
Ludwig-Maximilians-Universität
München

Institut für Statistik

Bachelorarbeit

Vergleich verschiedener

Verfahren zur Datenimputation

Autor:

Susanne Rubenbauer

Betreuer:

Prof. Dr. Christian Heumann

Datum:

10. Juli 2015



In dieser Bachelorarbeit werden verschiedene Methoden zur Datenimputation vorge-

stellt, durchgeführt und miteinander verglichen. Das Hauptaugenmerk liegt dabei auf

einer einfachen Imputationmethode, bei der fehlende Werte mithilfe von Regression im-

putiert werden. Die Ergebnisse werden anschließend mit bekannten Methoden zur mul-

tiplen Datenimputation verglichen.

Um diesen Vergleich durchführen zu können, werden die Daten zu Beginn nach einem

vorgegebenen Algorithmus simuliert, danach fehlende Werte erzeugt und die Daten an-

schließend mit den verschiedenen Methoden wieder imputiert.

Die interessierenden Größen, nämlich die Koeffizienten einer Regression auf Grundlage

des imputierten Datensatzes, werden anschließend untereinander und mit den wahren

Koeffizienten verglichen.

Es stellt sich heraus, dass die Imputation kategorialer Variablen bei der Regressionsim-

putation Schwierigkeiten bereitet. Ebenso wird der wahre Zusammenhang in den Daten

für die multiplen Imputationsmethoden tendenziell besser abgebildet als für die einfache

Imputationsmethode.
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7.5. Übersicht über die geschätzten Regressionskoeffizienten nach der Regres-

sionsimputation aus 500 Durchgängen. Die Variablen werden dabei in

entgegengesetzter Reihenfolge wie bei der Simulation imputiert. Es wird

der Datensatz mit zehn Variablen und einer mittleren Fehlerrate knapp

unter 20 % betrachtet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
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1. Einleitung

Ein häufiges Problem bei Umfragen und Datenerhebungen ist die Unvollständigkeit der

Antworten. Oft geben Befragte bewusst keine Auskunft zu bestimmten Themen, vor

allem bei delikaten Fragen wie etwa zum Gehalt.

Durch die fehlenden Antworten kann es zu Verzerrungen kommen, bei einer Analyse nur

auf Grundlage der vorhandenen Daten wird die Situation oft falsch dargestellt. Ein Ver-

fahren, das diese Verzerrung verringern soll, ist die Datenimputation. Dabei werden die

fehlenden Werte im Datensatz durch möglichst plausible Werte vervollständigt. Dafür

existieren mehrere Ansätze, wovon einige in dieser Arbeit genauer vorgestellt werden.

In dieser Bachelorarbeit sollen verschiedene Methoden zur Datenimputation angewen-

det und die Ergebnisse miteinander verglichen werden. Die Auswertungen basieren auf

selbst simulierten Datensätzen, da so der wahre Zusammenhang in den Daten bekannt

ist und mit den geschätzten Zusammenhängen verglichen werden kann. Angewendet wer-

den dabei ein selbst programmierter Algorithmus der einfachen Regressionsimputation

sowie einige Modifikationen dieses Algorithmus, die mit zwei multiplen Imputations-

methoden aus den bestehenden R-Paketen Amelia und mice verglichen werden. Alle

Auswertungen werden dabei mit dem Programmpaket R (R Development Core Team;

2008) durchgeführt.

In Kapitel 2 wird zunächt die genaue Simulation der Daten erklärt und die zwei erzeug-

ten Datensätze beschrieben. Zusätzlich wird auf die Durchführung in R eingegangen.

Kapitel 3 befasst sich mit der Klassifikation fehlender Werte, der künstlichen Erzeugung

der Missings, der Durchführung in R und den letztendlichen mittleren Feherraten in den

Datensätzen.

Die allgemein existierenden Arten von Imputationsmethoden werden in Kapitel 4 dar-

gestellt. Ebenso wird auf den genauen Vorgang der Imputationen in dieser Arbeit ein-
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gegangen sowie auf deren Umsetzung in R.

In Kapitel 5 wird zuerst das R-Paket Amelia vorgestellt und der zugrundeliegende Im-

putationsmechanismus erklärt. Zusätzlich werden die Durchführung in R sowie die Er-

gebnisse für die beiden Datensätze dargestellt.

Kapitel 6 ist analog aufgebaut wie Kapitel 5, nur dass die Imputation mit dem R-Paket

mice durchgeführt wird.

Kapitel 7 befasst sich mit der zu testenden Regressionsimputation, die mit den multiplen

Imputationsmethoden verglichen werden soll. Der Aufbau des Kapitels ist analog wie in

Kapitel 5 und 6.

In Kapitel 8 werden die Ergebnisse der verschiedenen Imputationsmethoden miteinander

verglichen. Ebenso wird kurz auf die Vor- und Nachteile der Imputationsmethoden bei

der Umsetzung in R eingegangen.

Kapitel 9 fasst schlussendlich die wichtigsten Punkte dieser Arbeit noch einmal zusam-

men.
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2. Simulation der Daten

Der Vergleich der verschiedenen Imputationsmethoden wird mithilfe selbst simulierter

Datensätze durchgeführt. Erzeugt werden dabei zwei verschieden große Datensätze. Der

erste Datensatz hat einen Umfang von zehn Variablen mit jeweils 1000 Beobachtungen,

der zweite Datensatz ist etwas größer und umfasst 20 Variablen und 1000 Beobachtungen.

Die Erzeugung der Daten folgt dabei einem vorgegebenem Schema, welches in diesem

Kapitel genauer beschrieben wird.

2.1. Algorithmus zur Erzeugung der Daten

Zur Erzeugung der ersten Variablen des Datensatzes werden einfache Zufallszahlen ge-

zogen. Zur Auswahl stehen normal-, poisson-, gamma- und binomial-verteilte Variablen

sowie für multinomial-verteilte Variablen nominal- und ordinal-skalierte Daten. Es wer-

den dabei, je nach Verteilungstyp, die benötigten Parameter beliebig festgelegt:

Verteilungstyp Übergabeparameter

Normal Erwartungswert µ

Standardabweichung σ

Poisson Erwartungswert λ

Gamma Shape-Parameter ν

Scale-Parameter µ
ν

Binomial P (X1 = 0), P (X1 = 1)

Multinomial P (X1 = 1), ..., P (X1 = k)

(nominal oder ordinal)

Tabelle 2.1.: Verteilungstypen und benötigte Übergabeparameter zur Simulation der

ersten Variable.
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Soll also beispielsweise eine standardnormal-verteilte Variable erzeugt werden, müssen

der Erwartungswert µ = 0 sowie die Standardabweichung σ = 1 festgelegt werden.

Für kategoriale Variablen müssen die Wahrscheinlichkeiten für jede Kategorie 1, ..., k

angegeben werden, die Wahrscheinlichkeiten müssen sich dabei insgesamt zu eins auf-

summieren.

In jedem weiteren Schritt wird die neue Variable aus einem Regressionsmodell simuliert.

Für normal-, poisson-, gamma- und binomial-verteilte Variablen wird dabei aus einem

generalisierten linearen Modell simuliert, bei nominalen und ordinalen Variablen aus ei-

nem multikategorialen Modell. Die Theorie zu diesem Kapitel stützt sich auf (Fahrmeir

et al.; 2009).

Zur Erzeugung der Variable werden zuerst die nötigen Regressionskoeffizienten β0, ..., βp

beliebig, aber sinnvoll festgelegt. Eine sinnvolle Festlegung bedeutet dabei, dass bei-

spielsweise für kategoriale Variablen auch schlussendlich jede Kategorie im Datensatz

vorkommt, beziehungsweise die Wahrscheinlichkeiten nicht zu extreme Werte nahe 0

oder 1 annehmen.

Für jede Beobachtung wird dann der Prädiktor η mithilfe des festgelegten Koeffizienten-

vektors β und der schon erzeugten Variablen errechnet:

η = x′β (2.1)

Mithilfe der Linkfunktion g wird der Erwartungswert µ anschließend transformiert:

g(µ) = η = x′β (2.2)

Für normal-, poisson- und binomial-verteilte Variablen wird dabei die natürliche Link-

funktion verwendet. Um zu gewährleisten, dass bei gamma-verteilten Variablen nur po-

sitive Werte simuliert werden, wird hier der Log-Link angewendet.

Für nominale, ungeordnete Variablen wird ein multinomiales Logit-Modell mit der letz-

ten Kategorie k als Referenz aufgestellt. Die Wahrscheinlichkeit für jede Kategorie (außer

der Referenzkategorie) errechnet sich dabei wie folgt:

P (y = r|x) = πr =
exp(x′βr)

1 +
∑k−1

s=1 exp(x
′βs)

, r = 1, ..., k − 1 (2.3)
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Die Wahrscheinlichkeit für die Referenzkategorie k errechnet sich durch:

P (y = k|x) = πk =
1

1 +
∑k−1

s=1 exp(x
′βs)

(2.4)

Für ordinale Variablen wird ein kumulatives Logit-Modell verwendet. Die Wahrschein-

lichkeit für Kategorie r oder einer niedrigeren Kategorie errechnet sich dabei durch:

P (y ≤ r|x) =
exp(γ0r + x′γ)

1 + exp(γ0r + x′γ)
, r = 1, ..., k − 1 (2.5)

Daraus lassen sich dann einfach die nicht kumulierten Wahrscheinlichkeiten errechnen:

P (y = r|x) = πr =


P (y ≤ r|x) für r = 1

P (y ≤ r|x)− P (y ≤ r − 1|x) für r = 2, ..., k − 1

1− P (y ≤ k − 1|x) für r = k

(2.6)

Mithilfe des errechneten Erwartungswertes µ, beziehungsweise der jeweiligen Wahr-

scheinlichkeiten für die Kategorien, werden nun Zufallszahlen aus der zugrundeliegen-

den Verteilung der Variablen gezogen. Für jede Beobachtung der Variablen ist dabei der

Erwartungswert oder der Wahrscheinlichkeitsvektor unterschiedlich, abhängig von dem

errechneten Prädiktor.

Eine Zusammenfassung über die Verteilungstypen, gewählten Linkfunktionen und den

schematischen Vorgang der Zufallsziehung in R wie in Kapitel 2.1 beschrieben, wird in

folgender Tabelle gegeben:
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Verteilung Link Zufallsziehung in R

Normal Identität: µ = x′β y ∼ rnorm(x′β, σ)

Poisson Log: log(µ) = x′β y ∼ rpois(exp(x′β))

Gamma Log: log(µ) = x′β y ∼ rgamma(ν, exp(x
′β)

ν
)

Binomial Logit: log( µ
1−µ) = x′β y ∼ sample(π1, π0)

Mulitnomial (nominal) Logit: log(P (y=r|x)
P (y=k|x)) = x′βr y ∼ sample(π1, ..., πk)

Multinomial (ordinal) Logit: log(P (y≤r|x)
P (y>r|x)) = γ0r + x′γ y ∼ sample(π1, ..., πk)

Tabelle 2.2.: Verteilungstypen, zugrundeliegende Linkfunktion und Zufallsziehung in

R für die Simulation aus Regressionsmodellen.

Ein Beispiel zur Erzeugung der binomial-verteilten Variable X2 sei folgendes:

Die normal-verteilte Variable X1 hat für die erste Beobachtung den Wert x11 = 4.57.

Die Koeffizienten werden beliebig festgelegt als β0 = 1.2, β1 = 0.2.

Der Prädiktor errechnet sich somit zu

η1 = β0 + β1 · x11 = 1.2 + 0.2 · 4.57 = 2.11 (2.7)

Die Wahrscheinlichkeit P (x21 = 1) errechnet sich durch Auflösen der Link-Funktion

nach µ zu

P (x21 = 1) = µ1 =
exp(η1)

1 + exp(η1)
=

exp(2.11)

1 + exp(2.11)
= 0.89 (2.8)

Hieraus werden in R nun Zufallszahlen gezogen, dabei gilt

P (x21 = i) =

{
0.89 für i = 1

0.11 für i = 0
(2.9)

Dieser Vorgang wird anschließend für jede Beobachtung wiederholt, um die Variable X2

komplett zu erzeugen.
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2.2. Umsetzung der Simulation in R

In diesem Kapitel wird kurz auf die Implementierung der Gamma-Verteilung in R einge-

gangen, da hier eine spezielle Parametrisierung vorliegt. Zusätzlich wurde eine Funktion

geschrieben, mit der mithilfe weniger Übergabeparameter die Daten nach dem Algo-

rithmus aus Kapitel 2.1 erzeugt werden können. Die nötigen Übergabeparameter der

Funktion werden kurz vorgestellt.

