der ML-Algorithmus konvergiert in diesem Falle nicht und es kommt zum
Funktionsabbruch.

Ebenso ist es problematisch, falls die geschitzten Wahrscheinlichkeiten fiir eine Katego-
rie sehr nahe bei 1 oder 0 liegen, was sehr hohe Schétzer B mit unverhéltnisméfig hoher
Standardabweichung zur Folge hat. Daraus resultieren weitere Probleme, die schluss-
endlich ebenso zum Funktionsabbruch fithren.

Schwierigkeiten entstehen ebenfalls, wenn fiir die Kombination aus zwei kategorialen Va-
riablen eine Auspriagung in den Daten nicht auftritt. Ein Beispiel hierfiir ist die folgende
Tabelle, die die Anzahl an Beobachtungen fiir jede Verkniipfung aus X = {1,2,3} und
Y = {a, b} angibt:

a b
15 0
214 10
33 14

Die Chance, dass bei Kategorie 1 das Ereignis a eintritt, errechnet sich hierbei durch

o P(Y=qX=1)  PY=aX=1) 5
RY =alX =) =y —ax =1 PY=BX=1) 0 (7.8)

Das Odds ist in diesem Falle also nicht definiert. Bei einem Logit-Modell wird das Odds

jedoch bendétigt, um den Erwartungswert p zu errechnen:

_ P(Y =a) vogit- exp(n) 1
~ P(Y =) Model 1+ exp(n)’ 1+ exp(n)

R(Y = a) — cap(i) (7.9)
Auch fiir solche Datensituationen entstehen also Probleme bei der Aufstellung des Re-
gressionsmodells.

Es exisiteren natiirlich noch einige weitere Beispiele, bei denen das Aufstellen eines

Logit-Modells nicht problemfrei funktioniert.
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Verwendung einer penalisierten logistischen Regression anstatt des normalen
Logit-Modells fiir binomial-verteilte Variablen

Die gerade geschilderten Probleme gelten analog fiir das Logit-Modell bei binomial-
verteilten Variablen. Ein ebenso bekanntes Problem ist, falls eine perfekte Trennung in
den Daten auftaucht. Um das Problem genauer zu verstehen, sei folgend ein Beispiel
gegeben.

Die numerische Variable Y soll durch die binomial-verteilte Variable X erklért werden.

Die Datensituation ist dabei wie folgt:

1
[\

[ G O

Tabelle 7.1.: Datenbeispiel mit perfekter Trennung

Obwohl der Wert von Y durch die Variable X perfekt vorhergesagt werden kann, existiert
bei der Maximum-Likelihood-Schéatzung kein Maximum und der Koeffizientenschétzer
BML deshalb auch nicht.

Um dieses Problem zu vermeiden wird zu Beginn der Imputation eine penalisierte lo-
gistische Regression mithilfe der Funktion [logistf aus dem R-Paket logistf statt des
normalen Logit-Modells durchgefiihrt. Diese von Firth 1993 entwickelte Methode, die
eigentlich zum reduzieren des Bias der Maximum-Likelihood-Schétzer gedacht ist, eig-
net sich sehr gut im Umgang mit perfekter Trennung in den Daten. Die Methodik wird
in (Heinze und Schemper; 2002) wie folgt erklért:
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Die Maximum-Likelihood Schétzer der Regressionsparameter (3., r = 1, ..., k, erhilt man

durch Nullsetzen der Score-Funktion:

Olog(L)
95,

=U(B)=0 (7.10)

wobei L die Likelihood-Funktion ist. Um den Bias zu reduzieren, schlug Firth eine Mo-

difikation dieser Formel vor:

o1(p)
9P,

U = UG + 5 - spurlI(8) (2] =0, r=1,k  (71)

wobei I(3)~! die Inverse der Informationsmatrix ist. Dieser Schiitzer existiert im Gegen-
satz zum ML-Schétzer auch, wenn perfekte Trennung in den Daten vorliegt.
Algorithmus unter Verwendung der geschatzten Werte B

Um eine mogliche Uberschitzung der Variabilitéit in den Daten zu vermeiden, wird
zum einen anstatt des Koeffizientenvektors 8 mit addiertem Zufallsfehler der wahre
Koeffizientenschétzer B verwendet. Der schematische Ablauf aus Kapitel 7.1.2 lasst sich

wie folgt anpassen:

y ~ rpois(lambda = p)

