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Abstract

Grundlage vieler statistischer Modelle ist die Annahme unabhéingiger Beobachtungen (gegeben
den Kovariablen). Es wird davon ausgegangen, dass Beobachtungen unter identischen Bedin-
gungen und unabhéngig voneinander gewonnen werden und die Daten somit eine Zufallsstich-
probe bilden. Eine haufige Charakteristik rdumlicher Daten ist jedoch die Tatsache, dass sich
rédumlich nahe Beobachtungen &hnlicher sind als weit entfernte. Eine Folgerung daraus ist, dass
diese Daten nicht dem Paradigma der Unabhingigkeit folgen und somit einer Modellierung von
Abhéngigkeiten bediirfen.

Die vorliegende Arbeit gibt einen Uberblick iiber die Theorie zur Modellierung zweier raumlicher
Datentypen: geostatistische Daten und Gitterdaten. Bei geostatistischen Daten liegt die rdum-
liche Information stetig, in Form von Koordinaten vor, bei Gitterdaten ist sie auf eine abzéhlbare
Menge an Regionen aggregiert. Es wird in beiden Féllen von einem zugrundeliegenden datenge-
nerierenden stochastischen Prozess ausgegangen.

Die gebrauchlichste Methode der Geostatistik ist das Kriging. Mit Hilfe des sogenannten Vario-
gramms werden hier rdumliche Abhéingigkeiten ausgedriickt und so die Schéitzung von Werten
an unbeobachteten Orten ermoglicht.

Gitterdaten hingegen werden mittels Markov-Zufallsfeldern modelliert. Die Ahnlichkeit bzw.
Abhéngigkeit zweier Regionen wird in diesem Fall tiber deren Nachbarschaftsverhéltnis beriick-
sichtigt.

Beide Ansitze lassen sich in die Theorie der Geoadditiven Modelle einbetten. Das Programm-
paket BayesX (Umlauf et al. 2015) stellt die nétigen Funktionen zur Verfiigung um eine Aus-
wertung dieser Modelle in R (R Core Team 2014) durchzufiihren.

Es wurden beispielhaft zwei Datensétze mit Hilfe der besprochenen Methoden analysiert. Bei
der Auswertung von relativen Griinwerten aus Webcam-Bildern zur Bestimmung phénologischer
Phasen konnte kein strukturierter rdumlicher Effekt festgestellt werden. Es wurden deshalb
unabhéngige zufillige Effekte zur Modellierung verwendet. Moglicherweise kénnte das Modell
durch die Aufnahme weiterer Kovariablen (Regenfallmenge, Temperatur, Héhe des Standortes
etc.) weiter verbessert werden.

Bei der Analyse der Herkunft von Studienanfingern an der LMU wurde ein starker regionaler
Bezug bei der Studienortswahl festgestellt. Die Anzahl der Studienanfianger in den Kreisen nahm
mit der Entfernung zur Hochschule stetig ab. Beim rdumlichen Effekt zeigte sich ein erhohter
Erwartungswert in den siidostlichen Gebieten Bayerns. Aufierdem scheint die Anziehungskraft

der eigenen Hochschule in Landkreisen mit Universititsstadt grofier zu sein, als die der LMU.
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1. Einfiihrung

Everything is related to everything else, but near things
are more related than distant things.

(W.Tobler (1970): First law of geography)

Wir werden téglich mit rdumlichen und rdumlich-zeitlichen Daten konfrontiert. Dies geschieht im
normalen Alltag im Fernsehen, in Zeitungen oder immer mehr auch auf mobilen Gerdten in Form
von Wetterkarten oder &hnlichem. Noch vor einigen Jahren war die handelsiibliche Papierkarte
das Mittel der Wahl um Standorte festzustellen. In der heutigen Zeit verfiigt so gut wie jeder
iiber einen GPS-Empféanger in Smartphone oder Tablet mit einer Ortsgenauigkeit von weniger
als 10 Metern. Auch durch solche technischen Entwicklungen riicken rdumliche Daten immer
weiter in den Fokus des allgemeinen Interesses. Aber auch Statistiker miissen sich mit diesem
Thema auseinandersetzen. Jede Beobachtung beschreibt eine Eigenschaft an einem bestimmten
Ort im Raum zu einem bestimmten Moment der Zeit. Diese Tatsache wird in vielen Analysen
auBler Acht gelassen, da Ort und Zeitpunkt als nicht relevant betrachtet werden (Bivand et al.
2013). Diese Arbeit beschéftigt sich mit dem Fall, dass die rdumliche Komponente von speziellem
Interesse der Analyse ist.

Ziel der Analyse rdumlicher Daten ist die Inferenz iiber Parameter, die den zugrundeliegenden
datengenerierenden Prozess erkldren bzw. die Vorhersage von Werten an unbeobacheten Orten
im Raum (Interpolation).

Grundlage vieler statistischen Modelle ist die Annahme unabhéngiger Beobachtungen (gegeben
den Kovariablen). Es wird davon ausgegangen, dass Beobachtungen unter identischen Bedin-
gungen und unabhéingig voneinander gewonnen werden und die Daten somit eine Zufallsstich-
probe bilden. Eine haufige Charakteristik rdumlicher Daten ist jedoch die Tatsache, dass sich
réaumlich nahe Beobachtungen &hnlicher sind als weit entfernte. Eine Folgerung daraus ist, dass
diese Daten nicht dem Paradigma der Unabhéingigkeit folgen und somit einer Modellierung von
Abhéngigkeiten bediirfen. Diese Erkenntnis beschrieb Tobler (1970) als das “erste Gesetz der
Geographie”.

Die folgende Arbeit ist in drei thematische Abschnitte gegliedert. Zunéchst wird in Kapitel 2 ein
allgemeines Modell rdumlicher stochastischer Prozesse aufgestellt. Dieses wird in den Kapiteln
4 und 5 auf die Spezialfille der Geostatistik und der Gitterdaten bzw. dem Disease-Mapping
(Kapitel 6) heruntergebrochen. Diese Kapitel stellen die jeweilige Theorie zur Modellierung der

Datentypen vor. Eine Auswertung zu den einfithrenden Beispielen aus Kapitel 3 auf Basis der



1. Einfiithrung

vorgestellten Theorie ist in Kapitel 8 zu finden. In Kapitel 7 werden die zuvor beschriebenen
Methoden in das Grundgeriist der Geoadditiven Modelle eingebaut. Auflerdem wird in diesem
Zusammenhang das Programmpaket BayesX (Umlauf et al. 2015) vorgestellt. Alle statistischen
Analysen, die dieser Arbeit zugrunde liegen, wurden mit der Software R (R Core Team 2014)
durchgefiihrt. Die Shapefiles zur Erstellung der Karten stammen aus der GADM database of
Global Administrative Areas (2004) bzw. vom Bundesamt fiir Kartographie und Geoddsie (2011).



2. Raumliche stochastische Prozesse

Das folgende Kapitel motiviert ein allgemeines Modell fiir rdumliche Daten. Hierbei wurde sich
in Notation und Aufbau an Cressie (1993) gehalten. Um eine moglichst grofle Menge an Pro-
blemen mit diesem Modell angehen zu kénnen, wird es innerhalb dieses Kapitels zunéchst sehr
allgemein und somit flexibel gehalten. Die zugrundeliegenden Daten kénnen stetig oder diskret
sein, punktuell oder rdumlich aggregiert vorliegen und ihre Positionen kénnen regulér, aber auch
irregulér sein. Die notwendigen Einschrankungen fiir die einzelnen Datentypen werden dann in
den nachfolgenden Kapiteln genauer besprochen.
Sei s € R? eine Lokation im d-dimensionalen euklidischen Raum und sei Z(s) eine Zufallsvariable.
Dann beschreibt

{Z(s):s € D} (2.1)

ein multivariates Zufallsfeld (bzw. Zufallsprozess) mit der Indexmenge D C R%. Eine Realisation
dieses Zufallsfeldes wird mit {z(s) : s € D} gekennzeichnet.

Cressie (1993) nimmt D dabei als zufillig an, um mit Hilfe dieses Modells auch Punktprozesse
beschreiben zu konnen. Da diese nicht Teil dieser Arbeit sind, wird D hier als fest angenommen.

Kapitel 4 und 5 beschéftigen sich mit folgenden Spezialfillen von (2.1) (vgl. Cressie (1993)):

e Kapitel 4: Geostatistische Daten. D ist eine feste Teilmenge von R%, welche ein d-dimen-
sionales Rechteck positiven Volumens enthélt; Z(s) ist eine Zufallsvariable an der Stelle
seD.

e Kapitel 5: Gitterdaten. D ist eine feste (regulire oder irregulire) Menge abzihlbarer Punkte
aus R?; Z(s) ist eine Zufallsvariable an der Stelle s € D.

Die in dieser Arbeit verwendeten Methoden sind auch auf den univariaten Fall der Zeitreihen
anwendbar. Zeitreihen unterliegen generell der gleichen Theorie wie Riumliche Prozesse (in R!).
Um diese jedoch abgrenzen zu kénnen, wird in diesem Fall meist der Index t verwendet, sodass

(2.1) umgeschrieben wird in

{Z(t) : —00 < t < 0} (2.2)

Dieser Fall ist in dieser Arbeit aber nicht von speziellem Interesse, sodass sich auf die Definition
n (2.1) beschrénkt werden kann.



3. Datentypen und einfiihrende Beispiele

In der Literatur iiber rdumliche Daten wird generell zwischen drei verschiedenen Datentypen

unterschieden:

e Geostatistische Daten
o Gitter- bzw. Pixeldaten

e Punktprozesse

Diese werden nun einzeln genauer vorgestellt und anhand von Datenbeispielen erldutert. Punkt-
prozesse sind nicht Teil dieser Arbeit und werden deshalb hier nur am Rande betrachtet.

In allen Féllen wird als Grundlage der Daten, wie in Kapitel 2 besprochen, ein Zufallsprozess

{Z(s) : s € D}

angenommen.

3.1. Geostatistische Daten

Im Fall geostatistischer Daten variiert s stetig im d-dimensionalen Euklidischen Raum innerhalb
der Indexmenge D (Region). In den meisten Anwendungen wird dies auf R? und R? einge-
schriankt. Die Lokationen s bestehen dann aus stetigen x- und y-, bzw. x-, y- und z-Koordinaten,
also:

s = (50,5,)7 €R®* bzw. 8= (84,5,,5.) €R?

mit den zugehorigen Daten z(s1),. .., 2(sy), an n vorgegebenen Lokationen sy, ..., sy.

Beispiel: Phanologie

Ein wichtiges Thema unserer Zeit sind die Auswirkungen des Klimawandels. Ein wichtiger In-
dikator hierfiir stellt die Phénologie, also die Studie im Jahresablauf periodisch wiederkehren-
der Naturereignisse dar. Es werden hier Eintrittszeiten biologischer Prozesse festgehalten, wie
z.B. das erste Blithen von Pflanzen. Verédnderungen im Zeitablauf konnen auf den Klimawandel

zuriickgefiihrt werden.



3. Datentypen und einfiihrende Beispiele

Eine beliebte Methode zur Bestimmung phénologischer Phasen stellt die Messung von Griin-
werten auf Basis von Webcam-Bildern dar. Ansteigende Temperaturen und verdnderte Licht-
verhéltnisse im Friihling geben das Startsignal zum Ergriinen der Vegetation. Dieser Anstieg
spiegelt sich im Griinwert aufgenommener Webcam-Bilder wider.

Dhital (2011) sammelte Webcam-Bilder von 500 verschiedenen Stationen in Deutschland mit
Vorliegen von Vegetation. Auf Grund von Qualitdtsméngeln wurden nur 182 fiir die weitere
Analyse ausgewihlt. Es wurden vom 25. Mérz bis zum 8. Juni 2011 téglich Bilder gespeichert
und die Griinwerte extrahiert. Hierfiir wurden fiir jede Station sogenannte ROIs (engl. “regions

of interest”) ausgewéhlt und eine Maske iiber das Bild gelegt (vgl. Abbildung 3.1).

A SR PR

Abbildung 3.1.: Beispiel analysierter ROIs fiir die Webcam Clausthal-Zellerfeld am DOY 247; Quelle:
Dhital (2011).

Das Zeitfenster entspricht den Tagen (DOY=¢%day of year”) 84 bis 159 des Jahres 2011. Das
genaue Vorgehen kann in der Arbeit (Dhital 2011) nachgelesen werden.

Die entstandenen Daten wurden zur weiteren Analyse fiir diese Arbeit zur Verfiigung gestellt.
Fiir jede Station liegen die Koordinaten der Kamera und die gemessenen relativen Griinwerte
vor. Der relative Griinwert berechnet sich aus dem Anteil des Griinwertes an der Summe der

Rot-/Griin- und Blauwerte des jeweiligen Bildes, d.h.

G

1IG= ——M—.
relG GIRIB

Abbildung 3.2 zeigt die gemessenen relativen Griinwerte an den Stationen beispielhaft fiir DOY
84. Abbildung 3.3 zeigt die aggregierten Daten iiber die Zeit. Es ldsst sich ein Anstieg des
relativen Griinwertes bis etwa zum DOY 120 erkennen. Die Tage 141 bis 143 fehlen aufgrund

eines technischen Problems mit dem Server, auf dem die Bilder gespeichert wurden.
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DOY 84
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Abbildung 3.2.: rel. Griinwerte der einzelnen Stationen fiir DOY 84.
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Abbildung 3.3.: Zeitreihe von DOY 84 bis 159.
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3. Datentypen und einfiihrende Beispiele

Das Ziel der bisherigen Analyse war die Identifikation verschiedener phinologischer Zeitpunkte.

Fiir den Friihling waren dies

o der Start der Wachstumszeit (SOS -“start of growing season”) - Datum des Erscheinens

erster Blatter,

e die Reife der Blédtter (MAT - “maturity of the leaf”) - Datum der vollen Reife des Laubs.

Zur Schitzung wurde die zweite Ableitung einer gegliatteten Funktion iiber die relativen Griin-
werte berechnet. SOS und MAT wurden dann auf den Tag des Maximums (SOS) bzw. Minimums
(MAT) der zweiten Ableitung gesetzt.

Zweck der vorliegenden Arbeit ist der Einbezug raumlicher Strukturen in die Analyse.