2.2.1. Gamma-Verteilung in R

Da die Gamma-Verteilung in R nicht in der Darstellung der Exponentialfamilie pa-

rametrisiert ist, müssen die Übergabeparameter entsprechend angepasst werden. Die

Exponentialfamilien-Darstellung ist wie folgt:

f(y|µ, ν) =
1

Γ(ν)
· (ν
µ

)ν · yν−1 · exp(−ν
µ
· y) (2.10)

Dabei entspricht µ dem Erwartungswert und ν dem Shape-Parameter.

Bei der Parametrisierung in R wird y dagegen bedingt auf den Shape-Parameter a und

den Scale-Parameter s dargestellt:

f(y|a, s) =
1

sa · Γ(a)
· ya−1 · exp(−y

s
) (2.11)

Durch Umformung lassen sich die beiden Gleichungen jedoch leicht ineinander überführen,

es gilt a = ν und s = µ
ν
.

So kann in R also wie gewünscht eine gamma-verteilte Variable aus einem generalisier-

ten linearen Modell mit festgelegtem ν und abhängig von dem errechneten Prädiktor

η = g(µ) simuliert werden.

2.2.2. Funktion zur Durchführung der Simulation

Zur vereinfachten Umsetzung in R wurde eine Funktion geschrieben, die Daten nach

dem Algorithmus aus Kapitel 2.1 erzeugt.

Der Funktion muss zum einen ein Vektor variable.type mit dem Typ der jeweiligen

Variable übergeben werden, mögliche Angaben sind “normal“, “poisson“, “gamma“,

“binomial“, “nominal“ und “ordinal“. Dieser Vektor hat logischerweise dieselbe Länge

wie Variablen erzeugt werden sollen.
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Desweiteren benötigt die Funktion einen Vektor variable.cat, der bei kategorialen Va-

riablen die Anzahl an Kategorien angibt und für metrische Variablen den Eintrag NA

enthält.

Der dritte Übergabeparameter first.param enthält die nötigen Informationen zur Erzeu-

gung der ersten Variablen, vergleiche Tabelle 2.1.

Zur Erzeugung von normal- und gamma-verteilten Variablen wird die Standardabwei-

chung σ beziehungsweise der Shape-Parameter ν benötigt. Dazu wird der Funktion ein

Vektor sigma übergeben, der an der Position solcher Variablen eine Zahl, sonst den Ein-

trag NA enthält.

Desweiteren benötigt die Funktion eine Liste coeff.list, in der jeder Listeneintrag den Ko-

effizienten zur Erzeugung einer Variablen entspricht. Diese Koeffizienten sind wie schon

angesprochen frei wählbar, sollten aber sinnvoll sein, um realitätsnahe Werte erzeugen

zu können. Für normal-, poisson-, gamma- und binomial-verteile Variablen entspricht

dieser Eintrag einem Vektor, für nominal- und ordinal-skalierte Daten einer Matrix mit

k − 1 Zeilen.

Der Übergabeparameter n gibt die Anzahl an Beobachtung im Datensatz an.

Falls gewünscht kann der Funktion zur Reproduzierbarkeit noch ein seed übergeben

werden, falls nicht wird dieser auf NA gesetzt.

2.3. Datensätze

Zum Testen und Vergleichen der Imputationsmethoden wurden zwei Datensätze nach

dem Algorithmus aus Kapitel 2.1 und mithilfe der Funktion aus Kapitel 2.2.2 erzeugt.

Der erste, kleinere Datensatz hat zehn Variablen mit je 1000 Beobachtungen, der zweite

Datensatz hat 20 Variablen mit je 1000 Beobachtungen.

Im Datensatz aufgenommen wurden dabei schlussendlich nur normal-, poisson-, gamma-

und binomial-verteilte Variablen, da kategoriale Variablen bei der Imputation zu Pro-

blemen und letztendlich zum Funktionsabbruch führten. Die Instabilität multinomialer

Modelle ist ein bekanntes Problem, um Ergebnisse zu erhalten wurden diese also raus-

gelassen.
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Im kleineren Datensatz sind die 10 Variablen wie folgt verteilt:

X1 X2 X3 X4 X5

normal binomial gamma normal poisson

X6 X7 X8 X9 X10

binomial poisson gamma binomial normal

Im größeren Datensatz sind die 20 Variablen folgendermaßen verteilt:

X1 X2 X3 X4 X5

binomial normal gamma poisson binomial

X6 X7 X8 X9 X10

normal gamma normal poisson gamma

X11 X12 X13 X14 X15

binomial poisson normal normal gamma

X16 X17 X18 X19 X20

poisson binomial gamma poisson binomial
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3. Fehlende Werte

Um später die Imputationsmethoden testen zu können, müssen in den simulierten Da-

tensätzen zuerst Werte entfernt werden. Dafür gibt es verschiedene Ansätze und Metho-

den, die im Folgenden dargestellt werden.

3.1. Klassifikation fehlender Werte

Eine anerkannte und häufig verwendete Klassifikation von fehlenden Werten geht auf

Donald B. Rubin zurück. Danach kann der Mechanismus, durch den fehlende Werte

entstehen (sogenannter Missingmechanismus), in drei Gruppen eingeteilt werden. Dies

wird in (Spiess; 2008) genauer beschrieben.

Missing completely at random (MCAR)

Unter der MCAR-Annahme ist ein beobachtetes Fehlermuster sowohl unabhängig von

den beobachteten Daten Dobs als auch von den unbeobachteten Daten Dmis. Anders

ausgedrückt unterliegen fehlende Daten also der MCAR-Annahme, falls

p(M |D) = P (M) (3.1)

M ist dabei die Fehlermatrix, mit Einträgen mij = 1 falls dij ∈ Dmis und mij = 0 sonst.

Das Fehlen einer Beobachtung unterliegt also komplett dem Zufall. Würde man in einem

Datensatz also komplett beliebig und unabhängig von anderen Variablen Beobachtungen

löschen, wäre die MCAR-Annahme erfüllt.

Insgesamt ist MCAR der unproblematischste Fehler-Mechanismus, unter dem keine Ver-

zerrung der wahren Daten entsteht.

Missing at random (MAR)

Unter der MAR-Annahme ist ein beobachtetes Fehlermuster zwar wie bei MCAR un-

abhängig von den unbeobachteten Werten Dmis, jedoch abhängig von den beobachteten
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Werten Dobs:

p(M |D) = p(M |Dobs) (3.2)

Das Fehlermuster ist unter MAR also abhängig von anderen Variablen, beispielsweise

wenn die Angabe des Einkommens vom Alter einer bestimmten Person abhängt. Ver-

nachlässigt man die fehlenden Werte, wird das Gesamtbild bei der Betrachtung zwar

verzerrt, die wahre Regressionsbeziehung bleibt unter MAR jedoch erhalten.

MCAR und MAR sind zufällige (at random) Fehlermuster, und werden oft als Voraus-

setzung für Methoden zur multiplen Imputation wie beispielsweise bei Amelia benötigt.

Not missing at random (NMAR)

Unter der NMAR-Annahme ist ein beobachtetes Fehlermuster sowohl von Dobs als auch

von Dmis abhängig, das Fehlermuster ist also nicht zufällig. Dies trifft beispielsweise zu,

falls häufiger die Angaben von Personen mit hohem Einkommen fehlen. Die Daten sowie

die Regressionsbeziehung werden bei NMAR verzerrt dargestellt.

3.2. Erzeugen der fehlenden Werte

In dieser Arbeit werden die fehlenden Werte so erzeugt, dass die MAR-Annahme erfüllt

ist. Dafür bleibt die zuletzt erzeugte Variable, welche beim Durchführen der Regression

nach der Imputation die abhängige Y-Variable darstellt, vollständig. Die Wahrschein-

lichkeit, dass eine Beobachtung einer unabhängigen Variable fehlt, ist immer abhängig

von der Y-Variablen.

Dabei wird folgende Formel verwendet:

P (xij = NA) = 1− 1

(αj · yi)2 + βj
, i = 1, ..., n, j = 1, ..., p (3.3)

n entspricht dabei der Anzahl an Beobachtungen im Datensatz und p der Anzahl an

Variablen.

Dabei muss darauf geachtet werden, dass keine negativen Wahrscheinlichkeiten errechnet

werden. Unter der Bedingung βj ≥ 1 ∀j ist dieses Problem sicher behoben.

Insgesamt sind die Missing-Wahrscheinlichkeiten für alle Beobachtungen einer Variablen

immer gleich, von Variable zu Variable jedoch unterschiedlich. Für den Datensatz mit

zehn Variablen existieren also α1, ..., α10 und β1, ..., β10.
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3.3. Mittlere Fehlerraten in den Datensätzen

Die Imputationsmethoden werden für beide Datensätze jeweils einmal für geringere Feh-

lerraten und einmal mit etwas höheren Fehlerraten durchgeführt. Bei der Erzeugung feh-

lender Werte liegt die mittlere Fehlerrate für beide Datensätze also jeweils einmal knapp

unter 10 % und einmal knapp unter 20 %. Viel höhere Fehlerraten sind im Allgemeinen

kritisch zu betrachten und werden deswegen nicht getestet.

Ein Problem bei zu hoher Fehlerrate, das beispielsweise bei der Anwendung von Amelia

auftreten kann, betrifft kategoriale Variablen. Mit steigender Anzahl an fehlenden Wer-

ten sinken logischerweise die Ausprägungen pro Kategorie. Wie später in Kapitel 5.1

genauer beschrieben wird, verwendet Amelia Bootstrapping, das heißt es werden mit

Zurücklegen Stichproben mit gleichem Umfang aus dem ursprünglichen Datensatz gezo-

gen. Dadurch kann es also vorkommen, dass eine bestimmte Ausprägung der kategorialen

Variable gar nicht in der Bootstrap-Stichprobe vorkommt. Dies führt beispielsweise dazu,

dass von einer kategoriale Variable mit drei Ausprägungen in der Bootstrap-Stichprobe

nur zwei Ausprägungen existieren. Dadurch kommt es in Amelia zu einem Problem bei

der Imputation und zum Funktionsabbruch.

Für geringere Fehlerraten kann dieses Problem rein theoretisch natürlich ebenso auftre-

ten, die Wahrscheinlichkeit ist jedoch viel geringer.

Die verschiedenen Imputationsmethoden werden jeweils 500 mal durchlaufen, wobei je-

de Runde die fehlenden Werte mit selber Wahrscheinlichkeit neu erzeugt werden. Der

genaue Ablauf wird in Kapitel 4 noch näher erklärt. Dabei werden in jeder Runde die

Anzahl an fehlenden Werten im Datensatz abgespeichert, um schlussendlich einen Über-

blick über die mittlere Fehlerrate zu bekommen.
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Für den kleineren Datensatz mit zehn Variablen und einer mittleren Fehlerrate knapp

unter 20 % für jede Variable ergibt sich folgendes Bild:
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Abbildung 3.1.: Übersicht über den Anteil fehlender Werte pro Variable in jeder Run-

de. Es wird der Datensatz mit zehn Variablen betrachtet, wobei die mittlere Fehler-

rate knapp unter 20 % liegt.

Die minimale Fehlerrate aus allen Durchgängen liegt bei 13.6 % (Variable X2), die ma-

ximale bei 22.1% (Variable X3). Die Mittelwerte der Fehlerraten über alle Durchgänge

liegen zwischen 17.1 % und 18.5 %, der Wertebereich der Mediane ist sehr ähnlich, wie in

Abbildung 3.1 zu erkennen ist. Die Werte weisen für alle Variablen eine ähnliche Spann-

weite auf, es existieren keine extremen Ausreißer.
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Für eine geringere mittlere Fehlerrate knapp unter 10 % ergibt sich folgende Abbildung:
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Abbildung 3.2.: Übersicht über den Anteil fehlender Werte pro Variable in jeder Run-

de. Es wird der Datensatz mit zehn Variablen betrachtet, wobei die mittlere Fehler-

rate knapp unter 10 % liegt.

Hier liegt der Wertebereich zwischen einem minimalen Anteil fehlender Werte von 5 %

(Variable X5) und einem maximalen Anteil von 12.6 % (Variable X1). Die Mittelwerte

der Fehlerraten liegen zwischen 7.9 % und 9.7 %, die Mediane liegen erneut in einem

ähnlichen Wertebereich. Auch in Abbildung 3.2 ist zu erkennen, dass die Anteile fehlen-

der Daten über alle Variablen hinweg eine ähnliche Spannweite aufweisen und auch hier

keine extremen Ausreißer vorhanden sind.
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Die mittleren Fehlerraten für den größeren Datensatz liegen erneut knapp unter 10 %

und knapp unter 20 %, die Abbildungen befinden sich im Anhang.
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4. Imputation fehlender Daten

Um mit unvollständigen Datensätzen Analysen durchzuführen gibt es verschiedene An-

sätze. Beispielsweise gibt es die sogenannte Complete Case Analyse, ein Ad-hoc-

Verfahren, bei dem alle Beobachtungen mit einem oder mehreren fehlenden Werten

in einer beliebigen Variable nicht in die Analyse mit einbezogen werden (
”
listwise dele-

tion“). Nur in allen Variablen vollständige Beobachtungen werden also berücksichtigt.

