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Abstract

In this thesis we investigate the international arms trade network of major
conventional weapons (MCW) between 1950 and 2013. After an introduction
to the network theory and some descriptive analysis of the data we will model
the arms trade network with the popular and well-known exponential random
graph model (ERGM). However, we find that in order to guarantee a good
model fit, the ERGM has to be extended into a curved ERGM. We are going
to justify this step by introducing a method to model networks via generalized
additive models (GAM), models which use smooth functions in order to include
the effects of covariates. The estimated smooth functions will verify the use of
geometrically weighted degree statistics in the ERGM. While discussing the use
of GAMs for networks, we will also present a method based on a bootstrapping
approach to model networks with logit models. Finally, we present and interpret
the results of the fitted models.
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0 Introduction

0 Introduction

This thesis considers an approach on modeling the international trade of major con-
ventional weapons (MCW) with statistical network models. Unlike the international
trade for conventional products, the armament industry is usually referred to as be-
ing particularly unique (see Johannsen and Martinez-Zarzoso [31]). The reason lies
in the fact that for the selling of weapons not only do economic factors matter, but
political factors also play a crucial role. It is of fundamental importance, which na-
tions are being equipped with another’s weapons. Arming the wrong countries can
not only endanger a nation’s political interests, but also threaten its own national
security. On the other hand, as discussed by Brzoska [6] and Moore [38], providing
weapons to the right customers can induce economic as well as political advantages.
Brauer [4] shows that the main reason is that despite many developing countries
trying to establish a domestic military industry, the majority of these countries have
not succeeded yet. As a consequence, these countries are still dependent on a few
weapon suppliers, which are able to produce and distribute quality goods.

The reasons why two countries trade weapons are diverse. However, scientifically
understanding the factors that influence the decisions to supply arms to different
countries is fundamental for well-informed debates on the regulation of arms trad-
ing. As far as we know, little work has been done in this direction yet. Some first
results are provided by the work of Akerman and Seim [1], Comola [7], Johannsen
and Martinez-Zarzoso [31] and Willardson [54].

But why should the arms trade network not be analyzed with statistical standard
methods and what are the advantages for an approach with statistical network mod-
els? The answer depends on a specific basic assumption, which most statistical
standard models have in common: the independence of the observations. This par-
ticular assumption is crucial for the maximum-likelihood estimation (MLE) of the
parameters in the models and as a consequence is absolutely essential. However,
when examining certain network data, such as the international arms trade data,
the basic independence assumption is not tenable anymore. Consider two countries,
which are at war with each other. In fact, the weapon import of one country forces
the other country to act as well. In this case it would be absolutely erroneous to
assume that the weapon imports of both countries happen independently from each
other. The dependency structure of the actors in the arms trade network is a sys-
tematic feature of the data, as opposed to an occasional coincidence. In this context
we are talking about relational data (see Wasserman and Faust [52]).
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1 Introduction into Network Analysis

Statistical network analysis allows the modeling of exactly these kinds of dependency
structures by not treating dependency structures as inaccuracies or measuring errors,
but rather including them as a central component of the network models.

This paper is structured as follows: In chapter 1 we introduce some basic definitions
in network analysis. Chapter 2 introduces the data sets used in this paper, discusses
the data structuring and provides some first descriptive results of the arms trade
data set. In chapter 3 the exponential random graph model (ERGM) is introduced
and some first model fits will be provided. However, we detect that some basic char-
acteristics of the arms trade networks are captured insufficiently. This will result
in a generalization of the ERGM, the so-called curved ERGM (CERGM), which is
introduced in chapter 7.

We are going to justify the step from the regular ERGM to the CERGM by model-
ing the arms trade network with generalized additive models (GAM) and by taking
a closer look at the estimated splines smoothers. This leads to the conclusion of
a step-wise down weighting of the effect an actor’s degree has on forming a new
tie. Therefore, we introduce some basic smoothing techniques in chapter 4, de-
duce the GAM by discussing the generalized linear model (GLM) and the additive
model (AM) in chapter 5 and finally introduce an approach on modeling networks
with GAMs in chapter 6. In chapter 6 we will furthermore discuss an approach on
modeling networks by using a logit model, which estimates the paramters by max-
imum pseudo-likelihood and circumvents the erroneous independency assumption
by adjusting the biased parameter estimates with a bootstrapping technique. After
having introduced the CERGM in chapter 7 we will present and interpret the results.

1 Introduction into Network Analysis

In this section we will give a short introduction into some basic terminology of
network theory. Therefore, we have to identify networks with the mathematical
structure of graphs. As a next step we are going to introduce some definitions for
network properties. This chapter is mainly based on Diestel [12] Jansen [30] and
Kolaczyk [32].

In order to be able to model networks with statistical methods, one has to identify
networks with mathematical structures, the so called graphs. In doing so, we can
differ between directed and undirected graphs. Since the international arms trade
network will turn out to be a directed graph, we will narrow down most of the
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1 Introduction into Network Analysis

definitions for directed networks. We begin with the formal definition of a graph:

Definition 1. Let V be a finite set and E ⊂ V × V . Then, a finit directed graph is
defined as the pair G := (V,E). In this context, V is called the set of vertexes and
E is denoted as the set of edges. The elements of V are called vertexes or nodes,
while the elements of E are called edges or ties.

The definition of a graph is the perfect tool to bridge from networks into mathematics.
The elements of the set of vertexes V are symbolizing the actors in a network. Most
of the time we are going to denote actors of the network vi, vj ∈ V simply with their
indices i and j. In our case the actors in the network are the countries in the world.
The set of edges symbolizes the relation between two actors. This relation can be
either directed or undirected. In context of the arms trade network, this relation
indicates, whether a country i exports major conventional weapons to country j or
not. This conveys that the arms trade network is a directed network: The case
that i is selling weapons to j does not imply that j is also selling weapons to i. An
example for an undirected network would be the network of the direct contiguity
of countries. If country i shares a border with country j, this does also imply that
country j is sharing a border with country i.

In the following paragraph we are going to define some terms for a graph G = (V,E),
which are crucial in network analysis and which are going to be used in this paper.
For an edge eij = (vi, vj) = (i, j), going from actor i to j, we are calling vi the tail
and vj the head of edge eij . Since the networks of consideration are trade networks,
we will also refer to vi as the sender or supplier and to vj as the receiver or recipient.
For directed networks edge eij = (vi, vj) has to be distinguished from the edge
eji = (vj , vi), since these edges are pointing the opposite direction even though they
take place between the same actors i and j. A restriction we are going to make is that
a graph has no loops eii = (vi, vi), i.e. edges with tail and head on the same vertex.
This means that for the arms trade network we are not paying attention to weapons
produced for a nations own use. The number of actors NV = |V | in the network is
usually called the order of the graph, while the number of edges NE = |E| is labeled
as the size of the network. Furthermore, we refer to N := N2

V −NV = NV (NV − 1)
as the number of possible edges in a directed network. This yields the following
definition.

Definition 2. Let G = (V,E) be a finite (NV < ∞), directed graph. The density
ρ(G) of G is defined as

ρ(G) :=
NE

N
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1 Introduction into Network Analysis

G8 Arms Trade Network 2013

Data Source: SIPRI

Canada

France

Germany Italy

Japan

Russia

United Kingdom

United States

Ca Fr Ger It Jap Rus UK USA
Canada 0 0 0 0 0 0 0 1
France 1 0 1 1 1 1 1 1
Germany 1 0 0 1 1 0 0 1
Italy 0 0 0 0 0 1 0 1
Japan 0 0 0 0 0 0 0 0
Russia 0 0 0 0 0 0 0 0
UK 0 0 0 0 0 0 0 1
USA 1 1 1 1 1 0 1 0

Figure 1: Graph and the corresponding adjacency matrix

The density of a network is the proportion between the actual number of edges and
the possible number of edges. A full graph, i.e. a graph with every possible tie,
has density ρ = 1, while an empty graph is defined as a graph without any edges,
ρ = 0. However, something one has to be cautious with when comparing the density
of two networks with different number of actors is that networks with smaller ρ do
not necessarily have less edges. The number of possible ties increases as a quadratic
function.

If two vertexes vi and vj are connected by an edge eij = (vi, vj) they are called
adjacent. On the other hand, two edges can also be called adjacent if they share
a common vertex, e.g., eij = (vi, vj) and ejk = (vj , vk). The term adjacent yields
the following pivotal definition in network theory, since it enables us to identify the
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1 Introduction into Network Analysis

abstract structure of a graph with the more common and familiar structure of a
matrix:

Definition 3. Let G = (V,E) be a finite, directed graph. Furthermore, let V =
(v1, . . . , vNV ) be an enumeration of the set of vertexes in G. We then define the
matrix A = (aij) ∈ RNV ×NV with

aij =

1 , if (vi, vj) ∈ E

0 , else

i, j ∈ {1, . . . , NV } as the adjacency matrix of graph G.

Note that a graph is completely specified by an adjacency matrix and vice versa.
The graph and its corresponding adjacency matrix can be seen as a different per-
spective of the same object. This relationship between graph and adjacency matrix
is illustrated in figure 1, which illustrates the binarized arms trade network of the G8
nations in 2013. The adjacency matrix can unproblematically be generated from the
graph and one can easily draw the corresponding graph using the adjacency matrix.

When looking at the graph in figure 1 it stands to reason to count the ties connected
to an actor in order to draw conclusions about the importance of that actor in the
network. The definition introduced next will play a key role in the network models
discussed later.

Definition 4. Let G = (V,E) be a finite, directed graph and v ∈ V . Then, the
numbers

degin(v) := |{(vi, vj) ∈ E : vj = v}|

degout(v) := |{(vi, vj) ∈ E : vi = v}|

are called the in-degree and out-degree of vertex v.

Thus, the in-degree of a node v is defined as the number of edge heads ending at v.
On the other side, the out-degree is defined as the number of tails connected to v.
Note that a node’s in-degree can easily be calculated by adding up the node’s column
in the adjacency matrix. When looking at the adjacency matrix in figure 1 one can
easily see that the UK has an in-degree of 2, purchasing weapons from France and
the US. Similarly, one gets an actors out-degree by adding up the corresponding
row.

The next term introduced is the definition of a dyad. A dyad is defined as a group of
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2 Data Sources and Structuring

two actors and their relation. Thus, a dyad can be seen as the smallest possible unit
in network analysis, since it is a network consisting of only two actors. For directed
networks we are going to differentiate between three kind of dyads: We are going to
call a dyad (ij) mutual or reciprocal if there is an edge going from i to j and from j

to i, i.e., eij , eji ∈ E. A dyad is called asymmetric or one-sided if there is only one
edge between the two actors, i.e., eij ∈ E Y eji ∈ E, where Y is defined as exclusive
’or’. Lastly, a dyad is called null if there is no edge between two actors i and j, i.e.,
eij , eji /∈ E.

Finally, we are going to define the geodesic distance in terms of network analysis,
which will be especially important for the goodness-of-fit considerations in chapter
3.6, 6.2, 6.3 and 7.2. In order to do so, we first have to define what we call a path.

Definition 5. Let G = (V,E) be a finite, directed graph. A path from v0 to v` is
defined as a sequence (v0, e1, v1, e2, . . . , v`−1, e`, v`), where vi, vj ∈ V , vi 6= vj and
ei ∈ E , ei := (vi−1, vi) for all i, j ∈ {1, . . . , `}.
The number ` is called the length of the path.

The definition of a path enables the definition of the geodesic distance.

Definition 6. Let G = (V,E) be a finite, directed graph and let v1, v2 ∈ V be two
nodes in the network. The geodesic distance dist(v1, v2) between two nodes is the
length ` of one of the shortest paths from v1 to v2. If there is no path between v1

and v2 define dist(v1, v2) =∞.

The geodesic distance is defined as the length of one of the shortest paths be-
tween two nodes v1 and v2. One has to be careful with the fact that for di-
rected networks the geodesic distance between v1, v2 does not necessarily imply
dist(v1, v2) = dist(v2, v1). Furthermore, one can easily certify that the shortest
path does not need to be unique. If one takes, for instance, the G8 trade network in
figure (1) and determines the geodesic distance from the USA to Russia one recog-
nizes easily that there are two paths with the length of 2 between these two countries.
One through France and the other one via Italy.

2 Data Sources and Structuring

The international arms trade data for major conventional weapons was provided by
the Stockholm International Peace Research Institute (SIPRI), a Swedish think tank
specializing in research on international conflict, armaments, arms control and dis-
armament. SIPRI was established in 1966 on the basis of a decision by the Swedish
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2 Data Sources and Structuring

government. In addition to their headquarters in Stockholm they also have a pres-
ence in Beijing. See [49] for more information on SIPRI.

The initial data set is available for the time period 1950-2013 (as of 02/2015) and
describes the international trade of major conventional weapons along a variety of at-
tributes such as country and year. This means that weapons produced for a nations
own personal use are not considered in the data. In order to measure the volume of
international transfers of arms, SIPRI has developed a unique system. The data is
listed in trend indicator value (TIV), a measure which is based on production costs
(see Holtom et al. [24]).

One might ask the question why the data is not given in a monetary value, like
constant USD or the like, which mirrors actual cash flow. According to SIPRI there
are several reasons why measuring the cash flow would lead to distorted informa-
tion. One main reason is certainly that for major conventional weapons there is not
catalog price and, as a consequence, unit prices are usually negotiated individually.
Furthermore, trading weapons often has underlying political or economic reasons.
One can imagine that a supplier nation might be willing to send weapons in order
to guarantee power equilibrium or to assert personal interests in a certain area. For
instance, this effect can be seen when looking at the proxy wars which were hap-
pening during the Cold War between the Soviet Union and the United States. An
example of economic motivations for sending weapons to a different nation is the
deal between Germany and Saudi Arabia in 2014. Germany sent Leopard-2 tanks
to the Arabian country and in return Germany received further oil supply bene-
fits. Therefore, considering the cash flow would not mirror the actual value of the
delivered tanks. Furthermore, according to SIPRI, the TIV has the other crucial
advantage of being consistent over time, which makes it possible to compare the
arms flow of different time periods. The aggregated trade volumes for each year are
visualized in figure 2. One can see that from the beginning of the data acquisition
the amount of weapon trades increased until it reached its peak in 1982. From this
year until the mid-nineties the amount of yearly traded weapons decreased. In the
twenty-first century we can again observe a clear increase in the volume of traded
weapons.

In order to get a first rough impression for the values of the traded goods some
examples shall be listed. For instance, a Leopard 2A4-tank is worth 4 million TIV,
a Eurofighter has the value of 55 million TIV and a 209PN submarine is registered
with 275 million TIV. Secondhand weapons get the value of two-fifths of the origi-
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2 Data Sources and Structuring
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Figure 2: The aggregated trade volumes in million TIV for the time period 1950-2013

nal price, while used units which were significantly refurbished or modified by the
supplier nation before delivery is given two-thirds of the original price. As a con-
sequence, this measure enables the possibility of calculating trends and comparing
the arms trade activities of different nations. In table 1 the top 10 supplier and the
top 10 recipient nations are listed for the time period 2009-2013. One can easily
discern that even twenty years after the end of the Cold War the international arms
trade is characterized by two main actors: the United States and Russia. On the
other hand, India as the main recipient of major conventional weapons strikes the
attraction, which seems to be a result of the still-ongoing Kashmir conflict with Pak-
istan, a country ranked third in the recipient table, and consistently arising border
conflicts with China, a country ranked second in the recipient table. In general one
can ascertain by taking a look at figure 3 that the majority of arms imports are
delivered to countries in Asia/Middle East.

When examining the international arms trade one will recognize that not only coun-
tries are involved in the network. In fact, international organizations like the UN
and NATO, extremist groups like Al Quaida, Hamas, Hezbollah and embattled ar-
eas like Chechnia, Darfur or even Eastern Ukraine can actively be involved in the
network. However, according to Akerman et al. [1] these trade flows are negligible
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2 Data Sources and Structuring

Recipients
Land TIV

1 India 18563.80
2 China 6581.37
3 Pakistan 6425.93
4 United Arab Emirates 5774.80
5 Saudi Arabia 5229.99
6 United States 5072.71
7 Australia 4792.76
8 South Korea 4752.28
9 Singapore 4438.57

10 Algeria 4226.95

Suppliers
Land TIV

1 United States 37660.46
2 Russia 36243.01
3 Germany 8619.34
4 China 7379.65
5 France 7195.38
6 United Kingdom 5510.32
7 Spain 3886.92
8 Ukraine 3502.08
9 Italy 3456.58

10 Israel 3156.09

Table 1: The left table lists the top 10 recipients and the right the top 10 supplier
nations for the time period 2009-2013

and as a consequence, we decided not to consider them in this thesis. A list of all
possible arms trading actors and a list of all excluded embattled areas are given in
appendix 9.3 and 9.4.

After having defined the set of actors in the networks, one has to face the fact that
some actors did not exists during the whole time period of consideration. For ex-
ample, the German Democratic Republic disappears from the scene in 1990, while
other countries like Estonia and Kazakhstan (re-)gain their independence in 1991.
Later, we are going to model the arms trade network on an annual basis for the time
period 1950 − 2013. In order to adequately model these networks, we implement a
function in R, which excludes every country from the list of all actors (appendix 9.3)
that did not exist in the particular year of consideration. The time period through
which a country is included into the models can also be found in appendix 9.3.

The left plot in figure 4 shows the number of actors in the network for each year.
There is a conspicuous constant growth of actors from the 1960s until 1980 due to
decolonization and a big jump from 1990 to 1991 as a consequence of the break-up
of the Soviet Union. On the right side we have visualized the time series of the net-
work’s density. Even as we are careful while interpreting this plot, since the number
of actors changes over time, one can observe similarities to the time series of the
aggregated traded volumes. Just as in figure 2, we can see a peak in 1982, followed
by a decrease until the nineties and a rise in the past ten years.

The data in their initial form are not suitable for network analysis, since they are
not in adjacency form, and, as a consequence, have to be transformed. An adjacency
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2 Data Sources and Structuring

Asia 41%

Middle East 20%

North Africa 7%
Subsaharan Africa 3% Europe 14%

North America 5%
Central America 1%

South America 5%

Oceania 4%

Weapon Import

Data Source: SIPRI

Figure 3: Distribution of worldwide weapon imports in the time period 2009-2013

matrix is a matrix consisting of 1s and 0s where each particular actor in the network
is assigned both a row and a column (see definition 3). In our case, a 1 indicates
that the nation in the corresponding row is selling weapons to the nation in the cor-
responding column, while a zero indicates that there is no arms flow from the row
nation to the column nation. Since an adjacency matrix only allows binary coding,
setting a threshold is neccessary. In this paper we fix the threshold at one million
TIV, which means that all trade flows considered more than one million TIV are
indicated with a 1 while all others get labeled by a 0. Setting a threshold enables
us to distinguish between proper weapon purchases and acquisitions simply made in
order to maintain already existing weapons. Experience with the data showed that
fixing the threshold at one million TIV is satisfactory for our purposes.