3.2. Gitterdaten

Im Fall von Gitterdaten besteht die Indexmenge D C R? aus einer abzihlbaren Menge raumlicher
Einheiten mit wohldefinierten Grenzen, in denen Daten beobachtet wurden. Die rdumliche In-
formation liegt diskret in Form eines rdumlichen Indizes s € {1,...,S} vor. Das Gitter kann
dabei unregelmifig (z.B. administrative Einheiten wie Landkreise) oder regelméBig (z.B. Pixel

in einem Bild) sein.

Beispiel: Studierendenzahlen der LMU

Im Rahmen eines Consulting Projektes des Instituts fiir Statistik in Kooperation mit der Stab-
stelle Strategie und Entwicklung der Ludwig-Maximilians-Universitdt Miinchen wurde die Ent-
wicklung der Studierendenzahlen an der LMU im Vergleich zu anderen Hochschulen des Bun-
desgebiets betrachtet.

Grundlage der Analyse war die Statistik der Studenten [Erhebungsjahre: 2004-2011] der Statis-
tischen Amter des Bundes und der Linder.

Die Erhebung erfolgt iiber die Verwaltungsdaten der Hochschulen, welche fiir administrative
Zwecke erhoben werden. Es handelt sich somit um eine Sekundérstatistik.

Enthalten sind u.a. soziodemografische Merkmale der Studierenden (Geschlecht, Geburtsdatum,
Staatsangehorigkeit ), Informationen zum Studium im Berichts- und im vorhergehenden Semester
(Hochschule, Art der Einschreibung und des Studiums, angestrebte Abschlusspriifung, Studien-
fach), zu bereits vor dem Berichtssemester abgelegten Abschlusspriifungen und dem Erwerb der
Hochschulzugangsberechtigung.

Der Datenzugang zur Studentenstatistik erfolgt iiber das Forschungsdatenzentrum Miinchen via
On-Site-Nutzung am Gastwissenschaftlerarbeitsplatz. Dort “stehen PC-Arbeitsplitze bereit, an
denen faktisch anonymisierte Einzeldaten in den geschiitzten Rdumen der amtlichen Statistik
von Gastwissenschaftlern analysiert werden konnen. Die faktische Anonymitédt wird hierbei nicht
allein durch die Anonymisierung der Daten erreicht, sondern in Kombination mit einer Regulie-

rung des Datenzugangs” (Statistische Amter des Bundes und der Liander 2015).



3. Datentypen und einfiihrende Beispiele

Ein Teilbereich der Analyse stellte die Betrachtung des Einzugsraums der verschiedenen Univer-
sitéten dar. Als Indikator der Herkunft der Studierenden wurde der Ort, an dem die Hochschul-
zugangsberechtigung (HZB) erworben wurde, verwendet. Abbildung 3.4 zeigt die Herkunft der
Studienanféinger an der LMU im Jahre 2004 mit Hilfe des Standardized Incidence Ratio’s (SIR).
Dieses setzt die beobachtete Anzahl an Studenten ins Verhéltnis zu der erwarteten Anzahl (fiir

eine genauere Erlduterung siehe Kapitel 6).

50°N 52°N 54°N

48°N
ED0000m

6°E 8°E 10°E 12°E 14°E

Abbildung 3.4.: Herkunft der Studierenden der LMU 2004 (Standardized Incidence Ratio - SIR).

Fiir diese Arbeit wurde dieses Thema noch einmal aufgegriffen und mit Hilfe von Modellen aus
der rdumlichen Statistik analysiert. Dabei wurde die Analyse am Beispiel der LMU fiir die Jahre
2004 und 2011 durchgefiihrt. Zusétzlich wurde ein Vergleich mit der Humboldt-Universitit zu
Berlin angestrengt. Eine gleichzeitige Modellierung aller vorhandenen Jahre war nicht moglich,
da es im betrachteten Zeitraum immer wieder zu Gebietsreformen innerhalb des Bundesgebietes
kam. Dadurch wurden die Grenzen zwischen den einzelnen Regionen gedndert, sodass die vorlie-
genden Daten nicht in einem gemeinsamen Modell beschrieben werden kénnen. Dieses Problem
wird auch als “modifiable areal unit problem” bezeichnet und ist z.B. in Cressie (1996) niher

beschrieben.



3. Datentypen und einfiihrende Beispiele

3.3. Punktprozesse

Bei der Analyse von Punktprozessen liegt das Interesse daran, wo ein Ereignis auftritt. Die Index-
menge D ist in diesem Fall zufillig und beschreibt die Menge D = {s1,..., sy}, wobei s1,..., sy
die Lokationen zufélliger Ereignisse darstellen. Die Daten z(s) enthalten die Information, ob das
Ereignis eingetreten ist, oder nicht.

Es koénnten z.B. die Positionen von Pflanzen in einem bestimmten Ausschnitt betrachtet werden.

Typische Fragestellungen bei der Analyse von Punktprozessen sind:

e Ist die Verteilung zufillig?
e Bilden sich Cluster? (Aggregation)

e Bilden sich regulédre Strukturen? (Abstofung, Disaggregation)

Die genauere Betrachtung dieses Datentyps ist nicht Teil dieser Arbeit. Ein guter Uberblick
findet sich beispielsweise in Diggle (2003). Hinweise iiber die Auswertung mit Hilfe von R findet
sich auerdem in Bivand et al. (2013).



4. Geostatistische Daten

Wie in Kapitel 2 beschrieben, lassen sich die Daten als Realisationen eines Zufallsprozesses
{Z(s) : s € D} ausdriicken. Im Fall geostatistischer Daten variiert s stetig im d-dimensionalen
Euklidischen Raum innerhalb der Indexmenge D (Region). In den meisten Anwendungen wird
dies auf R? und R? eingeschrénkt. Die Lokationen s bestehen dann aus stetigen x- und y-, bzw.

x-, y- und z-Koordinaten, also:
s = (54,5,)7 €R? baw. 8= (84,5,,5.) €R®

mit den zugehorigen Daten z(s1),- -, 2(8,), an n vorgegebenen Lokationen si,--- , ).
Die Geostatistik beschiftigt sich also mit der Analyse von Zufallsfeldern Z(s). Dabei sind typi-
scherweise Messungen an einer limitierten Menge (von manchmal zufillig gewéhlten) Lokationen

vorhanden und die Vorhersage von Z an nicht beobachteten Lokationen sy wird bendtigt.

Abbildung 4.1.: Veranschaulichung des Ziels der geostatistischen Analyse.

Grundbaustein der Geostatistik ist das Verfahren des Kriging. Ziel des Verfahrens ist die Vorher-
sage von unbeobachteten Messwerten auf Basis der beobachteten Werte Z(s1), ..., Z(s,). Dabei
sollen Lokationen mit hoherer raumlicher Korrelation zum Punkt sy auch ein hoheres Gewicht
in der Berechnung bekommen. Der Berechnung der Gewichte wird somit ein geostatistisches

Modell zugrunde gelegt. Gesucht ist also ein Schétzer
n
Z(s0) =Y wiZ(s:).
i=1
Die folgenden Abschnitte motivieren die Grundlagen fiir das Verfahren des Kriging. Dabei wird
zunichst der Gaufl-Prozess definiert sowie die Annahmen der Stationaritdt und Isotropie ein-

gefiithrt. Danach werden das (Semi-)Variogramm und die einzelnen Formen des Kriging vorge-
stellt.

10



4. Geostatistische Daten

4.1. Stationdre, rdaumliche GauBprozesse

Fiir die Bestimmung der Kriging-Gewichte wird ein Modell der rdumlichen Korrelation der
Messstationen bendétigt. Korrelationen werden im Normalfall, wenn mehrere Datenpaare {z,y}
vorhanden sind, aus dem Scatterplot geschétzt. Die riumliche Korrelation zweier Beobachtungen
z(s) an den Stellen s; und sy kann nicht geschétzt werden, da nur ein einzelnes Paar vorhanden
ist (Bivand et al. 2013). An jedem Ort kann nur genau eine Erhebung durchgefiithrt werden.
Erhobene geostatistische Daten stellen also eine unvollsténdige Stichprobe einer einzelnen Rea-
lisation des Zufallsprozesses Z dar (Cressie 1993). Dieses Problem wird in der Geostatistik damit
gelost, dass fehlende Messwiederholungen durch Werte an anderen Orten ersetzt werden. Dafiir
miissen die Werte jedoch der gleichen Grundgesamtheit entstammen. Es bedarf somit weiterer
Annahmen iiber Z um eine Inferenz moglich zu machen (Cressie 1993). Diese werden im Folgen-
den erldutert. Dabei wird auf die Ausfithrungen in Schaeben et al. (2013, S. 28f) zuriickgegriffen,
welche eine gute Ubersicht verschaffen.

Es wird im Weiteren vom einfachen Modell

ausgegangen.
Eine starke Annahme iiber die Wahrscheinlichkeitsstruktur wére die der starken Stationaritit.
Diese liegt vor, wenn die endlich-dimensionalen Verteilungen verschiebungsinvariant sind. Dies
bedeutet, dass jede der n Zufallsvariablen Z(s1),...,Z(sy) die gleiche Verteilung aufweist.

In der Geostatistik spielen jedoch meist nur die ersten zwei Momente der Verteilung eine Rolle,
sodass man sich auf die Definition der schwachen Stationaritéit beschranken kann.

Das erste Moment entspricht dem Erwartungswert von Z(s). Dieser ist abhéngig von s, d.h.:

Die verschiedenen zweiten Momente definieren Schacben et al. (2013) wie folgt:

a) Varianzfunktion
VarlZ(s)] = E[(Z(s) — p(s))?]

b) Kovariogramm
Cov[Z(s), Z(s")] = c(s, ') = E[(Z(s) — pu(s))(Z(s) = u(s))]
¢) Variogramm (Varianz des Inkrements zweier Zufallsvariablen)
2v(s,8") = Var[Z(s) — Z(s)]

Das Kovariogramm, sowie das Variogramm sind beide von den Punkten s und s’ abhéngig.

11



4. Geostatistische Daten

Nimmt man nun einen konstanten Erwartungswert
E[Z(s)] = p = const., Vs € D,

an und fordert weiterhin, dass das Kovariogramm nur von der Differenz (dem Abstandsvektor

h) zweier Punkte abhingt, nicht aber von deren genauen Lage im Raum, also dass gilt:
Cov[Z(s),Z(s")] = c(s — ') fiir alle 5,8 € D

so liegt schwache Stationaritdit vor.

Definition: Schwache Stationaritét
Der (rdumliche) SP Z = {Z(s),s € D} heifit schwach stationér, wenn gilt

a) E[Z(s)] = p = const.,

b) Cov[Z(s+ h),Z(s)] =c(h) Vse D

Unter der Annahme schwacher Stationaritdt hingt auch das Variogramm nur vom Abstands-
vektor h ab, d.h.:

Var[Z(s+h) — Z(s)] = E[Z(s + h) — Z(s))?] = 2y(h).
Zusétzlich ergibt sich eine konstante Varianz
Var[Z(s)] = ¢(0) = 0® = const Vs € D. (4.1)
Es gilt auflerdem die Beziehung
Var(Z(s+h) — Z(s)] =Var[Z(s+ h)|+ Var[Z(s)] — 2Cov[Z(s + h), Z(s)] (4.2)
Mit 4.1 und 4.2 ldsst sich ldsst sich das Variogramm 2+(h) ausdriicken durch

29(h) = 2(c(0) - e(h)) = 2(o>(1 — p(h)).

wobei p(h) = igg)) dem Korrelogramm entspricht. Kovariogramm und Variogramm stellen somit
gleichwertige Beschreibungen der Autokorrelation dar.

Da nicht immer eine endliche Varianz existiert, wie sie die Annahme der schwachen Stationaritét
verlangt (vgl. (4.1)), wird in der Geostatistik meist die Form der intrinsischen Stationaritit

verwendet.
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Die Hypothese lautet in diesem Fall:

Definition: Intrinsische Stationaritit

Z intrinsisch stationir <
a) E[Z(s)] =pu=const. Vse D,

b) 3Var(Z(s+h)—Z(s)] =~y(h) VseD

Es gilt:

Satz:

7 stark stationidr = Z schwach stationdr = Z intrinsisch stationér

Unter den vorgestellten Hypothesen héngt das (Ko-)Variogramm vom Abstandsvektor h ab.
Somit spielen die Linge und Richtung des Vektors zwischen zwei Punkten eine Rolle. Kann die
Richtung vernachléssigt werden, spricht man von einem isotropen raumlichen Prozess. Bei einem
anisotropen raumlichen Prozess ist die Korrelation hingegen richtungsabhéngig.

Im Folgenden wird implizit (soweit nicht anders angegeben) ein isotroper Prozess angenommen,
sodass der Abstandsvektor h durch den euklidischen Abstand h = ||h|| ersetzt wird.

Definition: Isotropie und Anisotropie
Sind ¢(h) = ¢(||h||) bzw. v(h) = v(||h||) nur Funktionen des euklidischen

Abstands [|h||, so heiit Z bzw. ¢/~ isotrop; ansonsten anisotrop.

Unter der Annahme intrinsischer Stationaritit kénnen also mit Hilfe des Variogramms Aussagen
iiber die rdumliche Korrelation getroffen werden, da nicht mehr die genaue Lage der Messungen,

sondern nur deren Abstand h eine Rolle spielt.
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4.2. Variogramm

Im vorherigen Abschnitt wurde hergeleitet, dass das Variogramm das wichtigste Werkzeug der
Geostatistik darstellt. Mit ihm lassen sich Aussagen iiber die rdumliche Struktur des Zufallspro-
zesses treffen. Darum wird im Folgenden auf Eigenschaften und die Schiatzung des Variogramms

eingegangen.

4.2.1. Eigenschaften

Das Variogramm ist in der Regel eine monoton wachsende Funktion. Der Zusammenhang zweier
Zufallsvariablen eines raumlichen Prozesses nimmt meist mit ihrem Abstand ab. Somit nimmt

die Varianz der Differenz der beiden, also das Variogramm zu (vgl. Abbildung 4.2).

¥(h)

y(h)/c(h)

c(h)

Abstand h

Abbildung 4.2.: Variogramm und Kovariogramm.

