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Abstract 

 

The goal of this Master thesis is to evaluate the time series forecast capability of several Machine 

Learning approaches, in detail Neural Nets, Random Forests, Kernel Machines (Support Vector 

Machines and Gaussian Processes), tree-based and component-wise linear and spline-based 

Boosting, by a comparison with classical ARIMA and ETS models. For the classical models also time-

series specific bagging approaches, Moving Block Bootstrap and Maximum Entropy Bootstrap, are 

tested. For this purpose, extensive benchmarks are conducted, utilizing the well-known official 

Tourism, M3 and NN5 competition data with the latter comprising also several exogenous covariate 

effects. In order to uncover specific problems the Machine Learning approaches reveal for the typical 

time series components of trend and seasonality, a simulation is executed helping in understanding 

some benchmark results as well as suggesting combinations of the Machine Learning algorithms with 

classical deseasoning and detrending steps (Box-Cox transformation, STL decomposition, seasonal 

Differencing). Furthermore different multi-step-ahead forecasting strategies are applied to the NN5 

time series. 

It can be shown that ARIMA based models are competitive to Machine Learning models for the 

investigated classical (without any exogenous covariates) time series forecasting situation. On the 

other hand, ETS approaches are less promising. And the classical models can be enhanced by the 

tested bagging approaches with the easy-to-use Maximum Entropy Bootstrap showing some 

advantages over the more known Moving Block Bootstrap. One simple but very important result from 

the conducted simulation using phenotypic time series is represented by the fact that tree-based 

models as well as splines with a locality property are incapable of modeling a future trend. In such 

situations these approaches must be combined with a detrending step resulting in inferior results also 

for the tree-based boosting model (gbm) as one of the most popular Machine Learning algorithm. 

Actually the Support Vector Machine is the most promising candidate mostly outperforming all other 

methods including classical approaches, especially in conjunction with exogenous covariates. Even 

though Gaussian Processes can be founded in the same theoretical context of Kernel machines, this 

approach is demystified by its results. Further enhancing the Machine Learning models by direct and 

hybrid (combination of recursive and direct) forecasting strategies does not reveal any substantial 

improvements for the tested NN5 series. Interestingly, the benchmark on the M3 data conducted in 

this thesis seem to be the first one revealing a more than competitive prediction of special naïve 

methods for most series making performance conclusions of other studies based on this data highly 

questionable.  
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1 Introduction 

1.1 Motivation 

Time Series Forecasting has a long history not only in scientific field but in practice as well. Beside the 

most known usage for stock market forecasting numerous additional applications in business exist, 

like Budget Forecasting, Inventory Planning and Energy Consumption Prediction, to mention just a 

few. And in the ages of big data and the internet of things more and more fine grained information is 

recorded not only with respect to the timely development of interested target leading to new 

applications in many fields. Additionally to the chronological target variable more exogenous 

information is available increasing the set of possible covariates. This evolution brings into play 

relatively new (compared to the classical methods) algorithms from the Machine Learning field which 

have proven a remarkable performance in classical prediction problems (without time related 

information) often outperforming classical statistical models like linear regression for instance. But it is 

also of interest whether these modern approaches can also compete in a classical time series setting 

using just the consecutive target variable information to predict the future. In fact this ability seems to 

be a prerequisite to at least improve forecasting results settings with high exogenous covariate 

influence.  

 

The most used Machine Learning model in the time series context so far are Neural Nets (referred to 

as nnet in this thesis). But especially tree based algorithms in conjunction with bagging, i.e. Random 

Forests (rf), and boosting (gbm) are very popular in the Machine Learning community due to some 

properties highly advantageous for prediction like automatic interaction detection or robustness 

against irrelevant predictors. The latter holds also for boosting approaches in conjunction with linear 

(glmboost) or semi-parametric (gamboost) regression models which further have much better 

interpretability capabilities as well and are therefore favored in the statistical community. All these 

models account for the correlation of the target variable values by using lagged target information. An 

alternative that recently got very popular in the Machine Learning community are Gaussian Processes 

(gp) which are based in the theory of so-called Kernel machines as the covariance matrix of the target 

can be interpreted as a Kernel matrix. The ancestor of a such Kernel machines are the well-known 

Support Vector Machines (svm) which originated in classification task but can be adapted for 

regression problems as well. 

Especially the success of Random Forests creates attention for bagging (bootstrap aggregation) as a 

general tool for improving forecasts. If, as common for the Machine Learning models, the lagged 

target variable information is just added to the standard covariate set, the bootstrapping can be 

conducted as usual, i.e. random sampling with replacement. But it the modeling approach like for the 

classical Arima (or for Gaussian Processes as well!) needs the original data order for estimating the 

model the usual approach is not applicable as it destroys this order. Therefore special sampling 

schemes must be applied. One part of this thesis work tests the improvements which can be gained 

for classical models by bagging with the well-known Moving Block Bootstrap as well as a more modern 

and easy-to-use approach, the Maximum Entropy Bootstrap. 

All in all the aim of this thesis is to shed some light onto the performance of all above mentioned 

machine learning approaches compared to classical models and bagging approaches for the latter. 

This is done by benchmarking the methods utilizing several data sets from known official competitions, 

i.e. the well-known classical M3 (Makridakis & Hibon (2000)), the Tourism competitions 

(Athanasopoulos et al. (2011)) and the NN5 contest (Crone (2009b)) comprising additional exogenous 

covariate information. 
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Time series forecasting exhibit some special characteristics not common in the usual prediction setting 

like a whole bunch of official metrics for measuring performance that are highly sensitive to the 

forecasts. Moreover one is usually interested in multi-horizon forecasts, i.e. predictions not only for the 

next future time point but e.g. for the next few seasons raising the question whether to reuse forecasts 

as inputs in so-called recursive forecasts or better use direct predictions employing just known 

information. This also complicates the assessment of forecast accuracy as the performance can differ 

from horizon to horizon further depending on the evaluation metric used. Consequently some attention 

is put on the careful handling of performance evaluation in this thesis.  

Also somewhat uncommon for the Machine Learning models are the usual time series components of 

trend and seasonality. At first sight the trend component does not seem to represent a problem for 

prediction models but one has to keep in mind that the trend has to be put forth into the future and 

therefore outside the range of the time input variable, resulting in critical modeling problems, 

especially for tree based approaches for instance. Related problems might grow when dealing with 

increasing seasonality. In order to uncover such general problems Machine Learning models might 

have with these components, a simulation study is conducted that reveals some interesting insights 

that not only help in understanding benchmark results but also suggest different variants of each 

Machine Learning model.  

Actually the typical approach with Machine Learning models for handling the seasonality is using 

seasonal dummy variables. Alternatively it is possible to combine the Machine Learning algorithm with 

classical means for stripping of the seasonality like seasonal differencing, a modeling approach 

invented in classical ARIMA modeling, or decompositions like STL (seasonal-trend decomposition 

based on Loess). Also initial Box-Cox transformation of the time series might help in case of increased 

seasonality for instance. It is of interest whether the Machine Learning approaches can profit from 

such combined approaches which is therefore extensively tested by applying several variants of each 

algorithm. 

In order to assess the performance of these combination approaches they must be compared to the 

corresponding classical models, at least with the most popular representative, i.e. ARIMA models. 

Usually this model class is embedded in a whole modeling operating manual, the Box-Jenkins 

approach. On the other hand, ETS (exponential smoothing) models are mostly neglected by the 

academic canon even though successfully applied by practitioners for a long time. A reason for this 

disregard might be a lack of statistical founding of this initially heuristic approach just recently patched 

by Hyndman et al. (2008) utilizing state space modeling. This thesis also tries to avoid the common 

lack of dedication for this (in non-academic community well-known) modeling approach. 

 

Last but not least the extensive evaluations conducted in this theses are motivated by several other 

studies (listed in the following Chapter 1.2) that lack of several before mentioned aspects. For 

instance, usually only a few of before mentioned Machine Learning approaches are tested. Or no 

comparison with classical methods is conducted. More severe in this conjunction is the typical practice 

of neglecting to conduct at least one naïve forecast or several naïve forecast variants as benchmarks 

in order to assess the forecastability of the series which is crucial especially for the M3 competition 

data as will be shown later. Sometimes the investigated time series are too short or too few in number 

which prevents from getting a valid result which is also the problem when just 1-step-ahead forecasts 

are executed. In case of multi-horizon forecasts nearly always only the recursive strategy is applied. 

Some studies are more theoretically motivated and therefore lack of real-life datasets comprising trend 

and seasonality. Last but not least just a few authors try different deseasonalizing strategies. 

 

This thesis is structured as follows: Already in this introductory chapter the related work is discussed. 

Then Chapter 2 first explains the benchmark datasets with a more detailed discussion of possible 

covariate effects for the NN5 time series. Further prerequisites for the investigations like forecasting 

strategies as well as the applied evaluation approach follow, already producing important insights. The 
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classical models are explained in detail in Chapter 3 together with the possible general preprocessing 

steps, i.e. Box-Cox transformations and STL decomposition. All explanations are accompanied by 

some initial benchmark results. This holds also for the passage dealing with the utilized bagging 

approaches for the classical models before presenting a comparison of just the classical models for all 

three competition benchmark series at the end of this Chapter. The theory of the Machine Learning 

algorithms is explained in Chapter 4. In order to get a direct impression of the performance of these 

models some benchmark insights are added even though this kind of anticipates some results of the 

simulation study presented at the end of Chapter 4 using some phenotypic time series to uncover 

general problems of the Machine Learning approaches with time series (more precise the trend and 

seasonal component). Chapter 5 is dedicated to the overall benchmark results comparing all classical 

and Machine Learning approaches for all competition benchmark data. The thesis closes with a 

summary giving also a short outlook.  

 

 

1.2 Related Work 

Literature for applying Machine Learning or Data Mining approaches for time series forecasting is 

relatively sparse. Reasons for, but also opportunities resulting from this gap, are shortly discussed in 

Crone (2009a), listing what forecasters can learn from Data Mining and vice versa. Also Gooijer & 

Hyndman (2006) in their overview article “25 years of time series forecasting” spend their attention 

regarding machine learning techniques just on neural nets in the chapter about nonlinear methods. 

Nonetheless they state that “with the ability of very large datasets and high powered computers, we 

expect this [bagging and boosting approaches] to be an important area of research in the coming 

years”. 

The following subsections first list related investigations for machine learning approaches in general 

and then dedicate two subsections explicitly for bagging techniques, comprising classical 

bootstrapping of time series, and boosting approaches. 

 

 

Machine Learning approaches 

The most used algorithms from Machine Learning field for forecasting so far are neural nets (nnet). 

Already in the famous M3 competition the nnet is the only non-classical method used (Makridakis & 

Hibon (2000)). Furthermore Krollner et al. (2010) nicely show in their overview article for financial time 

series forecasting that ANN is the dominant technique in this area (mostly used for 1-day ahead 

forecasting). 

Apart from ANNs the majority of investigations using Machine Learning models are restricted to k-

nearest neighbor (kNN), support vector machines (svm), gaussian processes (gp) and boosting 

techniques with trees (gbm), component-wise linear (glmboost) or spline (gamboost) models. 

For example, the relatively extended study of Ahmed et al. (2010) compares nnet, kNN, svm, gp and 

CARTs (classification and regression trees) utilizing different preprocessing steps regarding 

detrending techniques (lagged target values, differencing and moving average filtering). Furthermore 

they deseasonalize in advance leaving just the remainder for the ML methods for forecasting and 

incorporate a tuning of the number of lagged target values. Unfortunately they apply these methods on 

the whole M3 competition putting all categories of time series into one pot (which is problematic as 

discussed in Chapter 2.3.2). Also only 1-step ahead predictions are done and no comparison with a 

naïve method or classical approaches is conducted. With these restrictions nnet and gp end up as the 

overall winners. 
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Much less models are used in Lora et al. (2004) who let kNN compete with dynamic regression 

models for a 24h energy load forecasting problem and show superior performance for the kNN 

approach. 

For a similar problem in the GEFCom2012 forecasting competition (Hong (2012)), Lloyd (2014) 

applies gp using “periodic” kernel in a decorrelated ensemble with gbm. Actually the gp performance 

as standalone prediction was far behind the gbm. Interestingly no lag information was utilized apart 

from an implicit usage by the gp correlation. 

For this competition Hong et al. (2014) summarize the methodology of the top competitors, wondering 

why no classical ARIMA model is used by anyone. Basically most of the winning teams apply linear 

regression with splines, sometimes enhanced by boosting. 

The second placed team of the NN5 competition (Crone (2009b)), Andrawis et al. (2011), utilize an 

exhausting ensemble of several nnet and gp models with classical ARIMA and ETS approaches, 

claiming a big advantage by their somewhat difficult desesonalizing preprocessing. 

Again the nnet is chosen for a study of Matteo et al. (2013) for temperature forecasts in buildings 

resulting in better prediction than using a classical standard regression models with and without 

autoregressive components. 

Similarly Kandananond (2012) lets nnet and svm compete against classical ARIMA models but just for 

6 really short datasets leaving svm as the winner. 

Also the svm takes part in a comparison with nnet and ForecastPro, a commercial forecasting 

package basically using an ARIMA-ETS combination, applied on simulated time series in Crone et al. 

(2009). Actually the simulation study of Chapter 4.5 in this thesis is influenced by their simulated 

combinations of no, additive or multiplicative seasonality with no, linear, progressive or degressive 

trend each combined with different noise levels. Also some lag selection tuning was conducted by 

them utilizing the PACF (partial autocorrelation function). Here svm, followed by nnet, wins the 

nonlinear, i.e. multiplicative seasonality and/or progressive or degressive trend case whereas for the 

linear series the classical ARIMA-ETS combination outperforms svm and nnet. 

A different intention has Bontempi et al. (2013), explaining different Machine Learning forecasting 

strategies, including recursive and direct forecasts, basically using a kNN model. 

Related is the study of Taieb & Hyndman (2012a) using a combination of initial recursive 

autoregressive prediction and a direct adjustment for the forecast error by a kNN model. They apply 

their method to simulated series as well as to the M3 and NN3 benchmark datasets with mixed results 

regarding forecast performance. A more detailed presentation of the NN5 results together with 

additional averaging strategies can be found in Taieb et al. (2012c). For preprocessing they use the 

before mentioned deseasonalizing steps from Andrawis et al. (2011) for this data.  

Taieb & Hyndman (2014) further apply a modification of their own approach described above by using 

a direct gamboost (with bivariate interaction of covariates) based forecast on the residuals of a STL 

decomposition followed by a recursively applied ARIMA model for the M3 and NN5 competition 

datasets. This builds the bridge (apart from above mentioned Lloyd (2014) and Hong et al. (2014) 

mentioned above) to the next subsection looking at boosting techniques applied to time series 

forecasting.  

 

 

Boosting 

For the GEFCom2012 competition Taieb & Hyndman (2012b) compete with a combination of recursive 

and direct forecasts of gamboost models with intensive lag value usage finishing fifth out of 105 

teams. 

A very promising investigation can be found in Robinzonov et al. (2010) showing the results of a 

simulation study, aiming to assess the capability of glmboost and gamboost to model the simulated 
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autoregressive function of nonlinear time series. Actually glmboost shows impressive performance in 

identifying the data generating lags. But the study also states that “strong serial dependence might 

mislead the fitting procedure [i.e. gamboost] to produce erroneous transformations”. A final 

comparison of forecast performance for some macroeconomic time series favors the linear boosting 

approach. 

These nonlinear simulations together with some simulated linear time series are already discussed in 

Shafik & Tutz (2007). 

Furthermore Buchen & Wohlrabe (2011) try to apply glmboost based direct forecasts to some 

macroeconomic time series ending up with mixed results regarding the performance. 

 

 

Bootstrap 

A good overview of classical bootstrap methods for time series, i.e. mainly Block, Sieve and Stationary 

bootstrap, is given in the more technical paper from Härdle et al. (2003) concentrating on the accuracy 

of the methods for parameter estimation of a sample. The more readable summary from Kreiss & 

Lahiri (2012) on the other hand focusses more on advantages of the different methods in different data 

situations. Even though the Stationary bootstrap (Politis & Romano 1994) has the appealing capability 

of preserving the stationarity property, its success seem to be limited as “with respect to higher order 

properties the moving block bootstrap outperforms the version with non-overlapping blocks and both 

achieve a higher order accuracy as the stationary bootstrap” (Mammen & Nandi (2012)). 

The more recent approach of Maximum Entropy Bootstrap (MEboot) is invented in Vinod & Lopez-de-

Lacalle (2009) and concentrating on showing the main advantage of this approach, nicely summarized 

by the author with “the algorithm's practical appeal is that it avoids all structural change and unit root 

type testing involving complicated asymptotics and all shape-destroying transformations like 

detrending or differencing to achieve stationarity”. Furthermore the authors state that “the constructed 

ensemble elements retain the basic shape and time dependence structure of the autocorrelation 

function (ACF) and the partial autocorrelation function (PACF) of the original time series.” 

Above resources concentrate more on the statistical properties of the different drawing techniques. 

Applications of bootstrap methods for time series forecasting by bagging the predictions of the 

different samples can be found e.g in Fan & Hyndman (2010) who use block bootstrap samples to get 

a complete distribution of prediction intervals when applying generalized additive models. 

Bergmeir et al. (2014) improve the accuracy of forecasts by a moving block bootstrap applied on the 

remainder of a STL decomposition of M3 competition data and forecast with an ETS model. This is 

one of the rare studies also assessing the lift of initial Box-Cox transformations of the target variable. 

Cordeiro & Neves (2009) utilize the ETS initially followed by an ARIMA on the residuals before ending 

up in bootstrapping the residuals left over from this process. This parametric bootstrap approach, 

similar to the so-called SIEVE bootstrap, shows mixed behavior when applied on the M3 competition 

data. 

Contrary to the typical bagging approach for Machine Learning methods (i. e. bootstrap as usual with 

lagged target information as standard covariates) Kourentzes et al. (2014) use a combination of 

classic bootstrap methods and ANN models by bagging with the moving block bootstrap to improve 

forecast accuracy, suggesting a median instead of a standard mean aggregation in the bagging step. 
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2 Prerequisites 

2.1 Benchmark Datasets 

For the forthcoming benchmarks the mostly used time series datasets utilized in other academic 

investigations are chosen. In detail these are the M3 competition datasets (Makridakis (2000)), the 

Tourism data from the Tourism2 competition hosted on Kaggle (Athanasopoulos et al. (2011)), and the 

series used in the NN5 competition (Crone (2009b)). Only the latter allows deriving additional 

exogenous effects like holiday, Christmas or Easter whereas the Tourism and M3 datasets are 

classical time series just comprising the consecutive target variable information. The latter holds as 

well for 300 simulated ARIMA series (see Chapter 3.1 for an introduction to Arima time series), named 

Arimasim in the following. Regarding Tourism and M3 it was decided to use only the most fine-grained 

data, i.e. the monthly data. Furthermore only time series comprising more than 120 time points are 

used, ending up in removing one Tourism and several M3 series (see below). 

 

 

Tourism 

The monthly Tourism data comprises 365 time series (after removing 1 series having less or equal 

120 time points). Figure 2.1 shows the distribution of the number of time points. The maximum horizon 

to forecast is 24. Unfortunately the data source from Kaggle website does not comprise the testing 

data, therefore the last 24 time points for each series are used instead for the test fold which is also 

the reason why a comparison with the official contest results can only be given on a qualitative level. 

Most of the series show a trend and seasonality (sometimes increasing); some typical examples are 

plotted in the Appendix (see “A Supporting Plots and Tables”). In order to allow Box-Cox 

transformations (cf. Chapter 3.3) a constant c=1 is added to have all series consisting of only strictly 

positive values. 

The winning methods for this competition conducted in 2010 are presented in the International Journal 

of Forecasting (Brierly (2011b), Baker & Howard (2011)) but also described in short on two Kaggle 

blog posts (Brierly (2011a), Baker (2010)). Basically these solutions used a heuristic approach and an 

ensemble of classical (ETS and ARIMA, cf. Chapter 3) models respectively. Furthermore an extensive 

comparison of classical approaches applied on these data is available in Athanasopoulos et al. (2011), 

the accompanying paper for this competition. Main result for the monthly series is that ARIMA 

methodology is most accurate when considering MASE performance metric (see Chapter 2.3.1) and 

exhibits also clearly better predictions than a seasonal naïve forecast (cf. Chapter 2.3.2). 

 

 

M3 

The used monthly M3 data consists of 1010 series (after removing the shortest ones, see following 

explanations) from 5 different areas named DEMOGRAPHIC, FINANCE, INDUSTRY, MACRO, 

MICRO. The category OTHER is removed as all time series of this area has less or equal 120 time 

points which is the case for 418 time series in total. Figure 2.2 shows the distribution of time points for 

the remaining data sets. Some examples series are also plotted in the Appendix. 

Results from this competition, with a maximum horizon to forecast of 18, are described in Makridakis & 

Hibon (2000) and several accompanying papers published in the same edition of the International 

Journal of Forecasting. The main result, which is somewhat surprising at first sight, is that “simple 

methods developed by practicing forecasters (…) [i.e. ETS] do as well, or in many cases better, than 

statistically sophisticated ones like ARIMA (…)”. Actually Chapter 3.2 of this thesis explains that ETS 
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models can be put into a strict statistical frame and that many ETS model are also equal to ARIMA 

models.  

It should already be mentioned that the usage of the M3 data for algorithm benchmarking is highly 

questionable as explained in Chapter 2.3.2. Despite this fact and the age of the competition datasets, 

these time series are still used in several investigations, e.g.: Cordeiro & Neves (2009), Ahmed et al. 

(2010), Taieb & Hyndman (2012a), Taieb et al. (2012c), Bergmeir et al. (2014), Taieb & Hyndman 

(2014). 

 

 

NN5 

This more recent competition from 2008 comprises 111 time series consisting of daily ATM withdrawal 

amounts in UK, each comprising 791 time points from 18/03/1996 – 17/05/1998 (i.e. > 2 years) with a 

maximum horizon of 56 (8 weeks) to be forecasted. For the training fold comprising the first 735 

observations in each series, missing and zero values are imputed by the mean of the seasonal (with 

period=7) neighbors. Missings that are still left over are filled by the na.interp function from forecast R-

package (Hyndman (2015a)). Missing values in the test fold (last 56 time points) are set to zero 

whereas original zero values are left unchanged. This imputation approach treats withdrawals 

amounts of zero as missing only in the training period and therefore assures to be comparable to the 

original competition benchmark results.  

Public holiday information is taken from http://www.work-day.co.uk/. 

 

It was required in this competition to train a model on the whole training fold even though it might be 

advantageous to concentrate just on the period to be forecasted! This approach is overtaken in this 

thesis to be comparable. The first and second placed entries of the original competition are described 

in Wildi (2008) and Andrawis et al. (2011) respectively. The latter utilizes an ensemble of 9 classical 

and machine learning approaches selected from a total of 140 models. The authors also apply a 

special deseasonalizing process comprising several stages. Both lead to a somewhat sophisticated 

 

Figure 2.1: Distribution of number of time points (i.e. months) for Tourism data. 
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strategy which also holds for the solution from Wildi (2008) whose approach is totally different as it is 

framed by the frequency domain of time series forecasting which is not covered at all in this thesis 

(see e.g. Shumway & Stoffer (2011) for this topic). With regard to the complexity of these winning 

solutions, the result of the benchmark conducted in this thesis for the NN5 data presented in Chapter 

5.3 is remarkable. 

Other benchmark investigations using the datasets are e.g. Taieb & Hyndman (2012a) and Taieb & 

Hyndman (2014). As usual, some typical representatives of the series can be found in the Appendix. 

 

Figure 2.3 shows the averaged (!) series including the 56-horizon test data. A clear Christmas effect 

can already be identified. The number of public holidays is sparse in the test period (just one, apart 

from Easter), therefore its effect would at most be important for correct modeling of other covariate 

effects (e.g the Christmas effect). On the other hand, especially effects around Easter are important to 

be recognized by the model as the test data period comprises them. With this regard it is important 

that the first Easter period in the training fold is not cut off due to creation of lags of the target variable 

used as autoregressive covariate effects (see left reference line in Figure 2.3).  

When comparing the inlay of Figure 2.3 with the top right plot of Figure 2.4, it can be seen that the two 

weeks around Easter show a different seasonality than the average, i.e. a boosting of Easter Monday 

withdrawals and as well for Wednesdays before Easter. One additional week in advance, the 

seasonality is normal which is important as this week is cut in the first Easter period of the time series 

but is part of the test data. The clear weekday seasonality can also be identified in the STL 

decomposition shown on the left in Figure 2.4 (see Chapter 3.3 for an explanation of STL). 

Furthermore the remaining trend in this plot indicate not only an additional New Year effect but also 

more striking an additional monthday seasonality due to higher withdrawals at the end of each month 

obviously resulting from usual salary payout conventions. The latter is confirmed by the second plot on 

 

Figure 2.2: Distribution of number of time points count (i.e. months) for M3 data. Inlay in legend 

additionally shows number of time series by category. 
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the right in Figure 2.4 showing a clear effect even though much smaller than the weekday seasonality 

(beware of different scales in the plots!). Recognize that it is important to visualize this effect after 

weekday related deseasoning in order to rectify both effects. Outliers around the 25
th
 due to Christmas 

are cut for effect display purity, but can be indirectly identified by the skewness of the distribution 

around this day of month seen through a gap between mean and median values. Due to the sparse 

number of public holidays, the holiday effect, without Easter and Christmas period, has high variability 

but shows only very small averaged effects. Nonetheless this might be an important covariate for 

special time series corresponding to ATMs standing in industrial or commercial areas. The final partial 

correlation plot (see Chapter 3.1.1 for more information to a PACF plot) reveals some lagged weekly 

effects, see peaks around the 7
th
 lag, still left over after deseasonalizing. Additionally a high lag1 effect 

can be identified. But the monthday seasonality, i.e. a peak around 30, does not clearly pop up which 

might be because of a more smeared seasonality due to flipping month lengths. Also the 

concentration of the PACF plot on solely linear correlation effects might hide this effect. 

 

Above analysis proposes to add the dummy coded variables weekBefEaster, weekAftEaster and 

holiday related (holiday, dayBefHoliday, dayAftHoliday) to the covariate set of seasonal dummies for 

the weekday and 1 to at most 14 lags (i.e. two seasons) catching any autoregressive dependencies. 

But it must be kept in mind that adding these variables just as main effects would prevent models 

which cannot automatically identify interactions from modeling the Easter effect for instance. 

Furthermore a monthday covariate is needed for the second seasonality and, together with a covariate 

for the month, can also catch the Christmas and New Year effects as interaction effect. For algorithms 

capable of modeling nonlinear effects these covariates can be added on a metric scale (numeric 

 

Figure 2.3: Averaged (over all series) NN5 time series. The right reference line splits train from test 

data. The left reference line denotes which time points are removed for lag creation. The inlay shows 3 

weeks around Easter. 
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covariate) to provide a parsimonious covariate set. Furthermore the slight trend can for instance be 

modeled by adding a numeric season variable counting up the weeks. 

 

 

Arimasim 

The capability of machine learning methods for forecasting also strictly classical correlated time series 

can be tested with 100 simulated time series each comprising 300 time points created by the 

arima.sim function of the standard stats R-package named Arimasim in the following. Actually all 

series contain one autoregressive and one moving average coefficient randomly chosen from a 

uniform distribution 𝑈[0.1,0.9]. Further a stochastic trend is assumed, resulting in an ARIMA(1,1,1) (cf. 

Chapter 3.1.1) with a constant added to make all series strictly positive. For the maximum horizon a 

value of 24 is chosen for the 100 simulations. Some examples are shown in the Appendix.  

 

 

   

 

Figure 2.4: Seasonality and covariate analysis of averaged NN5 time series train fold. The plots on 

the left represent a STL decomposition (cf. Chapter 3.3) using weekday seasonality with reference 

lines in the third plot denoting the 28
th
 of each month. The first two plots on the right show the 

weekday and monthday seasonality (without some outliers lying out of chosen scale range). The 2
nd

 

plot also refers to the “Trend” plot on the left side, i.e. showing the data after weekday deseasoning. 

The 3
rd

 boxplot shows holiday effects and the last plot the partial autocorrelation left over after 

weekday deseasoning. See text for more explanations. 
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2.2 Forecasting Strategies (Recursive, Direct and Combinations) 

For multi-step forecasting, i. e. forecasting for a horizon greater one, several approaches exist. The 2 

main ones are called Recursive (or Iterative) and Direct.  

 

In a Recursive forecast the 1-step ahead forecast model 𝑓 is just repeatedly applied up to the desired 

horizon. So using a rolling lagged values window of size d, i.e. target values 𝑦𝑡 from time point 

𝑡 = 𝑇 − 𝑑 + 1 till time point 𝑡 = 𝑇, together with other external covariates 𝒙, the forecasts are given by: 

 

�̂�𝑇+ℎ = {

𝑓(𝑦𝑇 , … , 𝑦𝑇−𝑑+1, 𝒙)                                                    𝑖𝑓 ℎ = 1

𝑓(�̂�𝑇+ℎ−1, … , �̂�𝑇+1, 𝑦𝑇 , … , 𝑦𝑇+ℎ−𝑑)                𝑖𝑓 2 ≤ ℎ ≤ 𝑑 

𝑓(�̂�𝑇+ℎ−1, … , �̂�𝑇+ℎ−𝑑 , 𝒙)                                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   (2.1) 

 

Throughout this thesis the covariate vector 𝒙 is assumed to be known also for future time points which 

results in ex-post forecasts for the target values and stands in contrast to the usage of forecasted 

covariate values which represents ex-ante forecasts. 

 

For a Direct forecast different models 𝑓ℎ are calculated, one for each horizon h, using only known 

lagged target values till time point T : 

 

�̂�𝑇+ℎ = 𝑓ℎ(𝑦𝑇 , … , 𝑦𝑇−𝑑+1, 𝒙)   (2.2) 

 

 

As the Recursive strategy is reusing forecasted values in its lag-set, possible errors, due to 

misspecification, cumulate over horizons. Furthermore the Recursive forecast is per se biased in case 

of a nonlinear data generating process. On the other hand the Direct forecast is more robust to such 

misspecifications but has higher variance due to the manifold models created and is therefore also 

computational expensive and possible interpretation gets quite complicated. Moreover the Direct 

forecast ignores the dependencies of target values. Only in case of a strict linear data generating 

process and a linear model, both forecast strategies produce equal results. In all other cases, the 

question whether the lower bias of the Direct or the lower variance of the Recursive strategy carries 

more impact is an empirical one. 

 

On the other hand, several variations and hybrid strategies exist that try to tackle one or more of these 

problems. For instance, one can use a Recursive approach but optimize the h-step-ahead forecast 

error instead of 1-step-aheads. Or the forecast errors can be used as additional input for a Recursive 

forecast which is actually related to a moving average term in ARIMA models (see Chapter 3.1.1). 

Somewhat similar, the forecasts themselves can be used as input for direct forecast models. A 

variation which is also more related to the Direct strategy is the multi-output forecast where all 

horizons are forecasted at once using a multivariate target variable. Further combinations are possible 

especially when also taking into account different strategies for different parts of the horizon-range.  

One attractive approach in this context that keeps computation time more manageable, is represented 

by a Direct strategy that is used for the first n
th
 part of the whole horizon-range and recursively applied 

to the other n-1 blocks by using the “older” forecasts as input for a recursive strategy. For seasonal 

time series the period s offers a natural partition for the horizon-range blocks and the strategy can be 

described as follows: 
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�̂�𝑇+ℎ = {

𝑓ℎ(𝑦𝑇 , … , 𝑦𝑇−𝑑+1, 𝒙)                                                                                      𝑖𝑓 ℎ ≤ 𝑠

𝑓ℎ 𝑚𝑜𝑑 𝑠(�̂�𝑇+ℎ−1, … , �̂�𝑇+ℎ−𝑠 , 𝑦𝑇+ℎ−𝑠−1, … , 𝑦𝑇+ℎ−𝑑 , 𝒙)                  𝑖𝑓 𝑠 < ℎ ≤ 𝑑 

𝑓ℎ 𝑚𝑜𝑑 𝑠(�̂�𝑇+ℎ−1, … , �̂�𝑇+ℎ−𝑑 , 𝒙)                                                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   (2.3) 

 

This approach (without the strict seasonal block adaption) is used by Zhang et al. (2013) and named 

MSVR as they apply multiple support vector regression models. But obviously the strategy can be 

applied to any prediction model and is therefore named sRecDir (for seasonal recursive application of 

direct forecasts) in this thesis, better reflecting the nature of the strategy.  

 

It is important to notice that the classical approaches ARIMA and ETS (see Chapter 3.1 and 3.2) are 

using a Recursive strategy by design even though it is possible to estimate their parameters by 

minimizing h-step ahead loss (with ℎ > 1). Even though there is no such limitation for the Machine 

Learning approaches, it was decided to use the Recursive strategy for these models throughout this 

thesis but apply the sRecDir strategy again to the winner models of the NN5 benchmark to check 

whether these models can still be improved, see final comparison in Chapter 5.3. This approach not 

only keeps processing time in a reasonable frame (as ℎ=1-56 is relatively wide) but also allows 

investigating whether a pure Direct strategy helps in the first season (ℎ=1-7).  

 

 

2.3 Performance Analysis for Time Series Forecasting 

This chapter explains the manifold options to measure forecast performance which is inevitable to 

assess the results of the following chapters. For illustrating purposes some results for models first 

explained in later chapters, are presented. Actually the explicit models used are not important here as 

they should only illustrate some general facts. But already starting from now on a special coloring 

scheme is used if results from several variants of different models are presented. This scheme is kept 

throughout this thesis (apart from some line plots in Chapter 3) and helps in distinguishing the 

approaches used in a constant manner. 

 

2.3.1 Performance Metrics 

A vast bunch of metrics for measuring continuous target forecast performances exist and often make 

the results of forecast benchmarks confusing due to different rankings for different metrics, additionally 

depending on the forecast horizon (cf. Makridakis & Hibon (2000)). Due to this fact, it is absolutely 

important to understand the advantages, disadvantages and pitfalls of the commonly used metrics in 

order to avoid misleading benchmark results influencing the decision for an algorithm as well as false 

assessment of the benefit a forecasting method can provide. The best reference for this often 

overlooked fact is Hyndman & Koehler (2006). The following explanations are highly influenced by this 

resource adding some important points not mentioned there. 

See also Table 2.1 summarizing the main performance metrics together with their advantages and 

disadvantages. 

 

The first group discussed is about scale-dependent measures. The most popular metric form this 

group due to some optimality properties in classical regression is the Mean Squared Error 𝑀𝑆𝐸 =

𝑚𝑒𝑎𝑛(𝑦𝑡 − �̂�𝑡)2. Notice that the mean operator here usually stands for the mean of squared forecast 

errors over the horizons, e.g. 𝑚𝑒𝑎𝑛(𝑦𝑡 − �̂�𝑡)2 =
1

ℎ
∑ (𝑦𝑡 − �̂�𝑡)𝑇+ℎ

𝑡=𝑇+1 , but can as well be used for the 

mean over different benchmark time series for exactly one (!) specified horizon 𝑚𝑒𝑎𝑛(𝑦𝑖 − �̂�𝑖)
2 =



2 Prerequisites 

 

14 

1

𝑆
∑ (𝑦𝑖 − �̂�𝑖)

2𝑆
𝑖=1 . Even though the first version is mostly meant, this double usage can lead to some 

confusion as further explained below. In order to have the metric on the same scale as the 

observations, also the Root Mean Squared Error 𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸 is used. A more outlier insensitive 

measure represents the Mean Absolute Error 𝑀𝐴𝐸 = 𝑚𝑒𝑎𝑛(|𝑦𝑡 − �̂�𝑡|) or an even more robust version, 

the Median Absolute Error 𝑀𝐴𝐸 = 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑦𝑡 − �̂�𝑡|).  

All these measures are not appropriate for comparing or aggregating results for time series with 

different scales (e.g. time series ranging between 1-2 and 1-1000). And it is very uncommon for time 

series to be initially scaled in order to circumvent this problem. Furthermore this would not solve the 

problem if the train and test fold are on a different scales already for a single time series due to a trend 

or increasing seasonality for instance. Though, for same scaled series like the data sets of the NN5 

competition representing daily ATM withdrawals, these measures make sense. 