When taking a look at the network graphs in figure 26 and 27 in the appendix one
can observe quite easily that the majority of countries, which are actively involved
in the arms trade network are only receiving weapons and are not selling their goods
to other countries. For the sake of clarity, the countries that did not trade weapons
in these years were excluded from the plot. This finding gets even further support
by the fact that around 95% of all dyads which are not null, are one-sided. Only the
minority of non-null edges are mutual (see Jansen and Schmid [29]). Furthermore,
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Figure 4: The number of actors included in the arms trade networks (left) and the
density of the networks (right) for the time period 1950-2013

by looking at the networks in figure 26 and 27 it catches one’s eye that there are a
few actors which sell weapons to a vast number of other actors. The total export
TIV of the Top 10 weapon selling nations from table 1 corresponds to 88.3% of the
total export TIV of all nations in this time period. The United States and Russia
alone are each responsible for about one-third of the global arms exports.

Figure 5 visualizes the average in-degree and out-degree distribution for the time
period 1950-2013 in percentages. Plotting the distribution on a percentage scale en-
ables a comparison of the distributions for different networks with a different number
of actors. In each case, 90% of the corresponding degree value was situated between
the black bars. These figures visualize what we already discussed in the paragraph
before. The majority of countries are not selling weapons, which can be derived
from the fact that over 80% of all actors in the network have an out-degree of zero.
On the other hand, the majority of the actors have an in-degree of 0 as well, but this
is mainly due to the countries, which are not involved in any weapon trades at all.
Besides, there is still a high percentage of actors which are only purchasing weapons
from one supplier. These countries usually do not sell weapons and are therefore
contingent on a single supplier. We refer to these nodes in the network as satellites.

In this paper we will also incorporate other data sets, which are included as ex-
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Figure 5: The average in-degree and out-degree distribution for the time period 1950-
2013. In each case 90% of the corresponding degree value was situated
between the black bars

ogenous covariates. One is the Formal Interstate Alliance Dataset provided by
Gibler [17], which is part of the Correlates of War (COW) Project. This data
set provides insight into the content of military alliance agreements signed by any
nation from 1815 on. We incorporate these data as symmetric adjacency matrices
for each year, where a 1 indicates that nations i and j signed a defense agreement,
while a 0 denotes that the corresponding nations have not.

The next data set included into models for this paper contains data from the Polity
IV Project, which is provided by the Center for Systemic Peace (CSP) [34]. This
data assigns a democracy score between 10 and −10 to each nation on an annual
basis, depending on its democratic status. A 10 indicates that nation i has the high-
est democracy standards while a −10 means the opposite. We created a weighted
adjacency matrix with the absolute difference in democracy score between nations i
and j as entries.

Furthermore, we include a covariate we are going to refer to as direct contiguity. This
covariate is a relational covariate (see chapter 3.5) similar to the defense agreement
data, and it indicates whether two nations i and j share a common border or not.
This data set does not only embrace land borders, but also sea borders. Just as
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2 Data Sources and Structuring

for the alliance covariate, a 1 indicates that there exists a relation between i and
j which in this case means that there is a common border. To the contrary, a 0
indicates that there is no common border between i and j.

Additionally, we use the GeoDist Dataset from CEPII [35], the primary French insti-
tute for research into international economics. This dataset includes the geographic
distance between nations’ capitals (measured in kilometers) by using the great circle
formula, which uses latitudes and longitudes. Since we assume that these data and
the direct contiguity data are dependent on each other, the GeoDist data is only
included into the models if it is mentionend particularly. Otherwise, the direct con-
tiguity data is used.

A nodal attribute is the Composite Index of National Capability (CINC) from the
National Material Capabilities Dataset [46]. The CINC is a statistical measure of
national power created for the COW project. It uses an average of percentages of
world totals in six different components, which represent demographic, economic,
and military strength. These components are: total population, urban population,
iron and steel production, primary energy consumption, military expenditure, and
military personnel. As described by Perkins and Neumayer [40] we include this data
curvilinearly (CINC2+ CINC).

The next covariate in our model gathers information about inter- and intra-state
conflicts and includes all episodes of international, civil, ethnic, communal, and
genocidal violence and warfare. The data come from the Major Episodes of Political
Violance Project and are also provided by the CSP [34]. The conflicts are coded on
a scale of one to ten according to an assessment of the full impact of their violence
on the societies that directly experienced their effects. We distinguish between the
inter- and intra-state conflicts by incorporating the inter-state conflicts as relational
data and the intra-state conflicts as nodal covariates (see chapter 3.5).

We also include the Arms Embargoes Dataset, which is also provided by SIPRI [49].
This database gives information on all multilateral arms embargoes that have been
implemented by an international organisation, such as the EU or UN, or by a group
of nations. It includes both legally binding embargoes and those that are solely
political commitments. However, arms embargoes may be in place for only part of a
year, while data on arms transfer is available on a yearly basis. Therefore, in order
to prevent legal arms tranfer from biasing the results, only embargos which were
imposed for a full calendar year are included. A 1 indicates that country i has an
embargo against country j, while a 0 indicates that i does not have an embargo
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3 The Exponential Random Graph Model (ERGM)

against j.

Finally, we use the nations’ gross domestic product (GDP) per capita in US dollars
from The Maddison Project dataset [50]. In order to make this data more accessible
for the networks, we shrink the given numbers by taking the natural logarithm. The
Maddison Project is, to our knowledge, the only dataset that also covers socialist
and communist countries from before 1990.

3 The Exponential Random Graph Model (ERGM)

The network model we are going to introduce is the exponential random graph model
(ERGM), which is a probability model for directed or undirected binary models. This
means neither the weighting nor the temporal change of ties is considered in the
model. In literature, ERGMs are sometimes also referred to as p-star or p∗ models
(see Wassermann and Pattison [53]). Therefore, we consider p-star as a synonym for
ERGM. In the following, we will introduce the ERGM for directed networks. This
chapter is mainly based on Harris [22], Hunter et al. [26], Hunter [28] and Jansen
and Schmid [29].

3.1 The ERGM

In contrast to many other network models the ERGM takes the adjacency matrix
of an observed network Aobs as the manifestation of a matrix-like random variable
Y . According to definition (3) a network of NV nodes can be defined as adjacency
matrix A = (aij) ∈ RNV ×NV , where aij ∈ {0, 1} for all i, j ∈ {1, . . . , NV }. aij = 1
means that there is an edge going from actor i to actor j, while aij = 0 indicates
that this edge does not exist. Since the model does not involve loops, one has aii = 0
for all i ∈ {1, . . . , NV }. Recall that we simply write i for an actor vi ∈ V as long as
it is not causing any confusion. Furthermore, define

A(NV ) :=
{
A ∈ R(NV ×NV ) : aij ∈ {0, 1}, aii = 0

}
as the set of all possible networks on NV nodes without loops. Note that the cardinal-
ity of set A(NV ) is increasing exponentially for every newly included actor, which
results in 2NV (NV −1) elements. Therefore, for an already small number of actors
the cardinalty of A(NV ) turns out to be an astronomically big number. With the
definition of A(NV ) we define

Y : Ω→ A(N) , ω 7→ (Yij(ω))i,j=1,...,N
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3 The Exponential Random Graph Model (ERGM)

as a matrix-like random variable. As the probability function from Y to A(NV ) we
define

Pθ(Y = A) = exp(θT · Γ(A))∑
A∗∈A(N) exp(θT · Γ(A∗)) (1)

where

• θ ∈ Rq is a q−dimensional vector of parameters

• Γ : A(N) → Rq , A 7→ (Γ1(A), . . . ,Γq(A))T is a q-dimensional function of
different network statistics

• c(θ) :=
∑
A∗∈A(N) exp(θT · Γ(A∗)) is a normalization constant which ensures

that (1) defines a probability function on A

As already mentioned, a specific network A can be considered as a manifestation of
a matrix-like random variable, whose probability of occurrence can be modeled with
equation (1). A key role when modeling an ERGM is played by the function Γ(·).
The decision about which network statistics are incorporated into the model affects
the model significantly. The selection of endogenous network statistics should be the
result of a meticulous analysis of the observed network, since including the wrong
statistics can easily cause degeneracy problems (see Handcock [19]). We will discuss
the meaning of degeneracy at a later point.

Since the adjacency matrix A can be understood as a manifestation of a matrix-like
random variable Y , the individual entries aij of A can be taken as a manifestation
of single Bernoulli variables Yij . This interpretation allows the following calculation
regarding the conditional distribution of Yij :

Pθ(Yij = 1|Y c
ij = Acij)

Pθ(Yij = 0|Y c
ij = Acij)

=
Pθ(Yij = 1 , Y c

ij = Acij)
Pθ(Yij = 0 , Y c

ij = Acij)

=
Pθ(Y = A+

ij)
Pθ(Y = A−ij)

=
exp(θT · Γ(A+

ij))
exp(θT · Γ(A−ij))

= exp(θT · (Γ(A+
ij)− Γ(A−ij))

This implies the following equation:

logit(Pθ(Yij = 1|Y c
ij = Acij)) = θT · (Γ(A+

ij)− Γ(A−ij)) (2)

In the equation above the following notations were used:
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3 The Exponential Random Graph Model (ERGM)

• A+
ij emerges from A, while assuming aij = 1

• A−ij emerges from A, while assuming aij = 0

• The condition Y c
ij = Acij is short for: Ypq = apq for all (p, q) ∈ {1, . . . , N}2 with

(p, q) 6= (i, j)

• The expression (∆A)ij := Γ(A+
ij) − Γ(A−ij) is called the change statistic. The

kth component of (∆A)ij captures the difference between the networks A+
ij

and A−ij on the kth integrated statistic in the model

As will be illustrated later more precisely, covariates can also be included into the
model via Γ(·). Depending on whether a statistic incorporated into the model uses
external covariate information or is based on mere structural network characteris-
tics, one differentiates between exogenous and endogenous network statistics. Notice
that for the sake of simplicity we did and will not condition on exogenous network
statistics in this and in the following chapters.

3.2 Parameter Estimation

How can a parameter vector θ be estimated? A first idea could be the following:
One can assume that the dyads are independent of each other, which means that
the random variables Yij inside the random matrix Y are independent of each other.
In this case, the equation (2) reduces to

logit(Pθ(Yij = 1)) = θT · (∆A)ij

This corresponds with the logistic regression approach, where the observations of
the dependent variables are simply edge values of the observed adjacency matrix,
and the observations of the covariate values are given as the scores of every single
change statistic. Therefore, the following structure of the data is given by

(aij , (∆(A))ij) for i, j ∈ {1, . . . , N}

and the estimation of θ can then be obtained as usual using maximum-likelihood
estimation. The resulting likelihood function is of the following form:

lik(θ) = Pθ(Y = A) =
∏
i,j

exp
(
θT∆(A))ij

)
1 + exp (θT∆(A))ij)

(3)
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3 The Exponential Random Graph Model (ERGM)

The problem with this simple estimation procedure is that the assumed hypothesis
of the independence of the dyads turns out to be erroneous in most cases. This
is a systematic problem: The presence of network data is inextricably connected
with the presence of relational data, which by definition should not be assumed to
be independent of each other. If this dependency structure is deliberatley ignored
and equation (3) is used to estimate θ, it results in a pseudo-likelihood estimation.
This technique tends to underestimate the standard error. However, Desmarais and
Cranmer [11] show that the pseudo-likelihood provides a consistent approximation
of the maximum likelihood.

There are several techniques to circumvent estimators, which underestimate the
standard error of θ. In the following, we will introduce a technique based on Markov
Chain Monte Carlo (MCMC) and maximum-likelihood methods. Later in chapter
6.2 we are going to discuss an approach based on a bootstrapping technique, which can
also be applied for the ERGM (see Leifeld et al. [33] or Desmarais and Cranmer [10]
for further details).

The more rigorous technique is to estimate the parameters directly with the log-
likelihood function derived from (1), which has the following form:

loglik(θ) = θT · Γ(A)− log(c(θ)) (4)

where A is the observed network. For the vector of network statistics, one can
assume without loss of generality

Γ(A) = 0 (5)

The reason is the following: If (5) does not apply to the vector of chosen network
statistics Γ(·), replace Γ(·) in (1) with the new network statistic

Γ∗(·) := Γ(·)− Γ(A)

With this replacement, the probability function of Y remains the same, since after
simple recalculation:

exp(θT · Γ(A))
c(θ) = exp(θT · Γ∗(A))

c∗(θ)

where c∗(θ) :=
∑
A∗∈A(N) exp(θT · Γ∗(A∗)). This means that centering the vector of

network statistics does not affect the probability function of the network variable
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3 The Exponential Random Graph Model (ERGM)

Y . Therefore, in context of the likelihood function (4) the vector of statistics can
always be assumed to be centered around the observed network.
Due to assumption (5), one gets from(4) the simplified log-likelihood function

loglik(θ) = − log(c(θ)) (6)

The problem resulting from estimating the parameters with (4) is that the term

c(θ) :=
∑

A∗∈A(NV )
exp(θT · Γ(A∗))

which sums up the weighted network statistics of all possible networks of NV nodes,
has to be evaluated. Even for networks with small numbers of nodes this presents
an enormous computational obstacle, and the necessary calculations for larger net-
works can not currently be completed in any reasonable timeframe. The arms trade
networks we are going to model have an average of 150 actors and therefore, we
would have to compute exp(θT ·Γ(A∗)) for about 222350 networks in order to obtain
c(θ). An astronomically big number! As a result, for sufficiently large networks it is
not possible to estimate the parameters directly with the likelihood function.

An expedient for this limitation is based on the following consideration: Fix a vector
of parameters θ0 ∈ Θ from the underlying parameter range Θ and compute for θ ∈ Θ
the expected value

Eθ0

[
exp

(
(θ − θ0)T · Γ(Y )

)]
=

∑
A∈A(N)

exp
(
(θ − θ0)T · Γ(A)

)
· Pθ0(Y = A)

=
∑

A∈A(N)
exp

(
(θ − θ0)T · Γ(A)

)
· exp(θT0 · Γ(A))

c(θ0)

= 1
c(θ0)

∑
A∈A(N)

exp
(
θT · Γ(A)

)

= c(θ)
c(θ0)

One gets the equation

c(θ)
c(θ0) = Eθ0

[
exp

(
(θ − θ0)T · Γ(Y )

)]
(7)

Equation (7) offers the following possibility: If one draws L random networks
A1, . . . , AL out of a distribution Pθ0 appropriately, one gets with the law of big
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3 The Exponential Random Graph Model (ERGM)

numbers the following relation:

1
L
·
L∑
i=1

exp
(
(θ − θ0)T · Γ(Ai)

) Pθ0−→ Eθ0

[
exp

(
(θ − θ0)T · Γ(Y )

)]
= c(θ)
c(θ0) (8)

For a big enough number, L, of random networks, the following approximation is
reasonable:

c(θ)
c(θ0) ≈

1
L
·
L∑
i=1

exp
(
(θ − θ0)T · Γ(Ai)

)
(9)

One can now use equation (9) to determine an approximation of the log-likelihood
function (6):

loglik(θ)− loglik(θ0) = − log(c(θ)) + log(c(θ0))

= − log
(
c(θ)
c(θ0)

)
= − log

(
Eθ0

[
exp

(
(θ − θ0)T · Γ(Y )

)])
≈ − log

(
1
L
·
L∑
i=1

exp
(
(θ − θ0)T · Γ(Ai)

))

By differentiating this equation on both sides with respect to θ one gets an approxi-
mate score function:

s(θ) ≈ − ∂

∂θ
log

(
1
L
·
L∑
i=1

exp
(
(θ − θ0)T · Γ(Ai)

))
(10)

This approximate score function now can be used as usual, i.e., it can be iteratively
approximately optimized with the Newton-Raphson algorithm. As a result, the ap-
proximate maximum-likelihood estimator for the parameters can be computed.

As pleasant as this may sound, the immediate question arises: How can a sufficient
number of suitable drawings A1, ..., AL be taken from the distribution Pθ0?
For this purpose, the Markov Chain Monte Carlo (MCMC) methods can be used.
The application of MCMC methods for the simulation of random networks is dis-
cussed in the next chapter.

3.3 Simulation of random networks

To be able to compute the approximate likelihood function, which was established in
the last paragraph, one needs a sufficiently large number of random networks from
the distribution Pθ0 of the matrix-like random variable Y . Snijders [48] introduces
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an approach to select these random networks by using MCMC methods.

No matter which kind of MCMC algorithm is used, the basic idea is the following:
One constructs a Markov chain (Yt)t∈N on the set of all possible networks A(N) of
N nodes, whose stationary distribution is in conformity with the distribution Pθ0 .
One can show that every single realization (or trajectory)

(At)t∈N := (Yt(ω))t∈N

of this stochastic process accomplishes the convergence result (8) (for this version
of the Law of big numbers for Markov chains we reference Meyn and Tweedie [37]).
As a result, sub-sequences of (At)t∈N which are sufficiently large enough can be used
for approximation (9).

But how can one construct suitable trajectories of Markov chains from A(N)? To
answer this question, two common algorithms are introduced, the Gibbs Sampling
method and the Metropolis-Hastings algorithm.

Gibbs Sampling Method

Begin by choosing a start matrix A(0) ∈ A(N) (for instance, the observed ma-
trix could be chosen). Afterwards, the length L of the respective sub-sequence is
determined. For k ∈ {0, ..., L − 1} execute the following steps recursively (here the
network in its kth iteration is denoted as A(k)):

1. Randomly choose an edge (i, j) where i 6= j from A(k).

2. Compute with equation (13) the value

π := Pθ(Yij = 1|Y c
ij = (A(k)

ij )c)

3. Draw a random number Z from Bin(1, π). If

• Z = 0, define A(k+1) via

a(k+1)
pq =

0 if (p, q) = (i, j)

a
(k)
pq if (p, q) 6= (i, j)
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• Z = 1, define A(k+1) via

a(k+1)
pq =

1 if (p, q) = (i, j)

a
(k)
pq if (p, q) 6= (i, j)

4. Start at step 1 with A(k+1).

The depicted algorithm provides a sequence of random networks A(0), ..., A(L). Since
the orignial matrix was chosen randomly and the first simulated networks are very
dependent on the chosen matrix (only one edge is changed per iteration!), usually
the first B networks, where N � B � L, are discarded as the so called Burn-In.

Metropolis-Hastings Algorithm

Again, choose a matrix A(0) ∈ A(N) to start with (e.g., the observed network).
For k ∈ {0, ..., L− 1} recursively proceed as follows:

1. Randomly choose an edge (i, j) where i 6= j from A(k)

2. Compute, using the equation (2) the value

π :=
Pθ(Yij 6= a

(k)
ij |Y c

ij = Acij)

Pθ(Yij = a
(k)
ij |Y c

ij = Acij)

3. Fix δ := min{1, π} and draw a random number Z from Bin(1, δ). If

• Z = 0, let A(k+1) := A(k)

• Z = 1, define A(k+1) via

a(k+1)
pq =

1− a(k)
pq if (p, q) = (i, j)

a
(k)
pq if (p, q) 6= (i, j)

4. Start at step 1 with A(k+1).

Similar to the Gibbs Sampling method, the first B networks are discarded as Burn-
In.
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Arms Trade Network 2012

Data Source: SIPRI

China
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Germany

Russia

United States

Arms Trade Network 2013

Data Source: SIPRI

China

France

Germany

Russia

United States

Figure 6: The trade network for 2012 and 2013 for the five main major conventional
weapon supplier nations

3.4 Parameter Interpretation

After considering how the vector of parameter θ can be estimated, we now address
to the interpretation of these estimates. Interpreting the parameters of an ERGM
can be done on two different levels: on the edge level and on the network level. The
following discussion is based on Cranmer and Desmarais [8].