Für Datensätze mit vielen fehlenden Werten ist dieses Vorgehen problematisch, da es

einen hohen Informationsverlust zur Folge hat. Würde theoretisch für jede Beobachtung

nur die Angabe einer Variable von vielen fehlen, würde für die Auswertung keine Beob-

achtung mehr übrig bleiben. Ebenso ist ein MCAR-Fehlermuster zwar unproblematisch,

falls dies jedoch nicht gilt kommt es meist zu einer Verzerrung der Schätzer.

Sinnvoller ist teilweise die sogenannte Available Case Analyse, bei der alle Beob-

achtungen verwendet werden, die für die interessierende Variable einer Auswertung

vollständig sind. Auch hier existiert jedoch die Problematik der verzerrten Schätzung,

falls die MCAR-Annahme nicht zutrifft.

Um diese Verzerrungen zu vermeiden, ist es manchmal sinnvoll, die fehlenden Werte

durch möglichst plausible Werte zu ersetzen. Dieses Vorgehen wird auch als Imputation

bezeichnet, die möglichen Methoden werden in diesem Kapitel dargestellt. Die Grund-

lagen zu diesem Kapitel sind aus (Spiess; 2008) und können dort nachgelesen werden.

4.1. Einfache Imputationsverfahren

Bei einfachen Imputationsverfahren wird für jeden fehlenden Wert genau eine Imputation

erzeugt. Ein paar mögliche Methoden lauten wie folgt:

� Mittelwertsimputation

Dabei wird für jeden fehlenden Wert das arithmetische Mittel der beobachte-

ten Werte der Variablen eingesetzt. Bei nicht-metrischen Daten kann alternativ

auch der Median oder Modus imputiert werden. Der Variablen-Mittelwert (be-

ziehungsweise -Modus oder -Median) bleibt dabei gleich, die Varianz wird jedoch
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unterschätzt ebenso wie die Kovarianz mit einer anderen Variablen. Außerdem

bleibt die Problematik der verzerrten Schätzung bestehen, oft sogar selbst unter

der MCAR-Annahme.

� Regressionsimputation

Dabei wird der fehlende Wert durch den Vorhersagewert eines Regressionsmo-

dells auf Basis der beobachteten Werte anderer Variablen ersetzt. Eine konsistente

Schätzung von Erwartungswerten ist mit dieser Methode unter schwachen Annah-

men möglich, unter anderem muss die MCAR- oder MAR-Annahme erfüllt sein.

Zur Schätzung von Varianzen und Kovarianzen hingegen müssen Korrekturen vor-

genommen werden, da diese sonst unterschätzt werden.

� Hot Deck Imputation

Bei der Mittelwerts- und Regressionsimputation können Werte geschätzt werden,

die außerhalb des Wertebereichs der wahren Daten liegen. Die Hot Deck Imputa-

tion ist eine alternative Imputationsmethode, bei der dieses Problem nicht auftre-

ten kann. Dabei werden fehlende Werte durch in den Daten tatsächlich beobachtete

Werte ersetzt. Eine Möglichkeit hierfür ist die
”
Random Overall“-Imputation, bei

der absolut zufällig mit oder ohne Zurücklegen beziehungsweise mithilfe spezieller

Ziehungsdesigns ein Wert aus den beobachteten Daten ausgewählt wird. Dieses

Verfahren führt nur zu einer konsistenten Schätzung, falls die MCAR-Annahme

zutrifft.

� Cold Deck Imputation

Diese ist sehr ähnlich zur Hot Deck Imputation, nur werden die Werte aus denen

gezogen wird nicht aus den wahren Daten, sondern aus anderen Datensätzen oder

Quellen gewonnen.

Bei den meisten einfachen Imputationsmethoden, außer der stochastischen Regressions-

imputation, wird die Unsicherheit in den Daten nicht angemessen berücksichtigt. Dies

führt unter anderem dazu, dass die wahre Varianz in den Daten unterschätzt wird.

4.2. Multiple Imputationsverfahren

Im Gegensatz zur einfachen Imputation, bei der für jeden fehlenden Wert nur eine Im-

putation erzeugt wird, werden bei der multiplen Imputation für jeden Wert mehrere
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Imputationen erzeugt. Dadurch entstehen mehrere vollständige Exemplare des ursprüng-

lich unvollständigen Datensatzes, wobei die beobachteten Werte jeweils gleich sind. Das

Verfahren lässt sich in drei Schritten darstellen:

� 1. Imputation:

Im ersten Schritt werden mithilfe eines ausgewählten Verfahrens m imputierte

Datensätze erstellt. Dabei entspricht m der Anzahl an Werten, die für ein fehlendes

Feld erzeugt werden sollen.

� 2. Analyse:

Im zweiten Schritt werden die Datensätze einzeln analysiert, wodurch m Auswer-

tungen entstehen.

� 3. Kombination:

Im letzten Schritt werden die Einzelergebnisse zu einem Gesamtergebnis zusam-

mengefasst. Für Q, eine beliebige statistische Größe von Interesse, kann man dabei

die separaten Schätzer qj (j = 1, ...,m) beispielsweise durch den Mittelwert zu ei-

nem Gesamtergebnis zusammenfassen:

q̄ =
1

m

m∑
j=1

qj (4.1)

Multiple Imputationsmethoden haben ein paar Vorteile gegenüber den einfachen. Zum

einen wird durch das mehrmalige Schätzen die Unsicherheit in den Daten berücksichtigt

und als Konsequenz daraus die wahre Varianz der Daten besser abgebildet. Zusätzlich

sind die Ergebnisse aus multipler Imputation der Erfahrung nach meistens besser als die

Ergebnisse aus einfacher Imputation.

4.3. Umsetzung in R

Folgend wird auf den genauen Ablauf der Imputationen und die Gewinnung der Auswer-

tungen eingegangen. Zu Beginn steht der vollständige Datensatz, simuliert wie in Ka-

pitel 2.1 beschrieben. In diesem Datensatz werden anschließend fehlende Werte erzeugt.

Dies funktioniert wie in Kapitel 3.2 erklärt, also mit einer Wahrscheinlichkeit abhängig

von der zuletzt erzeugten Variablen, die als einzige vollständig bleibt. Dieser Datensatz

mit den fehlenden Werten wird anschließend auf mehreren Wegen imputiert, die zugrun-

deliegenden R-Pakete und Methoden werden in Kapitel 5, 6 und 7 genauer vorgestellt.
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Durch diesen Schritt entsteht ein vollständiger Datensatz für jede einfache Imputations-

methode, für jede multiple Imputationsmethode entstehen je nach Angabe m Stück. Die

Qualität der Imputation soll letztendlich dahingehend getestet werden, wie gut der Zu-

sammenhang in den imputierten Daten dem wahren Zusammenhang angenähert wird.

Deswegen wird mithilfe jedes Datensatzes ein Regressionsmodell berechnet, in dem die

letzte Variable (X10 im Falle des kleineren Datensatzes, X20 im Falle des größeren) die

abhängige Größe ist und alle anderen Variablen als Einflussgrößen aufgenommen werden.

Für die multiplen Imputationsverfahren werden die m Schätzer anschließend zu einem

Gesamtergebnis zusammengefasst. Für jede Imputationsmethode wird letztendlich ein

Parametervektor β = (β0, ..., βp) in einer Ergebnismatrix abgespeichert.

Dieser Vorgang wird anschließend 500 mal wiederholt, mit der einzigen Änderung, dass

die abhängige Variable des Modells vor der Erzeugung fehlender Werte neu simuliert

wird. Durch diese erneute Simulation werden mithilfe der aus dem Prädiktor η errech-

neten Erwartungswerte in jeder Runde neue Zufallszahlen gezogen. Dadurch kann insge-

samt ein besseres Abbild der wahren Situation dargestellt werden. Die Erzeugung erfolgt

dabei genau wie bei der Simulation des Datensatzes, also auf Grundlage eines Regres-

sionsmodells mit allen anderen Variablen als Einflussgrößen, wobei genau die selben

Koeffizienten verwendet werden.

Aus jedem Schleifendurchgang resultiert ein Parametervektor für jede Imputationsme-

thode, dieser wird in der jeweiligen Ergebnismatrix abgespeichert. Für jedes β0, ..., βp für

jede Imputationsmethode resultieren also 500 Schätzer, die zusammengefasst in einem

Boxplot dargestellt werden. Der Intercept wird dabei herausgelassen, da dieser für die

Interpretation eher unwichtig ist. Die wahren Koeffizienten aus der Simulation werden

jeweils mit eingezeichnet und dienen zum Vergleich.

19



Der schematische Ablauf eines Schleifendurchganges ist im Folgenden noch einmal ver-

einfacht dargestellt:

vollständiger Datensatz

↓

Erzeugen von fehlenden Werten

↓

unvollständiger Datensatz

↓

Imputation

Methode 1 Methode 2 ... Methode l

↓

ein vollständiger Datensatz bei einfacher Imputation

m vollständige Datensätze bei multipler Imputation

↓

jeweils Aufstellen einer Regressionsgleichung,

letzte Variable im Datensatz ist die abhängige

↓

Zusammenfassen der Ergebnisse bei multipler Imputation

↓

Modell 1 Modell 2 ... Modell l

↓ ↓ ↓
β̂Methode1 β̂Methode2 ... β̂Methodel

Desweiteren werden verschieden hohe Fehlerraten an unterschiedlichen Datensätzen ge-

testet. Deshalb werden schlussendlich vier dieser Auswertungen mit jeweils 500 Durch-

gängen ausgeführt. Diese sind die möglichen Verknüpfungen aus

� Anteil fehlender Werte knapp unter 10 % beziehungsweise knapp unter 20 %

� Datensatz mit zehn Variablen beziehungsweise Datensatz mit 20 Variablen
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5. Imputation mit Amelia II

5.1. Theorie

Amelia ist ein R-Paket zur multiplen Imputation, es werden für jeden fehlenden Wert

also mehrere imputierte Werte erzeugt.

Es wird der sogenannte EMB-Algorithmus (expectation-maximization with bootstrap-

ping) verwendet. Hierbei wird der EM-Algorithmus auf mehrere durch Bootstrapping

ermittelte Datensätze, gezogen aus dem ursprünglichen, unvollständigen Datensatz, an-

gewendet. Die fehlenden Werte in den Datensätzen werden daraufhin durch die gezoge-

nen Imputationen ersetzt.

Die zugrundeliegenden Annahmen, der Algorithmus und die Durchführung in R sind

entnommen aus (Honaker et al.; 2011) und werden dort genauer beschrieben.

5.1.1. Annahmen

Das Annahme-Modell unter Amelia besagt, dass die kompletten Daten multivariat nor-

malverteilt sind mit Mittelwertsvektor µ und Kovarianzmatrix Σ:

D ∼ Nk(µ,Σ) (5.1)

Auch wenn diese Annahme für viele Daten nicht immer sinnvoll erscheint, ermöglichen

verschiedene Variablentransformationen eine Annäherung an diese Voraussetzung.

Desweiteren wird die sogenannte MAR-Annahme (missing at random) getroffen, diese

wurde in Kapitel 3.1 genauer beschrieben.

Auch der speziellere Fall, die sogenannte MCAR-Annahme (missing completely at ran-

dom), ist natürlich ausreichend.
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5.1.2. Algorithmus

Eine schematischer Ablauf der Imputation ist in folgender Grafik dargestellt:

Abbildung 5.1.: Schematische Darstellung der Imputation mit Amelia mithilfe des

EMB-Algorithmus aus (Honaker et al.; 2011).

Am Anfang steht der unvollständige Datensatz D, der sich zusammensetzt aus den be-

obachteten Daten Dobs und den fehlenden Daten Dmis.

Anschließend wird Bootstrapping angewandt, um die Unsicherheit der Schätzung nach-

zubilden.

Dabei wird n-mal (wobei n der Anzahl an Beobachtungen im Datensatz entspricht) mit

Zurücklegen aus dem ursprünglichen Datensatz gezogen, wodurch eine Stichprobe des

Datensatzes entsteht. Eine Beobachtung kann also einmal, mehrmals oder gar nicht in

der Bootstrap-Stichprobe vorkommen. (Heumann und Schmid; 2013)

Durch mehrmaliges Durchführen von Bootstrapping erhält man mehrere Stichproben

des Datensatzes, wie in Abbildung 5.1 zu sehen ist.