Algorithmus mit mehrmaligem Durchlaufen des Imputationsvorganges

Um das Risiko zu verringern, dass die imputierten Werte in der ersten Runde zufillig
sehr ungenau sind, wird der urspriingliche Algorithmus mehrmals durchlaufen. Dabei

werden natiirlich weiterhin die selben, fehlenden Werte imputiert. Der Unterschied be-
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steht darin, dass die Regressionskoeffizienten B und die Varianz-Kovarianz-Matrix X ab
dem zweiten Komplettdurchgang auf Grundlage der vorherigen Imputation geschétzt
werden, nicht auf Grundlage des unvollstdndigen Datensatzes. Dies kann beliebig viele

Runden wiederholt werden.

7.2. Umsetzung in R

Zur vereinfachten Durchfiihrung der Imputation wurden Funktionen geschrieben, die
fiir wenige Ubergabeparameter nach dem Algorithmus aus Kapitel 7.1.2 fehlende Daten
imputieren. Eine Funktion verwendet dabei zum Errechnen des Pradiktors die wahren
Regressionskoeffizienten B , die andere Funktion benutzt den Regressionskoeffizienten B
mit zuséatzlich addiertem Zufallsfehler.

Dabei werden einige bestehende Funktionen aus R verwendet. Zum einen wird die Funk-
tion glm aus dem stats-Paket zum fitten von generalisierten linearen Modellen verwendet
und die Funktion vglm aus dem Paket VGAM (Yee; 2010), um ein multinomiales oder
kumulatives Logit-Modell zu fitten. Auch wird auf die Funktion rmwvnorm aus dem Paket
mutnorm (Genz et al.; 2014) zugegriffen, um aus einer multivariaten Normalverteilung

zu ziehen und damit B zu erhalten.

Als Ubergabeparameter benétigen die Funktionen zum einen den zu imputierenden Da-
tensatz data.missing mit den fehlenden Werten. Auch muss der Datensatz data.mod
iibergeben werden, auf Grundlage dessen die Regressionsmodelle berechnet werden sol-
len. Fiir die mehrmalige Durchfiithrung der Imputation ist das in der ersten Runde der
unvollstéandige Datensatz selbst, ab der zweiten Runde jeweils der erzeugte, imputierte
Datensatz. Fiir die beiden anderen Methoden ist data.missing und data.mod jeweils der
unvollstindige Datensatz.

Der Ubergabeparameter variable ist ein Vektor, der die Spaltennummer der abhéngi-
gen, zu imputierenden Variablen fiir jeden Durchgang angibt. Die Linge dieses Vektors
entspricht dadurch der Anzahl unvollstdndiger Variablen, die imputiert werden sollen.
Im Vektor variable.type der selben Lange wird jeweils angegeben, welcher Verteilung
beziehungsweise Skalierung die Variable folgt, mogliche Angaben sind hierbei “normal*,
“poisson”, “gamma®, “binomial“, “nominal® und “ordinal®.

In der Liste independent.variables werden jeweils die Spaltennummern der Variablen
angegeben, die als unabhéngige Einflussgréfien in das Modell mit aufgenommen werden

sollen. Im ersten Listeneintrag ist das nur eine Variable, fiir jeden weiteren Listeneintrag
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kommt die zuvor abhéngige Variable dazu.
Bei Bedarf kann den Funktionen noch ein seed iibergeben werden, sonst wird dieser auf
NA gesetzt.

7.3. Ergebnisse

Die Ergebnisse werden fiir jeden Datensatz zuerst getrennt nach der Imputationsreihen-
folge betrachtet. Durchgefiihrt wird zum einen die Imputation in der selben Reihenfolge
wie bei der Datensimulation, das heifit zuerst wird X; mithilfe von Zufallszahlen ver-
vollstdndigt und dann die restlichen Variablen X5, ... mithilfe von Regressionsmodellen.
Die zweite Reihenfolge ist entgegengesetzt zur Simulation, das heif3t von der vorletzten
Variablen absteigend bis zur ersten. Hierbei wird die vorletzte Variable (X im kleineren
Datensatz, X9 im groferen) ebenso mithilfe von Zufallszahlen, alle restlichen Variablen
von Xg (beziehungsweise Xig) absteigend mithilfe von Regressionsmodellen aufgefiillt.
Natiirlich ist eine komplett beliebige Reihenfolge ebenso denkbar.