Das Verhalten des Variogramms im Ursprung informiert iiber die Stetigkeits- und Differenzier-
barkeitseigenschaften des Prozesses Z(-). Die iiblichen Fille wurden von Matheron (1971, S.58)

betrachtet und in Cressie (1993) noch einmal zusammengefasst:
1. 2v(-) ist stetig im Ursprung. Dann ist Z(-) Lo-stetig.
2. 27(h) ist d-mal differenzierbar in h=0. Dann ist Z(-) Lo-differenzierbar fiir alle s € R%.

3. 2v(h) néhert sich nicht der 0, wenn sich h dem Ursprung né&hert. Dann ist Z(-) nicht
Lo-stetig und hochst irregulér. Diese Diskontinuitéat wird als Nugget-Effekt bezeichnet.

4. 27(-) ist eine positive Konstante (auler am Ursprung, wo es 0 ist). Dann sind Z(s) und
Z(s') unkorreliert fiir alle s # ', egal wie nah sie sich sind. Z(-) wird oft als weifes

Rauschen (white noise) bezeichnet.
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Das Variogramm lésst sich mit einigen Kennzahlen ndher beschreiben. Diese werden im Folgen-

den vorgestellt. Zur Veranschaulichung dient Abbildung 4.3.

Nugget Effekt

Die Definition des Nugget-Effekts ist in der Literatur nicht einheitlich formuliert. Im Folgenden
werden die Annahmen aus Cressie (1993) vorgestellt.

Definitionsgeméa8 gilt v(0) = 0. Weiterhin wird ¢y mit
v(h) = ¢y >0 firh—0

als Nugget-Effekt bezeichnet. Dieser Ausdruck stammt von Matheron (1962) und ergibt sich aus
der Hypothese einer “microscale variation” (kleine Klumpen/Nuggets), die eine Diskontinuitét
am Ursprung verursacht. Fiir einen Lo-stetigen Prozess ist dies mathematisch nicht moglich.
Sobald also Stetigkeit des Phanomens auf der Mikroebene angenommen wird, kann ¢g > 0 nur
einem Messfehler zugeschrieben werden. Im Folgenden bezeichnet cp;p die Messfehlervarianz
(engl. measurement-error variance).

Matheron (1962) geht davon aus, dass die “microscale variation” nicht stetig ist und fiigt zur
Modellierung des Prozesses geringer Entfernungen einen White-Noise-Prozess zu einem Prozess
stetiger Sample-Pfade hinzu. Da im Normalfall keine Daten fiir so nah beieinanderliegende Orte
zur Verfiigung stehen, kann diese Annahme nicht iiberpriift werden.

Die Varianz des White-Noise-Prozesses wird mit cp;g bezeichnet. Daraus ergibt sich dann
co = CMS + CME-

Sill

Der Schwellenwert (sill) entspricht dem hochsten Wert, welchem sich die Variogrammkurve asym-
ptotisch annihert. Je grofier der Abstand h zweier Punkte wird, desto niedriger wird die Korre-
lation, sodass

2y(h) = 20%(1 — p(h)) — 202, fiir h — oo

Range

Der Range entspricht dem Abstand h bei dem zwei Punkte im Raum mit einer grofieren Entfer-
nung als h als vernachléssigbar korreliert angesehen werden kénnen. Dies kommt dem Abstand

h gleich, bei dem die Kurve den Sill erreicht.
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semivariance

| | |
n +
+ +
+
0.6 + -
+ + + t
+
0.4 — ¥ —
partial sill
0.2 -
range
nugget
| | |
500 1000 1500
distance

Abbildung 4.3.: Empirisches Variogramm und gefittetes Modell; Quelle: Bivand et al. (2013).
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4.2.2. Typische Probleme
Anisotropie

Sobald die Abhéngigkeit zwischen Z(s) und Z(s’) eine Funktion der Linge und der Richtung
des Vektors h zwischen den beiden Punkten ist, liegt Anisotropie vor.

Bei der sogenannten geometrischen Anisotropie ist der Sill fiir alle Richtungen identisch, die
Range unterscheidet sich jedoch. Dies kann durch eine lineare Transformation des Abstands-
vektors h korrigiert werden (siehe Fahrmeir et al. (2009)). Dabei ersetzt man den euklidischen
Abstand

81— s2l| = /(s1 — 52)/(s1 — 52)

durch

V(s1 — 82) R()) D(8)R(1))(s1 — s2),

wobei R(1)) eine Rotationsmatrix mit Anisotropie-Winkel 1) € [0, 27| bezeichnet, also

R(p) = ( cos(1)) smw)) |

—sin(¢)) cos(v))

und D(§) eine Dehnungsmatrix mit Anisotropieverhiltnis § < 1, d.h.

-1
oo~ (", 1)

Schwieriger wird es fiir die zonale Anisotropie. In diesem Fall ist der Sill fiir verschiedene Rich-
tungen unterschiedlich.

Der gesamte Prozess zerféllt dabei in unabhéngige Subprozesse (Cressie 1993)
Z(s)=7Z1(s)+ Za(s)+ -+ Zy(s), se€D
mit einer Variogramm-Zerlegung
2v(h) = 271(h) + 292(h) + - - + 29p(h)

Selbst wenn jeder dieser Subprozesse einer einfachen geometrischen Anisotropie folgt, kann es
unmoglich sein, diese auf Basis des beobachteten Prozesses Z(-) zu identifizieren.

Anisotropie lésst sich durch die Berechnung direktionaler Variogramme aufzeigen. Dabei werden
fiir verschiedene Winkelbereiche (Richtung+Toleranzbereich) Gruppen gebildet und separate

Variogramme geschétzt.

Drift und Hole-Effekt

Aus dem Variogramm lassen sich noch weitere Abweichungen von den Annahmen erkennen.
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4. Geostatistische Daten

In Abbildung 4.4 erreicht das Variogram nicht, oder nur scheinbar den Schwellenwert (Sill). Da-
nach steigen die Werte weiter an. Der sogenannte Drift-Effekt deutet auf eine Verletzung der

Stationaritdtsannahme hin. Der Erwartungswert ist nicht konstant iiber das Untersuchungsge-
biet.

v(h)

Abstand h

Abbildung 4.4.: Drift-Effekt.

In Abbildung 4.5 wird der Schwellenwert (Sill) scheinbar erreicht, danach fallen die Vario-
grammwerte wieder. Dies deutet auf regelméfige Strukturen hin, bei denen sich die Werte in

regelméfigen Absténden wieder stirker dhneln. Bezeichnet wird dieser Effekt mit Hole-Effekt.

v(h)

Abstand h

Abbildung 4.5.: Hole-Effekt.
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4.2.3. Empirisches Variogramm

Ein empirischer Schétzer fiir das Variogramm ist, unter der Annahme eines konstanten Mittel-

wertes, gegeben durch (Matheron 1962)

. 1
20 = 1N

> (Z(si) - Z(sy))” (4.3)

mit N(h) = {(ss,s5) : ||si — sj|| = h;i,j =1,...,n} und |N(h)| Anzahl verschiedener Paare in
N(h).

In den meisten Anwendungen sind die Daten irregulédr, sodass |N(h)| sehr klein wird und der
Schitzer instabil ist. Es wird dann eine “Toleranzregion” um h spezifiziert und der Schétzer
somit iiber Intervalle, anstatt iiber genaue Absténde berechnet.

Es ergibt sich so der Schétzer (vgl. Cressie (1993))

29(h) = ave {(Z(s:) — Z(s))* : (i,j) € N(h);h € T(h)}, (4.4)

wobei T'(h) der Toleranzregion in iiber h entspricht und ave{-} einen moglicherweise gewichteten
Durchschnitt bezeichnet. Es ergibt sich hieraus eine Treppenfunktion iiber eine definierte Anzahl
an Abstandsintervallen.

Der entstehende Schétzer ist dhnlich wie bei der Histogrammschétzung abhéngig von den ge-
wihlten Intervallen. Eine naheliegende Uberlegung ist dann eine “moving average”-Schiitzung

analog zur Kerndichteschétzung.

4.2.4. Theoretische Variogramme

Das bisher betrachtete empirische Variogramm dient als N&herung des theoretischen Vario-

gramms. Die Anpassung eines parametrischen Modells an die Daten geschieht aus zwei Griinden:

e Die rédumliche Interpolation (Kriging) benétigt Schétzer des Variogramms (k) auch fiir

Absténde h, die nicht in den Daten vorhanden sind.

e Die Vorhersage-Varianzen der geschétzten Werte miissen nicht-negativ sein (Bivand et al.
2013). Dies kann durch das empirische Variogramm nicht garantiert werden (siehe Cressie

(1993) fiir genauere Betrachtung).

Ein giiltiges Modell fiir die Semivarianz muss bedingt negativ-definit sein, d.h.

m m
Z Zaiaﬂfy(si —s;) <0,
i=1 j=1

fiir jegliche endliche Anzahl an rédumlichen Lokationen {s; : i« = 1,...,m} und reelle Zahlen
{a;,;i=1,...,m} welche die Gleichung ", a; = 0 erfiillen.
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Klassische parametrische Modelle werden nun im Folgenden vorgestellt:
Sphirisches Modell

0 fiir h =0,
v(h) =< ¢p+ 1 (%—%(%)5> fiir 0 < h < a,
co+ fiir h > a.
Exponentielles Modell
0 fiir h =0,
v(h) =
co+c1(1—e P2 fiir b # 0.
Gauf3’sches Modell
0 fiir h =0,
v(h) = )
co+c1(1—e A% fir b £ 0.
Matern Modell
0 fiir h =0,

v(h) = p
o+ 1= gty (1) K (B)] fiwn A0,

wobei K, der Bessel-Funktion entspricht und x > 0. Die Darstellung dieser Familie ist nur
mit Hilfe der modifizierten Bessel-Funktionen der Ordnung s mdoglich. Diese sind nur numerisch
auswertbar und lassen sich nicht explizit darstellen. Fiir = 0.5,1.5,2.5, ... sind jedoch explizite
Formen méglich (siehe z.B. Fahrmeir et al. (2009)). Fiir & = 0.5 entspricht die Matern-Funktion
dem Exponential-Modell.

Abbildung 4.6 zeigt die vorgestellten Modelle beispielhaft mit einem Nugget-Effekt von 0.1
und einem partial sill von 1. Fiir x wurde 0.3 gewéhlt um den Unterschied vom Matern- zum
Exponential-Modell erkennen zu kénnen. Im Falle, dass das Variogramm nur asymptotisch den
Sill erreicht (Exponential- und GauB-Modell), wird der sogenannte effektive Range betrachtet.
Dieser ist definiert als die Distanz, an der die Semivarianz 95% des Sills erreicht. Der effektive
Einflussbereich entspricht, bei gefittetem Range a, 3¢ im Exponential- bzw. v/3a im Gauf-
Modell.
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y(h)
00 02 04 06 08 1.0 1.2

-
—— Sphere
- = Exponential
Gauss
- =+ Matern

I
0.0 0.5 1.0 1.5 2.0 2.5 3.0
Abstand h

Abbildung 4.6.: Parametrische Variogramm-Modelle.
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4.3. Kriging

Ziel der Geostatistik ist die Vorhersage bzw. Interpolation von Variablenwerten Z(sg) auf Basis
von beobachteten Messwerten Z(s1), ..., Z(s,) in der Nachbarschaft. Das klassische Instrument
der Geostatistik hierfiir ist das sogenannte Kriging. Der Name stammt von Matheron (1963),
welcher das Verfahren nach D.G. Krige, einem siidafrikanischen Bergbauingenieur benannte.
Dieser entwickelte in den 1950er Jahren eine empirische Methode, um die Verteilung von Erzge-
halten basierend auf Stichproben zu bestimmen (siehe Krige (1951)). Cressie (1990) bezeichnet
die Methode auch als spatial optimal linear prediction, bei der der unbekannte Erwartungswert
des Zufallsprozesses durch den besten linearen unverzerrten Schétzer (best linear unbiased esti-
mator = BLUE) geschéitzt wird. Optimal ist der Schétzer in Hinsicht auf die Minimierung des

mittleren quadratischen Vorhersagefehlers (engl. mean squared prediction error)
~ 2 o
MSPE = E {(Z(so) - Z(so)> ] = Var [Z(so) - Z(so)] .

Dieser wird auch mit Kriging-Varianz bezeichnet.
Es gibt unterschiedliche Formen des Kriging, die sich darin unterscheiden, welche Annahmen

iiber den Erwartungswert getroffen werden. Diese werden nun im Folgenden vorgestellt.

4.3.1. Einfaches (simple) Kriging

Beim einfachen Kriging wird angenommen, dass pu bekannt ist. Diese Annahme ist in den
meisten Anwendungen unrealistisch. Deshalb wird hier auf eine genauere Herleitung der Krige-
Gleichungen verzichtet. Eine detaillierte Betrachtung hierzu findet sich in Cressie & Wikle (2011,
Kap. 4.1.2).

4.3.2. Gewdohnliches (ordinary) Kriging

Beim gewohnlichen Kriging wird der Erwartungswert als konstant, aber unbekannt angenommen.

Es gilt das constant-mean-Modell
Z(s)=p+46(s), seD,

wobei p € R unbekannt und §(-) ein zero-mean intrinsisch stationérer Prozess mit Variogramm
2v(+) ist. Es gilt also
E[Z(s)] =p, firallese D.

Gesucht wird ein Schatzer

Z(s0) = Y _NiZ(si).
=1

mit den Kriging-Gewichten Aq,..., A, der den mittleren quadratischen Vorhersagefehler bzw.

die sogenannte Kriging-Varianz minimiert.
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Neben der Minimierung des MSPE soll Erwartungstreue des Schétzers gelten. Zu diesem Zweck

wird die Nebenbedingung
d =1 (4.5)
i=1

eingefiihrt. Diese garantiert Erwartungstreue wegen
TL !
E (Z )\iZ(sl-)) =0
i=1
n
& Y NE(Z(si)) —p=0
i=1

n
& M-Z)\i—u:()
i=1

Unter der Annahme intrinsischer Stationaritét lédsst sich die Krige-Varianz iiber das Variogramm
ausdriicken. Um zusétzlich die Nebenbedingung 4.5 zu beriicksichtigen wird der Lagrange-
Multiplikator m eingefiihrt. Somit ergibt sich der zu minimierende Term wie folgt (Herleitung
siehe Cressie (1993)):

— Z Z )\i)\j’y(si - Sj) +2- Z )\Z‘"}/(SO — Si) —2m <Z A — 1) . (46)
=1 i=1

i=1 j=1

Ableiten von 4.6 nach Aj,..., A, bzw. m und Nullsetzen ergibt die Krigegleichungen

n
=Y Nv(si—s) +y(so—s)—m=0 i=1,..n (I)
j=1
n
D Ai=1 (1)
i=1
Aus diesem Gleichungssystem lassen sich nun die Gewichte A1, ..., A, bestimmen.