Im nächsten Schritt sollen aus der Posteriori Werte gezogen werden, um damit schluss-

endlich abhängig von den gezogenen Parameterschätzern und von Dobs die unvollständi-

gen Bootstrap-Stichproben zu imputieren. Die Posteriori lässt sich aus folgenden Schrit-
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ten errechnen:

Die Likelihood der beobachteten Daten Dobs ist p(Dobs,M |θ), wobei θ = (µ,Σ) und M

der Fehlermatrix entspricht wie in Kapitel 3.1 definiert, also mit den Einträgen mij = 1

falls dij ∈ Dmis und mij = 0 sonst. Unter der MAR-Annahme (und der weiteren Annah-

me, dass M nicht von θ abhängt) gilt:

p(Dobs,M |θ) = p(M |Dobs) · p(Dobs|θ) (5.2)

Da nur die Inferenz der Parameter der kompletten Daten von Interesse ist, lässt sich die

Likelihood auch darstellen als

L(θ|Dobs) ∝ p(Dobs|θ) (5.3)

Mit dem
”
Satz vom iterierten Erwartungswert“ kann das wiederum umgeschrieben wer-

den zu

p(Dobs|θ) =

∫
p(D|θ)dDmis (5.4)

Durch diese Likelihood, verbunden mit der flachen Priori von θ (dabei handelt es sich

um die nicht-informative Gleichverteilungspriori), ergibt sich die Posteriori zu

p(θ|Dobs) ∝ p(Dobs|θ) =

∫
p(D|θ)dDmis (5.5)

Um aus dieser Posteriori Werte zu ziehen und mithilfe des damit erhaltenen Para-

meterschätzers θ̂ und den beobachteten Daten Dobs die fehlenden Werte Dmis zu ver-

vollständigen, wird nun der EM-Algorithmus angewendet. Dieser wird genauer beschrie-

ben in (Honaker und King; 2010).

Der EM-Algorithmus setzt sich zusammen aus dem Estimation-Schritt (E-Schritt) und

dem Maximization-Schritt (M-Schritt). Im E-Schritt werden die fehlenden Daten Dmis

mithilfe der beobachteten Werte Dobs und des Parameters θ̂, bei dem es sich um einen

Schätzer auf Grundlage der letzten Imputation handelt, aufgefüllt. Für den ersten Durch-

gang wird dabei für den Parameter θ ein zufälliger Startwert generiert, da noch keine

aktuelle Imputation vorhanden ist. Im M-Schritt wird anschließend der Parameter des

Modells auf Grundlage der neuen Imputation mit der Maximum-Likelihood-Methode

geschätzt. Der Algorithmus iteriert so lange zwischen dem E-Schritt und dem M-Schritt

bis Konvergenz eintritt, also bis sich der Parameterschätzer θ̂ im Vergleich zum vorhe-

rigen Durchgang nur noch minimal verändert.
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Mithilfe der Funktion zelig aus dem R-Paket Zelig (Imai et al.; 2015) können nun die feh-

lenden Schritte aus Abbildung 5.1 einfach durchgeführt werden. Mithilfe der vollständi-

gen, imputierten Datensätze werden Analysen, in diesem Falle eine Regression, durch-

geführt und die Einzelergebnisse zu einem Gesamtergebnis kombiniert.

5.2. Umsetzung in R

Für die Durchführung der multiplen Imputation mit dem R-Paket Amelia muss der

Funktion der unvollständige Datensatz, die gewünschte Anzahl an Imputationen m und

die Information, bei welchen Variablen es sich um nominale beziehungsweise ordinale

Variablen handelt, übergeben werden.

Desweiteren gibt es die Möglichkeit, die Imputationen einer Variablen auf einen be-

stimmten Wertebereich zu beschränken. Dies würde beispielsweise verhindern, dass für

eine gamma-verteilte Variable negative Werte imputiert werden können. In (Honaker

et al.; 2011) wird jedoch empfohlen, auf das Verwenden dieser Restriktionen zu verzich-

ten, da durch das Überschreiten der logischen Beschränkung einer Variablen ein Teil der

Unsicherheit beim Imputieren wiedergespiegelt wird. Da die Werte der Variablen selbst

hier letztendlich nicht weiter interessant sind, sondern nur die Regressionskoeffizienten

betrachtet werden, wird auf diese Einschränkung verzichtet.

Für den größeren Datensatz mit einem Anteil fehlender Werte knapp unter 20 % war es

nötig, den Befehl incheck=FALSE einzufügen. Dadurch werden die Übergabeparameter

der Funktion vor der Imputation nicht überprüft. Ohne diesen Befehl resultierte eine

Fehlermeldung, nach der mehrere Variablen im Datensatz perfekt kollinear zu anderen

Variablen seien. Auch mithilfe des Übergabeparameters empri, durch den die Kovarianz

zwischen den Variablen gesenkt wird, konnte dieses Problem nicht behoben werden. Wie

in Kapitel 5.3.2 noch gezeigt wird, scheint die Güte der Imputation darunter jedoch

nicht zu leiden.

Es sind noch einige weitere Übergabeparameter vorhanden, welche eine bessere An-

passung an verschiedene Datengrundlagen ermöglichen. Diese sind für die betrachteten

Datensätze jedoch nicht von Relevanz und werden deswegen weggelassen, können aber

in (Honaker et al.; 2011) nachgelesen werden.

Die Funktion zelig aus dem R-Paket Zelig benötigt als Übergabeparameter wiederum

die m imputierten Datensätze, den Prädiktor der Regressionsgleichung und die Art der

Regression.
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Mögliche Angaben für das Regressionsmodell sind nach (Owen et al.; 2013) folgende:

”
model“ in R Regression Skalierung der abhängigen Variable

gamma Gamma stetig, positiv

logit Binomial (Logit) dichotom

ls linear (KQ-Methode) stetig

negbinom Negativ Binomial Zähldaten

normal linear (ML-Methode) stetig

poisson Poisson Zähldaten

probit Binomial (Probit) dichotom

Tabelle 5.1.: Liste möglicher Angaben für das Regressionsmodell bei der Funktion

zelig.

Die Methoden ls und normal unterscheiden sich dabei lediglich in der Schätzung für den

Parameter σ.

Die Theorie zu den generalisierten linearen Modellen kann nachgelesen werden in (Fahr-

meir et al.; 2009).

5.3. Ergebnisse

Die Ergebnisse nach der Imputation mit Amelia werden getrennt nach den beiden Da-

tensätzen und für verschiedene Fehlerraten dargestellt.

5.3.1. Kleinerer Datensatz

Für einen Anteil fehlender Daten knapp unter 10 % werden die 500 Schätzungen der

Regressionskoeffizienten in einem Boxplot dargestellt:
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Abbildung 5.2.: Übersicht über die geschätzten Regressionskoeffizienten nach der Im-

putation mit Amelia aus 500 Durchgängen. Es wird der Datensatz mit zehn Variablen

und einer mittleren Fehlerrate knapp unter 10 % betrachtet.

Sehr auffällig ist hierbei, dass die Koeffizienten für die binomial-verteilten Variablen X2,

X6 und X9 viel mehr streuen als die Koeffizienten für numerische Variablen. Insgesamt

lässt sich jedoch erkennen, dass der Median der Schätzwerte in allen Fällen ziemlich

nah am wahren Koeffizienten liegt. Auch existieren für keinen Koeffizienten extreme

Ausreißer.
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Für einen höheren Anteil fehlender Daten knapp unter 20 % ergibt sich ein ähnliches

Bild:
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Abbildung 5.3.: Übersicht über die geschätzten Regressionskoeffizienten nach der Im-

putation mit Amelia aus 500 Durchgängen. Es wird der Datensatz mit zehn Variablen

und einer mittleren Fehlerrate knapp unter 20 % betrachtet.

Auch in Abbildung 5.3 streuen die Schätzer der binomial-verteilten Variablen weit mehr

als die Schätzer der numerischen Variablen. Während bei geringerer Fehlerrate in Ab-

bildung 5.2 die Koeffizienten der dichotomen Variablen jedoch tendenziell nur leicht

unterschätzt werden, ist diese Tendenz für eine höhere Fehlerrate schon deutlicher zu

erkennen. Auch ist insgesamt zu sehen, dass die Spannweite der Schätzer für alle Koef-

fizienten größer ist als bei der geringeren Fehlerrate.
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5.3.2. Größerer Datensatz

Für den Datensatz mit 20 Variablen sowie einem Anteil fehlender Daten knapp unter

20 % werden die 500 Schätzungen der Regressionskoeffizienten erneut in einem Boxplot

dargestellt:
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Abbildung 5.4.: Übersicht über die geschätzten Regressionskoeffizienten nach der Im-

putation mit Amelia aus 500 Durchgängen. Es wird der Datensatz mit 20 Variablen

und einer mittleren Fehlerrate knapp unter 20 % betrachtet.

Auch in Abbildung 5.4 ist deutlich zu erkennen, dass die Koeffizientenschätzer der

binomial-verteilten Variablen X1, X5, X11 und X17 eine deutlich höhere Spannweite und

auch Varianz aufweisen als die Koeffizientenschätzer aller numerischen Variablen. Der
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wahre Koeffizient wird jedoch erneut für alle Schätzer im Mittel relativ gut angenähert,

der Median entspricht meistens etwa dem wahren Koeffizienten. Ebenso existieren er-

neut keine extremen Ausreißer.

Für die geringere Fehlerrate ergibt sich ein ähnliches Bild, wobei die Koeffizienten analog

zu Kapitel 5.3.1 etwas besser angenähert werden sowie die Spannweite der Schätzer

tendenziell geringer ist. Die zugehörige Grafik befindet sich im Anhang.
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6. Imputation mit mice

6.1. Theorie

mice ist ein R-Paket zur multiplen Datenimputation. Hier werden, ebenso wie bei Ame-

lia, für jeden fehlenden Wert mehrere imputierte Werte erzeugt. mice steht dabei für

”
multivariate imputation by chained equations“, auch bekannt als FCS (fully conditional

specification).

Eine bekannte Ansatzweise bei multipler Imputation ist das sogenannte
”
joint mode-

ling“, bei dem die multivariate Verteilung der fehlenden Daten spezifiziert wird und

anschließend mithilfe von MCMC-Verfahren (Markov Chain Monte Carlo) aus den be-

dingten Verteilungen Imputationen gezogen werden. Dieses Verfahren ist sinnvoll, falls

die spezifizierte multivariate Verteilung die Daten gut beschreibt. Kann jedoch keine

passende multivariate Verteilung gefunden werden, ist die Verwendung von mice eine

mögliche Alternative. Dabei wird für jede unvollständige Variable die bedingte Vertei-

lung definiert, welche auf einem univariaten Regressionsmodell basiert. Dann werden

mithilfe des FCS-Algorithmus Imputationen erzeugt, wobei wiederholt mithilfe der be-

dingten Verteilungen Werte gezogen werden.

Die zugrundeliegende Theorie sowie die Durchführung in R werden genauer beschrieben

in (van Buuren und Groothuis-Oudshoorn; 2011).

6.1.1. Annahmen

Es wird angenommen, dass der Datensatz D einer p-variaten Verteilung P (D|θ) folgt,

welche durch den unbekannten Parametervektor θ komplett spezifiziert ist. Das eigent-

liche Problem, nämlich die multivariate Verteilung von θ zu erhalten, wird dabei mit

bayesianischen Verfahren gelöst.

mice kann, im Gegensatz zu Amelia, mit MAR- und NMAR-Daten umgehen. Jedoch

muss vor der Auswertung entschieden werden welche Annahme sinnvoll ist, da unter

Gültigkeit des NMAR-Falls eventuell zusätzliche Modifikationen vorgenommen werden

müssen.
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6.1.2. Algorithmus

Der zugrundeliegende Algorithmus der Funktion mice kann in vier generelle Schritte

eingeteilt werden und wird in (Azur et al.; 2011) genauer beschrieben:

� Im ersten Schritt wird für jeden fehlenden Wert einer Variablen eine einfache

Stichprobe aus den beobachteten Werten gezogen. Dieser Wert wird statt des NA-

Eintrags eingesetzt, sodass schlussendlich jede Beobachtung vollständig ist. Die

eingesetzten Werte können dabei als
”
Platzhalter“ gesehen werden.

� Die
”
Platzhalter“ einer einzigen Variablen werden wieder gelöscht, sodass sie sich

wieder im ursprünglichen Zustand befindet. Alle anderen Variablen bleiben ver-

vollständigt. Die Variable im ursprünglichen Zustand wird im Folgenden als Y

bezeichnet.