Zusétzlich werden fiir jeden Datensatz und jede Imputationsmethode verschiedene An-
teile fehlender Daten betrachtet.

7.3.1. Kleinerer Datensatz

Fiir den kleineren Datensatz werden der urspriingliche Algorithmus sowie beide An-
passungen durchgefiihrt, also einmal die Benutzung der geschétzten Koeffizienten ohne

Zufallsfehler und einmal die Imputation mit mehrmaligem Durchlaufen des Algorithmus.

Ergebnisse bei der Imputationsreihenfolge analog zur Simulation

Fiir die Imputation in der selben Reihenfolge wie bei der Simulation werden alle drei in
Kapitel 7.1.2 erwéhnten Verfahren angewendet. Dabei wird zuerst die normal-verteilte
Variable X; mithilfe der aus dem unvollstéindigen Datensatz geschétzten Parameter p
und o zufillig erzeugt, wobei der Erwartungswert p durch den Mittelwert geschétzt wird.

Danach werden X, ..., Xg mithilfe des Verfahrens imputiert.
Ergebnisse unter dem urspriinglichen Algorithmus

Fiir eine niedrige Fehlerrate um die 10 % ergibt sich folgendes Bild fiir die Koeffizien-

tenschatzer:
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Abbildung 7.1.: Ubersicht iiber die geschitzten Regressionskoeffizienten nach der Re-
gressionsimputation aus 500 Durchgéangen. Es wird der Datensatz mit zehn Variablen

und einer mittleren Fehlerrate knapp unter 10 % betrachtet.

Auch bei dieser Methode ist, genauso wie bei mice und Amelia, eine deutlich erhchte
Varianz der Schitzer dichotomer Variablen im Vergleich zu den Schétzern numerischer
Variablen zu erkennen. Jedoch werden hier bei den Schétzern durchaus Abweichun-
gen vom wahren Koeffizienten deutlich. Beispielsweise wurde der Wert von (5 in allen
500 Durchgéngen unterschiatzt. Auch Median und Mittelwert weichen fiir die meisten

Schatzer vom wahren Koeflizienten ab.
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Fiir eine erhohte Fehlerrate ergibt sich ein leicht abgeédndertes Bild:

S
N
o
o
o o
o
o
o —_ °
- i
' -
| .
. |
o '
— !
|
o .
o —
S —_ =SS -
E
© ' i
o ! '
! 1
! '
. o !
' —— '
! '
- -
! —_—
' ' o
o | —_ ! —_
o ! ) o
i ' o
| s— N
—— .
= -
' E
Te} L '
o ° :
| _é_
——
.
- =
-
o o ——
- o
|
| T T T T T T T |
N N N N N N N N N

Abbildung 7.2.: Ubersicht iiber die geschitzten Regressionskoeffizienten nach der Re-
gressionsimputation aus 500 Durchgéingen. Es wird der Datensatz mit zehn Variablen

und einer mittleren Fehlerrate knapp unter 20 % betrachtet.

Die Tendenzen aus Abbildung 7.1 sind hier ganz analog zu erkennen. Die Schiatzungen
sind allerdings etwas schlechter, die Spannweite ist erhoht und der wahre Koeffizient
wird schlechter abgebildet. Bei sechs von neun Koeffizienten schlie3t das 25 % bis 75 %-
Quantil der 500 Schatzwerte den wahren Wert nicht ein. Ebenso wird der Wert von (s
weiterhin in allen Durchgéngen unterschétzt, der Wert von fg zusétzlich in allen 500

Durchgéngen iiberschétzt.
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Da die Unterschiede zwischen niedrigerer und héherer Fehlerrate fiir alle weiteren Impu-
tationsvorgéinge die gleiche Tendenz aufweisen, wird der Vergleichbarkeit halber immer
eine mittlere Fehlerrate knapp unter 20 % betrachtet. Die analogen Grafiken mit nied-

rigerer Fehlerrate befinden sich im Anhang.