 

The usual approach to tackle different scaled data is the usage of measures based on percentage 

errors. The most popular representative from this group is the Mean Absolute Percentage Error 

𝑀𝐴𝑃𝐸 = 𝑚𝑒𝑎𝑛(100 ∗ |𝑦𝑡 − �̂�𝑡| 𝑦𝑡⁄ ) with the more robust version taking the median, resulting in MdAPE 

(Median Absolute Percentage Error). To use this metric, one must assure that the time series are 

strictly positive or even assure it to only have responses greater than 1 in order to avoid excessively 

Name Formula Disadvantages Advantages 

Mean/Median 

Squared Error 

𝑀𝑆𝐸 = 𝑚𝑒𝑎𝑛(𝑦𝑡 − �̂�𝑡)2 

𝑀𝑑𝑆𝐸 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑦𝑡 − �̂�𝑡 )2 

- unscaled 

- sensitive to outliers 

- on different scale than 

observations 

 known in other fields 

Root Mean 

Squared Error 

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸 
- unscaled 

- sensitive to outliers 

 same scale as 

observations 

Mean/Median 

Absolute Error 

𝑀𝐴𝐸 = 𝑚𝑒𝑎𝑛(|𝑦𝑡 − �̂�𝑡|) 

𝑀𝑑𝐴𝐸 = 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑦𝑡 − �̂�𝑡 |) 

- unscaled  less sensitive to outliers 

 simple to explain 

Mean/Absolute 

Percentage 

Error 

𝑀𝐴𝑃𝐸 = mean (100 ∗
|𝑦𝑡 − �̂�𝑡|

𝑦𝑡

) 

𝑀𝑑𝐴𝑃𝐸 = mean (100 ∗
|𝑦𝑡 − �̂�𝑡 |

𝑦𝑡

) 

- need 𝑦𝑡 > 1 

- higher penalty on positive 

errors 

- need similar ranges for 

compared time series 

 scaled 

 simple 

Symmetric 

Mean/Absolute 

Percentage 

Error 

𝑠𝑀𝐴𝑃𝐸 = 𝑚𝑒𝑎𝑛 (200 ∗
|𝑦𝑡 − �̂�𝑡|

(𝑦𝑡 + �̂�𝑡)
) 

𝑠𝑀𝑑𝐴𝑃𝐸 = 𝑚𝑒𝑑𝑖𝑎𝑛 (200 ∗
|𝑦𝑡 − �̂�𝑡|

(𝑦𝑡 + �̂�𝑡)
) 

or             𝑚𝑒𝑎𝑛 (200 ∗
|𝑦𝑡−�̂�𝑡|

(|𝑦𝑡|+|�̂�𝑡|)
) 

or               𝑚𝑒𝑑𝑖𝑎𝑛 (200 ∗
|𝑦𝑡−�̂�𝑡|

(|𝑦𝑡|+|�̂�𝑡|)
) 

- higher penalty on lower 

forecasts errors 

- need similar ranges for 

compared time series 

- can be negative (for the first 

definition) 

 scaled 

Mean/Median 

Absolute 

Relative Error 

𝑀𝑅𝐴𝐸 = 𝑚𝑒𝑎𝑛 (
|𝑦𝑡 − �̂�𝑡|

|𝑦𝑡 − �̂�𝑡
∗|

) 

𝑀d𝑅𝐴𝐸 = 𝑚𝑒𝑑𝑖𝑎𝑛 (
|𝑦𝑡 − �̂�𝑡|

|𝑦𝑡 − �̂�𝑡
∗|

) 

- can be undefined/infinite  scaled 

 benefit over naïve 

method directly 

assessable 

Mean/Median 

Absolute Scaled 

Error 

𝑀𝐴𝑆𝐸 =  𝑀𝐴𝐸/𝑀𝐴𝐸𝑖𝑛
∗  

𝑀𝑑𝐴𝑆𝐸 =  𝑀𝑑𝐴𝐸/𝑀𝐴𝐸𝑖𝑛
∗  

- higher penalty on time series 

for which naïve benchmark 

has good in-sample 

performance 

 scaled 

 no restrictions regarding 

time series values 

 

Table 2.1: Main performance metrics in time series forecasting with advantages and disadvantages  

(* marks benchmark values; see text for details). 
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high metric values. Furthermore this type of metric have the disadvantage to put a higher penalty on 

positive errors 𝑦𝑡 − �̂�𝑡 than on negative errors (assuming the average of 𝑦𝑡 and �̂�𝑡 is the same); e.g. 

think of a forecast value of �̂�𝑡 = 2 for a real value of 𝑦𝑡 = 1 and vice versa resulting in percentage 

errors of 100 and 50 respectively. To tackle the latter problem the Symmetric Mean Absolute 

Percentage Error 𝑠𝑀𝐴𝑃𝐸 = 𝑚𝑒𝑎𝑛(200 ∗ |𝑦𝑡 − �̂�𝑡| (𝑦𝑡 + �̂�𝑡)⁄ ) was invented together with its robust 

counterpart sMdAPE using the median. Now the measure is symmetric regarding positive and 

negative errors but not regarding high and low forecasts. E.g. a forecast of  �̂�𝑡 = 3 for a value 𝑦𝑡 = 2 

results in 𝑠𝑀𝐴𝑃𝐸 = 40 whereas �̂�𝑡 = 1 leads to 𝑠𝑀𝐴𝑃𝐸 = 66.6, putting a higher penalty on lower 

forecasts. This problem also resists the adaption of using absolute values in the denominator 

(𝑚𝑒𝑎𝑛(200 ∗ |𝑦𝑡 − �̂�𝑡| (|𝑦𝑡| + |�̂�𝑡|)⁄ )) to avoid negative sMAPE values due to negative forecasts.  

One further problem occurs when the range (maximum-minimum) of different series in the test fold is 

similar but the minima highly differ. Actually this pitfall is equal to the one regarding values near zero 

already mentioned above. For example, a time series ranging between 1001-1002 in the test fold (not 

uncommon for time series with a trend) produces a sMAPE of 𝑜(10−3) whereas a time series with a 

range of 1-2 results in 𝑜(1). This situation is also happening for the Tourism and the M3 competition 

data and even occurs less severe for the simulated Arimasim data. Again the NN5 series do not suffer 

from this problem as all series are on the same scale and have similar ranges.  

 

All above problems are circumvented by a different type of scaling utilized by metrics based on relative 

errors. Here each forecast error is scaled by its counterpart from a benchmark method usually the 

naive (taking last value) or snaive (seasonal naïve: taking last seasonal value) forecast. Unfortunately 

the Mean Relative Absolute Error 𝑀𝑅𝐴𝐸 = 𝑚𝑒𝑎𝑛(|𝑦𝑡 − �̂�𝑡| |𝑦𝑡 − �̂�𝑡
∗|⁄ ) (with �̂�𝑡

∗ denoting the forecast 

from the benchmark method) can be undefined in case of a perfect fit of the benchmark method 

leading to a denominator of zero. If this happens in the analysis of this thesis, the NA (not applicable) 

value is used as a replacement. Even though assuming an infinite metric value in this case and 

applying the robust version using the median MdRAE does only help when multi-horizon forecast are 

aggregated by this measure (and the naïve forecast does not perfectly fit the majority of horizons) or 

when summarizing over time series instead of forecast horizons (and the naïve forecast does not 

perfectly fit the majority of series). On the other hand, a nice feature of this metric is that one can get 

the information that the chosen method is x% better on average (using mean or median for averaging) 

than the naïve method which is a very helpful information for evaluating the benefit against the effort of 

the non-naïve method. 

 

A third alternative for scaling performance metrics avoiding all described disadvantages so far, was 

invented by Hyndman & Koehler (2006). The Mean Absolute Scaled Error  

𝑀𝐴𝑆𝐸 = 𝑚𝑒𝑎𝑛 (|𝑦𝑡 − �̂�𝑡| (
1

𝑇−1
∑ |𝑦𝑖 − 𝑦𝑖−1|𝑇

𝑖=2 )⁄ ) scales every error by the in-sample MAE (which is the 

mean of the 1-step-ahead in-sample errors) of the naïve forecast: 
1

𝑇−𝑚
∑ |𝑦𝑖 − 𝑦𝑖−1|𝑇

𝑖=𝑚+1 . The formula 

for the MASE can also be written as 𝑀𝐴𝑆𝐸 = 𝑀𝐴𝐸/𝑀𝐴𝐸𝑖𝑛
∗  with 𝑀𝐴𝐸𝑖𝑛

∗  denoting the in-sample MAE of 

the naïve benchmark. It is important to notice that the counterpart using the median instead of the 

mean is restricted to the nominator, i.e. 𝑀𝑑𝐴𝑆𝐸 = 𝑀𝑑𝐴𝐸/𝑀𝐴𝐸𝑖𝑛
∗ . The only disadvantage also popping 

up in the Tourism forecasting competition and commented on Hyndman (2015b), is that the “MASE 

can be very sensitive to a few series [i.e. the ones with a small 𝑀𝐴𝐸𝑖𝑛
∗ ], and to optimize MASE [in a 

competition] it is worth concentrating on these”.  

 

Somewhat between the scaled metrics based on relative errors and metrics based on scaled errors, 

which also preserves the nice comparison feature related to the naïve benchmark, is the Relative 

Mean Absolute Error 𝑅𝑒𝑙𝑀𝐴𝐸 = 𝑀𝐴𝐸/𝑀𝐴𝐸∗ (with 𝑀𝐴𝐸∗ denoting the already aggregated MAE of the 

benchmark method). Obviously one can use arbitrary performance metrics in the ratio in order to 

compare the desired measure with the benchmark value, resulting in RelRMSE, RelMAPE, etc.  
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Similar to this approach, as also comparing just the final metrics, are rankings. Here several (including 

naïve methods) algorithms are assigned ranks due to their performance (measured by any of the 

metrics shown in Table 2.1). The latter is highly used in the benchmark tests of this thesis as 

explained below.  

It is generally important to use different naïve benchmarks when conducting such comparisons. For 

the analyses of this thesis not only the seasonal naïve (snaive) is used but also two approaches to 

account for a possible trend by tsnaiveD and tsnaiveSTL. The first one is applying a seasonal 

differencing and assumes a random walk with drift for the differenced series; see Chapter 3.1.1 for an 

explanation of differencing and the random walk with drift model. The second one is doing the same 

but accounting for seasonality by a STL decomposition (cf. Chapter 3.3). In fact both models assume 

that the time series can be best forecasted by a linear trend + seasonality + random variation. The 

additional alternatives tsnaiveD_bc and tsnaiveSTL_bc apply an initial Box-Cox transformation (cf. 

Chapter 3.1.1 for explanations of Box-Cox transformations) to account also for increasing seasonality.  

 

In fact this last group of metrics (relative measures and rankings) is different from the former ones 

because of computing the comparison on already calculated performance metrics. But it makes the 

topic of time series performance metrics even more confusing as one always not only has to make 

clear for a benchmark study when and how (using mean or median) the aggregation over horizons is 

conducted in conjunction with the aggregation over different time series but also denote the point 

when different forecast algorithms are compared, e.g. by ranking, during this process.  

Actually it is just the additional aggregation over different horizons, together with the known 

phenomenon that performances can differ from horizon to horizon, which makes interpreting time 

series benchmarks more complicated than standard benchmarks! 

 

 

2.3.2 Performance Plots and Tables 

For the benchmark studies of this thesis only the robust versions of sAPE, RAE and ASE, i. e. 

sMdAPE, MdRAE and MdASE, are used as outliers can occur just by chance due to the sheer amount 

of time series. Just for the NN5 data, a final comparison with the results of other authors is done on 

the basis of sMAPE as this was the target metric in the competition. Already note that a direct 

quantitative comparison with the results of the Tourism competition (with MASE as the evaluation 

metric) is not possible as the test data was not available (see also Chapter 2.1). Also for M3 only a 

qualitative comparison with the competition results can be given partly due to the reduction to series 

comprising more than 120 time points in this thesis (see below).  

As an exception, the MAE is suitable for the simulation study in Chapter 4.5 as the predictions from 

different models are all comparable and do not contain outliers.  

 

The main shortage which prohibits a comparison with quantitative M3 results is that these are 

presented in Makridakis & Hibon (2000) just on an overall aggregated level (over all time series) even 

though forecastability according the different categories highly differs! This can be nicely illustrated by 

a lineplot showing for example how the MdRAE, aggregated over all series of a category, evolves by 

horizon. This is done in Figure 2.5 for a bunch of classical (explained in Chapter 3) and naïve models. 

Remarkably DEMOGRAPHIC and FINANCE tagged time series show a similar behavior regarding the 

forecast performance of the methods. Especially for the MACRO time series, the “ets” tagged models 

show an inferior performance. For these three categories a clear improvement to a seasonal naïve 

model (grey line, constant due to plotting the relative to snaive forecast error) results. But when 

comparing to the tsnaiveSTL based models the dominance disappears at least after half of a season 

(6 time points) indicating that the time series from these categories just consist of a trend + seasonality 
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+  random variation and can be best forecasted by a deseasonalized random walk with drift which is 

the forecast technique behind tsnaiveSTL. This fact makes any benchmarking of sophisticated models 

for these time series highly questionable! 

For the two remaining categories INDUSTRY and MICRO the situation is different, showing a better 

forecast performance than the naïve methods even though the classical models for the MICRO time 

series exhibit a very special shape, kind of alternating between better and worse than seasonal naïve 

forecasts emphasizing again the importance of distinguishing also these two categories. This 

alternating behavior can also be found for the Tourism competition data (not shown here), leaving the 

INDUSTRY data sets as the only interesting time series from the M3 competition that are eligible to 

reveal additional insights. 

Due to these findings any further comparison for M3 data is restricted to INDUSTRY tagged time 

series which is by chance also the category comprising most of the competition data sets. For reasons 

of completeness the results for DEMOGRAPHIC, FINANCE, MACRO and MICRO are compactly put 

into the Appendix. 

 

Figure 2.5: MdRAE by horizon for M3 competition time series grouped by category for some classical 

forecast models. 
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The dominant method for evaluating the overall performance between algorithms in this thesis is a 

Ranking based on the MdASE metric. The metric is calculated for every model according a special 

horizon range and subsequently a ranking of the models per time series is done. This ranking is then 

aggregated over time series and displayed by a boxplot which allows also a visual impression of the 

variability of the performance. The horizon range typically comprises h=1 (1-step-ahead forecast), at 

least the first season and the largest range which is usually the competition objective, nicely 

summarizing the most informative time areas, even though alternatively this analysis can be 

conducted for every season (or half season) individually for instance. For example, for the NN5 data 

the latter would exhibit the performance boost in the 3
rd

 week due to Easter effects for the models 

using covariates.  

Figure 2.6 shows an example, plotting the MdASE for some naïve methods together with some 

classical approaches for the Tourism data. As the top performing models are often close, an additional 

tabulation of the mean ranks is usually given, underlining the best metric per horizon. Additionally 

shading the TopX% helps in identifying the runner-ups (see Table 2.2).  

 

 

Figure 2.6: Ranked MdASE by horizon range of some naïve and classical forecast models for 

Tourism competition data. 

 

Method

Tourism

 h=1-1

Tourism

 h=1-6

Tourism

 h=1-12

Tourism

 h=1-24 Method

Tourism

 h=1-1

Tourism

 h=1-6

Tourism

 h=1-12

Tourism

 h=1-24

snaive 9.35 8.54 9.48 9.82 arimaSTL 8.84 10.41 10.18 10.04

tsnaiveD 9.27 7.94 8.24 8.27 arimaSTL_bc 8.76 8.11 7.84 8.00

tsnaiveD_bc 9.79 8.49 8.64 8.98 ets 9.01 8.50 8.42 8.46

tsnaiveSTL 9.96 11.68 11.85 11.46 ets_bc 9.25 9.20 9.10 8.92

tsnaiveSTL_bc 9.66 9.36 10.09 10.10 etsd 9.07 8.42 8.58 8.58

arima 8.05 9.03 8.56 8.68 etsd_bc 9.35 9.66 9.45 9.16

arima_bc 8.42 8.57 8.49 8.58 etsSTL 9.14 11.01 10.44 10.29

arimaD 7.76 7.85 7.68 7.48 etsSTL_bc 9.19 8.79 8.35 8.41

arimaD_bc 8.14 7.44 7.62 7.77  

 

Table 2.2: Average Ranked MdASE corresponding to dots in Figure 2.6. Best model metric per 

horizon range (with vertical split just for visual convenience) is bold & underlined and shading denote 

Top20% accordingly. 
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When using a different robust metric, the results can change, but usually not very extreme on a 

qualitative scale. This also holds when switching to unrobust measures as the ranking per time series 

kind of robustifies the performance metrics again. Obviously the situation changes when just reporting 

e.g. the unrobust MASE averaged over all time series without the intermediate ranking! Something 

similar happens for the NN5 benchmark using the 4
th
 best method (of 226) according ranked MdASE 

to outperform all competition competitors when using the competition objective metric, i.e. sMAPE 

(see Chapter 5.3). 

 

The boxplots in Figure 2.6 exhibit a special shape, i.e. a left skewed form for methods better than the 

average and right skewed for the other half. This is due to the fact that also the best overall method is 

also under the worst for some benchmark time series and vice versa which can already be seen by 

the whiskers comprising the whole range of ranks. This circumstance further indicates that also a 

paired comparison of performance metrics will not reveal more information which theoretically can 

happen as one deals with paired measures. Actually it might happen that even the boxplots of two 

methods highly overlap their paired metric difference shows a more distinct behavior. To evaluate this 

possibility one can plot the paired metric differences like in Figure 2.7 showing results for some 

selected models (for explanations of these models see the forthcoming chapters). More precise, these 

models are the seasonal naïve (snaive); the best model according MdASE and the whole test horizon 

h=1-56 named svmpolySD_RL; the according worst model gp and two medium performant 

approaches rfSD and gamboostSTL_bc_RL. Actually this plot exhibits some typical behavior that often 

occurs in time series forecasting benchmarks. First of all, it can be seen that the snaive beats any of 

the other models (including the winner svmpolySD_RL) at all horizon ranges for some time series. 

More striking is the fact that this holds mostly also for the worst model gp. Furthermore it can be seen 

that for the 1-step ahead forecast the gamboostSTL_bc_RL is better than the overall winner 

svmpolySD_RL but drastically loosing when compared on the whole horizon range h=1-56. This gets 

more remarkable when comparing the gamboostSTL_bc_RL with the rfSD model that improves its 

forecast performance the wider the horizon range is and therefore showing an opposite behavior 

regarding horizon related change.  

 

Figure 2.7: Differences of MdASE (“MdASE of left model – MdASE of right model”) by horizon range 

for some selected models applied on NN5 competition data. 
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It must be added that above demonstrated “performance overlap” is even worse for the Tourism and 

M3 competition due to the models being less differentiating regarding the forecast performance and as 

well because of dealing with more time series compared to NN5! 

 

Together with above findings regarding differing rankings for different metrics, the no-free-lunch 

theorem stating that there is no best predictive model for all data must be enlarged when dealing with 

time series, indicating a dependency of the question for the best algorithm not only on the used metric 

but also on the horizon!  

This has severe implications on the practical application of forecast models as the user must carefully 

define the objective regarding the desired horizon range. Also the performance metric should be 

sensibly chosen taking the results from Chapter 2.3.1 into account and simultaneously decide whether 

a robust or outlier-sensitive performance metric better suits the objective.  
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3 Classical Time Series Models 

3.1 ARIMA and Friends 

In the following the classical ARIMA model is explained together with extensions. A very handy 

introduction can be found in Ruppert (2010). Shumway & Stoffer (2011), on the other hand, is a more 

technical text book. As always, the book from Hyndman & Athanasopoulos (2014) has a nice 

introduction for the practitioner. Furthermore the blog entry “The ARIMAX model muddle” from 

Hyndman (2015b) is very helpful. 

 

3.1.1 ARIMA 

The classical ARIMA (autoregressive integrated moving average) approach tries to model a time 

series by the autocorrelation due to the dependence of 𝑦𝑡 on former values. For example, an 

autoregressive process of order p, named AR(p), models the current mean-centered target value by 

(auto-)regressing it on its own past values 𝑦𝑡 = 𝜙1𝑦𝑡−1 + ⋯ + 𝜙𝑝𝑦𝑡−𝑝 + 𝑤𝑡 with 𝑤𝑡 denoting a white 

noise process, i.e. a family of uncorrelated, not necessarily independent (!), random variables with 

constant covariance and expected value equal zero. Mostly a Gaussian distribution is assumed which 

in turn results in i.i.d. white noise. Using the autoregressive operator 𝜙(𝐵) = 1 − 𝜙1𝐵 − ⋯ − 𝜙𝑝𝐵𝑝, with 

B denoting the backshift or lag operator (𝐵𝑝𝑦𝑡 = 𝐵𝑝−1𝑦𝑡−1 = ⋯ = 𝐵𝑦𝑡−𝑝+1 = 𝑦𝑡−𝑝), above model 

equation can be written more compact by 𝜙(𝐵)𝑦𝑡 = 𝑤𝑡 . 

An important concept for ARIMA modeling is weakly stationarity, which means that 𝐸(𝑦𝑡) = 𝜇𝑡 = 𝑐𝑜𝑛𝑠𝑡. 

and 𝛾(𝑡, 𝑡′) = 𝑐𝑜𝑣(𝑦𝑡, 𝑦𝑡′) = 𝛾(|𝑡 − 𝑡′|), i.e. the autocovariance is only dependent on the time difference 

|𝑡 − 𝑡′|, including constant variance assumption (𝑡 == 𝑡′). This requirement not only leads to some 

constraints for the possible coefficients 𝜙1..𝑝, e.g. |𝜙1| < 1 in case of an AR(1) process, but more 

importantly, is at least needed to estimate the parameters 𝜙1..𝑝 from just one time series (as otherwise 

not enough data is left for estimation). 

 

 

ACF and PACF 

An important diagnostic tool for ARIMA modeling is the sample PACF (partial autocorrelation function) 

plot showing the direct influence, or correlation adjusted on the influence of intermediate points, of 

𝑦𝑡−ℎ on 𝑦𝑡. Figure 3.1 shows an example of this plot together with the sample ACF (autocorrelation 

function) plot denoting the unadjusted influence for a simulated AR(2) process. One can see that the 

PACF needles cut off after p=2 lags (apart from non-significant values) hinting to the correct number of 

coefficients, whereas in the ACF the coefficients die out slowly.  

Apart from applying these plots to stationary data, they can also be used determining the relationship 

with lagged values in other modeling approaches, e.g. detecting seasonality by periodic ACF spikes or 

a significant PACF spike at the first seasonal lag. But one always has to keep in mind that these plots 

just visualize the linear correlation of time points and can therefore hide nonlinear relationships which 

would pop up when plotting the time point values against their lagged counterparts.   

 

Sometimes data shows the opposite behavior compared to Figure 3.1: An ACF plot with just one or 

two significant lags and a PACF plot with out-dying lags. This cannot be modeled by an AR process as 

such a process always results in having some correlation to all past values. In order to model this 

parsimoniously, i.e. without estimating lots of (or infinite) AR-coefficients, a MA(q) (moving average) 

process is assumed where the current mean-centered value of the time series is modeled as a moving 

average of q+1 past white noise realizations: 𝑦𝑡 =  𝑤𝑡 + 𝜃1𝑤𝑡−1 + ⋯ + 𝜃𝑞𝑤𝑡−𝑞. One can also say that 
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the current value is a weighted average of past forecast errors as the forecast of white noise is always 

zero. Similar to the AR case this can be written in a more compact fourmulation now using a (moving 

average) operator 𝜃(𝐵) = 1 + 𝜃1𝐵 + ⋯ + 𝜃𝑞𝐵𝑞 resulting in: 𝑦𝑡 =  𝜃(𝐵)𝑤𝑡. 

 

Assuming a MA process for the AR white noise part, a combined ARMA(p,q) process results in the 

compact notation: 

 

𝜙(𝐵)𝑦𝑡 =  𝜃(𝐵)𝑤𝑡    (3.1) 

 

Which model, i.e. how many p- and q-coefficient, fit an empirical time series can in theory (!) be 

determined by the ACF and PACF plots as the relations shown in Table 3.1 hold, which also hint to 

the interesting and theoretical important property that an AR(p) process can always be written as a 

MA(∞) process and vice versa, i.e. MA(q) as AR(∞). 

 

 

Trend and Seasonality 

Usually a time series exhibits trend and seasonality which invalidates the stationarity assumption, in 

fact the 𝜇𝑡 = 𝑐𝑜𝑛𝑠𝑡 requirement. With classical ARIMA modeling this is tackled by differencing (or 

“integrating”) the target value. For example, first differencing ∆𝑦𝑡 = (1 − 𝐵)𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−1 removes a 

linear trend and second differencing ∆2𝑦𝑡 = (1 − 𝐵)2𝑦𝑡 = 𝑦𝑡 − 2𝑦𝑡−1 + 𝑦𝑡−2 a quadratic trend. Applying 

a seasonal differencing ∆𝑚𝑦𝑡 = (1 − 𝐵𝑚)𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−𝑚 removes the seasonal variation. Theoretically 

it does not make a difference which differencing is applied first on a time series with trend and season 

but Hyndman & Athanasopoulos (2014) suggest to do the seasonal differencing first as this often 

makes additional non-seasonal differencing unnecessary in practice. Furthermore it is common 

experience that it is almost never required to apply differencing of order greater than 2. 

 

Figure 3.1: AR(2) (𝜙1 = 0.5, 𝜙2 = 0.3) simulated time series together with sample ACF and PACF plot. 

The method-of-moments estimation of the “last” coefficient (here �̂�2) can always be directly read from 

the PACF plot. 
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Alternatively the time series can be detrended and deseasonalized, e.g. by standard STL 

decomposition (see Chapter 3.2). Which approach is more suitable depends on the time series. But, 

e.g. a strict random walk 𝑦𝑡 = 𝑦𝑡−1 + 𝑤𝑡 , which is non-stationary due to the increasing variance by 

time, can only be transformed to a stationary time series (i.e. white noise in this case) by first 

differencing; the same holds for a so-called random walk with drift: 𝑦𝑡 = 𝑐 + 𝑦𝑡−1 + 𝑤𝑡 . The latter 

relationship is sometimes referred to as “stochastic” trend in contrast to a “deterministic” trend 

(𝑦𝑡 = 𝑐 + 𝑏𝑡) and is the reason for the so-called spurious regression phenomenon that occurs when 

regressing a random walk on another random walk, which can result in significant regression 

coefficients (see Cowpertwait & Metcalfe (2009) for an example). 

 

If one now additionally assumes a seasonal correlation similar to the one for single time points, an 

integrated seasonal ARMA or ARIMA(p,d,q)(P,D,Q)m results, with d and D denoting the differencing 

grade for non-seasonal and seasonal differencing respectively. Further p&q and P&Q represent the 

non-seasonal and seasonal autoregressive and moving average coefficients with index m defining the 

period of the season (e.g. m=12 for monthly series). With the corresponding seasonal autoregressive 

and moving average operators Φ(𝐵𝑠) and Θ(𝐵𝑠) this model can be written in the compact form: 

   

𝜙(𝐵)𝛷(𝐵𝑚)∆𝑑∆𝑚
𝐷 𝑦𝑡 =  𝜃(𝐵)𝛩(𝐵𝑚)𝑤𝑡    (3.2) 

 

 

 

Box-Cox Transformations  

Sometimes a time series exhibit some nonlinear shape, e.g. an increasing seasonality. Such a 

behavior can be accounted for by an initial Box-Cox transformation where 𝜆 can be determined by 

maximizing the profile log likelihood for a linear model �̃�𝑡 = 𝛽0 + 𝛽1𝑡 (enlarged by seasonal dummies 

for seasonal data), treating (𝛽0, 𝛽1) as nuisance parameter and assuming the following transformation: 

 

�̃�𝑡 = {
(𝑦𝑡

𝜆 − 1) 𝜆         𝜆 ≠ 0⁄

log 𝑦𝑡                     𝜆 = 0
   (3.3) 

 

This transformation is has also some general variance stabilizing capabilities and therefore helps to 

enforce stationarity. Furthermore it supports linearity in the final model. See Ruppert (2010) for a good 

reference regarding this transformation class. 

In fact, the default Box-Cox detection method of the forecast package which is also used in the 

benchmark experiments of this thesis, utilizes the alternative method of Guerrero which additionally 

suggests restricting 𝜆 to the interval [−1;  2] (Guerrero (1993)). 

 AR(p) MA(q) ARMA(p,q) 

ACF dies out cuts off after q lags dies out 

PACF cuts off after p lags dies out dies out 

 

Table 3.1: Theoretical behavior of significant coefficients in ACF and PACF plots for ARMA 

processes. 
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Notice that apart from benchmark situations where lots of time series should be model automatically, 

this transformation should be applied also under interpretability considerations, i.e. choosing a 𝜆 

parameter which is not exactly equal the optimum might make more sense, e.g. using a log 

transformation if 𝜆 is very small or a square root transformation for 𝜆 near 0.5.  

 

 

Box-Jenkins-Approach 

ARIMA modeling for forecasting consists of the following 4 main steps (“Box-Jenkins-Approach”):  

1. Identify the orders (p,d,q) and (P,D,Q). 2. Estimate parameters. 3. Conduct diagnostic steps. In the 

first step the differencing must be evaluated at the beginning by utilizing ACF and PACF plots on 

original and differenced series and applying formal, so called unit root tests, for stationarity testing. 

These tests are usually the Augmented-Dickey-Fuller and the KPSS test, that differ mainly in the null 

hypothesis which claims stationarity for the KPSS and non-stationarity for the Augmented-Dickey-

Fuller test. For seasonal differencing the default test (Osborn-Chui-Smith-Birchenhall test) is assuming 

non-stationary as the Null hypothesis, see also the forecast R-package documentation (Hyndman 

(2015a)). The range of possible autoregressive and moving average orders can also be read from the 

diagnostic plots and are typically final-determined by AIC based (AIC or AICC) comparison of fitted 

models. It is important to notice that AIC based values can only be compared for models with same 

differencing order. For the resulting stationary process the estimation of parameters in the second step 

can be done by a method-of-moments approach, called “Yule-Walker” in the time series context, or by 

ML, which is equal to least squares estimation (assuming Gaussian white noise). The modeling is 

finished if the residuals result in uncorrelated white noise which can be visually checked with ACF 

plots again (and the corresponding confidence intervals) or more formally tested with a Portmanteau 

(also named Lijung-Box) test. All these steps apart from the residual checks are automatically 

conducted when using the auto.arima function of the forecast R-package (Hyndman (2015a)), which is 

 

 

Figure 3.2: Performance per horizon of standard and seasonal hard-differenced ARIMA models with 

and without initial Box-Cox transformation for NN5 time series. Notice that in this line plots the coloring 

scheme used for the ranking boxplots is not utilized as this would make the lines more indistinct. This 

practice is kept in similar plots that follow. 
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used in all benchmarks presented in this thesis. Possible slight modifications like alternative 

stationarity tests can be found in the documentation of the R-package. Furthermore whether an initial 

Box-Cox transformation is required must be derived in advance.   

Figure 3.2 shows the results of applying the auto.arima function with and without (automatic) Box-Cox 

transformation, as described in above subsection, coded as arima_bc and arima respectively. 

Additionally the seasonal differencing is forced for the corresponding arimaD_bc and arimaD models. 

One can see that the Box-Cox transformation does not have a big influence on the prediction 

performance in the long run which might be expected as the time series do not exhibit high nonlinear 

behavior. But the strongly reduced performance (which is actually mostly worse than a seasonal naïve 

benchmark) when letting auto.arima determine the seasonal differencing, already occurring for the 1-

step-ahead forecast, is striking and indicates that the default test (with H0 denoting seasonal non-

stationarity) is too conservative for the data situation which might be due to the high number of 

observations per time series! Even though less severe, this behavior also occurs for the Tourism and 

M3-INDUSTRY data suggesting to keep hard-coded seasonal differencing as possible advantageous 

model alternative in mind! 

 

 

Forecasting 

The final forecasting with ARMA models is solely recursive and minimizes mean squared error (MSE). 

Basically it results in a straight forward handling by resolving equation (3.1) for 𝑦𝑡, insert known former 

values, replace future observations by their forecast and use zero for future errors but successive 

residuals for past errors 𝑤𝑡. When assuming Gaussian white noise for 𝑤𝑡 also the prediction intervals 

can be directly calculated from (3.1). Both lead to the typical and somewhat at first sight surprising 

ARMA forecast which reverts to the mean value surrounded by intervals converging to a constant 

width, equal to the marginal variance of the process 𝛾(0) (e.g. 𝜎2 (1 − 𝜙1
2)⁄  for AR(1)), see left plot of  

Figure 3.3. This scheme changes to a width-increasing interval when additional non-seasonal and 

seasonal differencing has been applied (see right plot in Figure 3.3). Obviously also a seasonal 

component changes the forecast shape from a constant mean to one looking “less naïve”.  

It is important to notice that in contrast to classical regression the uncertainty resulting from estimation 

of the model parameters, i.e. the ARIMA coefficients, is not recognized as it is assumed that their 

 

Figure 3.3: Forecast of simulated ARIMA time series with 0.95 prediction intervals. 
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influence is negligible compared to the error model generating process, resulting in prediction intervals 

which are usually too liberal due to this neglect.  

 

 

3.1.2 ARIMAX tagged models 

If one also wants to account for exogenous covariate effects several model extensions exist, which are 

explained in the following.   

 

Regression with ARIMA errors 

As the name already says, the i.i.d. error in the standard linear model is replaced by a (possibly 

differenced) ARMA process, which, by using (3.1), results in the following model equation: 

 

𝑧𝑡 =  𝒙𝒕
′𝜷 +  𝑦𝑡 = 𝒙𝒕

′𝜷 +  
𝜃(𝐵)𝛩(𝐵𝑠)

𝜙(𝐵)𝛷(𝐵𝑠)
𝑤𝑡    (3.4) 

 

It is important to keep in mind that if an initial differencing is applied on the error process 𝑦𝑡, this must 

also be done for 𝒙𝒕 and 𝑧𝑡. More precise, all predictors must be stationary in such a model.  

The division by an operator in equation (3.4) is a short notation of applying the inverse operator, which 

can be derived by treating the backshift operator B as a complex number, see Shumway & Stoffer 

(2011). For example, the inverse of the autoregressive operator of order 1: 𝜙(𝐵) = 1 − 𝜙1𝐵 can be 

written as 𝜙(𝐵)−1 = 1 + 𝜙1𝐵 + 𝜙1
2𝐵2 + ⋯ which in fact is a moving average operator of infinite order 

and reflects the already stated fact that an AR(p) can always be converted to a MA(∞) process and 

vice versa.  

It is important to recognize that prediction intervals generated by a forecast of an auto.arima R object 

also do not account for the uncertainty of estimating the 𝛽 coefficients! Another special issue of this 

 

Figure 3.4: Performance per horizon of seasonal hard-differenced ARIMA models with and without 

exogenous covariate effects for NN5 time series. 
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modeling function is related to estimation which is not fully ML (or REML, cf. with below explanations) 

based but iterating between standard linear regression model estimation and ARMA coefficient 

estimation. 

This model is used for the NN5 benchmark when accounting for additional covariates. Figure 3.4 

illustrates that the model comprising covariate effects can be even worse than without. Actually this 

not very surprising in this case as only a linear predictor with just main effects of the covariates listed 

in Chapter 2.1 (of course without the seasonal dummies and lag covariates whose influence is 

modeled directly by the ARIMA model) is used and, as noted in Chapter 2.1, main influences are 

actually interaction effects. But it is somewhat unexpected that this results in a few but extreme 

performance reduction peaks even not following any pattern. 

 

 

ARIMAX 

In an ARIMAX model a standard ARIMA model for 𝑦𝑡 is enlarged by exogenous covariate effects 

through adding the linear predictor 𝒙𝒕
′𝜷  on the right side of the ARMA equation (3.1), resulting in (after 

resolving for  𝑦𝑡): 

 

𝑦𝑡 =  𝜷′
1

𝜙(𝐵)𝛷(𝐵𝑠)
 𝒙𝒕  +

𝜃(𝐵)𝛩(𝐵𝑠)

𝜙(𝐵)𝛷(𝐵𝑠)
𝑤𝑡 (3.5) 

 

For an AR(1) process this leads to mixing up the β-coefficients with exponentiations of the AR 

coefficients (due to the inverse operators) which makes the covariate effects hard to interpret in this 

approach. Even though this is not the primary task in forecasting, this model is not used in the 

benchmarks of this thesis, also due to the practical limitation that the R package for fitting ARIMAX 

models named vars (mostly intended to fit much more complicated multivariate time series) does not 

provide the same handy order selection as the auto.arima function from the forecast package.   

 

 

Transfer function modeling 

If one wants to use lagged covariate effects a transfer function model can be used. Here this lagging 

exogenous influence is modeled as an ARIMA covariate process and combined with an ordinary 

ARIMA error process to model the response 𝑦𝑡: 

 

𝑦𝑡 =  
𝜃𝑥(𝐵)𝛩𝑥(𝐵𝑠)

𝜙𝑥(𝐵)𝛷𝑥(𝐵𝑠)
 𝒙𝒕  +

𝜃(𝐵)𝛩(𝐵𝑠)

𝜙(𝐵)𝛷(𝐵𝑠)
𝑤𝑡  (3.6) 

 

Actually the regression with ARIMA errors (3.4) and the ARIMAX model (3.5) are special cases of this 

flexible approach which also allows for modelling decaying effects of covariates by applying the 

moving average operator on the covariate vector. Transfer functions models can be fit with the 

(confusingly named) arimax function of the TSA R-package. Again the non-existing automate order 

selection stopped it from being used in the benchmarks. 

 

 

Dynamic linear models 

These models are just standard multiple regression approaches using lagged target values as 

additional predictors. Notice that the term “dynamic linear model” is sometimes used for other models 
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by some authors. This model type is utilized indirectly by employing lagged target values in the 

glmboost model (see chapter 4.4) which therefore represents a boosted dynamic linear model.  

 

 

Further related approaches 

As the situation of correlated response in regression is not uncommon, there exist several other model 

and estimation approaches invented in different fields. For instance, when the parametrization of the 

error structure is assumed to be known, like e.g. for AR(1) errors, also a standard weighted regression 

can be applied (see e.g. Fahrmeir et al. (2013)).  

In the field of longitudinal analysis a REML (restricted maximum likelihood) estimation approach is 

used for this data situation, see e.g. Verbeke & Molenberghs (2008). Usually here only an AR(1) 

structure is assumed for the residual covariance not trapped by the random covariate effects (which 

represent the main modeling instrument for correlated responses in this area). For these classical 

regression approaches the correlation of the data is transferred to the error and usually seen as 

nuisance which has to be accounted for in order to conduct correct inferential analysis. This stands in 

contrast to ARIMA modeling where the correlation is the main feature to explain the behavior of the 

data points!  

Strongly related to these classical statistical approaches are Gaussian Process models, popular in the 

Machine Learning field (cf. Chapter 4.1).  

Apart from the latter, none these approaches is regarded further in this thesis as well as additional 

models popular in the financial sector eligible to care for time-based correlations of the process 

variance modeled with ARCH/GARCH (generalized autoregressive conditional heteroscedasticity) 

models. Here also volatility cluster can be realized by assuming an AR process for the conditional (on 

the past) process variance.  

Also multivariate autoregressive models (VAR models) are omitted as these treat target and “covariate 

time series” symmetrically which does not make sense as all covariates used in the investigated data 

sets are known in advance (which leads to so-called “ex post” forecasts) and usually exhibit a clear 

causal direction to the target. 

