
INSTITUT FÜR STATISTIK
DER LUDWIG–MAXIMILIANS–UNIVERSITÄT MÜNCHEN
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Ludwig Bothmann

München, den 13. April 2015



Abstract

Grundlage vieler statistischer Modelle ist die Annahme unabhängiger Beobachtungen (gegeben

den Kovariablen). Es wird davon ausgegangen, dass Beobachtungen unter identischen Bedin-

gungen und unabhängig voneinander gewonnen werden und die Daten somit eine Zufallsstich-

probe bilden. Eine häufige Charakteristik räumlicher Daten ist jedoch die Tatsache, dass sich

räumlich nahe Beobachtungen ähnlicher sind als weit entfernte. Eine Folgerung daraus ist, dass

diese Daten nicht dem Paradigma der Unabhängigkeit folgen und somit einer Modellierung von

Abhängigkeiten bedürfen.

Die vorliegende Arbeit gibt einen Überblick über die Theorie zur Modellierung zweier räumlicher

Datentypen: geostatistische Daten und Gitterdaten. Bei geostatistischen Daten liegt die räum-

liche Information stetig, in Form von Koordinaten vor, bei Gitterdaten ist sie auf eine abzählbare

Menge an Regionen aggregiert. Es wird in beiden Fällen von einem zugrundeliegenden datenge-

nerierenden stochastischen Prozess ausgegangen.

Die gebräuchlichste Methode der Geostatistik ist das Kriging. Mit Hilfe des sogenannten Vario-

gramms werden hier räumliche Abhängigkeiten ausgedrückt und so die Schätzung von Werten

an unbeobachteten Orten ermöglicht.

Gitterdaten hingegen werden mittels Markov-Zufallsfeldern modelliert. Die Ähnlichkeit bzw.

Abhängigkeit zweier Regionen wird in diesem Fall über deren Nachbarschaftsverhältnis berück-

sichtigt.

Beide Ansätze lassen sich in die Theorie der Geoadditiven Modelle einbetten. Das Programm-

paket BayesX (Umlauf et al. 2015) stellt die nötigen Funktionen zur Verfügung um eine Aus-

wertung dieser Modelle in R (R Core Team 2014) durchzuführen.

Es wurden beispielhaft zwei Datensätze mit Hilfe der besprochenen Methoden analysiert. Bei

der Auswertung von relativen Grünwerten aus Webcam-Bildern zur Bestimmung phänologischer

Phasen konnte kein strukturierter räumlicher Effekt festgestellt werden. Es wurden deshalb

unabhängige zufällige Effekte zur Modellierung verwendet. Möglicherweise könnte das Modell

durch die Aufnahme weiterer Kovariablen (Regenfallmenge, Temperatur, Höhe des Standortes

etc.) weiter verbessert werden.

Bei der Analyse der Herkunft von Studienanfängern an der LMU wurde ein starker regionaler

Bezug bei der Studienortswahl festgestellt. Die Anzahl der Studienanfänger in den Kreisen nahm

mit der Entfernung zur Hochschule stetig ab. Beim räumlichen Effekt zeigte sich ein erhöhter

Erwartungswert in den südöstlichen Gebieten Bayerns. Außerdem scheint die Anziehungskraft

der eigenen Hochschule in Landkreisen mit Universitätsstadt größer zu sein, als die der LMU.
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5.2. Tests auf räumliche Autokorrelation . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.3. Penalisiertes KQ-Kriterium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.4. Markov-Zufallsfelder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6. Disease Mapping 34

6.1. Traditionelle Modelle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.2. Räumliche Modelle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7. Geoadditive Modelle - BayesX 38

iii



Inhaltsverzeichnis

8. Auswertung 41

8.1. Beispiel: Phänologie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

8.1.1. Deskriptive Analyse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

8.1.2. Modellvarianten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

8.2. Beispiel: Hochschulen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

8.2.1. Standard-Inzidenzraten (SIR) und p-Werte . . . . . . . . . . . . . . . . . 51
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1. Einführung

Everything is related to everything else, but near things

are more related than distant things.

(W.Tobler (1970): First law of geography)

Wir werden täglich mit räumlichen und räumlich-zeitlichen Daten konfrontiert. Dies geschieht im

normalen Alltag im Fernsehen, in Zeitungen oder immer mehr auch auf mobilen Geräten in Form

von Wetterkarten oder ähnlichem. Noch vor einigen Jahren war die handelsübliche Papierkarte

das Mittel der Wahl um Standorte festzustellen. In der heutigen Zeit verfügt so gut wie jeder

über einen GPS-Empfänger in Smartphone oder Tablet mit einer Ortsgenauigkeit von weniger

als 10 Metern. Auch durch solche technischen Entwicklungen rücken räumliche Daten immer

weiter in den Fokus des allgemeinen Interesses. Aber auch Statistiker müssen sich mit diesem

Thema auseinandersetzen. Jede Beobachtung beschreibt eine Eigenschaft an einem bestimmten

Ort im Raum zu einem bestimmten Moment der Zeit. Diese Tatsache wird in vielen Analysen

außer Acht gelassen, da Ort und Zeitpunkt als nicht relevant betrachtet werden (Bivand et al.

2013). Diese Arbeit beschäftigt sich mit dem Fall, dass die räumliche Komponente von speziellem

Interesse der Analyse ist.

Ziel der Analyse räumlicher Daten ist die Inferenz über Parameter, die den zugrundeliegenden

datengenerierenden Prozess erklären bzw. die Vorhersage von Werten an unbeobacheten Orten

im Raum (Interpolation).

Grundlage vieler statistischen Modelle ist die Annahme unabhängiger Beobachtungen (gegeben

den Kovariablen). Es wird davon ausgegangen, dass Beobachtungen unter identischen Bedin-

gungen und unabhängig voneinander gewonnen werden und die Daten somit eine Zufallsstich-

probe bilden. Eine häufige Charakteristik räumlicher Daten ist jedoch die Tatsache, dass sich

räumlich nahe Beobachtungen ähnlicher sind als weit entfernte. Eine Folgerung daraus ist, dass

diese Daten nicht dem Paradigma der Unabhängigkeit folgen und somit einer Modellierung von

Abhängigkeiten bedürfen. Diese Erkenntnis beschrieb Tobler (1970) als das “erste Gesetz der

Geographie”.

Die folgende Arbeit ist in drei thematische Abschnitte gegliedert. Zunächst wird in Kapitel 2 ein

allgemeines Modell räumlicher stochastischer Prozesse aufgestellt. Dieses wird in den Kapiteln

4 und 5 auf die Spezialfälle der Geostatistik und der Gitterdaten bzw. dem Disease-Mapping

(Kapitel 6) heruntergebrochen. Diese Kapitel stellen die jeweilige Theorie zur Modellierung der

Datentypen vor. Eine Auswertung zu den einführenden Beispielen aus Kapitel 3 auf Basis der
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1. Einführung

vorgestellten Theorie ist in Kapitel 8 zu finden. In Kapitel 7 werden die zuvor beschriebenen

Methoden in das Grundgerüst der Geoadditiven Modelle eingebaut. Außerdem wird in diesem

Zusammenhang das Programmpaket BayesX (Umlauf et al. 2015) vorgestellt. Alle statistischen

Analysen, die dieser Arbeit zugrunde liegen, wurden mit der Software R (R Core Team 2014)

durchgeführt. Die Shapefiles zur Erstellung der Karten stammen aus der GADM database of

Global Administrative Areas (2004) bzw. vom Bundesamt für Kartographie und Geodäsie (2011).
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2. Räumliche stochastische Prozesse

Das folgende Kapitel motiviert ein allgemeines Modell für räumliche Daten. Hierbei wurde sich

in Notation und Aufbau an Cressie (1993) gehalten. Um eine möglichst große Menge an Pro-

blemen mit diesem Modell angehen zu können, wird es innerhalb dieses Kapitels zunächst sehr

allgemein und somit flexibel gehalten. Die zugrundeliegenden Daten können stetig oder diskret

sein, punktuell oder räumlich aggregiert vorliegen und ihre Positionen können regulär, aber auch

irregulär sein. Die notwendigen Einschränkungen für die einzelnen Datentypen werden dann in

den nachfolgenden Kapiteln genauer besprochen.

Sei s ∈ Rd eine Lokation im d-dimensionalen euklidischen Raum und sei Z(s) eine Zufallsvariable.

Dann beschreibt

{Z(s) : s ∈ D} (2.1)

ein multivariates Zufallsfeld (bzw. Zufallsprozess) mit der Indexmenge D ⊂ Rd. Eine Realisation

dieses Zufallsfeldes wird mit {z(s) : s ∈ D} gekennzeichnet.

Cressie (1993) nimmt D dabei als zufällig an, um mit Hilfe dieses Modells auch Punktprozesse

beschreiben zu können. Da diese nicht Teil dieser Arbeit sind, wird D hier als fest angenommen.

Kapitel 4 und 5 beschäftigen sich mit folgenden Spezialfällen von (2.1) (vgl. Cressie (1993)):

• Kapitel 4: Geostatistische Daten. D ist eine feste Teilmenge von Rd, welche ein d-dimen-

sionales Rechteck positiven Volumens enthält; Z(s) ist eine Zufallsvariable an der Stelle

s ∈ D.

• Kapitel 5: Gitterdaten.D ist eine feste (reguläre oder irreguläre) Menge abzählbarer Punkte

aus Rd; Z(s) ist eine Zufallsvariable an der Stelle s ∈ D.

Die in dieser Arbeit verwendeten Methoden sind auch auf den univariaten Fall der Zeitreihen

anwendbar. Zeitreihen unterliegen generell der gleichen Theorie wie Räumliche Prozesse (in R1).