We begin by discussing how the parameters of the ERGM can be interpreted on the
network level. Therefore, for a network A let Ak− be the network

Γ`(Ak
−) =

Γ`(A) , if ` ∈ {1, . . . , q}/k

Γ`(A)− 1 , if ` = k

Ak
− is defined as a network where all statistics except the kth one get assigned the

same value as in network A and the kth statistic of Ak− is by one smaller than the
corresponding statistic of A.

As an example, consider an ERGM with only two statistics: the number of edges and
the number of actors with in-degree= 1. A network A2− is a network, which has the
same number of edges as network A, but the number of actors with an in-degree of
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1 is one smaller than in network A. The networks in figure 6 are exactly of this kind.
They illustrate the network among the five main suppliers of major conventional
weapons for the years 2012 and 2013. One can easily assure oneself that the number
of edges is 9 in both networks, but the number of actors with in-degree of 1 differ.
In the 2012 network only Germany has an in-degree of 1 while in the 2013 network
two countries, France and Russia, receive arms from only one of the other four top
weapon-selling nations. Therefore, the 2012 network can be written as A2− of the
2013 network A.

To consider the odds of occurrence of network A compared to Ak
− , one realizes

through equation (1) the following relationship:

Pθ(Y = A)
Pθ(Y = Ak−)

=
∑q
l=1 θl · Γl(A)∑q

l=1 θl · Γl(Ak
−)

= exp(θk · Γk(A))
exp(θk · (Γk(A)− 1))

= exp(θk)

Meaning that
Pθ(Y = A)

Pθ(Y = Ak−)
= exp(θk) (11)

Equation (11) now can be interpretated as follows: The relative plausibility that net-
work A occurs instead of network Ak− is exp(θk). The higher the value of exp(θk),
the more plausible network A is compared to Ak− . This yields the following inter-
pretation for a parameter θk:

• if θk > 0, then network A is more plausible than network Ak−

• if θk = 0, then both networks are equally plausible

• if θk < 0, then network Ak− is more plausible than network A

The other interpretation method is the one on the edge level. In order to make a
connection between the vector of coefficient θ and the probability Pθ(Yij = 1|Y c

ij =
Acij), observe the following consideration:

Because of (2), one has

logit(Pθ(Yij = 1|Y c
ij = Acij)) = θT · (Γ(A+

ij)− Γ(A−ij))
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This is equivalent to the equation

Pθ(Yij = 1|Y c
ij = Acij) = logit−1(θT · (Γ(A+

ij)− Γ(A−ij))) (12)

Together with the abbreviation (∆A)ij := Γ(A+
ij) − Γ(A−ij) and the inverse logit

function
logit−1(x) = exp(x)

1 + exp(x)

one gets the equation

Pθ(Yij = 1|Y c
ij = Acij) = exp(θT · (∆A)ij)

1 + exp(θT · (∆A)ij)
(13)

With this result, one can compute the odds of occurrence of edge (i, j), conditional
on the rest of the network:

Pθ(Yij = 1|Y c
ij = Acij)

Pθ(Yij = 0|Y c
ij = Acij)

=
Pθ(Yij = 1|Y c

ij = Acij)
1− Pθ(Yij = 1|Y c

ij = Acij)

=
exp(θT ·(∆A)ij)

1+exp(θT ·(∆A)ij)

1− exp(θT ·(∆A)ij)
1+exp(θT ·(∆A)ij)

=
exp(θT ·(∆A)ij)

1+exp(θT ·(∆A)ij)
1

1+exp(θT ·(∆A)ij)

= exp(θT · (∆A)ij)

With the equation

θT · (∆A)ij =
q∑
l=1

θl · (∆lA)ij

one gets

Pθ(Yij = 1|Y c
ij = Acij)

Pθ(Yij = 0|Y c
ij = Acij)

= exp
( q∑
l=1

θl · (∆lA)ij

)

=
q∏
l=1

exp(θl · (∆lA)ij)

All in all, the calculation can be summarized as

Pθ(Yij = 1|Y c
ij = Acij)

Pθ(Yij = 0|Y c
ij = Acij)

= exp(θ1(∆1A)ij) · ... · exp(θq(∆qA)ij) (14)
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Equation (14) now enables a ceteris-paribus analysis of the parameters in the model:
If the kth change statistic (∆kA)ij increases one unit to (∆kA)ij + 1, while all
the other change statistics remain unchanged, the odds of occurrence of edge (i, j),
conditional on the rest of the network, is multiplied by the factor exp(θk).
This leads to the following interpretation of the parameter θk, k ∈ {1, . . . , q}:

• If θk > 0, the conditional odds of occurrence increase.

• If θk = 0, the conditional odds stay the same.

• If θk < 0, the conditional odds decrease.

Therefore, the interpretation of the parameter happens almost the same way as it
is done for logistic regression analysis (compare Fahrmeir et al. [15]). As will be
discussed more extensively later on, one has to be very cautious with this kind of
interpretation: The increase of the change statistic is not always reasonable. For
instance, consider the network statistic

Γ1(A) := Number of edges with In-Degree = 1

then the change statistic (∆1A)ij belonging to dyad (ij) can only attain values
{−1, 0, 1}. As a result, the change statistic can never alter by more than one unit.

3.5 Statistics for the ERGM

Generally speaking, ERGM statistics can be differentiated into three groups: en-
dogenous statistics, nodal covariates, and edge or relational covariates. Endogenous
statistics capture the structural form of an observed network, while nodal covariates
reflect actors’ attributes. For instance, in the case of the international arms trade
network this could be a nation’s GDP or military expenditure. The third kind of
covariate we are considering is the edge or relational covariate. As the name im-
plies this kind of covariate captures other relations between actors in the network.
Examples in our case could be covariates which describe whether two nations have
a defense agreement or are in conflict with each other. Just as in the observed
networks the relation between two actors can be either directed or undirected and
therefore, be written as an adjacency matrix. In this paper we will refer to nodal
and relational covariates as exogenous covariates. In this chapter we will introduce
some endogenous network statistics, discuss how relational exogenous covariates can
be incorporated into the ERGM, and explain how nodal covariates are included into
the model.
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The endogenous statistics we are going to discuss in this chapter are called edges,
outstar(2), instar(2), transitive, idegree(k), odegree(k), asymmetric, mutual, dsp(k)
and esp(k), k ∈ N0. The statistic edges simply counts the number of edges in the
network and plays the role of the intercept in the ERGM, since the change statistic
in equation (2) is always going to be 1 for the number of edges. This results from
the fact that the number of edges in network A+

ij is exactly one higher than the
number of edges in network A−ij . Therefore, the corresponding parameter θedges of
the change statistic influences every network in the same way.

As already introduced in chapter 3.1, a network statistic Γi(A) is a mapping from
the set of all possible networks on NV nodes A(NV ) into R. Formally, this statistc
can be written as

Γedges : A(NV )→ R , A 7→
NV∑
i=1

NV∑
j=1

aij

The outstar(2) statistic is called this way, because the edges radiating from the
sender to several receivers form a star shape when drawn. In our case, a positive
outstar(2)-parameter indicates that a country which is selling weapons to an other
country is more likely to also sell weapons to a third country. The included statistic
can be written as

Γostar(2) : A(NV )→ R , A 7→
NV∑
i=1

NV∑
j=1

NV∑
k=1

aijaik

Analogously to Γostar(2) we define the instar(2) statistic as

Γistar(2) : A(NV )→ R , A 7→
NV∑
i=1

NV∑
j=1

NV∑
k=1

ajiaki

The next endogenous statistic is called transitive. Networks with high values for the
transitive statistic are those in which edges are more likely to exist between countries,
which obtain weapons from a same third state. Seeing this statistic from a social
scientific point of view, transitive incorporates the a-friend’s-friend-is-a-friend-effect.
Mathematically speaking, this statistic can be written as

Γtransitive : A(NV )→ R , A 7→
NV∑
i=1

NV∑
j=1

NV∑
k=1

aijaikajk

When looking at the international arms trade network (see figures (26) and (27) in
the appendix) one recognizes that a noticeable structure of the network is that in
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3 The Exponential Random Graph Model (ERGM)

the case of an existing tie between two actors i and j this tie is usually not mutual.
In other words, if nation i is selling weapons to nation j than there is usually no
trade flow from j to i. The number of asymmetric or one-sided dyads in a network
A can be defined as

Γasymmetric : A(NV )→ R , A 7→
NV∑
i=1

NV∑
j=1

aij(1− aji)

Analogously, the number of mutual dyads is defined as

Γmutual : A(NV )→ R , A 7→
NV∑
i=1

NV∑
j=1

aijaji

When looking at the arms trade network in its entirety, one observes that there is
a high number of nodes which only receive weapons from one single country and
do not distribute weapons themsevles to other countries. These countries have an
in-degree of 1 and an out-degree of 0. However, we want to include statistics into
the network, which do count the number of actors with an in- and out-degree of
k. These statistics can be incorporated into the model by including the network
statistics idegree(k) and odegree(k), where k ∈ N0. Formally these statistics can be
written as

Γidegree(k) : A(NV )→ R , A 7→
NV −1∑
m=k


(
m

k

)
NV∑
j=1

1{m}
NV∑
i=1

aij


Γodegree(k) : A(NV )→ R , A 7→

NV −1∑
m=k


(
m

k

)
NV∑
j=1

1{m}
NV∑
i=1

aji


Other very useful statistics that are going to play a central role in modeling the arms
trade network are the shared-partner statistics dyad-wise k-shared partners (dsp(k))
and edge-wise k-shared partners (esp(k)). Since dsp(k) is a generalization of esp(k),
the following paragraph will primarily discuss the dyad-wise shared partner statistic.
This statistic counts the number of vertex pairs (i, j), which share exactly k common
neighbors. In a directed graph only vertexes connecting (i, j) over a path of length 2
are counted. To get a better idea of this statistic, take a look at figure (7), where one
dsp(3) statistic is visualized. The vertexes A and B share exactly 3 neighbors and
are connected over these neighbors by a directed path of length 2. The difference
between esp(k) and dsp(k) is that for the esp(k) vertexes A and B would have to be
connected by an edge. This is not a necessary requirement for the dsp(k). Therefore,
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A B

C

D

E

Figure 7: Visualization of dyad-wise shared partners.

figure 7 would demonstrate an esp(3) statistic if A and B were be connected by an
edge. Formally, dsp(k) and esp(k) can be written as

Γdsp(k) : A(NV )→ R , A 7→
NV∑
i=1

NV∑
j=1

1k
 NV∑
m=1

aimamj



Γesp(k) : A(NV )→ R , A 7→
NV∑
i=1

NV∑
j=1

1k
 NV∑
m=1

aimamjaij


After having introduced all endogenous statistics, which are going to play a role in
modeling the arms trade network, we will now turn our focus on the implementation
of exogenous data. The way relational covariates are included into the network is
quite simple. Since these data can easily be written in the same structure and
dimension of the underlying adjacency matrix A they can be included into the
network as

Γrel : A(NV )→ R , A 7→
NV∑
i=1

NV∑
j=1

aijcij

while cij indicates the corresponding entry of the considered relational covariate
matrix. For every existing edge, this statistic adds up the associated entries of the
covariate matrix.
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Figure 8: Structural equivalent networks

At this point it should be mentioned that by including covariates one forestalls the
following structural problem resulting from only including endogenous statistics: Ac-
cording to (1) the probability distribution Pθ(Y = A) only depends via Γ(A) on the
specific realization of A. This means that two networks A1 and A2, which are struc-
turally equivalent on the included endogenous statistics, meaning Γ(A1) = Γ(A2),
are equiprobable. As a consequence, by only including endogenous statistics, the
model does not distinguish between the nodes, since it only refers to the structure
of these networks. In order to visualize this problem one can take a look at figure
8, where two different networks with the same structure are plotted on the same
six actors. By only including endogenous statistics both networks are equiprobable,
since the structure of both networks is equivalent. Of course, the left network should
appear to be more plausible from a contextual point of view than the right one. How-
ever, since endogeneous statistics only incorporate structural characteristics of the
network the model does not consider node specific attributes. For this reason, it is
absolutely essential to include exogenous variables into the network. For example,
by introducing the defense agreement covariate into our example, Γrel=defense would
count the number of matches between the ties in the observed network and the ties
in the defense agreement network. If the model is estimating a positive parameter
θdefense, then the model with more accordances with the defense agreement network
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3 The Exponential Random Graph Model (ERGM)

turns out to be more likely than the other one. Consequently, a distinction between
the two different, but structurally equivalent networks can be made.

Finally, how can nodal covariates be incorporated into the network? When includ-
ing nodal covariates into an ERGM, the ERGM is expanding the vector of nodal
attributes into a matrix. In a directed network we furthermore have to distinguish
between sender and receiver effects, i.e., whether the nodal covariate has an effect
on the buying or the selling behavior of a country. Take for instance the G8 network
from figure 1 in chapter 1. For the nations in this network it could be reasonable
to take the number of allied countries in this network into account. When including
a nodal covariate as a sender effect, the ERGM is transforming the vector of the
number of the actors’ allies

(5, 5, 5, 5, 1, 0, 5, 6)′

into a matrix of the form

SM =



Ca Fr Ger It Jap Rus UK USA

Canada 5 5 5 5 5 5 5 5
France 5 5 5 5 5 5 5 5
Germany 5 5 5 5 5 5 5 5
Italy 5 5 5 5 5 5 5 5
Japan 1 1 1 1 1 1 1 1
Russia 0 0 0 0 0 0 0 0
UK 5 5 5 5 5 5 5 5
USA 6 6 6 6 6 6 6 6


A nodal covariate is turned into a matrix with the same dimensions as the observed
adjacency matrix A and is than included into the ERGM with the statistic

ΓSM : A(NV )→ R , A 7→
NV∑
i=1

NV∑
j=1

aijsmij

where SM = smij ∈ RNV ×NV , i, j,∈ {1, . . . , NV } (see Hunter et al [26]). The
statistic ΓSM adds for every existing edge in the network the number of the supplier’s
allies. This statistic is implemented in R as nodeocov.

Including a nodal covariate as a receiver effect can be done in a very similar way.
Instead of expanding the vector of the number of allies by row into a matrix the size
of A, we expand it by column. As a result the expanded receiver matrix RM can
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be included into the model with the statistic

ΓRM : A(NV )→ R , A 7→
NV∑
i=1

NV∑
j=1

aijrmij

where RM = rmij ∈ RNV ×NV , i, j ∈ {1, . . . , NV }. After having discussed the most
common statistics for the ERGM, we are set to fit our first network model.

3.6 First ERGM for the Arms Trade Network

When fitting an ERGM one usually has to deal with so called degeneracy problems,
which result in unreliable approximative likelihood estimates for the model’s param-
eters. The reason why degeneracy occurs is that the stochastic process generated
by the MCMC-algorithm does not necessarily hold the through the model defined
distribution of the random variable Y as stationary distribution (see Handcock [19]
for further information). Unfortunately, the models we were fitting with commonly
implemented endogenous statistics were either generating degenerated results or pro-
ducing poor model fits, since the included statistics did not capture the structural
form of the networks sufficiently. The best non-degenerated model, with endogenous
statistics, which was reasonable according to the structure of the network, was

Γ(A) = (Γedges,Γasymmetric,Γidegree(1),Γdsp(1))

Almost every ERGM of interest includes the Γedges statistic for the same reason that
nearly every linear regression model contains an intercept term. Γasymmetric makes
sense, since the vast majority of the non-null dyads are one-sided. With Γidegree(1) we
are trying to capture the fact that the arms trade network includes a lot of satellite
countries, i.e., countries which only purchase their weapons from a single supplier.
Extending the model with Γodegree(k) as well as Γostar(k) and Γistar(k) caused degen-
eracy. With the statistic dsp(1) we intended to capture the structural characteristic
that the arms trade network has a few central weapon distributors (see Jansen and
Schmid [29] for a more precise discussion).

Besides the endogenous statistics introduced in the previous paragraph we are going
to include a range of exogenous covariates. A general explanation about the included
covariates can be found in chapter 2. The covariates defense agreement, direct con-
tiguity and polity score are captured as edge covariates, as well as a variable we are
going to refer to as path dependency. This covariate sums up the total TIV sold
from country i to country j the five years before the year of consideration. Further
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Sample statistics
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Figure 9: MCMC diagnostics for the ERGM of 2013 with endogenous statistics
Γedges, Γasymmetric, Γidegree(1) and Γdsp(1)

on, we include the nodal covariates GDP, CINC and intra-state conflict into the
network. The covariates GDP and CINC are incorporated for the supplier as well as
for the recipient, while the intra-state conflict data are only added for the recipient.
Moreover, we decided to exclude the inter-state conflict and the embargo data from
our models since these networks turned out to be extremely sparse, and as a con-
sequence, generated highly oscillating parameter estimates with enormous variance
values. For certain years the included covariate networks were empty networks, and
therefore caused degenerated model fits.

Perkins and Neumayer [40] argue that there is a time delay between the order date
of arms and the delivery date, which, according to our calculations, turns out to be
an average of two years. Therefore, all exogenous covariates are included with a two
year lag, i.e., for the network of year t we use the exogenous covariates of year t− 2.
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3 The Exponential Random Graph Model (ERGM)

In order to verify whether a model is degenerated or not, one can take a look at the
MCMC diagnostics as plotted in figure 9. For simplicity’s sake, only the MCMC
diagnostics of the endogenous statistics are shown. The plots on the left side visu-
alize the attained values via MCMC simulated networks for every single statistic
included into the model. Doing so centers the attained values around the values of
the observed network. We refer to this kind of visualization as a trace plot. The plots
on the right side visualize the empirical density function of the respective statistic,
based on the simulated networks (see Hunter and Handcock [27]).

After having understood the meaning of MCMC diagnostics plots, the next logical
question concerns what good MCMC diagnostics look like. The empirical density
function should be symmetrical around zero for every included centered statistic Γ∗,
since the expected value of the centered statistic

Γ∗(·)− Γ(Aobs)

should be zero. Otherwise, the values in the simulated networks systematically differ
from the corresponding statistics in the observed network, making it unreasonable
to assume that the simulated networks originate from the same distribution as the
observed network. Furthermore, the trajectories in the trace plot should neither
indicate a dependence structure nor remain on a constant level. This would be a
signal that the constructed stochastic process violates the Markov properties. When
looking at the MCMC diagnostics in figure 9 we observe that a dependence structure
is not identifiable and that the empirical density functions are symmetrical around
zero. Thus, the model is not degenerated.

The MCMC diagnostics of a clearly degenerated model can be seen in figure 10.
This model was fitted with the endogenous statistics Γedges and Γodegree(0). In this
case we can observe obvious dependency structures in the trace plots as well as an
empirical density function which is not symmetrical around zero. Both are strong
indicators for the degeneracy of the model.