 

 

3.2 ETS (Exponential Smoothing) 

Even though based on a more heuristic approach, ETS models have a long history in time series 

forecasting due to a good performance shown in many classical forecasting situations. In contrast to 

the correlation based ARIMA modeling, ETS approaches concentrate more on modeling the trend and 

seasonality of the time series. Recently they are based into a strict statistical framework utilizing state 

space models (Hyndman et al. (2008)) increasing their acceptance and allow the application of a 

deeper statistical toolset, at least the creation of prediction intervals. 

In the simplest form, for a time series with no trend or seasonality, a future value is model as a 

weighted aggregation of past values with exponentially decaying, and therefore smoothing, weights for 

older observations: �̂�𝑡+1|𝑡 =  𝛼𝑦𝑡 + 𝛼(1 − 𝛼)𝑦𝑡−1 + 𝛼(1 − 𝛼)2𝑦𝑡−2 + 𝛼(1 − 𝛼)3𝑦𝑡−3 + ⋯ with 0 ≤ 𝛼 ≤ 1. 

This equation can also be derived by recursively calculating �̂�𝑡+1|𝑡 =  𝛼𝑦𝑡 + (1 − 𝛼)�̂�𝑡|𝑡−1, showing the 

heuristic recipe of creating a weighted average of the most recent value and its forecast. Alternatively, 

by inventing the level term 𝑙𝑡, the so-called component form results, comprising the forecast (3.7) and 

the smoothing (3.8) equation: 

 

�̂�𝑡+1|𝑡 = 𝑙𝑡 (3.7) 
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𝑙𝑡 =  𝛼𝑦𝑡 + (1 − 𝛼)𝑙𝑡−1 (3.8) 

 

Further using the forecast error 𝑒𝑡 = 𝑦𝑡 − 𝑙𝑡−1 = 𝑦𝑡 − �̂�𝑡|𝑡−1 and interpreting it as model noise 

𝜀𝑡  ~ 𝑁(0, 𝜎2), the following state space model can be assumed: 

 

𝑦𝑡 = 𝑙𝑡−1 + 𝜀𝑡 (3.9) 

𝑙𝑡 = 𝑙𝑡−1 + 𝛼𝜀𝑡 (3.10) 

 

Notice the switch 𝑡 + 1 →  𝑡 which is helpful for getting a more convenient model equation for 𝑦𝑡. Here 

equation (3.10) represents the so-called state equation of the latent variable 𝑙𝑡 that cannot be 

observed but which is characterizing the process behind. Equation (3.9) is named observation (or 

measurement) equation and represents the model equation for the (usually linear transformed) 

observable 𝑦𝑡. Apart from the simple form, the occurrence of the same error in both equations makes 

this state space model exceptional. 

 

This simple model can be enhanced by adding a trend resulting in Holt’s linear trend method. In order 

to derive the component form it helps to informally (!) interpret equation (3.8) as a weighted average of 

the estimation of the level 𝑙𝑡|𝑡 at time t  which is 𝑦𝑡 and at time t-1 𝑙𝑡|𝑡−1 which is 𝑙𝑡−1 as the level does 

not change over time: 𝑙𝑡 = 𝛼𝑙𝑡|𝑡 + (1 − 𝛼)𝑙𝑡|𝑡−1. If one now adds a trend to the forecast equation (3.7) 

(resulting in (3.11), see below), both the following level equation (3.12) and the additional trend 

equation (3.13) can be derived as such a heuristically justified weighted average of the recent value 

and its forecast: 

 

�̂�𝑡+ℎ|𝑡 = 𝑙𝑡 + ℎ𝑏𝑡 (3.11) 

𝑙𝑡 = 𝛼𝑙𝑡|𝑡 + (1 − 𝛼)𝑙𝑡|𝑡−1 = 𝛼𝑦𝑡 + (1 − 𝛼)(𝑙𝑡−1 + 𝑏𝑡−1) (3.12) 

𝑏𝑡 = 𝛽�̂�𝑡|𝑡 + (1 − 𝛽)�̂�𝑡|𝑡−1 = 𝛽(𝑙𝑡 − 𝑙𝑡−1) + (1 − 𝛽)𝑏𝑡−1 (3.13) 

 

Again the state space representation, now comprising two state equations, can be derived from this 

formulation easily by resolving: 

 

𝑦𝑡 = 𝑙𝑡−1 + 𝑏𝑡−1 + 𝜀𝑡 (3.14) 

𝑙𝑡 = 𝑙𝑡−1 + 𝑏𝑡−1 + 𝛼𝜀𝑡 (3.15) 

𝑏𝑡 = 𝑏𝑡−1 + �̃�𝜀𝑡 (3.16) 

 

with 𝛽 = 𝛼𝛽. 

Similarly a seasonal component can be invented to create a Holt-Winters seasonal model: 

 

�̂�𝑡+ℎ|𝑡 = 𝑙𝑡 + ℎ𝑏𝑡 + 𝑠𝑡−𝑚+ℎ (3.17) 

𝑙𝑡 = 𝛼𝑙𝑡|𝑡 + (1 − 𝛼)𝑙𝑡|𝑡−1 = 𝛼(𝑦𝑡 − 𝑠𝑡−𝑚) + (1 − 𝛼)(𝑙𝑡−1 + 𝑏𝑡−1) (3.18) 

𝑏𝑡 = 𝛽�̂�𝑡|𝑡 + (1 − 𝛽)�̂�𝑡|𝑡−1 = 𝛽(𝑙𝑡 − 𝑙𝑡−1) + (1 − 𝛽)𝑏𝑡−1 (3.19) 

𝑠𝑡 = 𝛾�̂�𝑡|𝑡 + (1 − 𝛾)�̂�𝑡|𝑡−1 = 𝛾(𝑦𝑡 − 𝑙𝑡) + (1 − 𝛾)𝑠𝑡−𝑚 (3.20) 



3 Classical Time Series Models 

 

30 

  

With the corresponding state space model: 

 

𝑦𝑡 = 𝑙𝑡−1 + 𝑏𝑡−1 + 𝑠𝑡−𝑚 + 𝜀𝑡 (3.21) 

𝑙𝑡 = 𝑙𝑡−1 + 𝑏𝑡−1 + 𝛼𝜀𝑡 (3.22) 

𝑏𝑡 = 𝑏𝑡−1 + �̃�𝜀𝑡 (3.23) 

𝑠𝑡 = 𝑠𝑡−𝑚 + �̃�𝜀𝑡 (3.24) 

 

and �̃� = 𝛾 (1 − 𝛼)⁄ . 

 

Further models result when assuming a multiplicative trend �̂�𝑡+ℎ|𝑡 = 𝑙𝑡𝑏𝑡
ℎ, a damped trend ℎ → 𝜌ℎ =

𝜌 + 𝜌2 + ⋯ + 𝜌ℎ or treating the seasonality as multiplicative component, e.g. together with a linear 

trend: �̂�𝑡+ℎ|𝑡 = (𝑙𝑡 + ℎ𝑏𝑡)𝑠𝑡−𝑚+ℎ. All combinations can be compactly written in the notation (T,S) with T 

and S denoting the trend and the season component respectively and taking the values N (none), A 

(additive), Ad (additive damped), M (multiplicative). For instance, (A,M) stands for a multiplicative Holt-

Winters method. The state space approach also allow for a multiplicative error resulting in 𝑦𝑡 =

𝑙𝑡−1(1 + 𝜀𝑡) for the observation equation and 𝑙𝑡 = 𝑙𝑡−1(1 + 𝛼𝜀𝑡) for the state equation. This enlarges 

above notation with an additional option of A (additive) and M (multiplicative) error term E in (E,T,S) 

and allows the notation of e.g. an Holt’s linear model with additive error by ETS(A,A,N). Notice the 

handy double usage of the abbreviation of ETS for “exponential smoothing” as well as for “error-trend-

season”. 

The state space model formulation now allows standard ML based estimation of the model 

parameters. Apart from some constraints for the parameters to allow for interpretation of weighted 

averages in the component model, also some specific ETS model can result in numerical difficulties 

and are therefore excluded from candidate models in the AIC based tuning process of the ets function 

in the forecast R-package, cf. Hyndman & Athanasopoulos (2014). Furthermore this function conducts 

all other modeling steps explained above in an automatic way pretty much like the before mentioned 

auto.arima for ARIMA models. For details see again the documentation in the forecast R-package 

(Hyndman (2015a)). 

One big disadvantage of ETS models represents the disability to include exogenous covariates! 

Although initially used by Hyndman et al. (2008), Hyndman clarified in his blog (Hyndman (2015b)) 

that “… they are never forecastable in the sense explained in Section 10.2 my 2008 book (forecasta-

bility is the ETS equivalent of invertibility in ARIMA models).” 

 

 

Forecasting 

Forecasting ETS models is straight forward by assuming an expectation of 0 for the error term and 

applying the state space formulas recursively and specify initial values for e.g. 𝑙0, 𝑏0 and 𝑠0. For some 

models also prediction intervals can be exactly computed. Due to the strict statistical model assumed 

also parametric and non-parametric bootstrap approaches can always be generated. 

 

 

Relationships to ARIMA 

There is a strong relationship between ETS and ARIMA models. E.g. all linear ETS models, i.e. with 

additive components, can be equivalently written as ARIMA processes. Though, this does not hold for 

the multiplicative ETS models. Also many ARIMA models do not have an ETS counterpart. See 

Hyndman & Athanasopoulos (2014) for some corresponding examples. 
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Related approaches 

There are two more interesting models closely related to the ETS approach. The TBATS model (De 

Livera et al. (2011)), implemented under the same name in the forecast R-package, is an ETS method 

handling complex seasonal patterns and allows automatic selection of Box-Cox transformation, 

seasonal and trend components together with possible ARMA errors. 

The other one is Theta which showed superior behavior in the M3 competition. Actually Hyndman & 

Billah (2003) proved that Theta it is just simple exponential smoothing with an additive trend having 

special slope value.  

 

 

A first sight on the performance of these methods compared to a standard automatically determined 

ETS model with and without Box-Cox transformation (identifiable by the suffix bc) is given in Figure 3.5 

for the INDUSTRY data of the M3 benchmarks for which ETS models are under the best in an overall 

comparison (cf. Chapter 5.1). Additionally a damped ETS model (etsd) is added to the ETS variants 

used in all forthcoming benchmarks as “Methods that include a damped trend have proven to be very 

successful and are arguably the most popular individual methods when forecasts are required 

automatically for many series“ (Hyndman & Athanasopoulos (2014)), especially for longer forecast 

horizons. It can be seen that there is no big difference regarding the “unrestricted” ETS models ets 

and ets_bc and the damped variant etsd and etsd_bc. But even though more flexible, tbats shows 

inferior performance. Even more worse are the results for thetaf exhibiting a bad performance 

beginning already at the 1-step-ahead prediction. As will be shown in Chapter 3.5 the latter situation 

also occurs for the other competition time series! Especially for the M3-INDUSTRY data this result is 

somewhat surprising as the Theta method was one of the best methods in the M3 competition 

(Makridakis & Hibon (2000)) and might indicate that the thetaf implementation of the forecast R-

package differs from the one used in the official competition.   

 

Figure 3.5: Performance per horizon of ETS models for M3-INDUSTRY time series. 
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3.3 Combinations with STL Decomposition 

Both ARIMA and ETS can be combined with a deseasonalizing step, which in turn means that the 

seasonality is not accounted for by differencing in an ARIMA model or a seasonal ETS component. In 

such a case one hopes to get a better seasonality fit than by these embedded approaches. Usually 

the deseasonalizing is part of a time series decomposition in trend or trend-cycle component (with 

cycles denoting patterns not occurring repeatedly by a fixed time frame like seasonal components and 

which are therefore stationary!), seasonal component and remainder.  

Easy-to-use but also somewhat imprecise approaches use combinations of moving-average 

smoothers for the decomposition. In the econometrics field the sophisticated X-12-ARIMA method is 

popular (Ladiray (2001)). 

A very versatile method is represented by STL (Seasonal and Trend decomposition using Loess, 

Cleveland et al. (1990)) even though a multiplicative decomposition must be tackled with an initial 

Box-Cox transformation. This method loops several times through the data for repeated detrending 

and deseasonalizing utilizing eigenvalue and frequency response analyses and of course, as the 

name states, loess (locally weighted regression, see Fahrmeir et al. (2013) for instance) based 

 

Figure 3.6: Repeated STL decomposition of averaged (over all series) NN5 time series. 
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smoothing. It further provides robustification features and allows also changing seasonality (cf. 

Cleveland et al. (1990)). 

Figure 3.6 shows the decomposition for a time series build from the average of all NN5 data sets. An 

initial decomposition using a period of 7 (plot combination at the top of Figure 3.6) nicely shows the 

weekly seasonality and the trend comprising yearly Christmas effect (2 big peaks). Furthermore the 

second monthly (or monthday) seasonality due to increased withdrawals at the end of each month can 

be guessed due to the tiny regularly occurring peaks in the trend component. Therefore a subsequent 

STL decomposition can be applied. One might use a period of 30.5 to catch this, allowing a slight 

imprecision for February and for August, and feels satisfied with the nice shaped seasonal component 

shown on the lower left side in Figure 3.6. But it is very important to recognize the size of the seasonal 

effect compared to the original signal. With a range of approximately 0.6 this definitely does not catch 

the monthday effect which can be roughly estimated by 3 regarding the little peaks in the trend plot of 

the initial decomposition. The lower right plot shows that this seasonality can be better modeled using 

a period of 61. 

 

Basically a combination of STL decomposition and forecasting model let the STL deseasonalize the 

data and transfers just the trend plus remainder to the forecasting method. The deseasoning has to be 

rewind after the forecasting step by adding the most recent seasonal pattern of the training fold which 

represents a naïve approach for this component.  

 

Figure 3.7:  Ranked MdASE by horizon range of some classical forecast models for NN5 competition 

data. 

 

Method

Atm

 h=1-1

Atm

 h=1-7

Atm

 h=1-28

Atm

 h=1-56 Method

Atm

 h=1-1

Atm

 h=1-7

Atm

 h=1-28

Atm

 h=1-56

arima 8.10 8.06 8.97 9.87 ets 7.54 6.47 6.84 6.59

arima_bc 8.08 8.26 9.40 10.32 ets_bc 6.87 7.07 6.56 6.88

arimaD 7.06 5.60 4.93 4.79 etsd 6.54 6.49 6.15 5.82

arimaD_bc 5.91 5.86 5.20 5.36 etsd_bc 6.23 7.25 6.29 6.58

arimaSTL 5.32 5.50 5.45 5.01 etsSTL 6.85 6.16 5.63 5.40

arimaSTL_bc 4.44 5.45 5.99 5.43 etsSTL_bc 5.05 5.82 6.59 5.94  

 

Table 3.2: Average Ranked MdASE corresponding to dots in Figure 3.7. Best model metric per 

horizon range (with vertical split just for visual convenience) is bold & underlined and shading denote 

Top20% accordingly. 
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Figure 3.7 and Table 3.2 compare the performance of an initial deseasoning step by STL 

decomposition for ARIMA and ETS models (with and without Box-Cox transformation) applied on the 

NN5 time series with some “standard” variants invented in previous chapters.  

It seems that some improvement can be achieved by STL up to half-season horizon range especially 

when combined with a Box-Cox transformation. Actually for the 1-step-ahead prediction the 

arimaSTL_bc is clearly the best method! But the STL advantage mostly disappears in the long run and 

the Box-Cox transformation is then contra productive especially for the etsSTL model.  

On the other hand, for the Tourism data (cf. Figure 3.13 in Chapter 3) the Box-Cox transformation 

seems to be inevitable to get a satisfying performance when using STL already for a half-season 

timeframe up to the whole competition horizon range, which might be due to some Tourism time series 

with increased seasonality! But for the ARIMA model class a hard-coded differencing to account for 

seasonality represents a better approach for this data as already discussed in Chapter 3.1.1 (and can 

be seen in Figure 3.13 as well). 

Furthermore, for the M3-INDUSTRY data the arimaSTL is ending up as the best classical model (apart 

from ensembling approaches introduced in Chapter 3.4) in the long run (cf. Chapter 3.5).  

 

Finally two different applications for this easy-to-use decomposition should already be mentioned: As 

the tree-based machine learning algorithms (cf. Chapter 4.5) cannot model a (future) trend, an initial 

STL decomposition is used to extract the trend first and leave the rest, i.e. seasonal and remainder 

component, for the algorithm to be forecasted. The trend is then separately fitted with an ETS model 

and added in the end again to rewind the detrending. Notice that here the decomposition is used for 

detrending with the trend being forecasted “externally” in contrast to above application that needs the 

decomposition for deseasoning and predicting the seasonal influence by a naïve forecast. 

Furthermore, the STL is inevitable to remove a trend or increased seasonality before creating 

bootstrap samples with the moving block bootstrap approach as explained in the following chapter.  

 

 

3.4 Bagging Approaches for Classical Time Series Models 

Bagging (Bootstrap aggregation) is a common approach to reduce the variance and therefore MSE 

(mean squared error) of a prediction model even though the bias in increased due to fewer 

observations used for estimation. As for time series the target values are correlated, it is not possible 

to randomly select the bootstrap sample which would destroy the data dependency structure. Actually 

this fact is only crucial for forecast models that need the “original” order of data points like it is for 

ARIMA and ETS model. But for the Machine Learning models (apart from Recurrent Neural Nets, cf. 

Chapter 4.1) explained in Chapter 4 that just need and use lagged target values as standard 

covariates, bootstrapping can be applied as usual (random sampling with replacement)! Therefore the 

following explanations are just important for the classical forecasting approaches! 

 

The main idea behind so-called block bootstrap methods is to preserve the dependence structure of 

the target (random) variable at short distances. E.g., with the moving block bootstrap (MBB) for a time 

series of length 𝑇, 𝑁 = 𝑇 − 𝑙 + 1 overlapping blocks of length 𝑙 are defined ℬ𝑘=1..𝑁 = (𝑦𝑘, … , 𝑦𝑘+𝑙−1) 

from which 𝑇 𝑙⁄  (assuming l divides T  for simplicity) blocks are drawn with replacement and appended 

to form one bootstrap sample. Typical sizes for 𝑙 are 𝑙 ≈ 𝑇1/3 (cf. Kreiss & Lahiri (2012)).  

In order to prevent from the possible structural breaks resulting from the overlap, a non-overlapping 

block bootstrap (NBB) can be used which creates 𝑁 = 𝑇 𝑙⁄  blocks  ℬ𝑘=1..𝑁 = (𝑦(𝑘−1)𝑙+1, … , 𝑦𝑘𝑙). But 
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Kreiss & Lahiri (2012) state that “the NBB estimators typically have higher MSEs at any block size 𝑙,  

compared to their MBB counterparts”. 

For seasonal time series it makes sense to use multiples of the period as block length, in line with the 

amount of lagged influence. This is done for the benchmarks using MBB with block lengths comprising 

2 seasons with a slight adjustment: When putting the blocks together for one of the b bootstrap 

samples, 𝑁 = ⌊𝑇 𝑙⁄ ⌋ + 2 blocks are appended and a random number, less than the seasonal period, of 

observations are discarded from the beginning. The resulting time series is further trimmed to the 

length of the original series. This strategy, taken over from Bergmeir et al. (2014), assures that the 

bootstrap samples do not necessarily begin or end on a seasonal boundary. Furthermore, due to a 

possible trend or increased seasonality this whole approach must be applied on the remainder of a 

STL decomposition after applying a BoxCox-transformation! Clearly both preprocessing steps are 

rewound after sampling in order to get a bootstrapped version of the original time series. The need for 

this additional processing exhibits a main disadvantage of this approach compared to the maximum 

entropy bootstrap explained below! Figure 3.8 shows examples for time series from the Tourism data 

with increasing seasonality and from the simulated ARIMA(1,1,1) data. 

Several additional variations for the block bootstrap exist like the stationary bootstrap (Politis & Roman 

(1994)) using a random block length drawn from a Geometric distribution with expected value 𝜇 = 𝑙 

remarkably leading to the desirable property of stationarity for the whole boostrapped time series. 

 

Figure 3.8: Two MBB samples for one Tourism time series (top row) and one Arimasim times series 

(bottom row). 
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Though, this approach is disregarded for the benchmarks due to the reasons already mentioned in 

Chapter 1.2. Further variants, shortly described in Kreiss & Lahiri (2012), are also ignored following 

Bergmeir et al. (2014) who did not receive any substantial advantages by these other procedures 

when bagging ETS methods. 

A parametric bagging approach is represented by the sieve bootstrap which samples from the 

residuals of an AR model. Actually this strategy presumes that the data generating process is in fact 

following the assumed autoregressive process which seems too restrictive. In fact, Cordeiro & Neves 

(2009) are using this approach with just mixed results when applying on the M3 data. Also some tests 

conducted by Bergmeir et al. (2014) get “results [that] were consistently worse than with the procedure 

presented here [i.e. the MBB method]”. 

 

A totally different approach constitutes the maximum entropy (ME) bootstrap invented by Vinod 

(2006). The central idea behind this algorithm is in guaranteeing to hold the ergodic property regarding 

the ensemble which means that the grand mean of the bootstrap ensemble equals the mean over the 

original series. Even though that ergodicity does not automatically result in stationarity, the inventor 

Vinod states that the proposed algorithm assures to “retain the basic shape and dependence structure 

of autocorrelation function (ACF) and partial autocorrelation function (PACF) of the original time 

 

Figure 3.9: First two of B=30 maximum entropy bootstrap samples for one Tourism time series (top 

row) and one Arimasim times series (bottom row). 
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series”. An example is plotted in Figure 3.9 (for the same time series used in Figure 3.8) assuming a 

total bootstrap sample size of 30 which is also used for the benchmarks in this thesis.  

The fact that no data transformation like block building, initial differencing, AR-fitting or STL 

decomposition has to be done in advance, makes this approach very appealing. Nonetheless its 

usability is highly dependent on its asymptotic overlay properties for distributional parameters (not 

investigated in this thesis) or the general performance resulting in prediction tasks when using it for 

bagging (see below). 

 

Figure 3.10 shows a comparison of the used bagging approaches for Tourism benchmark time series. 

A big difference for MBB based bagging in conjunction with a simple seasonal naïve forecast result 

due to the structural breaks occurring at every second season and therefore highly influence the 

seasonal naive forecast. This is obviously not the case for ME bootstrap based bagging. But for the 

MBB case also the described STL preprocessing has an influence. Nonetheless the overall 

performance improves for this version. More insight gives the bagging of the arimaD model. Here the 

ME approach shows a superior performance over the MBB and clearly improves the arimaD forecast 

in a horizon constant manner! This is a very special behavior as usually the performance lines 

intersect for any two methods. Such a slight but constant improvement over horizons gets masked by 

the typical rank analysis used in the benchmark result assessment of this thesis. 

Figure 3.11 shows the same analysis for the NN5 time series. The situation for bagging snaive is 

nearly the same as for the Tourism data. But for arimaD both approaches ME and MBB highly overlap 

(and now typically intersect) regarding forecast performance with the pure arimaD model and does not 

seem to highly improve the performance of arimaD. 

 

 

3.5 Benchmark Results for Classical Methods 

In the following the results for the classical methods together with bagging approaches are given. An 

overall comparison with Machine learning models can be found in Chapter 5. Also the discussion of 

 

Figure 3.10: Performance of bagging approaches for snaive and arimaD models applied on Tourism 

data. 
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the performance of an ARIMA model with covariates is postponed to this chapter as well as the 

application of the models onto the Arimasim data. 

 

Several ARIMA and ETS variants are tested to account for nonlinearity as well as seasonality. 

Generally the same notation as in previous chapters for distinguishing the alternatives is used. For 

ARIMA based models a hardcoded seasonal differencing variant, identifiable by a suffix D, is tested as 

alternative to the auto detection of seasonal differencing by the auto.arima R-function having no suffix 

in its name. On the other hand, the STL alternative first strips off the seasonal component and rewinds 

this at the end as explained in Chapter 3.3.  Beside the auto detection of an ETS model denoted ets, 

also a forced damped variant is used (etsd) which is motivated in Chapter 3.2. Also for the ets model a 

STL version (etsSTL) is used. Last but not least all alternatives are applied on Box-Cox transformed 

series leading to a bc suffix in its names with lambda detected as explained in Chapter 3.1.1. 

 

Additionally some ensembling variants of these classical models are tested. E.g. ens_mean denotes a 

model that averages the forecast over all classical ARIMA and ETS models excluding the very bad 

performing thetaf and the ARIMA based ones without hard-differencing, i.e. arima and arima_bc (as 

these exhibit really bad performance for NN5 time series, cf. Chapter 3.5), ending up in averaging 11 

models: arimaD, arimaD_bc, arimaSTL, arimaSTL_bc, ets, ets_bc, etsd, etsd_bc, etsSTl, etsSTL_bc, 

tbats. As Kourentzes et al. (2014) suggest using the median for aggregating ensembles in the time 

series forecasting context, also this approach named ens_median is added to the tested portfolio.  

Beside the already mentioned (cf. Chapter 3.4) bagged approaches for snaive and arimaD based on 

the MB and ME bootstrap alternatives (bootMB_snaive, bootME_snaive, bootMB_arimaD, 

bootME_arimaD), a random selection of one of above mentioned 11 models is conducted for every 

bootstrap sample in order to decorrelate the results per bag sample (bootMB_randsel, 

bootME_randsel). This should additionally reduce the variance for the bagged forecast pretty much 

following the idea behind random forests explained in Chapter 4.3. For all experiments B=30 bagged 

versions per time series are drawn following the MBB and ME boostrap sample strategies (cf. Chapter 

3.4). 

 

Figure 3.11: Performance of bagging approaches for snaive and arimaD models applied on NN5 data. 
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As always some naïve benchmark results (cf. Chapter 2.3.1) are added in order to help assessing the 

general benefit of the advanced models. 

 

Figure 3.12, Figure 3.13 and Figure 3.14 together with Table 3.3, Table 3.4 and Table 3.5 show the 

results for the classical approaches together with the bagged models. 

Main findings, apart from the ones already discussed in previous chapters, are: 

- ARIMA based models generally outperform ETS approaches. This can be seen for all 3 

benchmark series. 

- If one knows about existing seasonality and does not decide to use STL for deseasoning, hard-

differencing is usually better than letting auto.arima decide for seasonal differencing. This result is 

also confirmed by all benchmarks most striking for the NN5 data (see Figure 3.14). 

 

Figure 3.12: Ranked MdASE by horizon range of classical forecast models together with bagging 

approaches for M3-INDUSTRY competition series. 

 

Method

INDUSTRY

 h=1-1

INDUSTRY

 h=1-6

INDUSTRY

 h=1-12

INDUSTRY

 h=1-18 Method

INDUSTRY

 h=1-1

INDUSTRY

 h=1-6

INDUSTRY

 h=1-12

INDUSTRY

 h=1-18

snaive 18.18 18.41 17.49 17.39 etsd 12.46 13.09 13.30 13.73

tsnaiveD 17.12 16.98 15.97 15.83 etsd_bc 12.69 12.83 12.98 13.65

tsnaiveD_bc 16.98 17.17 16.04 15.83 etsSTL 13.53 13.15 13.12 13.33

tsnaiveSTL 13.72 14.23 14.63 14.19 etsSTL_bc 13.50 13.15 13.22 13.43

tsnaiveSTL_bc 14.09 14.39 14.96 14.29 tbats 13.63 14.05 14.58 14.47

arima 12.80 13.35 13.80 14.45 thetaf 14.55 16.58 16.53 16.50

arima_bc 12.42 13.15 13.39 14.19 ens_mean 11.84 11.58 11.84 11.82

arimaD 12.60 12.62 13.08 13.28 ens_median 11.88 11.63 12.13 12.15

arimaD_bc 12.47 12.63 12.63 12.92 bootMB_snaive 18.13 16.89 15.96 15.77

arimaSTL 12.83 12.32 12.35 11.81 bootME_snaive 18.33 18.73 17.76 17.59

arimaSTL_bc 12.94 12.36 12.82 12.45 bootMB_arimaD 14.83 13.45 13.94 13.33

ets 13.06 13.43 13.31 14.13 bootME_arimaD 13.09 12.85 13.13 13.11

ets_bc 13.02 13.18 13.81 14.06 bootMB_randsel 14.64 13.41 12.96 12.62

bootME_randsel 12.69 12.39 12.26 11.71

 

Table 3.3: Average Ranked MdASE corresponding to dots in Figure 3.12. Best model metric per 

horizon range (with vertical split just for visual convenience) is bold & underlined and shading denote 

Top20% accordingly. 
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- If using STL for deseasoning one might test a Box-Cox variant to account for multiplicative 

seasonality. This situation mostly happens for the Tourism data and shows advantages there (see 

Figure 3.13). On the other hand, for NN5 time series only the 1-step-ahead forecast profits from 

this approach but is contra productive in the long run (see Figure 3.14). 

- When averaging over several models, using the median as aggregating metric does not have an 

advantage over standard mean. Generally the ensemble shows good forecast capability but is not 

always better than a single model (cf. Table 3.4 and Table 3.5). A tuned weighting of the 

ensemble parts should help here (which is not tested). But the variability clearly reduces which 

can be seen by the narrower box plots compared to the single models for all three benchmarks. 

Furthermore the forecasts are also more constant over different horizon ranges, i.e. the ranking 

does not change much by different horizon ranges. Generally one should give a simple 

ensembling always a try when having several good performing models.  

 

Figure 3.13: Ranked MdASE by horizon range of classical forecast models together with bagging 

approaches for Tourism competition series. 

 

Method

Tourism

 h=1-1

Tourism

 h=1-6

Tourism

 h=1-12

Tourism

 h=1-24 Method

Tourism

 h=1-1

Tourism

 h=1-6

Tourism

 h=1-12

Tourism

 h=1-24

snaive 14.60 13.27 14.90 15.61 etsd 14.45 13.53 13.83 14.00

tsnaiveD 14.49 12.35 12.99 13.13 etsd_bc 14.89 15.41 15.13 14.75

tsnaiveD_bc 15.30 13.31 13.71 14.24 etsSTL 14.50 17.52 16.62 16.51

tsnaiveSTL 15.62 18.47 18.69 18.16 etsSTL_bc 14.56 13.98 13.37 13.61

tsnaiveSTL_bc 15.20 14.74 15.93 15.97 tbats 13.93 13.36 13.40 13.66

arima 12.57 14.16 13.64 13.81 thetaf 16.22 21.36 21.23 20.75

arima_bc 13.20 13.42 13.62 13.85 ens_mean 12.55 12.66 11.63 11.50

arimaD 12.18 12.40 12.25 12.00 ens_median 12.89 12.49 11.92 11.69

arimaD_bc 12.73 11.77 12.12 12.43 bootMB_snaive 13.53 12.79 13.27 13.20

arimaSTL 13.88 16.58 16.21 15.97 bootME_snaive 14.54 13.12 14.93 15.51

arimaSTL_bc 13.95 12.79 12.48 12.87 bootMB_arimaD 14.26 13.35 12.81 12.61

ets 14.51 13.63 13.64 13.72 bootME_arimaD 12.06 11.95 11.37 11.30

ets_bc 14.75 14.62 14.51 14.35 bootMB_randsel 14.25 12.92 12.38 11.70

bootME_randsel 12.38 12.07 11.42 11.08  

 

Table 3.4: Average Ranked MdASE corresponding to dots in Figure 3.13. Best model metric per 

horizon range (with vertical split just for visual convenience) is bold & underlined and shading denote 

Top20% accordingly. 
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- Ensembling by bagging mostly results in an improvement for Tourism and NN5. But processing 

time obviously increases. The ME bootstrap exhibit some advantages over the well-known MBB 

approach for the non-naïve models and is at least much easier to use series (see also the 

comments at the end of the previous chapter).  

- Further ensembling the bagging approach by randomly selecting one out of a group of nice 

performing model for every bootstrap sample further reduces the variance of the bagged forecasts 

by decorrelating the results. Actually for all 3 benchmark series the bootME_randsel is the winner 

for the competition horizon range objective. 

- Table 3.3 shows that the runner-up of bootME_randsel for the M3-INDUSTRY competition horizon 

range is represented by arimaSTL together with ens_mean. The latter is also the best method for 

1-step-ahead forecast, half season and full season forecast for this data. In the NN5 competition 

arimaD is close to the winner for the long horizon range but interestingly really bad for the 1-step-

 

Figure 3.14: Ranked MdASE by horizon range of classical forecast models together with bagging 

approaches for NN5 competition series. 

 

Method

Atm

 h=1-1

Atm

 h=1-7

Atm

 h=1-28

Atm

 h=1-56 Method

Atm

 h=1-1

Atm

 h=1-7

Atm

 h=1-28

Atm

 h=1-56

snaive 16.18 15.00 16.72 16.14 etsd 13.44 13.02 12.28 12.05

tsnaiveD 16.76 15.04 16.58 16.00 etsd_bc 13.11 14.60 12.59 13.72

tsnaiveD_bc 16.59 15.07 16.65 16.28 etsSTL 13.91 12.57 11.17 11.25

tsnaiveSTL 13.59 18.78 19.61 20.30 etsSTL_bc 10.23 11.82 13.10 12.08

tsnaiveSTL_bc 13.05 19.19 19.94 19.86 tbats 13.51 14.31 13.38 13.09

arima 16.62 16.25 18.06 20.69 thetaf 24.07 24.75 25.10 25.22

arima_bc 16.52 16.96 19.14 21.61 ens_mean 11.25 12.02 10.66 10.01

arimaD 14.07 11.36 9.72 9.74 ens_median 11.91 12.13 10.96 10.50

arimaD_bc 11.92 12.03 10.31 10.86 bootMB_snaive 13.47 13.36 13.86 13.72

arimaSTL 10.17 11.15 10.65 10.07 bootME_snaive 16.39 15.33 16.90 16.34

arimaSTL_bc 8.71 10.93 11.72 10.95 bootMB_arimaD 14.90 10.54 10.05 9.86

ets 15.29 13.07 13.98 13.73 bootME_arimaD 13.75 11.54 9.48 9.93

ets_bc 13.99 14.28 13.14 14.35 bootMB_randsel 12.92 11.12 11.20 9.96

bootME_randsel 11.68 11.77 11.06 9.68  

 

Table 3.5: Average Ranked MdASE corresponding to dots in Figure 3.14. Best model metric per 

horizon range (with vertical split just for visual convenience) is bold & underlined and shading denote 

Top20% accordingly. 
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ahead prediction, see Table 3.5. Here the arimaSTL_bc reveals a remarkable performance with 

an average rank of 8.71. 

- Even though already explained in previous chapters it should again be stated that the thetaf 

implementation of the promising (regarding official M3 competition, Makridakis & Hibon (2000)) 

Theta method is clearly the worst classical model for Tourism, NN5 and M3-INDUSTY 

benchmarks. 

 

Due to several reasons already mentioned a comparison with the original benchmark results for the 

Tourism and the M3-INDUSTRY series is only possible on a qualitative level. 

Even though applied on the whole M3 monthly series, a similar result as the one presented above, 

revealed the already mentioned study from Bergmeir et al. (2014) showing an improved performance 

with respect to the sMAPE metric of a bagged ETS model on Box-Cox transformed data utilizing MB-

bootstrapping. The best performing models in the original competition for all M3-INDUSTRY time 

series were some commercial packages using combinations of Arima and ETS models (see 

Makridakis & Hibon (2000).  

Athanasopoulos & Hyndman (2011) initially compared several classical models on the Tourism series 

before starting the official competition. ForecastPro, a commercial package combining Arima and ETS 

models (also used in the M3 competition) showed best performance for all horizon ranges regarding 

MdASE metric. The winner of the final competiton (comprising additional quarterly series) was using 

an ensemble of Arima, ETS and naïve methods (Brierly (2011b)). 

As can be seen on Crone (2009b) no classical model was under the top performing ones for the NN5 

series (apart from Wildi (2008) but which is framed by the frequency domain approach and therefore 

not related to the classical Arima and ETS models). When using the winner (arimaSTL) of this thesis 

benchmark regarding sMAPE, the competition evaluation metric, a value of 20.7% results which is 

better than the best statistical method submitted in the original benchmark! In Chapter 5.3 it will be 

shown that this can still be beaten by a Machine Learning approach. 
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4 Machine Learning Approaches 

This chapter introduces several Machine Learning prediction algorithms. The selection of models is 

motived in Chapter 1.1. Simultaneously first results of applying these models onto the benchmark data 

are given, including a comparison with the best naïve and classical model to get an impression of the 

forecast performance. A more comprehensive result overview is postponed to Chapter 5. In fact, 

several variants of each Machine Learning model are tested which partly gets motivated by a basic 

simulation study presented in Chapter 4.5 that has the intention to better understand the forecast 

capability of several model variants (or covariate sets) for some phenotypical time series.  

 

Basically each model is provided with an initial covariate set of lagged target variables comprising the 

last 2 seasons to account for correlations and a time covariate in order to enable the algorithm to 

model a trend. In order to handle the seasonality in the time series, seasonal dummies are created. In 

Chapter 3.1.1 the seasonal differencing is presented as a standard approach for deseasoning in the 

ARIMA context but can be applied in advance for any model and is therefore added as a possible 

variant. A further alternative is represented by an initial STL decomposition to strip of the seasonal 

influence and rewind it again at the end. These three mutually exclusive approaches are denoted by 

the suffix “SD” (seasonal dummies), “D” (seasonal differencing) and “STL”. Actually the simulation 

study in Chapter 4.5 will suggest letting the Machine Learning algorithm model the seasonality just 

with the lagged target information which is therefore the 4
th
 basic approach. Furthermore it might be 

advantageous to reduce the covariate set of lagged target values, i.e. the lagset, for some models. 

The best approach in terms of model selection would be to tune the composition of the lagset. As this 

increases the processing time drastically, it was decided to just apply each variant also with a fixed 

reduced lagset of just the most recent lag and the first seasonal lag. This alternative is marked with a 

“RL” in the name. Together with a Box-Cox transformation option (denoted by the suffix “bc”), which is 

important in order to keep the models comparable to the classical approaches comprising also this 

option, a total of 16 variants for each Machine Learning are tested. For example the algorithm 

nnetSTL_bc_RL denotes a Neural Net model with STL decomposition chosen for handling seasonality 

applied on Box-Cox transformed time series and using a time variable (default for all models) and a 

reduced lagset as covariates. Alternatively nnet_bc stands for a Neural Net approach with the full 

lagset which is also responsible for modeling the seasonality of the Box-Cox transformed data. 