� Es wird eine Regressionsgleichung auf Grundlage der beobachteten Werte von Y

durchgeführt, die bedingt wird auf alle anderen Variablen im Datensatz. Bei Y han-

delt es sich also um die abhängige Variable, die restlichen sind unabhängige Ein-

flussgrößen. Bei der Aufstellung des Regressionsmodells wird dabei die Verteilung

der abhängigen Variablen berücksichtigt. Gilt Y also beispielsweise als normal-

verteilt, wird ein einfaches lineares Modell aufgestellt, für ein ordinal-skaliertes Y

wird hingegen ein kumulatives Logit-Modell berechnet. Mögliche Angaben in R

werden in Kapitel 6.2 genauer beschrieben.

� Die fehlenden Werte von Y werden mithilfe von Vorhersagen auf Grundlage des

aufgestellten Regressionsmodells ersetzt. Bei den unabhängigen Variablen wird als

Datengrundlage zur Vorhersage für jede Beobachtung der wahre Wert verwendet,

falls dieser vorhanden ist, sonst der imputierte Wert.

Die Schritte zwei bis vier werden nun für jede Variable im Datensatz, die imputiert

werden soll, durchgeführt. Danach ist ein Durchgang der Imputation abgeschlossen. Die

Schritte zwei bis vier werden nun mehrere Durchgänge lang wiederholt, wobei die Im-

putationen in jedem Durchgang aktualisiert werden. Eine sinnvolle Anzahl an Impu-

tationsdurchgängen ist dabei von Situation zu Situation unterschiedlich. Ziel ist aber

immer, Konvergenz in dem Sinne zu erhalten, dass Parameter und Regressionskoeffizi-

enten am Ende der Durchgänge keine großen Veränderungen zum vorherigen Durchgang

mehr aufweisen.
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6.2. Umsetzung in R

Eine schematische Darstellung der Datenimputation mit dem R-Paket mice ist in fol-

gender Grafik zu sehen:

Abbildung 6.1.: Schematische Darstellung der Imputation mit mice in R aus (van Bu-

uren und Groothuis-Oudshoorn; 2011).

Zu Beginn steht also der unvollständige Datensatz D, welcher der Funktion als ein Data-

frame übergeben wird. Mithilfe der Funktion mice werden nun m imputierte Datensätze

erzeugt. Standardmäßig werden pro Imputation fünf Durchgänge des in Kapitel 6.1.2

beschriebenen Algorithmus durchgeführt. Eine Erhöhung dieser Zahl zum Erreichen bes-

serer Ergebnisse ist oftmals sinnvoll und muss von Fall zu Fall betrachtet werden.

Der Funktion kann auch die jeweilige Imputationsmethode übergeben werden, bei feh-

lendem Übergabeparameter werden je nach Datentyp default-Werte verwendet. Folgende

Angaben sind möglich:
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Methode Regressionsmodell Skalierung der Variable

pmm predictive mean matching numerisch

norm bayesianische lineare Regression numerisch

logreg logistische Regression nominal (2 Level)

polyreg multinomiales Logit-Modell nominal (≥ 2 Level)

polr kumulatives Logit-Modell ordinal (≥ 2 Level)

Tabelle 6.1.: Liste einiger univariaten Imputationsmethoden der Funktion mice in R.

Beim
”
predictive mean matching“ handelt es sich um eine semi-parametrische Imputa-

tionsmethode mit dem Vorteil, dass die Imputationen auf den Wertebereich der beob-

achteten Werte eingegrenzt werden. Ebenso können nicht-lineare Beziehungen erhalten

werden, auch wenn der strukturelle Teil des Imputationsmodells nicht korrekt ist. Es

handelt sich damit um eine gute Methode über alle numerischen Datentypen, kann aber

auch bei kategorialen Daten angewendet werden. Die bayesianische lineare Regression

ist eine effiziente Imputationsmethode falls die Modell-Residuen annähernd normalver-

teilt sind. Das multinomiale Logit-Modell wird mit der Funktion multinom aus dem

nnet-Paket (Venables und Ripley; 2002) aufgestellt und ist gedacht für ungeordnete,

kategoriale Variablen mit zwei oder mehr Kategorien. Dabei wird immer die erste Kate-

gorie als Referenz verwendet. Für geordnete, kategoriale Variablen mit zwei oder mehr

Kategorien wird mithilfe der polr -Funktion aus dem MASS -Paket (Venables und Ripley;

2002) ein kumulatives Logit-Modell aufgestellt, wobei auch hier die erste Kategorie als

Referenz verwendet wird. Es existieren noch einige weitere Möglichkeiten, die in (van

Buuren und Groothuis-Oudshoorn; 2011) nachgelesen werden können. Diese sind für die

hier betrachteten Datensätze jedoch nicht von Relevanz und werden deswegen der Ein-

fachheit halber weggelassen.

Ein weiterer Übergabeparameter für die Funktion mice ist die Angabe, in welcher Rei-

henfolge die Imputationen in jedem Durchgang durchgeführt werden sollen. Standard-

mäßig werden die Variablen im Datensatz von links nach rechts imputiert. Um eine

schnellere Konvergenz des Algorithmus zu erreichen ist es manchmal sinnvoll, die Rei-

henfolge der Imputationen anzupassen. Eine Möglichkeit ist es, die Variablen mit auf-

steigender Anzahl an fehlenden Werten zu imputieren, beginnend mit der geringsten

Anzahl.
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Es existieren einige weitere Übergabeparameter, die eine bessere Anpassung an verschie-

dene Datengrundlagen ermöglichen. Diese sind für die zugrundeliegenden Daten jedoch

nicht von Relevanz und werden deswegen weggelassen, können aber in (van Buuren und

Groothuis-Oudshoorn; 2011) nachgelesen werden.

Die imputierten Datensätze, in Abbildung 6.1 sind es drei Stück, werden dabei abge-

speichert als ein Objekt der Klasse mids. Die drei Imputationen sind dabei identisch für

die existierenden Werte und unterscheiden sich in den imputierten Werten. Das mira-

Objekt wird anschließend der Funktion with übergeben, zusätzlich mit der gewünschten

Auswertung wie beispielsweise einer Regressionsgleichung. Das entstehende Objekt der

Klasse mira enthält mehrere unterschiedliche Analyseresultate, die letztendlich mit der

Funktion pool zu einem Gesamtergebnis zusammengesetzt werden können. Das Gesamt-

ergebnis stellt dabei den Mittelwert aus allen Einzelergebnissen dar, die Varianz des

Schätzers wird dabei nach einem Vorschlag von Donald B. Rubin errechnet.

6.3. Ergebnisse

Die Ergebnisse werden erneut getrennt nach den Datensätzen und für unterschiedliche

Fehlerraten dargestellt.

6.3.1. Kleinerer Datensatz

Für einen Anteil fehlender Daten knapp unter 10 % werden die 500 geschätzten Regres-

sionskoeffizienten in einem Boxplot zusammengefasst.
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Abbildung 6.2.: Übersicht über die geschätzten Regressionskoeffizienten nach der Im-

putation mit mice aus 500 Durchgängen. Es wird der Datensatz mit zehn Variablen

und einer mittleren Fehlerrate knapp unter 10 % betrachtet.

Analog zu den Ergebnissen aus Kapitel 5.3 ist eine erhöhte Varianz der Koeffizien-

tenschätzer für die binomial-verteilten Variablen X2, X6 und X9 im Vergleich zu den

Koeffizientenschätzern numerischer Variablen zu erkennen. Es werden jedoch alle wah-

ren Koeffizienten tendenziell weder unter- noch überschätzt, ebenso wie keine extremen

Ausreißer existieren.
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Für eine höhere Fehlerrate sind die Ergebnisse sehr ähnlich. Die Koeffizientenschätzer

streuen zwar etwas mehr, der wahre Wert der Koeffizienten wird jedoch im Mittel nahezu

genauso gut angenähert. Die zugehörige Grafik befindet sich im Anhang.

6.3.2. Größerer Datensatz

Betrachtet man die Ergebnisse für eine Fehlerrate knapp unter 20 % bei der Imputation

des Datensatzes mit 20 Variaben ergibt sich folgendes Bild:
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Abbildung 6.3.: Übersicht über die geschätzten Regressionskoeffizienten nach der Im-

putation mit mice aus 500 Durchgängen. Es wird der Datensatz mit 20 Variablen

und einer mittleren Fehlerrate knapp unter 20 % betrachtet.
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Erneut ist die Spannweite der Koeffizientenschätzer binomial-verteilter Variablen weitaus

größer als die der Koeffizientenschätzer numerischer Variablen. Für die dichotomen Va-

riablen wird der wahre Wert von β̂1 und β̂5 tendenziell leicht unterschätzt, für β̂17 leicht

überschätzt. Jedoch handelt es sich in absoluten Zahlen um sehr geringe Differenzen

nahe 0. Für die numerischen Variablen ist im Mittel eine sichere Schätzung des wah-

ren Regressionskoeffizienten zu erkennen, die maximalen absoluten Abweichungen der

Schätzer vom wahren Wert sind dabei nahe 0.

Für die geringere Fehlerrate sind die Ergebnisse erneut sehr ähnlich, die zugehörige

Grafik kann im Anhang betrachtet werden.
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7. Regressionsimputation

In diesem Kapitel wird eine Methode zur einfachen Imputation mithilfe von Regressions-

gleichungen vorgestellt. Für jeden fehlenden Wert im Datensatz wird eine Imputation

erzeugt, woraus ein einziger, vollständiger Datensatz resultiert. Das Ergebnis muss also

nicht wie in Kapitel 5 und 6 aus Einzelergebnissen zusammengesetzt werden. Die beob-

achteten Daten Dobs bleiben natürlich auch hier unberührt.

Diese Imputationsmethode ist keine sehr verbreitete oder vielgetestete Möglichkeit zur

Vervollständigung von Datensätzen und soll mit bekannten Methoden verglichen werden.

7.1. Theorie

7.1.1. Annahmen

Wie schon in Kapitel 4.1 erwähnt, muss bei den meisten einfachen Imputationsmethoden

die MCAR- oder MAR-Annahme erfüllt sein, um möglichst unverzerrte Schätzer zu

erhalten. Zusätzlich wurde in Kapitel 4.1 das Problem angesprochen, dass die wahre

Variabilität der Daten durch einfache Imputationsmethoden oft unterschätzt wird. Auf

dieses Problem wird reagiert durch das künstliche Erzeugen von Zufallsfehlern im Laufe

der Imputation, näher beschrieben in Kapitel 7.1.2.

7.1.2. Algorithmus

Im Grunde basiert diese Imputationsmethode auf der Definition bedingter Dichten, die

wie folgt aussieht:

f(x|y) =
f(x, y)

f(y)
(7.1)

Dies lässt sich umformen zu:

f(x, y) = f(x|y) · f(y) (7.2)
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Die gemeinsame Dichte von X und Y lässt sich auch darstellen als ein Produkt aus

der Dichte von Y und der bedingten Dichte von X auf Y . Dies lässt sich für mehrere

Variablen weiterführen, für vier Variablen X1, ..., X4 gilt also beispielsweise

f(x1, x2, x3, x4) = f(x4|x1, x2, x3) · f(x3|x1, x2) · f(x2|x1) · f(x1) (7.3)

Ebenso könnte theoretisch die Reihenfolge beliebig vertauscht werden und die gemein-

same Dichte dargestellt werden als

f(x1, x2, x3, x4) = f(x1|x2, x3, x4) · f(x2|x3, x4) · f(x3|x4) · f(x4) (7.4)

Der Einfluss der Reihenfolge auf das Endergebnis wird ebenfalls untersucht.

Grundsätzlicher Algorithmus

Aufbauend auf dieser Definition werden die fehlenden Werte jeder Variablen mithilfe ei-

ner Regression imputiert. Nach der Reihenfolge in Formel 7.3 würde beispielsweise zuerst

X1 mithilfe von einfachen Zufallszahlen erzeugt werden. X2 wird anschließend mit einer

Regression mit X1 als unabhängiger Variable imputiert. Dabei wird das Regressions-

modell passend zum Verteilungstyp der abhängigen Variablen gewählt, beispielsweise

ein kumulatives Logit-Modell für ein ordinal-skaliertes X2. X3 wird anschließend durch

ein Regressionsmodell mit den unabhängigen Variablen X1 und X2 erzeugt, die Impu-

tation von X4 funktioniert analog.

Dieser Imputationsvorgang ähnelt sehr der ursprünglichen Erzeugung der Daten wie

in Kapitel 2.1 beschrieben. Die Koeffizienten des Regressionsmodells werden jedoch

nicht fest vorgegeben, da der wahre Zusammenhang in realen Situationen nicht bekannt

ist. Stattdessen werden die Regressionskoeffizienten mithilfe der nicht fehlenden Daten

geschätzt.