The first model did not degenerate, but does it also provide a good model fit? In
order to answer this question, we are going to compare the fitted models using
four hyper-statistics: The in-degree distribution, the out-degree distribution, the
geodesic distance distribution between two actors, and the edgewise-shared partner
distribution. To be able to judge whether a model fit is good, one can take a look
at the goodness-of-fit plots as seen in figure 11. After having estimated the vec-
tor of parameters θ̂, one is interested in how similar the distribution of Pθ̂ is to
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Figure 11: Goodness-of-fit plots for the ERGM for 2013
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the distribution of Pθ. In order to answer this question, we are simulating a large
number of networks out of the distribution Pθ̂ via MCMC as described in chapter
3.3 and comparing the simulated networks based on the distributions of the hyper
statistics with the originally observed network. The bold black line illustrates the
hyper statistic distribution of the observed network, while the range bounded by the
boxplots displays the range where 95% of the simulated networks’ hyper statistics
can be found. According to this, a model provides a good fit if the bold black line
passes through every single boxplot, and even better if it hits the median of each
boxplot (see Hunter et al. [26]). Therefore, one can say that, with the exception of
the in-degree distribution, none of the three remaining hyper statistic distributions
are well captured in this model. As a consequence, the distribution of Pθ̂ is not
similar to the distribution of Pθ.

A reason for the poor model fit could be that the change statistic (∆A)ij increases
linearly, a fact that can cause instability and hence, result in degenerated models.
Kauermann1 suggests circumventing this instability problem by replacing the pa-
rameter vector θ with smooth functions. In doing so, we ccan rewrite equation (2)
as

logit(Pθ(Yij = 1|Y c
ij = Acij)) = s((∆A)ij)

where s((∆A)ij) := s1((∆1A)ij) + · · · + sp((∆pA)ij) and sk(·), k ∈ {1, . . . , p} are
smooth functions, which have to be estimated from the data. We are going to dis-
cuss the estimation of smooth functions in the next chapter. This model generalizes
the ERGM similar to how the GAM generalizes the GLM. Consequently, just as
we will discuss in chapter 5.3 for the GAM, we need some additional identifiability
constraints for the smooth functions sk(·). However, since this model is not yet
implemented in R we are going to introduce a different approach to improving our
model.

Something that catches one’s eye in figure 11 is that the number of actors with an
in-degree of 1 is perfectly captured in the model. Recall that this model was fit with
Γidegree(1). It seems like this single statistic is enough to capture the entire in-degree
distribution in a satisfying way. By including statistics into the network which ade-
quately reflect the in- and out-degree distribution there is hope that the distribution
of the hyper statistics geodesic distance and edge-wise 1-shared partners of Pθ̂ might
improve. Unfortunately, including statistics with an in-degree of k, where k ∈ N\{1},
or any statistic which counts the number of actors with an out-degree of `, ` ∈ N,

1This paper has not been published at the time of this study (05/2015).
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caused degenerated models. However, in order to fit a reasonable network model
one has to include endogenous statistics, which capture the structure of the model
in a suitable way.

Furthermore, in order to find a statistic that is able to incorporate a network’s entire
degree distribution, one should consider that the effects of an actor’s in- and out-
degrees might not be linear in nature. The difference between the chance that an
actor with an in-degree of 1 is forming a new tie instead of an actor with an in-degree
of 0 might be higher than the difference between the chances of two actors with an
in-degree of 10 and 11. This assumption would result in an effect that flattens more
the higher the in- and out-degrees of an actor are.

But what does this non-linear effect look like and how can one detect this relation?
To explore this question, we are going to establish an approach to model the network
with generalized additive models (GAM), which can incorporate non-parametric ef-
fects of covariates with so-called smooth functions. Even though, the results will
be biased, since these models ignore a network’s dependency structure, we will ob-
tain an approximate impression of a node’s in- and out-degree effects. The idea
is to detect the degree distribution’s functional effects and to adjust the ERGM
fit by adapting geometrically weighted statistics to this relation. These statistics
intend to use degree counts with geometrically decreasing weights. We will intro-
duce these statistics in chapter 7. However, first we are interested in the degree
distribution’s non-parametric effect. Therefore, we are going to fit a GAM, which
presupposes smoothing techniques. As a consequence, we are going to discuss some
basic smoothing theory in the next chapter.

4 Scatterplot Smoothing

In this chapter we will introduce some techniques for editing nonparametric func-
tions. As was already assumed in the previous chapter, the relation between re-
sponse and covariates does not seem to be linear in every case. Therefore, we
introduce smoothing splines, which create approximate functions to capture impor-
tant patterns in the data. The most important property of smooth functions are
their nonparametric nature, and as a consequence, we do not assume a rigid form
of dependence between the response Yij and the influential variables Xij1, . . . , Xijp.
However, the name non parametric is not always well chosen. Even though there are
several smoothing techniques, like kernel smoothers, where the term nonparametric
applies, many other techniques such as spline smoothers, which will be discussed in
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this paper and later used for computation, are described by parameters. However,
these parameters only regulate the adjustment of splines to data and therefore can-
not be interpreted in a scientific way.

But how can one detect the most appropriate smooth function for a covariate’s ef-
fect? As a first step, we focus on how the effect of a single metric covariate on
an approximately Gaussian distributed target value can be estimated. These re-
sults then serve as the basis for smoothing methods for several non-linear metric
covariates. This chapter is mostly based on Hastie and Tibshirani [23], Wood [55],
Fahrmeir et al [15] and Eilers and Marx [14].

4.1 Polynomial Splines

For the following, we assume given data in the form (yij , xij) , i, j = {1, . . . , NV }, i 6=
j, where yij are observations of the dependent response variable and xij are the
corresponding metric covariates. Given that assumption, if we take yij as dyads in
a network on NV nodes we obtain N = N2

V −NV observations. We assume that the
response variable can be described by a function s(·) and a measuring error εij

yij = s(xij) + εij (15)

The first approach that probably comes to mind is to approximate the relation
between the target value and the covariate with a polynomial function

s(xij) = α0 + α1xij + · · ·+ αbx
b
ij

where b ∈ N and αk ∈ R , k ∈ {0, . . . , b}. This idea could be, for instance, realized
by the least square method. However, in most cases a pure polynomial approach
does not provide satisfying results. In order to understand this, take a look at figure
12. Here data was simulated with a nonpolynomial function

f : [−4, 4]→ R

f(x) = 2(−0.4exp(−0.5(x+ 1)2)− 0.6exp(−0.5(x− 2)2)) + 0.9 (16)

and y = f(x) + ε with ε ∼ N (0, 0.2). A similar example is used in Fahrmeir [15].
The first plot shows the simulated data together with function f(·). When looking
at the second picture one can see that assuming a linear relation between x and y
is not the best choice. The linear function does not only disregard the local minima
and maximum, it also neglects the slope at the domain boundary. But the linear
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Figure 12: Polynomial regression for the simulated data

regression is not the only one that results in a bad fit. Even a polynomial approach,
applied in the third and forth pictures, visualizes the problems with pure polynomial
methods. While polynomials with low degrees do not capture the true relation of
the data sufficiently (for instance, the local maximum at x ≈ 0 and the local minima
at x ≈ −1 and x ≈ 2 are not captured adequately), polynomials with high degrees
provide wiggly fits of the data. In this case we talk about overfitting, which is not
ideal either.

In order to find a way out of this quandary one could divide the codomain into m
parts c = κ0 < · · · < κm = d and capture the relation between x and y on each
interval [κl, κl+1), l ∈ {0, . . . ,m − 1} with a b-th degree polynomial. The problem
with this approach is that, since the estimates are done independently for each
interval, the piecewise estimated functions are not necessarily connected. A method
for how one can gain functions which are estimated on intervals [κl, κl+1) but still
provide continuous transitions will be given in the next chapter.
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4.2 B-Splines

There are several ways to adopt measures to forestall non-connected estimates. The
two most common ones are polynomial spines with truncated powers and so-called
B-splines. Since B-splines are usually chosen over polynomial splines with truncated
powers for numerical reasons, we content ourself discussing the B-spline method. We
mainly refer to Gu [18] or Ruppert et al. [44].

The problem resulting from the previous paragraph is that piecewise estimated
polynomials usually provide smooth functions, which are neither continuous nor
differentiable on the entire codomain. The main idea of B-splines is a construc-
tion to guarantee that piecewise estimated functions on knots κ1, . . . , κm−1 are
composed in a sufficient, (b − 1)-times differentiable way. In order to estimate
s(·) with B-splines, one has to represent the smooth function in such a way that
y = s(x) + ε becomes a linear model. This is done by choosing specific basis func-
tions B1(x), . . . , Bt(x) : [c, d]→ R+ , t = m+ b− 1. Then, one can write

s(x) =
t∑
i=1

αiBi(x) (17)

A huge advantage the B-spline method has over other spline approaches is that
B-splines are defined as non-zero functions on only a few intervals [κl, κp] , l, p ∈
{0, . . . ,m} , l 6= p. This results in numerical benefits, as we will discover later. Let

Bi(x) =

f(x) , if x ∈ [κi, κi+b+1)

0 , else

where f : R→ R+ is constructed from polynomial pieces and

t∑
i=1

Bi(x) = 1

More exactly, the function f(·) is composed of b + 1 polynomial pieces of degree b,
which are put together in a b− 1-times continuously differentiable way. On the left
side of figure 13 we can see a single B-spline basis function of degree 1. B-splines
are defined by covering each interval [κl, κl+b+1) by b + 1 basis functions of degree
b. This results in (b − 1)-times differentiable functions. For better understanding,
the simple example of linear B-splines over equidistant knots is given in figure 13.
When looking at the interval [κ6, κ9], with m = 3, one can see that each interval is
covered by b+ 1 = 2 linear basis splines and that a total of t = m+ b− 1 = 4 basis
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Figure 13: Illustrations of linear B-splines on equidistant knots

functions are needed to cover interval [κ6, . . . , κ9].

By looking at the basis functions in figure 13 we can easily verify the actual definition
of linear B-spline basis functions

B1
i (x) =

x− κi
κi+1 − κj

1[κi,κi+1](x) +
κi+2 − x

κi+2 − κi+1
1[κi+1,κi+2](x)

where the 1 in B1
i (x) points out the linear form of the piecewise defined polynomials.

This definition obviously alludes to the fact that B1
i (x) consists of two linear pieces.

In general, B-spline basis functions for higher degrees can be defined recursively

Bb
i (x) =

x− κi
κi+1 − κj

Bb−1
i (x) +

κi+b+2 − x
κi+b+2 − κi+1

Bb−1
i+1 (x)

Due to the linear form of (17) and by defining X and α as

X =


B1(x12) . . . Bt(x12)

...
...

B1(x(NV −1)NV ) . . . Bt(x(NV −1)NV )

 , α =


α1
...
αt

 (18)

one can write (15) in linear form

y = Xα+ ε (19)
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Figure 14: B-Spline regression for the simulated data

where y = (y12, . . . y(NV −1)NV )′ and ε = (ε12, . . . , ε(NV −1)NV )′. As a consequence,
the parameter vector α can be estimated by the ordinary least square method

α̂ = (X ′X)−1X ′y (20)

As already mentioned above, the design matrix X holds some beneficial characteris-
tics. The most important characteristic stems from the local definition of the basis
functions, which mainly yield matrix entries of 0. The only non-zero entries occur in
a tube along the diagonal of the matrix. These kinds of band matrices are desirable,
since solving (20) with these matrices is numerically more efficient.

However, the parameter vector α cannot be interpreted in a reasonable way. Instead,
one is interested in the form of the estimated function ŝ(·), which is a result of α̂:

ŝ(x) = Bα̂

where B = (B1(x), . . . , Bt(x)).

As we can see on the left side of figure 14, spline estimators with basis functions can
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be wiggly. Both plots were generated with the same function from example (16),
but on a different codomain. The left side shows a B3

i basis spline estimate on 4
equidistant knots, while the plot on the right side presents the actual relation in
the data. There are several reasons why basis splines turn out wiggly, such as the
selection of the basis dimension or the selection of the knots. It is reasonable that
a smooth, but not too wiggly function would be preferred over a spline estimator
as seen on the left side of figure 14. But how can one control the ’wiggliness’ of a
smoother? A common strategy is by controlling the degree of smoothing by penalized
B-splines.

4.3 Penalized B-Splines (P-Splines)

Penalized B-splines differ from the methods discussed in the previous chapter, since
instead of minimizing

||y −Bα||2

we are going to minimize

||y −Bα||2 + λ

∫
C
s′′(x)2dx (21)

with regard to α, where C is the codomain of x and s′′(x) is the second derivative
of function s(x). Forming a penalty function by the second derivative of a fitted
curve was first introduced by O‘Sullivan [39]. The second derivative of a function
yields information about a functions curvature, and therefore by minimizing (21)
we penalize models that are too wiggly. With the smoothing parameter λ one can
control the trade-off between the model’s fit and smoothness. While λ = 0 results
in spline estimates without penalization and hence in wiggly models, λ → ∞ leads
to the linear regression of the data. In the next chapter, we discuss a method for
finding a fitting smoothing parameter λ, but for now we treat λ as given.

As a first step, we are going to show that we can write the penalty in (21) as∫
C
s′′(x)2dx = αTSα (22)

where S ∈ Rt×t is a matrix that can be expressed by the basis functions Bi(x). The
proof is fairly straightforward: Recall that we define function s(x) as

s(x) =
t∑
i=1

αiBi(x)
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which yields
s′′(x) = αTB′′(x)

for the second derivative. The second derivative exists thanks to the polynomial
nature of the piecewise composed basis functions. Since s′′(x) is a scalar and scalars
are their own transpose we can write∫

C
s′′(x)2dx =

∫
αTB′′i (x)B′′i (x)Tα dx

= αT
∫
C
B′′i (x)B′′i (x)Tdx︸ ︷︷ ︸

:=S

α

This already finishes the proof. As a consequence, instead of minimizing (21) one
can minimize

||y −Bα||2 + λα′Sα

with regard to α. Minimizing this equation with the least square method yields

LS(α) = (y −Bα)′(y −Bα) + λα′Sα

= y′y − 2y′Bα+ α′B′Bα+ λα′Sα

Here we have used α′B′y and y′Bα as scalars and therefore (α′B′y)′ = y′Bα. To-
gether with the rules of derivation

∂w′v

∂v
= w and

∂v′Av

∂v
= 2Av

where v, w ∈ Rt are vectors and A ∈ Rt×t is a symmetrical matrix, one gets for the
first and second derivation

∂LS(α)
∂α

= −2B′y + 2B′Bα+ 2λSα (23)

∂2LS(α)
∂α∂α′

= 2B′B + 2λS (24)

B′B + λS is positive definite and therefore invertible (see Fahrmeir [15] for further
details). As a result, we get a solution to our minimization problem by zeroing (23).
Solving this equation for α finally yields the least square estimator for α

α̂ = (B′B + λS)−1B′y (25)
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Even though this approach is straightforward, one has to compute the second deriva-
tive

s′′(x) = αTB′′(x)

Let Bb
i (x) be the value of x of the ith B-spline of degree b. de Boor [3] introduces a

simple formula for the derivatives of B-splines and shows that

s′(x) = −
t∑
i

∆αi+1B
b−1
i (x)

s′′(x) =
t∑
i

∆2αiB
b−2
i (x)

where ∆αi = αi − αi−1 and ∆2αi = ∆∆αi = αi − 2αi−1 + αi−2. However, these
derivatives lead to rather complex systems of equations. Therefore, Eilers and Marx
[14] suggest a simple approximation of the derivatives, which can be used for the
construction of the penalty terms. Instead of (21) we are going to minimize

||y −Bα||2 + λ
t∑
i=3

(∆2αi)2 (26)

Besides easy computation, this approach has the advantage of being able to penalize
linear B-splines in a reasonable way, since the second derivative is not constantly
zero. The spline functions estimated in chapter 6.3 are going to apply this approxi-
mation.
After having discussed how to estimate α it remains to be seen how one can ade-
quately establish an appropriate smoothing parameter λ.

4.4 Cross Validation

Selecting an appropriate smoothing parameter λ is crucial for a good model fit. If λ is
too small ŝλ(·) will be too wiggly and if λ is too large, the data will be oversmoothed.
In either case, the spline estimate ŝλ(·) is not close to the true function s(·) and, as
a consequence, is a bad fit. In the ideal case one would select λ in a way that ŝλ(·)
is as close as possible to s(·). Hence, an appropriate criterion could be to choose λ
in order to minimize

W :=
1
N

NV∑
i=1

NV∑
j=1
i 6=j

(
ŝλ(xij)− s(xij)

)2
(27)
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However, minimizing (27) in a direct way is not possible, since s(·) is unknown, but
one can derive an estimate for the expected squared error E(W ) +σ2 by using cross
validation.

Cross validation is a statistical method that involves the partitioning of a sample of
data into two subsets: a training set for model fitting and a validation set for the
evaluation of the model. The main idea of cross validation is to reuse the data by
switching the roles of the training and validation samples. However, this method is
not sufficient for small data samples.

The cross validation method we are going to introduce is the leave-one-out method.
According to the name of this method one can easily imagine that it works by leaving
the points (yij , xij), ij = {12, . . . , NV (NV − 1)} out one at a time as the validation
set and estimating the smooth function with the remaining N − 1 points. By doing
so, the omitted data becomes independent of the model fit. Therefore, one can
construct the (ordinary) cross validation sum of squares

CV (λ) = 1
N

NV∑
i=1

NV∑
j=1
i 6=j

(
yij − ŝ−ijλ (xij)

)2
(28)

where ŝ−ijλ (xij) stands for the model fitted to all data except the observation (xij , yij).
A cross validation estimate of λ is the minimizer of (28). CV (λ) is computed by
leaving out each observation one at a time, estimating the model on the remaining
data, computing the squared difference of ŝ−ijλ (xij) and yij and by averaging them
over all the data.

As a next step recall that yij = s(xij) + εij . Then, equation (28) can be written as

CV (λ) =
1
N

NV∑
i=1

NV∑
j=1
i 6=j

(
s(xij)− ŝ−ijλ (xij) + εij)

)2

=
1
N

NV∑
i=1

NV∑
j=1
i 6=j

((
s(xij)− ŝ−ijλ (xij)

)2
−2
(
s(xij)− ŝ−ijλ (xij)

)
εij + ε2

ij

)
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Let us assume that ŝ−ijλ (xij) and εij are independent. Therefore, together with
E(εij) = 0 one can vanish the second term by taking expectations

E
(
CV (λ)

)
=

1
N

E
(
NV∑
i=1

NV∑
j=1
i 6=j

(
s(xij)− ŝ−ijλ (xij)

)2
)

+σ2 (29)

By using the leave-one-out method for large sample sets one gets ŝλ(xij) ≈ ŝ−ijλ (xij)
and, as a consequence, E

(
CV (λ)

)
≈ E(W ) + σ2. This means we have found a way

to approximate (27) and consequently, in order to minimize W , we can choose λ in
order to minimize CV (λ).