Ergebnisse unter Verwendung der geschitzten Werte B

Fiir den Algorithmus unter Verwendung der geschéitzten Werte B ohne zusétzlichen
Standardfehler zur Errechnung des Erwartungswertes sehen die Schitzwerte wie folgt

aus:
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Abbildung 7.3.: Ubersicht iiber die geschitzten Regressionskoeffizienten nach der Re-
gressionsimputation aus 500 Durchgingen, beim zugrundeliegenden Algorithmus
wird zu den geschétzten Koeffizienten kein zusétzlicher Standardfehler addiert. Es
wird der Datensatz mit zehn Variablen und einer mittleren Fehlerrate knapp unter
20 % betrachtet.

Das Abbild der Schitzwerte dhnelt dabei sehr den Werten unter dem Standardalgo-
rithmus, dargestellt in Abbildung 7.2. Die Giite der Koeffizientenschétzer ist im Mittel
dghnlich zu denen unter dem Standardalgorithmus. Fiir die meisten Schétzer ist jedoch
eine etwas geringere Spannweite zu erkennen, vor allem fiir die der binomial-verteilten

Variablen. Ebenso ist die Anzahl an Ausreiflern tendenziell geringer.
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Ergebnisse unter mehrmaligem Durchlaufen des Imputationsvorganges

Fiir den Algorithmus, bei dem der Imputationsvorgang mehrmals durchlaufen wird, sieht

der Boxplot folgendermaflen aus:
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Abbildung 7.4.: Ubersicht iiber die geschitzten Regressionskoeffizienten nach der Re-
gressionsimputation aus 500 Durchgéngen, wobei der Algorithmus mehrmals durch-
laufen wird. Es wird der Datensatz mit zehn Variablen und einer mittleren Fehlerrate
knapp unter 20 % betrachtet.

Die Ergebnisse sind erneut sehr dhnlich zu denen aus Abbildung 7.2 und 7.3. Der Werte-

bereich der Schétzer ist dabei im Gegensatz zu dem Standardverfahren erneut tendenziell
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etwas geringer, die Spannweite der dichotomen Variablen niedriger. Die Differenz zwi-
schen den wahren Koeflizienten und dem Median und Mittelwert der Schatzer ist ahnlich

wie bei den beiden anderen Verfahren.

Ergebnisse bei der Imputationsreihenfolge entgegengesetzt zur Simulation

Fiir die Imputation in entgegengesetzter Reihenfolge wie bei der Simulation werden der
Standardalgorithmus und der Algorithmus unter Verwendung der B—Werte verwendet.
Beim mehrmals nacheinander ausgefiithrten Algorithmus gab es Probleme beim Berech-
nen des Logit-Modells, woraus ein Funktionsabbruch resultierte. Diese Problematik wur-
de bereits diskutiert.

Um eine Imputation in entgegengesetzter Reihenfolge durchzufiithren wird zuerst die
binomial-verteilte Variable Xg zufillig erzeugt mithilfe der aus den vorhandenen Daten
errechneten Wahrscheinlichkeiten fiir beide Kategorien. Danach werden Xg,..., X; mit-

hilfe der Verfahren imputiert.
Ergebnisse unter dem urspriinglichen Algorithmus

Fiir den urspriinglichen Algorithmus ohne Modifikationen werden die Schétzwerte aus

den 500 Durchgéingen in einem Boxplot zusammengefasst:
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Abbildung 7.5.: Ubersicht iiber die geschitzten Regressionskoeffizienten nach der Re-
gressionsimputation aus 500 Durchgéngen. Die Variablen werden dabei in entgegen-
gesetzter Reihenfolge wie bei der Simulation imputiert. Es wird der Datensatz mit

zehn Variablen und einer mittleren Fehlerrate knapp unter 20 % betrachtet.

Analog zu allen bisherigen Imputationsverfahren weisen die Koeffizientenschétzer der di-
chotomen Variablen eine verhéltnisméfig hohe Varianz auf. Auffillig ist hier der Schéitzer
fiir die normal-verteilte Variable X, der im Vergleich zu allen anderen Schéitzern von
numerischen Variablen weitaus mehr streut. Auch fiir diesen Imputationsvorgang wird
der Koeffizient f5 in allen Durchgéingen unterschétzt, Mittelwert und Median weichen

fiir die meisten Koeflizienten erkennbar von den wahren Werten ab.
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Ergebnisse unter Verwendung der geschitzten Werte B