Die Krigevarianz ist hier

o2 (s0) = Z Aiv(s0 — 8;) + m.
i=1

Sie héngt nur von den Gewichten, den Messlokationen und dem Variogramm, nicht aber von

den eigentlichen Messwerten ab.
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Beispiel
Z1= 3 Zo = ? Zo = 6
h=1 h=2
[ ] ® ®
S1 So S2
Abbildung 4.7.: Beispiel Krige-Gleichungen.
Annahme: Es liegt ein isotroper, intrinsisch stationérer Prozess mit linearem Vario-
gramm vor, d.h. v(h) = |h|.
Geg: s1=(1,0),s2 = (4,0),80 = (2,0),2(s1) = 3,2(s2) =6
Ges: z(80)
Krigegleichungen:
—3+1-—m=0 (I)
-3\ +2-m=0 (IT)
A+ A=1 (IH)

Daraus folgt: \; = %,)\1 = % und somit Z(sg) = % * 3+ % *x6 =4

4.3.3. Instationdre Methoden

Bisher wurde (intrinsische) Stationaritét und somit ein konstanter Mittelwert angenommen. Dies
ist in der Realitdt meist nicht gegeben, sodass E[Z(s)] nicht linger als konstant, sondern als
eine Linearkombination bekannter Funktionen (fy(s),..., fp(s)), s € D angenommen wird.
Somit gilt die Annahme (vgl. Cressie (1993))

p+1

Z(s) =Y fi-1(s)Bj-1+4(s), seD,
j=1

wobei 8 = (Bo, ..., Bp) € RPT! ein unbekannter Vektor von Parametern und §(-) ein zero-mean
intrinsisch stationérer Zufallsprozess mit Variogramm 2-(-) ist.

Auch hier kénnen analog zu vorher Kriging-Gleichungen aufgestellt werden. Auf diese soll hier
nicht néher eingegangen werden. Eine ausfiihrliche Herleitung findet sich in Cressie (1993).
Beim Universal-Kriging wird der Trend durch die Lagekoordinaten erklért. Es handelt sich um
ein instationéres Interpolationsverfahren. Ahnlich sind das External-Drift-Kriging und Regressi-
on-Kriging. Hier werden in beiden Fillen zusétzliche Hilfsvariablen verwendet um den Trend zu
schétzen. Diese miissen sowohl fiir die Messpunkte, als auch an den Orten, fiir die interpoliert
werden soll, bekannt sein. Dies stellt in der Praxis héufig ein Problem dar. Ein Vergleich der
Methoden findet sich beispielsweise in Hengl et al. (2003).
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4.4. Kriging als Basisfunktionenansatz

H#ufig angewendet wird in der Statistik die nichtparametrische Gléattung von Oberflichen. Im
Folgenden soll diese Methode mit dem Kriging-Ansatz in Verbindung gebracht werden. Die
Herleitung hierfiir stammt aus Fahrmeir et al. (2009) und wurde an die bisherige Notation der
Arbeit angepasst.

Fahrmeir et al. (2009) definieren das Modell

y(s;) =x(s;)'B+6(s;) +e(si), i=1,...,n

als klassisches geostatistisches Modell. Dabei sind

x(s;)’B3 der durch Kovariablen & parametrisierte riumliche Trend,

o(sq) ein stationdrer GaufBl-Prozess mit Erwartungswert 0, Varianz 7
und Korrelationsfunktion p(h),

€(si) der {ibliche Fehlerterm, also €(s;) ~ N(0,0?)

2

In Matrixnotation lasst sich das Modell schreiben als
y=XB+Z +¢,

wobei § = (§(s1),...,0(sn)) die Werte des stationdren GauBprozess an den n verschiedenen
beobachteten rdumlichen Lokationen sq,...,s, und Z = I,, die n-dimensionale Einheitsmatrix
bezeichnet. Die Kovarianzmatrix der Zielvariablen y setzt sich aus einem unkorrelierten Teil

0%I,, und einem korrelierten Teil 72ZRZ’ zusammen, d.h.
Cov(y) =*ZRZ' + o*I,,
wobei die Kovarianzmatrix R der rdumlichen Effekte gegeben ist durch
R = (Corr(d(si),d(s5)) = (p(si — 55))
Durch eine Reparametrisierung des Modells zu
y=XB+ZR R '6+e=XB+2Zd+e¢,

mit Z = ZR und § = R™'§ erreichen Fahrmeir et al. (2009) eine #quivalente Modellformulie-
rung mit veréinderter Interpretation der Matrix Z.

Deren Eintrége lauten nun

Z[i, j] = p(si; 85)-

Verwendet man nun die Korrelationsfunktion p wie eine Basisfunktion und die beobachteten

Lokationen als Knoten, so zeigt sich eine dquivalente Formulierung zur Konstruktion der Desi-
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gnmatrix bei Tensorprodukt-Splines. Somit lédsst sich das geostatistische Modell fiir die einzelnen

Beobachtungen schreiben als

y(si) = x(8:)' B + foeo(si) + €(s4),

wobei

dem rdumlichen Effekt und

Bj(si) = p(si, s;)
den auf der Korrelationsfunktion basierenden Basisfunktionen entsprechen. Liegen isotrope Kor-
relationsfunktionen vor, erhélt man radiale Basisfunktionen der Form Bj;(s;) = p(]|s, s4l|)-
Die Knoten entsprechen hier den beobachteten Lokationen und sind somit anders als im normalen
Basisfunktionen-Ansatz im Vorhinein festgelegt.

Die gemeinsame Verteilung der rdumlich korrelierten Effekte § ist gegeben durch
6 ~N(0,72R7Y),

sodass der Kriging-Ansatz einer Glattheits-Priori wie in den Penalisierungsansétzen der nicht-

parametrischen Regression entspricht.
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5. Gitter- bzw. Pixeldaten

Dieses Kapitel beschéiftigt sich mit der zweiten Art der drei in Kapitel 3 besprochenen Daten-
typen, den sogenannten Gitterdaten (engl. lattice).

Ausgangspunkt ist wieder ein stochastischer Prozess {Z(s); s € D}. In diesem Fall ist die Index-
menge D eine abzdhlbare Sammlung rdumlicher Orte an denen Daten beobachtet wurden. Die
rdumliche Information liegt somit diskret z. B. in Form einer Regionenvariable s vor. Das entste-
hende Gitter wird zusétzlich um eine Nachbarschaftsinformation (vgl. Abschnitt 5.1) ergénzt.

Es konnen drei Charakteristika von Gitterdaten unterschieden werden:

1. Handelt es sich um ein regulires (z.B. Pixel) oder ein irregulires (z.B. Bundeslidnder)
Gitter?

2. Verweisen die Lokationen des Gitters auf Punkte oder Regionen?

3. Ist die Zielvariable diskret oder metrisch?

5.1. Nachbarschaften

Im Fall geostatistischer Daten lassen sich Beziehungen zwischen Lokationen iiber deren Ab-
stand (z. B. mit Hilfe der euklidischen Distanz) zueinander definieren. Dies ist im Falle diskreter
rdumlicher Information nicht méglich. Im Folgenden wird darum das Konzept der Nachbarschaf-
ten eingefiihrt, um die rdumliche Anordnung der Daten beschreiben zu kénnen.
Nachbarschaften lassen sich auf verschiedene Weise konstruieren.
Sei beispielsweise

D = {(zj,yi) :i=1,...,100}

ein Gitter {iber 100 Regionen, wobei x und y den Langen- und Breitengraden der jeweiligen
Kreisstadt einer Region entsprechen.

Eine Moglichkeit ein Nachbarschaftssystem zu konstruieren, ist die Definition iiber die Entfer-
nung der Zentroide bzw. hier der Kreisstéidte. Beispielsweise konnen alle Regionen als Nachbarn
einer Region ¢ angesehen werden, deren Kreisstadt weniger als 50km von der Kreisstadt der
Region ¢ entfernt ist.

Eine Abwandlung hiervon ist die Konstruktion iiber die k-néchsten Nachbarn (engl. k-nearest
neighbour). Dies fithrt in den meisten Féllen zu einem asymmetrischen Graphen, gewéhrleistet

dafiir aber, dass jedes Gebiet genau k Nachbarn besitzt.
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Eine weitere Moglichkeit besteht in der Betrachtung gemeinsamer Grenzen.

Es ergibt sich daraus das Nachbarschaftssystem:
0={N(s):se€ D},
wobei gilt:

N(s) entspricht der Menge aller Nachbarn von s

s ¢ N(s)

veEN(s) & se N(v)

Alle v € N(s) heiflen Nachbar von s. (Notation: v ~ s)

Abbildung 5.1 zeigt die Graphen der verschiedenen Nachbarschaftskriterien anhand der Regie-

rungsbezirke in Deutschland.

(a) Distanz < 150km (b) Drei néchste Nachbarn (c) Gemeinsame Grenzen
Abbildung 5.1.: Nachbarschaftssysteme mit verschiedenen Kriterien.

Zusétzlich zur Wahl eines Nachbarschaftskriteriums kann es sinnvoll sein Nachbarn geeignet
zu gewichten. Bivand et al. (2013, Kapitel 9.2.2) rit jedoch davon ab, weit von einer binéren
Représentation abzuweichen, wenn wenig iiber den rdumlichen Prozess bekannt ist.

In Fahrmeir et al. (2009, Kapitel 7.2.4) werden folgende Strategien zur Definition der Gewichte

vorgeschlagen:
e Gleiches Gewicht fiir alle Nachbarn
e Gewichte invers proportional zum Abstand der Zentroide

e Gewichte proportional zur Liange der gemeinsamen Grenze
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Im Weiteren wird von einer Nachbarschaftsmatrix W ausgegangen, deren Eintrége w;; den Ge-
wichten entsprechen. Dabei wird w;; generell auf Null gesetzt. Oft erfolgt eine Standardisierung,
indem die Eintrage w;; durch die Zeilensumme )  Wij = Wiy geteilt werden.

Die Konstruktion von Nachbarschaftssystemen kann auch auf zweite oder hohere Nachbarn
ausgeweitet werden. Hierfiir konnen beispielsweise Distanzintervalle (0, d1], (d1, dz], usw. definiert
werden. Alle ersten Nachbarn von 4 liegen dann innerhalb der Distanz d; von i. Alle zweiten
Nachbarn liegen weiter entfernt von ¢ als dj, aber sind nédher als ds. In den Abbildungen 5.2
und 5.3 sind Nachbarschaftssysteme fiir reguldre und irreguldre Gitter auf Basis gemeinsamer
Grenzen zu sehen. Dabei konnte das System fiir irregulére Gitter ebenfalls ausgeweitet werden,
indem zusétzlich diejenigen Regionen mit einbezogen werden, welche eine gemeinsame Grenze

zu den ersten Nachbarn besitzen.

Abbildung 5.2.: Nachbarschaftssysteme auf regulidren Gittern. V.l.n.r: Erste Nachbarn, zweite
Nachbarn, zweite diagonale Nachbarn, zweite und diagonale Nachbarn.

Abbildung 5.3.: Nachbarschaft erster Ordnung auf einem irreguléren Gitter.

Analog zu W kénnen dann Nachbarschaftsmatrizen W W) usw. gebildet werden, welche

die ersten bzw. zweiten Nachbarn enthalten.
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5.2. Tests auf raumliche Autokorrelation

Bei der Analyse rdumlicher Daten wird meist angenommen, dass sich Daten &hnlicher sind,
je néher sich ihre rdumlichen Lokationen sind. Dabei spricht man von positiver rdumlicher
Autokorrelation, also der Korrelation der Variable mit sich selbst. Rdumliche Autokorrelation
bezieht sich somit auf die Korrelation zwischen Z(s;) und Z(s;) zweier Punkte s; und s;. Zur
Messung raumlicher Autokorrelation werden also zwei Informationen in Verbindung gebracht:
Die Ahnlichkeit der Beobachtungen und die Ahnlichkeit der Lokationen.

In der Literatur wird zwischen globalen und lokalen Mafizahlen unterschieden. Globale Berech-
nungen fassen die rdumlichen Abhéngigkeiten {iber alle Daten zusammen, wohingegen lokale
Statistiken (engl. Local indicators of spatial association - LISA) angeben in welchem Ausmaf
die Anordnung der Werte um eine spezifische Lokation von rdumlichem Zufall abweicht (Anselin
et al. 2000).

Die bekanntesten Mafizahlen globaler, rdumlicher Autokorrelation sind Moran’s I und Geary’s

c. Beide koénnen als Anpassung des Kreuzproduktes (vgl. Anselin (1995))

n n
E E mijwij

i=1 j=1

ausgedriickt werden. Dabei enstpricht w;; der Ahnlichkeit der Lokationen i und j (vgl. zuvor
definierte Gewichte in der Nachbarschaftsmatrix) und m;; der Ahnlichkeit der Beobachtung an
den Stellen ¢ und j.

Die beiden MaBzahlen unterscheiden sich in ihrer Definition von der Ahnlichkeit der Werte, also
von myj. Moran’s I basiert auf dem Produkt (2; —Z)(z; —Z), wohingegen Geary’s c die quadrierte
Differenz (z; — 2;)? verwendet.

Damit ergeben sich die Gleichungen (vgl. (Cliff & Ord 1981))

n D it 2je1 Wij(zi — 2) (25 — Z)

I = —
> i Z?;éz Wij >ic(zi — 2)?

fir Moran’s I und n n 9
n—1 Dic1 D Wij(zi — %)

I= -
23005 E?;ﬁz Wij ic(zi —2)?

fir Geary’s c.

Diese Statistiken sind nicht direkt interpretierbar. Sie sind beide asymptotisch normalverteilt.
Zum Testen eignen sich aber besser permutationsbasierte Tests, in denen die Beobachtungen
zufiillig den Lokationen zugewiesen werden.