As explained in the following, every algorithm additionally has one or more tuning parameter for 

regularization. The exact parameter values used are listed in the corresponding chapters. Notice that 

these listed values are the fine grid extraction of an initial rough grid search comprising also several 

above mentioned modeling variants applied on the different benchmark datasets! 

 

 

4.1 Neural Nets 

Artificial Neural Nets (ANN, also named nnet in this thesis) are by far the most used algorithm for 

forecasting by the Machine Learning community (Krollner et al. (2010)). Indeed they represent the only 

approach from this field applied already in the M3 competition conducted in 2000 (Makridakis & Hibon 

(2000)). Though, Gooijer & Hyndman (2006) summarize that “ANNs had been oversold as a miracle 

forecasting technique” but indeed suffer from the “curse of model complexity and model over-

parametrization”.  

 

Basically ANNs try to mimic the function of the human brain. E.g. for the vanilla ANN in Figure 4.1 

comprising just one hidden layer, the units in each layer represent a neuron and the connections 
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between them stand for the synapses. From a statistical viewpoint they represent just a nested 

combination of several logistic regressions in case the sigmoid activation function 𝑓(𝑎) = 1 (1 + 𝑒−𝑎)⁄  

is used for the functions 𝜙 and �̃� in the model equation  

 

   𝑦 = �̃� (𝑤0 + ∑ 𝑤𝑙
𝑘
𝑙=1 𝜙(𝛽𝑙0 + ∑ 𝛽𝑙𝑗𝑥𝑗

𝑝
𝑗=1 )) (4.1) 

 

with the “inner equation” 𝑧𝑙 = 𝜙(𝛽𝑙0 + ∑ 𝛽𝑙𝑗 𝑥𝑗
𝑝
𝑗=1 ) modeling the influence of the inputs on the units in 

the hidden layer. Notice that equation (4.1) does not comprise the context layer effects (described 

below) of Figure 4.1. Also when using the identity for �̃� in the regression case, a very flexible nonlinear 

model results already with just one hidden layer. In fact such a model, given enough units in the 

hidden layer, is in theory (!) a universal approximator, which means that it can model any smooth 

function 𝑦(𝒙) (cf. Murphy (2012)). This ability, together with the idea of imitating the human brain, are 

main reasons for the high credits ANNs received in the community. On the other hand and as usual for 

very flexible (and nonlinear) models, the model interpretation or quantification of variable effects is at 

least extremely difficult, moving ANNs into the “black box” model edge.  

The model parameters (or weights) 𝜽 = (𝜷, 𝒘) are determined by a gradient descent algorithm called 

backpropagation, applied to minimize quadratic loss in the regression case. Importantly, this 

minimization is not a convex problem; it can happen that it ends in just a local minimum. Therefore 

several random starting weights should be used accompanied by averaging the results. This approach 

is also utilized in the benchmarks of this thesis using the avNNet function of the caret R-package 

(Kuhn (2014)). 

The flexible modeling is prone to overfitting and needs regularization. One approach is called early 

stopping and stands for ending the backpropagation, with respect to performance on a test set, before 

reaching its minimum. A more reasonable alternative that directly solves the problem of determining 

the number of hidden units is represented by a L2-penalization of the weights, called weight decay, in 

conjunction with choosing a quite high number of hidden units. This is the approach of choice in the 

benchmarks using 20 units in 1 hidden layer. 

 

Figure 4.1 shows how an autoregressive component is incorporated just by adding lagged target 

values to the input layer. Past forecast errors or a moving average component (cf. Chapter 3.1.1) can 

 

Figure 4.1: Idea of Vanilla (one hidden layer) Neural Net for Time Series forecasting with 

autoregressive components in the input layer and a context layer for “error feedback” (Jordan 

network). 
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be modeled by a context layer resulting in a so-called recurrent ANN. More precise, the variant 

presented in Figure 4.1 is called a Jordan network. Unfortunately the R support for recurrent ANNs is 

not very comfortable. Some tests for the NN5 data utilizing the jordan-function of the RSNNS R-

package (Bergmeir & Benitez (2014)) were not very promising (cf. Chapter 5). Therefore it was 

decided to use the standard Neural Network (without a context layer), together with lagged target 

values being part of the input layer. 

 

Despite the universal approximation property of the vanilla network, there are several applications 

where a more complicated network structure might be advantageous. In image detection the 

convolutional ANNs are popular. These networks exploit the 2D structure of the images by their layer 

architecture (see e.g. Hastie et al. (2009)). Furthermore deep ANNs are of current research interest 

and have shown remarkable performances in speech recognition for instance (see Murphy (2012)). 

 

 

 

Figure 4.2: Ranked MdASE by horizon range of Neural Net based models for NN5 competition. 

Results of best naïve (snaive) and one of the best classical models (arimaSTL_bc) are added. 

 

Method

Atm

 h=1-1

Atm

 h=1-7

Atm

 h=1-28

Atm

 h=1-56 Method

Atm

 h=1-1

Atm

 h=1-7

Atm

 h=1-28

Atm

 h=1-56

snaive 11.30 11.05 11.40 10.74 nnetD 10.02 9.89 10.14 9.51

arimaSTL_bc 6.88 8.55 7.83 7.05 nnetD_RL 9.45 9.02 9.90 9.48

nnet 9.66 9.11 8.91 9.38 nnetD_bc 9.68 9.32 10.35 10.17

nnet_RL 12.86 12.83 14.38 16.45 nnetD_bc_RL 9.73 9.15 10.52 10.23

nnet_bc 8.81 11.29 12.22 13.40 nnetSTL 9.57 8.18 9.35 8.74

nnet_bc_RL 12.88 14.08 15.50 16.42 nnetSTL_RL 8.21 7.66 6.95 6.36

nnetSD 10.31 8.39 7.17 5.71 nnetSTL_bc 7.37 8.09 7.58 7.11

nnetSD_RL 8.53 7.86 5.88 6.39 nnetSTL_bc_RL 7.05 8.02 6.87 6.60

nnetSD_bc 9.22 9.07 8.01 8.38

nnetSD_bc_RL 9.50 9.44 8.04 8.88

 

Table 4.1: Average Ranked MdASE corresponding to dots in Figure 4.2. Best model metric per 

horizon range is bold & underlined and shading denote Top20% accordingly. 
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Benchmark Insights 

As will be shown in Chapter 5, only for the NN5 benchmark time series a neural net approach gets 

better results than the best naïve forecast. Therefore Figure 4.2 and Table 4.1 show the performance 

comparison for these series. The initial tuning parameter tests revealed that averaging over 3 neural 

nets (each using different starting values) with 1 hidden layer comprising 20 units and a weight decay 

varying between 1, 10, 20 and 30 can generally be applied to all benchmark data. Some noticeable 

results which can be identified in Figure 4.2 and Table 4.1 are the following: 

- An initial Box-Cox transformation only results in some improvement if a STL decomposition is 

used to tackle seasonality; for other deseasoning approaches it is contra productive. It should 

already be mentioned that the latter is true for all deseasoning approaches for the M3-INDUSTRY 

benchmark and can be best seen in the plots presented in Chapter 5.1. 

- Using solely a reduced lagset (RL) for modeling the seasonality ends up with drastically bad 

forecasts. This finding (for the NN5 data) will be confirmed in the following chapters by all other 

Machine Learning approaches and indicates that the other lags hold at least seasonal information 

for this data. But accounting for seasonality by a STL decomposition profits from the lag reduction 

in the NN5 case. 

- Generally the seasonality is best handled by a STL decomposition combined with a Box-Cox 

transformation for the 1-step-ahead prediction; but in the long run the SD variant is the winner. 

This does not hold for Tourism and M3-INDUSTRY as can be seen in Chapter 5. For these 

benchmarks hard seasonal differencing in conjunction with a reduced lagset (D_RL variant) is 

best. In fact it will pop up in the following that for the Tourism data hard differencing is often the 

best deseasoning variant also for other ML methods! 

 

 

4.2 Kernel-Machines: SVMs and Gaussian Processes 

SVMs 

Historically kernel machines are originated from Support Vector Machine (SVM) models for 

classification. The central idea behind these SVM models is to maximize the predictor space, the so-

called margin, between the data points of different target labels but allow also separation violating 

slack points (see left graph in Figure 4.3). It can be shown (cf. Hastie et al. (2009)) that the separating 

hyperplane can be expressed as 𝑓(𝒙) = 𝜷′𝒙 + 𝛽0 = ∑ 𝛼𝑖�̃�𝑖𝒙𝑖′𝒙
𝑁_𝑆𝑢𝑝𝑝𝑜𝑟𝑡
𝑖=1 + 𝛽0 (with �̃�𝑖 ∈ {−1,1}), i.e. a 

sum just over the support vectors that are lying exactly on the margin edges (or also on the false side 

of the hyperplane if slack points are allowed) indicating that data points outside the margin (and on the 

right side) do not contribute to the solution.  

The same result is obtained when solving min
𝜷,𝛽0

 ∑ [1 − 𝑦𝑖𝑓(𝒙𝒊)]+ +
𝜆

2
‖𝜷‖2𝑁

𝑖=1  (with [ ]+ returning only 

positive values and 0 otherwise), which is equal to a regression problem with L2 penalization utilizing 

the so-called Hinge-loss [1 − 𝑦𝑖𝑓(𝒙𝒊)]+ instead of the familiar squared error loss. 

The regression analogon of a SVM is represented by using the -insensitive loss 

   

𝐿(𝑦, 𝑓(𝒙)) = {
0                              𝑖𝑓 |𝑦 − 𝑓(𝒙)| < 𝜀
|𝑦 − 𝑓(𝒙)| − 𝜀                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4.2) 

 

resulting in  

 

   𝑓(𝒙) = 𝜷′𝒙 + 𝛽0 = ∑ (𝛼𝑖
∗ − 𝛼𝑖)𝒙𝑖′𝒙

𝑁_𝑆𝑢𝑝𝑝𝑜𝑟𝑡
𝑖=1 + 𝛽0 (4.3) 
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denoting now the regression curve in the hyperspace (with parameters 𝛼𝑖
∗, 𝛼𝑖 depending on the target 

values 𝑦𝑖, see e.g. Schölkopf & Smola (2002)). Here the support vectors are lying on the edge and 

outside of the -tube (see right plot in Figure 4.3). Therefore the solution (4.3) now ignores data points 

inside(!) the tube, closing the rough analogy to the classification case.  

 

Crucial for using a kernel machine is the scalar product 𝒙𝑖′𝒙 in (4.3). If one is replacing it by some 

basis functions 𝒙𝒊 → 𝒉(𝒙𝒊) = (ℎ1(𝒙𝑖), … , ℎ𝑀(𝒙𝑖)) in order to model also nonlinear dependencies (just 

like it is done in semi-parametric spline regression case), the solution 𝑓(𝒙) = ∑ (𝛼𝑖
∗ −

𝑁_𝑆𝑢𝑝𝑝𝑜𝑟𝑡
𝑖=1

𝛼𝑖)ℎ(𝒙𝑖′)ℎ(𝒙) + 𝛽0 = ∑ (𝛼𝑖
∗ − 𝛼𝑖)𝐾(𝒙𝑖

′ , 𝒙)𝑁_𝑆𝑢𝑝𝑝𝑜𝑟𝑡
𝑖=1 + 𝛽0 now only depends on the so-called kernel 

𝐾(𝒙, �̃�) = 𝒉(𝒙)′𝒉(�̃�) which can be calculated very cheaply for a special choice of 𝒉. Popular 

representatives are the radial Gaussian kernel 𝐾(𝒙, �̃�) = 𝑒𝑥𝑝(−𝛾‖𝒙 − �̃�‖2) or the polynomial kernel of 

grade d: 𝐾(𝒙, �̃�) = (1 + 𝒙′�̃�)𝒅. For the latter it can be shown that it constitutes of 6 basis functions 

𝒉(𝒙) = (1, √2𝑥1, √2𝑥2, 𝑥1
2, 𝑥2

2 , √2𝑥1𝑥2) in the 2-dimensional case (𝒙 = (𝑥1, 𝑥2)) and assuming a grade 

of 2. However, for the Gaussian kernel it is impossible to specify all basis functions as these are 

spanning an infinite dimensional space even though ending up in the finite dimensional solution (4.3) 

just depending on the evaluations of the Kernel at the support vectors. By this so-called kernelization a 

solution in an infinite dimensional space is found in which any smooth function of finite dimensional 

data can be “easily” linearly fitted. This circumstance might explain the initial euphoria regarding 

SMVs, up to the assumption that they can beat the curse of dimensionality or can even handle an 

arbitrary number of irrelevant dimensions. Why the latter is not true, is nicely argued in Hastie et al. 

(2009), chapter 12.3.4. 

 

 

Kernel Machines 

In addition, the kernelization is, contrary to early assumptions, not an explicit property of the SVM, but 

can be applied in all cases for which the solution of an optimization problem comprises a scalar 

               

Figure 4.3: Idea of SVM showing rough analogy between classification (left plot, including slack 

points) and regression (right plot) problem. Support vectors are marked with black border. In the left 

plot the separating hyperplane lies in the middle of the margin; on the right plot the regression curve is 

surrounded by the -tube.  
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product of the input data which is known as kernel trick. E.g. also the parameter vector of a standard 

ridge regression 𝜷 =  (𝑿′𝑿 + 𝜆𝑰)−1𝑿′𝒚 can be written as 𝜷 =  𝑿′(𝑿𝑿′ + 𝜆𝑰)−1𝒚 = 𝑿′𝒂 = ∑ 𝑎𝑖
𝑁
𝑖=1 𝒙𝑖 (with 

𝒂 ∶= (𝑿𝑿′ + 𝜆𝑰)−1𝒚 ) when utilizing the Sherman-Morrison-Woodbury fourmula (for 𝑬 and 𝑯 invertible 

holds: (𝑬 − 𝑭𝑯−1𝑮)−1𝑭𝑯−1 = 𝑬−1𝑭(𝑯 − 𝑮𝑬−1𝑭)−1, see e.g. Murphy (2012)). Therefore the solution 

𝑓(𝒙) = 𝜷′𝒙 = ∑ 𝑎𝑖
𝑁
𝑖=1 𝒙𝑖′𝒙  depends on a scalar product! 

Actually it can be shown that this kernelization is applicable for a much broader class of problems. It is 

possible to express the infinite dimensional solution 𝑓(𝒙) = ∑ 𝛽𝑘ℎ𝑘(𝒙𝒊)
∞
𝑘=1  of the general optimization 

problem 

 

argmin{𝛽𝑘}𝑘=1
∞ { ∑ 𝐿(𝑦𝑖 , ∑ 𝛽𝑘ℎ𝑘(𝒙𝒊)

∞
𝑘=1 ) +  𝜆 ∑ 𝛽𝑘

2∞
𝑘=1

𝑁
𝑖=1  }  (4.4) 

 

with an arbitrary convex loss function and L2-penalization, as a finite-dimensional kernel 𝑓(𝒙) =

∑ 𝛼𝑖𝐾(𝒙𝑖 , 𝒙)𝑁
𝑖=1   (cf. Hastie et al. (2009)). This remarkable fact is a result of the Representer Theorem 

of the Reproducing Kernel Hilbert Spaces (RKHS), the mathematical theory behind the kernels. Very 

important in this context is the L2-penalization (“Ridge penalty”) indicating that e.g. a L1-penalization 

(“Lasso penalty”) cannot be kernelized! Applying the kernel solution to (4.4) results in 

argmin{𝛼𝑖}𝑖=1
𝑁 { ∑ 𝐿(𝑦𝑗, ∑ 𝛼𝑖𝐾(𝒙𝒊, 𝒙𝒋)

𝑁
𝑖=1 ) +  𝜆 ∑ ∑ 𝛼𝑖𝐾(𝒙𝒊, 𝒙𝒋)𝛼𝑗

𝑁
𝑗=1

𝑁
𝑖=1

𝑁
𝑗=1  } (notice the 𝑖 → 𝑗 shift) which can 

be compactly written together with (4.4) as two equivalent representations of the optimization problem: 

 

𝑚𝑖𝑛
𝜶

{𝐿(𝒚, 𝑲𝜶) +  𝜆𝜶′𝑲𝜶}     ≜      𝑚𝑖𝑛
𝜷

{𝐿(𝒚, 𝑯𝜷) +  𝜆𝜷′𝜷}  (4.5) 

 

The compact penalty shape 𝜶′𝑲𝜶 is a consequence of the Reproducing property of the kernel in the 

framework of the RKHS. The finite-dimensional matrix 𝑲 = 𝐾(𝒙𝒊, 𝒙𝒋) is called Gram matrix and has to 

be positive definite to be the empirical version of a so-called Mercer kernel which allows the 

decomposition into basis functions. The reduction from an infinite-dimensional to a finite-dimensional 

problem is closely related to a principal component analysis applied on the ℎ𝑘=1..∞ features (see Hastie 

et al. (20009), chapter 18.5.2). Alternatively, the impressive kernel trick can be seen in the context of 

an initially 𝑝 ≫ 𝑁 problem (with 𝑝 ≈ ∞), which can always be casted to a N-dimensional problem (cf. 

again Hastie et al. (20009), chapter 18.3.5). 

 

 

Gaussian Processes 

As mentioned above, the positive definiteness of the Gram matrix is crucial for the decomposition into 

basis functions and therefore the whole kernel trick. This circumstance, together with the principle that 

the Gram matrix represents a similarity measure (like the scalar product it originates from), builds the 

ground for an extension of the kernel approach to other structured features and even really abstract 

features. In principle, one can hand over an arbitrary positive definite matrix as Gram matrix and 

predict the target. In order to end up with a meaningful, i.e. well predicting model, it is important that 

the structure of the data points in the sense of an implicit similarity is recognized. An extreme example 

can be found in text categorization which is using string kernels that just encode the number of 

coinciding letter series between each two documents (see e.g. Murphy (2012)).  

Basically a similar approach is used for Gaussian Processes. It is assumed that the target is drawn 

from a multivariate Gaussian distribution 
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   𝒚 = (𝑦1, . . , 𝑦𝑇, 𝑦𝑇+1) = (𝒚𝑻, 𝑦𝑇+1)~𝑁 ((
𝝁𝑻

𝜇𝑇+1
) , 𝚺 = [

𝚺𝑻 𝚺𝑻,𝑇+1

𝚺𝑇+1,𝑻 𝜎𝑇+1
2 ]) (4.6) 

 

with a covariance matrix 𝚺 that functions as the positive definite Gram-Matrix encoding the implicit 

similarity of data points. Best predictor for  𝑦𝑇+1 is then the expected value conditional on 

𝒚𝑻: 𝐸(𝑦𝑇+1|𝒚𝑻). Also the whole predictive distribution for  𝑦𝑇+1 can be calculated and is a result of the 

properties of the Multivariate Gaussian distribution (see e.g. Fahrmeir et al. (2013): 

 

   𝑦𝑇+1|𝒚𝑻 ~ 𝑁(𝜇𝑇+1 + 𝚺𝑇+1,𝑻 ∙ 𝚺𝑻
−1(𝒚𝑻 − 𝝁𝑻), 𝜎𝑇+1

2 − 𝚺𝑇+1,𝑻 ∙ 𝚺𝑻
−1 ∙ 𝚺𝑻,𝑇+1) (4.7) 

 

Remarkably, in classical Geo-Statistics the value of 𝐸(𝑦𝑇+1|𝒚𝑻) is known as the kriging predictor and 

can be shown to be the best linear predictor also for arbitrarily distributed data (cf. Cressie (1993))! 

Moreover, the whole approach has strong relationships to classical weighted regression modeling and 

longitudinal regression models. Especially for the latter, part of the correlation of data points is tried to 

be modeled by random effects inducing nontrivial correlation structures. Something similar is done in 

the machine learning field by combining different kernels to new Gram (covariance) matrices which 

e.g. also result in periodic behavior (see Ebden (2008)). But this is often not an easy task like for Lloyd 

(2014) in the GEFcom2012 competition (Hong (2012)) who states that “the forms and parameters of 

the kernel functions (…) were chosen by trial and error (observing which kernels gave reasonable 

looking predictions and computing public test scores)”. 

Also a tight relationship to simple AR(1) modeling exist. Using a simple exponential relationship in the 

correlation function for a simple time series without any covariates is equal to a standard AR(1) model 

as 𝑐𝑜𝑟𝑟(𝑦𝑡, 𝑦𝑡′) = 𝑒𝑥𝑝(−|(𝑡 − 𝑡′) 𝜙⁄ |) = 𝜙1
|𝑡−𝑡′|

 (using 𝜙1 ∶= 𝑒𝑥𝑝(−|1 𝜙⁄ |)) is exactly the correlation of an 

AR(1) process.  

 

A more popular choice for the kernel comprises a Gaussian correlation function dependent on the 

isotropic distance in the predictor space 𝑐𝑜𝑣(𝑦𝑡, 𝑦𝑡′) = 𝑘(𝒙, 𝒙′) = 𝜎2𝑒𝑥𝑝(−‖(𝒙 − 𝒙′) 𝜙⁄ ‖2). Notice that 

utilizing this kernel results just on first sight in nearly the same model as above described SVM using a 

exponential kernel! The only difference is that the lagged target values are now not part of the 

predictor set but are implicitly used as they determine the empirical correlation. But for the SVM the 

kernel is modeling the covariate effects whereas for a Gaussian process it just encodes the correlation 

matrix. In general, modeling a Gaussian process as kernel machine can be seen as weighted (or 

correlated) Ridge-Regression (due to the L2-penalization) with a different loss function (-insensitive-

loss instead of squared-loss) using the covariates solely (!) for determining the data correlation. This 

finding makes this model type not very promising. Nonetheless, due to the motivation described in 

Chapter 1.1, it is tested in the benchmarks using above mentioned Gaussian kernel. 

 

For all benchmarks the same tuning ranges are applied which are a result of a rough grid search over 

all benchmark series! For the SVM with a radial kernel the cost parameter is set to C=2 whereas 𝜎 

varies over the values of 2−9,  2−8 … , 2−3 which are also the 𝜎-values for the Gaussian Process. The 

polynomial kernel tests degrees of 1 to 4 and let the cost parameter vary over the values of 1, 2, 3, 5 

and 10; the internal scale parameter is set to 0.01 (see also the R-documentation of the kernlab R-

package Karazoglou et al. (2015)).  
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Benchmark Insights 

Figure 4.4 and Table 4.2 compare the performance of the Kernel Machines applied on the Tourism 

competition data. Actually the SVM method is the only used Machine Learning method that beats 

arimaD in the long run for these time series (cf. Chapter 5.2)! 

Basically there are just slight differences between using a polynomial (svmpoly) or a radial (svmradial) 

kernel. But the Gaussian Process (gp) approach is clearly inferior. Furthermore, as will be shown later 

in Chapter 5, gp is consistently the worst Machine Learning method over all benchmarks (except for 

the M3-MACRO time series). Additionally the following can be identified in Figure 4.4 and Table 4.2: 

- Using a STL decomposition for deseasoning profits from a Box-Cox transformation starting from 

half season horizon range on. Such a behavior has already been noticed in the previous chapter 

in conjunction with the ANN model. Notice that for the NN5 benchmark data there is just an 

advantage in the very long run (cf. Figure 5.3 in Chapter 5.2). 

- The reduced lag variants are consistently superior. This holds even for the “plain” versions (which 

are using only the lag information for modeling seasonality) indicating that the autoregressive 

influence is very limited for the Tourism time series. Further this confirms the forthcoming 

simulation results for Kernel Machines (cf. Chapter 4.5) that seem to profit more from removing 

irrelevant variables than other approaches. As already mentioned, further improvement might be 

 

Figure 4.4: Ranked MdASE by horizon range of Kernel machines for Tourism competition. Results of 

best naïve (tsnaiveD) and one of the best classical models (arimaD) are added. 
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received by lag tuning for the SVM models. Notice in this context that for Gaussian process a lag 

reduction is irrelevant as the lagged target variables are not used as covariates. For the M3-

INDUSTRY and the NN5 data the situation is similar for the non-plain versions (cf. Figure 5.1 & 

Figure 5.3 and Table 5.1 & Table 5.3 in Chapter 5). 

- Regarding the best approach to tackle seasonality no clear direction can be given as the 

performance highly depends on the variant according Box-Cox transformation and lag reduction 

as well as the examined horizon range. But actually svmpoly_SD_RL is the best overall method. 

Remarkably this is also the case for the NN5 benchmark series for the competition horizon range 

(see Table 5.3)! 

 

 

4.3 Random Forests 

A Random Forest builds an ensemble vote from several CART (classification and regression tree) 

models applied to bootstrapped training data.  

A CART model is the standard tree classifier for which at each split a criterion, e.g. squared loss in the 

regression case, is evaluated for all covariates and possible split-points. The best covariate split-point 

combination is used to define the split. This process can be stopped if a node has fewer observations 

than a defined value, or if the splitting criterion stays above a threshold, i.e. for example when no 

improvement can be achieved by an additional split. But usually a tree is fully grown and pruned again 

due to a complexity criterion, which can be optimized by cross-validation. This process assures an 

intrinsic variable selection, robustness to outliers in input space and insensitiveness to monotone 

covariate transformations. Furthermore missing input values are elegantly treated by using surrogate 

variables, best mimicking the “orginal” split variable, as replacements for just the missing data.  

Method

Tourism

 h=1-1

Tourism

 h=1-6

Tourism

 h=1-12

Tourism

 h=1-24 Method

Tourism

 h=1-1

Tourism

 h=1-6

Tourism

 h=1-12

Tourism

 h=1-24

tsnaiveD 26.94 22.56 23.48 22.98 svmpolyD 26.89 24.63 25.16 23.54

arimaD 23.06 22.04 21.50 20.37 svmpolyD_RL 22.12 21.14 21.22 21.05

svmradial 26.37 28.26 26.45 26.13 svmpolyD_bc 25.26 23.90 24.92 23.78

svmradial_RL 23.03 26.87 26.76 27.43 svmpolyD_bc_RL 23.91 22.78 22.95 23.93

svmradial_bc 26.21 28.17 27.02 26.82 svmpolySTL 25.67 25.97 26.27 25.24

svmradial_bc_RL 24.53 27.08 26.90 28.61 svmpolySTL_RL 22.19 21.97 20.94 22.23

svmradialSD 24.71 26.18 24.26 23.66 svmpolySTL_bc 25.59 22.42 23.01 22.08

svmradialSD_RL 21.87 22.35 20.32 20.02 svmpolySTL_bc_RL 23.43 20.36 20.19 20.63

svmradialSD_bc 23.74 24.85 23.14 22.14 gp 27.64 36.38 37.14 37.17

svmradialSD_bc_RL 21.33 20.78 20.22 18.47 gp_RL 27.89 35.90 36.80 36.84

svmradialD 26.26 23.09 24.64 22.81 gp_bc 28.81 38.35 37.85 37.87

svmradialD_RL 22.48 20.87 21.90 21.05 gp_bc_RL 29.04 38.23 37.51 37.79

svmradialD_bc 25.17 23.48 24.85 23.68 gpSD 26.01 27.66 25.13 24.69

svmradialD_bc_RL 23.70 22.87 23.54 24.22 gpSD_RL 26.43 28.04 25.41 24.96

svmradialSTL 26.68 27.72 26.62 26.18 gpSD_bc 26.30 26.92 25.36 25.46

svmradialSTL_RL 23.90 25.13 23.35 23.73 gpSD_bc_RL 26.32 26.95 25.22 25.50

svmradialSTL_bc 25.25 23.43 23.08 21.72 gpD 29.88 25.56 28.60 29.25

svmradialSTL_bc_RL 24.48 20.88 20.63 20.42 gpD_RL 29.80 25.29 28.30 28.84

svmpoly 25.57 26.25 27.01 26.83 gpD_bc 30.17 25.63 28.52 29.56

svmpoly_RL 22.80 23.60 24.64 25.72 gpD_bc_RL 30.16 25.70 28.44 29.88

svmpoly_bc 25.04 25.74 25.32 26.13 gpSTL 27.38 29.27 29.38 30.05

svmpoly_bc_RL 23.72 23.71 24.95 26.55 gpSTL_RL 27.42 29.23 29.18 29.77

svmpolySD 25.59 22.92 23.46 22.63 gpSTL_bc 27.28 25.79 25.64 27.08

svmpolySD_RL 21.92 19.10 18.70 17.82 gpSTL_bc_RL 27.41 25.92 25.79 27.50

svmpolySD_bc 24.06 22.32 22.87 22.62

svmpolySD_bc_RL 23.62 20.79 20.47 21.56

 

Table 4.2: Average Ranked MdASE corresponding to dots in Figure 4.4. Best model metric per 

horizon range is bold & underlined and shading denote Top20% accordingly. 
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The main disadvantage of CARTs is a high prediction variance due to totally different trees that might 

already result from small changes in input data. This can be tackled by averaging over several CARTs 

which are trained on bootstrapped data. Importantly, the predictions of the different models are 

identically distributed but not independent, giving rise to a decorrelation step for further variance 

reduction as illustrated in the following equation:   

 

   𝑉𝑎𝑟 (
1

𝐵
∑ 𝑥𝑖

𝐵
𝑖=1 ) =

1

𝐵2
(∑ 𝑉𝑎𝑟(𝑥𝑖)

𝐵
𝑖=1 + ∑ 𝐶𝑜𝑣(𝑥𝑖 , 𝑥𝑗)𝑖≠𝑗 ) =

𝜎2

𝐵
+

𝐵2−𝐵

𝐵2 𝜌𝜎2 = 𝜌𝜎2 +
1−𝜌

𝐵
𝜎2 

(4.8) 

 

This relationship shows that the variance of the average of identically distributed but dependent 

random variables (with variance 𝜎2) can be reduced not only by increasing the sample size B, but also 

by reducing 𝜌, here correspondingly the correlation between different trees. This decorrelation is 

achieved in a Random Forest algorithm by providing just a randomly chosen subset of m out of all p 

covariates in each split (for all trees). As this covariate reduction also increases the bias, the tree 

 

Figure 4.5: Ranked MdASE by horizon range of Random Forest based models for NN5 competition 

data. Results of best naïve (snaive) and one of the best classical models (arimaSTL_bc) are added. 

 

Method

Atm

 h=1-1

Atm

 h=1-7

Atm

 h=1-28

Atm

 h=1-56 Method

Atm

 h=1-1

Atm

 h=1-7

Atm

 h=1-28

Atm

 h=1-56

snaive 11.26 10.62 11.19 10.21 rfD 10.23 9.33 10.02 11.31

arimaSTL_bc 6.83 7.85 7.60 6.90 rfD_RL 10.64 9.91 11.78 12.79

rf 10.45 8.44 6.48 6.63 rfD_bc 9.96 9.30 9.91 11.01

rf_RL 12.70 12.27 13.06 13.75 rfD_bc_RL 10.06 11.08 12.87 13.73

rf_bc 8.83 8.62 7.77 7.46 rfSTL 9.18 8.41 8.14 7.72

rf_bc_RL 11.13 11.83 13.83 13.97 rfSTL_RL 9.55 10.52 10.41 9.53

rfSD 10.26 7.98 6.39 5.50 rfSTL_bc 7.85 9.25 8.25 7.81

rfSD_RL 7.94 7.35 6.75 7.03 rfSTL_bc_RL 8.85 10.36 10.23 9.68

rfSD_bc 8.56 8.47 7.04 6.31

rfSD_bc_RL 6.73 9.41 9.28 9.67  

 

Table 4.3: Average Ranked MdASE corresponding to dots in Figure 4.5. Best model metric per 

horizon range is bold & underlined and shading denote Top20% accordingly. 
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number m is a tuning parameter which can also directly evaluated through the performance for the 

out-of-bag (OOB) bootstrap folds. Importantly, the trees in the ensemble are not pruned in order to 

avoid further bias growth. The number of trees should be sufficiently large; for all benchmarks some 

pretests have shown that the default value of 500 used by the randomForest function of the R-

package randomForest (Liaw & Wiener (2014)) is adequate. For the number of randomly chosen 

predictors in each split a grid of 1, 3, 5, 10 and 20 is tested (and automatically reduced in case of less 

predictors available). 

 

Before discussing some benchmark results, some disadvantages of Random Forests should be 

mentioned. First of all they are incapable of predicting a future trend. In fact this problem resists for all 

tree-based learners, e.g. also for the tree based gbm model introduced in the next chapter. An explicit 

example showing this problem for time series forecasting can be found in the simulation study of 

Chapter 4.5.  

Secondly the interpretation capability of a single tree gets lost. But even though the individual 

covariate influence per observation cannot be determined an overall so-called importance plot might 

help. In this plot the sum of all split criterion improvements for each covariate is ranked. Alternatively 

the OOB prediction difference resulting from randomly permuting the values of one covariate can be 

calculated. The latter “importance” metric has the disadvantage that 2 highly correlated predictors 

result in low importance for both whereas they kind of share their importance in the first version. 

 

 

Benchmark Insights 

Actually the Random Forest is not capable of beating the best naïve method for the Tourism and M3-

INDUSTRY time series apart from the 1-step-ahead prediction in the Tourism case (see Chapter 5). 

Therefore Figure 4.6 and Table 4.3 show the results for the NN5 benchmark. The used tuning 

parameter values are discussed above.  

- Very drastic is the performance reduction shown over most horizon ranges and variants when 

reducing the lagset!  

- A Box-Cox transformation is only advantageous for the 1-step-ahead forecast in conjunction with a 

STL decomposition or seasonal dummies (SD). 

- Generally, the seasonality is best handled by using seasonal dummies. Tough, its performance 

highly depends on the additional step variants. E.g. the winner in the long run rfSD performs really 

bad for a 1-step-ahead forecast as already mentioned in Chapter 2.3.2! 

It must be mentioned that these results are different for the Tourism and M3-INDUSTRY time series as 

it can be identified in the figures and tables of Chapter 5. But this finding should not get too much 

attention as the Random Forest is performing worse than the best naïve method for these series. 

 

 

4.4 Boosting 

Boosting is, similar to Random Forests, an ensemble method. One main difference is that for boosting 

each model in the ensemble is applied to different data. E.g. for the first boosting algorithm invented 

for classification problem called AdaBoost, the misclassified observations in each run of the boosting 

algorithm get a higher weight in the following run. Each run is represented by the fit of a so-called 

weak learner, i.e. a model which is slightly better than guessing or equivalently spoken has high bias 

but low variance. for example tree stumps in case of AdaBoost. This can also be seen as the second 

main difference to bagging which aims to reduce the high variance of a low-biased learner by 

ensembling. Interestingly it can be shown that AdaBoost is equivalent to forward stagewise additive 
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modeling using exponential loss 𝐿(𝑦, 𝑓(𝒙)) = 𝑒−𝑦𝑓(𝒙) (with y coded as {−1; 1}) (see e.g. Hastie et al. 

(2009)). Here the solution of the empirical risk minimization in each step 

 

(�̂�𝑚 , �̂�𝑚) = 𝑎𝑟𝑔 min𝛽,𝜸 ∑ 𝐿(𝑦𝑖 , 𝑓𝑚−1(𝒙𝑖) + 𝛽𝑏(𝒙𝑖; 𝜸)) 𝑁
𝑖=1   (4.9) 

 

is used to update the model in an additive greedy way: 

 

𝑓𝑚(𝒙) = 𝑓𝑚−1(𝒙) + �̂�𝑚𝑏(𝒙; �̂�𝑚) ,  (4.10) 

 

with 𝑏(𝒙; 𝜸) denoting the weak base learner dependent on the model parameter 𝜸. Obviously this can 

be overtaken to the regression case with continuous target y and a quadratic loss which would result 

in repetitive fitting of residuals! Alternatively more robust (i.e. less sensitive to outliers) loss functions 

are absolute error 𝐿(𝑦, 𝑓(𝒙)) = |𝑦 − 𝑓(𝒙)| or the Huber loss, with the latter basically using quadratic 

loss for small and absolute loss for higher values of |𝑦 − 𝑓(𝒙)|.  

Even though the Huber loss is differentiable on the whole support, the optimization becomes much 

more complicated which gave rise to the very feasible Gradient Boosting algorithm, inspired by 

numerical optimization approaches and applicable to any differentiable loss function and arbitrary 

base learner. For this algorithm the pseudo residuals 𝑟𝑖𝑚 =  − [
𝜕𝐿(𝑦𝑖,𝑓(𝒙𝑖))

𝜕𝑓(𝒙𝑖)
]

𝑓=𝑓𝑚−1

are always (also in the 

classification case!) fitted with a so-called regression base learner, i.e. using a quadratic loss for 

determining the model parameter 

 

�̂�𝑚 = 𝑎𝑟𝑔 min𝜸 ∑ (𝑟𝑖𝑚 − 𝑏(𝒙𝑖; 𝜸))2 𝑁
𝑖=1   (4.11) 

 

whereas the update parameter �̂�𝑚 for (4.10) is afterwards calculated using the desired loss function: 

 

�̂�𝑚 = 𝑎𝑟𝑔 min𝛽 ∑ 𝐿(𝑦𝑖 , 𝑓𝑚−1(𝒙𝑖) + 𝛽𝑏(𝒙𝑖; �̂�𝑚)) 𝑁
𝑖=1    (4.12) 

 

Additionally if the base learner is not weak by design, e.g. a deeper tree than a stump, it can always 

be casted to have this property by multiplying the base learner with a regularization parameter 0<<1 

to prevent the model from overfitting. Usually this parameter is set to a small value of 0.1, 0.01 or 

0.001 leaving the number of model updates m as the only tuning parameter. 

Furthermore some improvement both in accuracy as well as processing speed can be usually 

achieved by sampling a fraction of the input data in each iteration, resulting in stochastic Gradient 

Boosting. 