Das Ergebnis unter Verwendung der geschéitzten Koeffizienten ohne Standardfehler bei

der Imputation ist wie folgt:
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Abbildung 7.6.: Ubersicht iiber die geschitzten Regressionskoeffizienten nach der Re-
gressionsimputation aus 500 Durchgéngen, beim zugrundeliegenden Algorithmus
wird zu den geschétzten Koeffizienten kein zusétzlicher Standardfehler addiert. Die
Variablen werden dabei in entgegengesetzter Reihenfolge wie bei der Simulation im-
putiert. Es wird der Datensatz mit zehn Variablen und einer mittleren Fehlerrate
knapp unter 20 % betrachtet.
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Die Ergebnisse unterscheiden sich hier nur gering von denen aus Abbildung 7.5, die
Interpretation erfolgt also ganz analog. Hier ist, im Vergleich zu den Ergebnissen bei der
Imputation analog zur Simulationsreihenfolge, keine tendenzielle Verringerung bei der

Spannweite der Schéitzwerte im Vergleich zum Standardalgorithmus zu erkennen.

7.3.2. GroBerer Datensatz

Fiir den groBeren Datensatz mit 1000 Beobachtungen und 20 Variablen wird nur die
Imputation mit den geschétzten B—Werten ohne zusétzlichen Standardfehler betrachtet.
Beim Aufstellen des Logit-Modells bei den beiden anderen Algorithmen kam es im Laufe
der 500 Wiederholungen zu Problemen und letztendlich zum Funktionsabbruch. Die
moglichen Ursachen dafiir wurden bereits diskutiert.

Die Daten werden dabei wie in Kapitel 7.3.1 einmal in analoger Reihenfolge wie bei der

Erzeugung und einmal in entgegengesetzter Reihenfolge imputiert.

Ergebnisse bei der Imputationsreihenfolge analog zur Simulation

Bei der Imputation der Variablen in der selben Reihenfolge wie bei der Simulation ergibt

sich fiir die 19 Koeffizientenschitzer folgender Boxplot:
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Abbildung 7.7.: Ubersicht iiber die geschitzten Regressionskoeffizienten nach der Re-
gressionsimputation aus 500 Durchgingen, beim zugrundeliegenden Algorithmus
wird zu den geschétzten Koeffizienten kein zusétzlicher Standardfehler addiert. Die
Variablen werden dabei in analoger Reihenfolge wie bei der Simulation imputiert. Es
wird der Datensatz mit 20 Variablen und einer mittleren Fehlerrate knapp unter 20
% betrachtet.

Auch hier gibt es keine Verbesserung bei der erhchten Varianz der Koeffizientenschétzer
binomial-verteilter Variablen. Im Mittel werden die Koeffizienten numerischer Variablen
relativ genau angenihert, eine dauerhafte Uber- oder Unterschétzung existiert fiir keinen

Koeffizienten.
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Ergebnisse bei der Imputationsreihenfolge entgegengesetzt zur Simulation

Fiir die entgegengesetzte Imputationsreihenfolge wird erneut ein Boxplot betrachtet, in

dem die Schétzer aus 500 Durchgéngen zusammengefasst dargestellt sind:
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Abbildung 7.8.: Ubersicht iiber die geschitzten Regressionskoeffizienten nach der Re-
gressionsimputation aus 500 Durchgéingen, beim zugrundeliegenden Algorithmus
wird zu den geschétzten Koeffizienten kein zusétzlicher Standardfehler addiert. Die
Variablen werden dabei in entgegengesetzter Reihenfolge wie bei der Simulation im-
putiert. Es wird der Datensatz mit 20 Variablen und einer mittleren Fehlerrate knapp
unter 20 % betrachtet.
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Auch hier ergeben sich keine Neuerungen zu der Interpretation von Abbildung 7.7. Die
Differenz zwischen dem Median der Schitzwerte und dem wahren Wert scheint jedoch

tendenziell etwas grofler zu sein, jedoch nicht bei allen Koeffizienten.
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8. Vergleich der Ergebnisse

Die Ergebnisse der getesteten Imputationsmethoden werden in diesem Kapitel noch
einmal miteinander verglichen. Dafiir werden fiir jeden Koeffizienten die Schétzer der
verschiedenen Imputationsmethoden in einem Boxplot dargestellt. Bei dem kleineren

Datensatz werden sieben Methoden verglichen, bei dem gréfleren Datensatz nur vier:

Kleinerer Datensatz Groflerer Datensatz
Amelia Amelia
mice mice
X1 — Xy X1 — X9 mit den B—Werten
X1 — X9 mit den B—Werten Xi19 — X1 mit den B—Werten

X1 — X9 mehrmals
X9 — X3
X9 — X1 mit den B—Werten

Tabelle 8.1.: Darstellung der verwendeten Imputationsmethoden fiir die beiden Da-

tenséatze.