Genau an dieser Stelle wird auch auf das Problem der tendenziellen Varianzunter-

schätzung bei einfachen Imputationsmethoden eingegangen. Zu den errechneten Re-

gressionskoeffizienten auf Grundlage der vorhandenen Daten wird ein Zufallsfehler ad-

diert. Dazu wird aus einer multivariaten Normalverteilung gezogen mit Mittelwertsvek-

tor µ = β̂ = (β̂0, β̂1, ..., β̂p) und der geschätzten Varianz-Kovarianz-Matrix Σ =
ˆ

cov(β̂),

die den Zusammenhang zwischen den Koeffizienten auf Grundlage des Regressionsmo-

dells wiedergibt:

β̃ ∼ Np(β̂,
ˆ

cov(β̂)) (7.5)
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Ab hier verläuft der Imputationsvorgang komplett analog zur Simulation in Kapitel 2.1.

Mithilfe der Koeffizienten wird ein Regressionsmodell aufgestellt und mit dem dadurch

errechneten Erwartungswert werden schlussendlich Zufallszahlen gezogen. Hierbei wird

verwiesen auf Tabelle 2.2, in der genau die möglichen Variablentypen, die verwendeten

Linkfunktionen sowie der Vorgang der Zufallsziehung in R beschrieben werden.

Auch bei der Zufallsziehung wird erneut auf das Problem der Varianzunterschätzung

eingegangen, da durch das Ziehen von Zufallszahlen zusätzliche Variabilität entsteht.

Bei der Ausführung bleibt lediglich zu beachten, dass die Standardabweichung σ für

normal-verteilte Variablen sowie der Shape-Parameter ν für gamma-verteilte Variablen

in realen Situationen natürlich ebenso wie die wahren Regressionskoeffizienten nicht be-

kannt sind. Deshalb werden diese Parameter aus den Daten geschätzt. Dazu wird der

geschätzte Dispersionsparameter φ̂ des Regressionsmodells betrachtet und folgenderma-

ßen transformiert, siehe (Fahrmeir et al.; 2009):

� normal-verteilte Variable:

der Dispersionsparameter φ entspricht der Varianz σ2. Um die Standardabweichung

σ zu erhalten, wird die Wurzel aus dem Dispersionsparameter gezogen:

σ =
√
φ (7.6)

� gamma-verteilte Variable:

der Dispersionsparameter φ entspricht dem Kehrwert des Shape-Parameters ν,

umgekehrt gilt

ν =
1

φ
(7.7)
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Im Folgenden sind die einzelnen Schritte für dieses Imputationsverfahren an einer poisson-

verteilten Variablen zu sehen:

GLM

↓

β̂,
ˆ

cov(β̂)

↓

β̃ ∼ Np(β̂,
ˆ

cov(β̂))

↓

η = x′β̃

↓

µ = exp(η)

↓

y ∼ rpois(lambda = µ)

Die Imputation wird analog für jede Variable der Reihe nach durchgeführt bis der Daten-

satz vollständig ist, wobei die Anzahl an unabhängigen Variablen im Modell mit jedem

mal um eins steigt. Dabei wird das zugrundeliegende Regressionsmodell natürlich an die

unabhängige Variable angepasst, ebenso wie die Errechnung des Erwartungswertes und

der Zufallsziehungsprozess.

Die Ergebnisse dieses Imputationsverfahrens sind, wie später in Kapitel 7.3 gezeigt wird,

im Vergleich zur multiplen Imputation mit Amelia oder mice, eher keine Verbesserung.

Auch tauchten im Laufe der Durchführung einige Probleme auf, die eine Auswertung

unmöglich machten. Deswegen wurden Modifikationen an den Daten und am Algorith-

mus vorgenommen und untersucht, ob unter diesen die wahre Situation eventuell besser

dargestellt wird.

Weglassen von kategorialen Variablen im Datensatz

Wie schon in Kapitel 2.3 erwähnt, wurden schlussendlich nur normal-, poisson-, gamma-

und binomial-verteilte Variablen in den Datensatz aufgenommen. Problematischer Schritt

bei kategorialen Variablen ist das Aufstellen des Regressionsmodells, um daraus den Ko-

effizientenschätzer β̂ = (β̂1, ..., β̂p) zu erhalten.

Schwierigkeiten treten beispielsweise auf, falls bei der Maximum-Likelihood-Schätzung
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der Koeffizienten in einem beliebigen Durchgang k kein Maximum für ein endliches β

existiert, also mindestens eine Komponente von β̂(k) gegen unendlich geht (Fahrmeir

et al.; 2009). Der ML-Algorithmus konvergiert in diesem Falle nicht und es kommt zum

Funktionsabbruch.

Ebenso ist es problematisch, falls die geschätzten Wahrscheinlichkeiten für eine Katego-

rie sehr nahe bei 1 oder 0 liegen, was sehr hohe Schätzer β̂ mit unverhältnismäßig hoher

Standardabweichung zur Folge hat. Daraus resultieren weitere Probleme, die schluss-

endlich ebenso zum Funktionsabbruch führen.

Schwierigkeiten entstehen ebenfalls, wenn für die Kombination aus zwei kategorialen Va-

riablen eine Ausprägung in den Daten nicht auftritt. Ein Beispiel hierfür ist die folgende

Tabelle, die die Anzahl an Beobachtungen für jede Verknüpfung aus X = {1, 2, 3} und

Y = {a, b} angibt:

a b

1 5 0

2 4 10

3 3 14

Die Chance, dass bei Kategorie 1 das Ereignis a eintritt, errechnet sich hierbei durch

R(Y = a|X = 1) =
P (Y = a|X = 1)

1− P (Y = a|X = 1)
=
P (Y = a|X = 1)

P (Y = b|X = 1)
=

5

0
(7.8)

Das Odds ist in diesem Falle also nicht definiert. Bei einem Logit-Modell wird das Odds

jedoch benötigt, um den Erwartungswert µ zu errechnen:

R(Y = a) =
P (Y = a)

P (Y = b)

Logit-
=

Modell

exp(η)

1 + exp(η)
/

1

1 + exp(η)
= exp(η) (7.9)

Auch für solche Datensituationen entstehen also Probleme bei der Aufstellung des Re-

gressionsmodells.

Es exisiteren natürlich noch einige weitere Beispiele, bei denen das Aufstellen eines

Logit-Modells nicht problemfrei funktioniert.
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Verwendung einer penalisierten logistischen Regression anstatt des normalen

Logit-Modells für binomial-verteilte Variablen

Die gerade geschilderten Probleme gelten analog für das Logit-Modell bei binomial-

verteilten Variablen. Ein ebenso bekanntes Problem ist, falls eine perfekte Trennung in

den Daten auftaucht. Um das Problem genauer zu verstehen, sei folgend ein Beispiel

gegeben.

Die numerische Variable Y soll durch die binomial-verteilte Variable X erklärt werden.

Die Datensituation ist dabei wie folgt:

X Y

0 -5

0 -4

0 -3

0 -2

0 -1

1 1

1 2

1 3

1 4

1 5

Tabelle 7.1.: Datenbeispiel mit perfekter Trennung

Obwohl der Wert von Y durch die Variable X perfekt vorhergesagt werden kann, existiert

bei der Maximum-Likelihood-Schätzung kein Maximum und der Koeffizientenschätzer

β̂ML deshalb auch nicht.

Um dieses Problem zu vermeiden wird zu Beginn der Imputation eine penalisierte lo-

gistische Regression mithilfe der Funktion logistf aus dem R-Paket logistf statt des

normalen Logit-Modells durchgeführt. Diese von Firth 1993 entwickelte Methode, die

eigentlich zum reduzieren des Bias der Maximum-Likelihood-Schätzer gedacht ist, eig-

net sich sehr gut im Umgang mit perfekter Trennung in den Daten. Die Methodik wird

in (Heinze und Schemper; 2002) wie folgt erklärt:
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Die Maximum-Likelihood Schätzer der Regressionsparameter βr, r = 1, ..., k, erhält man

durch Nullsetzen der Score-Funktion:

∂log(L)

∂βr
= U(βr) = 0 (7.10)

wobei L die Likelihood-Funktion ist. Um den Bias zu reduzieren, schlug Firth eine Mo-

difikation dieser Formel vor:

U(βr)
∗ = U(βr) +

1

2
· spur[I(β)−1(

∂I(β)

∂βr
)] = 0, r = 1, ..., k (7.11)

wobei I(β)−1 die Inverse der Informationsmatrix ist. Dieser Schätzer existiert im Gegen-

satz zum ML-Schätzer auch, wenn perfekte Trennung in den Daten vorliegt.

Algorithmus unter Verwendung der geschätzten Werte β̂

Um eine mögliche Überschätzung der Variabilität in den Daten zu vermeiden, wird

zum einen anstatt des Koeffizientenvektors β̃ mit addiertem Zufallsfehler der wahre

Koeffizientenschätzer β̂ verwendet. Der schematische Ablauf aus Kapitel 7.1.2 lässt sich

wie folgt anpassen:

GLM

↓

β̂

↓

η = x′β̂

↓

µ = exp(η)

↓

y ∼ rpois(lambda = µ)

Algorithmus mit mehrmaligem Durchlaufen des Imputationsvorganges

Um das Risiko zu verringern, dass die imputierten Werte in der ersten Runde zufällig

sehr ungenau sind, wird der ursprüngliche Algorithmus mehrmals durchlaufen. Dabei

werden natürlich weiterhin die selben, fehlenden Werte imputiert. Der Unterschied be-
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steht darin, dass die Regressionskoeffizienten β̂ und die Varianz-Kovarianz-Matrix Σ ab

dem zweiten Komplettdurchgang auf Grundlage der vorherigen Imputation geschätzt

werden, nicht auf Grundlage des unvollständigen Datensatzes. Dies kann beliebig viele

Runden wiederholt werden.

7.2. Umsetzung in R

Zur vereinfachten Durchführung der Imputation wurden Funktionen geschrieben, die

für wenige Übergabeparameter nach dem Algorithmus aus Kapitel 7.1.2 fehlende Daten

imputieren. Eine Funktion verwendet dabei zum Errechnen des Prädiktors die wahren

Regressionskoeffizienten β̂, die andere Funktion benutzt den Regressionskoeffizienten β̃

mit zusätzlich addiertem Zufallsfehler.

Dabei werden einige bestehende Funktionen aus R verwendet. Zum einen wird die Funk-

tion glm aus dem stats-Paket zum fitten von generalisierten linearen Modellen verwendet

und die Funktion vglm aus dem Paket VGAM (Yee; 2010), um ein multinomiales oder

kumulatives Logit-Modell zu fitten. Auch wird auf die Funktion rmvnorm aus dem Paket

mvtnorm (Genz et al.; 2014) zugegriffen, um aus einer multivariaten Normalverteilung

zu ziehen und damit β̃ zu erhalten.

Als Übergabeparameter benötigen die Funktionen zum einen den zu imputierenden Da-

tensatz data.missing mit den fehlenden Werten. Auch muss der Datensatz data.mod

übergeben werden, auf Grundlage dessen die Regressionsmodelle berechnet werden sol-

len. Für die mehrmalige Durchführung der Imputation ist das in der ersten Runde der

unvollständige Datensatz selbst, ab der zweiten Runde jeweils der erzeugte, imputierte

Datensatz. Für die beiden anderen Methoden ist data.missing und data.mod jeweils der

unvollständige Datensatz.

Der Übergabeparameter variable ist ein Vektor, der die Spaltennummer der abhängi-

gen, zu imputierenden Variablen für jeden Durchgang angibt. Die Länge dieses Vektors

entspricht dadurch der Anzahl unvollständiger Variablen, die imputiert werden sollen.

Im Vektor variable.type der selben Länge wird jeweils angegeben, welcher Verteilung

beziehungsweise Skalierung die Variable folgt, mögliche Angaben sind hierbei “normal“,

“poisson“, “gamma“, “binomial“, “nominal“ und “ordinal“.

In der Liste independent.variables werden jeweils die Spaltennummern der Variablen

angegeben, die als unabhängige Einflussgrößen in das Modell mit aufgenommen werden

sollen. Im ersten Listeneintrag ist das nur eine Variable, für jeden weiteren Listeneintrag
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kommt die zuvor abhängige Variable dazu.

Bei Bedarf kann den Funktionen noch ein seed übergeben werden, sonst wird dieser auf

NA gesetzt.

7.3. Ergebnisse

Die Ergebnisse werden für jeden Datensatz zuerst getrennt nach der Imputationsreihen-

folge betrachtet. Durchgeführt wird zum einen die Imputation in der selben Reihenfolge

wie bei der Datensimulation, das heißt zuerst wird X1 mithilfe von Zufallszahlen ver-

vollständigt und dann die restlichen Variablen X2, ... mithilfe von Regressionsmodellen.