Now different base learner can be used for 𝑏(𝒙; 𝜸). Very popular are trees, comprising around 6 levels 

defining the interaction depth (cf. Hastie et al. (2009)). Boosting this learner combines the ability of 

trees to model arbitrary interactions, comfortable dealing with missing values and the intrinsic feature 

selection property with improved nonlinear fitting capabilities and the resistance to overfitting, resulting 

in one of the most popular and easy-to-use predictive algorithms. This approach is named gbm in this 

thesis, following the R-package name providing this algorithm. One disadvantage of this approach is 

the lack of interpretability which can be tackled to some extent by an importance plot, describing the 

gain regarding the internal split criterion (e.g. quadratic loss for regression trees) per covariate 

aggregated over all splits (see also Chapter 4.3). Additionally partial dependence plots can be 

calculated for which in general the univariate, but controlled for other covariates, partial dependence of 
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f(X) on the kth covariate Xk can be defined as the expected value EX\k
f(Xk, X\k) with X\k denoting the 

covariable vector without the kth variable. This metric can be estimated at every empirical value of Xk 

by  1

N
∑ f (Xk, x\ki

)N
i=1 , see Hastie (2009). Even though this idea is applicable to every black-box 

algorithm, it is very popular for tree-based boosting algorithms for which the dependencies can be 

cheaply calculated. 

 

Other boosting models provide more direct interpretability capabilities. For instance, it is also possible 

to boost linear regression models. If the base learner is further chosen from a pool of base learners, 

each restricted to just one covariate, an implicit variable selection process can be realized. This 

component-wise boosting, named glmboost, provides covariate effect estimations, i.e. the familiar 

“betas”, but obviously without any confidence intervals. Furthermore it is possible to plot coefficient 

paths nicely illustrating the effect per covariate in dependence of the shrinkage parameter . 

Interestingly, it can be shown (see Hastie et al. (2009)) that the resulting paths are equal to the paths 

resulting from a lasso regression, i.e. a linear regression with L1 regularization, in case all lasso 

coefficients increase monotonically (as boosting paths are monotone due to the greedy construction 

principle). 

 

Figure 4.6:  Ranked MdASE by horizon range of Boosting models for Tourism competition. Results of 

best naïve (tsnaiveD) and one of the best classical models (arimaD) are added. 
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One can make gamboost models (see Fahrmeir et al. (2013) for a nice introduction into spline 

modeling). 

These kind of models have shown promising performance in several studies; see the comments on 

related work in Chapter 1.2. 

 

Further variants exist which for instance are treating dummy coded categorical covariates as one base 

learner (“Blockwise Boosting”) or using likelihood based loss functions applicable also for 

corresponding generalized linear models (“Likelihood Boosting”); cf. Tutz (2012). 

 

As always a common grid of tuning parameters is used for all benchmarks which comprise a tree 

sequence of 100, 500, 900, 1300 for the gbm with a constant “interaction depth” of 6 and a shrinkage 

of 0.01. The number of boosting steps for glmboost is varied from 100 to 3100 with a step size of 500. 

The gamboost iterations are the only parameter set that get different values depending on the 

benchmark, i.e. 100 for Toursim and M3, 500 for NN5 and the simulations of Chapter 4.5 and 3000 for 

the Arimasim series. All other possible parameter values are kept to the default values (see R-

documentation of gbm (Ridgeway (2015)), glmboost and gamboost (Hothorn et al. (2015))). 

 

 

Benchmark Insights 

Some initial findings are given for the Tourism benchmark data in Figure 4.6 and Table 4.4. Actually all 

boosting approaches are less performant than classical methods for the M3-INDUSTRY data as can 

be seen in Chapter 5.1.  

Method

Tourism

 h=1-1

Tourism

 h=1-6

Tourism

 h=1-12

Tourism

 h=1-24 Method

Tourism

 h=1-1

Tourism

 h=1-6

Tourism

 h=1-12

Tourism

 h=1-24

tsnaiveD 27.89 23.85 23.75 22.66 glmboostD 25.16 23.73 23.39 20.86

arimaD 23.40 22.41 21.48 19.61 glmboostD_RL 22.38 22.59 21.90 20.31

gbm 26.79 28.77 28.02 27.44 glmboostD_bc 25.54 22.58 22.56 21.90

gbm_RL 29.21 30.95 30.90 30.62 glmboostD_bc_RL 24.28 23.58 23.96 23.50

gbm_bc 26.99 31.45 29.74 29.34 glmboostSTL 24.27 23.25 22.29 21.85

gbm_bc_RL 29.86 32.52 31.92 32.14 glmboostSTL_RL 21.44 22.61 22.17 22.30

gbmSD 26.88 28.87 27.51 26.58 glmboostSTL_bc 25.52 21.35 21.98 21.63

gbmSD_RL 28.43 29.63 29.67 28.30 glmboostSTL_bc_RL 24.38 23.23 23.04 24.51

gbmSD_bc 27.21 30.21 29.14 28.26 gamboost 26.01 28.37 27.99 28.57

gbmSD_bc_RL 26.58 30.12 29.39 28.72 gamboost_RL 26.49 30.00 29.94 30.89

gbmD 27.01 24.83 25.52 24.55 gamboost_bc 26.43 28.21 27.48 28.71

gbmD_RL 25.01 22.09 22.37 21.20 gamboost_bc_RL 26.66 29.85 29.93 31.44

gbmD_bc 26.47 25.38 25.94 24.42 gamboostSD 25.43 26.93 26.78 27.36

gbmD_bc_RL 26.77 24.37 24.32 24.71 gamboostSD_RL 24.48 26.65 27.23 27.88

gbmSTL 27.79 27.99 27.73 26.18 gamboostSD_bc 25.22 26.05 25.87 27.19

gbmSTL_RL 29.48 28.85 28.01 27.39 gamboostSD_bc_RL 24.18 24.65 25.68 28.64

gbmSTL_bc 27.70 28.03 26.37 24.86 gamboostD 25.94 23.00 23.72 21.62

gbmSTL_bc_RL 27.36 26.64 26.63 25.26 gamboostD_RL 23.34 22.34 22.84 21.40

glmboost 23.63 23.69 24.43 23.83 gamboostD_bc 24.99 21.98 23.01 21.38

glmboost_RL 23.28 23.41 24.20 24.51 gamboostD_bc_RL 24.54 23.81 24.15 24.05

glmboost_bc 23.47 24.41 25.35 25.53 gamboostSTL 25.70 26.55 26.92 27.75

glmboost_bc_RL 22.65 24.70 26.40 27.45 gamboostSTL_RL 25.29 27.33 27.76 30.28

glmboostSD 23.54 22.16 22.26 20.94 gamboostSTL_bc 25.50 23.03 23.49 28.60

glmboostSD_RL 20.68 21.11 20.86 20.10 gamboostSTL_bc_RL 25.50 22.97 24.45 32.59

glmboostSD_bc 24.32 21.25 22.80 21.77

glmboostSD_bc_RL 23.97 22.70 21.77 23.42  

 

Table 4.4: Average Ranked MdASE corresponding to dots in Figure 4.6. Best model metric per 

horizon range is bold & underlined and shading denote Top20% accordingly. 
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Figure 4.6 and Table 4.4 exhibit the following insights. 

- Initial Box-Cox transformations show only sporadic effects. This holds also for the NN5 data (see 

Figure 5.3 in Chapter 5.3). 

- Reducing the lagset has a slight positive effect for glmboost for the 1-step-ahead forecast. But for 

gbm in conjunction with seasonal differencing (SD) it improves which is kind of surprising due to 

the automatic relevance detection which should be capable of eliminating the irrelevant lags. 

Actually this is not the case for the NN5 competition (see Chapter 5.3) which corresponds more to 

the expectations. 

- For gbm and gamboost the hard differencing (D) is the best deseasoning method in the long run. 

Again it should already be mentioned that this changes in case of the NN5 competition data 

showing best performance for the STL approaches (see again Chapter 5.3). But for the Tourism 

time series glmboostSD_RL is the best method over all horizon ranges and also beats arimaD 

except for the competition horizon objective of 2 years. In the NN5 case also a glmboost model 

(glmboostSTL_bc) is the winner in the long run, see Table 5.3. 

 

 

4.5 Simulation Study 

The following small simulation study is intended to shed some light on basic questions regarding the 

forecasting capability of Machine Learning algorithms for typical time series consisting of just trend 

and seasonality without using any initial detrending or deseasonalizing. In detail it should be answered 

whether the algorithms have general problems with trend or seasonality, which predictors are needed 

to model these typical time series shapes and which algorithms are most promising (in the simulated 

phenotypic situation).  

Figure 4.7 shows the simulated time series inspired by Pregels (1969) classification regarding trend 

and seasonality combinations. No explicit autoregressive or moving average component is included in 

the data generating process. Furthermore it was resigned to add any noise. The 15 seasons with a 

period of 12 might represent monthly time series comprising 15 years which models a seasonality 

between weekly (period = 7) and hourly (period = 24) as a compromise for typical time series periods. 

A similar study was conducted by Crone et al. (2009) showing superior performance of SVM over ANN 

and a classical ARIMA-ETS combination for nonlinear time series (progressive/degressive trend or 

multiplicative seasonality). Furthermore Robinzonov et al. (2010) compare boosting approaches for 

simulated time series with nonlinear autoregressive components, but no trend or seasonality. 

Even though the different simulations are not exactly on the same scale (due to increasing trend and 

season components) the MAE is chosen as only a comparison per time series is needed and no 

aggregation over simulations is conducted (cf. also Chapter 2.3.1). 

 

The investigated algorithms are ANN (nnet), SVM with radial (svmradial) and polynomial (svmpoly) 

kernel, Gaussian processes (gp), Random Forests (rf), Gradient Boosted Trees (gbm) and 

component-wise boosted linear (glmboost) and spline (gamboost) models. All these models are 

introduced in previous chapters. For rf, gbm and gamboost a special variant is also applied using an 

initial detrending (rfdetrend, gbmdetrend, gamboostdetrend) due to their incapability of forecasting a 

trend, see also the forthcoming explanations.  

 

All algorithms are tuned with a parameter set defined by some initial pretests to assure a reasonable 

parameter grid.  

Possible predictors for modeling a trend are the time variable itself, named t in the following (ranging 

from t=0-180 in the examples), a season variable counting up the seasons, i.e. season=1-15 



4 Machine Learning Approaches 

 

58 

(comprising 12 time points each) or the lag-1 information of the target variable (y_lag1). The season 

variable in contrast to the more fine grained t-variable might be advantageous in case of additional 

seasonality which can be modeled solely by a flexible nonlinear algorithm just using t (but not season) 

as a predictor and therefore “stealing some effect” from the seasonal predictors. Some additional tests 

have shown that all used algorithms, which are in general capable of modeling the season with the t-

variable, are robust against this competition of t-variable and seasonal predictors. Therefore it was 

decided to just use t and y_lag1 as possible trend predictors. 

For catching the seasonal variation a numeric variable representing the time point inside a season 

(S=1-12), or corresponding 12 seasonal dummy variables (SD), or the seasonal lagged target 

(y_lag12) can be utilized.  

Furthermore it is of interest how the algorithms perform in each situation when using a typical predictor 

set comprising variables for trend and season plus additional lag variables, which should catch any 

autoregressive influence (even though not present in the simulated data) by using at least y_lag1 & 

y_lag12 up to all lags of several seasons. It was decided to restrict the lag information to one season, 

i.e. y_lag1, y_lag2, … y_lag12 and compare the performance to a reduced lag-set of y_lag1 & y_lag12 

to test the sensitivity of the algorithms regarding irrelevant (lag-)variables.  

 

The model names are marked in bold in the following to allow a fast identification of the corresponding 

explanations for the model. 

 

 

Trend 

The top left plot in Figure 4.8 shows some of the problems machine learning algorithms exhibit when 

trying to predict a trend.  

Due to the sigmoid activation function the nnet predicts a damped trend.  

 

 

Figure 4.7: Simulated linear and nonlinear phenotypic time series. Reference line denotes split of train 

(with first 12 time points removed due to lag creation) and test data. Only time series with 

increasing/decreasing trend or seasonality (“multiplicative seasonality”) are “non-linear” in the time 

series context. 
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Also the SVM with a Gaussian kernel (svmradial) gets a damped prediction. This is a result of the 

locality property of this kernel. A polynomial kernel (svmpoly) is better suited in this example. But 

when assuming that the trend will not continue (similar to the “philosophy” of an ETS model), the more 

damped shape of svmradial might fit better. 

The Gaussian process (gp) shows a strong damping which actually reverts to a downward trend. 

Tree based algorithms (rf and gbm) cannot predict a trend. Actually, due to the construction principle 

of trees, they are incapable of predicting any value outside the training range of the target. A possible 

approach could be to detrend the data by a STL decomposition and use an exponential smoothing 

model (ETS(A,A,N)) for the trend in an additive way before rewinding it to the algorithms forecast of 

the rest, i.e. season + remainder. The resulting models rfdetrend and gbmdetrend are exactly 

overlaid as in this example the whole prediction is due to the ETS model. 

The glmboost using simple linear predictors is best suited to predict a linear trend resulting in a 

perfect fit. 

The gamboost prediction returns to the mean training value due to the locality of the basis-functions 

(P-Splines) used by the boosting base learner (gam). Here also an initial detrending is helping 

(gamboostdetrend). 

 

Using only y_lag1 as predictor (top right plot in Figure 4.8), results in catastrophic prediction for nnet, 

svmradial, svmpoly.  

 

Figure 4.8: Forecast capability of ML methods for time series consisting solely of a trend. The title in 

each plot denotes the used predictor set (see text for more explanation). A reference line splits off the 

test fold for the recursive multi-step forecast. The prediction inside the training fold (ranging from t=12-

132) represents a 1-step-ahead forecast. The legend also shows the MAE (mean absolute error) for 

each method in brackets. A small jittering is applied to the lines in the plot to rectify possible overlay. 
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The gp prediction is an artefact as no predictors are left in fact (see Chapter 4.2). 

 

When applying the typical predictor set (bottom left plot in Figure 4.8), the performance is lowered for 

nnet, svmradial and svmpoly and nearly unchanged for the rest, except interestingly for gp with a 

slight improvement and gamboost now running into a weird wiggly behavior. The shortage for nnet, 

svmradial and svmpoly can be soften by reducing the number of lags used (bottom right plot in 

Figure 4.8). The glmboost again is not affected at all and still shows the best fit!  

 

Important results for the forthcoming benchmark can be summarized as follows:  

- Tree based methods and component-wise spline boosting need detrending. 

- A trend predictor variable is needed as y_lag1 cannot do the job of forecasting a trend for some 

algorithms. 

- A reduced lagset might improve performance for some algorithms. 

 

 

Seasonality 

When trying to model a strict seasonality with the numeric season covariate (S = 1, 2, …, 12) rf, gbm 

and gamboost result in a perfect fit (top left plot in Figure 4.9). All other algorithms (nnet, svmradial, 

svmpoly, gp, glmboost) show a bad fit, most striking for the more linear approaches glmboost and 

svm_poly. Notice that any detrending does not have an influence in this case. 

 

This changes dramatically when using seasonal dummies instead of one numeric covariate. Now all 

approaches show a good or perfect fit. Some underfitting of peaks occur for nnet, svmradial, 

svmpoly, gp. 

The latter degradation for nnet and svmpoly is more emphasized when using y_lag12 as the only 

predictor. The bad performance of gp is again an artefact as no predictors are now used. Interestingly 

the rf benefits from using y_lag12 instead of seasonal dummies. All in all, the lag12 can nearly equally 

be used instead of seasonal dummies for most algorithms. 

With the typical predictor set only the kernel-based approaches (svmradial, svmpoly, gp) show a 

remarkable underfit which can be lowered for svmpoly by reducing the lag-set. All other algorithms 

(nnet, gbm, glmboost, gamboost) show a perfect fit, slightly reduced for nnet. 

 

Important results are: 

- A numeric season variable is not sufficient, seasonal dummies or seasonal lags are better suited 

for modeling stric seasonality. 

- Kernel based methods have more problems than other algorithms with modeling strict seasonality. 

 

 

Increased Seasonality (Multiplicative Seasonality) 

Figure 4.10 (top left plot) shows that using the trend variable together with seasonal dummies, except 

for svmpoly all algorithms (nnet, svmradial, gp, rf, gbm, glmboost, gamboost) exhibit a bad 

forecast, for gbm and rf mostly due to an extreme underfit for the lower peaks. This adapts to the less 

extreme underfit for the upper peaks when using season instead of t as a predictor (not shown here) 

and represents one of the rare situations where this interchanging has an effect. Remarkably the 

detrending has a negative effect now and hints to the limited capability of the STL decomposition in 

such data situations (nonlinear trend or seasonality). 
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When using y_lag12 for modeling the seasonality, a totally different picture results. The fit for all low-

performing models improve (nnet, svm_radial, rf, gbm, glmboost, gamboost) except for gp (which 

now has only t left as a predictor). Furthermore the detrending now has a negative influence most 

striking for gamboostdetrend ending up with a weird wiggly behavior, whereas the other detrended 

algorithms rfdetrend and gbmdetrend benefit from this switch. The error for sympoly is nearly the 

same but the peaks are now more outgrown than underfitted as previously.  Svmpoly still exibit the 

best fit together with nnet followed by gbm, all beating now glmboost which outgrows the peaks to 

much.  

Using the typical predictor set (middle left plot in Figure 4.10) glmboost returns to a perfect fit. All 

other models underfit the data most extreme for gp. The same holds for the reduced lagset. 

When removing the seasonal dummies and let y_lag1 - y_lag12 do the job (bottom left plot in Figure 

4.10) it has only a remarkable positive effect on svmpoly despite the positive effect of using y_lag12 

instead of seasonal dummies in previous discussion. But the effect for svmpoly lowered again when 

 

 

Figure 4.9: Forecast capability of ML methods for time series consisting solely of seasonal variation 

(see Figure 4.8 for description of plot elements). 
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reducing the lagset. On the other hand the glmboost suffers from this change as it outgrows the 

peaks too much.  

 

Most remarkable are the following points: 

- The linear glmboost can perfectly model increased seasonality when provided with seasonal and 

lagged information.  

- For all other models an initial Box-Cox transformation would cast the predictive properties to the 

strict seasonality case which mostly would be advantageous especially for the detrended 

algorithms.  

- The seasonal dummies are only needed for glmboost, for all other algorithms the lagset is 

sufficient. 

 

 

 

Figure 4.10: Forecast capability of ML methods for time series consisting solely of increasing 

seasonal variation, i.e. multiplicative seasonality (see Figure 4.8 for description of plot elements).  
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Trend + Seasonality 

From now on only the behavior using the typical predictor set (with and without the seasonal 

dummies) is discussed as trend and seasonality are occurring together.  

Figure 4.11 shows that a linear combination of trend and seasonality is best fit again with glmboost 

when using the typical predictor set. The svmpoly, now not influenced by reducing the lags in contrast 

to nnet and svmradial, is the runner-up together with the detrended nonlinear models rfdetrend, 

gbmdetrend and gamboostdetrend. Interestingly now the gamboost shows the weird wiggly 

behavior. As usual nnet and svmradial benefit from lag reduction. Gp again shows an extreme 

underfit already starting in the training fold. 

Using only the lagged information together with the trend does in general not improve the 

performance. 

 

Mind-keeping should be the fact that svmpoly performs nicely in this typical situation but is still clearly 

beaten by glmboost. 

 

 

Trend + Increasing Seasonality 

All findings from the previous situation can be overtaken except that detrending is now 

counterproductive as already mentioned in the “Increasing Seasonality” simulation, making svmpoly 

the only runner-up of glmboost (see Figure 4.12) followed by gbmdetrend. Again an initial BoxCox 

transformation would melt down the predictions to above simulation (trend + seasonality).  

 

Figure 4.11: Forecast capability of ML methods for time series consisting of trend and seasonal 

variation (see Figure 4.8 for description of plot elements). 
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Using the lagset without the seasonal dummies (not shown in plot) improves the svmpoly forecast 

and decreases the glmboost performance similar to the above “Increasing Seasonality” simulation. 

Also the svmradial suffers from this change. 

 

 

Increasing/Decreasing Trend + Increasing/Decreasing Seasonality 

Figure 4.13 shows in the top row the situation of increasing trend + increasing seasonality and in the 

bottom row the corresponding results for decreasing trend + decreasing seasonality, each again just 

for the typical predictor sets. Interestingly the glmboost is still the best model in both cases only 

reached by the detrended models and svmpoly in the decreasing case. For the increasing case the 

svmpoly performance now suffers a lot now from reducing the lags. All in all lots of the interesting 

behaviors already mentioned for the other simulations are occurring again, e.g. the wiggly gamboost 

prediction. The situation does not change when removing the seasonal dummies (not shown in Figure 

4.13). 

 

 

All above findings additionally suggest the following variants when applying the machine learning 

algorithms to the benchmark data: 

- Applying detrended versions of random forest, gradient boosted tree and gamboost models. 

- Usage of initial BoxCox transformation especially for increasing seasonality problems. 

- Removing of seasonal dummies and letting the lagged target value model the seasonality. 

- A reduced lag variant especially for neural net and kernel based methods. 

Furthermore it is expected that glmboost will outperform all other machine learning algorithms when 

the benchmark data is near to the phenotypic situations of the simulations. Also the classical ARIMA 

and ETS approaches together with the usual accompanying transformation (e.g. Box-Cox, 

Differencing, …) will then be more than competitive as they are capable of fitting such data situations. 

But it must be emphasized again that the simulations are solely caring about trend and seasonality but 

no autoregressive or covariate effects are regarded. Especially the latter point might push the gain for 

the NN5 competition data for other algorithms, especially the well-performing svmpoly, due to the 

important covariate interactions (described in Chapter 2.1) which cannot be automatically caught 

through a glmboost model as this model is incapable of automatic interaction modeling. 

 

 

Figure 4.12: Forecast capability of ML methods for time series consisting of trend and multiplicative 

seasonality (see Figure 4.8 for description of plot elements). 
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Figure 4.13: Forecast capability of ML methods for time series consisting of increasing trend and 

increasing season (top row) and decreasing trend and decreasing seasonality (see Figure 4.8 for 

description of plot elements). 
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5 Overall Benchmark Results 

This chapter discusses main results from all benchmarks regarding the comparison of classical and 

Machine Learning approaches for time series forecasting. Be also aware of the benchmark insights 

given throughout Chapter 4 concentrating on the Machine Learning algorithms as well as Chapter 3.5 

discussing solely the results for the classical models (including Bagging approaches). Furthermore 

Chapter 3 additionally comprises some analysis attached to the Figures included in this chapter for 

some special classical models. 

Moreover, this chapter presents results for models incorporating covariates for the NN5 benchmark. In 

fact the best NN5 models are tested again as a variant, denoted through the additional suffix 

COVARS, utilizing the covariates discussed in Chapter 2.1, i.e.: monthday, month, holiday, 

dayBefHoliday, dayAftHoliday, weekBefEaster, weekAftEaster. Furthermore a possible improvement 

by applying the sRecDir multi-horizon strategy (as opposed to the standard recursive strategy), 

introduced in Chapter 2.2, for these models is investigated. Notice that this strategy also allows to 

compare a strict direct forecasting strategy for the first season as explained in Chapter 2.2. The 

notation for the models using this different forecasting strategy consists of an additional suffix sRecDir. 

The identifiers for all other variants follow the procedure already used in previous chapters: D, STL 

and SD (and “none”) distinguish the handling of the seasonal component denoting seasonal hard-

differencing, STL decomposition and usage of seasonal dummies respectively. No suffix in this 

context stands for models trying to model the seasonality just with the target variable lags comprising 

all lags for the last two seasons which are added by default to all Machine Learning approaches (in 

order to model the autoregressive component) except for the RL flagged variants getting just a 

reduced lagset of the most recent and the first seasonal lag. As explained in Chapter 4.2 the Gaussian 

Process represents an exception in the sense that all lagged target variable information is just used for 

estimating the covariance structure. Furthermore the bc suffix identifes a model applied on a Box-Cox 

transformed series (cf. Chapter 3.1.1). 

For the tree-based rf (Random Forests) and gbm (boosted trees) models as well as for the gamboost 

(spline boosting) approach also the detrended approaches suggested in the Chapter 4.5 are tested. 

As always the results for several naïve models are added (cf. Chapter 2.3). For further explanations of 

the other models see the previous chapters. 

 

5.1 M3 

Figure 5.1 and Table 5.1 show the overall results for the M3-INDUSTRY benchmark data. Results for 

the other M3 categories are put into the Appendix due to the reasons discussed in Chapter 2.3, but 

some interesting findings for these categories are discussed at the end of this section. 

Even though the differences in performance between all models are small compared to the Tourism 

and NN5 time series, the following points are remarkable: 

- Generally all classical models outperform all Machine Learning approaches. Only for the 1-step-

ahead forecast glmboostSD_bc shows a remarkable performance ending up as the winner for this 

horizon.  

- ETS approaches are competitive with the ARIMA based model. Though, arimaSTL is the best 

overall non-ensemble method even though not the best for the 1-step-ahead forecast. 

- Classical Ensemble models show a good performance in general with bootME_randsel as the 

winner regarding the competition objective horizon range. 

- Under the Machine Learning algorithms linear boosting (glmboost) with its variants is the best 

approach. 

- Highly remarkable is the extreme bad performance Neural Nets (nnet) in any variant reveal for 

M3-INDUSTRY time series. They rarely even beat the tsnaiveSTL naïve method. 
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Figure 5.1: Overall Result (Ranked MdASE) by horizon range for M3-INDUSTRY competition. 
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Method

INDUSTRY

 h=1-1

INDUSTRY

 h=1-6

INDUSTRY

 h=1-12

INDUSTRY

 h=1-18 Method

INDUSTRY

 h=1-1

INDUSTRY

 h=1-6

INDUSTRY

 h=1-12

INDUSTRY

 h=1-18

snaive 131.11 125.66 111.21 109.13 rfdetrend 93.90 95.90 101.48 101.95

tsnaiveD 121.98 114.50 99.62 97.73 rfdetrend_RL 97.38 99.56 102.12 103.21

tsnaiveD_bc 121.35 114.92 100.08 97.14 rfdetrend_bc 92.03 94.80 98.33 101.32

tsnaiveSTL 96.68 91.13 91.12 87.32 rfdetrend_bc_RL 98.35 98.75 100.87 103.37

tsnaiveSTL_bc 98.25 92.04 92.26 87.40 rfdetrendSD 93.24 94.23 100.52 101.30

arima 88.35 84.39 84.93 87.08 rfdetrendSD_RL 92.08 91.70 95.30 95.67

arima_bc 85.51 84.21 84.62 86.58 rfdetrendSD_bc 92.02 94.34 98.73 101.15

arimaD 87.57 80.20 81.67 80.17 rfdetrendSD_bc_RL 91.08 90.48 94.70 95.56

arimaD_bc 86.60 79.91 80.72 81.16 rfdetrendD 101.94 106.02 105.78 103.65

arimaSTL 88.28 77.41 75.06 70.61 rfdetrendD_RL 106.92 106.97 110.87 108.71

arimaSTL_bc 90.27 77.09 76.19 74.30 rfdetrendD_bc 104.92 105.23 104.24 106.42

ets 89.55 84.11 81.21 83.22 rfdetrendD_bc_RL 105.02 109.06 112.04 112.07

ets_bc 87.89 82.15 81.58 81.99 rfdetrendSTL 94.94 95.52 99.19 101.31

etsd 86.63 81.98 80.86 81.52 rfdetrendSTL_RL 98.76 93.93 97.38 96.96

etsd_bc 86.81 81.06 80.34 81.81 rfdetrendSTL_bc 96.65 95.39 101.86 102.96

etsSTL 92.55 82.36 78.68 78.54 rfdetrendSTL_bc_RL 101.68 92.45 94.98 97.19

etsSTL_bc 93.27 81.67 77.69 79.17 gbm 94.54 96.21 98.54 98.25

tbats 92.58 90.69 89.53 87.70 gbm_RL 92.36 91.61 94.55 93.21

thetaf 102.50 110.21 105.24 102.70 gbm_bc 97.71 100.14 100.55 100.46

ens_mean 84.12 75.68 72.86 72.33 gbm_bc_RL 94.74 90.56 93.93 92.98

ens_median 83.31 74.73 73.82 72.81 gbmSD 92.62 94.27 94.49 95.02

bootMB_snaive 130.58 112.83 100.47 97.87 gbmSD_RL 94.92 88.23 85.72 87.30

bootME_snaive 131.89 128.04 113.46 110.87 gbmSD_bc 96.40 97.96 96.65 95.53

bootMB_arimaD 104.43 85.25 85.72 79.69 gbmSD_bc_RL 93.00 89.13 86.44 88.71

bootME_arimaD 89.91 81.39 80.20 79.37 gbmD 103.53 110.98 108.77 109.64

bootMB_randsel 102.51 82.51 77.76 73.92 gbmD_RL 102.62 109.89 100.98 100.05

bootME_randsel 88.82 77.80 73.65 70.35 gbmD_bc 101.43 111.85 107.29 109.18

nnet 132.25 147.08 145.93 148.62 gbmD_bc_RL 103.98 111.35 101.74 98.69

nnet_RL 125.31 136.96 138.29 142.30 gbmSTL 98.04 93.72 91.08 88.75

nnet_bc 148.05 160.20 161.19 161.33 gbmSTL_RL 94.47 88.56 87.90 87.07

nnet_bc_RL 145.80 155.95 159.38 159.62 gbmSTL_bc 101.54 95.58 92.10 92.67

nnetSD 137.83 152.50 155.22 153.01 gbmSTL_bc_RL 99.04 88.95 87.02 86.40

nnetSD_RL 135.77 163.03 167.11 168.96 gbmdetrend 91.71 101.69 104.41 103.58

nnetSD_bc 149.87 156.37 160.81 160.05 gbmdetrend_RL 97.36 101.40 101.03 104.55

nnetSD_bc_RL 150.99 161.16 163.69 164.90 gbmdetrend_bc 94.82 99.53 104.97 103.97

nnetD 100.23 116.00 111.10 110.79 gbmdetrend_bc_RL 95.23 99.17 101.17 102.26

nnetD_RL 102.10 110.88 105.50 100.88 gbmdetrendSD 92.93 100.60 102.81 102.33

nnetD_bc 121.96 122.89 112.46 114.74 gbmdetrendSD_RL 92.40 95.53 95.47 98.18

nnetD_bc_RL 120.83 123.94 114.09 111.83 gbmdetrendSD_bc 93.72 98.68 104.20 103.54

nnetSTL 132.35 145.91 148.57 151.08 gbmdetrendSD_bc_RL 91.95 98.11 98.68 102.68

nnetSTL_RL 124.04 132.98 138.01 142.32 gbmdetrendD 106.86 105.74 104.40 104.50

nnetSTL_bc 154.76 160.01 165.22 163.77 gbmdetrendD_RL 105.39 104.11 108.48 107.21

nnetSTL_bc_RL 148.14 157.89 162.04 162.01 gbmdetrendD_bc 103.26 105.23 104.77 105.63

svmradial 97.49 110.01 107.75 103.80 gbmdetrendD_bc_RL 104.69 102.67 106.18 108.98

svmradial_RL 98.98 96.97 101.60 105.24 gbmdetrendSTL 95.85 96.65 99.22 99.73

svmradial_bc 99.93 109.68 107.29 106.74 gbmdetrendSTL_RL 99.81 92.56 96.44 98.47

svmradial_bc_RL 99.84 97.86 99.72 103.19 gbmdetrendSTL_bc 99.16 98.32 100.58 100.98

svmradialSD 99.98 100.84 98.01 94.69 gbmdetrendSTL_bc_RL 102.05 93.29 98.97 98.28

svmradialSD_RL 94.83 94.17 92.61 88.53 glmboost 90.06 86.78 93.05 95.69

svmradialSD_bc 100.93 102.46 99.34 95.88 glmboost_RL 92.88 94.17 96.89 98.65

svmradialSD_bc_RL 95.20 95.69 93.58 87.76 glmboost_bc 89.33 85.37 95.49 96.71

svmradialD 98.60 107.58 105.86 103.57 glmboost_bc_RL 93.55 93.45 97.65 98.91

svmradialD_RL 97.82 104.61 99.12 97.23 glmboostSD 86.27 83.11 90.71 90.24

svmradialD_bc 102.52 109.67 103.86 103.77 glmboostSD_RL 95.67 86.90 88.90 87.10

svmradialD_bc_RL 97.63 105.06 99.79 96.06 glmboostSD_bc 82.25 81.51 90.53 91.34

svmradialSTL 100.99 104.47 101.22 99.39 glmboostSD_bc_RL 93.64 84.36 88.55 88.85

svmradialSTL_RL 96.43 95.11 98.13 100.20 glmboostD 94.70 99.39 97.37 96.15

svmradialSTL_bc 101.72 101.29 100.05 97.59 glmboostD_RL 99.37 103.90 96.29 94.48

svmradialSTL_bc_RL 97.27 91.80 95.96 99.11 glmboostD_bc 93.87 100.57 94.44 93.39

svmpoly 99.05 106.66 107.76 108.18 glmboostD_bc_RL 99.34 104.62 96.02 93.65

svmpoly_RL 92.83 95.58 99.21 103.33 glmboostSTL 85.10 84.49 89.19 87.80

svmpoly_bc 102.02 104.18 104.22 105.05 glmboostSTL_RL 92.81 86.46 91.22 89.01

svmpoly_bc_RL 94.11 94.80 99.59 102.30 glmboostSTL_bc 87.72 80.26 88.31 87.98

svmpolySD 93.57 100.90 101.38 99.37 glmboostSTL_bc_RL 94.20 83.90 89.53 87.66

svmpolySD_RL 93.31 93.96 93.68 93.55 gamboost 96.93 98.31 106.89 110.47

svmpolySD_bc 91.69 99.23 98.44 98.09 gamboost_RL 99.28 95.91 104.28 107.14

svmpolySD_bc_RL 93.16 89.09 90.57 88.27 gamboost_bc 96.86 98.19 104.12 109.26

svmpolyD 98.37 110.03 107.32 105.65 gamboost_bc_RL 99.74 97.14 103.86 108.84

svmpolyD_RL 95.92 103.06 95.24 94.00 gamboostSD 92.24 93.62 102.81 106.64

svmpolyD_bc 102.12 111.57 106.29 103.71 gamboostSD_RL 91.75 91.59 100.39 104.16

svmpolyD_bc_RL 96.39 103.74 94.39 91.98 gamboostSD_bc 91.29 92.95 100.65 105.58

svmpolySTL 95.18 95.88 94.42 97.95 gamboostSD_bc_RL 92.78 91.47 100.19 105.24

svmpolySTL_RL 90.89 85.77 90.23 91.07 gamboostD 92.42 100.17 95.50 95.58

svmpolySTL_bc 97.28 98.52 97.01 97.29 gamboostD_RL 97.62 103.45 95.24 93.22

svmpolySTL_bc_RL 91.71 85.23 90.70 92.64 gamboostD_bc 94.06 96.85 92.44 94.14

gp 129.63 129.42 127.46 128.06 gamboostD_bc_RL 98.51 106.17 97.75 94.41

gp_RL 130.07 129.37 127.97 127.40 gamboostSTL 94.37 91.31 103.14 108.88

gp_bc 130.86 130.34 127.72 128.84 gamboostSTL_RL 95.68 93.47 107.03 113.61

gp_bc_RL 131.16 129.89 128.44 129.11 gamboostSTL_bc 97.77 91.71 103.61 109.51

gpSD 123.31 116.07 109.13 103.44 gamboostSTL_bc_RL 96.64 91.63 104.87 114.38

gpSD_RL 124.79 120.10 110.92 103.90 gamboostdetrend 93.14 97.39 103.08 103.57

gpSD_bc 123.41 116.17 107.88 101.02 gamboostdetrend_RL 96.61 94.93 99.80 99.58

gpSD_bc_RL 121.28 115.44 106.20 99.66 gamboostdetrend_bc 91.84 98.39 101.82 102.55

gpD 123.91 126.35 117.26 116.98 gamboostdetrend_bc_RL 95.69 94.32 98.49 98.60

gpD_RL 125.44 127.62 117.79 117.69 gamboostdetrendSD 92.42 95.25 101.88 102.83

gpD_bc 124.63 125.53 118.97 117.86 gamboostdetrendSD_RL 94.40 92.63 97.41 98.35

gpD_bc_RL 126.52 126.71 117.36 117.56 gamboostdetrendSD_bc 91.32 96.93 100.81 102.34

gpSTL 119.63 114.38 109.20 109.14 gamboostdetrendSD_bc_RL 93.91 94.03 97.95 98.08

gpSTL_RL 121.62 113.63 109.57 109.06 gamboostdetrendD 104.61 105.73 106.28 107.04

gpSTL_bc 120.67 112.68 108.38 109.91 gamboostdetrendD_RL 101.48 102.97 106.86 104.75

gpSTL_bc_RL 122.66 113.45 109.22 109.84 gamboostdetrendD_bc 104.72 106.43 107.29 110.22

rf 99.45 101.64 100.45 98.35 gamboostdetrendD_bc_RL 100.04 104.20 108.38 107.42

rf_RL 98.67 92.28 91.30 92.77 gamboostdetrendSTL 95.56 97.53 102.66 102.97

rf_bc 100.77 101.56 98.63 98.04 gamboostdetrendSTL_RL 95.58 91.95 95.95 97.89

rf_bc_RL 98.46 93.31 92.17 93.83 gamboostdetrendSTL_bc 95.86 97.06 102.35 101.47

rfSD 100.05 99.23 98.33 97.06 gamboostdetrendSTL_bc_RL 98.85 91.83 98.90 99.12

rfSD_RL 92.20 91.10 87.49 87.38

rfSD_bc 99.36 100.06 98.51 97.83

rfSD_bc_RL 94.17 91.43 88.03 88.78

rfD 101.03 106.53 102.46 101.95

rfD_RL 105.54 113.50 109.41 106.56

rfD_bc 100.40 102.33 99.57 98.43

rfD_bc_RL 106.07 113.11 108.20 105.67

rfSTL 98.99 91.97 90.13 87.51

rfSTL_RL 96.49 86.58 85.78 85.89

rfSTL_bc 100.96 93.87 88.80 88.67

rfSTL_bc_RL 98.72 85.89 85.10 86.86  

Table 5.1: Average Ranked MdASE corresponding to dots in Figure 5.1. Best model metric per 

horizon range is bold & underlined and shading denote Top10% accordingly. 
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- Detrending for Random Forests (rf), boosted trees (gbm) and boosted splines (gamboost) does 

not improve the forecasts. 