Um diese jedoch abgrenzen zu können, wird in diesem Fall meist der Index t verwendet, sodass

(2.1) umgeschrieben wird in

{Z(t) : −∞ < t <∞}. (2.2)

Dieser Fall ist in dieser Arbeit aber nicht von speziellem Interesse, sodass sich auf die Definition

in (2.1) beschränkt werden kann.

3



3. Datentypen und einführende Beispiele

In der Literatur über räumliche Daten wird generell zwischen drei verschiedenen Datentypen

unterschieden:

• Geostatistische Daten

• Gitter- bzw. Pixeldaten

• Punktprozesse

Diese werden nun einzeln genauer vorgestellt und anhand von Datenbeispielen erläutert. Punkt-

prozesse sind nicht Teil dieser Arbeit und werden deshalb hier nur am Rande betrachtet.

In allen Fällen wird als Grundlage der Daten, wie in Kapitel 2 besprochen, ein Zufallsprozess

{Z(s) : s ∈ D}

angenommen.

3.1. Geostatistische Daten

Im Fall geostatistischer Daten variiert s stetig im d-dimensionalen Euklidischen Raum innerhalb

der Indexmenge D (Region). In den meisten Anwendungen wird dies auf R2 und R3 einge-

schränkt. Die Lokationen s bestehen dann aus stetigen x- und y-, bzw. x-, y- und z-Koordinaten,

also:

s = (sx, sy)
T ∈ R2 bzw. s = (sx, sy, sz)

T ∈ R3

mit den zugehörigen Daten z(s1), . . . , z(sn), an n vorgegebenen Lokationen s1, . . . , sn.

Beispiel: Phänologie

Ein wichtiges Thema unserer Zeit sind die Auswirkungen des Klimawandels. Ein wichtiger In-

dikator hierfür stellt die Phänologie, also die Studie im Jahresablauf periodisch wiederkehren-

der Naturereignisse dar. Es werden hier Eintrittszeiten biologischer Prozesse festgehalten, wie

z.B. das erste Blühen von Pflanzen. Veränderungen im Zeitablauf können auf den Klimawandel

zurückgeführt werden.
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3. Datentypen und einführende Beispiele

Eine beliebte Methode zur Bestimmung phänologischer Phasen stellt die Messung von Grün-

werten auf Basis von Webcam-Bildern dar. Ansteigende Temperaturen und veränderte Licht-

verhältnisse im Frühling geben das Startsignal zum Ergrünen der Vegetation. Dieser Anstieg

spiegelt sich im Grünwert aufgenommener Webcam-Bilder wider.

Dhital (2011) sammelte Webcam-Bilder von 500 verschiedenen Stationen in Deutschland mit

Vorliegen von Vegetation. Auf Grund von Qualitätsmängeln wurden nur 182 für die weitere

Analyse ausgewählt. Es wurden vom 25. März bis zum 8. Juni 2011 täglich Bilder gespeichert

und die Grünwerte extrahiert. Hierfür wurden für jede Station sogenannte ROIs (engl. “regions

of interest”) ausgewählt und eine Maske über das Bild gelegt (vgl. Abbildung 3.1).

Abbildung 3.1.: Beispiel analysierter ROIs für die Webcam Clausthal-Zellerfeld am DOY 247; Quelle:
Dhital (2011).

Das Zeitfenster entspricht den Tagen (DOY=“day of year”) 84 bis 159 des Jahres 2011. Das

genaue Vorgehen kann in der Arbeit (Dhital 2011) nachgelesen werden.

Die entstandenen Daten wurden zur weiteren Analyse für diese Arbeit zur Verfügung gestellt.

Für jede Station liegen die Koordinaten der Kamera und die gemessenen relativen Grünwerte

vor. Der relative Grünwert berechnet sich aus dem Anteil des Grünwertes an der Summe der

Rot-/Grün- und Blauwerte des jeweiligen Bildes, d.h.

relG =
G

G + R + B
.

Abbildung 3.2 zeigt die gemessenen relativen Grünwerte an den Stationen beispielhaft für DOY

84. Abbildung 3.3 zeigt die aggregierten Daten über die Zeit. Es lässt sich ein Anstieg des

relativen Grünwertes bis etwa zum DOY 120 erkennen. Die Tage 141 bis 143 fehlen aufgrund

eines technischen Problems mit dem Server, auf dem die Bilder gespeichert wurden.
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3. Datentypen und einführende Beispiele
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Abbildung 3.2.: rel. Grünwerte der einzelnen Stationen für DOY 84.
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Abbildung 3.3.: Zeitreihe von DOY 84 bis 159.
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3. Datentypen und einführende Beispiele

Das Ziel der bisherigen Analyse war die Identifikation verschiedener phänologischer Zeitpunkte.

Für den Frühling waren dies

• der Start der Wachstumszeit (SOS -“start of growing season”) - Datum des Erscheinens

erster Blätter,

• die Reife der Blätter (MAT - “maturity of the leaf”) - Datum der vollen Reife des Laubs.

Zur Schätzung wurde die zweite Ableitung einer geglätteten Funktion über die relativen Grün-

werte berechnet. SOS und MAT wurden dann auf den Tag des Maximums (SOS) bzw. Minimums

(MAT) der zweiten Ableitung gesetzt.

Zweck der vorliegenden Arbeit ist der Einbezug räumlicher Strukturen in die Analyse.

3.2. Gitterdaten

Im Fall von Gitterdaten besteht die IndexmengeD ⊂ Rd aus einer abzählbaren Menge räumlicher

Einheiten mit wohldefinierten Grenzen, in denen Daten beobachtet wurden. Die räumliche In-

formation liegt diskret in Form eines räumlichen Indizes s ∈ {1, . . . , S} vor. Das Gitter kann

dabei unregelmäßig (z.B. administrative Einheiten wie Landkreise) oder regelmäßig (z.B. Pixel

in einem Bild) sein.

Beispiel: Studierendenzahlen der LMU

Im Rahmen eines Consulting Projektes des Instituts für Statistik in Kooperation mit der Stab-

stelle Strategie und Entwicklung der Ludwig-Maximilians-Universität München wurde die Ent-

wicklung der Studierendenzahlen an der LMU im Vergleich zu anderen Hochschulen des Bun-

desgebiets betrachtet.

Grundlage der Analyse war die Statistik der Studenten [Erhebungsjahre: 2004-2011] der Statis-

tischen Ämter des Bundes und der Länder.

Die Erhebung erfolgt über die Verwaltungsdaten der Hochschulen, welche für administrative

Zwecke erhoben werden. Es handelt sich somit um eine Sekundärstatistik.

Enthalten sind u.a. soziodemografische Merkmale der Studierenden (Geschlecht, Geburtsdatum,

Staatsangehörigkeit), Informationen zum Studium im Berichts- und im vorhergehenden Semester

(Hochschule, Art der Einschreibung und des Studiums, angestrebte Abschlussprüfung, Studien-

fach), zu bereits vor dem Berichtssemester abgelegten Abschlussprüfungen und dem Erwerb der

Hochschulzugangsberechtigung.

Der Datenzugang zur Studentenstatistik erfolgt über das Forschungsdatenzentrum München via

On-Site-Nutzung am Gastwissenschaftlerarbeitsplatz. Dort “stehen PC-Arbeitsplätze bereit, an

denen faktisch anonymisierte Einzeldaten in den geschützten Räumen der amtlichen Statistik

von Gastwissenschaftlern analysiert werden können. Die faktische Anonymität wird hierbei nicht

allein durch die Anonymisierung der Daten erreicht, sondern in Kombination mit einer Regulie-

rung des Datenzugangs”(Statistische Ämter des Bundes und der Länder 2015).
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3. Datentypen und einführende Beispiele

Ein Teilbereich der Analyse stellte die Betrachtung des Einzugsraums der verschiedenen Univer-

sitäten dar. Als Indikator der Herkunft der Studierenden wurde der Ort, an dem die Hochschul-

zugangsberechtigung (HZB) erworben wurde, verwendet. Abbildung 3.4 zeigt die Herkunft der

Studienanfänger an der LMU im Jahre 2004 mit Hilfe des Standardized Incidence Ratio’s (SIR).

Dieses setzt die beobachtete Anzahl an Studenten ins Verhältnis zu der erwarteten Anzahl (für

eine genauere Erläuterung siehe Kapitel 6).

6°E 8°E 10°E 12°E 14°E

48
°N

50
°N

52
°N

54
°N

[0,0.0567]
(0.0567,0.156]
(0.156,0.428]
(0.428,1.18]
(1.18,3.24]
(3.24,8.9]
(8.9,24.5]

Abbildung 3.4.: Herkunft der Studierenden der LMU 2004 (Standardized Incidence Ratio - SIR).

Für diese Arbeit wurde dieses Thema noch einmal aufgegriffen und mit Hilfe von Modellen aus

der räumlichen Statistik analysiert. Dabei wurde die Analyse am Beispiel der LMU für die Jahre

2004 und 2011 durchgeführt. Zusätzlich wurde ein Vergleich mit der Humboldt-Universität zu

Berlin angestrengt. Eine gleichzeitige Modellierung aller vorhandenen Jahre war nicht möglich,

da es im betrachteten Zeitraum immer wieder zu Gebietsreformen innerhalb des Bundesgebietes

kam. Dadurch wurden die Grenzen zwischen den einzelnen Regionen geändert, sodass die vorlie-

genden Daten nicht in einem gemeinsamen Modell beschrieben werden können. Dieses Problem

wird auch als “modifiable areal unit problem” bezeichnet und ist z.B. in Cressie (1996) näher

beschrieben.
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3. Datentypen und einführende Beispiele

3.3. Punktprozesse

Bei der Analyse von Punktprozessen liegt das Interesse daran, wo ein Ereignis auftritt. Die Index-

menge D ist in diesem Fall zufällig und beschreibt die Menge D = {s1, . . . , sn}, wobei s1, . . . , sn

die Lokationen zufälliger Ereignisse darstellen. Die Daten z(s) enthalten die Information, ob das

Ereignis eingetreten ist, oder nicht.