Analog zum Semivariogramm in der Geostatistik lédsst sich die rdumliche Autokorrelation als
Funktion der Distanz betrachten. Dazu wird die gewéhlte Statistik zur Messung rdumlicher
Autokorrelation, z.B. I, fiir jede Distanzklasse berechnet. Dies entspricht also der Berechnung

von I auf Basis der Nachbarschaftsmatrizen W) ... W@ fiir die ersten bis g-ten Nachbarn.
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Danach lassen sich die I; gegen die Distanz d plotten.

Eine Annahme der Tests ist, dass kein systematischer Trend in den Daten vorliegt, bzw. dass
dieser durch das Modell beriicksichtigt wird. Eine Missspezifikation des Erwartungswertes kann
unter Abwesenheit einer rdumlichen Korrelation zu einer filschlichen Signifikanz der Teststatistik
fithren. Es sollte somit zunédchst von Prioritéit sein, dass alle relevanten Kovariablen in das
Modell aufgenommen werden und auch deren funktionaler Einfluss richtig spezifiziert ist. Lokale
Mafizahlen werden innerhalb dieser Arbeit nicht niher betrachtet, konnen aber beispielsweise

in Waller & Gotway (2004) nachgelesen werden.

5.3. Penalisiertes KQ-Kriterium

Eine intuitive Moglichkeit diskrete, rdumliche Information in ein Regressionsmodell mit aufzu-
nehmen, stellen Fahrmeir et al. (2009, Kapitel 7) vor. Dabei wird jeder Region s ein eigener
Koeffizient fgeo(s) = ds,5 = 1,...,d zugewiesen. Um einen glatten Effekt zu erzielen und die
sich dadurch ergebende, hohe Anzahl an Parametern zu verringern, wird analog zur Theorie der
Splines, ein penalisiertes KQ-Kriterium eingefiithrt. Koeflizienten benachbarter Regionen sollten
sich nicht allzu stark voneinander unterscheiden. Deshalb konstruieren Fahrmeir et al. (2009)
einen Strafterm basierend auf den quadrierten Differenzen zwischen Parametern benachbarter

Regionen, also

n

d
PEQ(\) = (i — foeols))* + A (6, — 65)%,

i=1 s=2reN(s),r<s

wobei N (s), wie zuvor definiert, der Menge aller Nachbarn der Region s entspricht. Der Strafterm

lasst sich auch umschreiben in \d’ K& mit

-1, SFET,S~T,
Kls, 7] =<0, SHET, ST, (5.1)
IN(s)|, s=r

Bei der Matrix K handelt es sich um eine Adjazenz- bzw. Nachbarschaftsmatrix, deren Eintriage
Ks,r] nur dann von Null verschieden sind, wenn s und r Nachbarn sind.

Werden Gewichte verwendet dndert sich K zu

—Wrs, S#TWSNTa

Kls,rl =40, s#nser (5.2)
Ws+, S=T,
mit den symmetrischen Gewichten wg, = w,s und wsy = me s Wer-
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5.4. Markov-Zufallsfelder

Eine in der Literatur weiter verbreitete Herangehensweise ist die Bayesianische Modellformulie-
rung. Diese fithrt zu den sogenannten Markov-Zufallsfeldern (MZF).

Markov Zufallsfelder definieren sich iiber die rdumliche Markov-Eigenschaft, also die Gedécht-
nislosigkeit innerhalb eines ungerichteten Graphen. D.h. die bedingte Verteilung von §, gegeben

alle iibrigen Effekte d,,7 # s hangt nur von den Nachbarn ab.

Definition: Markov-Zufallsfeld (MZF)
Sei D =1, ...,d die Menge aller Regionen, dann heifit § = {ds, s € D} Markov-
Zufallsfeld, wenn die bedingte Verteilung von d5 gegeben alle iibrigen Effekte
dr,7 # s nur von den Nachbarn abhéngt, d.h. wenn gilt:

p(53|5r,7' = 3) = p(5s|5r>r € N(S))

Eines der gebrauchlichsten Modelle in Bezug auf MZF zur Beschreibung rdumlicher Effekte ist
das sogenannte Conditional Autoregressive Model (CAR) oder auch Gauf-Markov-Zufallsfeld
(GMFZ).

Dieses wurde urspriinglich von Besag (1974) eingefiihrt und wird in Rue & Held (2005) ausfiihr-
lich besprochen. Die bedingten Verteilungen entsprechen hier, wie der Name vermuten l&sst,
einer Normalverteilung.

Das iibliche Vorgehen bei der Modellspezifikation ist die Vorgabe der bedingten Verteilungen
ds|0r, 7 € N(s) und daraus die Herleitung der gemeinsamen Verteilung des Vektors 4. Da nicht
jede Spezifikation zwingend zu einer giiltigen gemeinsamen Verteilung fiithrt, miissen zunéchst
einige theoretische Uberlegungen angestellt werden. Nach Fahrmeir et al. (2009) ergibt sich das
CAR-Modell jedoch direkt aus dem zuvor betrachteten penalisierten KQ-Kriterium. Das Modell

lasst sich beschreiben durch

1 72
8|07 € N(s) ~ N (Z ’N(S)‘(sr, ‘N@‘) .

rir~s

Inhaltlich entspricht dieses Modell der gewiinschten Eigenschaft, dass der Effekt einer Region s

2

dhnlich zu denen ihren Nachbarn ist. Dabei steuert die Varianz 7, wie stark der einzelne Effekt

vom Mittelwert der benachbarten Regionen abweichen darf.

Die gemeinsame Verteilung ist ebenfalls eine Normalverteilung mit
0~ N(O,7K™1),
wobei die Prézisionsmatrix K der Strafmatrix (vgl. 5.1) aus dem PKQ-Kriterium entspricht,

sodass beide Herangehensweisen zur dquivalenten Modellformulierung fithren.
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Wie zuvor kénnen auch hier Gewichte fiir den Einfluss der Nachbarn eingefithrt werden. Die

bedingten Dichten werden dann erweitert zu

2
350r,7 € N(s) ~ N (“’S’“ S 6 T)
Ws+

w8+ rir~s

und die Matrix K gemé&f 5.2.
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Ein wichtiges und haufig angewendetes Gebiet der rdumlichen Statistik ist das sogenannte Di-
sease Mapping. Dabei werden Regionen mit erhohtem Risiko einer Krankheit identifiziert. Die
rdumliche Verteilung der Krankheit kann zur Entdeckung bisher unbekannter Risikofaktoren
fithren.

Dieses Kapitel setzt sich mit der Analyse von Daten auseinander, welche in Bezug auf bestimmte
Verwaltungsregionen aggregiert wurden. Im eigentlichen Kontext des Disease Mapping handelt
es sich dabei um Krankheits- bzw. Sterbefélle innerhalb einer Region. Die vorgestellten Verfahren
lassen sich jedoch auch auf andere Anwendungsgebiete iibertragen (hier: Anzahl der Studenten
an der LMU mit Herkunft aus einer bestimmten Region).

Im Gegensatz zu Kapitel 5 sind nun also Anzahlen von Interesse. Das Ziel der Analyse ist die
Darstellung der rdumlichen Verteilung des Risikos einer Krankheit iiber das in Regionen einge-
teilte Untersuchungsgebiet. Zu diesem Zweck miissen die Daten die Personen unter Risiko und
die aufgetretenen Félle jeder Region enthalten. Im Folgenden bezeichnet P; die Risikopopulation
(engl. Population at risk) und O; die Anzahl beobachteter Félle (engl. observed cases) in der
Region i. Die Notation orientiert sich damit an Bivand et al. (2013). Samtliche Herleitungen
finden sich auflerdem in Banerjee et al. (2004).

Die Daten sind in vielen Fallen zusétzlich in verschiedene Strata unterteilt. Diese unterscheiden
sich beispielsweise in Geschlecht oder Alter. Die Notation erweitert sich dann zu P;; bzw. O;;
fiir die Population und die Anzahl der Félle in Region ¢ und Stratum j. Aufsummieren iiber die
einzelnen Strata pro Region fithrt dann zu P; und O;. Die Gesamtpopulation und die gesamte
Anzahl der Fille werden mit Py bzw. O4 bezeichnet.

Um eine Schétzung des Risikos zu erlangen, miissen die beobachteten Fille mit einer erwarteten

Anzahl an Féllen verglichen werden. Diese kann aus
Ei = P7:7a+7
mit rp = %, berechnet werden. r entspricht also der Gesamt-Inzidenzrate.

Bei gruppierten Daten kann dhnlich vorgegangen werden. Fiir jedes Stratum j wird eine eigene

>0

Zlip” berechnet. In diesem Fall ergibt sich die erwartete Anzahl an Féllen in

i1
Ei: E Bjrj.
J

Dieses Vorgehen wird als interne Standardisierung bezeichnet, da die beobachteten Daten ver-

Inzidenzrate r; =

Region ¢ aus
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wendet werden um die Referenzrate(n) zu berechnen, ohne dass dies berticksichtigt wird. Besser
ist die externe Standardisierung, bei der bereits aus anderen Quellen bekannte Tabellen verwen-

det werden.

6.1. Traditionelle Modelle

Eine hiufig verwendete Annahme der Statistik in Bezug auf Anzahlen ist die der Poissonvertei-

lung. Im hier vorliegenden Kontext bedeutet dies, dass gilt

Es wird also angenommen, dass die Anzahl der beobachteten Félle in Region i poissonverteilt
mit Erwartungswert F;0; ist. Dabei entspricht 6; dem wahren relativen Risiko in Region 3.

Der Maximum-Likelihood-Schétzer von 6; ergibt sich aus

SIR; wird als Standardized Incidence Ratio bezeichnet. Im Kontext des Disease Mapping wird
dieses Verhiltnis meist auch SM R (Standardized Mortality Ratio) genannt. Eine genauere Be-
trachtung dieser und anderer Normierungen findet sich in Waller & Gotway (2004).

Zur Visualisierung der rdumlichen Variation des Risikos kann somit das STR auf einer Karte
abgetragen werden. Problematisch an dieser Vorgehensweise ist jedoch, dass die Standardabwei-
chung der Schiitzers sd(SIR;) = /O;/E; und somit proportional zu 1/E; ist. Bei einer geringen
Anzahl an erwarteten Fillen wird die Schitzung also sehr unsicher. Die Identifizierung einer
Region als stark risikobehaftet koénnte somit lediglich an ihrer geringen Einwohnerzahl liegen.
Auflerdem werden in dieser Analyse moglicherweise vorhandene rdumliche Korrelationen nicht
beriicksichtigt.

Eine zweite Moglichkeit der Visualisierung ergibt sich aus der Betrachtung von p-Werten. Werte
von STR grofler als 1 weisen darauf hin, dass mehr Fille beobachtet, als in der Untersuchungs-

population erwartet wurden. Interessant fiir die Analyse ist somit die Hypothese
Hy:0=1 vs. Hy:0>1.

Unter der Nullhypothese gilt O; ~ Po(E;), sodass sich der p-Wert fiir diesen Test aus (Banerjee

et al. 2004)
Yi—1

P(X < Oz’Ez) =1- P(X < OZ/EZ) =1- Z Tk
=0
ergibt. Wird die Nullhypothese verworfen, so kann von einem signifikant erhohtem Risiko in
Region i ausgegangen werden. Alternativ kénnen Konfidenzintervalle mit Hilfe der Poisson-

Verteilung fiir SITR berechnet werden.
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Wie zuvor ergeben sich auch hier die zwei genannten Nachteile: die p-Werte hidngen von der er-
warteten Anzahl an Fallen ab und moégliche rdumliche Korrelationen werden nicht beriicksichtigt.
Um dem ersten Problem begegnen zu kénnen, wurde von Clayton & Kaldor (1987) ein Verfahren
vorgestellt, welches die STR hin zu einem globalen Mittelwert schrumpft. Ausgangspunkt hierfiir
ist eine Annahme der Poissonverteilung, die in vielen Fillen angezweifelt werden muss: die
Gleichheit von Erwartungswert und Varianz. Hiufig liegt in realen Daten Uberdispersion vor,
d.h. die Varianz der Daten ist grofler als ihr Erwartungswert. Ein Moglichkeit dies zu beachten ist
die Verwendung der Negativen Binomialverteilung anstatt der Poissonverteilung (Bivand et al.
2013).

Diese lésst sich als gemischtes Modell formulieren. Dabei wird ein Zufallseffekt fiir jede Region
angenommen, der einer Gamma-Verteilung mit Erwartungswert - und Varianz 5 folgt.

Das sogenannte Poisson-Gamma-Modell lisst sich also formulieren als

0; ~ Ga(v, a)

Die beobachteten Félle O; sind bedingt auf 6; poissonverteilt mit Erwartungswert 6; F;. Die O;

selbst sind somit negativ binomial-verteilt mit (Clayton & Kaldor 1987)

v
E(O;) = Ei—
) = B
Var(0;) = B —|—E1212
a a

Aufgrund der Konjugiertheit der Gamma-Priori zur Poisson-Likelihood ergibt sich fiir die Pos-
teriori von 6; wieder eine Gamma-Verteilung mit den Parametern v 4+ O; und «a + E;.

Der Posteriori-Erwartungswert von 6; ist

v+ 0O
a+ FE;
« v E; O;

Ei v Ei
=|1- - = - SMR;.
( 04+Ei> a+0¢+EZ- !

E(6;|0;, E;) =

Somit ist der Punktschétzer ein gewichtetes Mittel aus dem datenbasierten SIR von Region
7 und dem Priori-Erwartungswert des relativen Risikos 6;. Fiir Regionen mit kleinem FE; hat
SMR; also ein geringes Gewicht im Gegensatz zum Priori-Erwartungswert.

Da v und « fiir alle Regionen gleich sind, wird Information von diesen geliehen um die Posteriori-

Schétzer zu konstruieren. Dieses Konzept wird borrowing strength genannt.
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6.2. Raumliche Modelle

Bisher wurden mogliche raumliche Effekte aus der Analyse auflen vor gelassen. Dabei ist zu
beachten, dass meist nicht die Zugehorigkeit zu einer Region selbst einen Effekt auf die abhéngige
Variable hat, sondern unbeobachtete, nicht durch die Daten erfasste Kovariablen mit raumlicher
Struktur beriicksichtigt werden sollen. Die rdumliche Analyse kann somit auch Hinweise auf
bisher unbekannte Risikofaktoren geben. Diese kénnen eine rdumliche Struktur aufweisen, oder
nur lokal auftreten. Da in der Regel nicht bekannt ist, ob Einflussfaktoren eine rdumliche Struktur
mit sich bringen, schlugen Besag et al. (1991) ein Modell vor, welches sowohl strukturierte
(rdumlich korrelierte) als auch unstrukturierte (rdumlich unkorrelierte) Effekte beriicksichtigt,
d.h. fopat = fotr + funstr (vgl. Fahrmeir et al. (2004)).