- Gaussian Processes (gp) perform really bad especially in the long run. 

 

To keep results for the M3 competition together, also some findings just shown in the Appendix for the 

other categories should be listed here. Keep in mind that except for the MICRO category all other time 

series are best or at least very satisfying forecasted with a naïve method making any conclusions 

regarding the model performances highly questionable as already discussed in Chapter 2.3.2 (cf. 

especially Figure 2.5): 

- M3-DEMOGRAPHIC: Apart from the1-step-ahead forecast tsnaiveSTL is clearly the best method 

for all other horizon ranges. 

- M3-FINANCE: In the long run gamboostdetrendSD_RL ends up as the winner. 

- M3-MACRO: The detrended variants perform well but also tsnaiveSTL does, indicating that the 

decomposition is good in extracting the trend component and is therefore mainly responsible for 

the forecast for these time series. 

- M3-MICRO: Gaussian Processes performs remarkably good with gpSTL_bc be the overall winner 

for the 1-season and the runner up for the half season and the competition horizon range. 

Interestingly ARIMA does not perform nice, actually even worse than ETS model for this category, 

which, together with the result for Gaussian Processes, indicates that the covariance structure is 

complicated and highly responsible for the outcome. 

 

 

5.2 Tourism 

For the Tourism time series some different findings pop up when examining Figure 5.2 and the 

corresponding Table 5.2: 

- Generally Support Vector Machines (svmpoly and svmradial) together with boosted linear 

regression models (glmboost) are now competitive to classical methods. This confirms the result 

of the simulation study and indicates that many of the Tourism time series are similar to the 

phenotypic ones used in the simulation of Chapter 4.5. 

- Moreover svmpolySD_RL is now the best overall method getting the first position starting from the 

half-season forecast horizon range on. 

- ETS models are now inferior to ARIMA based ones. Especially the hard-differenced arimaD 

performs quite well and is by itself competitive to the classical bagging approaches (cf. also the 

findings in Chapter 3.5). 

- Modeling seasonality solely with the lagged target information is clearly worse for the Machine 

Learning approaches at least in the long run. 

- Box-Cox transformations have only a positive influence on the SVM in conjunction with a STL 

decomposition. 

- Detrending the models that cannot model a future trend ends up with clearly worse forecast. This 

finding indicates that splitting the forecast into two models, i.e. ETS(A,A,N) for the trend and the 

Machine Learning approach for the rest, can be contra productive which might also result from the 

suboptimal decomposition. Actually a better detrending algorithm might help here. 

- It seems that hard-differencing is a good initial step to tackle seasonality for these time series. At 

least in the long run only this deseasoning approach enables gbm and gamboost to beat the 

tsnaiveD model. 
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Figure 5.2: Overall Result (Ranked MdASE) by horizon range for Tourism competition. 
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Method

Tourism

 h=1-1

Tourism

 h=1-6

Tourism

 h=1-12

Tourism

 h=1-24 Method

Tourism

 h=1-1

Tourism

 h=1-6

Tourism

 h=1-12

Tourism

 h=1-24

snaive 107.84 91.69 97.16 97.85 rfdetrend 102.57 121.77 124.15 128.17

tsnaiveD 106.73 85.75 85.94 82.42 rfdetrend_RL 114.23 127.19 127.24 133.07

tsnaiveD_bc 114.05 93.45 92.88 92.95 rfdetrend_bc 110.65 123.43 119.55 123.98

tsnaiveSTL 113.28 130.88 126.91 119.36 rfdetrend_bc_RL 125.35 134.68 135.54 138.18

tsnaiveSTL_bc 110.80 103.07 108.49 105.10 rfdetrendSD 101.11 121.90 123.20 127.75

arima 89.92 94.16 87.21 84.93 rfdetrendSD_RL 104.47 116.07 120.78 125.89

arima_bc 94.64 89.58 86.60 85.85 rfdetrendSD_bc 111.80 120.83 117.54 122.16

arimaD 88.79 81.20 77.63 72.18 rfdetrendSD_bc_RL 114.44 118.93 119.04 122.25

arimaD_bc 92.99 79.14 77.92 76.72 rfdetrendD 107.55 113.59 128.13 129.48

arimaSTL 102.57 114.37 108.40 101.95 rfdetrendD_RL 104.54 120.90 130.58 130.61

arimaSTL_bc 100.58 88.10 83.33 81.20 rfdetrendD_bc 108.41 112.57 123.26 125.41

ets 102.94 90.63 87.78 84.06 rfdetrendD_bc_RL 110.68 115.66 127.50 127.72

ets_bc 103.45 96.37 91.79 85.18 rfdetrendSTL 105.41 117.45 126.79 127.83

etsd 103.68 90.39 88.57 84.77 rfdetrendSTL_RL 114.35 117.33 120.61 127.76

etsd_bc 105.22 101.21 97.08 89.01 rfdetrendSTL_bc 116.07 116.06 119.73 120.71

etsSTL 105.19 119.95 111.68 105.38 rfdetrendSTL_bc_RL 116.84 111.41 117.17 120.96

etsSTL_bc 103.33 93.41 86.86 84.22 gbm 100.03 105.09 102.53 100.45

tbats 102.75 90.61 89.04 85.22 gbm_RL 110.87 112.79 111.37 111.70

thetaf 117.92 152.45 147.06 140.89 gbm_bc 101.87 114.89 108.20 106.47

ens_mean 93.15 85.33 77.47 72.14 gbm_bc_RL 113.29 119.37 114.99 116.66

ens_median 94.35 84.78 78.73 72.19 gbmSD 101.21 104.69 100.26 97.32

bootMB_snaive 99.02 88.04 85.48 80.42 gbmSD_RL 107.14 107.25 106.88 102.67

bootME_snaive 107.29 90.06 96.84 96.96 gbmSD_bc 102.87 110.00 105.62 102.61

bootMB_arimaD 102.98 90.23 83.39 78.18 gbmSD_bc_RL 101.49 109.42 105.76 103.34

bootME_arimaD 88.32 78.83 73.01 67.80 gbmD 101.93 88.87 91.74 90.44

bootMB_randsel 103.11 87.20 79.34 71.70 gbmD_RL 95.23 79.86 81.13 78.59

bootME_randsel 91.80 82.35 75.82 68.72 gbmD_bc 99.50 91.67 94.64 89.93

nnet 108.54 118.59 115.10 109.51 gbmD_bc_RL 100.80 89.22 88.83 90.78

nnet_RL 102.95 115.74 113.83 121.19 gbmSTL 104.50 100.82 100.06 96.99

nnet_bc 113.31 131.10 129.31 127.09 gbmSTL_RL 111.77 104.58 101.09 100.13

nnet_bc_RL 119.48 134.98 133.16 137.40 gbmSTL_bc 104.42 101.05 96.08 91.66

nnetSD 99.18 111.00 110.28 107.19 gbmSTL_bc_RL 103.15 95.57 95.72 92.21

nnetSD_RL 95.81 108.54 117.91 118.84 gbmdetrend 105.64 125.73 127.26 130.85

nnetSD_bc 116.86 126.05 124.91 121.66 gbmdetrend_RL 111.72 126.52 128.52 132.76

nnetSD_bc_RL 105.11 117.20 116.79 117.66 gbmdetrend_bc 114.89 127.08 124.95 129.97

nnetD 105.57 90.10 96.40 95.58 gbmdetrend_bc_RL 120.26 129.66 129.30 132.71

nnetD_RL 92.52 84.43 85.94 82.43 gbmdetrendSD 105.83 124.00 125.25 128.10

nnetD_bc 107.34 89.54 89.55 90.07 gbmdetrendSD_RL 109.46 116.93 124.45 127.04

nnetD_bc_RL 105.60 88.70 88.50 88.47 gbmdetrendSD_bc 113.41 124.64 123.48 127.85

nnetSTL 106.56 110.46 112.40 110.93 gbmdetrendSD_bc_RL 117.19 120.92 121.99 125.65

nnetSTL_RL 107.60 106.31 106.38 110.07 gbmdetrendD 107.50 113.67 126.17 129.96

nnetSTL_bc 117.97 119.86 124.25 124.08 gbmdetrendD_RL 107.99 116.14 128.57 128.76

nnetSTL_bc_RL 105.35 112.31 113.25 114.88 gbmdetrendD_bc 106.85 113.57 124.72 123.74

svmradial 102.68 106.70 97.24 94.53 gbmdetrendD_bc_RL 109.50 113.45 124.53 124.99

svmradial_RL 90.58 101.54 99.05 98.96 gbmdetrendSTL 109.96 121.37 127.67 132.28

svmradial_bc 101.84 106.80 99.48 96.44 gbmdetrendSTL_RL 111.99 124.37 124.99 128.26

svmradial_bc_RL 95.15 102.19 99.39 103.37 gbmdetrendSTL_bc 115.56 118.87 122.12 121.28

svmradialSD 95.70 98.14 88.86 85.29 gbmdetrendSTL_bc_RL 116.14 113.28 115.73 118.30

svmradialSD_RL 85.69 84.60 74.73 71.95 glmboost 89.10 86.04 88.27 87.22

svmradialSD_bc 91.08 92.32 84.01 79.64 glmboost_RL 89.15 85.78 87.85 89.27

svmradialSD_bc_RL 83.73 78.79 74.37 68.11 glmboost_bc 87.87 87.36 91.91 92.71

svmradialD 103.13 86.99 90.00 82.70 glmboost_bc_RL 86.67 89.87 95.72 100.14

svmradialD_RL 87.67 78.70 80.37 75.50 glmboostSD 88.49 79.72 79.92 77.31

svmradialD_bc 98.38 88.21 90.14 85.70 glmboostSD_RL 79.08 76.52 75.90 74.26

svmradialD_bc_RL 93.62 87.80 87.87 88.05 glmboostSD_bc 91.01 76.67 82.14 79.23

svmradialSTL 103.92 105.10 97.42 92.84 glmboostSD_bc_RL 91.67 82.42 79.86 86.65

svmradialSTL_RL 92.19 94.04 86.52 85.81 glmboostD 95.95 85.28 84.21 77.22

svmradialSTL_bc 97.89 87.08 83.19 76.95 glmboostD_RL 85.26 81.23 79.94 75.59

svmradialSTL_bc_RL 94.21 78.16 74.59 73.38 glmboostD_bc 95.74 80.89 81.46 80.47

svmpoly 98.33 98.86 99.38 97.75 glmboostD_bc_RL 92.12 86.46 87.47 87.11

svmpoly_RL 89.66 89.97 90.58 93.39 glmboostSTL 91.09 83.96 81.04 80.35

svmpoly_bc 96.63 96.62 94.28 95.27 glmboostSTL_RL 82.15 81.11 80.36 81.46

svmpoly_bc_RL 92.09 90.41 92.90 96.54 glmboostSTL_bc 94.68 76.62 78.41 78.83

svmpolySD 98.67 85.34 86.31 82.69 glmboostSTL_bc_RL 93.36 84.69 84.01 90.50

svmpolySD_RL 86.60 72.28 69.89 65.07 gamboost 97.14 102.59 100.90 104.63

svmpolySD_bc 92.99 83.05 84.69 81.22 gamboost_RL 99.64 108.55 107.40 112.22

svmpolySD_bc_RL 91.97 78.54 77.09 79.99 gamboost_bc 99.02 101.91 99.11 104.43

svmpolyD 105.71 93.19 91.95 85.21 gamboost_bc_RL 99.31 107.16 107.20 114.76

svmpolyD_RL 87.16 79.54 78.19 75.09 gamboostSD 95.40 97.82 96.92 100.54

svmpolyD_bc 98.00 90.08 91.01 85.90 gamboostSD_RL 93.68 96.74 98.48 103.18

svmpolyD_bc_RL 94.65 86.88 85.62 87.62 gamboostSD_bc 95.58 94.65 94.23 100.21

svmpolySTL 99.59 97.33 96.28 91.60 gamboostSD_bc_RL 90.90 88.87 92.59 105.27

svmpolySTL_RL 85.53 83.31 77.70 80.48 gamboostD 98.06 82.93 86.07 79.88

svmpolySTL_bc 98.75 82.83 83.41 79.28 gamboostD_RL 89.03 80.50 83.09 78.95

svmpolySTL_bc_RL 90.67 77.07 76.05 76.56 gamboostD_bc 94.81 80.19 83.22 79.61

gp 108.16 140.62 141.88 139.07 gamboostD_bc_RL 92.75 87.49 88.49 88.79

gp_RL 109.28 139.45 140.82 137.89 gamboostSTL 96.94 95.55 97.17 101.91

gp_bc 111.89 146.99 143.48 140.50 gamboostSTL_RL 96.69 99.03 100.74 111.11

gp_bc_RL 112.68 146.74 142.38 140.64 gamboostSTL_bc 94.89 82.97 85.85 105.35

gpSD 102.37 104.71 93.18 90.22 gamboostSTL_bc_RL 96.79 82.40 88.47 119.47

gpSD_RL 103.13 105.81 94.09 90.53 gamboostdetrend 105.80 124.84 127.42 130.37

gpSD_bc 102.18 101.64 94.25 92.54 gamboostdetrend_RL 105.79 121.12 124.97 128.99

gpSD_bc_RL 102.35 101.58 92.93 92.43 gamboostdetrend_bc 112.24 120.33 116.25 124.12

gpD 118.12 96.48 105.53 107.73 gamboostdetrend_bc_RL 111.72 120.15 123.55 129.69

gpD_RL 117.99 95.96 104.76 106.62 gamboostdetrendSD 104.85 123.16 126.34 129.31

gpD_bc 118.11 96.89 104.88 107.41 gamboostdetrendSD_RL 104.37 116.45 121.65 126.01

gpD_bc_RL 118.19 97.34 105.00 109.94 gamboostdetrendSD_bc 111.62 119.25 116.12 121.75

gpSTL 107.33 111.68 110.44 110.89 gamboostdetrendSD_bc_RL 109.70 112.50 116.28 120.77

gpSTL_RL 107.34 111.86 110.20 110.41 gamboostdetrendD 103.97 112.18 126.97 128.47

gpSTL_bc 106.08 96.68 93.78 96.85 gamboostdetrendD_RL 102.06 115.28 127.97 128.14

gpSTL_bc_RL 106.53 97.45 94.22 98.33 gamboostdetrendD_bc 104.84 110.26 116.55 121.95

rf 92.12 93.98 91.35 89.88 gamboostdetrendD_bc_RL 110.11 114.19 120.70 121.89

rf_RL 104.93 108.66 104.65 102.37 gamboostdetrendSTL 105.74 119.41 126.68 128.77

rf_bc 92.12 101.74 95.80 93.94 gamboostdetrendSTL_RL 107.97 116.84 119.27 124.20

rf_bc_RL 109.48 118.44 112.76 111.31 gamboostdetrendSTL_bc 113.80 116.63 118.44 120.22

rfSD 90.60 91.90 89.01 87.35 gamboostdetrendSTL_bc_RL 113.56 110.57 115.84 118.17

rfSD_RL 88.81 93.21 87.67 85.98

rfSD_bc 91.93 98.92 92.98 91.42

rfSD_bc_RL 96.73 108.36 100.13 100.73

rfD 102.08 84.88 88.65 86.25

rfD_RL 96.47 87.38 90.85 86.15

rfD_bc 97.73 85.25 91.86 88.66

rfD_bc_RL 101.46 104.76 102.92 103.32

rfSTL 95.94 88.16 89.79 83.56

rfSTL_RL 104.08 97.56 93.83 95.89

rfSTL_bc 100.67 91.52 88.15 83.72

rfSTL_bc_RL 103.64 96.55 92.12 88.37  

Table 5.2: Average Ranked MdASE corresponding to dots in Figure 5.2. Best model metric per 

horizon range is bold & underlined and shading denote Top10% accordingly. 
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5.3 NN5 

The NN5 benchmark datasets comprise most time related information compared to the Tourism and 

M3 data. This can be seen in Figure 5.3 and Table 5.3 by the low performance of the naïve forecasts 

which in turn means that the other algorithms exploit the time information more fine grained.  

The following findings (apart from covariate effects and the sRecDir forecast strategy presented later) 

can be further identified in Figure 5.3 and Table 5.3: 

- Naive forecast, including STL variants, are definitely worse which indicates that the data 

comprises more information than just season and trend. 

- Classical models are now clearly inferior to some Machine Learning approaches. 

- Even though hard-differencing the seasonality is inevitable for the ARIMA models here, it is clearly 

the worst deseasoning method for the Machine Learning models. 

- Using just the lagged target value information for modeling seasonality results in drastically bad 

forecasts. The clearly reduced performance when even reducing the lagset indicates that further 

lags beside the most recent and the first seasonal one comprise prediction relevant information.  

- Again, detrending in advance makes it even worse for rf, gbm and gamboost models, see also the 

explanations in previous finding list for Tourism benchmark.  

- SVM models are now the best models (apart from the 1-step-ahead forecast, see following 

comment) without a big difference between a radial and a polynomial kernel. 

- Even though gamboostSTL_RL_bc is best 1-step-ahead glmboost is clearly better in the long run 

which confirms again the simulation results from Chapter 4.5. 

- Again, Gaussian Processes are not competitive. 

 

The best models for the competition horizon range are further tested adding the covariate set 

discussed above. In fact the tested models are: nnetSD, svmradialSD, svmradialSD_RL, svmpolySD, 

svmpolySD_RL, svmradialSD_bc_RL, svmpolySD_bc_RL, rfSD, gbmSD, glmboostSTL_bc, 

glmboostSTL_bc_RL. Also a sRecDir variant is processed. Main findings regarding these alternatives 

are: 

- For arimaD the covariates are internally processed as a linear model. Actually using the covariates 

makes forecasting worse even though weekBefEaster should have a positive influence on the 

prediction (cf. Chapter 2.1).  

- For the other models the effect of adding the covariates differs. All in all the change compared to 

models without any covariates is just slight. But actually if investigating the sMAPE which is also 

the competition metric, a main change can be identified for svmradialSD_COVARS. The final 

value of sMAPE=19.6% clearly beats the best models used in the official competition. As can be 

seen on Crone (2009b) the top-5 performing teams get a sMAPE of 19.9%, 20.4%, 20.5%, 20.6%, 

21.1%; see also the explanation to the top-2 models in Chapter 2.1, i.e. Wildi (2010) and Andrawis 

et al. (2011). Furthermore Taieb et al. (2012c) used this data and end up with a sMAPE of 20.3% . 

They applied and averaged different forecasting strategies (recursive, direct and combinations) 

using a nearest neighbor prediction algorithm and utilize the deseasoning approach from Andrawis 

et al. (2011). Even though the SVM models showed superior performance throughout the 

investigations of this thesis and is therefore a top candidate, it must be admitted that for a 

completely honest comparison with the old competition results the final selection of the best model 

had to be based solely on the training set. Anyway this result is still remarkable!  

- The sRECDIR does not improve the forecasts; even not for the first season where this strategy 

equals a Direct forecast approach. This finding is in line with the well-known experience that direct 

strategies are often worse and the question for the best forecast strategy is often an empirical one, 

i.e. depends on the investigated time series. 
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Figure 5.3: Overall Result (Ranked MdASE) by horizon range for NN5 competition. 
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Method

Atm

 h=1-1

Atm

 h=1-7

Atm

 h=1-28

Atm

 h=1-56 Method

Atm

 h=1-1

Atm

 h=1-7

Atm

 h=1-28

Atm

 h=1-56

snaive 130.86 119.59 122.49 112.99 rfdetrend 125.53 149.35 145.86 141.19

tsnaiveD 132.17 119.50 121.55 111.96 rfdetrend_RL 143.04 154.47 170.00 174.20

tsnaiveD_bc 131.98 119.73 122.04 113.14 rfdetrend_bc 130.98 152.51 149.21 144.74

tsnaiveSTL 108.85 146.78 145.34 147.02 rfdetrend_bc_RL 141.24 158.08 175.05 178.75

tsnaiveSTL_bc 106.15 149.86 147.38 143.59 rfdetrendSD 124.56 145.70 145.30 142.27

arima 132.13 128.59 136.76 151.75 rfdetrendSD_RL 126.23 145.18 144.98 143.98

arima_bc 131.69 135.26 146.78 160.89 rfdetrendSD_bc 131.42 147.19 148.58 145.85

arimaD 112.63 95.34 72.69 69.41 rfdetrendSD_bc_RL 129.69 146.78 151.69 145.79

arimaD_bc 98.08 101.23 74.26 76.08 rfdetrendD 130.10 150.27 153.73 155.94

arimaSTL 85.36 94.25 77.59 74.26 rfdetrendD_RL 137.73 148.51 165.58 177.36

arimaSTL_bc 73.21 90.75 85.63 77.67 rfdetrendD_bc 134.51 153.70 152.00 154.97

ets 121.71 102.04 97.66 92.16 rfdetrendD_bc_RL 128.08 154.18 161.49 177.24

ets_bc 110.59 111.32 92.11 94.18 rfdetrendSTL 123.42 148.47 147.47 146.64

etsd 108.97 103.95 89.68 84.08 rfdetrendSTL_RL 134.08 140.86 141.12 141.70

etsd_bc 104.88 112.58 88.87 90.44 rfdetrendSTL_bc 124.00 142.07 148.87 152.40

etsSTL 111.00 102.36 83.95 79.27 rfdetrendSTL_bc_RL 127.14 150.73 148.25 146.63

etsSTL_bc 86.41 96.09 94.19 84.58 gbm 111.58 101.94 94.68 95.74

tbats 111.58 114.10 96.69 88.70 gbm_RL 129.42 128.79 140.30 149.71

thetaf 195.35 195.56 194.83 196.03 gbm_bc 101.93 111.87 97.96 99.17

ens_mean 97.53 99.41 81.05 74.01 gbm_bc_RL 124.11 137.07 147.51 149.91

ens_median 101.21 100.12 81.17 76.13 gbmSD 107.54 93.05 95.01 79.23

bootMB_snaive 109.69 105.09 101.51 95.97 gbmSD_RL 97.57 100.86 105.70 94.12

bootME_snaive 131.43 120.86 123.25 113.62 gbmSD_bc 100.04 97.76 94.68 86.23

bootMB_arimaD 116.15 90.05 76.14 72.19 gbmSD_bc_RL 91.02 106.27 115.59 108.41

bootME_arimaD 111.13 96.41 71.73 69.57 gbmD 122.62 101.56 116.36 133.59

bootMB_randsel 103.57 91.68 84.12 73.42 gbmD_RL 123.30 107.95 118.63 120.92

bootME_randsel 100.34 98.14 80.62 72.35 gbmD_bc 120.75 106.93 116.79 128.95

nnet 109.89 99.33 99.43 105.04 gbmD_bc_RL 114.65 102.94 114.14 123.64

nnet_RL 148.48 141.20 160.29 181.86 gbmSTL 98.87 94.30 101.71 98.78

nnet_bc 101.68 122.14 134.50 148.27 gbmSTL_RL 84.94 93.95 94.12 83.09

nnet_bc_RL 149.43 154.89 169.21 183.33 gbmSTL_bc 95.69 105.50 104.04 99.81

nnetSD 114.38 88.59 78.99 65.95 gbmSTL_bc_RL 71.63 98.60 105.71 99.84

nnetSD_RL 95.15 84.87 67.86 72.72 gbmdetrend 129.28 150.21 150.55 151.53

nnetSD_bc 105.05 96.87 87.78 91.52 gbmdetrend_RL 133.86 150.41 155.36 163.10

nnetSD_bc_RL 103.60 101.90 90.75 96.10 gbmdetrend_bc 124.61 145.91 147.75 151.44

nnetD 114.95 105.07 111.78 105.43 gbmdetrend_bc_RL 139.47 154.54 161.97 168.15

nnetD_RL 108.85 97.01 105.88 105.22 gbmdetrendSD 130.23 152.31 147.88 147.90

nnetD_bc 107.99 101.99 110.60 109.22 gbmdetrendSD_RL 126.15 140.74 150.85 143.55

nnetD_bc_RL 111.51 98.60 112.59 108.74 gbmdetrendSD_bc 130.55 151.94 149.27 152.94

nnetSTL 108.32 87.53 99.13 95.87 gbmdetrendSD_bc_RL 130.31 141.62 149.79 146.55

nnetSTL_RL 89.50 83.73 79.19 72.51 gbmdetrendD 126.68 149.31 151.77 157.52

nnetSTL_bc 80.02 86.48 83.16 77.41 gbmdetrendD_RL 129.27 144.28 156.07 156.06

nnetSTL_bc_RL 77.61 84.71 78.44 72.58 gbmdetrendD_bc 140.95 154.73 152.17 156.55

svmradial 104.88 87.82 102.53 95.90 gbmdetrendD_bc_RL 129.29 152.58 147.23 156.78

svmradial_RL 126.72 114.66 142.44 162.17 gbmdetrendSTL 127.50 149.51 154.05 150.83

svmradial_bc 106.54 92.95 105.12 105.08 gbmdetrendSTL_RL 126.55 147.36 153.90 151.68

svmradial_bc_RL 125.54 114.75 145.67 168.50 gbmdetrendSTL_bc 124.25 140.24 150.47 152.33

svmradialSD 97.40 76.62 74.82 59.16 gbmdetrendSTL_bc_RL 122.81 142.10 151.72 154.38

svmradialSD_RL 85.01 75.03 61.31 53.18 glmboost 121.30 120.73 133.34 162.44

svmradialSD_bc 92.28 73.09 76.84 59.65 glmboost_RL 160.65 156.04 177.77 191.57

svmradialSD_bc_RL 89.51 78.04 64.54 54.43 glmboost_bc 109.57 126.04 140.21 161.72

svmradialD 109.41 97.08 105.77 106.17 glmboost_bc_RL 153.41 159.10 176.50 188.84

svmradialD_RL 114.61 97.06 110.23 98.96 glmboostSD 111.05 101.32 83.87 82.78

svmradialD_bc 113.09 104.02 108.41 105.59 glmboostSD_RL 110.95 101.76 81.69 82.32

svmradialD_bc_RL 113.68 95.33 109.58 101.78 glmboostSD_bc 99.98 106.30 79.22 83.05

svmradialSTL 105.86 80.61 85.68 86.20 glmboostSD_bc_RL 99.30 100.87 80.80 78.24

svmradialSTL_RL 84.64 82.22 81.16 78.79 glmboostD 106.51 97.07 106.26 101.57

svmradialSTL_bc 101.36 76.87 81.11 74.00 glmboostD_RL 105.94 96.31 107.79 105.91

svmradialSTL_bc_RL 80.83 77.14 76.67 68.14 glmboostD_bc 104.83 94.48 108.45 102.47

svmpoly 104.14 92.17 105.04 123.79 glmboostD_bc_RL 103.59 94.62 109.59 106.33

svmpoly_RL 140.84 133.05 157.37 180.77 glmboostSTL 92.06 85.86 74.41 71.19

svmpoly_bc 103.05 96.18 103.77 129.54 glmboostSTL_RL 92.48 86.30 76.38 70.31

svmpoly_bc_RL 137.09 137.34 156.74 177.34 glmboostSTL_bc 79.63 86.12 75.26 68.07

svmpolySD 94.80 76.41 74.22 59.76 glmboostSTL_bc_RL 79.63 83.72 75.29 69.30

svmpolySD_RL 89.32 76.72 65.26 50.28 gamboost 118.99 119.04 126.19 136.18

svmpolySD_bc 94.63 79.89 73.35 58.40 gamboost_RL 124.34 133.49 163.70 182.62

svmpolySD_bc_RL 83.56 71.21 61.82 53.54 gamboost_bc 105.78 116.80 123.70 138.43

svmpolyD 112.72 101.52 102.97 101.46 gamboost_bc_RL 114.08 136.84 165.08 180.35

svmpolyD_RL 114.50 95.51 109.05 99.50 gamboostSD 109.15 96.05 93.23 93.59

svmpolyD_bc 111.09 102.78 106.06 103.65 gamboostSD_RL 99.77 104.85 95.07 99.02

svmpolyD_bc_RL 111.35 96.72 109.81 103.74 gamboostSD_bc 100.15 102.27 99.99 95.53

svmpolySTL 101.32 86.41 82.00 79.42 gamboostSD_bc_RL 88.32 106.84 102.69 112.17

svmpolySTL_RL 88.58 86.40 74.32 71.87 gamboostD 115.37 103.54 120.64 140.97

svmpolySTL_bc 99.78 75.80 77.50 70.05 gamboostD_RL 115.40 97.54 108.85 118.78

svmpolySTL_bc_RL 83.11 78.67 66.37 63.67 gamboostD_bc 110.84 107.41 115.79 130.52

gp 204.18 200.86 197.07 197.72 gamboostD_bc_RL 114.46 102.07 110.18 112.34

gp_RL 204.96 200.05 196.85 198.35 gamboostSTL 108.41 97.14 101.89 100.32

gp_bc 194.70 195.76 192.48 191.67 gamboostSTL_RL 76.17 102.59 102.03 100.20

gp_bc_RL 195.63 196.99 192.27 191.76 gamboostSTL_bc 93.64 96.62 105.83 100.16

gpSD 142.69 123.35 103.21 108.72 gamboostSTL_bc_RL 68.20 104.76 112.85 114.47

gpSD_RL 143.12 121.82 101.47 108.86 gamboostdetrend 131.98 154.42 151.25 163.46

gpSD_bc 124.72 115.51 100.44 114.41 gamboostdetrend_RL 140.07 156.17 172.61 187.28

gpSD_bc_RL 125.06 115.15 104.26 114.92 gamboostdetrend_bc 129.64 155.69 148.99 160.55

gpD 131.54 121.74 123.25 116.76 gamboostdetrend_bc_RL 142.55 157.14 172.00 185.48

gpD_RL 131.16 121.26 124.25 116.05 gamboostdetrendSD 129.40 151.14 147.28 155.55

gpD_bc 131.73 121.64 123.34 117.91 gamboostdetrendSD_RL 130.77 151.97 153.68 155.41

gpD_bc_RL 131.28 121.13 124.45 116.65 gamboostdetrendSD_bc 129.87 151.75 150.33 155.48

gpSTL 109.80 111.22 102.56 99.50 gamboostdetrendSD_bc_RL 132.92 150.79 151.06 156.27

gpSTL_RL 110.10 111.77 101.16 100.50 gamboostdetrendD 131.14 144.93 152.68 152.06

gpSTL_bc 85.43 108.41 107.91 108.77 gamboostdetrendD_RL 126.09 151.40 155.43 157.26

gpSTL_bc_RL 86.21 110.19 107.50 109.09 gamboostdetrendD_bc 139.77 144.73 152.81 150.87

rf 117.74 94.51 78.55 76.44 gamboostdetrendD_bc_RL 133.22 147.66 153.42 158.95

rf_RL 148.26 140.27 147.56 155.31 gamboostdetrendSTL 128.57 146.86 149.05 146.69

rf_bc 104.97 95.73 88.86 83.10 gamboostdetrendSTL_RL 130.27 147.61 150.32 147.58

rf_bc_RL 132.56 133.15 150.55 156.55 gamboostdetrendSTL_bc 125.00 147.54 148.53 152.31

rfSD 117.34 91.20 75.08 64.27 gamboostdetrendSTL_bc_RL 127.68 141.77 149.98 152.79

rfSD_RL 90.42 83.31 81.88 80.01 arimaD_COVARS 104.38 88.64 101.70 97.97

rfSD_bc 101.92 97.87 84.66 74.30 nnetSD_COVARS 112.95 89.79 75.39 73.07

rfSD_bc_RL 80.96 105.02 105.56 105.74 nnetSD_COVARS_sRecDir 108.88 97.71 88.88 78.53

rfD 121.20 103.29 116.79 129.55 svmradialSD_COVARS 94.68 79.41 63.04 53.27

rfD_RL 123.09 111.92 131.72 145.44 svmradialSD_COVARS_sRecDir 95.62 78.76 69.57 56.95

rfD_bc 118.40 103.89 113.33 124.58 svmradialSD_RL_COVARS 84.83 79.43 68.97 57.85

rfD_bc_RL 119.22 123.16 143.82 154.99 svmradialSD_RL_COVARS_sRecDir 84.18 83.13 69.95 62.66

rfSTL 104.06 94.05 91.50 87.53 svmpolySD_COVARS 97.86 78.47 61.51 58.73

rfSTL_RL 106.77 115.94 117.05 104.36 svmpolySD_COVARS_sRecDir 95.51 77.86 64.95 60.29

rfSTL_bc 91.19 102.93 93.04 88.63 svmpolySD_RL_COVARS 84.35 74.09 69.33 54.32

rfSTL_bc_RL 99.04 113.41 115.91 107.24 svmpolySD_RL_COVARS_sRecDir 85.21 81.93 69.34 57.96

svmradialSD_bc_RL_COVARS 79.82 75.97 65.73 54.93

svmradialSD_bc_RL_COVARS_sRecDir 81.88 78.83 65.63 56.48

svmpolySD_bc_RL_COVARS 84.13 72.54 67.95 51.93

svmpolySD_bc_RL_COVARS_sRecDir 84.69 79.94 70.50 56.96

rfSD_COVARS 111.04 81.86 61.91 57.39

rfSD_COVARS_sRecDir 111.19 85.45 62.43 60.05

gbmSD_COVARS 107.04 85.22 64.85 63.10

gbmSD_COVARS_sRecDir 119.14 92.96 81.00 63.11

glmboostSTL_bc_COVARS 78.90 83.81 77.41 82.98

glmboostSTL_bc_COVARS_sRecDir 79.45 81.60 77.32 79.92

glmboostSTL_bc_RL_COVARS 80.67 80.10 79.43 85.87

glmboostSTL_bc_RL_COVARS_sRecDir 80.75 80.14 81.74 83.43 

Table 5.3: Average Ranked MdASE corresponding to dots in Figure 5.3. Best model metric per 

horizon range is bold & underlined and shading denote Top10% accordingly. 
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Last but not least above results suggest testing some additional models explained in the following. But 

results were not promising and are therefore excluded from this thesis. Though, for completeness, this 

finding is important to be mentioned: 

- Due to the limitation of tree based models to forecast a trend, a MARS (multivariate adaptive 

regression splines) model might help to circumvent this limitation as in its basis version is very 

similar to a CART but is able to model a future trend (see Hastie et al. (2009)). 

- In order to account for moving average components a recurrent neural net utilizing the jordan 

function of the RSNNS R-package (Bergmeir & Benitez (2014)) was used as an alternative to the 

standard neural net. 

- The good performance of SVM bases models and the glmboost suggests boosting the svmradial 

or svmpoly model. When using the quadratic loss as the internal optimization criterion boosting 

can be easily implemented as a recursive fitting of the residuals (cf. Chapter 4.4).  

- A somewhat similar intention is behind an approach that applies a gbm model just on the residuals 

of a glmboost algorithm.  

- For the classical ARIMA a possible approach to account for multiple seasonality is to strip of both 

weekday and monthday seasonality of the NN5 data by a double usage of the STL decomposition. 

 

 

5.4 Arimasim 

The last benchmark results to present refer to the simulated Arima series introduced in Chapter 2.1. 

Figure 5.4 and Table 5.4 reveal the following findings: 

- Not very surprising, arima is the best overall model even though not the winner in the long run. 

- Also ETS based models are capable of creating a good forecast for ARIMA time series. 

- Both classical model classes are clearly better than the ML approaches. But glmboost for shorter 

horizon ranges based models and remarkably gbm and rf in the long run are competitive. 

- Most remarkable is that the bagging for classical models performs drastically bad for the 1-step-

ahead forecast. This indicates that the ARMA structure of the series is seriously destroyed when 

bootstrapping by moving block or maximum entropy approaches! 

- Somewhat surprising is the catastrophic 1-step-ahead performance of Gaussian Processes. This 

might be a result of the MA component of the series which kind of puzzles this algorithm. 

 

 

5.5 Conclusions 

All above findings together with some results presented in previous chapters can be condensed to 

some Lessons learned: 

- Always apply several (!) naïve models in order to get a better evaluation of the forecast capability 

of more advanced models for the examined time series. Actually it also helps to get an impression 

of the forecastability of the data itself.  