Es könnten z.B. die Positionen von Pflanzen in einem bestimmten Ausschnitt betrachtet werden.

Typische Fragestellungen bei der Analyse von Punktprozessen sind:

• Ist die Verteilung zufällig?

• Bilden sich Cluster? (Aggregation)

• Bilden sich reguläre Strukturen? (Abstoßung, Disaggregation)

Die genauere Betrachtung dieses Datentyps ist nicht Teil dieser Arbeit. Ein guter Überblick

findet sich beispielsweise in Diggle (2003). Hinweise über die Auswertung mit Hilfe von R findet

sich außerdem in Bivand et al. (2013).
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4. Geostatistische Daten

Wie in Kapitel 2 beschrieben, lassen sich die Daten als Realisationen eines Zufallsprozesses

{Z(s) : s ∈ D} ausdrücken. Im Fall geostatistischer Daten variiert s stetig im d-dimensionalen

Euklidischen Raum innerhalb der Indexmenge D (Region). In den meisten Anwendungen wird

dies auf R2 und R3 eingeschränkt. Die Lokationen s bestehen dann aus stetigen x- und y-, bzw.

x-, y- und z-Koordinaten, also:

s = (sx, sy)
T ∈ R2 bzw. s = (sx, sy, sz)

T ∈ R3

mit den zugehörigen Daten z(s1), · · · , z(sn), an n vorgegebenen Lokationen s1, · · · , sn.

Die Geostatistik beschäftigt sich also mit der Analyse von Zufallsfeldern Z(s). Dabei sind typi-

scherweise Messungen an einer limitierten Menge (von manchmal zufällig gewählten) Lokationen

vorhanden und die Vorhersage von Z an nicht beobachteten Lokationen s0 wird benötigt.

Abbildung 4.1.: Veranschaulichung des Ziels der geostatistischen Analyse.

Grundbaustein der Geostatistik ist das Verfahren des Kriging. Ziel des Verfahrens ist die Vorher-

sage von unbeobachteten Messwerten auf Basis der beobachteten Werte Z(s1), . . . , Z(sn). Dabei

sollen Lokationen mit höherer räumlicher Korrelation zum Punkt s0 auch ein höheres Gewicht

in der Berechnung bekommen. Der Berechnung der Gewichte wird somit ein geostatistisches

Modell zugrunde gelegt. Gesucht ist also ein Schätzer

Ẑ(s0) =

n∑
i=1

wiZ(si).

Die folgenden Abschnitte motivieren die Grundlagen für das Verfahren des Kriging. Dabei wird

zunächst der Gauß-Prozess definiert sowie die Annahmen der Stationarität und Isotropie ein-

geführt. Danach werden das (Semi-)Variogramm und die einzelnen Formen des Kriging vorge-

stellt.

10



4. Geostatistische Daten

4.1. Stationäre, räumliche Gaußprozesse

Für die Bestimmung der Kriging-Gewichte wird ein Modell der räumlichen Korrelation der

Messstationen benötigt. Korrelationen werden im Normalfall, wenn mehrere Datenpaare {x, y}
vorhanden sind, aus dem Scatterplot geschätzt. Die räumliche Korrelation zweier Beobachtungen

z(s) an den Stellen s1 und s2 kann nicht geschätzt werden, da nur ein einzelnes Paar vorhanden

ist (Bivand et al. 2013). An jedem Ort kann nur genau eine Erhebung durchgeführt werden.

Erhobene geostatistische Daten stellen also eine unvollständige Stichprobe einer einzelnen Rea-

lisation des Zufallsprozesses Z dar (Cressie 1993). Dieses Problem wird in der Geostatistik damit

gelöst, dass fehlende Messwiederholungen durch Werte an anderen Orten ersetzt werden. Dafür

müssen die Werte jedoch der gleichen Grundgesamtheit entstammen. Es bedarf somit weiterer

Annahmen über Z um eine Inferenz möglich zu machen (Cressie 1993). Diese werden im Folgen-

den erläutert. Dabei wird auf die Ausführungen in Schaeben et al. (2013, S. 28f) zurückgegriffen,

welche eine gute Übersicht verschaffen.

Es wird im Weiteren vom einfachen Modell

Z(s) = µ(s) + ε(s)

ausgegangen.

Eine starke Annahme über die Wahrscheinlichkeitsstruktur wäre die der starken Stationarität.

Diese liegt vor, wenn die endlich-dimensionalen Verteilungen verschiebungsinvariant sind. Dies

bedeutet, dass jede der n Zufallsvariablen Z(s1), . . . , Z(sn) die gleiche Verteilung aufweist.

In der Geostatistik spielen jedoch meist nur die ersten zwei Momente der Verteilung eine Rolle,

sodass man sich auf die Definition der schwachen Stationarität beschränken kann.

Das erste Moment entspricht dem Erwartungswert von Z(s). Dieser ist abhängig von s, d.h.:

E[Z(s)] = µ(s)

Die verschiedenen zweiten Momente definieren Schaeben et al. (2013) wie folgt:

a) Varianzfunktion

V ar[Z(s)] = E[(Z(s)− µ(s))2]

b) Kovariogramm

Cov[Z(s), Z(s′)] = c(s, s′) = E[(Z(s)− µ(s))(Z(s′)− µ(s′))]

c) Variogramm (Varianz des Inkrements zweier Zufallsvariablen)

2γ(s, s′) = V ar[Z(s)− Z(s′)]

Das Kovariogramm, sowie das Variogramm sind beide von den Punkten s und s′ abhängig.

11



4. Geostatistische Daten

Nimmt man nun einen konstanten Erwartungswert

E[Z(s)] = µ = const., ∀s ∈ D,

an und fordert weiterhin, dass das Kovariogramm nur von der Differenz (dem Abstandsvektor

h) zweier Punkte abhängt, nicht aber von deren genauen Lage im Raum, also dass gilt:

Cov[Z(s), Z(s′)] = c(s− s′) für alle s, s′ ∈ D

so liegt schwache Stationarität vor.

Definition: Schwache Stationarität

Der (räumliche) SP Z = {Z(s), s ∈ D} heißt schwach stationär, wenn gilt

a) E[Z(s)] = µ = const.,

b) Cov[Z(s+ h), Z(s)] = c(h) ∀s ∈ D

Unter der Annahme schwacher Stationarität hängt auch das Variogramm nur vom Abstands-

vektor h ab, d.h.:

V ar[Z(s+ h)− Z(s)] = E[Z(s+ h)− Z(s))2] = 2γ(h).

Zusätzlich ergibt sich eine konstante Varianz

V ar[Z(s)] = c(0) = σ2 = const ∀s ∈ D. (4.1)

Es gilt außerdem die Beziehung

V ar[Z(s+ h)− Z(s)] = V ar[Z(s+ h)] + V ar[Z(s)]− 2Cov[Z(s+ h), Z(s)] (4.2)

Mit 4.1 und 4.2 lässt sich lässt sich das Variogramm 2γ(h) ausdrücken durch

2γ(h) = 2(c(0)− c(h)) = 2(σ2(1− ρ(h)),

wobei ρ(h) = c(h)
c(0) dem Korrelogramm entspricht. Kovariogramm und Variogramm stellen somit

gleichwertige Beschreibungen der Autokorrelation dar.

Da nicht immer eine endliche Varianz existiert, wie sie die Annahme der schwachen Stationarität

verlangt (vgl. (4.1)), wird in der Geostatistik meist die Form der intrinsischen Stationarität

verwendet.
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4. Geostatistische Daten

Die Hypothese lautet in diesem Fall:

Definition: Intrinsische Stationarität

Z intrinsisch stationär ⇔

a) E[Z(s)] = µ = const. ∀s ∈ D,

b) 1
2V ar[Z(s+ h)− Z(s)] = γ(h) ∀s ∈ D

Es gilt:

Satz:

Z stark stationär ⇒ Z schwach stationär ⇒ Z intrinsisch stationär

Unter den vorgestellten Hypothesen hängt das (Ko-)Variogramm vom Abstandsvektor h ab.

Somit spielen die Länge und Richtung des Vektors zwischen zwei Punkten eine Rolle. Kann die

Richtung vernachlässigt werden, spricht man von einem isotropen räumlichen Prozess. Bei einem

anisotropen räumlichen Prozess ist die Korrelation hingegen richtungsabhängig.

Im Folgenden wird implizit (soweit nicht anders angegeben) ein isotroper Prozess angenommen,

sodass der Abstandsvektor h durch den euklidischen Abstand h = ‖h‖ ersetzt wird.

Definition: Isotropie und Anisotropie

Sind c(h) = c(‖h‖) bzw. γ(h) = γ(‖h‖) nur Funktionen des euklidischen

Abstands ‖h‖, so heißt Z bzw. c/γ isotrop; ansonsten anisotrop.

Unter der Annahme intrinsischer Stationarität können also mit Hilfe des Variogramms Aussagen

über die räumliche Korrelation getroffen werden, da nicht mehr die genaue Lage der Messungen,

sondern nur deren Abstand h eine Rolle spielt.
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4. Geostatistische Daten

4.2. Variogramm

Im vorherigen Abschnitt wurde hergeleitet, dass das Variogramm das wichtigste Werkzeug der

Geostatistik darstellt. Mit ihm lassen sich Aussagen über die räumliche Struktur des Zufallspro-

zesses treffen. Darum wird im Folgenden auf Eigenschaften und die Schätzung des Variogramms

eingegangen.

4.2.1. Eigenschaften

Das Variogramm ist in der Regel eine monoton wachsende Funktion. Der Zusammenhang zweier

Zufallsvariablen eines räumlichen Prozesses nimmt meist mit ihrem Abstand ab. Somit nimmt

die Varianz der Differenz der beiden, also das Variogramm zu (vgl. Abbildung 4.2).

Abstand h

γ(
h)

c(
h)

γ(h)

c(h)

Abbildung 4.2.: Variogramm und Kovariogramm.