Besag, York, Mollie (BYM, 1991)

01’91 ~ PO(@ZE,)
0; = exp(n;) = exp(Bo + figeo(si) + b;)

Dabei wird fiir den rdumlich strukturierten Anteil fge, ein GMZF (vgl. Kapitel 5.4) angenommen
wéhrend b; ein regionenspezifischer, zufilliger Effekt mit b; N (0,1?) ist.

Damit ergibt sich fiir O; ein log-lineares Poisson-Modell mit dem linearen Pradiktor

i = ﬁO + fi,geo(si) +b; + log(Ez),

wobei log(E;) dem Offset entspricht. Dieser dient der Vergleichbarkeit der einzelnen Regionen.
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In den meisten Anwendungen wird kein rein rdumlicher Effekt geschétzt, sondern es liegen
zusétzliche Kovariablen zur Erklarung der Zielvariablen vor. Die enstehende Modellklasse wird
unter dem Begriff Geoadditive Regression gefithrt. Der Préadiktor des (generalisierten) additiven
Modells nf‘dd bestehend aus nichtparametrischen, glatten Funktionen und linearen Effekten wird

in diesem Fall um einen rédumlichen Effekt fyc, erweitert, d.h.

M =00 4 foeo(si) = fr(zin) + oo+ fo(2ig) + Faeo(s1) + Bo + Brzir + .. . + B

Liegt also, zusétzlich zu den Werten der Zielvariablen und metrischen oder kategorialen Kova-
riablen, zu jeder Beobachtung ¢ eine rdumliche Information, in Form einer Lokationsvariablen
s; vor, handelt es sich um eine Problemstellung der geoadditiven Regression.

Noch allgemeiner formulieren Fahrmeir et al. (2009) die Klasse der (generalisierten) strukturiert-
additiven Regressions (STAR) Modelle. Fiir den strukturiert-additiven Prédiktor

TR = f1 (i) + .+ fe(vig) + 28

sind verschiedene Kombinationsmoglichkeiten von Funktionen mit unterschiedlicher Struktur

moglich. Als Beispiele sind in Fahrmeir et al. (2009) folgende Typen genannt:

fi(v1) = fi(z1), v1 = 21, nichtlinearer Effekt von z;

fa(v2) = fgeo(s), vy = 8, rdumlicher Effekt der Lokationsvariablen s.
fa(v3) = viu, vy = (u,1), individuenspezifischer zufélliger Effekt von w.
fa(vg) = f(2)x, vy = (z,x),  mit z variierender Effekt von z.

f5(vs) = fip(21,22), w5 = (21,22), nichtlineare Interaktion zwischen z; und 2».

Ein miéchtiges Programmpaket fiir die Schitzung solcher Modelle stellt BayesX (Belitz et al.
2015) dar. Die Funktionalitidten dieses Programms stehen dem User iiber ein eigenstindiges
Programm oder aber auch iiber die Schnittstelle des Pakets R2BayesX (Umlauf et al. 2015) in
R zur Verfiigung.

Die Schéatzung der Parameter ist in BayesX iiber drei unterschiedliche Inferenzkonzepte moglich:
e Volle Bayes-Inferenz basierend auf MCMC-Simulationstechniken
e Inferenz basierend auf der Reprisentation als gemischtes Modell

e Penalisierte Likelihood-Schétzung inklusive Variablenselektion
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Fiir diese Arbeit wurde auf die Schiatzung iiber die Reprisentation als gemischtes Modell zuriick-
gegriffen. Die Grundidee dieses Ansatzes soll im Folgenden basierend auf Fahrmeir et al. (2004)
und Fahrmeir et al. (2009) vorgestellt werden. Dort finden sich auch Informationen iiber die
volle Bayes-Inferenz. Andere Quellen fiir den Einstieg in die hier nicht angesprochenen Ansétze
bieten beispielsweise Brezger & Lang (2006) (Volle Bayes-Inferenz) und Belitz & Lang (2008)
(Variablenselektion).

Falls die Funktionen fi,..., f; durch Basisfunktionenansétze modelliert werden, kann der struk-

turierte Pradiktor in Matrixform folgendermaflen dargestellt werden
N = Vi, o+ Vv, + XB. (7.1)

Dabei entsprechen die V' ; geeignet definierten Designmatrizen und «; den Koeffizientenvektoren.
Ein Uberblick zu den in der Arbeit verwendeten Termen findet sich in Tabelle 7.1.

Die generelle Form der Priori fiir ; ist

1
p(’Yj’sz) X exp <_227;’Kj7j> )
i

wobei K ; der jeweiligen Strafmatrix entspricht. In den meisten Fillen hat diese keinen vollen
Rang, sodass die Priori teilweise uneigentlich ist, d.h. es gilt rg(K ;) > 0, aber nicht rg(K;) =
dim(7;)).

Um den strukturiert-additiven Prédiktor (7.1) als GLMM darzustellen werden die Regressions-
koeffizienten ~;,j = 1,...,p in einen penalisierten und einen nicht penalisierten Teil zerlegt.
Bezeichne im Folgenden d; = dim(v;) die Dimension des j-ten Koeffizientenvektors und r; =
rg(K ;) den Rang der korrespondierenden Strafmatrix. Dann definieren Fahrmeir et al. (2004)
die Zerlegung

v = Y Unp A unp + V;)en pen

i i R

mit den d; x (dj — ;) bzw. d; x r; dimensionalen Designmatrizen V;"™" und V"

Durch eine geeignete Wahl der Designmatrizen (genauere Betrachtung siehe Fahrmeir et al.
(2004)) kann errreicht werden, dass der Parametervektor ’y}mp als Vektor fester Effekte und
75" ~ N(O, T]-ZI ) als Vektor zufilliger Effekte aufgefasst werden kann.

Der Prédiktor (7.1) ldsst sich damit umschreiben in

q q
nstrukt _ Z Vj’)’j + X,@ _ Z(VJ V;mp,y;mp + Vj Vﬁ)env?en) + X,@ _ X’)’ww + V,.ypen’
=1 j=1

wobei X; = V; V" und V; = V,; V™.
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7. Geoadditive Modelle -

BayesX

Die Designmatrizen und Vektoren sind dabei wie folgt zusammengesetzt

= (ViVy--- V)
pen — (( pen) (,Ygen) )/
( "UpU)
= ((v “”p) s (B

Dadurch ergibt sich ein GLMM mit festen Effekten v*"? und zufilligen Effekten 47" ~ N(0, A),

wobei A = diag(7Z,...

thode verwenden lassen.

2
JTis e T,

2 2
ylgyre-olyg

77), sodass sich die {iblichen Schétzverfahren dieser Me-

Termtyp Designmatrix V Strafmatrix K
P-Spline Basisfunktionen ausgewertet an den K = D) Dy, mit Dy Differenzenma-
Beobachtungen. trix k-ter Ordnung
2D-P-Spline 2D-Basisfunktionen ausgewertet an K =1 ® K1+ Ko ® I mit Einheits-
den Beobachtungen. matrix I und Strafmatrizen K; und
K, wie fiir univariate P-Splines.
Kriging Auf der Korrelationsfunktion basie- K = R, mit Korrelationsmatrix R.

Markov-Zufallsfeld

Zufillige Konstante

rende Basisfunktionen.

0/1 Inzidenzmatrix, die Beobachtun-
gen und Regionen verkniipft.

0/1 Inzidenzmatrix, die Beobachtun-
gen und Cluster verkniipft

K = Nachbarschaftsmatrix.

K = I, mit Einheitsmatrix K = I.

Tabelle 7.1.: Ubersicht iiber verwendete Modellterme mit zugehoriger Design- und Strafmatrix; Quelle:
in Anlehnung an Fahrmeir et al. (2009, Tab. 8.2)
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8. Auswertung

8.1. Beispiel: Phdnologie

8.1.1. Deskriptive Analyse

Zur Analyse stehen, aufler dem gemessenen relativen Griinwert, lediglich die Koordinaten der
jeweiligen Webcam, sowie der Tag der Messung zur Verfiigung. Es liegen 12864 Beobachtungen
verteilt auf 182 Stationen und 73 Tage des Jahres 2011 vor.

Rel. Griinwerte

< _
“' —— Kerndichteschatzung
—— Dichte der NV

(QV)
i

10

Density

I I I I I I
0.1 0.2 0.3 0.4 0.5 0.6

rel. Grinwert

Abbildung 8.1.: Histogramm und Kerndichteschétzung.

Die relativen Griinwerte schwanken zwischen 0.09 und 0.63, wobei 75% der Daten zwischen 0.33
und 0.41 liegen. Es liegt eine schwach linkssteile Verteilung der Werte vor, die jedoch nicht stark
von der Normalverteilung abweicht (vgl. Abbildung 8.1).
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8. Auswertung

Web-Cams

Die ausgewahlten Web-Cams liegen alle innerhalb Deutschlands zwischen dem 6. und 15. Léngen-
und dem 47. und 54. Breitengrad. Wie man auf der Karte in Abbildung 8.2 erkennen kann,
stehen fiir den Norden Deutschlands nur sehr wenige Web-Cams zur Verfiigung. In den Alpen,
im Bayrischen Wald, am Bodensee, sowie in der Schwibischen Alp und dem Schwarzwald liegen
hingegen vergleichsweise viele Messstellen vor. Insgesamt scheinen die Webcams vor allem in
grofleren Hohenlagen oder um Seen und grofie Stéddte angesiedelt zu sein. Da das Klima und
somit die Phénologie vermutlich mit der Hohe der Messstation in Zusammenhang steht, wére

diese Variable fiir die Analyse von hohem Interesse. Diese steht jedoch nicht zur Verfiigung.
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Abbildung 8.2.: ausgewihlte Web-Cams in Deutschland.
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8. Auswertung

Zeitpunkte

Fiir die Analyse stehen die Tage 84 bis 159 des Jahres 2011 zur Verfiigung. Zwischen Tag 141
und 143 kam es zu einem Ausfall des Servers, sodass diese im Datensatz fehlen. Uber die Zeit

hinweg, lésst sich ein Anstieg in den aggregierten relativen Griinwerten erkennen (vgl. Abbildung
8.3).

| Yoy

relG
0.34 035 0.36 0.37 0.38
|

I I I I
100 120 140 160
DOY
Abbildung 8.3.: Zeitreihe von DOY 84 bis 159.

Verlauf fiir einzelne Stationen

Abbildung 8.4 zeigt die Verldufe der einzelnen Stationen. Um einen besseren Vergleich zu
ermoglichen, wurde der Bereich der rel. Griinwerte auf 0.3 bis 0.5 beschrénkt. Es sind dadurch
nur weniger als 2% der Daten nicht sichtbar.

Es zeigt sich auch einzeln betrachtet fiir die meisten Messstationen ein Anstieg in den relativen
Griinwerten. Um den Vergleich der Verldaufe in Bezug auf SOS und MAT zu erleichtern, wurden
die Daten skaliert und in Abbildung 8.5 abgetragen. Es lésst sich fiir die meisten Stationen
die gleiche funktionale Form im Verlauf der Griinwerte erkennen. Der Griinwert liegt auf einem
Grundniveau, bis er ab dem Erscheinen der ersten Blitter (SOS) bis zur vollstdndigen Reife
des Laubs (MAT) auf einen Maximalwert ansteigt. Es zeigen sich jedoch Phasenverschiebungen,
Verdanderungen in der Differenz zwischen SOS und MAT sowie in der Amplitude (vgl. Abbildung
8.6).
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Abbildung 8.5.: Verldufe der skalierten einzelnen Stationen (nach Alphabet) iiber die Zeit.
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Phasenverschiebung
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Abbildung 8.6.: Theoretischer Anstieg des relativen Griinwertes mit moglichen Verénderungen
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8.1.2. Modellvarianten

Um eine mogliche rdumliche Heterogenitéit optimal zu modellieren, wurden unterschiedliche
Modelle betrachtet und mittels AIC verglichen. Die verschiedenen Varianten sind in Tabelle 8.1
zusammengefasst. Der zeitliche Effekt wurde in allen Modellen durch einen P-Spline mit 20 in-
neren Knoten und einem Strafterm basierend auf Differenzen zweiter Ordnung modelliert. Der
strukturierte rdumliche Effekt wurde mit zweidimensionalen P-Splines (Model 2), einer zweidi-
mensionalen Funktion auf Basis des Krigingansatzes (Modell 3) bzw. einem Markov-Zufallsfeld
(Modell 4) geschitzt. Bei der Modellierung durch das MZF wurden diejenigen Beobachtun-
gen als benachbart betrachtet, welche weniger als 120km voneinander entfernt lagen. Zusétzlich
zum strukturierten rdumlichen Effekt wurden teilweise unabhéingige zufillige Effekte mit auf-
genommen. In der Schitzung der Modelle mit zufélligen Effekten (Modelle 2, 3 und 4) kam es
zu Konvergenzproblemen innerhalb des Algorithmus. Dies liegt an dem sehr kleinen Varianz-
parameter der raumlich strukturierten Oberfliche. Da dadurch das Maximum der marginalen
Likelihood am Rand des Parameterraums liegt, versagt der Fisher-Scoring Algorithmus. Dies
fithrt zu einem Abbruch der Schitzung kleiner Varianzen in BayesX (Belitz et al. 2015, Kap.
6.2).

Die geschétzten strukturierten rdumlichen Effekte der Modelle 2(.1) und 3(.1) finden sich in den
Abbildungen 8.7-8.10. Darin zeigt sich die geringe Varianz der Oberflichen in den Modellen mit
zufélligen Effekten. Es dominiert in diesen Féllen der unstrukturierte Effekt. Ohne die zufilligen
Effekte ergibt sich fiir die Modellierung durch den P-Spline eine sehr unruhige Modellierung.
Hier scheinen zufillige Effekte sinnvoller zu sein. Auch die Betrachtung der AIC’s (vgl. Abbil-
dung 8.11) lasst darauf schliefen, dass eine Modellierung ohne strukturierten raumlichen Effekt
gerechtfertigt ist. Es kann somit zur traditionellen Analyse logitudinaler Daten mit Random-
Intercept iibergegangen werden. Der geschétzte zeitliche Effekt dieses Modells (Modell 1) ist in
Abbildung 8.12 zu sehen. Es ist ein Anstieg des rel. Griinwertes zu erkennen. Dieser stagniert
etwa am DOY 120 (MAT). Der genaue Anfang der Wachstumszeit (SOS) ist hingegen nicht

direkt erkennbar.