Die Auswertungen wurden fiir beide Datensétze jeweils mit niedrigerer und hoherer Feh-
lerrate und fiir jeden Koeffizienten durchgefiihrt. Einige Ergebnisse werden nachfolgend

vorgestellt, alle iibrigen Grafiken befinden sich im Anhang.

8.1. Kleinerer Datensatz

Fiir die Schétzungen des Koeffizienten 3 ergibt sich ein hdufiger vorkommendes Schema,
weswegen die zugehorige Grafik zuerst betrachtet wird. Dargestellt wird eine mittlere

Fehlerrate knapp unter 10 %.
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Abbildung 8.1.: Ubersicht iiber die Schétzungen des Koeffizienten 3, mit den verschie-
denen Imputationsmethoden aus 500 Durchgédngen. Den Schéitzungen liegt der klei-

nere Datensatz und eine mittlere Fehlerrate um die 10 % zugrunde.

Es ist klar erkennbar, dass fiir die Imputation mit Amelia und mice der wahre Koef-
fizient und der Median der Schitzwerte sehr nah beieinander liegen, wobei mice etwas
genauer ist. Der Wertebereich der Schitzer nach der Imputation mit Amelia und mice
ist im Vergleich zu den einfachen Imputationsmethoden sichtbar kleiner.

Bei der Regressionsimputation in analoger Reihenfolge zur Simulation befindet sich fiir
alle drei Algorithmen der wahre Wert im Bereich des 50 %- bis 75 %-Quantils der
Schétzwerte. Der wahre Koeffizient wird also tendenziell unterschétzt. Der Median der

Schétzungen ist fiir den Standardalgorithmus sowie fiir die zwei Modifikationen in etwa
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gleich, der Wertebereich der Schétzer fiir die Anpassungen ist jedoch etwas geringer.
Fiir die Regressionsimputation in entgegengesetzter Reihenfolge zur Imputation befin-
det sich fiir die betrachteten Algorithmen der wahre Wert von S35 auflerhalb des 75 %-
Quantils. Der Koeffizient wird also tendenziell noch mehr unterschétzt als nach der
Imputation in analoger Reihenfolge zur Simulation. Die Spannweite der Werte ist dabei
fiir beide Reihenfolgen bei der Imputation vergleichbar.

Insgesamt existieren fiir alle Imputationsmethoden wenig Ausreifler und vor allem keine
extremen AusreiBer. Auch eine Unter- oder Uberschétzung in allen 500 Imputations-

durchgéngen exisitiert fiir den Koeffizienten (5 nicht.

Vergleicht man die Schiatzwerte mit denen bei hoherer Fehlerrate knapp unter 20 %

ergibt sich folgendes:

61



1.5

1.0
o

0.5
|

(=]
o -]

-1.0

—
. ° o °
o

T T T T T T T
A N
Amelia mice X1->X9 X1->X9B  X1->X9rep  X9->X1 X9->X1

Abbildung 8.2.: Ubersicht iiber die Schétzungen des Koeffizienten 3, mit den verschie-
denen Imputationsmethoden aus 500 Durchgédngen. Den Schéitzungen liegt der klei-

nere Datensatz und eine mittlere Fehlerrate um die 20 % zugrunde.

Im Vergleich zu Abbildung 8.1 ist klar ersichtlich, dass die Spannweite der Schétzwerte
fiir alle Imputationsmethoden erhoht ist. Wéhrend der Median fiir Amelia und mice
dghnlich nah am wahren Koeffizienten liegt, erkennt man fiir die einfache Regressions-
imputation eine tendenziell verstirkte Unterschiatzung des wahren Wertes im Vergleich

zu einer geringeren Fehlerrate.
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Die tendenziell schlechtere Schiatzung bei Erhohen der Fehlerrate ist fiir alle Koeffizi-
enten und fiir den kleineren sowie den grofleren Datensatz zu erkennen, weswegen in
allen weiteren Grafiken der Vergleichbarkeit halber nur noch die Auswertungen mit ei-

ner mittleren Fehlerrate knapp unter 20 % betrachtet werden.