Das Verhalten des Variogramms im Ursprung informiert über die Stetigkeits- und Differenzier-

barkeitseigenschaften des Prozesses Z(·). Die üblichen Fälle wurden von Matheron (1971, S.58)

betrachtet und in Cressie (1993) noch einmal zusammengefasst:

1. 2γ(·) ist stetig im Ursprung. Dann ist Z(·) L2-stetig.

2. 2γ(h) ist d-mal differenzierbar in h=0. Dann ist Z(·) L2-differenzierbar für alle s ∈ Rd.

3. 2γ(h) nähert sich nicht der 0, wenn sich h dem Ursprung nähert. Dann ist Z(·) nicht

L2-stetig und höchst irregulär. Diese Diskontinuität wird als Nugget-Effekt bezeichnet.

4. 2γ(·) ist eine positive Konstante (außer am Ursprung, wo es 0 ist). Dann sind Z(s) und

Z(s′) unkorreliert für alle s 6= s′, egal wie nah sie sich sind. Z(·) wird oft als weißes

Rauschen (white noise) bezeichnet.
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4. Geostatistische Daten

Das Variogramm lässt sich mit einigen Kennzahlen näher beschreiben. Diese werden im Folgen-

den vorgestellt. Zur Veranschaulichung dient Abbildung 4.3.

Nugget Effekt

Die Definition des Nugget-Effekts ist in der Literatur nicht einheitlich formuliert. Im Folgenden

werden die Annahmen aus Cressie (1993) vorgestellt.

Definitionsgemäß gilt γ(0) = 0. Weiterhin wird c0 mit

γ(h)→ c0 > 0 für h→ 0

als Nugget-Effekt bezeichnet. Dieser Ausdruck stammt von Matheron (1962) und ergibt sich aus

der Hypothese einer “microscale variation” (kleine Klumpen/Nuggets), die eine Diskontinuität

am Ursprung verursacht. Für einen L2-stetigen Prozess ist dies mathematisch nicht möglich.

Sobald also Stetigkeit des Phänomens auf der Mikroebene angenommen wird, kann c0 > 0 nur

einem Messfehler zugeschrieben werden. Im Folgenden bezeichnet cME die Messfehlervarianz

(engl. measurement-error variance).

Matheron (1962) geht davon aus, dass die “microscale variation” nicht stetig ist und fügt zur

Modellierung des Prozesses geringer Entfernungen einen White-Noise-Prozess zu einem Prozess

stetiger Sample-Pfade hinzu. Da im Normalfall keine Daten für so nah beieinanderliegende Orte

zur Verfügung stehen, kann diese Annahme nicht überprüft werden.

Die Varianz des White-Noise-Prozesses wird mit cMS bezeichnet. Daraus ergibt sich dann

c0 = cMS + cME .

Sill

Der Schwellenwert (sill) entspricht dem höchsten Wert, welchem sich die Variogrammkurve asym-

ptotisch annähert. Je größer der Abstand h zweier Punkte wird, desto niedriger wird die Korre-

lation, sodass

2γ(h) = 2σ2(1− ρ(h))→ 2σ2, für h→∞

Range

Der Range entspricht dem Abstand h bei dem zwei Punkte im Raum mit einer größeren Entfer-

nung als h als vernachlässigbar korreliert angesehen werden können. Dies kommt dem Abstand

h gleich, bei dem die Kurve den Sill erreicht.

15



4. Geostatistische Daten

distance

se
m

iv
ar

ia
nc

e

0.2

0.4

0.6

500 1000 1500

range

nugget

partial sill

Abbildung 4.3.: Empirisches Variogramm und gefittetes Modell; Quelle: Bivand et al. (2013).
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4.2.2. Typische Probleme

Anisotropie

Sobald die Abhängigkeit zwischen Z(s) und Z(s′) eine Funktion der Länge und der Richtung

des Vektors h zwischen den beiden Punkten ist, liegt Anisotropie vor.

Bei der sogenannten geometrischen Anisotropie ist der Sill für alle Richtungen identisch, die

Range unterscheidet sich jedoch. Dies kann durch eine lineare Transformation des Abstands-

vektors h korrigiert werden (siehe Fahrmeir et al. (2009)). Dabei ersetzt man den euklidischen

Abstand

‖s1 − s2‖ =
√

(s1 − s2)′(s1 − s2)

durch √
(s1 − s2)′R(ψ)′D(δ)R(ψ)(s1 − s2),

wobei R(ψ) eine Rotationsmatrix mit Anisotropie-Winkel ψ ∈ [0, 2π] bezeichnet, also

R(ψ) =

(
cos(ψ) sin(ψ)

−sin(ψ) cos(ψ)

)
,

und D(δ) eine Dehnungsmatrix mit Anisotropieverhältnis δ ≤ 1, d.h.

D(δ) =

(
δ−1 0

0 1

)
.

Schwieriger wird es für die zonale Anisotropie. In diesem Fall ist der Sill für verschiedene Rich-

tungen unterschiedlich.

Der gesamte Prozess zerfällt dabei in unabhängige Subprozesse (Cressie 1993)

Z(s) = Z1(s) + Z2(s) + · · ·+ Zp(s), s ∈ D

mit einer Variogramm-Zerlegung

2γ(h) = 2γ1(h) + 2γ2(h) + · · ·+ 2γp(h)

Selbst wenn jeder dieser Subprozesse einer einfachen geometrischen Anisotropie folgt, kann es

unmöglich sein, diese auf Basis des beobachteten Prozesses Z(·) zu identifizieren.

Anisotropie lässt sich durch die Berechnung direktionaler Variogramme aufzeigen. Dabei werden

für verschiedene Winkelbereiche (Richtung+Toleranzbereich) Gruppen gebildet und separate

Variogramme geschätzt.

Drift und Hole-Effekt

Aus dem Variogramm lassen sich noch weitere Abweichungen von den Annahmen erkennen.
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4. Geostatistische Daten

In Abbildung 4.4 erreicht das Variogram nicht, oder nur scheinbar den Schwellenwert (Sill). Da-

nach steigen die Werte weiter an. Der sogenannte Drift-Effekt deutet auf eine Verletzung der

Stationaritätsannahme hin. Der Erwartungswert ist nicht konstant über das Untersuchungsge-

biet.
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●

Abstand h

γ(
h)

Abbildung 4.4.: Drift-Effekt.

In Abbildung 4.5 wird der Schwellenwert (Sill) scheinbar erreicht, danach fallen die Vario-

grammwerte wieder. Dies deutet auf regelmäßige Strukturen hin, bei denen sich die Werte in

regelmäßigen Abständen wieder stärker ähneln. Bezeichnet wird dieser Effekt mit Hole-Effekt.
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Abstand h

γ(
h)

Abbildung 4.5.: Hole-Effekt.

18



4. Geostatistische Daten

4.2.3. Empirisches Variogramm

Ein empirischer Schätzer für das Variogramm ist, unter der Annahme eines konstanten Mittel-

wertes, gegeben durch (Matheron 1962)

2γ̂(h) =
1

|N(h)|
∑
N(h)

(Z(si)− Z(sj))
2 (4.3)

mit N(h) = {(si, sj) : ||si − sj || = h; i, j = 1, . . . , n} und |N(h)| Anzahl verschiedener Paare in

N(h).

In den meisten Anwendungen sind die Daten irregulär, sodass |N(h)| sehr klein wird und der

Schätzer instabil ist. Es wird dann eine “Toleranzregion” um h spezifiziert und der Schätzer

somit über Intervalle, anstatt über genaue Abstände berechnet.

Es ergibt sich so der Schätzer (vgl. Cressie (1993))

2γ̂(h) = ave
{

(Z(si)− Z(sj))
2 : (i, j) ∈ N(h);h ∈ T (h)

}
, (4.4)

wobei T (h) der Toleranzregion in über h entspricht und ave{·} einen möglicherweise gewichteten

Durchschnitt bezeichnet. Es ergibt sich hieraus eine Treppenfunktion über eine definierte Anzahl

an Abstandsintervallen.

Der entstehende Schätzer ist ähnlich wie bei der Histogrammschätzung abhängig von den ge-

wählten Intervallen. Eine naheliegende Überlegung ist dann eine “moving average”-Schätzung

analog zur Kerndichteschätzung.

4.2.4. Theoretische Variogramme

Das bisher betrachtete empirische Variogramm dient als Näherung des theoretischen Vario-

gramms. Die Anpassung eines parametrischen Modells an die Daten geschieht aus zwei Gründen:

• Die räumliche Interpolation (Kriging) benötigt Schätzer des Variogramms γ(h) auch für

Abstände h, die nicht in den Daten vorhanden sind.

• Die Vorhersage-Varianzen der geschätzten Werte müssen nicht-negativ sein (Bivand et al.

2013). Dies kann durch das empirische Variogramm nicht garantiert werden (siehe Cressie

(1993) für genauere Betrachtung).

Ein gültiges Modell für die Semivarianz muss bedingt negativ-definit sein, d.h.

m∑
i=1

m∑
j=1

aiaj2γ(si − sj) ≤ 0,

für jegliche endliche Anzahl an räumlichen Lokationen {si : i = 1, . . . ,m} und reelle Zahlen

{ai, i = 1, . . . ,m} welche die Gleichung
∑m

i=1 ai = 0 erfüllen.
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Klassische parametrische Modelle werden nun im Folgenden vorgestellt:

Sphärisches Modell

γ(h) =


0 für h = 0,

c0 + c1

(
3h
2a −

1
2

(
h
a

)3)
für 0 < h ≤ a,

c0 + c1 für h ≥ a.

Exponentielles Modell

γ(h) =

0 für h = 0,

c0 + c1(1− e−h/a) für h 6= 0.

Gauß’sches Modell

γ(h) =

0 für h = 0,

c0 + c1(1− e−(h/a)2) für h 6= 0.