We have found a reasonable approach for estimating a fitting smoothing parameter
λ, but as one can easily imagine it is quite inefficient to compute CV by fitting the
model to each of the N resulting data sets where one observation is left out one at
a time. Fortunately, there exists a short cut, since one can show that

CV (λ) = 1
N

NV∑
i=1

NV∑
j=1
i 6=j

(
yij − ŝλ(xij)

1− aijij

)2

(30)

where aijij are the diagonal elements of the influence matrix A.
For the proof, let, for reasons of clarity, p := ij and q := kl ∈ {12, . . . , NV (NV − 1)}.
Then, we define

ỹpq =

yq if p 6= q

ŝ−pλ (xp) if p = q

which yields ỹp = (ỹp1, . . . , ỹpN )′. Therefore, ỹp is the vector one gets by replacing
the ith element in y, which is the observation left out, by the estimate ŝ−pλ (xp).
Furthermore, we define s̃−pλ (·) as the estimate of s(·) given data ỹp. Then, one can
prove (see Wahba [51]) that

s̃−pλ (xp) = ŝ−pλ (xp) , p = {12, . . . , NV (NV − 1)}

As a next step, recall that ŝλ(·) = A(λ)y, where A(λ) is the influence matrix for the
model fitted to all the data, which can be computed by

A(λ) := B(B′B + λS)−1B′
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where B and S are defined as in the previous chapter. Thus, when replacing y by
ỹp, we get (

s̃−pλ (x12), . . . , s̃−pλ (xNV (NV −1))
)
= A(λ)ỹp

which finally yields

ŝ−pλ (xp) = s̃−pλ (xp) =
N∑
q=1

apqỹq =
N∑
q=1
q 6=p

apqyq + appŝ
−p
λ (xp) (31)

Given

ŝλ(xp) =
N∑
q=1

apqyq (32)

and subtracting (31) from (32), we get

ŝλ(xp)− ŝ−pλ (xp) = app(yp − ŝ−pλ
(
xp)
)

Rearranging the equation finishes the proof:

yp − ŝ−pλ (xp) = yp − ŝλ(xp)
1− app

The cross validation we are going to use when fitting GAMs is going to be the
generalized cross validation GCV(λ), which results from (30) by replacing app by
the average of the trace of A(λ). This yields

GCV (λ) = 1
N

NV∑
i=1

NV∑
j=1
i 6=j

(
yij − ŝλ(xij)

1− trA(λ)
n

)2

(33)

The GCV (λ) can be computed faster and, as a consequence, minimized more easily
than with the ordinary cross validation approach (28), since one only has to fit the
full data once and compute the average of the trace of the influence matrix A(λ)
instead of using the CPU-intensive leave-one-out method.
Now that we are able to estimate smoothers, we are going to discuss in the next chap-
ter how one can estimate relational data by using generalized linear and generalized
additive models.
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5 Statistical Regression Models

In this chapter we are going to discuss the logit model, the additive model (AM)
and the generalized additive model (GAM). The Logit Model is a generalized linear
model (GLM) that generalizes linear regression by allowing the linear model (LM)
to be related to the response variable via a specific link function. The AM, first
introduced by Friedman and Stuetze [16], is a linear model including a sum of
smooth functions for the influence variables. The GAM, first introduced by Hastie
and Tibshirani [23], is a Generalized Linear Model (GLM) with a linear predictor
including a sum of smooth functions of covariates. Just as the GLM generalizes the
LM, the GAM generalizes the AM. The GAM can even be seen as a generalization
of the GLM and therefore of ordinary linear regression.

5.1 Regression Review: The Logit Model

Since we are interested in a binary target variable Yij , for which an edge either exists
or does not exist between two actors, the codomain of the model has to be restricted
to [0,1]. In the following, we denote random variables with capital letters, while a
specific realization is denoted by lower-case characters. The aim of binary regression
is to model and estimate the effects of given covariates xij = (xij1, . . . , xijp)′ for the
conditional probability

πij = E(Yij | Xij1 = xij1, . . . , Xijp = xijp)

= P(Yij = 1 | Xij1 = xij1, . . . , Xijp = xijp)

where ij ∈ {12, 13, . . . , NV (NV − 2), NV (NV − 1)} , p ∈ N, for the occurence of yij .
Note that N = |{12, 13, . . . , NV (NV − 2), NV (NV − 1)}| is the number of possible
edges. Modeling the probability of the occurrence of an edge with the linear model

yij = β0 + β1xij1 + · · ·+ βpxijp + εij

where εij ∼ N(0, σ2), has serious disadvantages, such as a restriction for the param-
eters β = (β0, β1, ...., βp)′, which are difficult to manage. For all possible values β
and xij the linear predictor

ηij = β0 + β1xip1 + · · ·+ βpxijp = x
′
ijβ (34)

has to attain a value in the interval [0,1]. Furthermore, the error value εij ’s error
variance V ar(εij) = V ar(yij |xij) is not homoscedastic, i.e., is equal to a constant
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σ2. This is based on the premise that yij is Bernoulli distributed and therefore one
gets V ar(yij) = πij(1− πij), which results in different variance values for each dyad
(ij).

For that reason, a common way to fit models with binary response values is to link
the probability πij to the linear predictor ηij through a relation of the form

πij = P(Yij = 1|Xij1 = xij1, . . . , Xijp = xijp)

= h(ηij) = h(β0 + β1xij1 + · · ·+ βpxijp)
(35)

The function h(·), which is called a response function, has to be a distribution
function from the exponential family, such that for any β and any xij one gets
h(η) ∈ [0, 1]. The covariate’s effects are expected to be linear within the parameters,
but the distribution of the response function, and therefore also of the link function,
can be general. Since h(·) is strictly monotonically increasing there exists an inverse
function g(·) = h−1(·), called a link function, and thus relation (35) can also be
written as

ηij = β0 + β1xij1 + · · ·+ βpxijp = g(πij)

One approach to define a suitable function h(·) is the following:

πij = h(ηij) =
exp(ηij)

1 + exp(ηij)

This yields, for the link function

g(πij) = log

(
πij

1− πij

)
= ηij = β0 + β1xij1 + · · ·+ βpxijp

A model with such a link function is called a logit model, since one gets a linear
model for logarithmized odds. Furthermore, note that multiplying g(·) with the
exponential function yields

(
πij

1− πij

)
= exp(β0)exp(β1xij1) · · · · · exp(βpxijp) (36)

This relation shows that the covariates take a multiplicative exponential effect on

the chance
πij

1− πij
. For a random variable

Yij : Ω→ {0, 1}, ω → (Yij(ω))i,j∈{1,...,N}
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we can now define the probability function of Yij as

P(Yij = 1|Xij = xij) = h(ηij) =
exp(ηij)

1 + exp(ηij)
(37)

where Xij = xij is short for Xij1 = xij1, . . . , Xijp = xijp.
Then, one can compute the odds of occurence of edge (i, j), conditional on the
covariates:

P(Yij = 1|Xij = xij)
P(Yij = 0|Xij = xij)

= P(Yij = 1|Xij = xij)
1− P(Yij = 1|Xij = xij)

= exp(ηij)
1 + exp(ηij)

/(
1− exp(ηij)

1 + exp(ηij)
)

= exp(ηij)
1 + exp(ηij)

/( 1
1 + exp(ηij)

)
= exp(ηij)

1 + exp(ηij)
·
(
1 + exp(ηij)

)
= exp(ηij)

This implies the equation:

logit(P(Yij = 1|Xij = xij)) = ηij (38)

This yields the following ceteris paribus interpretation for the parameters βk, k ∈
{1, . . . , p}: If, for instance, the value of xijk increases by 1, while all other values
remain the same, then quotient (36) gets multiplied by exp(βk), since

P(Yij = 1|Xij1 = xij1, . . . , Xijk = xijk + 1, . . . , Xijp = xijp)
P(Yij = 0|Xij1 = xij1, . . . , Xijk = xijk + 1, . . . , Xijp = xijp)

=

P(Yij = 1|Xij1 = xij1, . . . , Xijk = xijk, . . . , Xijp = xijp)
P(Yij = 0|Xij1 = xij1, . . . , Xijk = xijk, . . . , Xijp = xijp)

· exp(βk)

As a result, the chance for
πij

1− πij

• increases, if βk > 0

• stays the same, if βk = 0

• decreases, if βk < 0
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5.2 The Additive Model

The class of additive models (AM) is a useful extension of the class of linear models,
since it mitigates the strong linear assumption of each covariate X1, . . . , Xp , p ∈ N
towards the response Y . Linear regression can be seen as an approach to estimate
E(Y |X1, . . . , Xp), by assuming the model structure to be

yij = α0 + α1xij1 + · · ·+ αqxijq + εij

with parameters α0, . . . , αp and i.i.d. εij ∼ N(0, σ2). For additive models, we
generalize the linear predictor with smooth functions s(·)

yij = α0 + s1(xij1) + · · ·+ sq(xijq) + εij (39)

where E
(
sk(Xk)

)
= 0 for all k = {1, . . . , p}. Note that including more than one

function into the model causes an identifiability problem. Two functions are only
estimable within an additive constant. The resulting problem is that a constant
could be synchronously added to the first and subracted from the second function,
without changing the model prediction. We are going to represent the additive
model using penalized B-splines just as we discussed in chapter 4.

Since the arms trade model will include binary covariates as well, which do not have
to be smoothed, we are going to rewrite (39) as

yij = s1(xij1) + · · ·+ sp(xijp) + Zijβ + εij (40)

where β′ = (βp+1, . . . βq) is a vector of parameters and Zij = (xij(p+1), . . . , xijq) is
the vector of covariates we assume to have a linear effect.

An advantage of the linear model towards other models is that it is additive in
the predictors’ effects. This yields the following opportunity: If a linear model is
fitted, it is possible to investigate the predictors’ effects separately, since we assume
the covariates to be independent of each other. If one holds all but one predictor
fixed and takes a look at the variation of the fitted response, then it does not
depend on the values of the other predictors. When taking a look at additive models
we can observe that they retain this important feature of linear models. Their
predictors’ effects are additive as well (see 40), which yields the conclusion that once
the additive model is fitted, we are able to examine the functions of the covariates
separately. Therefore, we can analyze the roles of the predictors in modeling the
response variable individually.
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But how can one estimate s1(·), . . . , sp(·), β simultaneously? In chapter 4 we have
only considered univariate smoothing. There are several methods to get estimators
ŝ1(·), . . . , ŝp(·), β̂ for (40). A simple, and therefore commonly used method is the
backfitting approach, first introduced by Breiman and Friedman [5]. The main idea
of backfitting is to estimate each smooth component ŝ1(·), . . . , ŝp(·), β̂ by iteratively
smoothing partial residuals, with respect to the covariates the smooth relates to. The
partial residuals, which correspond to the jth smooth term, are the residuals we gain
by subtracting all but the jth smooth from the response variable. A reason for the
popularity of this method is undoubtably that the estimates for s1(·), . . . , sp(·) can
be realized for any simple smoothing methods. It even allows the combination of
different smoothing methods.

If one is neglecting the error ε in the additive model one approximately gets for all
k ∈ {1, . . . , p} that

sk ≈ y − s1 − · · · − sk−1 − sk+1 − · · · − sp − Zβ

Therefore, for given estimators ŝ1, . . . , ŝk−1, ŝk+1, . . . , ŝp, β̂, the expression

y −
p∑
i=1
i 6=k

ŝi − Zβ̂ (41)

can be seen as a partial vector of residuals without ŝk. As a next step, we are going
to refer to Rk, k ∈ {1, . . . , p} as the design matrix of the kth covariate as defined in
(18). Then, we define the to sk corresponding spline smoother as

Kk := (R′kRk + λkSk)−1R
′
k (42)

where Sk refers to the penalty matrix (22) introduced in chapter 4.3. As a conse-
quence, one can estimate ŝk by applying the spline smoother (42) on the vector of
residuals (41). One gets

ŝk = Kk(y −
p∑
i=1
i 6=k

ŝi − Zβ̂)

Based on simple starting assumptions, one can now iteratively estimate ŝ1, . . . , ŝp,

β̂:

1. Fix ŝ1, . . . , ŝp, β̂. For instance: ŝ1 ≡ 0, . . . , ŝp ≡ 0, β̂ ≡ 0

2. For k in 1 : p improve estimator ŝk by
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ŝk = Kk(y −
∑p
i=1
i 6=k

ŝi − Zβ̂)

3. Improve the estimator β̂ by

β̂ = (Z ′Z)−1Z ′(y −
∑p
i=1 ŝi)

4. Repeat steps 2 and 3 until the estimated functions stop changing less than a
given error

Note that by adjusting Kk one can apply almost any other smoothing method, such
as polynomial splines, kriging etc. For more in-depth discussions we refer to Härdle
et al. [21]. The backfitting algorithm discussed in this chapter is only the simplest
version of backfitting. The GAM introduced in the next chapter will be fit by
penalized iteratively re-weighted least squares (P-IRLS), a weighted version of the
backfitting algorithm.

5.3 The Generalized Additve Model

The Generalized Linear Logit Model introduced earlier boasts the ability to model
binary response variables. As a next step, one can generalize the strong assumption
of the covariates’ X1, . . . , Xp linear relation in the model by assuming a nonpara-
metric effect, and thereby an additive extension of the family of GLMs. A GAM is
a GLM with a linear predictor including a sum of smooth functions of covariates.
Hence, they extend GLMs the same way that additive models extend linear models.
As a consequence, the linear predictor now expresses the outcome of some known
monotonic function of the expected value of the response, while the response follows
any exponential family distribution. As already seen in chapter 3.6 it seems to make
sense to assume a nonlinear effect for the degree distribution. Therefore we extend
the linear predictor (34) with smooth functions s1(·), . . . , sp(·) to

ηij = s1(xij1) + · · ·+ sp(xijp) + Zβ + εij (43)

where the errors εij are independent of the xij , with E(εij) = 0 for all ij =
{12, . . . , NV (NV − 1)} and E(sk(Xijk)) = 0 , k ∈ {1, . . . , p}, since otherwise there
would be free constants in each of the functions. β = (βp+1, . . . , βq) and Z =
(xij(p+1), . . . , xijq) are defined as in the previous chapter. The non-parametric func-
tions s1(·), . . . , sp(·) are smooth functions, one for each covariate xij1, . . . , xijp. It
should be mentioned at this point that for linear functions s1(·), . . . , sp(·) one gets
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the linear predictor (34). Similar to the logit model introduced in chapter 5.1 we
define the response function as

πij = h(ηij) =
exp(ηij)

1 + exp(ηij)

with the corresponding link function

g(πij) = log
( πij

1− πij

)
= ηij

Note that an additive model’s estimated functions are the analogues of the coeffi-
cients in linear models. For now, we treat each of the functions s1(·), . . . , sp(·) as
a smooth function which can individualy be estimated by a scatterplot smoother.
GAMs do not incorporate terms of interaction between two covariates. Models which
extend the GAM by terms of interaction are called generalized additive mixed mod-
els (GAMM) and will not be considered in this paper. Due to this, the GAM can
be seen as an extension of the GLM and even of the linear model. These models
are suitable for exploring the data set and visualizing the relationship between the
response variable Y and the independent covariates X1, . . . , Xp. We are going to es-
timate the nonparametric functions s1(·), . . . , sp(·) by using penalized B-splines and
an iterative method called penalized iteratively re-weighted least square (P-IRLS),
a weighted version of the backfitting algorithm. The question of how one can appro-
priately estimate a smooth function sk(·) was already discussed in chapter 4.

Recall from chapter 4.2 that each smooth funtion sk(·) can be estimated by

ŝk(x) = Rkα̂k

where

Rk =


B1(x12k) . . . Bt(x12k)

...
...

B1(x(NV −1)NV k) . . . Bt(x(NV −1)NV k)

 , α̂k =


α̂1k
...
α̂tk


for t ∈ N.

By defining the rows of a matrix X by

Xij :=
(
B1(xij1), B2(xij1) . . . , Bt(xij1), . . . ,
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B1(xijp), B2(xijp) . . . , Bt(xijp),

xij(p+1), . . . , xijq
)

(44)

and the paramter vector γ as

γ := (α11, α21, . . . , αt1, . . . , α1p, α2p, . . . , αtp, βp+1, . . . , βq)′ (45)

we can write the predictor (43) in linear form

y = Xγ + ε

where y := (y12, . . . , yNV (NV −1)) , ε := (εij , . . . , εNV (NV −1)). For similar reasons we
can also write η = Xγ.

When using GAMs we assume that the observations yij are coming from a distribu-
tion in the exponential family with probability denisty function

f(y|θ) = exp

(
yθ − b(θ)

φ
· ω + c(y, φ, ω)

)
(46)

where b(θ) is an at least twice differentiable function, φ is called the dispersion
paramter and ω is a known prior weight. The Bernoulli distribution can be shown
to be an exponential family distribution. Therefore, let

θ = log
( π

1− π
)

Note that θ is a function of π. However, for the sake of simplicity we will write θ
instead of θ(π). Then, the Bernoulli probability density function

f(y|π) = P (Y = y) = πy(1− π)1−y

can be written in the exponential family form

f(y|θ) = exp
(
yθ − log

(
1 + exp(θ)

))
(47)

where b(θ) = log(1 + exp(θ)) , φ = ω = 1 and c(y, φ, ω) = 0. Furthermore, one can
easily show that

E(y) = π = b′(θ) =
exp(θ)

1 + exp(θ) , V ar(y) = π(1− π) = b′′(θ) =
exp(θ)

(1 + exp(θ))2
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When conducting maximum-likelihood estimation with this model, one can take ad-
vantage of the pratical feature that GAMs can be estimated by the P-IRLS method.
For this method, one has to guesstimate the parameter vector γ̂[0] and calculate
the linear predictor η̂[0]

ij = Xij γ̂
[0] in order to obtain the fitted values π̂[0]

ij = h(η̂[0]
ij ).

Continue by iterating k. We calculate the working dependent variable

z
[k]
ij := η

[k]
ij + (yij − π[k]

ij ) · g′(π[k]
ij )

where g′(π[k]
ij ) is the derivative of the link function evaluated by γ[k]. Furthermore,

we need to calculate the iterative weights

w
[k]
ij ∝

1

b′′(θ)g′(π[k]
ij )2

where b′′(θ) was evaluated by γ̂[k]
ij . Note that w[k]

ij is inversely proportional to the
variance of z[k]

ij (see Rodriguez [43]). We finally get an improved estimate γ̂[k+1] by
minimizing the penalized weighted least square estimate

||
√
W (z −Xγ)||2 + λ1γ

′S1γ + · · ·+ λpγ
′Spγ

where X is the model matrix defined in (44), W is a diagonal matrix with weights
w

[k]
ij as entries, Sk , k ∈ {1, . . . p} is a matrix of known coefficients as defined in (22)

and z = (z[k]
12 , . . . , z

[k]
NV (NV −1)) is a response vector. This algorithm can be repeated

until the estimates change less than a specified constant. McCullagh and Nelder [36]
successfully proved that the P-IRLS algorithm is equivalent to Fisher scoring and
results in maximum-likelihood estimation. For a more detailed discussion we refer
to Wood [55] and Rodriguez [43].

In summary, it can be said that in order to estimate a GAM, one hast to turn the
GAM into a GLM with coefficients γ and a smoothing parameter λ. Hence, one
has to choose fitting basis functions Bi(x). The smoothing parameter λ acts as
a as trade-off parameter in order to control the relative weight given to the two
conflicting goals: matching the data and estimating a smooth funtion. A common
way to estimate λ is by using cross-validation. Finally, the parameter vector γ can
be estimated using the penalized iteratively re-weighted least square method.
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6 Modeling Networks with GLMs and GAMs

In this chapter we are going to discuss some approaches to modelling networks with
GLMs and GAMs. For GLMs we will present a pseudo-likelihood approach which
uses a bootstrapping technique to adjust the biased coefficient estimates. Besides
the strategy for modeling networks with GLMs, we will discuss two approaches
for modeling networks with GAMs. The first approach, however, will turn out to
be unsuitable for our purposes and the second approach, which does not consider
a network’s dependency structure will provide biased results. Nevertheless, the
estimated smooth functions will visualize a general impression of the covariates’
effects, and therefore, will justify the generalization of the ERGM, which will then
be discussed in chapter 7.