Die Tendenzen aus Abbildung 8.3 sind verstéirkt fiir den Koeffizienten (5 zu erkennen:
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Abbildung 8.3.: Ubersicht iiber die Schétzungen des Koeffizienten 5 mit den verschie-
denen Imputationsmethoden aus 500 Durchgéngen. Den Schétzungen liegt der klei-

nere Datensatz und eine mittlere Fehlerrate um die 20 % zugrunde.

Erneut sind die Koeffizientenschétzer fiir S5 nach der Imputation mit Amelia und mice
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im Mittel recht prézise und weisen eine vergleichsweise geringe Spannweite auf. Fiir al-
le Algorithmen der einfachen Imputationsmethode wird der wahre Wert von [5 = 1.2
in allen 500 Durchgédngen unterschétzt. Dabei ist die Schiatzung bei der Imputation in
analoger Reihenfolge zur Simulation tendenziell noch etwas ndher am wahren Wert als

fiir die entgegengesetzte Reihenfolge.

Insgesamt wird fiir den kleineren Datensatz keiner der Koeffizienten nach der Regressions-
imputation besser abgebildet als nach der Imputation mit Amelia oder mice. Es ist fiir
nahezu jeden Koeffizienten eine grolere Differenz zwischen dem wahren Wert und dem
Median sowie auch dem Mittelwert zu erkennen. Ebenso ist die Varianz und Spannweite

der Schétzer fiir mice und Amelia immer geringer.

8.2. GroBerer Datensatz

Fiir den groeren Datensatz mit 20 Variablen ergibt sich ein leicht abgeéndertes Bild. Ein
haufig vorkommendes Schema ist fiir den Koeffizienten (5 zu erkennen, der zugehorige

Boxplot sieht wie folgt aus:
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Abbildung 8.4.: Ubersicht iiber die Schétzungen des Koeffizienten 3, mit den verschie-
denen Imputationsmethoden aus 500 Durchgédngen. Den Schétzungen liegt der grofie-

re Datensatz und eine mittlere Fehlerrate um die 20 % zugrunde.

Analog zum kleineren Datensatz ist der Median der Schétzer aus 500 Durchgidngen nach
der Imputation mit mice und Amelia sehr &hnlich und liegt ndher am wahren Wert als
bei der Regressionsimputation. Die Imputation mit analoger Reihenfolge zur Simulation
ist dabei im Mittel noch etwas genauer. Was hier jedoch von Kapitel 8.1 tendenziell ab-
weicht, ist eine verringerte Spannweite bei den Schéitzern nach der Regressionsimputation

im Vergleich zu Amelia und mice.
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Natiirlich gibt es auch einige wenige Fille, bei denen sich ein komplett anderes Bild

ergibt. Das betrifft den Koeffizienten (5, fiir den die Schétzer wie folgt aussehen:
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Abbildung 8.5.: Ubersicht iiber die Schétzungen des Koeffizienten 3 mit den verschie-
denen Imputationsmethoden aus 500 Durchgédngen. Den Schéitzungen liegt der grofe-

re Datensatz und eine mittlere Fehlerrate um die 20 % zugrunde.

Die Differenz zwischen dem Median der 500 Schétzer und dem wahren Koeffizienten ist
hier am geringsten fiir die Regressionsimputation in entgegengesetzter Reihenfolge wie
bei der Simulation, am zweitgeringsten fiir die analoge Reihenfolge. Die Unterschiede sind
in absoluten Zahlen jedoch minimal, wie an der Skala zu erkennen ist. Auffillig ist hier

vor allem die Varianz sowie die Spannweite der Schétzer fiir die Regressionsimputation
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in entgegengesetzter Reihenfolge wie bei der Simulation. Diese ist verhéltnisméfig viel

geringer.

8.3. Vorteile und Nachteile bei der Umsetzung in R

Was ebenso ein wichtiger Punkt bei der Durchfiithrung der Imputation ist und worauf
deswegen noch kurz eingegangen wird, sind die Vor- und Nachteile der verschiedenen
Methoden bei der Umsetzung in R.

Zuerst sei angemerkt, dass die Anwendung der Funktionen amelia und mice in R sehr
unkompliziert ist. Fiir die Imputation reichen fiir nicht zu spezielle Datengrundlagen
einige wenige Ubergabeparameter, jedoch gibt es einige Anpassungsmoglichkeiten an
verschiedene Datensituationen.