Matern Modell

γ(h) =

0 für h = 0,

c0 + c1

[
1− 1

2κ−1Γ(κ)

(
h
a

)κ
Kκ

(
h
a

)]
für h 6= 0,

wobei Kκ der Bessel-Funktion entspricht und κ > 0. Die Darstellung dieser Familie ist nur

mit Hilfe der modifizierten Bessel-Funktionen der Ordnung κ möglich. Diese sind nur numerisch

auswertbar und lassen sich nicht explizit darstellen. Für κ = 0.5, 1.5, 2.5, . . . sind jedoch explizite

Formen möglich (siehe z.B. Fahrmeir et al. (2009)). Für κ = 0.5 entspricht die Matern-Funktion

dem Exponential-Modell.

Abbildung 4.6 zeigt die vorgestellten Modelle beispielhaft mit einem Nugget-Effekt von 0.1

und einem partial sill von 1. Für κ wurde 0.3 gewählt um den Unterschied vom Matern- zum

Exponential-Modell erkennen zu können. Im Falle, dass das Variogramm nur asymptotisch den

Sill erreicht (Exponential- und Gauß-Modell), wird der sogenannte effektive Range betrachtet.

Dieser ist definiert als die Distanz, an der die Semivarianz 95% des Sills erreicht. Der effektive

Einflussbereich entspricht, bei gefittetem Range a, 3a im Exponential- bzw.
√

3a im Gauß-

Modell.
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Abbildung 4.6.: Parametrische Variogramm-Modelle.
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4.3. Kriging

Ziel der Geostatistik ist die Vorhersage bzw. Interpolation von Variablenwerten Z(s0) auf Basis

von beobachteten Messwerten Z(s1), . . . , Z(sn) in der Nachbarschaft. Das klassische Instrument

der Geostatistik hierfür ist das sogenannte Kriging. Der Name stammt von Matheron (1963),

welcher das Verfahren nach D.G. Krige, einem südafrikanischen Bergbauingenieur benannte.

Dieser entwickelte in den 1950er Jahren eine empirische Methode, um die Verteilung von Erzge-

halten basierend auf Stichproben zu bestimmen (siehe Krige (1951)). Cressie (1990) bezeichnet

die Methode auch als spatial optimal linear prediction, bei der der unbekannte Erwartungswert

des Zufallsprozesses durch den besten linearen unverzerrten Schätzer (best linear unbiased esti-

mator = BLUE) geschätzt wird. Optimal ist der Schätzer in Hinsicht auf die Minimierung des

mittleren quadratischen Vorhersagefehlers (engl. mean squared prediction error)

MSPE = E

[(
Z(s0)− Ẑ(s0)

)2
]

= V ar
[
Z(s0)− Ẑ(s0)

]
.

Dieser wird auch mit Kriging-Varianz bezeichnet.

Es gibt unterschiedliche Formen des Kriging, die sich darin unterscheiden, welche Annahmen

über den Erwartungswert getroffen werden. Diese werden nun im Folgenden vorgestellt.

4.3.1. Einfaches (simple) Kriging

Beim einfachen Kriging wird angenommen, dass µ bekannt ist. Diese Annahme ist in den

meisten Anwendungen unrealistisch. Deshalb wird hier auf eine genauere Herleitung der Krige-

Gleichungen verzichtet. Eine detaillierte Betrachtung hierzu findet sich in Cressie & Wikle (2011,

Kap. 4.1.2).

4.3.2. Gewöhnliches (ordinary) Kriging

Beim gewöhnlichen Kriging wird der Erwartungswert als konstant, aber unbekannt angenommen.

Es gilt das constant-mean-Modell

Z(s) = µ+ δ(s), s ∈ D,

wobei µ ∈ R unbekannt und δ(·) ein zero-mean intrinsisch stationärer Prozess mit Variogramm

2γ(·) ist. Es gilt also

E[Z(s)] = µ, für alle s ∈ D.

Gesucht wird ein Schätzer

Ẑ(s0) =
n∑
i=1

λiZ(si).

mit den Kriging-Gewichten λ1, . . . , λn, der den mittleren quadratischen Vorhersagefehler bzw.

die sogenannte Kriging-Varianz minimiert.

22



4. Geostatistische Daten

Neben der Minimierung des MSPE soll Erwartungstreue des Schätzers gelten. Zu diesem Zweck

wird die Nebenbedingung
n∑
i=1

λi = 1 (4.5)

eingeführt. Diese garantiert Erwartungstreue wegen

E

(
n∑
i=1

λiZ(si)

)
− µ !

= 0

⇔
n∑
i=1

λiE(Z(si))− µ = 0

⇔ µ ·
n∑
i=1

λi − µ = 0

⇔
n∑
i=1

λi = 1.

Unter der Annahme intrinsischer Stationarität lässt sich die Krige-Varianz über das Variogramm

ausdrücken. Um zusätzlich die Nebenbedingung 4.5 zu berücksichtigen wird der Lagrange-

Multiplikator m eingeführt. Somit ergibt sich der zu minimierende Term wie folgt (Herleitung

siehe Cressie (1993)):

−
n∑
i=1

n∑
j=1

λiλjγ(si − sj) + 2 ·
n∑
i=1

λiγ(s0 − si)− 2m

(
n∑
i=1

λi − 1

)
. (4.6)

Ableiten von 4.6 nach λ1, . . . , λn bzw. m und Nullsetzen ergibt die Krigegleichungen

−
n∑
j=1

λjγ(si − sj) + γ(s0 − si)−m = 0 i = 1, . . . , n (I)

n∑
i=1

λi = 1 (II)

Aus diesem Gleichungssystem lassen sich nun die Gewichte λ1, . . . , λn bestimmen.

Die Krigevarianz ist hier

σ2
ok(s0) =

n∑
i=1

λiγ(s0 − si) +m.

Sie hängt nur von den Gewichten, den Messlokationen und dem Variogramm, nicht aber von

den eigentlichen Messwerten ab.
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Beispiel

● ● ●

s1 s0 s2

z1 = 3 z0 = ? z2 = 6
h=1 h=2

Abbildung 4.7.: Beispiel Krige-Gleichungen.

Annahme: Es liegt ein isotroper, intrinsisch stationärer Prozess mit linearem Vario-

gramm vor, d.h. γ(h) = |h|.
Geg: s1 = (1, 0), s2 = (4, 0), s0 = (2, 0), z(s1) = 3, z(s2) = 6

Ges: z(s0)

Krigegleichungen:

−3λ2 + 1−m = 0 (I)

−3λ1 + 2−m = 0 (II)

λ1 + λ2 = 1 (III)

Daraus folgt: λ1 = 2
3 , λ1 = 1

3 und somit ẑ(s0) = 2
3 ∗ 3 + 1

3 ∗ 6 = 4

4.3.3. Instationäre Methoden

Bisher wurde (intrinsische) Stationarität und somit ein konstanter Mittelwert angenommen. Dies

ist in der Realität meist nicht gegeben, sodass E[Z(s)] nicht länger als konstant, sondern als

eine Linearkombination bekannter Funktionen (f0(s), . . . , fp(s)), s ∈ D angenommen wird.

Somit gilt die Annahme (vgl. Cressie (1993))

Z(s) =

p+1∑
j=1

fj−1(s)βj−1 + δ(s), s ∈ D,

wobei β = (β0, . . . , βp)
′ ∈ Rp+1 ein unbekannter Vektor von Parametern und δ(·) ein zero-mean

intrinsisch stationärer Zufallsprozess mit Variogramm 2γ(·) ist.

Auch hier können analog zu vorher Kriging-Gleichungen aufgestellt werden. Auf diese soll hier

nicht näher eingegangen werden. Eine ausführliche Herleitung findet sich in Cressie (1993).

Beim Universal-Kriging wird der Trend durch die Lagekoordinaten erklärt. Es handelt sich um

ein instationäres Interpolationsverfahren. Ähnlich sind das External-Drift-Kriging und Regressi-

on-Kriging. Hier werden in beiden Fällen zusätzliche Hilfsvariablen verwendet um den Trend zu

schätzen. Diese müssen sowohl für die Messpunkte, als auch an den Orten, für die interpoliert

werden soll, bekannt sein. Dies stellt in der Praxis häufig ein Problem dar. Ein Vergleich der

Methoden findet sich beispielsweise in Hengl et al. (2003).
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4.4. Kriging als Basisfunktionenansatz

Häufig angewendet wird in der Statistik die nichtparametrische Glättung von Oberflächen. Im

Folgenden soll diese Methode mit dem Kriging-Ansatz in Verbindung gebracht werden. Die

Herleitung hierfür stammt aus Fahrmeir et al. (2009) und wurde an die bisherige Notation der

Arbeit angepasst.

Fahrmeir et al. (2009) definieren das Modell

y(si) = x(si)
′β + δ(si) + ε(si), i = 1, . . . , n

als klassisches geostatistisches Modell. Dabei sind

x(si)
′β der durch Kovariablen x parametrisierte räumliche Trend,

δ(si) ein stationärer Gauß-Prozess mit Erwartungswert 0, Varianz τ2

und Korrelationsfunktion ρ(h),
ε(si) der übliche Fehlerterm, also ε(si) ∼ N(0, σ2)

In Matrixnotation lässt sich das Modell schreiben als

y = Xβ +Zδ + ε,

wobei δ = (δ(s1), . . . , δ(sn))′ die Werte des stationären Gaußprozess an den n verschiedenen

beobachteten räumlichen Lokationen s1, . . . , sn und Z = In die n-dimensionale Einheitsmatrix

bezeichnet. Die Kovarianzmatrix der Zielvariablen y setzt sich aus einem unkorrelierten Teil

σ2In und einem korrelierten Teil τ2ZRZ ′ zusammen, d.h.