- Be aware of the complications different performance metrics and performance aggregation 

approaches reveal for time series benchmarks (cf. Chapter 2.3). Generally the no-free-lunch 

theorem must be enlarged regarding forecast horizons which mean that algorithm performances 

can drastically change when a different horizon range is investigated. These circumstances 

recommend clearly defining the forecast objective in terms of the evaluation metric (e.g. robust or 

outlier-sensitive) and the forecasting horizon. 
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Figure 5.4: Overall Result (Ranked MdASE) by horizon range for Arimasim competition. 
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Sim

 h=1-6

Sim

 h=1-12

Sim

 h=1-24 Method

Sim

 h=1-1

Sim

 h=1-6

Sim

 h=1-12

Sim

 h=1-24

snaive 172.17 152.47 124.87 99.64 rfdetrend 88.42 102.39 108.69 115.96

tsnaiveD 166.31 138.45 118.64 105.53 rfdetrend_RL 104.82 99.16 103.59 114.46

tsnaiveD_bc 167.53 139.28 118.83 105.88 rfdetrend_bc 85.30 99.99 106.12 118.22

tsnaiveSTL 88.79 77.22 77.74 80.04 rfdetrend_bc_RL 104.16 95.87 100.06 113.36

tsnaiveSTL_bc 88.71 77.21 76.73 80.14 rfdetrendSD 91.39 100.46 108.69 114.84

arima 56.96 67.32 72.60 73.70 rfdetrendSD_RL 100.13 96.16 99.57 113.27

arima_bc 57.27 68.20 72.92 70.72 rfdetrendSD_bc 88.69 100.75 107.99 119.96

arimaD 59.73 70.59 78.98 85.92 rfdetrendSD_bc_RL 97.51 95.85 99.37 113.74

arimaD_bc 58.77 69.37 75.96 83.03 rfdetrendD 101.44 104.97 111.59 118.49

arimaSTL 61.73 71.69 74.61 75.44 rfdetrendD_RL 104.78 105.64 109.21 116.97

arimaSTL_bc 60.40 71.25 74.62 74.99 rfdetrendD_bc 96.47 102.06 111.22 117.54

ets 63.37 76.53 81.42 81.47 rfdetrendD_bc_RL 105.45 105.26 109.62 118.08

ets_bc 63.87 80.75 87.40 87.73 rfdetrendSTL 91.51 101.00 105.68 118.20

etsd 63.37 76.53 81.42 81.47 rfdetrendSTL_RL 105.38 99.41 101.23 114.70

etsd_bc 63.84 79.28 84.41 85.28 rfdetrendSTL_bc 90.66 98.66 106.76 119.33

etsSTL 65.32 78.99 81.84 77.12 rfdetrendSTL_bc_RL 104.78 96.35 101.59 113.07

etsSTL_bc 66.61 80.75 83.44 82.72 gbm 83.35 81.77 81.62 77.91

tbats 65.92 84.20 84.99 81.45 gbm_RL 80.24 78.14 74.94 67.89

thetaf 78.68 73.32 72.99 73.32 gbm_bc 83.65 80.40 80.94 75.39

ens_mean 65.08 77.17 82.48 80.50 gbm_bc_RL 80.46 76.11 74.44 69.32

ens_median 61.26 72.94 79.84 77.11 gbmSD 83.58 82.74 83.47 76.12

bootMB_snaive 168.51 145.02 122.06 95.98 gbmSD_RL 81.64 79.38 76.56 68.78

bootME_snaive 171.25 153.05 128.43 102.00 gbmSD_bc 83.26 81.41 81.87 75.84

bootMB_arimaD 127.75 102.27 91.42 90.51 gbmSD_bc_RL 81.74 78.60 77.55 69.75

bootME_arimaD 110.10 103.52 100.80 103.62 gbmD 82.58 97.82 103.56 100.90

bootMB_randsel 131.33 102.04 93.75 88.47 gbmD_RL 98.79 93.82 98.50 102.29

bootME_randsel 105.66 82.47 82.96 82.55 gbmD_bc 91.25 102.53 103.06 102.09

nnet 138.21 145.56 141.37 145.45 gbmD_bc_RL 100.41 94.97 101.52 107.29

nnet_RL 125.44 131.12 135.30 136.88 gbmSTL 85.77 83.37 84.18 76.58

nnet_bc 170.20 177.07 173.81 171.10 gbmSTL_RL 86.46 81.45 80.86 71.78

nnet_bc_RL 161.51 161.19 161.09 165.00 gbmSTL_bc 86.12 83.52 83.30 75.22

nnetSD 146.40 145.44 146.74 147.57 gbmSTL_bc_RL 82.81 78.62 77.98 69.37

nnetSD_RL 135.08 141.21 141.12 138.97 gbmdetrend 79.93 94.95 104.83 112.52

nnetSD_bc 184.41 175.55 169.49 166.31 gbmdetrend_RL 82.89 86.37 93.67 107.32

nnetSD_bc_RL 168.07 174.32 168.06 165.26 gbmdetrend_bc 79.59 91.42 105.37 115.76

nnetD 105.09 106.48 100.13 102.86 gbmdetrend_bc_RL 79.09 87.10 95.79 109.47

nnetD_RL 105.21 104.02 102.71 102.88 gbmdetrendSD 81.93 96.26 104.49 112.95

nnetD_bc 140.17 127.41 111.62 110.28 gbmdetrendSD_RL 88.74 92.51 95.89 108.89

nnetD_bc_RL 137.82 123.85 110.96 107.45 gbmdetrendSD_bc 78.30 91.93 102.30 115.34

nnetSTL 140.74 147.60 144.40 140.71 gbmdetrendSD_bc_RL 83.66 89.67 95.50 109.53

nnetSTL_RL 129.50 136.20 137.78 136.77 gbmdetrendD 96.82 105.81 116.56 119.77

nnetSTL_bc 176.18 178.82 175.89 173.05 gbmdetrendD_RL 102.27 99.36 104.85 114.53

nnetSTL_bc_RL 159.04 164.00 161.74 164.36 gbmdetrendD_bc 94.70 101.96 114.48 120.11

svmradial 132.70 126.50 117.77 113.30 gbmdetrendD_bc_RL 103.56 102.81 108.51 117.46

svmradial_RL 107.76 107.00 104.35 90.12 gbmdetrendSTL 80.29 96.23 106.31 114.18

svmradial_bc 134.85 130.12 122.30 116.73 gbmdetrendSTL_RL 84.02 88.04 93.18 106.87

svmradial_bc_RL 108.61 108.17 105.82 92.15 gbmdetrendSTL_bc 81.41 97.49 106.16 115.51

svmradialSD 129.85 110.39 107.06 100.82 gbmdetrendSTL_bc_RL 84.04 91.48 96.38 110.78

svmradialSD_RL 116.07 114.03 108.93 97.50 glmboost 66.14 77.90 76.50 83.18

svmradialSD_bc 130.60 111.56 107.60 101.48 glmboost_RL 70.04 72.77 74.41 81.99

svmradialSD_bc_RL 114.54 113.87 109.23 100.06 glmboost_bc 66.48 76.89 77.94 82.26

svmradialD 114.07 118.97 119.70 115.15 glmboost_bc_RL 70.53 73.26 77.31 83.73

svmradialD_RL 101.19 99.45 101.68 106.53 glmboostSD 69.50 80.39 76.88 82.48

svmradialD_bc 106.84 119.85 121.01 117.62 glmboostSD_RL 74.82 72.24 73.11 79.07

svmradialD_bc_RL 98.88 96.28 100.12 101.37 glmboostSD_bc 69.51 79.59 78.51 82.23

svmradialSTL 131.45 125.03 118.04 114.46 glmboostSD_bc_RL 73.03 69.71 72.13 77.67

svmradialSTL_RL 112.96 109.43 106.82 91.86 glmboostD 80.57 83.40 90.16 85.04

svmradialSTL_bc 133.18 127.36 118.75 112.95 glmboostD_RL 94.71 95.96 95.39 96.93

svmradialSTL_bc_RL 111.01 107.85 107.38 92.77 glmboostD_bc 81.52 84.63 90.72 87.14

svmpoly 96.76 96.55 103.74 105.80 glmboostD_bc_RL 93.55 95.01 94.91 96.58

svmpoly_RL 84.94 86.62 91.07 99.40 glmboostSTL 75.85 79.91 78.05 81.95

svmpoly_bc 99.87 103.30 107.46 106.88 glmboostSTL_RL 82.61 76.62 75.01 81.52

svmpoly_bc_RL 83.64 81.64 84.38 97.40 glmboostSTL_bc 75.60 79.77 80.18 81.59

svmpolySD 101.92 91.09 87.78 92.72 glmboostSTL_bc_RL 82.37 77.06 76.89 82.16

svmpolySD_RL 90.79 85.80 83.86 85.11 gamboost 69.58 85.26 91.99 91.87

svmpolySD_bc 97.39 91.87 89.80 97.20 gamboost_RL 74.85 77.83 90.00 89.82

svmpolySD_bc_RL 91.96 86.25 81.97 83.83 gamboost_bc 68.63 84.87 91.00 91.60

svmpolyD 84.83 94.52 106.02 104.31 gamboost_bc_RL 73.19 79.18 91.92 92.44

svmpolyD_RL 96.82 94.81 89.56 90.42 gamboostSD 71.30 87.46 92.67 93.06

svmpolyD_bc 86.94 98.78 103.49 106.68 gamboostSD_RL 77.66 83.82 94.93 93.62

svmpolyD_bc_RL 98.80 96.54 94.40 93.44 gamboostSD_bc 70.90 87.39 92.62 93.82

svmpolySTL 102.62 106.99 111.50 115.05 gamboostSD_bc_RL 76.73 85.62 97.87 94.68

svmpolySTL_RL 91.82 86.03 89.32 94.12 gamboostD 78.14 98.18 96.07 93.58

svmpolySTL_bc 97.09 108.36 108.31 111.21 gamboostD_RL 98.83 95.28 94.17 95.09

svmpolySTL_bc_RL 91.90 84.45 90.19 94.77 gamboostD_bc 77.47 96.18 99.25 94.64

gp 162.27 138.84 125.00 117.30 gamboostD_bc_RL 102.18 95.90 94.70 95.29

gp_RL 165.49 143.40 127.30 118.96 gamboostSTL 74.36 90.97 93.57 94.94

gp_bc 162.60 138.98 125.78 118.79 gamboostSTL_RL 81.74 89.23 96.10 93.85

gp_bc_RL 166.74 142.41 127.34 120.55 gamboostSTL_bc 74.04 89.16 96.23 97.33

gpSD 178.83 162.06 144.93 127.38 gamboostSTL_bc_RL 79.72 89.06 97.76 94.74

gpSD_RL 177.45 163.25 145.37 128.79 gamboostdetrend 78.19 101.18 107.37 115.42

gpSD_bc 174.93 159.38 141.29 124.93 gamboostdetrend_RL 84.44 90.45 94.69 108.08

gpSD_bc_RL 177.85 164.61 146.86 126.45 gamboostdetrend_bc 74.66 97.00 107.28 116.94

gpD 163.62 136.28 121.91 110.09 gamboostdetrend_bc_RL 79.65 88.57 96.65 108.37

gpD_RL 163.25 134.53 121.20 110.67 gamboostdetrendSD 81.45 103.18 106.84 116.98

gpD_bc 162.94 135.08 121.53 109.20 gamboostdetrendSD_RL 85.12 92.56 95.88 108.42

gpD_bc_RL 163.83 134.47 120.66 111.33 gamboostdetrendSD_bc 78.24 99.57 107.82 117.60

gpSTL 161.48 139.98 125.80 118.59 gamboostdetrendSD_bc_RL 79.81 90.51 99.32 109.65

gpSTL_RL 165.88 144.63 128.31 120.33 gamboostdetrendD 80.71 111.69 115.21 116.64

gpSTL_bc 162.15 140.22 127.15 120.31 gamboostdetrendD_RL 102.79 102.63 108.56 114.08

gpSTL_bc_RL 166.61 144.38 128.60 121.87 gamboostdetrendD_bc 79.93 110.02 115.63 113.44

rf 103.58 94.77 88.02 81.24 gamboostdetrendD_bc_RL 98.29 99.64 108.93 114.25

rf_RL 109.04 92.42 86.12 76.63 gamboostdetrendSTL 82.80 105.67 109.19 118.18

rf_bc 105.34 92.19 86.88 78.04 gamboostdetrendSTL_RL 87.63 95.79 97.08 109.85

rf_bc_RL 108.14 93.27 87.57 76.59 gamboostdetrendSTL_bc 79.53 103.85 109.66 117.79

rfSD 111.06 96.01 90.84 82.95 gamboostdetrendSTL_bc_RL 84.60 94.19 98.44 112.01

rfSD_RL 109.81 92.11 83.64 74.12

rfSD_bc 112.53 95.72 90.54 82.95

rfSD_bc_RL 109.14 91.09 84.02 74.54

rfD 92.12 92.90 105.35 100.31

rfD_RL 98.66 93.06 97.85 102.54

rfD_bc 98.88 98.66 106.29 102.06

rfD_bc_RL 102.98 93.72 97.19 104.64

rfSTL 106.48 95.27 91.70 82.65

rfSTL_RL 105.45 93.61 88.33 76.40

rfSTL_bc 105.19 95.18 90.28 82.32

rfSTL_bc_RL 107.45 93.32 87.49 76.74  

Table 5.4: Average Ranked MdASE corresponding to dots in Figure 5.4. Best model metric per 

horizon range is bold & underlined and shading denote Top10% accordingly. 
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- The classical ARIMA modeling should always get a try at least for classical time series without any 

additional external covariates. ETS model are less promising not only because of they are 

incapable of using exogenous covariates. 

- Using seasonal dummies seems to be a good approach to tackle seasonality. This is good news 

as it allows modeling the seasonal influence in a standard Machine Learning way in contrast to 

seasonal differencing or STL approaches. 

- But if a STL decomposition is applied to the time series, use a Box-Cox transformation to account 

for increasing seasonality. At least this should always be tested as a variant if STL is used. 

- Ensembling over different methods not only reduces variance and therefore MSE, but also makes 

forecast more consistent over different horizon ranges. Tuning the weights might be advantageous 

depending on the algorithm used. 

- If classical methods are superior and time and hardware resources allow bagging, try this 

alternative utilizing easy-to-use ME bootstrap. If several good performing methods result from 

some extended tests then try a random selection of these for every bootstrap sample to 

decorrelate the bagged forecasts.  

- Tree based methods as well as standard splines, i.e. splines exhibiting a locality, are incapable of 

forecasting time series comprising a trend that persists in future. This is the reason why gradient 

boosted trees (gbm) as one of the most successful Machine Learning algorithm, might perform 

badly in the time series forecasting context. But keep in mind that for series without a trend and 

especially lots of covariates this approach might regain its credits. 

- Gaussian Processes for time series forecasting are overrated in the Machine Learning community. 

- Actually a Support Vector Machine seems to be one of the best Machine Learning approaches for 

forecasting especially when external covariates are available. Tuning the lagset might further 

improve the prediction from this model class.  

- Direct forecasts might not be worth the effort regarding implementation amount as well as 

resource consumption. Though the presented sRecDir approach limits these efforts to a certain 

extent. 
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6 Summary and Outlook 

In the framework of this thesis extensive comparisons regarding forecast performance of classical 

forecast model and Machine Learning approaches are conducted for a variety of official benchmark 

competition time series, i.e. the M3 (Makridakis & Hibon (2000)), concentrating on the series of 

category INDUSTRY, and Tourism competitions (Athanasopoulos et al. (2011)) and the NN5 contest 

(Crone (2009b)). Tests for 100 simulated pure ARIMA(1,1,1) time series are added.  

The classical used models are basically ARIMA and ETS which are partly combined with different 

ensembling techniques comprising also bagging approaches utilizing 2 bootstrap strategies (Moving 

Block and Maximum Entropy bootstrap).  

The selection of Machine Learning algorithms is influenced by several former studies, shortly 

discussed in the introduction, and comprises Neural Nets, SVMs with different Kernels, Gaussian 

Processes, Random Forests and several Boosting models using linear models (glmboost), splines 

(gamboost) and trees (gbm).  

For all algorithms several model variants are tested like initial Box-Cox transformations or different 

deseasoning strategies, e.g. seasonal differencing, STL decompositions. 

 

Some important prerequisites are founded in Chapter 2 like the different strategies for multi-step 

forecasting, i.e. recursive and direct approaches. With the sRecDir a special combination strategy is 

introduced that basically represents a direct strategy for the first season that is recursively used for the 

whole horizon range. Applied to the best Machine Learning models for the NN5 benchmark no 

substantial improvement compared to the standard recursive strategy results.  

As the performance evaluation for time series forecasting is more complicated than for (time-

unrelated) prediction, a deeper introduction to forecast performance metrics is also given suggesting 

to constrain most of the analysis to the MdRAE and MdASE related performance. But it must be kept 

in mind that the “no free lunch” theorem must be extended for forecasting in the sense of a 

dependence of the performance also on the forecast horizon which is nicely illustrated in this chapter 

by an example showing that every method (even a naïve one) can be the best and the worst for 

different series of a benchmark. 

Furthermore the importance of using several naïve forecast, e.g. a deseasonalized random walk with 

drift, is stressed and confirmed by a comparison for the M3 data showing that lots of these series (in 

fact most of the series belonging to the categories DEMOGRAPHIC, FINANCE and MACRO) just 

consist of a trend + seasonality + random variation which makes benchmarks of sophisticated models 

highly questionable, though this is extensively done by several authors (cf. Chapter 1.2). 

 

The classical models (ARIMA and ETS) are introduced in Chapter 3 with some emphasis put on ETS 

approaches as this model class is kind of neglected in academic canon even though highly 

popularized by practitioners. Furthermore some light is shed on the ARIMAX model muddle clarifying 

which options are available when exogenous covariate effects should be incorporated for ARIMA 

models.  

Developed in the framework of these classical models but also applicable in combination with Machine 

Learning algorithms are initial Box-Cox transformations and different deseasoning strategies. 

Especially for the Tourism data a hard-coded seasonal differencing has shown to be advantageous for 

instance. An important side note here is that the latter is also recommended in conjunction with the 

auto.arima function of the forecast R-package as the test for seasonal differencing is declined to often 

resulting in dramatic performance reduction for the NN5 data. 

Bagging reduces prediction variance and might therefore improve MSE (if increase in bias is limited). 

Applying this model variant to classical forecast methods is not straight forward, i.e. random sampling 



6 Summary and Outlook 

 

82 

with replacement, as this would destroy the data inherent dependency. Two approaches are 

introduced, the well-known Moving Block Bootstrap (MBB) and the easy-to-use Maximum Entropy 

(ME) bootstrap. The latter tries to keep the basic shape and data dependency by holding the ergodic 

property of the time series whereas the MBB samples complete blocks of data which are appended in 

order to reduce breaks in the dependency structure. The ME variant seems to have some advantages 

also regarding forecast performance, at least the BootME_randsel model, which comprises an 

additional decorrelation step by randomly selecting one of the classical model variants for each of the 

30 bootstrap samples, is the winner for the competition objective forecast horizon for all 3 benchmarks 

with respect to the classical models. But a big question mark for the dependency keeping property is 

set by the simulated ARIMA series showing really bad performance of the bagging models for the 1-

step-ahead forecast. 

The tested model variants for the benchmark comprise ARIMA and ETS models with and without STL 

decomposition. Additionally a hard seasonal differencing for ARIMA and a strict damped ETS are 

applied. Each of these models is also tested in conjunction with a Box-Cox transformation. Further the 

tbats model (Arima-ETS combination) and the Theta method are added. The two bagging approaches 

(with 30 bootstrap samples for each time series), i.e. MB and ME bootstrap, are used in combination 

with a naïve model and the hard seasonal differenced ARIMA (as one of the best classical models) 

beside the before mentioned decorrelated versions (BootME_randsel and BootMB_randsel). Last but 

not least the models used in the latter variants are also ensembled by a simple averaging (mean and 

median).  

Main results, apart from the ones mentioned above, seem to be that ARIMA mostly outperforms ETS 

models. Further findings are that if STL is used as the deseasoning approach also an initial Box-Cox 

transformation should be tested. Simple ensembling often generates better forecasts and generally 

stabilizes the variability.  Using bagging approaches can further improve the forecasts at least the 

BootME_randsel performs best for all 3 competitions as mentioned above. 

 

Chapter 4 is dedicated to the Machine Learning algorithms used.  

Apart from exogenous covariate the typical predictor set comprising the time related information 

consists of a time point variable itself to forecast a trend and seasonal dummies to model the seasonal 

component. Especially the latter can also be accounted for just by the lagged target variable which is 

by default added to the covariate set to care for the time related correlation. This alternative is a result 

of an extended simulation study conducted to better understand how the Machine Learning 

approaches can handle the trend and seasonal components of phenotypic time series. This simulation 

further nicely shows that all tree based algorithms cannot predict a future trend which is an easy but 

nonetheless crucial finding also explaining why e.g. of one of the best predictive Machine Learning 

algorithms, i.e. gbm, exhibit unexpectedly bad performance in the benchmarks. A similar consequence 

has the locality property of splines used with the gamboost model performing worse than the glmboost 

restricted to linear covariate effect, suggesting to use additional variants for this model class as well as 

for the tree based utilizing an initial detrending step by STL decomposition. The trend is therefore 

forecasted separately by an ETS model and rewound in the end. Due to this double modeling or the 

non-optimal detrending (or even the ETS forecast) these variants perform consistently worse in the 

benchmarks.  

This brings other algorithms into play like Neural Nets, the most used Machine Learning approach in 

the forecasting context. Unfortunately this model class is only better than a naïve forecast for the NN5 

benchmark data. It must be mentioned that a recurrent Neural Net variant also capable of modeling a 

possible MA (moving average) component was just tested for the NN5 series with no improvement.  

Also for Random Forests a performance mostly worse than a naïve forecast for the Tourism and M3-

INDUSTRY is uncovered.  

Chapter 4 further kind of demystifies Gaussian Processes, which are theoretically founded in the 

context of Kernel Machines by the Machine Learning community, by showing the strong connection to 



6 Summary and Outlook  

 

83 

well-known statistical approaches like kriging. Additionally these models perform consistently bad 

(apart from M3-MICRO series) questioning the high credit they have in the Machine Learning 

community.  

On the other hand, SVMs as the typical representative of Kernel Machines perform really well; at least 

this model represent the only Machine Learning algorithm beating hard differenced ARIMA (arimaD) 

for the Tourism series. 

 

As the simulation study also suggests to shorten the set of lagged target information all Machine 

Learning algorithms are tested with a reduced lagset. Together with a variant using initially Box-Cox 

transformed data to detangle possible multiplicative seasonality and the deseasoning approaches, i.e. 

seasonal differencing and STL decomposition, suggested by the classical approaches, in total 8 

versions of each Machine Learning algorithm are tested. The results are compactly presented in 

Chapter 5 comparing their performance directly with the classical approaches. 

Main findings for the M3-INDUSTRY series are that generally all classical models outperform all 

Machine Learning approaches. Under the Machine Learning algorithms glmboost with its variants is 

the best approach which confirms the simulation study experiments for phenotypic series. Furthermore 

the bad performance of Neural Nets is remarkable.   

For the Tourism series the SVMs with polynomial and radial Kernel are competitive with the classical 

models with svmpolySD_RL (SVM with polynomial kernel, seasonal dummies for deseasoning and a 

reduced lagset) ending up as the best overall method starting from the half-season horizon range on. 

Together with the good performance of a boosted linear regression model (glmboost) the results from 

the simulation study are rebuild indicating a more phenotypic character of the series. 

Though, the most informative insight might be given by the results of the NN5 benchmark as here the 

naïve forecast (including STL variants) are definitely worse than the applied models. It came out that 

the classical models are now inferior. After utilizing the exogenous covariates for the best performing 

models on this data, the SVM with a radial kernel using seasonal dummies resulted in a sMAPE of 

19.6% clearly outperforming the team results of the official competition (cf. Crone (2009b)). Using a 

sRecDir forecast strategy does not improve the results. 

A condensed list of lessons learned is given in Chapter 5.5 summarizing the overall main findings 

helpful for practice.  

 

As the number of exogenous covariates is somewhat limited also for the NN5 benchmark series, 

forthcoming analysis might comprise the application of the most successful models onto other 

benchmark data comprising more exogenous information. One candidate is represented by the Bike 

contest hosted on the Kaggle website (Fanaee-T & Gama (2013)) consisting of hourly bike rental 

information with several highly influential weather related covariates. 

Furthermore explicit lag tuning was neglected even though especially SVM-based model performance 

might further improve. Remember that this model class was the best one for the NN5 competition 

already beating the official team solutions. 

Moreover kNN models are completely exlucded from the benchmark studies due to some resource 

restrictions as well as the questionable decision how to define a distance over time related and 

exogenous covariates which would also lead to a fully different testing approach. Nonetheless other 

authors used this model class (cf. Chapter 1.2) suggesting to give it a try. 

Last but not least it should be tested how to improve the detrending of the tree based models in order 

to check whether especially the gbm as one of the most powerful prediction algorithm can regain its 

credits which would be of interest in situations with a high number of exogenous covariates. 
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A Supporting Plots and Tables 

 

 
 

Figure A.1: Example time series from Tourism data (reference line splits train and test data). 
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Figure A.2: Example time series from M3 data (reference line splits train and test data). 
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Figure A.3: Example time series from NN5 data (reference line splits train and test data). 
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Figure A.4: Example time series from Arimasim data (reference line splits train and test data). 
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Figure A.5: Overall Result (Ranked MdASE) by horizon range for M3-DEMOGRAPHIC competition. 
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Method

DEMOGRAPHIC

 h=1-1

DEMOGRAPHIC

 h=1-6

DEMOGRAPHIC

 h=1-12

DEMOGRAPHIC

 h=1-18 Method

DEMOGRAPHIC

 h=1-1

DEMOGRAPHIC

 h=1-6

DEMOGRAPHIC

 h=1-12

DEMOGRAPHIC

 h=1-18

snaive 165.73 149.06 128.60 122.98 rfdetrend 83.42 81.72 82.78 84.52

tsnaiveD 143.49 120.44 81.54 73.66 rfdetrend_RL 74.97 83.40 86.60 85.27

tsnaiveD_bc 151.60 125.85 88.12 79.52 rfdetrend_bc 77.88 80.40 81.99 83.69

tsnaiveSTL 87.64 57.53 52.00 48.80 rfdetrend_bc_RL 78.78 81.09 86.84 83.82

tsnaiveSTL_bc 90.69 58.69 52.63 51.19 rfdetrendSD 86.18 82.17 82.64 83.76

arima 66.33 74.39 79.47 80.53 rfdetrendSD_RL 71.86 80.86 84.00 83.50

arima_bc 69.93 86.48 91.49 91.43 rfdetrendSD_bc 79.88 79.64 80.24 83.22

arimaD 71.72 72.06 74.38 77.06 rfdetrendSD_bc_RL 76.03 80.30 81.29 82.13

arimaD_bc 76.11 83.38 84.34 84.52 rfdetrendD 93.60 113.82 96.60 91.93

arimaSTL 65.62 74.23 79.52 81.49 rfdetrendD_RL 93.50 102.56 101.14 95.98

arimaSTL_bc 67.34 79.88 82.51 86.47 rfdetrendD_bc 95.07 115.82 99.02 95.27

ets 75.32 79.06 84.44 80.82 rfdetrendD_bc_RL 95.27 107.28 102.61 96.60

ets_bc 76.57 84.68 86.57 86.58 rfdetrendSTL 81.38 76.60 79.23 80.61

etsd 71.03 78.49 82.88 78.57 rfdetrendSTL_RL 79.86 73.80 80.26 82.20

etsd_bc 75.76 83.40 84.96 81.59 rfdetrendSTL_bc 79.44 75.82 76.39 79.80

etsSTL 68.98 69.10 76.10 73.59 rfdetrendSTL_bc_RL 84.03 73.93 79.92 82.62

etsSTL_bc 73.41 76.61 81.59 80.37 gbm 92.88 88.76 92.89 90.71

tbats 86.46 77.61 73.49 68.69 gbm_RL 87.90 86.57 92.56 92.09

thetaf 77.52 65.10 69.87 70.32 gbm_bc 91.96 83.09 86.38 86.66

ens_mean 70.24 74.91 78.77 76.22 gbm_bc_RL 89.36 84.22 90.32 90.68

ens_median 68.68 72.79 77.22 74.63 gbmSD 93.27 84.43 88.38 87.67

bootMB_snaive 161.16 146.71 130.50 124.24 gbmSD_RL 88.72 83.48 88.88 89.22

bootME_snaive 167.34 153.26 135.31 128.49 gbmSD_bc 90.98 78.92 84.26 85.42

bootMB_arimaD 101.30 85.24 87.13 88.49 gbmSD_bc_RL 92.77 82.36 89.11 88.78

bootME_arimaD 108.28 109.36 102.03 98.01 gbmD 105.00 112.37 107.87 104.49

bootMB_randsel 99.98 80.47 79.04 81.34 gbmD_RL 101.47 118.52 116.38 110.92

bootME_randsel 104.33 79.93 83.08 82.14 gbmD_bc 102.82 121.67 115.86 110.26

nnet 151.02 164.34 166.01 165.54 gbmD_bc_RL 98.10 125.22 117.28 110.43

nnet_RL 137.81 150.66 152.89 152.56 gbmSTL 93.80 79.81 91.67 93.07

nnet_bc 182.86 180.79 180.72 180.53 gbmSTL_RL 94.73 83.33 93.41 93.41

nnet_bc_RL 178.40 189.03 186.04 184.87 gbmSTL_bc 95.76 75.94 88.42 93.58

nnetSD 175.17 175.97 174.51 174.88 gbmSTL_bc_RL 100.51 85.89 95.37 98.24

nnetSD_RL 166.43 174.76 173.41 170.99 gbmdetrend 76.82 78.60 76.93 76.41

nnetSD_bc 186.50 182.34 179.08 179.28 gbmdetrend_RL 71.02 78.32 80.14 79.69

nnetSD_bc_RL 176.34 178.92 176.70 174.54 gbmdetrend_bc 74.23 77.27 79.60 79.42

nnetD 110.49 121.60 122.10 122.31 gbmdetrend_bc_RL 73.60 81.40 83.12 80.41

nnetD_RL 105.13 110.87 104.03 102.02 gbmdetrendSD 75.45 78.53 78.41 78.09

nnetD_bc 135.67 144.37 136.48 131.86 gbmdetrendSD_RL 74.02 77.32 78.46 79.59

nnetD_bc_RL 135.96 140.22 139.38 131.99 gbmdetrendSD_bc 73.27 78.83 79.93 79.92

nnetSTL 158.74 169.12 171.62 169.96 gbmdetrendSD_bc_RL 69.94 80.88 84.34 81.07

nnetSTL_RL 141.11 153.86 153.14 154.40 gbmdetrendD 102.21 112.36 95.37 91.16

nnetSTL_bc 186.04 182.87 185.29 182.50 gbmdetrendD_RL 98.19 103.60 96.49 91.27

nnetSTL_bc_RL 179.00 187.38 186.49 185.70 gbmdetrendD_bc 95.21 115.62 99.50 97.71

svmradial 123.46 124.69 125.28 129.06 gbmdetrendD_bc_RL 98.11 108.94 95.08 89.70

svmradial_RL 115.64 115.41 119.93 117.79 gbmdetrendSTL 86.70 78.93 77.94 78.13

svmradial_bc 122.74 124.21 124.49 128.01 gbmdetrendSTL_RL 77.71 69.62 75.12 78.13

svmradial_bc_RL 114.03 115.62 118.73 117.07 gbmdetrendSTL_bc 78.68 74.93 75.47 79.60

svmradialSD 125.26 113.51 111.31 110.18 gbmdetrendSTL_bc_RL 84.32 76.61 80.22 80.81

svmradialSD_RL 121.08 116.60 111.17 108.71 glmboost 72.63 85.97 91.90 95.69

svmradialSD_bc 132.91 118.09 111.86 111.14 glmboost_RL 79.78 82.77 91.83 94.58

svmradialSD_bc_RL 122.69 118.54 111.91 109.18 glmboost_bc 71.74 78.57 85.10 89.33

svmradialD 97.08 100.26 100.58 99.78 glmboost_bc_RL 78.17 85.01 91.96 92.00

svmradialD_RL 107.39 99.06 92.06 93.07 glmboostSD 72.03 75.38 85.37 86.38

svmradialD_bc 102.67 105.59 105.90 100.34 glmboostSD_RL 80.74 78.16 83.88 92.08

svmradialD_bc_RL 101.77 100.07 95.41 94.16 glmboostSD_bc 70.90 70.57 76.38 79.68

svmradialSTL 125.67 123.98 127.56 131.34 glmboostSD_bc_RL 83.76 81.98 87.33 87.97

svmradialSTL_RL 119.03 119.31 120.10 117.48 glmboostD 92.28 98.91 96.41 96.61

svmradialSTL_bc 132.72 121.77 124.86 131.13 glmboostD_RL 94.53 83.31 74.96 72.13

svmradialSTL_bc_RL 121.24 118.11 122.56 120.47 glmboostD_bc 85.80 94.21 88.08 82.99

svmpoly 95.41 112.29 117.36 119.80 glmboostD_bc_RL 93.09 87.39 76.04 73.69

svmpoly_RL 80.31 94.88 98.08 99.31 glmboostSTL 76.99 70.80 83.43 90.31

svmpoly_bc 92.89 104.64 107.62 112.41 glmboostSTL_RL 86.80 71.99 84.59 92.39

svmpoly_bc_RL 82.76 99.51 105.28 106.43 glmboostSTL_bc 73.50 64.29 70.20 74.71

svmpolySD 95.28 83.22 82.89 87.17 glmboostSTL_bc_RL 89.24 75.12 83.54 89.36

svmpolySD_RL 92.29 93.21 93.98 97.47 gamboost 76.74 86.07 100.26 115.73

svmpolySD_bc 98.64 83.06 85.68 86.39 gamboost_RL 83.58 89.61 104.45 124.39

svmpolySD_bc_RL 96.64 96.43 97.49 98.08 gamboost_bc 73.02 80.62 95.72 112.61

svmpolyD 112.90 109.92 117.21 119.92 gamboost_bc_RL 84.37 90.57 104.03 125.76

svmpolyD_RL 92.23 82.79 71.77 71.53 gamboostSD 77.38 84.63 97.03 114.92

svmpolyD_bc 111.10 110.57 121.14 120.63 gamboostSD_RL 82.64 91.02 103.42 124.82

svmpolyD_bc_RL 91.39 88.74 74.80 72.58 gamboostSD_bc 73.08 79.59 92.18 112.53

svmpolySTL 93.47 101.57 112.86 121.32 gamboostSD_bc_RL 81.08 93.42 106.07 127.54

svmpolySTL_RL 76.83 93.49 98.18 101.32 gamboostD 107.60 112.10 103.47 102.48

svmpolySTL_bc 92.88 101.92 105.38 109.78 gamboostD_RL 100.73 109.23 104.12 99.36

svmpolySTL_bc_RL 79.21 94.94 104.64 107.11 gamboostD_bc 108.78 117.07 108.17 105.09

gp 150.41 139.29 134.41 130.20 gamboostD_bc_RL 98.23 107.67 96.70 92.52

gp_RL 154.72 145.99 138.79 134.20 gamboostSTL 88.32 85.42 103.16 117.23

gp_bc 152.33 140.74 137.22 133.18 gamboostSTL_RL 87.71 94.07 109.99 126.13

gp_bc_RL 153.97 144.77 139.26 136.06 gamboostSTL_bc 86.51 78.98 98.68 113.52

gpSD 172.96 148.59 138.99 130.14 gamboostSTL_bc_RL 86.52 92.89 112.98 130.08

gpSD_RL 176.18 157.24 140.77 129.00 gamboostdetrend 75.14 79.87 81.11 80.89

gpSD_bc 178.12 150.13 138.57 129.23 gamboostdetrend_RL 73.94 77.38 84.27 81.02

gpSD_bc_RL 176.52 153.69 141.21 130.83 gamboostdetrend_bc 74.46 81.98 83.12 81.56

gpD 138.76 143.32 133.88 132.24 gamboostdetrend_bc_RL 74.91 83.17 88.59 82.75

gpD_RL 144.63 139.67 127.24 124.48 gamboostdetrendSD 74.89 78.31 80.82 79.87

gpD_bc 137.36 147.91 136.10 133.19 gamboostdetrendSD_RL 71.13 76.52 83.66 80.36

gpD_bc_RL 145.76 144.38 130.69 127.10 gamboostdetrendSD_bc 74.73 79.89 81.88 80.55

gpSTL 152.20 140.23 134.87 129.74 gamboostdetrendSD_bc_RL 71.78 83.38 86.77 82.47

gpSTL_RL 156.79 148.46 138.79 131.14 gamboostdetrendD 86.68 107.99 93.67 89.89

gpSTL_bc 148.81 142.08 136.32 133.99 gamboostdetrendD_RL 92.28 104.92 100.48 96.26

gpSTL_bc_RL 152.92 148.78 140.16 135.88 gamboostdetrendD_bc 86.73 112.50 95.30 93.51

rf 100.69 89.76 89.53 84.63 gamboostdetrendD_bc_RL 95.20 107.61 101.64 96.40

rf_RL 94.66 91.79 96.87 97.30 gamboostdetrendSTL 78.26 74.23 75.70 78.62

rf_bc 106.67 88.46 87.00 82.24 gamboostdetrendSTL_RL 71.37 74.90 81.08 81.24

rf_bc_RL 95.76 92.48 97.34 94.86 gamboostdetrendSTL_bc 75.82 78.92 78.26 79.78

rfSD 105.34 92.21 90.28 87.19 gamboostdetrendSTL_bc_RL 74.48 78.28 83.66 84.03

rfSD_RL 102.73 96.44 101.00 98.01

rfSD_bc 107.84 89.84 90.44 84.83

rfSD_bc_RL 100.13 93.11 96.73 93.30

rfD 115.84 113.52 100.79 99.09

rfD_RL 104.34 121.78 116.11 110.49

rfD_bc 111.54 114.33 106.21 104.07

rfD_bc_RL 105.12 129.90 119.16 112.58

rfSTL 110.72 96.09 96.64 92.83

rfSTL_RL 99.87 92.84 98.34 100.55

rfSTL_bc 115.01 89.62 91.26 90.77

rfSTL_bc_RL 107.70 93.99 99.40 101.31  

Table A.1: Average Ranked MdASE corresponding to dots in Figure A.5. Best model metric per 

horizon range is bold & underlined and shading denote Top10% accordingly. 
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Figure A.6: Overall Result (Ranked MdASE) by horizon range for M3-FINANCE competition. 
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FINANCE
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FINANCE
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FINANCE