Ein weiterer Punkt betrifft die Laufzeit der Imputationen. Wihrend die Funktion amelia
sowie die Regressionsimputation relativ schnell durchlaufen wird, bendtigt die Funktion
mice ein Vielfaches der Zeit fiir die Imputation. Vor allem, wenn die Anzahl an Imputa-
tionen m sowie die Anzahl an Durchlaufen pro Imputation erhéht wird. Dadurch kénnen
jedoch tendenziell bessere Ergebnisse erreicht werden.

Wie schon mehrmals angemerkt wurde, war die Anwendung der Regressionsimputation
fiir kategoriale Gréflen mit den gewéhlten Algorithmen nicht moglich und die Imputa-
tion von binomial-verteilten Variablen problematisch. Auch einige Modifikationen am
Algorithmus brachten keine Losung fiir das Problem.

Bei der Imputation mit Amelia tauchten einige Probleme auf, auch diese wurden schon
angesprochen. Problematisch war hierbei vor allem die Imputation des gréfleren Daten-

satzes mit einer hoheren Fehlerrate um die 20 %.
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9. Zusammenfassung

Insgesamt sind einige Trends bei dem Vergleich der Imputationsmethoden erkennbar.
Erstens ist deutlich zu sehen, dass die Koeffizienten fiir binomial-verteilte Variablen
nach der Imputation bei allen Methoden deutlich ungenauer und mit hoherer Streuung
geschitzt werden als die Koeffizienten numerischer Variablen.

Ebenso ist klar erkennbar, dass fiir eine geringere Fehlerrate die Spannweite und Streu-
ung der Schétzer verkleinert wird, ebenso wie die Koeffizienten tendenziell besser an-
genédhert werden.

Das angewendete Verfahren der Regressionsimputation in Verbindung mit kategorialen
Variablen ist tendenziell problematisch, auch die getesteten Modifikationen am Algo-
rithmus l6sen dieses Problem nicht.

Was die Durchfithrung in R betrifft, ist Amelia sehr benutzerfreundlich und hat eine
geringe Laufzeit. Bei mice dauert die Imputation dagegen um ein Vielfaches ldanger.
Beim Vergleich der Methoden sind die Koeffizientenschétzer nach der Imputation mit
Amelia oder mice im Mittel meistens ndher am wahren Wert als die Schétzer nach der
Regressionsimputation. Auch liefert die Regressionsimputation in analoger Reihenfolge
zur Simulation tendenziell bessere Ergebnisse als bei Verwendung der entgegengesetzten
Reihenfolge. Hier existieren natiirlich Ausnahmen.

Insgesamt liefert die Regressionsimputation also eher selten genauere Ergebnisse als
die multiplen Imputationsmethoden. Eventuell kann durch weitere Modifikationen am
Algorithmus eine Verbesserung erzielt werden, die Anderungen bei den getesteten Mo-

difikationen sind jedoch minimal.
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A. Elektronischer Anhang

Der elektronische Anhang enthélt die Ordner ,Daten”, , Ergebnisse” und ,, Programme*.

Im Ordner ,Daten“ befinden sich die beiden simulierten Datensétze, mit denen in den

Analysen gearbeitet wird.

Im Ordner ,,Ergebnisse* befinden sich zum einen PDF-Dateien mit allen erstellten Gra-
fiken, zusammengefasst nach dem jeweiligen Themenbereich. Im Unterordner ,, Koeffizi-
entenmatrizen_nach_Imputation“ befinden sich fiir jede Imputationsmethode und jede
Verkniipfung aus Datensatzgrofle und Fehlerrate die Ergebnismatrizen, in denen fiir je-
den der 500 Durchgénge die Koeffizientenschétzer abgespeichert sind. Ebenso sind dort
die Matrizen abgespeichert, die fiir die vier Verkniipfungen die jeweilige Anzahl fehlen-
der Daten pro Durchgang angeben. ,Big“ und ,small“ stehen dabei fiir die Gréfle des

Datensatzes, ,,much” und ,less” fiir die Fehlerrate.

Im Ordner ,Programme® befinden sich alle erstellten R-Codes. Die Codes sind jeweils

nach Themenbereich getrennt.
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