Cov(y) = τ2ZRZ ′ + σ2In,

wobei die Kovarianzmatrix R der räumlichen Effekte gegeben ist durch

R = (Corr(δ(si), δ(sj)) = (ρ(si − sj))

Durch eine Reparametrisierung des Modells zu

y = Xβ +ZR ·R−1δ + ε = Xβ + Z̃δ̃ + ε,

mit Z̃ = ZR und δ̃ = R−1δ erreichen Fahrmeir et al. (2009) eine äquivalente Modellformulie-

rung mit veränderter Interpretation der Matrix Z̃.

Deren Einträge lauten nun

Z̃[i, j] = ρ(si, sj).

Verwendet man nun die Korrelationsfunktion ρ wie eine Basisfunktion und die beobachteten

Lokationen als Knoten, so zeigt sich eine äquivalente Formulierung zur Konstruktion der Desi-
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gnmatrix bei Tensorprodukt-Splines. Somit lässt sich das geostatistische Modell für die einzelnen

Beobachtungen schreiben als

y(si) = x(si)
′β + fgeo(si) + ε(si),

wobei

fgeo(si) =
n∑
j=1

δ̃jBj(si),

dem räumlichen Effekt und

Bj(si) = ρ(si, sj)

den auf der Korrelationsfunktion basierenden Basisfunktionen entsprechen. Liegen isotrope Kor-

relationsfunktionen vor, erhält man radiale Basisfunktionen der Form Bj(si) = ρ(||si, sj ||).
Die Knoten entsprechen hier den beobachteten Lokationen und sind somit anders als im normalen

Basisfunktionen-Ansatz im Vorhinein festgelegt.

Die gemeinsame Verteilung der räumlich korrelierten Effekte δ̃ ist gegeben durch

δ̃ ∼ N(0, τ2R−1),

sodass der Kriging-Ansatz einer Glattheits-Priori wie in den Penalisierungsansätzen der nicht-

parametrischen Regression entspricht.
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Dieses Kapitel beschäftigt sich mit der zweiten Art der drei in Kapitel 3 besprochenen Daten-

typen, den sogenannten Gitterdaten (engl. lattice).

Ausgangspunkt ist wieder ein stochastischer Prozess {Z(s); s ∈ D}. In diesem Fall ist die Index-

menge D eine abzählbare Sammlung räumlicher Orte an denen Daten beobachtet wurden. Die

räumliche Information liegt somit diskret z. B. in Form einer Regionenvariable s vor. Das entste-

hende Gitter wird zusätzlich um eine Nachbarschaftsinformation (vgl. Abschnitt 5.1) ergänzt.

Es können drei Charakteristika von Gitterdaten unterschieden werden:

1. Handelt es sich um ein reguläres (z. B. Pixel) oder ein irreguläres (z. B. Bundesländer)

Gitter?

2. Verweisen die Lokationen des Gitters auf Punkte oder Regionen?

3. Ist die Zielvariable diskret oder metrisch?

5.1. Nachbarschaften

Im Fall geostatistischer Daten lassen sich Beziehungen zwischen Lokationen über deren Ab-

stand (z. B. mit Hilfe der euklidischen Distanz) zueinander definieren. Dies ist im Falle diskreter

räumlicher Information nicht möglich. Im Folgenden wird darum das Konzept der Nachbarschaf-

ten eingeführt, um die räumliche Anordnung der Daten beschreiben zu können.

Nachbarschaften lassen sich auf verschiedene Weise konstruieren.

Sei beispielsweise

D = {(xi, yi) : i = 1, . . . , 100}

ein Gitter über 100 Regionen, wobei x und y den Längen- und Breitengraden der jeweiligen

Kreisstadt einer Region entsprechen.

Eine Möglichkeit ein Nachbarschaftssystem zu konstruieren, ist die Definition über die Entfer-

nung der Zentroide bzw. hier der Kreisstädte. Beispielsweise können alle Regionen als Nachbarn

einer Region i angesehen werden, deren Kreisstadt weniger als 50km von der Kreisstadt der

Region i entfernt ist.

Eine Abwandlung hiervon ist die Konstruktion über die k-nächsten Nachbarn (engl. k-nearest

neighbour). Dies führt in den meisten Fällen zu einem asymmetrischen Graphen, gewährleistet

dafür aber, dass jedes Gebiet genau k Nachbarn besitzt.
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Eine weitere Möglichkeit besteht in der Betrachtung gemeinsamer Grenzen.

Es ergibt sich daraus das Nachbarschaftssystem:

∂ = {N(s) : s ∈ D},

wobei gilt:

N(s) entspricht der Menge aller Nachbarn von s

s /∈ N(s)

v ∈ N(s)⇔ s ∈ N(v)

Alle v ∈ N(s) heißen Nachbar von s. (Notation: v ∼ s)

Abbildung 5.1 zeigt die Graphen der verschiedenen Nachbarschaftskriterien anhand der Regie-

rungsbezirke in Deutschland.
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Abbildung 5.1.: Nachbarschaftssysteme mit verschiedenen Kriterien.

Zusätzlich zur Wahl eines Nachbarschaftskriteriums kann es sinnvoll sein Nachbarn geeignet

zu gewichten. Bivand et al. (2013, Kapitel 9.2.2) rät jedoch davon ab, weit von einer binären

Repräsentation abzuweichen, wenn wenig über den räumlichen Prozess bekannt ist.

In Fahrmeir et al. (2009, Kapitel 7.2.4) werden folgende Strategien zur Definition der Gewichte

vorgeschlagen:

• Gleiches Gewicht für alle Nachbarn

• Gewichte invers proportional zum Abstand der Zentroide

• Gewichte proportional zur Länge der gemeinsamen Grenze
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Im Weiteren wird von einer Nachbarschaftsmatrix W ausgegangen, deren Einträge wij den Ge-

wichten entsprechen. Dabei wird wii generell auf Null gesetzt. Oft erfolgt eine Standardisierung,

indem die Einträge wij durch die Zeilensumme
∑

j wij = wi+ geteilt werden.

Die Konstruktion von Nachbarschaftssystemen kann auch auf zweite oder höhere Nachbarn

ausgeweitet werden. Hierfür können beispielsweise Distanzintervalle (0, d1], (d1, d2], usw. definiert

werden. Alle ersten Nachbarn von i liegen dann innerhalb der Distanz d1 von i. Alle zweiten

Nachbarn liegen weiter entfernt von i als d1, aber sind näher als d2. In den Abbildungen 5.2

und 5.3 sind Nachbarschaftssysteme für reguläre und irreguläre Gitter auf Basis gemeinsamer

Grenzen zu sehen. Dabei könnte das System für irreguläre Gitter ebenfalls ausgeweitet werden,

indem zusätzlich diejenigen Regionen mit einbezogen werden, welche eine gemeinsame Grenze

zu den ersten Nachbarn besitzen.

Abbildung 5.2.: Nachbarschaftssysteme auf regulären Gittern. V.l.n.r: Erste Nachbarn, zweite
Nachbarn, zweite diagonale Nachbarn, zweite und diagonale Nachbarn.

Abbildung 5.3.: Nachbarschaft erster Ordnung auf einem irregulären Gitter.

Analog zu W können dann Nachbarschaftsmatrizen W (1),W (2), usw. gebildet werden, welche

die ersten bzw. zweiten Nachbarn enthalten.
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5. Gitter- bzw. Pixeldaten

5.2. Tests auf räumliche Autokorrelation

Bei der Analyse räumlicher Daten wird meist angenommen, dass sich Daten ähnlicher sind,

je näher sich ihre räumlichen Lokationen sind. Dabei spricht man von positiver räumlicher

Autokorrelation, also der Korrelation der Variable mit sich selbst. Räumliche Autokorrelation

bezieht sich somit auf die Korrelation zwischen Z(si) und Z(sj) zweier Punkte si und sj . Zur

Messung räumlicher Autokorrelation werden also zwei Informationen in Verbindung gebracht:

Die Ähnlichkeit der Beobachtungen und die Ähnlichkeit der Lokationen.

In der Literatur wird zwischen globalen und lokalen Maßzahlen unterschieden. Globale Berech-

nungen fassen die räumlichen Abhängigkeiten über alle Daten zusammen, wohingegen lokale

Statistiken (engl. Local indicators of spatial association - LISA) angeben in welchem Ausmaß

die Anordnung der Werte um eine spezifische Lokation von räumlichem Zufall abweicht (Anselin

et al. 2000).

Die bekanntesten Maßzahlen globaler, räumlicher Autokorrelation sind Moran’s I und Geary’s

c. Beide können als Anpassung des Kreuzproduktes (vgl. Anselin (1995))

n∑
i=1

n∑
j=1

mijwij

ausgedrückt werden. Dabei enstpricht wij der Ähnlichkeit der Lokationen i und j (vgl. zuvor

definierte Gewichte in der Nachbarschaftsmatrix) und mij der Ähnlichkeit der Beobachtung an

den Stellen i und j.

Die beiden Maßzahlen unterscheiden sich in ihrer Definition von der Ähnlichkeit der Werte, also

von mij . Moran’s I basiert auf dem Produkt (zi− z̄)(zj− z̄), wohingegen Geary’s c die quadrierte

Differenz (zi − zj)2 verwendet.

Damit ergeben sich die Gleichungen (vgl. (Cliff & Ord 1981))

I =
n∑n

i=1

∑n
j 6=iwij

∑n
i=1

∑n
j=1wij(zi − z̄)(zj − z̄)∑n

i=1(zi − z̄)2

für Moran’s I und

I =
n− 1

2
∑n

i=1

∑n
j 6=iwij

∑n
i=1

∑n
j=1wij(zi − zj)2∑n
i=1(zi − z̄)2

für Geary’s c.

Diese Statistiken sind nicht direkt interpretierbar. Sie sind beide asymptotisch normalverteilt.

Zum Testen eignen sich aber besser permutationsbasierte Tests, in denen die Beobachtungen

zufällig den Lokationen zugewiesen werden.