Modell formula

0 relG  ~ s(doy)

1 relG  ~ s(doy) + b
2 relG ~ s(doy) + P-Spline + b
2.1 relG ~ s(doy) + P-Spline

3 relG ~ s(doy) + Kriging + b
3.1 relG ~ s(doy) + Kriging

4 relG ~ s(doy) + MZF 4+

Tabelle 8.1.: Modellvarianten - s(doy) entspricht P-Spline-Modellierung des zeitlichen Effekts.
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Abbildung 8.7.: Geschétzter strukturierter rdumlicher Effekt (P-Spline, Modell 2).
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Abbildung 8.8.: Geschitzter strukturierter raumlicher Effekt (P-Spline, Modell 2.1).
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Abbildung 8.9.: Geschitzter strukturierter rdumlicher Effekt (Kriging, Modell 3).

53
I

52

lat

&...,/&9@

o _|
wn
-0.005 0.
]
o |
<
0005,
© _|
£ L
N
o
T T T T CI>
8 10 12 14

long

Abbildung 8.10.: Geschétzter strukturierter rdumlicher Effekt (Kriging, Modell 3.1).
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Abbildung 8.11.: AIC-Differenzen zum besten Modell fiir die verschiedenen Modellvarianten.
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Abbildung 8.12.: Geschitzter zeitlicher Effekt (Modell 1).
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8.2. Beispiel: Hochschulen

Nun sollen die in Kapitel 3.2 vorgestellten Daten analysiert werden.

Fiir das Jahr 2004 ist die Herkunft von 7483 Studienanfingern der Ludwig-Maximilians-Uni-
versitdt (LMU) dokumentiert. Im Jahr 2011 sind es bereits 11001 Studienanfiinger. Die meisten
Studierenden stammen dabei in beiden Jahren aus dem Stadtgebiet Miinchen. Es gibt 58 (2004)
bzw. 18 (2011) Landkreise in denen kein Studienanfinger seine Hochschulzugangsberechtigung
(HZB) erworben hat. Fiir Gesamtdeutschland ergibt sich eine Inzidenzrate von 9.1 (2004) bzw.
13.7 Studenten pro 100000 Einwohner (2011).

Die “Population unter Risiko”wurde durch die Einwohnerzahl der einzelnen Kreise definiert.
FEine bessere Herangehensweise wire die Betrachtung der Personen mit HZB. Diese Zahlen liegen
jedoch nicht vor, sodass von einer homogenen Verteilung iiber ganz Deutschland ausgegangen

werden muss.

8.2.1. Standard-Inzidenzraten (SIR) und p-Werte
2004

Die berechneten Standard-Inzidenzraten sind in Abbildung 8.13 visualisiert. Dabei fallen vor
allem die erhohten Raten um Miinchen herum sowie in einigen Stddten Bayerns auf. Die minimale
(grofer Null) bzw. maximale Standard-Inzidenzrate ist 0.02 bzw. 24.48. Die maximale Rate
tritt in Rosenheim auf. Hier wird jedoch nur eine Anzahl von 5.47 Studenten erwartet. Die
Standardabweichung sd; = \/O;/E; in diesem Kreis liegt bei 2.11 und nimmt damit den héchsten
beobachteten Wert ein. An diesem Beispiel zeigt sich die Unsicherheit der Schitzung der STR
bei einer geringen Anzahl erwarteter Félle.

Abbildung 8.14 zeigt die berechneten p-Werte fiir den Test auf §; = 1 auf Basis der Poisson-
bzw. der Negativ-Binomialverteilung. Auch diese sprechen fiir erhhte Raten im ndheren Umfeld
der LMU. Dabei sind die p-Werte der Negativ-Binomialverteilung wie erwartet héher, da hier

eine groflere Varianz zugelassen wird.

2011

Fiir 2011 ergeben sich sehr &hnliche Werte, sodass hier auf eine genauere Betrachtung verzichtet
wird. Die STR fiir dieses Jahr sind in Abbildung 8.15 abgetragen. Hier zeigt sich noch etwas

klarer der Zusammenhang mit der Distanz von der LMU als in 2004.
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Abbildung 8.14.: p-Werte aus Basis der (a) Poisson- bzw. (b) Negativ-Binomialverteilung fiir das SIR
der Studienanfinger an der LMU 2004.
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Abbildung 8.15.: Herkunft der Studienanfinger der LMU 2011 (Standardized Incidence Ratio - SIR).
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8. Auswertung

8.2.2. Raumliche Modelle

Fiir die folgenden Analysen wurde eine Nachbarschaftsmatrix auf Basis gemeinsamer Grenzen
erstellt. Zu diesem Zweck wurde die Insel Riigen aus dem Datensatz fiir 2004 entfernt, da diese
keine Verbindung zu anderen Kreisen besitzt. In 2011 war dies nicht notig, da es in diesem Jahr
aufgrund von Gebietsreformen zu einer Eingliederung des Kreises in den Kreis Nordvorpommern

kam. In Abbildung 8.16 ist der Graph der Nachbarschaften abgebildet.
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Abbildung 8.16.: Nachbarschaften auf Basis gemeinsamer Grenzen.

Um festzustellen, ob raumliche Autokorrelation vorliegt wurde Moran’s I auf Basis der SIR
berechnet. Hierbei konnte auch nach Beriicksichtigung vorliegender Uberdispersion in beiden

Jahren eine raumliche Autokorrelation festgestellt werden.

Markov-Zufallsfelder

Aus diesem Grund wurde im nichsten Schritt ein Modell mit strukturierten und unstrukturierten

Effekten gemafl Kapitel 6.2 geschétzt.
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8. Auswertung

2004

Die geschiitzten Effekte sind in Abbildung 8.17 visualisiert. Der rdumlich strukturierte Effekt
iiberwiegt dabei deutlich den unstrukturierten Effekt. Es zeigt sich, wie bereits erwartet, ein
positiver Effekt in der Nahe der LMU. Auflerdem ergeben sich in beiden Termen héhere Werte
fir die Stddte im Gegensatz zu den Landkreisen. Dies kénnte an einer erhohten Anzahl an

Personen mit HZB in den Stddten liegen. Fiir einen Vergleich mit den Standard-Inzidenzraten

(b)

-3

-4

Abbildung 8.17.: Schitzungen des strukturierten (a) und des unstrukturierten (b) rdumlichen Effekts;
Modell ohne weitere Kovariablen 2004.

wurden die geschitzten Werte fiir 0, = exp(Bo + fi,geo + IBZ) in Abbildung 8.18 visualisiert.
Die Werte scheinen mit wachsender Entfernung von der LMU zu sinken. Aus diesem Grund
wurde im néichsten Schritt die Distanz des jeweiligen Zentroiden eines Kreises zur LMU als
nichtlinearer Effekt mit in das Modell aufgenommen. Auflerdem wurde eine Dummy-Variable
zur Unterscheidung zwischen Landkreisen und Kreisfreien Stddten eingefiihrt. Daraus ergibt sich

der lineare Pradiktor
n; = Po + B1Landkreis; + f(distance;) + figeo(si) + bi + log(E;), (8.1)

Die geschitzte Funktion fiir die Distanz ist in Abbildung 8.19 zu sehen. Fiir die Schéitzung
wurde ein P-Spline mit 20 inneren Knoten und einem Strafterm basierend auf Differenzen zweiter
Ordnung verwendet. Die Anzahl der Studierenden nimmt, wie bereits in den vorherigen Grafiken
ersichtlich, mit wachsender Distanz zur LMU immer weiter ab. Erst ab etwa 500km stagniert

die Kurve, sodass hier kein Unterschied mehr durch weitere Distanzen entsteht.
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Abbildung 8.18.: Geschiitzte Standard-Inzidenzraten: (a) 6; = O;/E; (b) 0; = exp(fBo + fi,geo +by).

Die Variable Landkreis hat einen signifikanten, negativen Einfluss. Aus den Landkreisen stam-
men im Erwartungswert um den Faktor exp(f;) = exp(—0.9260) = 0.396 weniger Studi-
enanfianger als aus Kreisfreien Stddten. In Abbildung 8.20 sind erneut die Schitzungen der
strukturierten und unstrukturierten rdumlichen Effekte abgetragen. Auffillig sind hier hohe
Werte in den siid-6stlichen Gebieten Ober- und in den &stlichen Teilen Niederbayerns. Bei den
unstrukturierten Effekten fallen vor allem die Kreise Regensburg, Augsburg, Heidelberg und
Niirnberg ins Auge. Hier scheint die Anziehungskraft der eigenen Universititen hoher zu sein,
als die der LMU.
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Abbildung 8.19.: Geschétzter Effekt fiir die Distanz der Zentroiden zur LMU 2004.

I 1.0

05

{ r 0.0

o &
[ AR
g Oy

3
FEd 9

3G
ey
pREEgAies

754
e
by

#

i
(3 428
O

‘l-

52y

Abbildung 8.20.: Schitzungen des strukturierten (a) und des unstrukturierten (b) rdumlichen Effekts;
Modell mit Kovariablen 2004.

o7



8. Auswertung

2011

Die gleichen Modelle wurden fiir 2011 geschétzt. Im Modell ohne Kovariablen (vgl. Abbil-
dung 8.21) werden stark negative Effekte fiir einige Gebiete Brandenburgs und Sachsen-Anhalts

geschiitzt. Diese sind sowohl im unstrukturierten wie auch im strukturierten Effekt dominant.

(b)

k-2

-6

Abbildung 8.21.: Schitzungen des strukturierten (a) und des unstrukturierten (b) rdumlichen Effekts;
Modell ohne weitere Kovariablen 2011.

Im Modell mit Kovariablen wird eine dhnliche Funktion fiir den Einfluss der Distanz wie in
2004 geschétzt (vgl. Abbildung 8.22). Auch die Variable Landkreis hat erneut einen signi-
fikanten, negativen Einfluss. Aus den Landkreisen stammen in diesem Fall um den Faktor
exp(P1) = exp(—0.7221) = 0.486 weniger Studienanfinger als aus Kreisfreien Stddten. Der An-
teil von Studenten aus den Landkreisen ist also im Vergleich zu 2004 angestiegen. Die rdumlichen
Effekte im Modell mit Kovariablen sind sehr dhnlich zu denen in 2004. Es kommen mehr Stu-
dienanfinger aus Gebieten siid-0stlich von Miinchen als durch die pure Betrachtung der Di-
stanz zu erwarten wére. Interessant ist jedoch, dass hingegen weniger Studierende fiir die neuen
Bundesléinder erwartet werden. Bei den unstrukturierten Effekten hebt sich erneut der Kreis
Regensburg deutlich ab. Auch hier zeigen Kreise mit eigener Universitdt eher einen negativen
Effekt. Ausnahmen sind dabei Berlin, Hamburg und Gottingen mit einem vergleichsweise star-

kem positiven Effekt.
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Abbildung 8.22.: Geschétzter Effekt fiir die Distanz der Zentroiden zur LMU 2011.
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Abbildung 8.23.: Schitzungen des strukturierten (a) und des unstrukturierten (b) rdumlichen Effekts;
Modell mit Kovariablen 2011.
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8. Auswertung

Kriging

Eine weitere Moglichkeit den rdumlichen Effekt zu schétzen, ist das Regression-Kriging iiber die
Zentroide der Kreise. Das Vorgehen wird im folgenden Abschnitt am Beispiel der Daten fiir die
LMU in 2004 erldutert.

Die besondere Art der Aufteilung in Kreise und Kreisfreie Stédte fithrt dabei in Deutschland zu
einem Problem, das eine sinnvolle Schiatzung des Variogramms bei kleinen Distanzen unmoglich
macht. In vielen Fillen liegt eine kreisfreie Stadt innerhalb eines Kreises (vgl. Abbildung 8.24),
sodass der Zentroid der Stadt und der des Kreises sehr nahe beieinander liegen. Dies fiihrt
zu einer Uberschitzung der Semivarianz bei kleinen Distanzen. Aus diesem Grund wurden die

Kreisfreien Stéidte dem jeweils nédchsten Landkreis hinzugefiigt.

Abbildung 8.24.: Kreisfreie Stddte in Deutschland.

Im n#chsten Schritt wurde der Trend, der durch die Distanz zur LMU entsteht, {iber ein Quasi-

Poisson-Modell herausgerechnet. Zur Schitzung eines rdumlichen Effekts wurden dann die stan-
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dardisierten Pearson-Residuen
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berechnet (vgl. Abbildung 8.25). Die Standardisierung durch die erwartete Anzahl an Stu-

dierenden F; aus Region ¢ folgt dabei der gleichen Logik, wie die Verwendung eines Offsets

bei der Poisson-Regression. Um einen sinnvollen Schétzer fiir den Nugget-Effekt zu erhalten,
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Abbildung 8.25.: Standardisierte Pearson Residuen.

wurden auferdem einige Hotspots (Beobachtungen mit sehr verschiedenen Nachbarn) aus der
Variogramm-Analyse ausgeschlossen. Das geschiitzte Variogramm ist in Abbildung 8.26 abgebil-
det. Zur Schétzung des rdumlichen Effekts wurde dann ein Grid iiber Deutschland gelegt und
gewohnliches Kriging auf die Residuen durchgefiihrt. Das Ergebnis ist in Abbildung 8.27 zu se-
hen. Es deckt sich mit den geschétzten strukturierten Effekten mittels eines Markov-Zufallsfeldes

im vorherigen Abschnitt.
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semivariance

Abbildung 8.26.: Geschiitztes Variogramm; Matern, psill=0.03, range=69.45, kappa= 0.5.
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Abbildung 8.27.: Kriging Vorhersage und Varianz auf die standardisierten Pearson-Residuen.
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8. Auswertung

8.2.3. Vergleich mit der Humboldt-Universitat zu Berlin

Interessant ist nun, ob die Erkenntnisse aus den Modellen fiir die LMU auch auf andere Uni-
versitédten iibertragbar sind. Zu diesem Zweck wurden die Daten der Humboldt-Universitéat zu
Berlin (HUB) im Jahr 2011 fiir die weitere Analyse herangezogen. In Abbildung 8.28 sind die
SIR visualisiert. Es zeigt sich auch hier ein starker regionaler Bezug bei der Studienplatzwahl.
Aus diesem Grund wurde direkt das Modell mit Kovariablen (Modell 8.1) auf die Daten an-
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Abbildung 8.28.: Herkunft der Studienanfinger der HUB 2011 (Standardized Incidence Ratio - SIR).

gewendet. Der strukturierte Effekt wurde erneut durch ein Markov-Zufallsfeld geschitzt. Die
Ergebnisse sind in den Abbildungen 8.29 und 8.30 abgetragen. Fiir die Variable Landkreis
ergab sich ein signifikanter, negativer Einfluss. Aus den Landkreisen stammen in diesem Fall
um den Faktor exp(/31) = exp(—0.9698) = 0.379 weniger Studienanfinger als aus Kreisfreien
Stddten. Die Funktion fiir die Distanz zur HUB ist dhnlich im Verlauf wie die bei der LMU. Im
rdumlich strukturierten Effekt erkennt man positive Effekte fiir die Gebiete nérdlich von Berlin.