Die zweite Reihenfolge ist entgegengesetzt zur Simulation, das heißt von der vorletzten

Variablen absteigend bis zur ersten. Hierbei wird die vorletzte Variable (X9 im kleineren

Datensatz, X19 im größeren) ebenso mithilfe von Zufallszahlen, alle restlichen Variablen

von X8 (beziehungsweise X18) absteigend mithilfe von Regressionsmodellen aufgefüllt.

Natürlich ist eine komplett beliebige Reihenfolge ebenso denkbar.

Zusätzlich werden für jeden Datensatz und jede Imputationsmethode verschiedene An-

teile fehlender Daten betrachtet.

7.3.1. Kleinerer Datensatz

Für den kleineren Datensatz werden der ursprüngliche Algorithmus sowie beide An-

passungen durchgeführt, also einmal die Benutzung der geschätzten Koeffizienten ohne

Zufallsfehler und einmal die Imputation mit mehrmaligem Durchlaufen des Algorithmus.

Ergebnisse bei der Imputationsreihenfolge analog zur Simulation

Für die Imputation in der selben Reihenfolge wie bei der Simulation werden alle drei in

Kapitel 7.1.2 erwähnten Verfahren angewendet. Dabei wird zuerst die normal-verteilte

Variable X1 mithilfe der aus dem unvollständigen Datensatz geschätzten Parameter µ

und σ zufällig erzeugt, wobei der Erwartungswert µ durch den Mittelwert geschätzt wird.

Danach werden X2, ..., X9 mithilfe des Verfahrens imputiert.

Ergebnisse unter dem ursprünglichen Algorithmus

Für eine niedrige Fehlerrate um die 10 % ergibt sich folgendes Bild für die Koeffizien-

tenschätzer:
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Abbildung 7.1.: Übersicht über die geschätzten Regressionskoeffizienten nach der Re-

gressionsimputation aus 500 Durchgängen. Es wird der Datensatz mit zehn Variablen

und einer mittleren Fehlerrate knapp unter 10 % betrachtet.

Auch bei dieser Methode ist, genauso wie bei mice und Amelia, eine deutlich erhöhte

Varianz der Schätzer dichotomer Variablen im Vergleich zu den Schätzern numerischer

Variablen zu erkennen. Jedoch werden hier bei den Schätzern durchaus Abweichun-

gen vom wahren Koeffizienten deutlich. Beispielsweise wurde der Wert von β5 in allen

500 Durchgängen unterschätzt. Auch Median und Mittelwert weichen für die meisten

Schätzer vom wahren Koeffizienten ab.
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Für eine erhöhte Fehlerrate ergibt sich ein leicht abgeändertes Bild:
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Abbildung 7.2.: Übersicht über die geschätzten Regressionskoeffizienten nach der Re-

gressionsimputation aus 500 Durchgängen. Es wird der Datensatz mit zehn Variablen

und einer mittleren Fehlerrate knapp unter 20 % betrachtet.

Die Tendenzen aus Abbildung 7.1 sind hier ganz analog zu erkennen. Die Schätzungen

sind allerdings etwas schlechter, die Spannweite ist erhöht und der wahre Koeffizient

wird schlechter abgebildet. Bei sechs von neun Koeffizienten schließt das 25 % bis 75 %-

Quantil der 500 Schätzwerte den wahren Wert nicht ein. Ebenso wird der Wert von β5

weiterhin in allen Durchgängen unterschätzt, der Wert von β8 zusätzlich in allen 500

Durchgängen überschätzt.
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Da die Unterschiede zwischen niedrigerer und höherer Fehlerrate für alle weiteren Impu-

tationsvorgänge die gleiche Tendenz aufweisen, wird der Vergleichbarkeit halber immer

eine mittlere Fehlerrate knapp unter 20 % betrachtet. Die analogen Grafiken mit nied-

rigerer Fehlerrate befinden sich im Anhang.

Ergebnisse unter Verwendung der geschätzten Werte β̂

Für den Algorithmus unter Verwendung der geschätzten Werte β̂ ohne zusätzlichen

Standardfehler zur Errechnung des Erwartungswertes sehen die Schätzwerte wie folgt

aus:
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Abbildung 7.3.: Übersicht über die geschätzten Regressionskoeffizienten nach der Re-

gressionsimputation aus 500 Durchgängen, beim zugrundeliegenden Algorithmus

wird zu den geschätzten Koeffizienten kein zusätzlicher Standardfehler addiert. Es

wird der Datensatz mit zehn Variablen und einer mittleren Fehlerrate knapp unter

20 % betrachtet.

Das Abbild der Schätzwerte ähnelt dabei sehr den Werten unter dem Standardalgo-

rithmus, dargestellt in Abbildung 7.2. Die Güte der Koeffizientenschätzer ist im Mittel

ähnlich zu denen unter dem Standardalgorithmus. Für die meisten Schätzer ist jedoch

eine etwas geringere Spannweite zu erkennen, vor allem für die der binomial-verteilten

Variablen. Ebenso ist die Anzahl an Ausreißern tendenziell geringer.
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Ergebnisse unter mehrmaligem Durchlaufen des Imputationsvorganges

Für den Algorithmus, bei dem der Imputationsvorgang mehrmals durchlaufen wird, sieht

der Boxplot folgendermaßen aus:

●

●
●●●

●

●

●

●
●

●

●
●

●

●●●

●

●

●●

●●

●

●

●

●
●

●

●

●●

●●

●

●●

β1
^ β2

^ β3
^ β4

^ β5
^ β6

^ β7
^ β8

^ β9
^

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5
2.

0

Abbildung 7.4.: Übersicht über die geschätzten Regressionskoeffizienten nach der Re-

gressionsimputation aus 500 Durchgängen, wobei der Algorithmus mehrmals durch-

laufen wird. Es wird der Datensatz mit zehn Variablen und einer mittleren Fehlerrate

knapp unter 20 % betrachtet.

Die Ergebnisse sind erneut sehr ähnlich zu denen aus Abbildung 7.2 und 7.3. Der Werte-

bereich der Schätzer ist dabei im Gegensatz zu dem Standardverfahren erneut tendenziell
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etwas geringer, die Spannweite der dichotomen Variablen niedriger. Die Differenz zwi-

schen den wahren Koeffizienten und dem Median und Mittelwert der Schätzer ist ähnlich

wie bei den beiden anderen Verfahren.

Ergebnisse bei der Imputationsreihenfolge entgegengesetzt zur Simulation

Für die Imputation in entgegengesetzter Reihenfolge wie bei der Simulation werden der

Standardalgorithmus und der Algorithmus unter Verwendung der β̂-Werte verwendet.

Beim mehrmals nacheinander ausgeführten Algorithmus gab es Probleme beim Berech-

nen des Logit-Modells, woraus ein Funktionsabbruch resultierte. Diese Problematik wur-

de bereits diskutiert.

Um eine Imputation in entgegengesetzter Reihenfolge durchzuführen wird zuerst die

binomial-verteilte Variable X9 zufällig erzeugt mithilfe der aus den vorhandenen Daten

errechneten Wahrscheinlichkeiten für beide Kategorien. Danach werden X8,..., X1 mit-

hilfe der Verfahren imputiert.

Ergebnisse unter dem ursprünglichen Algorithmus

Für den ursprünglichen Algorithmus ohne Modifikationen werden die Schätzwerte aus

den 500 Durchgängen in einem Boxplot zusammengefasst:
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Abbildung 7.5.: Übersicht über die geschätzten Regressionskoeffizienten nach der Re-

gressionsimputation aus 500 Durchgängen. Die Variablen werden dabei in entgegen-

gesetzter Reihenfolge wie bei der Simulation imputiert. Es wird der Datensatz mit

zehn Variablen und einer mittleren Fehlerrate knapp unter 20 % betrachtet.

Analog zu allen bisherigen Imputationsverfahren weisen die Koeffizientenschätzer der di-

chotomen Variablen eine verhältnismäßig hohe Varianz auf. Auffällig ist hier der Schätzer

für die normal-verteilte Variable X4, der im Vergleich zu allen anderen Schätzern von

numerischen Variablen weitaus mehr streut. Auch für diesen Imputationsvorgang wird

der Koeffizient β5 in allen Durchgängen unterschätzt, Mittelwert und Median weichen

für die meisten Koeffizienten erkennbar von den wahren Werten ab.
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Ergebnisse unter Verwendung der geschätzten Werte β̂

Das Ergebnis unter Verwendung der geschätzten Koeffizienten ohne Standardfehler bei

der Imputation ist wie folgt:
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Abbildung 7.6.: Übersicht über die geschätzten Regressionskoeffizienten nach der Re-

gressionsimputation aus 500 Durchgängen, beim zugrundeliegenden Algorithmus

wird zu den geschätzten Koeffizienten kein zusätzlicher Standardfehler addiert. Die

Variablen werden dabei in entgegengesetzter Reihenfolge wie bei der Simulation im-

putiert. Es wird der Datensatz mit zehn Variablen und einer mittleren Fehlerrate

knapp unter 20 % betrachtet.
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Die Ergebnisse unterscheiden sich hier nur gering von denen aus Abbildung 7.5, die

Interpretation erfolgt also ganz analog. Hier ist, im Vergleich zu den Ergebnissen bei der

Imputation analog zur Simulationsreihenfolge, keine tendenzielle Verringerung bei der

Spannweite der Schätzwerte im Vergleich zum Standardalgorithmus zu erkennen.

7.3.2. Größerer Datensatz

Für den größeren Datensatz mit 1000 Beobachtungen und 20 Variablen wird nur die

Imputation mit den geschätzten β̂-Werten ohne zusätzlichen Standardfehler betrachtet.

Beim Aufstellen des Logit-Modells bei den beiden anderen Algorithmen kam es im Laufe

der 500 Wiederholungen zu Problemen und letztendlich zum Funktionsabbruch. Die

möglichen Ursachen dafür wurden bereits diskutiert.

Die Daten werden dabei wie in Kapitel 7.3.1 einmal in analoger Reihenfolge wie bei der

Erzeugung und einmal in entgegengesetzter Reihenfolge imputiert.

Ergebnisse bei der Imputationsreihenfolge analog zur Simulation

Bei der Imputation der Variablen in der selben Reihenfolge wie bei der Simulation ergibt

sich für die 19 Koeffizientenschätzer folgender Boxplot:

55



●
●●

●

●

●

●●

●●

●●

●●

●● ●

●

●●●

●

●

●
●
●

●

●●●●

●

●●●●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●
●

●

●●

●
●

●●●●

●

●●●

●

●

●●

●

●●

●

●

β1
^ β2

^ β3
^ β4

^ β5
^ β6

^ β7
^ β8

^ β9
^ β10

^ β11
^ β12

^ β13
^ β14

^ β15
^ β16

^ β17
^ β18

^ β19
^

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Abbildung 7.7.: Übersicht über die geschätzten Regressionskoeffizienten nach der Re-

gressionsimputation aus 500 Durchgängen, beim zugrundeliegenden Algorithmus

wird zu den geschätzten Koeffizienten kein zusätzlicher Standardfehler addiert. Die

Variablen werden dabei in analoger Reihenfolge wie bei der Simulation imputiert. Es

wird der Datensatz mit 20 Variablen und einer mittleren Fehlerrate knapp unter 20

% betrachtet.

Auch hier gibt es keine Verbesserung bei der erhöhten Varianz der Koeffizientenschätzer

binomial-verteilter Variablen. Im Mittel werden die Koeffizienten numerischer Variablen

relativ genau angenähert, eine dauerhafte Über- oder Unterschätzung existiert für keinen

Koeffizienten.
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Ergebnisse bei der Imputationsreihenfolge entgegengesetzt zur Simulation

Für die entgegengesetzte Imputationsreihenfolge wird erneut ein Boxplot betrachtet, in

dem die Schätzer aus 500 Durchgängen zusammengefasst dargestellt sind:
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Abbildung 7.8.: Übersicht über die geschätzten Regressionskoeffizienten nach der Re-

gressionsimputation aus 500 Durchgängen, beim zugrundeliegenden Algorithmus

wird zu den geschätzten Koeffizienten kein zusätzlicher Standardfehler addiert. Die

Variablen werden dabei in entgegengesetzter Reihenfolge wie bei der Simulation im-

putiert. Es wird der Datensatz mit 20 Variablen und einer mittleren Fehlerrate knapp

unter 20 % betrachtet.
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Auch hier ergeben sich keine Neuerungen zu der Interpretation von Abbildung 7.7. Die

Differenz zwischen dem Median der Schätzwerte und dem wahren Wert scheint jedoch

tendenziell etwas größer zu sein, jedoch nicht bei allen Koeffizienten.
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8. Vergleich der Ergebnisse

Die Ergebnisse der getesteten Imputationsmethoden werden in diesem Kapitel noch

einmal miteinander verglichen. Dafür werden für jeden Koeffizienten die Schätzer der

verschiedenen Imputationsmethoden in einem Boxplot dargestellt. Bei dem kleineren

Datensatz werden sieben Methoden verglichen, bei dem größeren Datensatz nur vier:

Kleinerer Datensatz

Amelia

mice

X1 → X9

X1 → X9 mit den β̂-Werten

X1 → X9 mehrmals

X9 → X1

X9 → X1 mit den β̂-Werten

Größerer Datensatz

Amelia

mice

X1 → X19 mit den β̂-Werten

X19 → X1 mit den β̂-Werten

Tabelle 8.1.: Darstellung der verwendeten Imputationsmethoden für die beiden Da-

tensätze.