Analog zum Semivariogramm in der Geostatistik lässt sich die räumliche Autokorrelation als

Funktion der Distanz betrachten. Dazu wird die gewählte Statistik zur Messung räumlicher

Autokorrelation, z.B. I, für jede Distanzklasse berechnet. Dies entspricht also der Berechnung

von I auf Basis der Nachbarschaftsmatrizen W (1), . . . ,W (q) für die ersten bis q-ten Nachbarn.
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Danach lassen sich die Id gegen die Distanz d plotten.

Eine Annahme der Tests ist, dass kein systematischer Trend in den Daten vorliegt, bzw. dass

dieser durch das Modell berücksichtigt wird. Eine Missspezifikation des Erwartungswertes kann

unter Abwesenheit einer räumlichen Korrelation zu einer fälschlichen Signifikanz der Teststatistik

führen. Es sollte somit zunächst von Priorität sein, dass alle relevanten Kovariablen in das

Modell aufgenommen werden und auch deren funktionaler Einfluss richtig spezifiziert ist. Lokale

Maßzahlen werden innerhalb dieser Arbeit nicht näher betrachtet, können aber beispielsweise

in Waller & Gotway (2004) nachgelesen werden.

5.3. Penalisiertes KQ-Kriterium

Eine intuitive Möglichkeit diskrete, räumliche Information in ein Regressionsmodell mit aufzu-

nehmen, stellen Fahrmeir et al. (2009, Kapitel 7) vor. Dabei wird jeder Region s ein eigener

Koeffizient fgeo(s) = δs, s = 1, . . . , d zugewiesen. Um einen glatten Effekt zu erzielen und die

sich dadurch ergebende, hohe Anzahl an Parametern zu verringern, wird analog zur Theorie der

Splines, ein penalisiertes KQ-Kriterium eingeführt. Koeffizienten benachbarter Regionen sollten

sich nicht allzu stark voneinander unterscheiden. Deshalb konstruieren Fahrmeir et al. (2009)

einen Strafterm basierend auf den quadrierten Differenzen zwischen Parametern benachbarter

Regionen, also

PKQ(λ) =

n∑
i=1

(yi − fgeo(si))2 + λ

d∑
s=2

∑
r∈N(s),r<s

(δr − δs)2,

wobei N(s), wie zuvor definiert, der Menge aller Nachbarn der Region s entspricht. Der Strafterm

lässt sich auch umschreiben in λδ′Kδ mit

K[s, r] =


−1, s 6= r, s ∼ r,

0, s 6= r, s � r,

|N(s)|, s = r.

(5.1)

Bei der Matrix K handelt es sich um eine Adjazenz- bzw. Nachbarschaftsmatrix, deren Einträge

K[s, r] nur dann von Null verschieden sind, wenn s und r Nachbarn sind.

Werden Gewichte verwendet ändert sich K zu

K[s, r] =


−wrs, s 6= r, s ∼ r,

0, s 6= r, s � r,

ws+, s = r,

(5.2)

mit den symmetrischen Gewichten wsr = wrs und ws+ =
∑

r:r∼swsr.
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5.4. Markov-Zufallsfelder

Eine in der Literatur weiter verbreitete Herangehensweise ist die Bayesianische Modellformulie-

rung. Diese führt zu den sogenannten Markov-Zufallsfeldern (MZF).

Markov Zufallsfelder definieren sich über die räumliche Markov-Eigenschaft, also die Gedächt-

nislosigkeit innerhalb eines ungerichteten Graphen. D.h. die bedingte Verteilung von δs gegeben

alle übrigen Effekte δr, r 6= s hängt nur von den Nachbarn ab.

Definition: Markov-Zufallsfeld (MZF)

Sei D = 1, . . . , d die Menge aller Regionen, dann heißt δ = {δs, s ∈ D}Markov-

Zufallsfeld, wenn die bedingte Verteilung von δs gegeben alle übrigen Effekte

δr, r 6= s nur von den Nachbarn abhängt, d.h. wenn gilt:

p(δs|δr, r 6= s) = p(δs|δr, r ∈ N(s))

Eines der gebräuchlichsten Modelle in Bezug auf MZF zur Beschreibung räumlicher Effekte ist

das sogenannte Conditional Autoregressive Model (CAR) oder auch Gauß-Markov-Zufallsfeld

(GMFZ).

Dieses wurde ursprünglich von Besag (1974) eingeführt und wird in Rue & Held (2005) ausführ-

lich besprochen. Die bedingten Verteilungen entsprechen hier, wie der Name vermuten lässt,

einer Normalverteilung.

Das übliche Vorgehen bei der Modellspezifikation ist die Vorgabe der bedingten Verteilungen

δs|δr, r ∈ N(s) und daraus die Herleitung der gemeinsamen Verteilung des Vektors δ. Da nicht

jede Spezifikation zwingend zu einer gültigen gemeinsamen Verteilung führt, müssen zunächst

einige theoretische Überlegungen angestellt werden. Nach Fahrmeir et al. (2009) ergibt sich das

CAR-Modell jedoch direkt aus dem zuvor betrachteten penalisierten KQ-Kriterium. Das Modell

lässt sich beschreiben durch

δs|δr, r ∈ N(s) ∼ N

(∑
r:r∼s

1

|N(s)|
δr,

τ2

|N(s)|

)
.

Inhaltlich entspricht dieses Modell der gewünschten Eigenschaft, dass der Effekt einer Region s

ähnlich zu denen ihren Nachbarn ist. Dabei steuert die Varianz τ2, wie stark der einzelne Effekt

vom Mittelwert der benachbarten Regionen abweichen darf.

Die gemeinsame Verteilung ist ebenfalls eine Normalverteilung mit

δ ∼ N(0, τ2K−1),

wobei die Präzisionsmatrix K der Strafmatrix (vgl. 5.1) aus dem PKQ-Kriterium entspricht,

sodass beide Herangehensweisen zur äquivalenten Modellformulierung führen.
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Wie zuvor können auch hier Gewichte für den Einfluss der Nachbarn eingeführt werden. Die

bedingten Dichten werden dann erweitert zu

δs|δr, r ∈ N(s) ∼ N

(
wsr
ws+

∑
r:r∼s

δr,
τ2

ws+

)

und die Matrix K gemäß 5.2.
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Ein wichtiges und häufig angewendetes Gebiet der räumlichen Statistik ist das sogenannte Di-

sease Mapping. Dabei werden Regionen mit erhöhtem Risiko einer Krankheit identifiziert. Die

räumliche Verteilung der Krankheit kann zur Entdeckung bisher unbekannter Risikofaktoren

führen.

Dieses Kapitel setzt sich mit der Analyse von Daten auseinander, welche in Bezug auf bestimmte

Verwaltungsregionen aggregiert wurden. Im eigentlichen Kontext des Disease Mapping handelt

es sich dabei um Krankheits- bzw. Sterbefälle innerhalb einer Region. Die vorgestellten Verfahren

lassen sich jedoch auch auf andere Anwendungsgebiete übertragen (hier: Anzahl der Studenten

an der LMU mit Herkunft aus einer bestimmten Region).

Im Gegensatz zu Kapitel 5 sind nun also Anzahlen von Interesse. Das Ziel der Analyse ist die

Darstellung der räumlichen Verteilung des Risikos einer Krankheit über das in Regionen einge-

teilte Untersuchungsgebiet. Zu diesem Zweck müssen die Daten die Personen unter Risiko und

die aufgetretenen Fälle jeder Region enthalten. Im Folgenden bezeichnet Pi die Risikopopulation

(engl. Population at risk) und Oi die Anzahl beobachteter Fälle (engl. observed cases) in der

Region i. Die Notation orientiert sich damit an Bivand et al. (2013). Sämtliche Herleitungen

finden sich außerdem in Banerjee et al. (2004).

Die Daten sind in vielen Fällen zusätzlich in verschiedene Strata unterteilt. Diese unterscheiden

sich beispielsweise in Geschlecht oder Alter. Die Notation erweitert sich dann zu Pij bzw. Oij

für die Population und die Anzahl der Fälle in Region i und Stratum j. Aufsummieren über die

einzelnen Strata pro Region führt dann zu Pi und Oi. Die Gesamtpopulation und die gesamte

Anzahl der Fälle werden mit P+ bzw. O+ bezeichnet.

Um eine Schätzung des Risikos zu erlangen, müssen die beobachteten Fälle mit einer erwarteten

Anzahl an Fällen verglichen werden. Diese kann aus

Ei = Pir+,

mit r+ = O+

P+
, berechnet werden. r+ entspricht also der Gesamt-Inzidenzrate.

Bei gruppierten Daten kann ähnlich vorgegangen werden. Für jedes Stratum j wird eine eigene

Inzidenzrate rj =
∑
iOij∑
i Pij

berechnet. In diesem Fall ergibt sich die erwartete Anzahl an Fällen in

Region i aus

Ei =
∑
j

Pijrj .

Dieses Vorgehen wird als interne Standardisierung bezeichnet, da die beobachteten Daten ver-
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wendet werden um die Referenzrate(n) zu berechnen, ohne dass dies berücksichtigt wird. Besser

ist die externe Standardisierung, bei der bereits aus anderen Quellen bekannte Tabellen verwen-

det werden.

6.1. Traditionelle Modelle

Eine häufig verwendete Annahme der Statistik in Bezug auf Anzahlen ist die der Poissonvertei-

lung. Im hier vorliegenden Kontext bedeutet dies, dass gilt

Oi|θi ∼ Po(Eiθi).

Es wird also angenommen, dass die Anzahl der beobachteten Fälle in Region i poissonverteilt

mit Erwartungswert Eiθi ist. Dabei entspricht θi dem wahren relativen Risiko in Region i.

Der Maximum-Likelihood-Schätzer von θi ergibt sich aus

θ̂i ≡ SIRi =
Oi
Ei
.