Dies ist vermutlich darauf zuriickzufiihren, dass hier im naheren Umfeld nur Universitdten in
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Rostock und Greifswald zur Verfiigung stehen. Negative Effekte werden hingegen in der Néhe
der Universititsstidte Leipzig, Chemnitz und Dresden geschéitzt.

Insgesamt weisen die Daten auf einen starken regionalen Bezug bei der Wahl des Studienortes
hin. Interessant wire ein Vergleich mit weiteren Universitdten des Bundesgebiets. Dabei wire
es auflerdem sinnvoll von der einfachen Distanz zu einer Definition iiber die Erreichbarkeit (via

Auto, offentliche Verkehrsmittel etc.) iiberzugehen.
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Abbildung 8.29.: Geschitzter Effekt fiir die Distanz der Zentroiden zur HUB 2011.
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Abbildung 8.30.: Schitzungen des strukturierten (a) und des unstrukturierten (b) rdumlichen Effekts;
Modell mit Kovariablen HUB 2011.
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9. Zusammenfassung und Ausblick

Diese Masterarbeit beschéftigte sich mit der Modellierung raumlicher Abhéingigkeiten. Grund-
lage vieler statistischer Modelle ist die Annahme unabhéngiger Beobachtungen (gegeben den
Kovariablen). Eine héufige Charakteristik rdumlicher Daten ist jedoch die Tatsache, dass sich
nahe Beobachtungen #hnlicher sind als weit entfernte. Eine Folgerung daraus ist, dass die-
se Daten nicht dem Paradigma der Unabhéngigkeit folgen und somit einer Modellierung von
Abhéngigkeiten bediirfen.

Die vorliegende Arbeit gibt einen Uberblick iiber die Theorie zur Modellierung zweier raumlicher
Datentypen: geostatistische Daten und Gitterdaten. Bei geostatistische Daten liegt die raumliche
Information stetig, in Form von Koordinaten vor, bei Gitterdaten ist sie auf eine abzihlbare
Menge an Regionen aggregiert. Es wird in beiden Féllen von einem zugrundeliegenden, daten-

generierenden stochastischen Prozess
{Z(s) :s € D}

ausgegangen. Dabei entspricht s € R¢ einer Lokation im d-dimensionalen euklidischen Raum
und D einer Indexmenge mit D C R%,

Die gebrauchlichste Methode der Geostatistik ist das Kriging. Mit Hilfe des sogenannten Vario-
gramms werden hier rdumliche Abhéingigkeiten ausgedriickt und so die Schitzung von Werten
an unbeobachteten Orten ermoglicht.

Gitterdaten hingegen werden mittels Markov-Zufallsfeldern modelliert. Die Ahnlichkeit bzw.
Abhéngigkeit zweier Regionen wird in diesem Fall iiber deren Nachbarschaftsverhéltnis beriick-
sichtigt.

Beide Ansétze lassen sich in die Theorie der Geoadditiven Modelle einbetten. Das Programm-
paket BayesX (Umlauf et al. 2015) stellt die nétigen Funktionen zur Verfiigung um eine Aus-
wertung dieser Modelle in R (R Core Team 2014) durchzufiihren.

Es wurden beispielhaft zwei Datensétze mit Hilfe der besprochenen Methoden analysiert. Bei
der Auswertung von relativen Griinwerten aus Webcam-Bildern zur Bestimmung phénologischer
Phasen konnte kein strukturierter rdumlicher Effekt festgestellt werden. Es wurden deshalb
unabhéngige zufillige Effekte zur Modellierung verwendet. Moglicherweise kénnte das Modell
durch die Aufnahme weiterer Kovariablen (Regenfallmenge, Temperatur, Héhe des Standortes
etc.) weiter verbessert werden. Dem Verlauf des relativen Griinwertes liegt zudem an jeder
Station die gleiche funktionale Form zu Grunde. Der Griinwert liegt auf einem Grundniveau bis
er ab dem Erscheinen der ersten Blétter (SOS) bis zur vollsténdigen Reife des Laubs (MAT) auf
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9. Zusammenfassung und Ausblick

einen Maximalwert ansteigt. Es zeigen sich jedoch Phasenverschiebungen, Verénderungen in der
Differenz zwischen SOS und MAT sowie in der Amplitude (vgl. Abbildung 9.1).

---- Phasenverschiebung T
44444444 Stauchung/Streckung
<<<<< - Amplitudenveranderung A
x
x| A
=
)
g
S _|
SOS MAT
DOY

Abbildung 9.1.: Theoretischer Anstieg des relativen Griinwertes mit moglichen Verdnderungen

Sinnvoll wire hier iiber diese Arbeit hinaus eine Analyse auf Basis funktionaler Daten und
einer Time-Warping-Funktion (siehe z.B. Silverman & Ramsay (2005)). Moglicherweise lésst
sich dadurch auch doch noch ein rdumlicher Effekte identifizieren.

Bei der Analyse der Herkunft von Studienanfingern an der LMU wurde ein starker regionaler
Bezug bei der Studienortswahl festgestellt. Die Anzahl der Studienanfanger in den Kreisen nahm
mit der Entfernung zur Hochschule stetig ab. Beim rdumlichen Effekt zeigte sich ein erhohter
Erwartungswert in den siidostlichen Gebieten Bayerns. Auflerdem scheint die Anziehungskraft
der eigenen Hochschule in Landkreisen mit Universitdtsstadt grofler zu sein, als die der LMU.
Interessant wére ein weiterer Vergleich mit anderen Universitdten des Bundesgebiets. Lohnend
wire womoglich eine Gegeniiberstellung mit zentraler gelegenen Universititen. Dabei wére es
auBerdem sinnvoll von der einfachen Distanz zur einer Definition iiber die Erreichbarkeit (via

Auto, offentliche Verkehrsmittel etc.) iiberzugehen.
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A. Datenaufbereitung

Vor der eigentlichen Auswertung mussten zunéchst die vorliegenden Daten geeignet aufbereitet
werden. Auf der beigelegten CD befinden sich die fertigen Datensétze. Der folgende Abschnitt

dient der Illustration der nétigen Vorbereitungsschritte.

A.1. Phanologie
Es wurden drei Datensétze zur Verfiigung gestellt.

e Metadaten zu den Stationen: Name, Website, Geokoordinaten (Grad, Minuten, Sekunden)
e Rohdaten: Station, filename, meanR, meanG, meanB, relR, relG, relB

e Datenqualitit: Beeintriachtigungen, Distanz des Baums zur Kamera, Typ des Baums, ROI,

ausgewahlte Tageszeit

Zunichst wurden die Geokoordinaten (Léngen- und Breitengrad) in Dezimalgrad umgerechnet,

um eine Verwendung in R zu erméglichen. Dies geschieht nach der Formel
Koordge, = Grad + Minute/60 + Sekunde/3600.

AuBlerdem konnte aus der File-Bezeichnung der Rohdaten das Datum der jeweiligen Messung
extrahiert werden.

Mit Hilfe des Qualitéitsdatensatzes wurden die Stationen im n#chsten Schritt auf 182 verbleiben-
de eingeschriankt. Es wurde jeweils nur eine ROI (Region of Interest) pro Standort ausgew#hlt.
AuBlerdem wurde die Art des betrachteten Baums innerhalb der ROI auf den Typ 1 festge-
legt. Leider fehlt hier eine ausreichende Dokumentation der Kodierung. Es wird aber davon
ausgegangen, dass es sich dabei um Laubbdume handelt. In den Féllen in denen mehrere Kame-
ras pro Station verzeichnet waren, wurde diejenige ausgewéhlt, die eine geringere Distanz zum
Aufnahmeobjekt aufweist.

Auch die Kodierung der Stérungen ist nicht dokumentiert. Es wurden deshalb alle Stationen
gel6scht, die einen Eintrag enthielten. Um welche Storung es sich dabei handelte, konnte nicht
festgestellt werden. Auflerdem kam es in einigen Fillen zu technischen Problemen, die dazu
fithrten, dass keine neuen Bilder gespeichert, sondern das letzte Bild mehrfach in den Datensatz

mit aufgenommen wurde. Hier wurden die duplizierten Beobachtungen geltscht.
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A. Datenaufbereitung

A.2. Hochschulen

Aus der Arbeit am Forschungsdatenzentrum konnten Datensétze iiber die Anzahl der Studi-
enanfinger mit HZB aus den einzelnen Kreisen Deutschlands erstellt werden. Dabei kam es zu
Sperrungen bei geringen Fallzahlen (< 3) innerhalb eines Kreises. Diese fehlenden Werte wurden
im Nachhinein zuféllig mit 1 oder 2 ersetzt. Zur Analyse standen danach der Name des Kreises,
die Kreiskennziffer, sowie die Anzahl Studienanféinger zur Verfiigung.

Fiir die rdumliche Analyse mussten diese Daten einem Shapefile als Metadaten hinzugefiigt
werden. Dabei mussten fiir die Jahre 2004 und 2011 unterschiedliche Datensitze verwendet
werden, da es in der Zwischenzeit zu Gebietsverdnderungen im Bundesgebiet gekommen ist. Das
Shapefile fiir 2004 stammt aus der GADM database of Global Administrative Areas (2004). Die
Karte fiir 2011 konnte vom Bundesamt fir Kartographie und Geodisie (2011) bezogen werden.
Fiir 2004 waren im Shapefile keine Kennziffern vorhanden, sodass die Daten anhand der Kreis-
bezeichnung zugeordnet werden mussten. Da diese nicht einheitlich sind, mussten sie zunéchst
angepasst werden um ein Matching zu ermdglichen. Fiir 2011 konnte dies stark vereinfacht mit
Hilfe der Kennziffern durchgefiihrt werden.

Um die erwartete Anzahl an Studienanfingern pro Kreis (FE;) berechnen zu kénnen, musste
zunédchst die “Population unter Risiko” (P;) bestimmt werden. Da keine Daten zur Verteilung
der Personen mit HZB im Bundesgebiet vorliegt, wurde diese als homogen angenommen und die
Population unter Risiko durch die Einwohnerzahl der Kreise geschéitzt. Diese stehen {iber die
GENESIS-Online Datenbank des Statistischen Bundesamtes zur Verfiigung.

Die erwartete Anzahl an Studienanfingern in Kreis ¢ wurde dann gem#f3

Ei = PZ'T+7

mit ry = %, berechnet (vgl. Kapitel 6).

AuBlerdem wurde die (Great-Circle-)Distanz der Zentroiden der einzelnen Kreise zur LMU
(Koordinaten: N48° 9’ 2.484” E11° 34’ 49.296” ) berechnet.
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B. Inhalt der CD-Rom

Auf beigelegter CD-Rom finden sich folgende Ordner und Dateien:

e Im Ordner befinden sich folgende Unterordner:
— |Hochschulen/ |

* ‘Germany,grid.Rdata : Grid iiber Deutschland.

* ‘ [Imu, hub]l [04, 11]_[geo, aggl .Rdata| SpatialPolygonsDataFrame mit der
Anzahl Studienanfianger fiir die LMU bzw. HUB fiir die Jahre 2004 und 2011.

— | Phenology/ | SpatialPointsDataFrame mit den rel. Griinwerten an den Koordinaten

der einzelnen Stationen.

— ‘Deutschlandkarten/ ‘:

* SpatialPolygonsDataFrame Deutschlands, der Bundesldnder, Regierungsbezirke
und Kreise Deutschlands (2004) im .Rdata-Format.

* Kreise (2011) als Shapefile.

e Im Ordner ‘Abbildungen/ ‘ befinden sich die in der Arbeit abgebildeten Grafiken.

e Im Ordner befinden sich die Modelloutputs im .Rdata-Format:

~ |relGmod[0, 1, 2, 2.1, 3, 3.1, 4].Rdata| Modelle gemi$ Tabelle 8.1.

— |mode1[04, 111_[, 11_[, hub].Rdata| Modelle der Hochschulen.

e Im Ordner | RCode/ | befinden sich folgende Dateien:

- ‘ prepare_[hochschulen, phenology].R ‘: Code zur Erstellung der fertigen Datensétze
(nicht lauffihig).

helpfunctions.R ‘: Hilfs-Funktionen fiir andere Auswertungen.

descriptive_phenology.R ‘: Deskriptive Auswertung der Phénologie-Daten.

graphics_[chap4, chap5].R ‘: Code fiir die Grafiken in Kapitel 4 und 5.

- ‘ analysis_[hochschulen, phenologyl.R|: Code zur Analyse in Kapitel 8.

sub,krigingjlochschulen.R‘: Zusétzlicher Code zur Analyse der Hochschuldaten

mittels Kriging.
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B. Inhalt der CD-Rom

e Im Ordner ‘Masterarbeit / ‘ befinden sich folgende Dateien:

- ‘Masterarbeit.pdf ‘: Die Masterarbeit zum Druck formatiert.

- ‘Masterarbeit,elektronisch.pdf : Die Masterarbeit als elektronische Version.
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C. Eidesstattliche Erkldarung

Hiermit versichere ich, Christine Jula, die vorliegende Masterarbeit selbststéndig und lediglich

unter Benutzung der angegebenen Quellen und Hilfsmittel verfasst zu haben.

Miinchen, den 13. April 2015

Christine Jula
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