 h=1-18 Method

FINANCE

 h=1-1

FINANCE

 h=1-6

FINANCE

 h=1-12

FINANCE

 h=1-18

snaive 160.60 141.26 118.83 116.05 rfdetrend 87.13 74.56 77.46 80.67

tsnaiveD 141.07 126.25 112.12 106.04 rfdetrend_RL 82.30 77.63 72.84 77.00

tsnaiveD_bc 145.18 129.88 117.61 107.25 rfdetrend_bc 79.88 69.60 76.61 78.46

tsnaiveSTL 83.29 88.29 86.88 86.46 rfdetrend_bc_RL 82.60 75.10 74.59 77.85

tsnaiveSTL_bc 87.98 81.49 81.73 80.79 rfdetrendSD 85.83 74.12 76.81 79.97

arima 69.34 74.81 81.57 82.19 rfdetrendSD_RL 79.08 74.81 72.18 76.24

arima_bc 72.03 76.17 82.63 83.99 rfdetrendSD_bc 80.79 69.65 75.09 78.31

arimaD 72.59 78.68 78.40 78.71 rfdetrendSD_bc_RL 81.42 72.54 74.25 77.82

arimaD_bc 76.18 76.80 83.11 88.82 rfdetrendD 106.68 98.91 88.75 84.68

arimaSTL 70.24 81.08 84.22 89.15 rfdetrendD_RL 102.02 100.51 89.51 90.71

arimaSTL_bc 74.68 77.69 83.29 86.39 rfdetrendD_bc 101.20 89.24 80.17 82.82

ets 67.84 69.00 74.42 77.28 rfdetrendD_bc_RL 103.53 93.83 88.75 87.24

ets_bc 69.61 73.16 85.84 88.05 rfdetrendSTL 81.75 79.97 78.94 80.51

etsd 66.31 70.89 77.08 80.62 rfdetrendSTL_RL 76.29 78.19 76.71 80.32

etsd_bc 68.90 71.40 83.92 85.06 rfdetrendSTL_bc 77.85 74.35 75.05 77.79

etsSTL 68.11 75.63 75.84 78.68 rfdetrendSTL_bc_RL 81.51 85.54 81.96 83.32

etsSTL_bc 76.47 75.07 79.53 81.30 gbm 89.90 94.32 94.76 92.54

tbats 66.06 82.04 79.70 79.64 gbm_RL 83.03 88.82 95.68 97.60

thetaf 75.61 86.61 93.62 92.89 gbm_bc 88.54 91.93 92.50 92.95

ens_mean 64.17 70.88 76.08 75.64 gbm_bc_RL 83.49 90.04 96.64 98.05

ens_median 63.61 67.08 73.03 75.39 gbmSD 85.28 90.36 93.73 91.82

bootMB_snaive 156.28 140.60 120.02 113.89 gbmSD_RL 86.11 86.16 91.53 92.98

bootME_snaive 159.90 141.60 121.15 117.52 gbmSD_bc 88.52 91.97 93.61 91.77

bootMB_arimaD 86.57 81.27 83.17 80.56 gbmSD_bc_RL 88.40 91.54 98.00 95.69

bootME_arimaD 94.66 93.61 94.42 90.28 gbmD 109.75 108.34 101.61 99.51

bootMB_randsel 86.39 82.47 83.95 81.51 gbmD_RL 110.68 109.98 98.78 99.41

bootME_randsel 84.86 81.19 87.04 84.67 gbmD_bc 109.35 100.86 99.19 98.72

nnet 151.25 159.09 161.96 159.86 gbmD_bc_RL 108.68 110.01 99.45 95.54

nnet_RL 136.21 143.87 150.25 152.27 gbmSTL 89.43 96.72 97.72 99.44

nnet_bc 172.38 170.35 173.66 167.73 gbmSTL_RL 84.61 92.45 93.82 95.90

nnet_bc_RL 171.13 176.85 177.36 169.04 gbmSTL_bc 97.72 95.93 94.93 93.94

nnetSD 163.95 171.03 169.93 166.42 gbmSTL_bc_RL 95.08 94.13 94.76 95.05

nnetSD_RL 160.46 165.69 167.90 164.96 gbmdetrend 83.40 77.05 80.13 81.79

nnetSD_bc 180.33 173.12 170.73 165.56 gbmdetrend_RL 81.00 75.07 72.79 78.25

nnetSD_bc_RL 176.42 176.25 175.58 166.16 gbmdetrend_bc 85.92 79.73 79.95 80.93

nnetD 112.36 112.28 111.76 104.35 gbmdetrend_bc_RL 86.13 74.80 76.53 79.69

nnetD_RL 121.78 115.88 101.04 98.96 gbmdetrendSD 81.99 78.30 79.26 82.42

nnetD_bc 124.26 121.36 107.80 101.39 gbmdetrendSD_RL 74.25 76.43 73.86 80.49

nnetD_bc_RL 132.80 130.88 115.11 107.23 gbmdetrendSD_bc 82.73 76.03 77.50 78.84

nnetSTL 155.10 161.35 164.90 162.28 gbmdetrendSD_bc_RL 81.16 75.78 76.18 79.82

nnetSTL_RL 143.54 149.72 150.31 151.96 gbmdetrendD 104.83 100.64 89.92 88.66

nnetSTL_bc 179.89 174.04 175.98 171.61 gbmdetrendD_RL 98.88 98.17 87.63 89.98

nnetSTL_bc_RL 175.39 173.48 174.02 169.73 gbmdetrendD_bc 103.00 91.26 81.55 85.07

svmradial 117.89 123.52 126.73 127.72 gbmdetrendD_bc_RL 98.02 88.98 80.82 87.34

svmradial_RL 104.33 117.32 124.68 122.53 gbmdetrendSTL 80.17 80.12 80.79 81.59

svmradial_bc 117.11 123.59 126.95 129.22 gbmdetrendSTL_RL 77.94 75.91 76.19 79.10

svmradial_bc_RL 104.59 117.92 123.50 123.30 gbmdetrendSTL_bc 81.11 77.29 76.76 79.42

svmradialSD 117.96 105.80 103.11 99.33 gbmdetrendSTL_bc_RL 76.38 79.34 78.64 83.23

svmradialSD_RL 122.84 124.30 120.92 111.27 glmboost 86.28 96.14 100.62 100.16

svmradialSD_bc 118.54 109.81 105.92 102.80 glmboost_RL 81.39 92.31 98.32 101.18

svmradialSD_bc_RL 127.25 127.44 121.37 111.96 glmboost_bc 78.92 85.20 90.61 93.37

svmradialD 112.95 112.72 103.87 96.04 glmboost_bc_RL 87.31 90.85 93.69 93.93

svmradialD_RL 105.26 108.83 101.81 100.11 glmboostSD 82.04 89.10 97.56 97.32

svmradialD_bc 102.85 105.18 102.40 96.39 glmboostSD_RL 72.03 82.61 88.82 88.87

svmradialD_bc_RL 105.82 100.48 97.96 96.15 glmboostSD_bc 83.91 86.31 90.46 91.25

svmradialSTL 128.62 126.25 125.75 124.47 glmboostSD_bc_RL 75.50 79.67 87.17 86.98

svmradialSTL_RL 112.18 124.23 124.86 123.32 glmboostD 106.26 101.79 99.48 89.48

svmradialSTL_bc 131.52 128.88 131.45 129.26 glmboostD_RL 108.08 105.31 95.51 90.64

svmradialSTL_bc_RL 121.83 124.70 126.82 125.56 glmboostD_bc 102.70 95.42 93.30 85.89

svmpoly 95.05 104.19 109.82 114.93 glmboostD_bc_RL 103.61 99.34 92.11 85.32

svmpoly_RL 91.61 104.07 115.25 119.62 glmboostSTL 80.50 93.97 98.78 97.96

svmpoly_bc 105.03 107.37 107.33 112.58 glmboostSTL_RL 75.46 87.92 92.64 96.23

svmpoly_bc_RL 96.85 110.43 117.27 118.90 glmboostSTL_bc 85.89 87.63 90.23 88.92

svmpolySD 102.93 103.61 100.84 103.01 glmboostSTL_bc_RL 78.12 82.09 88.18 90.86

svmpolySD_RL 102.67 112.33 111.79 105.45 gamboost 79.19 97.60 113.70 121.18

svmpolySD_bc 100.75 102.16 94.66 95.71 gamboost_RL 79.77 95.75 110.25 125.08

svmpolySD_bc_RL 108.11 116.73 114.91 107.18 gamboost_bc 76.51 93.34 110.14 118.75

svmpolyD 112.32 118.59 120.41 113.72 gamboost_bc_RL 80.96 92.58 110.39 126.73

svmpolyD_RL 102.92 102.43 96.53 93.04 gamboostSD 76.48 98.04 115.04 121.45

svmpolyD_bc 106.36 123.06 122.15 117.43 gamboostSD_RL 77.91 96.31 113.11 126.28

svmpolyD_bc_RL 100.86 96.18 95.78 89.51 gamboostSD_bc 73.97 91.25 110.55 121.52

svmpolySTL 94.78 108.11 110.77 114.20 gamboostSD_bc_RL 77.99 94.81 114.72 128.48

svmpolySTL_RL 98.56 112.10 116.42 116.56 gamboostD 109.82 107.14 100.56 102.11

svmpolySTL_bc 103.48 104.75 102.95 104.00 gamboostD_RL 108.00 107.54 99.91 100.03

svmpolySTL_bc_RL 109.75 119.28 125.18 125.89 gamboostD_bc 103.13 96.45 95.39 96.70

gp 135.33 128.83 129.61 126.14 gamboostD_bc_RL 104.82 99.53 92.06 92.72

gp_RL 141.61 135.22 136.10 132.25 gamboostSTL 87.34 100.04 113.45 122.93

gp_bc 138.53 133.97 133.26 126.48 gamboostSTL_RL 83.35 97.31 115.22 129.68

gp_bc_RL 145.95 141.55 138.59 134.61 gamboostSTL_bc 93.28 97.61 114.23 123.48

gpSD 162.08 147.22 139.80 127.94 gamboostSTL_bc_RL 87.45 98.88 119.06 134.35

gpSD_RL 161.68 145.67 141.24 127.18 gamboostdetrend 78.20 76.21 77.24 78.03

gpSD_bc 162.77 145.61 137.33 124.70 gamboostdetrend_RL 75.02 78.79 74.90 75.92

gpSD_bc_RL 160.04 143.31 136.96 123.46 gamboostdetrend_bc 78.30 72.36 77.71 77.81

gpD 134.47 112.46 100.20 99.37 gamboostdetrend_bc_RL 72.97 72.88 74.84 78.77

gpD_RL 131.00 113.99 97.94 97.30 gamboostdetrendSD 78.05 74.08 74.56 77.46

gpD_bc 135.03 117.25 107.83 109.86 gamboostdetrendSD_RL 77.91 76.10 74.87 75.12

gpD_bc_RL 136.92 119.69 109.46 110.68 gamboostdetrendSD_bc 78.96 72.36 75.97 77.84

gpSTL 142.66 135.44 129.72 127.26 gamboostdetrendSD_bc_RL 78.64 75.50 74.97 77.34

gpSTL_RL 149.04 140.85 136.12 133.81 gamboostdetrendD 97.45 94.09 90.68 89.28

gpSTL_bc 149.32 141.53 133.95 127.48 gamboostdetrendD_RL 98.96 96.91 90.50 90.01

gpSTL_bc_RL 156.31 145.85 139.44 134.40 gamboostdetrendD_bc 95.43 87.95 83.31 84.32

rf 96.35 97.82 98.95 100.72 gamboostdetrendD_bc_RL 99.45 93.75 88.13 86.15

rf_RL 87.50 96.29 100.29 99.75 gamboostdetrendSTL 75.11 77.96 80.45 79.51

rf_bc 99.99 100.98 100.75 101.94 gamboostdetrendSTL_RL 74.68 78.05 76.96 80.22

rf_bc_RL 90.46 100.61 103.83 102.83 gamboostdetrendSTL_bc 76.64 80.40 78.73 79.82

rfSD 97.73 97.77 100.83 103.96 gamboostdetrendSTL_bc_RL 78.61 80.45 79.81 81.44

rfSD_RL 91.53 92.98 96.82 100.09

rfSD_bc 105.02 100.69 101.03 102.95

rfSD_bc_RL 92.41 91.35 94.54 100.28

rfD 108.35 103.98 95.42 95.04

rfD_RL 117.54 111.42 95.32 95.38

rfD_bc 104.89 102.25 92.54 90.23

rfD_bc_RL 109.12 111.28 100.66 96.18

rfSTL 115.62 105.05 106.32 106.54

rfSTL_RL 101.00 103.40 105.68 103.96

rfSTL_bc 119.96 108.07 105.46 104.18

rfSTL_bc_RL 108.73 102.46 98.61 99.49  

Table A.2: Average Ranked MdASE corresponding to dots in Figure A.6. Best model metric per 

horizon range is bold & underlined and shading denote Top10% accordingly. 
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Figure A.7: Overall Result (Ranked MdASE) by horizon range for M3-MACRO competition. 
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 h=1-18 Method

MACRO

 h=1-1

MACRO

 h=1-6

MACRO

 h=1-12

MACRO

 h=1-18

snaive 148.70 144.59 125.30 125.20 rfdetrend 78.87 69.54 71.63 76.02

tsnaiveD 124.25 111.18 85.83 83.21 rfdetrend_RL 80.82 70.87 72.92 74.63

tsnaiveD_bc 125.21 113.00 88.29 84.29 rfdetrend_bc 73.53 66.57 71.97 75.32

tsnaiveSTL 94.22 81.47 70.94 67.72 rfdetrend_bc_RL 78.02 68.51 72.99 75.05

tsnaiveSTL_bc 89.14 78.92 71.09 67.66 rfdetrendSD 79.26 69.20 72.41 75.76

arima 72.45 70.01 71.71 71.74 rfdetrendSD_RL 80.95 71.01 74.60 74.76

arima_bc 73.58 70.43 75.40 76.25 rfdetrendSD_bc 72.74 66.82 72.04 75.01

arimaD 87.01 86.74 82.57 80.24 rfdetrendSD_bc_RL 77.89 68.16 74.39 75.80

arimaD_bc 85.89 86.43 82.44 82.06 rfdetrendD 93.90 95.95 90.35 90.75

arimaSTL 80.03 75.09 73.13 72.47 rfdetrendD_RL 102.09 96.58 94.92 91.66

arimaSTL_bc 75.05 73.49 74.71 74.43 rfdetrendD_bc 89.93 93.39 88.53 89.10

ets 73.95 78.36 81.21 79.82 rfdetrendD_bc_RL 106.25 96.60 93.63 91.06

ets_bc 75.23 77.45 83.23 82.95 rfdetrendSTL 78.84 74.67 75.38 75.13

etsd 74.62 81.30 87.84 87.03 rfdetrendSTL_RL 81.28 70.29 72.52 72.13

etsd_bc 75.25 79.66 86.80 85.80 rfdetrendSTL_bc 72.95 70.83 71.55 74.04

etsSTL 80.14 83.21 85.13 84.38 rfdetrendSTL_bc_RL 80.49 66.55 71.99 72.25

etsSTL_bc 77.91 79.23 82.00 82.24 gbm 98.01 106.13 109.13 109.51

tbats 77.72 92.96 94.04 91.20 gbm_RL 89.99 96.08 102.36 103.24

thetaf 90.23 92.08 91.26 91.45 gbm_bc 97.55 106.05 109.12 110.84

ens_mean 74.83 76.22 78.66 78.18 gbm_bc_RL 90.16 97.69 104.20 104.79

ens_median 74.09 75.84 80.61 78.19 gbmSD 97.33 105.43 109.49 108.45

bootMB_snaive 148.72 135.53 120.46 117.01 gbmSD_RL 93.24 99.63 103.19 105.00

bootME_snaive 149.69 145.20 126.24 125.22 gbmSD_bc 96.43 106.16 109.85 110.94

bootMB_arimaD 88.67 73.01 69.44 70.25 gbmSD_bc_RL 93.82 99.30 104.03 106.28

bootME_arimaD 89.35 86.10 78.46 78.67 gbmD 112.62 106.60 94.76 93.54

bootMB_randsel 86.32 71.81 72.33 72.36 gbmD_RL 109.25 101.41 90.21 88.61

bootME_randsel 82.39 78.57 80.79 80.17 gbmD_bc 110.32 112.20 99.98 96.76

nnet 163.01 167.70 164.59 164.34 gbmD_bc_RL 109.15 104.79 93.53 91.21

nnet_RL 154.13 161.86 163.79 163.02 gbmSTL 96.55 105.41 106.89 105.58

nnet_bc 171.97 169.92 167.83 167.82 gbmSTL_RL 93.04 95.60 101.34 102.22

nnet_bc_RL 170.56 179.19 177.03 177.08 gbmSTL_bc 94.54 105.26 107.38 105.59

nnetSD 173.76 179.61 179.49 179.05 gbmSTL_bc_RL 88.64 94.71 101.76 103.02

nnetSD_RL 165.66 180.47 183.54 182.51 gbmdetrend 82.33 73.84 75.19 75.82

nnetSD_bc 175.41 174.03 169.95 168.94 gbmdetrend_RL 80.93 70.20 71.72 74.03

nnetSD_bc_RL 174.30 180.97 176.97 173.04 gbmdetrend_bc 77.88 71.51 73.98 76.49

nnetD 112.78 109.63 97.99 92.18 gbmdetrend_bc_RL 81.64 69.43 73.93 75.03

nnetD_RL 107.33 104.41 93.63 92.51 gbmdetrendSD 80.80 72.41 74.33 76.29

nnetD_bc 124.65 118.54 106.38 103.25 gbmdetrendSD_RL 80.83 70.49 73.43 73.27

nnetD_bc_RL 119.08 115.62 102.05 101.47 gbmdetrendSD_bc 78.22 72.05 74.21 76.38

nnetSTL 159.54 168.72 167.58 166.57 gbmdetrendSD_bc_RL 79.71 69.24 74.00 75.39

nnetSTL_RL 153.11 162.16 162.97 161.86 gbmdetrendD 95.66 96.16 91.04 89.98

nnetSTL_bc 174.72 175.98 173.45 171.47 gbmdetrendD_RL 104.11 94.46 93.49 90.72

nnetSTL_bc_RL 169.22 183.63 181.35 179.41 gbmdetrendD_bc 97.47 93.96 88.74 88.18

svmradial 115.22 120.29 125.30 126.00 gbmdetrendD_bc_RL 100.70 92.88 88.96 87.16

svmradial_RL 106.23 123.93 125.85 126.51 gbmdetrendSTL 82.65 77.01 74.83 76.37

svmradial_bc 113.32 120.17 125.19 126.63 gbmdetrendSTL_RL 82.63 72.68 71.79 72.66

svmradial_bc_RL 110.15 125.28 126.46 126.89 gbmdetrendSTL_bc 76.25 70.66 73.62 74.39

svmradialSD 112.89 118.91 119.49 115.74 gbmdetrendSTL_bc_RL 81.76 69.78 71.64 73.13

svmradialSD_RL 105.99 118.29 114.93 110.05 glmboost 80.13 78.87 83.76 86.48

svmradialSD_bc 111.75 117.78 117.85 114.41 glmboost_RL 82.89 83.98 85.02 89.05

svmradialSD_bc_RL 102.64 115.34 112.44 105.92 glmboost_bc 80.10 81.39 86.14 89.33

svmradialD 104.88 101.80 92.37 90.71 glmboost_bc_RL 82.54 83.20 85.81 90.01

svmradialD_RL 107.63 98.94 90.93 89.92 glmboostSD 77.73 76.72 83.64 86.46

svmradialD_bc 106.31 102.43 90.26 90.49 glmboostSD_RL 85.01 79.65 80.14 80.02

svmradialD_bc_RL 106.23 98.42 91.20 89.08 glmboostSD_bc 75.48 78.28 83.91 87.19

svmradialSTL 115.38 121.58 126.66 127.06 glmboostSD_bc_RL 80.82 78.05 80.25 81.99

svmradialSTL_RL 107.81 118.89 121.72 122.56 glmboostD 107.69 98.80 87.71 83.56

svmradialSTL_bc 110.89 118.75 123.13 125.30 glmboostD_RL 109.16 97.31 88.36 84.86

svmradialSTL_bc_RL 101.99 119.44 122.38 122.90 glmboostD_bc 104.95 97.87 88.13 85.39

svmpoly 95.49 98.97 110.12 112.29 glmboostD_bc_RL 108.58 97.21 89.35 85.05

svmpoly_RL 89.05 98.28 105.51 108.92 glmboostSTL 85.99 80.47 80.96 83.94

svmpoly_bc 92.50 97.94 105.75 108.00 glmboostSTL_RL 86.52 79.81 80.57 82.75

svmpoly_bc_RL 90.36 99.12 104.46 108.51 glmboostSTL_bc 81.38 81.41 83.34 86.62

svmpolySD 93.89 91.22 93.08 93.07 glmboostSTL_bc_RL 85.62 79.31 79.51 83.70

svmpolySD_RL 97.35 89.87 88.17 86.20 gamboost 92.87 109.83 124.12 126.85

svmpolySD_bc 88.78 88.05 88.03 88.53 gamboost_RL 90.98 108.08 125.41 134.06

svmpolySD_bc_RL 97.07 91.00 89.08 86.13 gamboost_bc 93.69 109.82 124.01 127.55

svmpolyD 112.54 106.31 103.30 103.74 gamboost_bc_RL 90.65 108.73 126.12 135.19

svmpolyD_RL 108.98 97.64 89.58 84.99 gamboostSD 91.97 109.55 123.74 125.99

svmpolyD_bc 108.43 105.99 104.16 104.21 gamboostSD_RL 90.42 107.84 125.79 135.65

svmpolyD_bc_RL 108.55 98.59 91.18 88.10 gamboostSD_bc 92.12 108.64 123.54 126.79

svmpolySTL 97.67 102.53 107.87 108.95 gamboostSD_bc_RL 91.15 108.01 126.24 136.14

svmpolySTL_RL 86.45 91.39 98.04 100.04 gamboostD 99.58 101.78 92.38 90.62

svmpolySTL_bc 93.79 99.91 106.10 106.29 gamboostD_RL 106.61 104.62 93.18 91.74

svmpolySTL_bc_RL 87.37 94.22 100.11 102.02 gamboostD_bc 102.87 104.74 94.19 90.48

gp 151.36 150.40 150.14 145.69 gamboostD_bc_RL 106.48 105.01 92.90 91.00

gp_RL 151.22 152.27 153.38 148.75 gamboostSTL 93.95 109.65 124.11 128.89

gp_bc 152.27 151.99 151.29 146.88 gamboostSTL_RL 90.01 105.61 127.09 137.42

gp_bc_RL 152.02 152.52 153.85 149.25 gamboostSTL_bc 90.79 109.17 124.82 130.06

gpSD 139.40 131.05 123.07 116.85 gamboostSTL_bc_RL 85.39 104.67 126.46 138.25

gpSD_RL 140.79 131.76 123.31 117.28 gamboostdetrend 81.17 72.22 75.86 78.18

gpSD_bc 140.19 130.84 122.18 117.10 gamboostdetrend_RL 81.90 73.55 75.47 76.18

gpSD_bc_RL 141.69 131.38 123.87 117.35 gamboostdetrend_bc 79.03 68.09 73.83 75.64

gpD 142.18 137.54 125.39 129.63 gamboostdetrend_bc_RL 78.85 73.03 74.08 74.92

gpD_RL 137.86 135.56 123.75 125.85 gamboostdetrendSD 80.05 72.12 76.92 78.16

gpD_bc 142.45 139.45 127.21 130.70 gamboostdetrendSD_RL 80.51 72.00 75.97 76.32

gpD_bc_RL 139.25 136.72 125.14 128.67 gamboostdetrendSD_bc 78.62 67.85 74.33 75.34

gpSTL 142.70 145.44 145.41 142.54 gamboostdetrendSD_bc_RL 77.43 70.63 74.00 75.02

gpSTL_RL 143.70 146.77 148.63 145.87 gamboostdetrendD 96.53 94.63 91.69 89.64

gpSTL_bc 141.72 146.45 145.24 142.90 gamboostdetrendD_RL 104.04 95.13 95.68 93.07

gpSTL_bc_RL 142.09 147.83 148.20 145.46 gamboostdetrendD_bc 93.71 90.37 89.24 87.51

rf 105.39 113.01 115.54 115.28 gamboostdetrendD_bc_RL 99.59 91.76 94.17 92.13

rf_RL 95.59 104.67 107.87 108.16 gamboostdetrendSTL 84.94 76.28 76.81 77.42

rf_bc 107.21 114.89 117.46 116.18 gamboostdetrendSTL_RL 80.52 73.43 73.46 72.96

rf_bc_RL 98.45 104.92 108.72 108.80 gamboostdetrendSTL_bc 80.70 72.55 74.18 74.73

rfSD 106.49 112.76 115.38 114.95 gamboostdetrendSTL_bc_RL 75.18 71.08 73.06 73.58

rfSD_RL 96.13 105.97 107.62 107.87

rfSD_bc 108.15 113.99 116.46 114.76

rfSD_bc_RL 97.43 106.47 108.46 108.74

rfD 104.86 103.09 94.10 92.01

rfD_RL 102.94 106.90 93.38 89.92

rfD_bc 106.55 107.59 95.99 93.39

rfD_bc_RL 101.08 104.11 93.66 90.00

rfSTL 110.91 110.85 114.08 113.81

rfSTL_RL 95.89 99.38 104.95 105.53

rfSTL_bc 105.31 111.91 114.79 113.30

rfSTL_bc_RL 92.28 98.40 104.81 104.44  

Table A.3: Average Ranked MdASE corresponding to dots in Figure A.7. Best model metric per 

horizon range is bold & underlined and shading denote Top10% accordingly. 
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Figure A.8: Overall Result (Ranked MdASE) by horizon range for M3-MICRO competition. 
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Method

MICRO

 h=1-1

MICRO

 h=1-6

MICRO

 h=1-12

MICRO

 h=1-18 Method

MICRO

 h=1-1

MICRO

 h=1-6

MICRO

 h=1-12

MICRO

 h=1-18

snaive 125.42 91.66 104.35 94.28 rfdetrend 106.80 122.13 113.36 118.26

tsnaiveD 104.14 114.95 130.83 130.02 rfdetrend_RL 144.64 151.32 139.05 144.51

tsnaiveD_bc 115.09 100.66 118.31 114.60 rfdetrend_bc 98.53 109.10 111.78 119.32

tsnaiveSTL 137.74 126.85 123.24 118.73 rfdetrend_bc_RL 143.70 144.51 135.90 147.83

tsnaiveSTL_bc 136.96 110.93 111.82 104.96 rfdetrendSD 109.42 117.26 111.87 116.40

arima 107.70 102.77 93.24 96.23 rfdetrendSD_RL 127.35 123.23 116.89 119.51

arima_bc 99.28 93.73 84.95 83.45 rfdetrendSD_bc 99.96 107.34 106.05 117.53

arimaD 90.66 114.94 110.30 113.06 rfdetrendSD_bc_RL 121.17 113.21 115.06 122.53

arimaD_bc 74.87 82.27 91.74 90.04 rfdetrendD 136.94 120.60 129.32 130.48

arimaSTL 96.78 117.62 111.86 110.43 rfdetrendD_RL 134.21 129.05 130.93 133.68

arimaSTL_bc 80.78 78.77 79.75 76.24 rfdetrendD_bc 134.05 115.36 127.40 127.84

ets 93.89 91.38 86.51 78.47 rfdetrendD_bc_RL 126.53 118.92 130.28 129.13

ets_bc 85.20 80.80 71.67 66.03 rfdetrendSTL 121.19 121.15 124.55 123.28

etsd 83.40 87.50 76.61 74.32 rfdetrendSTL_RL 123.54 126.76 129.70 126.23

etsd_bc 79.46 79.03 65.23 64.03 rfdetrendSTL_bc 109.04 99.38 118.32 116.69

etsSTL 103.21 100.01 94.96 86.89 rfdetrendSTL_bc_RL 111.90 103.08 116.19 116.60

etsSTL_bc 76.88 74.19 71.37 65.46 gbm 119.54 117.67 99.90 99.70

tbats 75.35 97.21 94.32 96.43 gbm_RL 140.50 144.65 115.79 125.56

thetaf 118.03 131.42 107.05 108.58 gbm_bc 105.00 99.01 84.08 83.46

ens_mean 79.76 82.00 70.79 66.59 gbm_bc_RL 133.09 129.50 105.41 113.47

ens_median 79.42 80.10 68.85 65.86 gbmSD 119.22 117.66 98.65 102.08

bootMB_snaive 90.85 72.78 70.24 61.66 gbmSD_RL 135.18 135.00 110.98 114.51

bootME_snaive 128.01 104.91 110.84 103.19 gbmSD_bc 106.01 100.80 87.26 84.60

bootMB_arimaD 75.28 109.52 99.91 105.83 gbmSD_bc_RL 129.97 121.13 99.24 100.34

bootME_arimaD 83.79 114.65 113.42 116.25 gbmD 101.30 98.32 108.80 105.72

bootMB_randsel 83.21 79.57 70.79 69.59 gbmD_RL 99.38 112.85 124.38 126.34

bootME_randsel 76.30 81.52 68.70 69.53 gbmD_bc 93.59 87.11 99.50 96.12

nnet 101.53 120.08 120.71 125.06 gbmD_bc_RL 93.59 92.84 105.05 104.75

nnet_RL 92.25 90.35 91.60 100.13 gbmSTL 124.42 102.88 101.24 89.86

nnet_bc 142.98 154.58 161.83 160.45 gbmSTL_RL 135.76 107.30 104.36 95.49

nnet_bc_RL 133.65 143.80 158.92 154.79 gbmSTL_bc 105.76 81.65 76.70 68.78

nnetSD 101.90 113.70 119.59 118.08 gbmSTL_bc_RL 119.05 90.09 86.90 77.15

nnetSD_RL 78.39 124.81 134.76 128.69 gbmdetrend 111.30 125.47 119.32 121.58

nnetSD_bc 143.92 155.47 161.98 159.98 gbmdetrend_RL 128.10 143.26 130.53 136.78

nnetSD_bc_RL 134.61 149.46 157.04 156.11 gbmdetrend_bc 96.97 109.81 113.06 119.75

nnetD 121.05 112.66 116.69 114.50 gbmdetrend_bc_RL 125.77 131.80 122.08 131.55

nnetD_RL 88.56 103.63 110.87 114.50 gbmdetrendSD 108.38 122.28 116.85 118.82

nnetD_bc 131.29 126.22 136.54 128.35 gbmdetrendSD_RL 123.51 130.73 124.50 127.91

nnetD_bc_RL 125.71 126.23 138.78 133.56 gbmdetrendSD_bc 97.84 109.09 111.68 116.93

nnetSTL 100.55 122.17 124.41 121.37 gbmdetrendSD_bc_RL 117.61 119.58 117.31 125.69

nnetSTL_RL 76.63 99.80 97.45 94.14 gbmdetrendD 134.77 119.86 130.19 130.24

nnetSTL_bc 143.26 157.49 161.93 159.97 gbmdetrendD_RL 139.61 122.18 129.74 131.68

nnetSTL_bc_RL 133.58 151.09 157.44 155.06 gbmdetrendD_bc 134.78 112.51 126.49 128.55

svmradial 84.14 83.86 73.95 72.98 gbmdetrendD_bc_RL 136.35 116.31 128.63 131.12

svmradial_RL 87.32 92.13 80.16 83.98 gbmdetrendSTL 125.17 124.97 128.31 128.70

svmradial_bc 83.64 82.88 72.05 72.02 gbmdetrendSTL_RL 125.61 125.99 130.64 129.40

svmradial_bc_RL 85.31 84.82 76.68 79.10 gbmdetrendSTL_bc 113.72 101.21 118.82 118.87

svmradialSD 87.04 79.08 69.67 65.85 gbmdetrendSTL_bc_RL 116.60 102.52 120.43 120.26

svmradialSD_RL 90.93 76.96 77.10 70.67 glmboost 75.28 75.81 75.31 74.66

svmradialSD_bc 84.60 71.91 64.12 61.25 glmboost_RL 83.31 93.25 113.26 113.43

svmradialSD_bc_RL 94.01 69.83 69.98 65.49 glmboost_bc 74.14 65.93 68.66 67.02

svmradialD 111.60 96.59 107.17 100.75 glmboost_bc_RL 78.93 73.59 92.18 89.27

svmradialD_RL 81.40 97.20 103.82 105.88 glmboostSD 74.17 83.55 76.54 76.09

svmradialD_bc 98.95 85.83 102.27 98.02 glmboostSD_RL 71.29 119.59 116.64 124.26

svmradialD_bc_RL 86.30 86.42 98.59 99.28 glmboostSD_bc 74.04 74.42 68.54 65.86

svmradialSTL 99.79 95.14 89.26 80.91 glmboostSD_bc_RL 65.32 82.96 92.31 94.21

svmradialSTL_RL 92.84 95.76 83.66 76.96 glmboostD 93.96 108.53 114.84 119.25

svmradialSTL_bc 86.83 73.88 70.95 63.31 glmboostD_RL 77.56 117.11 119.92 126.52

svmradialSTL_bc_RL 78.97 73.50 63.63 54.01 glmboostD_bc 86.66 81.91 94.53 97.24

svmpoly 73.91 78.53 73.31 69.43 glmboostD_bc_RL 80.63 87.20 97.79 100.63

svmpoly_RL 78.41 74.75 83.18 81.25 glmboostSTL 77.29 106.36 99.84 101.72

svmpoly_bc 77.06 76.75 70.68 66.92 glmboostSTL_RL 70.93 133.48 133.67 138.40

svmpoly_bc_RL 81.07 76.00 82.10 80.57 glmboostSTL_bc 66.06 78.02 76.43 74.22

svmpolySD 81.19 80.77 73.29 67.90 glmboostSTL_bc_RL 65.11 94.73 104.00 103.14

svmpolySD_RL 76.59 93.15 102.76 101.22 gamboost 86.30 88.04 87.93 94.56

svmpolySD_bc 75.68 73.92 66.75 62.68 gamboost_RL 112.40 123.35 118.78 130.93

svmpolySD_bc_RL 81.77 77.84 84.06 79.36 gamboost_bc 77.75 82.84 84.13 85.58

svmpolyD 105.36 97.39 109.20 107.05 gamboost_bc_RL 100.95 104.65 103.81 114.80

svmpolyD_RL 77.74 103.75 108.87 113.72 gamboostSD 85.42 86.87 86.96 90.69

svmpolyD_bc 98.03 87.32 101.19 97.19 gamboostSD_RL 103.14 93.46 103.47 115.28

svmpolyD_bc_RL 86.60 85.78 97.57 99.75 gamboostSD_bc 78.54 82.07 84.20 84.37

svmpolySTL 86.95 96.24 89.66 81.02 gamboostSD_bc_RL 93.44 83.04 91.98 101.86

svmpolySTL_RL 79.85 108.31 98.69 99.21 gamboostD 96.37 88.48 96.98 96.06

svmpolySTL_bc 71.53 74.22 66.10 59.24 gamboostD_RL 81.86 101.41 108.04 114.40

svmpolySTL_bc_RL 73.39 84.03 80.43 75.73 gamboostD_bc 88.19 84.87 96.73 91.51

gp 93.32 123.59 97.71 108.57 gamboostD_bc_RL 84.07 89.03 100.06 99.95

gp_RL 97.43 127.66 105.12 112.44 gamboostSTL 101.47 89.26 101.22 97.91

gp_bc 79.65 105.72 84.30 90.11 gamboostSTL_RL 106.56 90.26 121.46 125.31

gp_bc_RL 80.89 107.13 84.68 93.90 gamboostSTL_bc 82.90 72.75 85.70 82.26

gpSD 75.77 74.78 65.21 65.86 gamboostSTL_bc_RL 85.93 72.72 108.26 116.92

gpSD_RL 76.25 77.81 72.46 74.06 gamboostdetrend 101.57 111.57 116.43 118.79

gpSD_bc 78.26 68.87 65.52 61.24 gamboostdetrend_RL 131.85 135.66 124.00 131.29

gpSD_bc_RL 78.91 71.05 67.55 64.29 gamboostdetrend_bc 104.26 105.62 110.81 117.76

gpD 116.10 100.07 113.13 109.99 gamboostdetrend_bc_RL 130.99 124.38 114.79 125.38

gpD_RL 119.63 98.70 112.78 107.40 gamboostdetrendSD 100.73 111.12 116.67 118.93

gpD_bc 116.65 96.92 110.66 102.36 gamboostdetrendSD_RL 113.47 114.23 118.24 120.87

gpD_bc_RL 118.36 95.62 109.03 103.15 gamboostdetrendSD_bc 104.54 103.35 111.06 118.28

gpSTL 101.79 91.75 87.20 82.12 gamboostdetrendSD_bc_RL 114.34 103.53 110.77 116.28

gpSTL_RL 105.51 93.88 90.17 83.77 gamboostdetrendD 132.42 113.43 120.26 121.69

gpSTL_bc 84.55 68.01 61.82 54.88 gamboostdetrendD_RL 129.79 116.96 120.61 126.00

gpSTL_bc_RL 86.53 69.85 64.48 58.34 gamboostdetrendD_bc 128.55 107.66 117.07 120.48

rf 106.37 104.02 80.96 85.36 gamboostdetrendD_bc_RL 127.11 108.65 120.93 124.99

rf_RL 141.33 141.75 114.22 122.28 gamboostdetrendSTL 120.78 122.01 128.74 129.66

rf_bc 90.01 86.89 70.88 70.05 gamboostdetrendSTL_RL 114.98 115.08 122.76 124.05

rf_bc_RL 126.78 118.81 90.25 99.03 gamboostdetrendSTL_bc 105.62 103.64 119.57 119.86

rfSD 105.08 103.12 81.55 83.29 gamboostdetrendSTL_bc_RL 104.78 98.24 114.24 116.46

rfSD_RL 137.16 117.18 97.50 99.85

rfSD_bc 90.71 84.54 71.58 69.06

rfSD_bc_RL 117.17 91.02 69.85 73.06

rfD 104.17 97.16 105.43 98.88

rfD_RL 100.77 113.18 120.83 125.89

rfD_bc 93.32 85.35 101.34 95.12

rfD_bc_RL 93.38 94.89 107.68 108.49

rfSTL 110.13 96.55 88.20 78.32

rfSTL_RL 122.09 96.93 89.80 81.72

rfSTL_bc 92.07 75.28 65.89 57.85

rfSTL_bc_RL 103.56 77.00 70.54 62.42  

Table A.4: Average Ranked MdASE corresponding to dots in Figure A.8. Best model metric per 

horizon range is bold & underlined and shading denote Top10% accordingly. 
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