Die Auswertungen wurden für beide Datensätze jeweils mit niedrigerer und höherer Feh-

lerrate und für jeden Koeffizienten durchgeführt. Einige Ergebnisse werden nachfolgend

vorgestellt, alle übrigen Grafiken befinden sich im Anhang.

8.1. Kleinerer Datensatz

Für die Schätzungen des Koeffizienten β2 ergibt sich ein häufiger vorkommendes Schema,

weswegen die zugehörige Grafik zuerst betrachtet wird. Dargestellt wird eine mittlere

Fehlerrate knapp unter 10 %.
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Abbildung 8.1.: Übersicht über die Schätzungen des Koeffizienten β2 mit den verschie-

denen Imputationsmethoden aus 500 Durchgängen. Den Schätzungen liegt der klei-

nere Datensatz und eine mittlere Fehlerrate um die 10 % zugrunde.

Es ist klar erkennbar, dass für die Imputation mit Amelia und mice der wahre Koef-

fizient und der Median der Schätzwerte sehr nah beieinander liegen, wobei mice etwas

genauer ist. Der Wertebereich der Schätzer nach der Imputation mit Amelia und mice

ist im Vergleich zu den einfachen Imputationsmethoden sichtbar kleiner.

Bei der Regressionsimputation in analoger Reihenfolge zur Simulation befindet sich für

alle drei Algorithmen der wahre Wert im Bereich des 50 %- bis 75 %-Quantils der

Schätzwerte. Der wahre Koeffizient wird also tendenziell unterschätzt. Der Median der

Schätzungen ist für den Standardalgorithmus sowie für die zwei Modifikationen in etwa
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gleich, der Wertebereich der Schätzer für die Anpassungen ist jedoch etwas geringer.

Für die Regressionsimputation in entgegengesetzter Reihenfolge zur Imputation befin-

det sich für die betrachteten Algorithmen der wahre Wert von β2 außerhalb des 75 %-

Quantils. Der Koeffizient wird also tendenziell noch mehr unterschätzt als nach der

Imputation in analoger Reihenfolge zur Simulation. Die Spannweite der Werte ist dabei

für beide Reihenfolgen bei der Imputation vergleichbar.

Insgesamt existieren für alle Imputationsmethoden wenig Ausreißer und vor allem keine

extremen Ausreißer. Auch eine Unter- oder Überschätzung in allen 500 Imputations-

durchgängen exisitiert für den Koeffizienten β2 nicht.

Vergleicht man die Schätzwerte mit denen bei höherer Fehlerrate knapp unter 20 %

ergibt sich folgendes:
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Abbildung 8.2.: Übersicht über die Schätzungen des Koeffizienten β2 mit den verschie-

denen Imputationsmethoden aus 500 Durchgängen. Den Schätzungen liegt der klei-

nere Datensatz und eine mittlere Fehlerrate um die 20 % zugrunde.

Im Vergleich zu Abbildung 8.1 ist klar ersichtlich, dass die Spannweite der Schätzwerte

für alle Imputationsmethoden erhöht ist. Während der Median für Amelia und mice

ähnlich nah am wahren Koeffizienten liegt, erkennt man für die einfache Regressions-

imputation eine tendenziell verstärkte Unterschätzung des wahren Wertes im Vergleich

zu einer geringeren Fehlerrate.

62



Die tendenziell schlechtere Schätzung bei Erhöhen der Fehlerrate ist für alle Koeffizi-

enten und für den kleineren sowie den größeren Datensatz zu erkennen, weswegen in

allen weiteren Grafiken der Vergleichbarkeit halber nur noch die Auswertungen mit ei-

ner mittleren Fehlerrate knapp unter 20 % betrachtet werden.

Die Tendenzen aus Abbildung 8.3 sind verstärkt für den Koeffizienten β5 zu erkennen:
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Abbildung 8.3.: Übersicht über die Schätzungen des Koeffizienten β5 mit den verschie-

denen Imputationsmethoden aus 500 Durchgängen. Den Schätzungen liegt der klei-

nere Datensatz und eine mittlere Fehlerrate um die 20 % zugrunde.

Erneut sind die Koeffizientenschätzer für β5 nach der Imputation mit Amelia und mice
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im Mittel recht präzise und weisen eine vergleichsweise geringe Spannweite auf. Für al-

le Algorithmen der einfachen Imputationsmethode wird der wahre Wert von β5 = 1.2

in allen 500 Durchgängen unterschätzt. Dabei ist die Schätzung bei der Imputation in

analoger Reihenfolge zur Simulation tendenziell noch etwas näher am wahren Wert als

für die entgegengesetzte Reihenfolge.

Insgesamt wird für den kleineren Datensatz keiner der Koeffizienten nach der Regressions-

imputation besser abgebildet als nach der Imputation mit Amelia oder mice. Es ist für

nahezu jeden Koeffizienten eine größere Differenz zwischen dem wahren Wert und dem

Median sowie auch dem Mittelwert zu erkennen. Ebenso ist die Varianz und Spannweite

der Schätzer für mice und Amelia immer geringer.

8.2. Größerer Datensatz

Für den größeren Datensatz mit 20 Variablen ergibt sich ein leicht abgeändertes Bild. Ein

häufig vorkommendes Schema ist für den Koeffizienten β2 zu erkennen, der zugehörige

Boxplot sieht wie folgt aus:
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Abbildung 8.4.: Übersicht über die Schätzungen des Koeffizienten β2 mit den verschie-

denen Imputationsmethoden aus 500 Durchgängen. Den Schätzungen liegt der größe-

re Datensatz und eine mittlere Fehlerrate um die 20 % zugrunde.

Analog zum kleineren Datensatz ist der Median der Schätzer aus 500 Durchgängen nach

der Imputation mit mice und Amelia sehr ähnlich und liegt näher am wahren Wert als

bei der Regressionsimputation. Die Imputation mit analoger Reihenfolge zur Simulation

ist dabei im Mittel noch etwas genauer. Was hier jedoch von Kapitel 8.1 tendenziell ab-

weicht, ist eine verringerte Spannweite bei den Schätzern nach der Regressionsimputation

im Vergleich zu Amelia und mice.
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Natürlich gibt es auch einige wenige Fälle, bei denen sich ein komplett anderes Bild

ergibt. Das betrifft den Koeffizienten β3, für den die Schätzer wie folgt aussehen:
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Abbildung 8.5.: Übersicht über die Schätzungen des Koeffizienten β3 mit den verschie-

denen Imputationsmethoden aus 500 Durchgängen. Den Schätzungen liegt der größe-

re Datensatz und eine mittlere Fehlerrate um die 20 % zugrunde.

Die Differenz zwischen dem Median der 500 Schätzer und dem wahren Koeffizienten ist

hier am geringsten für die Regressionsimputation in entgegengesetzter Reihenfolge wie

bei der Simulation, am zweitgeringsten für die analoge Reihenfolge. Die Unterschiede sind

in absoluten Zahlen jedoch minimal, wie an der Skala zu erkennen ist. Auffällig ist hier

vor allem die Varianz sowie die Spannweite der Schätzer für die Regressionsimputation

66



in entgegengesetzter Reihenfolge wie bei der Simulation. Diese ist verhältnismäßig viel

geringer.

8.3. Vorteile und Nachteile bei der Umsetzung in R

Was ebenso ein wichtiger Punkt bei der Durchführung der Imputation ist und worauf

deswegen noch kurz eingegangen wird, sind die Vor- und Nachteile der verschiedenen

Methoden bei der Umsetzung in R.

Zuerst sei angemerkt, dass die Anwendung der Funktionen amelia und mice in R sehr

unkompliziert ist. Für die Imputation reichen für nicht zu spezielle Datengrundlagen

einige wenige Übergabeparameter, jedoch gibt es einige Anpassungsmöglichkeiten an

verschiedene Datensituationen.

Ein weiterer Punkt betrifft die Laufzeit der Imputationen. Während die Funktion amelia

sowie die Regressionsimputation relativ schnell durchlaufen wird, benötigt die Funktion

mice ein Vielfaches der Zeit für die Imputation. Vor allem, wenn die Anzahl an Imputa-

tionen m sowie die Anzahl an Durchläufen pro Imputation erhöht wird. Dadurch können

jedoch tendenziell bessere Ergebnisse erreicht werden.

Wie schon mehrmals angemerkt wurde, war die Anwendung der Regressionsimputation

für kategoriale Größen mit den gewählten Algorithmen nicht möglich und die Imputa-

tion von binomial-verteilten Variablen problematisch. Auch einige Modifikationen am

Algorithmus brachten keine Lösung für das Problem.

Bei der Imputation mit Amelia tauchten einige Probleme auf, auch diese wurden schon

angesprochen. Problematisch war hierbei vor allem die Imputation des größeren Daten-

satzes mit einer höheren Fehlerrate um die 20 %.
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9. Zusammenfassung

Insgesamt sind einige Trends bei dem Vergleich der Imputationsmethoden erkennbar.

Erstens ist deutlich zu sehen, dass die Koeffizienten für binomial-verteilte Variablen

nach der Imputation bei allen Methoden deutlich ungenauer und mit höherer Streuung

geschätzt werden als die Koeffizienten numerischer Variablen.

Ebenso ist klar erkennbar, dass für eine geringere Fehlerrate die Spannweite und Streu-

ung der Schätzer verkleinert wird, ebenso wie die Koeffizienten tendenziell besser an-

genähert werden.

Das angewendete Verfahren der Regressionsimputation in Verbindung mit kategorialen

Variablen ist tendenziell problematisch, auch die getesteten Modifikationen am Algo-

rithmus lösen dieses Problem nicht.

Was die Durchführung in R betrifft, ist Amelia sehr benutzerfreundlich und hat eine

geringe Laufzeit. Bei mice dauert die Imputation dagegen um ein Vielfaches länger.

Beim Vergleich der Methoden sind die Koeffizientenschätzer nach der Imputation mit

Amelia oder mice im Mittel meistens näher am wahren Wert als die Schätzer nach der

Regressionsimputation. Auch liefert die Regressionsimputation in analoger Reihenfolge

zur Simulation tendenziell bessere Ergebnisse als bei Verwendung der entgegengesetzten

Reihenfolge. Hier existieren natürlich Ausnahmen.

Insgesamt liefert die Regressionsimputation also eher selten genauere Ergebnisse als

die multiplen Imputationsmethoden. Eventuell kann durch weitere Modifikationen am

Algorithmus eine Verbesserung erzielt werden, die Änderungen bei den getesteten Mo-

difikationen sind jedoch minimal.
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A. Elektronischer Anhang

Der elektronische Anhang enthält die Ordner
”
Daten“,

”
Ergebnisse“ und

”
Programme“.

Im Ordner
”
Daten“ befinden sich die beiden simulierten Datensätze, mit denen in den

Analysen gearbeitet wird.

Im Ordner
”
Ergebnisse“ befinden sich zum einen PDF-Dateien mit allen erstellten Gra-

fiken, zusammengefasst nach dem jeweiligen Themenbereich. Im Unterordner
”
Koeffizi-

entenmatrizen nach Imputation“ befinden sich für jede Imputationsmethode und jede

Verknüpfung aus Datensatzgröße und Fehlerrate die Ergebnismatrizen, in denen für je-

den der 500 Durchgänge die Koeffizientenschätzer abgespeichert sind. Ebenso sind dort

die Matrizen abgespeichert, die für die vier Verknüpfungen die jeweilige Anzahl fehlen-

der Daten pro Durchgang angeben.
”
Big“ und

”
small“ stehen dabei für die Größe des

Datensatzes,
”
much“ und

”
less“ für die Fehlerrate.

Im Ordner
”
Programme“ befinden sich alle erstellten R-Codes. Die Codes sind jeweils

nach Themenbereich getrennt.
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