6.1 First Approach to Modeling Networks with GLMs and GAMs

After having introduced the generalized additive model in the previous chapter, the
question arises around how one can fit networks with these models. According
to definition 3 a directed network on NV nodes in year x can be written as an
adjacency matrix A = (aij), where aij ∈ {0, 1} for all ij,∈ {12, . . . , NV (NV − 1)}.
Here aij = 1 means that an edge exists between actor i and actor j, i.e., country i
exports weapons to country j, and aij = 0 indicates that there is no arms flow from
country i to country j. Since the model does not take loops into account, i.e., the
arms trade inside countries, we define aii = 0 for all i ∈ {1, . . . , NV }. This notation
accents once more that we are only considering binary networks. This means the
weighting of ties is not incorporated into the model and the only interest is whether
two countries trade weapons or not. We take the particular entry aij of A as a
manifestation of the Bernoulli variable Yij . With the additive predictor

ηij = s1(xij1) + · · ·+ sp(xijp) + Zijβ

we define the probability function of Yij as

P(Yij = 1|XA
ij = xij) = h(ηij) =

exp(ηij)
1 + exp(ηij)

(48)

where XA
ij = xij is short for XA

ij1 = xij1, . . . , X
A
ijq = xijq, with q ≥ p, q, p ∈

N. Just as defined in chapter 5.2 the vector of covariates we assume to have a
linear effect is described by Zij . The A in XA

ij = xij simply indicates that the
dependent variables do not necessarily only exist as exogenous variables, but can
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also include dyad-specific characteristics from network A such as the existence of
the reciprocal tie Yji or the sender’s or receiver’s in- or out-degree. We will amplify
this in a later paragraph. Note that the additive predictor is just a generalization of
a linear predictor. Consequently, the following considerations also apply for GLMs.
Furthermore, we are going to define the term dyad in this chapter slightly differently
from how we defined it in chapter 1. In the following, let a dyad be the directed
relation from i to j, i.e., an edge eij from i to j either does or does not exist. In
chapter 1 we have defined a dyad in general as the relation between two actors,
which could either be mutual, unidirectional or null.

This first and simple model treats all dyads as pairwise independent, which means
that one assumes the occurrence of Yij as independent from the occurrence of other
ties and, consequently, independent from the structure of the network. In this simple
case, the estimation of the parameter vector γ can then be computed using normal
pseudo-likelihood estimation

plik(γ) =
NV∏
i,j=1
i 6=j

exp (ηij)
1 + exp (ηij)

The pseudo-likelihood approach is simple and fast, but contains the substantial
disadvantage that the assumed hypothesis of the independence of dyads turns out to
be erroneous in most cases. The presence of network data is inextricably connected
with the presence of relational data. In the case of the arms trade network it is,
for instance, reasonable to assume that the occurrence of a tie between countries
i and j has an effect on the occurrence of a tie between countries i and k. These
dependency relations are disregarded with the pseudo-likelihood approach.

In order to incorporate the dependency structure of a dyad while avoiding intensive
MCMC methods as discussed in chapter 3.2 for the ERGM, consider the following
approach, which was proposed by Kauermann1:
Assume for the sake of simplicity that the number of actors NV in the observed
network A is even. As a first approach, one can posit that the occurrence of a tie Yij
only depends on the dyads either directly connected to actor i or j or some exogenous
covariates. This idea allows the assumption that the occurrence of ties Yij and Yst,
with i, j, s, t ∈ {1, . . . , NV }, i 6= j 6= s 6= t are independent of each other, given
the rest of the network. Therefore, given a network of NV nodes, one can arrange
the actors into pairs of two, e.g., D(NV ) = {(12), (34), . . . , ((NV − 1)NV )}, and take

1This paper has not been published at the time of the study (05/2015).
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the occurrence of Yij as independent from Yst, with (ij), (st) ∈ D(NV ), (ij) 6= (st),
conditioning on all other dyads Y c

D(NV ) := {Ykl | (kl) /∈ D(NV )} in the network.
Formally,

Y12 ⊥⊥ Y34 ⊥⊥ . . . ⊥⊥ Y(NV −1)NV | Y c
D(NV )

Since we are investigating directed networks, this also implies

Y21 ⊥⊥ Y43 ⊥⊥ . . . ⊥⊥ YNV (NV −1) | Y c
D(NV )

and any other combination of mutually independent dyads with pairs in D(NV ). By
including proper dyad-specific characteristics

Φ : A(NV )cD(NV ) → R` , AcD(NV ) → (Φ1(AcD(NV )), . . . ,Φ`(AcD(NV )))
′

one can model

logit(P(Yij = 1 | Y c
D(NV ) = AcD(NV ), X

ex
ij = xexij )) = β0 + sen(Φ(AcD(NV ))) + sx(xexij )(49)

where

• AcD(NV ) is the network A without dyads in D(NV )

• A(NV )cD(NV ) is the set of all possible AcD(NV )

• sen(Φ(AcD(NV ))) := s1(Φ1(AcD(NV ))) + · · · + s`(Φ`(AcD(NV ))) are dyad-specific
characteristics

• sx(xexij ) := s`+1(xij(`+1)) + · · ·+ sq(xijq) are conventional covariates

• (Xex
ij = xexij ) := (Xex

ij(`+1) = xexij(`+1), . . . , X
ex
ijq = xexijq)

(49) can be modeled for any dyad (ij) ∈ D(NV ). Note that we treat Φ(AcD(NV ))
as regular covariates and not as endogenous statistics as in the ERGM. By proper
characteristics we define statistics as the in- or out-degree of actor i or j or network
statistics built from k-stars or triangles, which do not violate the independence as-
sumption made above. More complex statistics, such as loops of size 4 or higher, can
not be incorporated into this model without violating the independence assumptions.
Otherwise the occurrence of Yij might depend on Yst, even though (ij), (st) ∈ D(NV ).
This approach has the crucial advantage that, conditional on AcD(NV ), the results are
not biased, i.e., we can compute proper parameter estimates and standard devia-
tions.
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1 2 3 4 5 6

1 0 1 2 3 4 5

2 6 0 4 5 3 2

3 7 9 0 1 5 3

4 8 10 6 0 2 4

5 9 8 10 7 0 1

6 10 7 8 9 6 0

Table 2: Latin square with a unique diagonal for N=6

Furthermore, this approach has another huge advantage: Networks can be simulated
faster by improving computationally intensive MCMC-methods such as Gibbs sam-
pling or Metropolis-Hasting. Therefore, let D be a sequence of sets Dn(NV ), n ∈
{1, . . . , 2(NV −1)}, such that each index pair (ij), where i, j ∈ {1, . . . , NV }, i 6= j, is
an element of exactly one set Dn(NV ). Then, a network can be simulated by using
so-called latin squares with a unique diagonal (see Andersen and Hilton [2]).

Take, for instance, a network on NV = 6 nodes. The numbers in the latin square
shown in table 2 can be seen as simulation steps of the parallelized Gibbs sampling.
According to table 2 ties Y12, Y34 and Y56 can be simulated in parallel in the first
step, due to their independence, followed by Y13, Y26 and Y45 etc. Finally, with NV /2
computing cores one can simulate an entire network in just 2(NV − 1) steps. This
means that the simulation steps only increase linearly for an even number of nodes.
Parallel simulation via Gibbs sampling is also possible for an odd number NV of
actors, but takes a few more steps.

A first approach to modelling the probability of occurrence of a dyad Yij by a logit
model could be to assume that Yij depends on the existence of the reciprocal dyad
Yji and on the in- and out-degree of actors i and j. As a consequence, Φ(AcD(NV ))
from equation (49) is defined as

Φ(AcD(NV )) :=
(
aji,

NV∑
k=1
k 6=j

aik,
NV∑
k=1
k 6=i

ajk,
N∑
k=1
k 6=j

aki,
NV∑
k=1
k 6=i

akj

)
(50)
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Together with the exogenous covariates Xex
ij , one can model

logit(P(Yij = 1 | Y c
D(NV ) = AcD(NV ), X

ex
ij = xexij ) =

γ0 + γ1aji + γ2

NV∑
k=1
k 6=j

aik + γ3

NV∑
k=1
k 6=i

ajk + γ4

N∑
k=1
k 6=j

aki + γ5

NV∑
k=1
k 6=i

akj + γexx
ex
ij (51)

where γexxexij is short for γ6xij6 + · · · + γpxijp. Interpreting the parameters can
be done just as in a regular GLM, since we assume ties Yij , (ij) ∈ D(NV ) to be
independent of each other. If γ2 > 0, then the higher the out-degree of the sender
i, the more likely the occurrence of an edge from i to j is. However, as already
discussed in chapter 3.6 for the ERGM it is reasonable to assume a nonparametric
effect for the non-binary covariates. Then, model (51) changes to

logit(P(Yij = 1 | Y c
D(NV ) = AcD(NV ), X

ex
ij = xexij ) =

γ0 + γ1aji + s2(
NV∑
k=1
k 6=j

aik) + s3(
NV∑
k=1
k 6=i

ajk) + s4(
NV∑
k=1
k 6=j

aki) + s5(
NV∑
k=1
k 6=i

akj) + sx(xexij ) (52)

where sx(xexij ) is short for s6(xij6) + · · · + sp(xijp). Note that for sk(xijk) = γkxijk,
k ∈ {6, . . . , p} one gets the linear relation assumed in model (51).

Unfortunately, this simple and fast method turns out to be unsuitable for the arms
trade network or any other sparse network. To understand the reason, consider the
network for the year 2012. For this year the directed network contains NV = 192
actors, which implies N2

V − NV = 36672 possible edges. Compared to this large
number, the actual number of observed edges NE = 376 is extremely low. When
randomly drawing independent pairs (ij) out of a network with 192 actors, we get
a sample of the size NV

2 = 96, but the chance of drawing a pair with an edge is
just a little higher than one percent. As a result, the sampled data is not suitable
for inference, since the overwhelming number of the attribute of concern is set zero.
In some extreme, but not too improbable cases, this can even mean that a drawn
sample does not hold a single observation with an edge.

6.2 The Bootstrap Logit Model

After the model introduced in the previous section turned out to be unsuitable for
our case, we have to consider a different approach: Again, a simple and fast strategy
is to take the observations of the dependent variable yij as independent and calculate
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the log pseudo-likelihood

Pliklog(γ) =
NV∑
i,j=1
i 6=j

logP(Yij = 1 | Y c
ij = Acij , X

ex
ij = xexij ) (53)

However, by calculating the pseudo-likelihood we face the same problem as discussed
earlier in this chapter. Even though the calculation is simple and fast, the depen-
dency structures in the network are ignored, since we treat the observations of the
response as independent of each other. Therefore, the parameter estimates are bi-
ased and the variance estimates appear unreasonable. For this reason, we suggest
a bootstrapping strategy to adjust the parameter and variance estimates. However,
the following bootstrapping approach is only reasonable for models of type (49), i.e.,
for models without smooth functions s(·). For a general introduction to bootstrap-
ping we refer to Efron and Tibshirani [13], Shao and Tu [45] and Davidson and
Hinkley [9].

In the following, let the vector γ̂ be the pseudo-likelihood estimate of γ for network
A. Via the MCMC algorithm we simulate a new network A∗ by using the pseudo-
likelihood estimated γ̂ as the parameter. An approach for simulating networks using
MCMC was introduced by Snijders [48] and already discussed in chapter 3.3.

Once a new network A∗ has been simulated, one can estimate the pseudo-likelihood

Pliklog(γ) =
NV∑
i,j=1
i 6=j

logP(Yij = 1 | Y c
ij = (A∗ij)c, Xex

ij = xexij )

of the simulated network A∗ and refer to the newly obtained estimator by ˆ̂γ∗. The
principal idea of bootstrapping is the assumption that we can draw inference from
the simulated distribution of ˆ̂γ∗ − γ̂ about the difference of interest γ̂ − γ. As a
consequence, one can rectify the biased pseudo-likelihood estimate γ̂. The idea is
to consider the bootstrap bias b(γ̂∗) = E∗γ̂(ˆ̂γ∗) − γ̂ as an estimate for the unknown
bias b(γ̂) = Eγ̂(ˆ̂γ) − γ̂. Here, we denote the pseudo-likelihood estimate computed
from simulated networks with parameter γ̂ with ˆ̂γ. The bootstrap bias b(γ̂∗) can
be approximated by simulating B networks A∗1, . . . , A∗B and by computing the
pseudo-likelihood estimates ˆ̂γ∗1, . . . , ˆ̂γ∗B for each of them. Since calculating the
ideal bootstrap sample would result in high computational cost, we proceeded by
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drawing B new networks. We then estimate E∗γ̂(ˆ̂γ∗) by

ˆ̂γ∗(·) :=
1
B

B∑
r=1

ˆ̂γ∗r

We can then write
b̂∗(γ̂) = ˆ̂γ∗(·)− γ̂

If we now assume b(γ̂) ≈ b(γ), where b(γ) = Eγ(γ̂)− γ, this yields the bias-adjusted
estimator γ̄

γ̄ = γ̂ − b̂∗(γ̂)

= γ̂−
(ˆ̂γ∗(·)− γ̂)

= 2γ̂ − ˆ̂γ∗(·)

If one is interested in a suitable estimate for the unknown variance V ar(γ̂), one can
draw on the boostrapping technique once again and compute the bootstrap variance
V ar∗(ˆ̂γ∗). With the assumption V ar(γ̂) ≈ V ar(γ) one can draw conclusions about
the actual variance of interest.

Let ˆ̂γ∗1, . . . , ˆ̂γ∗B be the pseudo-likelihood estimates of the simulated networksA∗1, . . . ,
A∗B. Then, one can compute the bootstrap variance via

V ar∗(ˆ̂γ∗) =
1

B − 1

B∑
r=1

(
ˆ̂γ∗r − ˆ̂γ∗(·)

)2

where ˆ̂γ∗(·) is the arithmetic mean of ˆ̂γ∗r , r ∈ {1, . . . , B} as defined above. This
result yields the bootstrap-estimated standard deviation

se∗(ˆ̂γ∗) =
√
V ar∗(ˆ̂γ∗)

After having computed the bootstrap standard deviation one can also estimate the
bootstrap t-intervals by computing

Z∗(r) =
ˆ̂γ∗r − γ̄
se∗(r)

where se∗(r) is an estimation of the standard error of ˆ̂γ∗r. After having computed all
Z∗(r) , r ∈ {1, . . . , B} one has to arrange them according to the size and estimate
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the quantiles t̂(α) and t̂(1−α) for a (1− 2α) confidence interval by calculating

α =
#{Z∗(r) ≤ t̂(α)}

B

where #{·} is simply the count of Z∗(r) less than or equal to t̂(α). This finally yields
the bootstrap-t-interval for a 1− 2α confidence level

[ γ̄ − t̂(1−α) · se∗(ˆ̂γ∗) , γ̄ − t̂(α) · se∗(ˆ̂γ∗) ]

However, the approach introduced above is only reasonable for GLMs, i.e., for mod-
els with a linear predictor. We will refer to this model as the bootstrap logit model
(BLM).

In the following section we will present the results obtained by fitting a BLM. We
treat the occurrence of each tie yij as an independent observation. The occurrence
of a tie depends on the covariates, which can be divided into endogenous covariates
and conventional covariates. The endogenous covariates are going to be the same
as in (50). The conventional covariates include the supplier’s and receiver’s GDP
and CINC, the receiver’s intra-state conflict score as well as the relational covari-
ates: defense agreement, direct contiguity, polity score, and path dependency (see
chapter 2 and 3.6). Just as for the ERGM we are going to include the conventional
covariates with a t − 2 time lag. The resulting parameter estimates can be found
in appendix 9.2. These plots show the time series for each estimated parameter
and the corresponding 95% confidence interval for the period 1952− 2013. A green
node indicates that the estimate is statistically significant at the 5% level, orange
indicates that the estimate is statistically significant at the 10% level, but not at the
5% level, and red indicates that the estimate is not significant at the 10% level.

The time series for the estimated intercept has a clearly negative, statistically signif-
icant effect during the entire time period, which indicates that the network is rather
sparse. The time series for the reciprocal tie reveals the interesting fact that the
estimates are mostly positive, meaning that the chance of a tie occurrence between
actors i and j increases when there is a tie going from j to i, until the turn of the
millenium. It is worthwile to mention that the existence of a tie between j and i

becomes insignificant from 1999 on. This result seems to relate to the result we ob-
tained from the defense agreement time series, where the parameter estimates also
become insignificant around the turn of the millennium. As Brzoska [6] is covering
in his paper, during the time of the Cold War, allied nations were trading weapons
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Figure 15: Weapon import trends for the Soviet Union/Russia and Germany

with each other, especially the countries involved in NATO and the Warsaw Treaty.
But in the past 15 years, arms have been traded for more economic reasons. This
theory is further supported by the time series of the receiver’s GDP. While a recip-
ient’s GDP did not play a central role in the sale of weapons until the 1970s, the
estimates turn into positive statistically significant values from the 1980s on. This
supports the conclusion that, today, countries with higher GDPs per capita are more
likely to purchase major conventional weapons.

The time series for the seller’s in-degree provides interesting insights as well, since
over time it changes from having a clearly positive effect to having a negative effect.
This can be explained by the argument that the world’s main weapon suppliers are
not currently importing weapons at the same level as during the Cold War, but
are instead focusing on distributing their own products globally. A prime example
is given by figure 15 where the trends in arms imports are visualized for two of
the world’s main weapon suppliers: the Soviet Union/Russia and Germany. Both
nations’ weapons imports clearly decrease over our timeframe of examination. In
Russia’s case we can even observe that the country has become self-sufficient in
terms of weapons supply. The seller’s out-degree and the buyer’s in-degree have the
expected positive effects, indicating that sellers and buyers that already have high
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Figure 16: Goodness-of-fit of the bootstrap logit model for 2013

out/in-degrees are more likely to form ties. An interesting insight comes from the
result for the buyer’s out-degree, which is negative for the whole observation period.
This outcome leads to the conclusion that most countries that purchase weapons are
not arms suppliers themselves.

In order to be able to compare the model fit of the BLM with the ERGM, we apply
the same method that was used for the ERGM to evaluate the model’s fit. Figure 16
visualizes the goodness-of-fit for the bootstrap logit model for the year 2013. These
plots can be interpreted just as the goodness-of-fit plots discussed in chapter 3.6.
The bootstrap bias b(ˆ̂γ∗) was approximated by B = 100 simulated networks and the
boxplots were generated using another 100 simulated networks. When comparing
figure 16 with figure 11 from chapter 3.6 we do not observe a clear improvement in
any of the four hyper statistics. The networks simulated by the distribution of Pγ̄
do not describe the observed network in a better way than the ERGM fit did ear-
lier. For models fitted for different years, we get similar results. The goodness-of-fit
results are still not desirable, especially since the edge-wise shared partners and the
out-degree distribution are not captured in a satisfying way. For this reason, we are
going to determine the effect an actor’s in- and out-degree have on formation of ties
by using smooth functions. This will be done in the next chapter. The visualized
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smooth functions are then going to justify the extension of the ERGM into a curved
ERGM as we will present in chapter 7.

6.3 The Generalized Additive Model for Networks

By introducing the BLM we deviated from the specified goal set in chapter 3.6 to
estimate the nonparametric effect of an actor’s in- and out-degree on the occurrence
of a new tie. In this chapter, we are going to fit a generalized additive model as
in (48), which disregards a network’s dependency structure and thus, only provides
pseudo-likelihood estimates. Although the results are going to be biased, we are
going to get a first impression of the estimated effects.

We assume the occurrence of a tie Yij = 1 to be dependent on the sender’s and
receiver’s in- and out-degrees, as well as on the existence of the reciprocal tie Yji.
This yields the model

logit(P(Yij = 1) =

γ0 + γ1Yji + s1(
NV∑
k=1
k 6=j

Yik) + s2(
NV∑
k=1
k 6=i

Yjk) + s3(
N∑
k=1
k 6=j

Yki) + s4(
NV∑
k=1
k 6=i

Ykj) + sx(xexij ) (54)

where sx(xexij ) is short for the exogenous covariates s6(xij6) + · · · + sp(xijp) and
i, j ∈ {1, . . . , NV } , i 6= j. This model treats an actor’s in- and out-degrees, as
well as Yji, as covariates of a regular GAM. This implies that we are taking these
covariates to be independent of each other and furthermore disregard a network’s
dependency structure.

Figure 17 shows the estimated smooth function for the supplier’s out-degree and
the receiver’s in-degree for the time period 2004-2013. We used linear B-splines as
discussed in chapter 4.2, penalized them with the method introduced by Eilers and
Marx [14] (see chapter 4.3) and optimized the smoothing parameter λ by generalized
cross validation as illustrated in chapter 4.4. The effect we observe for both, the
seller’s out-degree and the receiver’s in-degree, are clearly non-linear, but decline
for higher in- and out-degrees. For that reason, a black graph was added into these
plots to visualize the log function and demonstrate that the effect is non-linear in
nature. The log function for the supplier’s out-degree was shifted by the constant
c = 1.5. A steep slope is noticeable at the beginning of both visualizations, which
then starts to decline incrementally. We did not visualize the effects of the supplier’s
in-degree and the recipient’s out-degree, since a clear trend was not identifiable and
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Figure 17: Penalized B-spline fit for the in- and out-degree for the years 2004-2013.
The black line illustrates the logarithm (in-degree) and the logarithm +
1.5 (out-degree)
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Figure 18: Goodness-of-fit for the generalized additive model of the year 2013

the results were not significant for most of the years.

Even though the coefficients were estimated by a pseudo-likelihood approach, the
model fit turned out to be acceptable. In figure 18 the goodness-of-fit as described in
chapter 3.6 is visualized for the year 2013. Again, we obtained similar goodness-of-fit
results for other years. The results show a clear improvement over the goodness-of-fit
of the ERGM simulated in chapter 3.6 and over the results of the BLM in chapter 6.2.
Besides the in-degree distribution, which was already well captured in the two other
models, the distributions of the three other hyper statistics improved as well. The
black bold line, which represents the distribution in the observed network, passes
through every single boxplot.

Certainly, we have to be very careful about drawing conclusions from the estimated
smooth functions of the supplier’s out-degree and the receiver’s in-degree about the
ERGM. The ERGM always considers the impact that the change in the occurrence of
a tie has on the entire network, and by introducing the geometrically weighted degree
statistics in the next chapter we will recognize that the ERGM can consider the
change that the occurrence of a tie has on the entire degree distribution of a network.
The fitted GAM from this chapter misses this universal view of an entire network’s
degree distribution since it is confined to considering the in- and out-degree of a
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7 The Curved Exponential Random Graph Models (CERGM)

particular actor without taking the change in the network into account. In the GAM,
an actor’s in- and out-degrees are merely taken as dyad-specific characteristics and
therefore, lack the global consideration of the ERGM. Nevertheless, the results of the
smooth functions in this chapter justify the consideration to extend the conventional
ERGM into a more generalized model. This generalized ERGM enables us to down-
weight the contributions of high-degree nodes in a geometrically decreasing way.

From figures 17 we learn that the effect decays bit by bit for higher degrees. Hence,
it would be desirable to extend the ERGMs from chapter 3.6 in a way that allows
these models to capture this effect. This can be accomplished by generalizing the
ERGM by so-called curved exponential random graph models (CERGM), since the
CERGM enables us to add specific endogenous statistics that capture the decay of a
degree’s effect. The decay is controlled by a decay parameter and can be estimated
along with the regular parameters. The CERGM will be introduced in the following
chapter.

7 The Curved Exponential Random Graph Models
(CERGM)

In this chapter we are going to introduce the curved exponential random graph model
(CERGM), a generalization of the ERGM. In particular, these models involve ge-
ometrically weighted degree, geometrically weighted edge-wise shared partner, and
geometrically weighted dyad-wise shared partner statistics. These statistics enable
the inclusion of a network’s degree, edge-wise shared partner, and dyad-wise shared
partner distributions into the model. This chapter is mainly based on Hunter [25],
Hunter and Handcock [27], and Robins et al. [42].

7.1 The CERGM

When modeling the ERGM with the endogenous statistics

Γ(A) = (Γedges,Γasymmetric,Γidegree(1),Γdsp(1))

as is done in chapter 3.6, and examining the quality of the model by simulating
the goodness-of-fit plots, one observes that the simulated networks reproduce the
number of nodes with in-degree 1 perfectly (see figure 11). However, even though
the number of nodes with an in-degree of 1 was captured sufficiently, one might also
want to include the statistics Γidegree(0),Γidegree(2),Γidegree(3), . . . as well. One even
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7 The Curved Exponential Random Graph Models (CERGM)

might want to go a step further and fit the model with Γodegree(0),Γodegree(1),

Γodegree(2), . . . in the hope that Pθ̂ becomes more similar to Pθ. Unfortunately, these
models degenerate when these steps are attempted. Even if these models did not
degenerate, however, we would still obtain a high number of estimated coefficients.
It would be desirable to include a statistic into the ERGM that could refer to a net-
work’s degree distribution without causing a high number of estimated coefficients.
Therefore, consider the vector θ ∈ Rq as a function of a vector % ∈ Rp, where p < q.

This implies that we can write (1) as

Pθ(Y = A) = exp(θ(%)T · Γ(A))
c(θ(%)) (55)

We are going to refer to (55) as a curved exponential random graph model. As was
already discussed in chapter 3.2, the maximum-likelihood estimator (MLE) of the
parameter vector θ is the vector which maximizes Pθ(Y = Aobs). With Aobs, we
refer to the observed network. For this reason we might also refer to the MLE θ̂ as

θ̂ = arg max
θ∈Rq

exp(θT · Γ(A))
c(θ) (56)

By assuming that θ is a function of % the MLE of (55) turns out to be

%̂ = arg max
%∈Rp

exp(θ(%)T · Γ(A))
c(θ(%)) (57)

A detailed approach for computing (57) through Fisher scoring is given by Hunter
and Handcock [27]. At this point it should be mentioned that in the case of θ(%)
being a linear function, we could write θ(%) as M%, where M ∈ Rq×p. Consequently,
(55) turns into

Pθ(Y = A) = exp(%TMT · Γ(A))
c(M%))

which is basically a standard ERGM. This can easily be verified by setting Γ∗(A) :=
MT · Γ(A) and c∗(%) := c(M%). This proves that distinguishing between CERGMs
and ERGMs only makes sense when θ(%) is a non-linear function of %.

But how can one include a network’s degree distribution as a network statistic
Γdist(A)? Snijders et al. [47] introduced an approach involving k-star (or star(k))
statistics S1(A), . . . , SNV −1(A), where Sk(A) denotes the number of k-stars in the
network, k ∈ {1, . . . , NV − 1}. In a directed network we have to distinguish between
outstar(k) and instar(k), which can be defined with the star definition given in
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chapter 3.5 as
Sok(A) := Γostar(k)(A)

Sik(A) := Γistar(k)(A)

Note that in every network So1(A) = Si1(A) = Γedges(A), i.e., So1(A) and Si1(A) are
equal to the number of edges in the network. However, if each Γostar(k) has its own
coefficient in the network, the resulting ERGM would look something like

Pθ(Y = A) = exp(
∑n−1
k=1 θkS

o
k(A))

c(θ) (58)

On this basis, Snijders introduces the alternating k-star statistics

S(A, λout) :=
NV −1∑
k=2

(−
1
λout

)k−2Sok(A) = So2(A)−
So3(A)
λout

+ · · ·+ (−1)NV −3S
o
NV −1(A)
λNV −3
out

and

S(A, λin) :=
NV −1∑
k=2

(−
1
λin

)k−2Sik(A) = Si2(A)−
Si3(A)
λin

+ · · ·+ (−1)NV −3S
i
NV −1(A)
λNV −3
in

where we refer to λout, λin ∈ R+ as the decay parameter. Models with these statistics
and a fixed decay parameter turn out to be standard ERGMs:

Pθ(Y = A) = exp(ξ ·S(A, λout)
c(ξ, λout)

(59)

But the question arises around how one should chose the decay parameter. If one
wants to automatically estimate the λout then the model turns out to not be a
standard ERGM anymore, but, rather, a CERGM. In order to clarify this, verify
that model (59) is just like model (55) with

θ1 = 0 and θk ≡ θk(ξ, λout) =
(−1)kξ
λk−2
out

, 2 ≤ k ≤ NV − 1

Hunter and Handcock [27] succeeded in proving that one can also rewrite alternating
k-stars as a function of a network’s degree distribution

S(A, λout) = λout

(
λout

NV −1∑
j=1

(
1−
(

1−
1
λout

)j)
Do
j (A) + 2So1(A)

)
(60)
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S(A, λin) = λin

(
λin

NV −1∑
j=1

(
1−
(

1−
1
λin

)j)
Di
j(A) + 2Si1(A)

)
(61)

where Do
j (A) := Γodeg(j)(A) and Di

j(A) := Γideg(j)(A) are the number of nodes with
and in- and out-degree of j, respectively. In the next step, we define the geometrically
weighted out-degree (gwod) and the geometrically weighted in-degree (gwid) statistics
as the first summand of (60) and (61)

Γgwod(A, λout) := λout

NV −1∑
j=1

(
1−
(

1−
1
λout

)j)
Do
j (A) (62)

Γgwid(A, λin) := λin

NV −1∑
j=1

(
1−
(

1−
1
λin

)j)
Di
j(A) (63)

At this point it also becomes obvious where the geometrically in the name of gwod
and gwid comes from. It simply refers to the geometric sequence (1 − 1

λ)j which
appears in these statistics.

Equations (60) and (61) also demonstrate that the alternating k-star statistic is a
linear combination of the geometrically weighted degree statistic and the number of
edges. Therefore, it is possible to invert this equation to express the geometrically
weighted degree statistic as a linear combination of the alternating k-star and the
number of edges. Combined with the fact that the number of edges is essential in
every ERGM, since it is playing the role of the intercept, this yields the result that
the geometrically weighted degree statistic and the alternating k-star statistic are
interchangeable when fitting a model.

But how can one interpret the parameters? For the sake of simplicity, consider the
model

Pθ(Y = A) = exp(ξ · Γgwod(A, λout)
c(θ(ξ, λout)))

(64)

Adding one single edge to the network changes the out-degree distribution of the
network so that one actor with an out-degree of k turns into an actor with an out-
degree of k + 1. With our notation this means that Do

k and Do
k+1 get replaced by

Do
k − 1 and Do

k+1 + 1, while no changes for Do
` , ` ∈ {0, . . . , NV − 1} \ {k, k+ 1} are

made. This changes the probability of a graph in the following way (for reasons of
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clarity the fraction has already been reduced)

Pθ(Yij = 1|Y c
ij = Acij)

Pθ(Yij = 0|Y c
ij = Acij)

=
exp(ξλout((Do

k − 1)(1− τk) + (Do
k+1 + 1)(1− τk+1)))

exp(ξλout((Do
k)(1− τk) + (Do

k+1)(1− τk+1)))
= exp(ξλout((1− τk+1)− (1− τk)))

= exp(ξλout(τk − τk+1))

= exp(ξλout((τ − 1)τk))

= exp(ξτk)

where τ = (1− 1
λout

). This implies

Pθ(Yij = 1|Y c
ij = Acij)

Pθ(Yij = 0|Y c
ij = Acij)

= exp(ξ(1− 1
λout

)k) (65)

What does this mean for the interpretation? Recall that λout ∈ R+. When taking
a look at (1 − 1

λout
)k with λout > 1, one can observe that by adding a new edge

into the network the benefit decreases geometrically by the degree of the involved
nodes. This seems to be the perfect statistic for including the decreasing effect we
observed for the GAM’s out-degree in figure 17. Furthermore, we can perceive that
the higher the decay parameter, the slower the decay. Therefore, the geometric
decay is controlled by λout and this is the reason why we refer to λout as the decay
parameter. The interpretation of parameter ξ is very similar to the interpretation
of parameter θ in a standard ERGM (1). As a consequence,

• ξ > 0 implies a preference for adding an edge

• ξ = 0 implies no preference

• ξ < 0 implies a preference for deleting an edge

This implies that with ξ > 0 the model prefers networks containing nodes with high
out-degrees, while ξ < 0 indicates the opposite. Putting both parameters’ interpre-
tation together, we can observe that for a very large parameter λout the preference
of adding an edge to the network does not decrease much, since (1 − 1

λout
)k ≈ 1

and consequently remains almost constant at ξ. The other extreme case λout = 1
yields exp(ξ(1− 1

λout
)k) = 1, which implies no preference, regardless of the value of

ξ. Interpreting the parameters for λout ∈ (0, 1) turns out to be difficult, since the
value of (1− 1

λout
)k starts alternating.

Aside from the geometrically weighted degree distributions, we are going to present
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two more CERGM statistics, which were also introduced by Hunter [25]: the geomet-
rically weighted dyad-wise shared partners (gwdsp) and the geometrically weighted
edge-wise shared partners (gwesp). For this reason, we denote DPk(A) := Γdsp(k)(A)
and EPk(A) := Γesp(k)(A) in an analogously to how we defined the degree distribu-
tions. Given this, we can define Γgwdsp and Γgwesp as

Γgwdsp(A, λdsp) := λdsp

NV −1∑
j=1

(
1−
(

1−
1
λdsp

)j)
DPj(A) (66)

Γgwesp(A, λesp) := λesp

NV −1∑
j=1

(
1−
(

1−
1
λesp

)j)
EPj(A) (67)

Similar to the geometrically weighted degree distributions, these statistics include a
geometric sequence in their definition. Since the functional forms of Γgwdsp(A, λdsp)
and Γgwesp(A, λesp) are the same as those for Γgwod(A, λout) and Γgwid(A, λin), they
can be interpreted similarily. Incidentally, just as gwod and gwid interrelate with
the alternating k-star statistics, one can show that gwdsp and gwesp interrelate with
the alternating k-triangle and the alternating k-twopath statistics, which were also
introduced by Snijders et al. [47].

7.2 Results for the CERGM

After having justified the generalization from a conventional ERGM to a curved
ERGM by visualizing the non-linear effect of the in- and out-degree in chapter 6.3,
and after having introduced the CERGM together with the related geometrically
weighted statistics in chapter 7.1, we are finally set to fit a CERGM to the arms
trade data and present the results.

Including the geometrically weighted statistics in the model causes a stepwise down-
weighted effect. At first glance, it seems to be reasonable to include all four statistics,
Γgwod, Γgwid, Γgwesp and Γgwdsp, into the network in order to guarantee a decent
model fit. However, it turned out that including all four or any combination of
three or two of these statistics into our arms trade model caused degeneracy. Luck-
ily, including just one geometrically weighted statistic resulted in non-degenerated
models for the majority of cases. We therefore decided to include the geometrically
weighted out-degree statistic, since we anticipated being able to capture the networks’
out-degree distribution in a more reasonable way. According to the goodness-of-fit
plots in figure 11, the in-degree distribution was appropriately captured by includ-
ing Γidegree(1), but adding any statistic Γodegree(k), k ∈ N caused degeneracy. By
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adequately including a model’s in- and out-degree distribution, it is furthermore
reasonable to expect an improvement of the geodesic distance distribution and even
of the edge-wise shared partners distribution.

By extending the ERGM into a CERGM by including Γgwod, the model appeared
to be more robust against degeneracy. Statistics which initially could not be added
into the ERGM, could now be put into the model without causing degenerated mod-
els. We therefore decided to incorporate the statistics Γdsp(0) and Γesp(0). With the
statistic Γdsp(0) we intended to capture the fact that the majority of actors in the
network are not connected by a directed two-path through a third actor. We justify
this on the basis of the geodesic distance distribution of the networks (see figures 11,
16 and 18), which indicate that there is no directed path between most actors. The
reason for this is that most actors do not sell weapons and therefore have an out-
degree of zero (see figure 5). Consequentely, a directed two-path cannot originate
from these actors. With the statistic Γesp(0) we emphazise the direct trades between
two actors, since this statistic counts the number of pairs (i, j) which are directely
connected and do not close deals via a third party. Γedges is the final endogenous
statistics included in our model. The included covariates in our model are the same
as those in the fitted ERGM in chapter 3.6. Just as in the ERGM, we include these
covariates with a t− 2 time lag.

Figure 19 shows the MCMC diagnostics of the fitted model for the year 2013. As
already discussed in chapter 3.6, the plots on the left side visualize the values for
every included statistic obtained via MCMC-simulated networks. These values are
centered around the statistic’s value for the observed network. The right side shows
the empirical density function for each case.
The MCMC diagnostics show good results, since every single empirical density func-
tion is centered around the value of the observed statistic and the trace plots on the
left side do not display questionable dependency structures. This also holds true for
the MCMC diagnostics of years other than 2013.

So the model does not degenerate, but does it also provide a good fit? In order
to answer this question and in order to compare the fitted CERGM with the fitted
ERGM of chapter 3.6 and fitted BLM of chapter 6.2, we take a look at the goodness-
of-fit diagnosis in figure 20. Compared to the goodness-of-fit of the ERGM (figure
11) and the goodness-of-fit of the BLM (figure 16), we observe a clear improvement.
Besides the in-degree distribution, which was already well-captured in figures 11
and 16, the new model also covers the distribution of the remaining three hyper-
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Figure 19: MCMC diagnostics for the CERGM of 2013
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Figure 20: Goodness-of-fit diagnosis for the fitted CERGM for 2013

statistics in a satisfying way. It is remarkable that with the integration of Γgwod
the out-degree’s goodness-of-fit improved markedly. Since the same holds true for
the geodesic distribution, it looks like our assumption proves to be true: By fitting
a model that adequately captures a network’s in- and out-degree distribution, the
geodesic distance distribution improves automatically.
Finally, the edge-wise shared partners distribution of the simulated networks also
improved. Certainly, this is thanks to the fact that we were able to include Γesp(0)

into the CERGM.

The results for the parameter estimates for every fitted ERGM from 1952 until 2013
can be seen in figures 21 and 22. The first ERGM was fitted for 1952 and not
for 1950, since we include the exogenous variables with a two year time lag. The
parameter estimates are visualized with 95% confidence intervals and a color index
indicates the significance level of the variables. A green node indicates that the
included endogenous statistic or exogenous covariate is statistically significant at
the 5% level, orange indicates that the variable is statistically significant at the 10%
level, but not at the 5% level, and a red node indicates that a statistically significant
relation could not be determined at a 10% level.

The time series for Γedges has the expected highly negative effect in every year’s net-
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Figure 21: Time series of the estimated parameters for the time period 1952-2013
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Figure 22: Time series of the estimated parameters for the time period 1952-2013
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work, indicating that the observed networks are all rather sparse. An interpretation
of Γedges on the edge level is not possible, since networks where the change-statistic
for the number of edges differs by one do not exist. The change-statistic for the
number of edges is equal to 1 in every network. Therefore, the only way left is to
interpret Γedges on the network level. For two networks A and Aedges−, network
Aedges−, which has one edge less than network A while all the other statistics are
equal, is more plausible. Recall that Ak− is defined as a network where all statistics
except the kth have the same value as in network A, but the kth statistic of Ak−

is one smaller than that in A. Roughly speaking, our model is tending to sparse
networks, i.e., models with less ties.

With the exception of the early years, we observe a mostly statistically significant
positive effect for the dyad-wise 0-shared partner statistic. Unlike Γedges, we can in-
terpret Γdsp(0) on the edge level. Therefore, consider two networks A and B, which
are both completely known, except for edge eij , and where the change-statistic

(∆dsp(0)A)ij := Γdsp(0)(A+
ij)− Γdsp(0)(A−ij)

of A is one higher than the change-statistic

(∆dsp(0)B)ij := Γdsp(0)(B+
ij )− Γdsp(0)(B−ij )

of B, while all other change-statistics of A and B are identical. Recall that A+
ij

emerges from A, while assuming aij = 1, and that A−ij emerges from A, while as-
suming aij = 0. It thus follows that edge eij is more likely to occur in network
A, i.e., in the network with more dyad-wise 0-shared partners. Just as for Γedges,
Γdsp(0) can also be interpreted on the network level. Given two networks A and
Adsp(0)−, network Adsp(0)− is less plausible than network A. The statistics Γidegree(1)

and Γesp(0) can be interpreted similarly. However, notice for the Γidegree(1) results
that the estimated parameters change from having a positive effect in the 1950s, to
having no effect in the 1960s through the 1980s, to having a negative effect in the
more recent years. This indicates that for the earlier years, networks with more
in-degree-1-actors are more plausible, but for more recent years the models with less
actors with an in-degree of 1 are more plausible.

While the decay parameter estimates for the geometrically weighted out-degree statis-
tic can be found in figure 23, the regular parameter estimates for this statistic are
plotted next to all other results in figure 21. The decay paramter estimates are
greater than 1 througout the entire time period with an average value of 3.05. This
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Figure 23: Time series of the decay parameter for the time period 1952-2013

implies a fairly fast geometrical decrease, which aligns with the results in figure 17
from chapter 6.3. The regular parameter estimates are the multipliers for this effect
and turn out to be negative for the whole time period, which emphazises once more
that our models tend towards sparse networks.

As we have already pointed out in chapter 3.5, a network that merely includes
endogenous statistics can not distinguish between structurally equivalent networks.
However, through the positive results of the exogenous variable defense agreement,
the model assigns more probability mass to a network, which has more conformity
with the defense agreement network. Consequently, the results of the parameter
time series for the defense agreement estimates reveal very interesting insights. Just
as in the parameter time series of the BLM (see appendix 9.2) we observe a positive,
but clearly decreasing effect. Even though we have to be careful with the interpre-
tation of trends in the time series, since the number of edges increases over time,
we can see that the estimates start becoming statistically insignificant around the
turn of the millennium. This bolsters the theory that the existence of alliances has
played an increasingly minor role in countries’ decisions to engage in arms trading.
Brzoska [6] discusses that back in the 1960s and 1970s weapons were sold mainly
to allies in order to bolster desired power dynamics and further personal political
interests, while nowadays economic factors play a much more decisive role. The
fitted CERGM and the BLM further support this theory.

The results for the direct contiguity data turn out to be statistically insignificant
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at the 10% level for most of our examined timeframe. However, for some scattered
years we obtain positive statistically significant results, which might be counterintu-
itive at first glance since it means that countries which share a common border are
more likely to trade weapons with each other. Likely reasoning for this is that the
NATO countries in Europe supply each other with military goods.

We included the democracy score in our analysis by generating a matrix with the
absolute difference of the corresponding countries’ democracy scores as entries. In
this analysis, a negative parameter would indicate that countries with similar democ-
racy scores are more likely to trade weapons than countries with highly dissimilar
scores. On the other hand, a positive parameter would indcate that countries with
dissimilar scores are more likely to trade. Our results do not allow either of these
conclusions, since they oscillate around zero with occasional statistically significant
results on both sides. After 1990, however, the model tends to prefer ties between
countries with similar democracy scores.

The time series of the intra-state conflict estimates goes from being highly variable
in the early portion of our examined timeframe to demonstrating more consistent es-
timates from the 1980s on. From this decade on, we obtained, with some exceptions,
statistically significant estimates that were positive, which implies that countries
characterized by political disturbances are indeed more likely to purchase weapons.

The supplier’s GDP time series shows the expected highly positive effects, which are
statistically significant througout the entire time period. Similar results are achieved
for the BLM, as one can verify in appendix 9.2. This result indicates that countries
with a high GDP per capita are more likely to be the tail of a tie, i.e., the supplier of
arms. The results for the receiver’s GDP time series reveal more interesting insights,
since it seems that a country’s GDP was not a major factor driving arms purchases
in the 1950s and 1960s, but starts playing a crucial role from the 1970s on.

The results for a nation’s CINC reveals outcomes similar to those for GDP. Just as
for the receiver’s GDP time series, the receiver’s CINC time series goes from being
largely statistically insignificant in the early portion of our examined timeframe to
demonstrating statistically significant and positive estimates from 1978 on. Both
the receiver’s GDP and CINC estimates bolster Brzoska’s [6] theory that economic
factors are increasingly influential drivers in the global armament market.
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8 Summary and Outlook

In this paper, we investigate the arms trade data of major conventional weapons that
was provided by SIPRI. After a short introduction of network analysis in chapter 1,
we introduced the arms trade data in chapter 2 along with data about the included
covariates. Furthermore, we present descriptive results of the data, which provide
the basis for the included endogenous statistics in chapter 3.6. However, before
being able to fit the networks, the corresponding model, the exponential random
graph model, and some crucial network statistics had to be introduced. By looking
at the goodness-of-fit of the first model, we recognize that the underlying model
provides an insufficient fit. Since the out-degree distribution and the edge-wise
shared partners distribution particularly were captured in an inadequate way, we
generalize the ERGM in chapter 7 and introduce the CERGM. The new results
presented in chapter 7.2 are more satisfying and reveal some interesting insights.

In order to justify the generalization step from ERGM to CERGM, we model the
networks with GAMs. Even though this model yields biased results, since it ignores
the dependency structures inside the networks, we get approximate insight into a
degree’s impact in the model. The estimated smooth functions for a supplier’s
out-degree and a recipient’s in-degree visualize the steadily decreasing effect, which
can be adequately incorporate into the CERGM by geometrically weighted degree
statistics. In the course of discussing different approaches to modelling networks
with GAMs, we also introduce a bootstrapping approach in chapter 6.2 for fitting
networks with GLMs.

In this thesis we only consider binary and stationary models. In all probability,
the model could be improved by ERGMs which do consider temporal dependencies
(TERGM). Hanneke et al. [20] propose a dynamic model, which allows network
structures to change over time. This network has been extended by Desmarais and
Cranmer [11]. Another limitation of the ERGM is that it has been applied to binary
relations only. This might be acceptable for networks where a relation between two
actors is either present or absent, but for valued networks such as the arms trade
network, this is a serious limitation since we had to dichotomize the data. The model
does not distinguish between significant arms transactions, such as the shipment of
sixteen F-16 aircrafts from the United States to Italy, and comparatively negligible
trade agreements such as the supply of a single armoured vehicle from Indonesia
to Pakistan. Therefore, the ERGM loses some important information and provides
biased results.
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9.1 Comments on the Electronic Appendix

In this chapter, we explain the most important functions and codes written for this
paper. All calculations and visualizations presented in this paper were produced with
R [41]. The primary packages that were used are igraph, statnet, xergm, network,
mgcv, ggplot2, reshape and gridExtra.

• natnum This code loads the list of all actors (see chapter 9.3) in alphabetical
order. Furthermore, it creates a column for a country’s ID assigned by the
Correlates of War project (COW) and a column for the IDs assigned by CEPII.
With this list the data of each covariate can be assigned to the corresponding
nation.

• matrix_of_existing_countries This code creates a matrix EX, where the
columns refer to the years from 1950 to 2013 and where each row refers to one
specific country. eij = 1 indicates that country i did exsist in year j, while
eij = 0 indicate that country i did not exist in year j.

• amk This code generates a list of weighted adjacency matrices, one for each
year from 1950 until 2013 and based on the alphabetical order of natnum.

The covariate data sets are rearranged into the same order as the adjacency matrices
in amk. Relational covariates are put into a list of matrices, just as the observed
networks in amk, while nodal attributes are rearranged into vectors of the amk order.
The R-files which transform the covariates into the requested forms are alliance cow,
conflict, distance, GDP per capita, CINC, path dependency and polity iv.

• amallr(year, mod, tiv) With the use of the matrix EX this function cuts
out all actors that did not exist in the corresponding year, meaning that each
year’s adjacency matrix only displays the countries that actually existed at
this point. In list 9.3 we indicate the time range within which each country is
incorporated into the models. No entry was made for countries that existed
for the entire time period 1950-2013. With the mod-parameter one controls
the return of the function. mod = 1 returns the adjacency matrix of the
observed network. mod = 2: defense agreement, mod = 3: direct contiguity,
mod = 4: embargo, mod = 5: GDP, mod = 9: polity iv, mod = 10: CINC,
mod = 11: path dependency, mod = 12: distance, mod = 13: intra-state
conflict, mod = 14: inter-state conflict. The tiv paramter serves as a threshold
for the adjacency matrix.
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• ergm out This code computes CERGMs as described and visualized in chapter
7.2. For a given time period between 1950 − 2013, CERGMs are calculated
and the resulting parameter estimates, as well as the corresponding standard
errors and p-values, are saved into a matrix. The plots were generated with
the help of these matrices. The plotting codes are located at the very end of
this R-file.

• bootstrap logit out Similar to the ergm out-file, this file contains the code for
the bootstrap logit model as described in chapter 6.2 and visualized in chapter
9.2. For a given time period between 1950 − 2013, BLMs are calculated and
the resulting parameter estimates, as well as the corresponding standard errors
and p-values, are saved into a matrix. The plots were generated with the help
of these matrices. The plotting codes are located at the very end of this R-file.

• gam splines This code computes the GAMs as described in chapter 6.3 and
plots, for a given time period between 1950 − 2013, the estimated penalized
B-splines for a supplier’s out-degree and a recipient’s in-degree as visualized
in figure 17.

Besides the codes presented in this chapter, the electronic appendix includes a num-
ber of further codes, which were written for the remaining figures in this paper. We
labeled these codes with informative names so that each figure could be matched
easily to its corresponding code.

9.2 Results for the BLM

In the following section, the results of the BLM as described in chapter 6.2 are visu-
alized. Each estimated parameter is plotted with the corresponding 95% confidence
interval. The color of the nodes indicates the significance level of the correspond-
ing estimate. A green node indicates that the estimate is statistically significant
at the 5% level, orange indicates that the estimate is statistically significant at the
10% level, but not at the 5% level and finally red indicates that the estimate is not
significant at the 10% level.
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Figure 24: Time series of the estimated parameters for the time period 1952-2013
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Figure 25: Time series of the estimated parameters for the time period 1952-2013
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9.3 List of all Actors

In the following table, all countries and areas for which the MCW-data was gathered
by SIPRI are listed. The IDs correspond with the IDs used in the R-codes. The
entry in the ’Years’ column indicates the time period within which the corresponding
country is included into the networks. A blank entry in this column denotes that
this country existed during the whole time period of interest (1950−2013) and hence,
is included in every network.

ID Country Years ID Country Years
1 Abkhazia since 1992 31 Burundi since 1962
2 Afghanistan 32 Cambodia since 1953
3 Albania 33 Cameroon since 1960
4 Algeria since 1962 34 Canada
5 Andorra 35 Cape Verde since 1975
6 Angola since 1975 36 Central African Republic since 1960
7 Antigua and Barbuda since 1981 37 Chad since 1960
8 Argentina 38 Chile
9 Armenia since 1991 39 China
10 Aruba since 1986 40 Colombia
11 Australia 41 Comoros since 1975
12 Austria 42 Congo, Democratic Repubic of since 1960
13 Azerbaijan since 1991 43 Congo, Republic of since 1960
14 Bahamas, the since 1973 44 Cook Islands since 1965
15 Bahrain since 1971 45 Costa Rica
16 Bangladesh since 1971 46 Cote d’Ivoire since 1960
17 Barbados since 1966 47 Croatia since 1991
18 Belarus since 1991 48 Cuba
19 Belgium 49 Cyprus since 1960
20 Belize since 1981 50 Cyprus, Northern since 1983
21 Benin since 1961 51 Czech Republic since 1993
22 Bhutan 52 Czechosloviakia until 1992
23 Biafra 1967-1970 53 Darfur since 2003
24 Bolivia 54 Denmark
25 Bosnia and Herzegovina since 1992 55 Djibouti since 1977
26 Botswana since 1966 56 Dominica since 1978
27 Brazil 57 Dominican Republic
28 Brunei Darussalam 58 Ecuador
29 Bulgaria 59 Egypt
30 Burkina Faso since 1960 60 El Salvador
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ID Country Years ID Country Years
61 Equatorial Guinea since 1968 96 Kenya since 1963
62 Eritrea since 1993 97 Kiribati since 1979
63 Estonia since 1991 98 Korea, North
64 Ethiopia 99 Korea, South
65 Fiji since 1970 100 Kosovo since 2008
66 Finland 101 Kuwait since 1961
67 France 102 Kyrgyzstan since 1991
68 Gabon since 1960 103 Laos
69 Gambia since 1965 104 Latvia since 1991
70 Georgia since 1991 105 Lebanon
71 German Democratic Republic 1949-1990 106 Lesotho since 1966
72 Germany 107 Liberia
73 Ghana since 1957 108 Libya since 1951
74 Greece 109 Liechtenstein
75 Grenada since 1974 110 Lithuania since 1990
76 Guatemala 111 Luxembourg
77 Guinea since 1958 112 Macedonia, FYROM since 1991
78 Guinea-Bissau since 1973 113 Madagasacar since 1960
79 Guyana since 1966 114 Malawi since 1964
80 Haiti 115 Malaysia since 1957
81 Honduras 116 Maldives since 1965
82 Hungary 117 Mali since 1960
83 Iceland 118 Malta since 1964
84 India 119 Marshall Islands, the since 1986
85 Indonesia 120 Mauritania since 1960
86 Iran 121 Mauritius since 1968
87 Iraq 122 Mexico
88 Ireland 123 Micronesia since 1986
89 Israel 124 Moldova since 1991
90 Italy 125 Monaco
91 Jamaica since 1962 126 Mongolia
92 Japan 127 Montenegro since 2006
93 Jordan 128 Morocco since 1956
94 Katanga 129 Mozambique since 1975
95 Kazakhstan since 1991 130 Myanmar
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ID Country Years ID Country Years
131 Namibia 166 Sierra Leone since 1961
132 Nauru since 1968 167 Singapore since 1965
133 Nepal 168 Slovakia since 1993
134 Netherlands 169 Slovenia since 1991
135 New Zealand 170 Solomon Islands since 1978
136 Nicaragua 171 Somalia since 1960
137 Niger since 1960 172 Somaliland since 1991
138 Nigeria since 1960 173 South Africa
139 Niue since 1974 174 South Ossetia since 1990
140 Norway 175 South Sudan since 2005
141 Oman 176 Soviet Union until 1991
142 Pakistan 177 Spain
143 Palau since 1994 178 Sri Lanka
144 Palestine since 1988 179 Sudan since 1956
145 Panama 180 Suriname since 1975
146 Papua New Guinea seit 1975 181 Swaziland since 1968
147 Paraguay 182 Sweden
148 Peru 183 Switzerland
149 Philippines, the 184 Syria
150 Poland 185 Taiwan
151 Portugal 186 Tajikistan since 1991
152 Qatar 187 Tanzania since 1961
153 Romania 188 Thailand
154 Russia since 1992 189 Timor-Leste since 2002
155 Rwanda since 1962 190 Togo since 1960
156 Saint Kitts and Nevis since 1983 191 Tonga since 1970
157 Saint Lucia since 1979 192 Trans-Dniester since 1990
158 Saint Vincent and the Grenadines since 1979 193 Trinidad and Tobago since 1962
159 Samoa since 1962 194 Tunisia since 1956
160 San Marino 196 Turkey
161 Sao Tome and Principe since 1975 197 Turkmenistan since 1991
162 Saudi Arabia 197 Tuvalu since 1978
163 Senegal since 1960 198 Uganda since 1962
164 Serbia since 1992 199 Ukraine since 1991
165 Seychelles since 1976 200 United Arab Emirates since 1971
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ID Country Years ID Country Years
201 United Kingdom 216 Viet Nam, South until 1976
202 United States 217 Western Sahara since 1976
209 Uruguay 218 Yemen since 1990
210 Uzbekistan since 1991 219 Yemen, North until 1990
211 Vanuatu since 1980 220 Yemen, South until 1990
212 Vatican (Holy See) 221 Yugoslavia, SFRo until 1992
213 Venezuela 222 Zambia since 1964
214 Viet Nam since 1976 223 Zanzibar since 1963
215 Viet Nam, North until 1976 224 Zimbabwe

9.4 List of Excluded Countries

We decided to exclude a handful of countries and areas from our networks, even
though they are among the countries for which SIPRI gathered the data. A key
reason is that these countries and areas are not recognized as independent, sovereign
states by the majority of other states. Furthermore, the data sets used in this paper
which were not created by SIPRI are usually missing data for these entities.

1 Abkhazia 6 Palestine
2 Aruba 7 Somaliland
3 Northern Cyprus 8 South Ossetia
4 Darfur 9 Trans Dniester
5 Niue 10 Zanzibar

9.5 The Arms Trade Network in the Course of Times

In the following section, we visualize the arms trade networks for the years 1950,
1970, 1990 and 2013. The threshold was set at one million TIV. White nodes
indicate no out-degree, yellow nodes indicate 0 < out-degree <5, and orange nodes
indicate out-degree ≥ 5.
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Figure 26: The arms trade networks for 1950 and 1970. White nodes indicate no
out-degree, yellow nodes indicate 0 < out-degree <5, and orange nodes
indicate out-degree ≥ 5
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Arms Trade Network 1990
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Figure 27: The arms trade networks for 1990 and 2013. White nodes indicate no
out-degree, yellow nodes indicate 0 < out-degree <5, and orange nodes
indicate out-degree ≥ 5
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