SIRi wird als Standardized Incidence Ratio bezeichnet. Im Kontext des Disease Mapping wird

dieses Verhältnis meist auch SMR (Standardized Mortality Ratio) genannt. Eine genauere Be-

trachtung dieser und anderer Normierungen findet sich in Waller & Gotway (2004).

Zur Visualisierung der räumlichen Variation des Risikos kann somit das SIR auf einer Karte

abgetragen werden. Problematisch an dieser Vorgehensweise ist jedoch, dass die Standardabwei-

chung der Schätzers sd(SIRi) =
√
Oi/Ei und somit proportional zu 1/Ei ist. Bei einer geringen

Anzahl an erwarteten Fällen wird die Schätzung also sehr unsicher. Die Identifizierung einer

Region als stark risikobehaftet könnte somit lediglich an ihrer geringen Einwohnerzahl liegen.

Außerdem werden in dieser Analyse möglicherweise vorhandene räumliche Korrelationen nicht

berücksichtigt.

Eine zweite Möglichkeit der Visualisierung ergibt sich aus der Betrachtung von p-Werten. Werte

von SIR größer als 1 weisen darauf hin, dass mehr Fälle beobachtet, als in der Untersuchungs-

population erwartet wurden. Interessant für die Analyse ist somit die Hypothese

H0 : θ = 1 vs. H1 : θ > 1.

Unter der Nullhypothese gilt Oi ∼ Po(Ei), sodass sich der p-Wert für diesen Test aus (Banerjee

et al. 2004)

P (X ≤ Oi|Ei) = 1− P (X < Oi/Ei) = 1−
Yi−1∑
x=0

Exi
x!
e−Ei

ergibt. Wird die Nullhypothese verworfen, so kann von einem signifikant erhöhtem Risiko in

Region i ausgegangen werden. Alternativ können Konfidenzintervalle mit Hilfe der Poisson-

Verteilung für SIR berechnet werden.
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6. Disease Mapping

Wie zuvor ergeben sich auch hier die zwei genannten Nachteile: die p-Werte hängen von der er-

warteten Anzahl an Fällen ab und mögliche räumliche Korrelationen werden nicht berücksichtigt.

Um dem ersten Problem begegnen zu können, wurde von Clayton & Kaldor (1987) ein Verfahren

vorgestellt, welches die SIR hin zu einem globalen Mittelwert schrumpft. Ausgangspunkt hierfür

ist eine Annahme der Poissonverteilung, die in vielen Fällen angezweifelt werden muss: die

Gleichheit von Erwartungswert und Varianz. Häufig liegt in realen Daten Überdispersion vor,

d.h. die Varianz der Daten ist größer als ihr Erwartungswert. Ein Möglichkeit dies zu beachten ist

die Verwendung der Negativen Binomialverteilung anstatt der Poissonverteilung (Bivand et al.

2013).

Diese lässt sich als gemischtes Modell formulieren. Dabei wird ein Zufallseffekt für jede Region

angenommen, der einer Gamma-Verteilung mit Erwartungswert ν
α und Varianz ν

α2 folgt.

Das sogenannte Poisson-Gamma-Modell lässt sich also formulieren als

Oi|θi, Ei ∼ Po(θiEi)

θi ∼ Ga(ν, α)

Die beobachteten Fälle Oi sind bedingt auf θi poissonverteilt mit Erwartungswert θiEi. Die Oi

selbst sind somit negativ binomial-verteilt mit (Clayton & Kaldor 1987)

E(Oi) = Ei
ν

α

V ar(Oi) = Ei
ν

α
+ E2

i

ν

α2

Aufgrund der Konjugiertheit der Gamma-Priori zur Poisson-Likelihood ergibt sich für die Pos-

teriori von θi wieder eine Gamma-Verteilung mit den Parametern ν +Oi und α+ Ei.

Der Posteriori-Erwartungswert von θi ist

E(θi|Oi, Ei) =
ν +Oi
α+ Ei

=
α

α+ Ei
· ν
α

+
Ei

α+ Ei
· Oi
Ei

=

(
1− Ei

α+ Ei

)
· ν
α

+
Ei

α+ Ei
· SMRi.

Somit ist der Punktschätzer ein gewichtetes Mittel aus dem datenbasierten SIR von Region

i und dem Priori-Erwartungswert des relativen Risikos θi. Für Regionen mit kleinem Ei hat

SMRi also ein geringes Gewicht im Gegensatz zum Priori-Erwartungswert.

Da ν und α für alle Regionen gleich sind, wird Information von diesen geliehen um die Posteriori-

Schätzer zu konstruieren. Dieses Konzept wird borrowing strength genannt.

36



6. Disease Mapping

6.2. Räumliche Modelle

Bisher wurden mögliche räumliche Effekte aus der Analyse außen vor gelassen. Dabei ist zu

beachten, dass meist nicht die Zugehörigkeit zu einer Region selbst einen Effekt auf die abhängige

Variable hat, sondern unbeobachtete, nicht durch die Daten erfasste Kovariablen mit räumlicher

Struktur berücksichtigt werden sollen. Die räumliche Analyse kann somit auch Hinweise auf

bisher unbekannte Risikofaktoren geben. Diese können eine räumliche Struktur aufweisen, oder

nur lokal auftreten. Da in der Regel nicht bekannt ist, ob Einflussfaktoren eine räumliche Struktur

mit sich bringen, schlugen Besag et al. (1991) ein Modell vor, welches sowohl strukturierte

(räumlich korrelierte) als auch unstrukturierte (räumlich unkorrelierte) Effekte berücksichtigt,

d.h. fspat = fstr + funstr (vgl. Fahrmeir et al. (2004)).

Besag, York, Mollie (BYM, 1991)

Oi|θi ∼ Po(θiEi)

θi = exp(ηi) = exp(β0 + fi,geo(si) + bi)

Dabei wird für den räumlich strukturierten Anteil fgeo ein GMZF (vgl. Kapitel 5.4) angenommen

während bi ein regionenspezifischer, zufälliger Effekt mit bi
iid∼ N(0, ν2) ist.

Damit ergibt sich für Oi ein log-lineares Poisson-Modell mit dem linearen Prädiktor

ηi = β0 + fi,geo(si) + bi + log(Ei),

wobei log(Ei) dem Offset entspricht. Dieser dient der Vergleichbarkeit der einzelnen Regionen.
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7. Geoadditive Modelle - BayesX

In den meisten Anwendungen wird kein rein räumlicher Effekt geschätzt, sondern es liegen

zusätzliche Kovariablen zur Erklärung der Zielvariablen vor. Die enstehende Modellklasse wird

unter dem Begriff Geoadditive Regression geführt. Der Prädiktor des (generalisierten) additiven

Modells ηaddi bestehend aus nichtparametrischen, glatten Funktionen und linearen Effekten wird

in diesem Fall um einen räumlichen Effekt fgeo erweitert, d.h.

ηi = ηaddi + fgeo(si) = f1(zi1) + . . .+ fq(ziq) + fgeo(si) + β0 + β1xi1 + . . .+ βkxik.

Liegt also, zusätzlich zu den Werten der Zielvariablen und metrischen oder kategorialen Kova-

riablen, zu jeder Beobachtung i eine räumliche Information, in Form einer Lokationsvariablen

si vor, handelt es sich um eine Problemstellung der geoadditiven Regression.

Noch allgemeiner formulieren Fahrmeir et al. (2009) die Klasse der (generalisierten) strukturiert-

additiven Regressions (STAR) Modelle. Für den strukturiert-additiven Prädiktor

ηstrukti = f1(vi1) + . . .+ fq(viq) + x′iβ

sind verschiedene Kombinationsmöglichkeiten von Funktionen mit unterschiedlicher Struktur

möglich. Als Beispiele sind in Fahrmeir et al. (2009) folgende Typen genannt:

f1(v1) = f1(z1), v1 = z1, nichtlinearer Effekt von z1

f2(v2) = fgeo(s), v2 = s, räumlicher Effekt der Lokationsvariablen s.
f3(v3) = γiu, v3 = (u, i), individuenspezifischer zufälliger Effekt von u.
f4(v4) = f(z)x, v4 = (z, x), mit z variierender Effekt von x.
f5(v5) = f1|2(z1, z2), v5 = (z1, z2), nichtlineare Interaktion zwischen z1 und z2.

Ein mächtiges Programmpaket für die Schätzung solcher Modelle stellt BayesX (Belitz et al.

2015) dar. Die Funktionalitäten dieses Programms stehen dem User über ein eigenständiges

Programm oder aber auch über die Schnittstelle des Pakets R2BayesX (Umlauf et al. 2015) in

R zur Verfügung.

Die Schätzung der Parameter ist in BayesX über drei unterschiedliche Inferenzkonzepte möglich:

• Volle Bayes-Inferenz basierend auf MCMC-Simulationstechniken

• Inferenz basierend auf der Repräsentation als gemischtes Modell

• Penalisierte Likelihood-Schätzung inklusive Variablenselektion
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7. Geoadditive Modelle - BayesX

Für diese Arbeit wurde auf die Schätzung über die Repräsentation als gemischtes Modell zurück-

gegriffen. Die Grundidee dieses Ansatzes soll im Folgenden basierend auf Fahrmeir et al. (2004)

und Fahrmeir et al. (2009) vorgestellt werden. Dort finden sich auch Informationen über die

volle Bayes-Inferenz. Andere Quellen für den Einstieg in die hier nicht angesprochenen Ansätze

bieten beispielsweise Brezger & Lang (2006) (Volle Bayes-Inferenz) und Belitz & Lang (2008)

(Variablenselektion).

Falls die Funktionen f1, . . . , fq durch Basisfunktionenansätze modelliert werden, kann der struk-

turierte Prädiktor in Matrixform folgendermaßen dargestellt werden

ηstrukt = V 1γq + . . .+ V qγq +Xβ. (7.1)

Dabei entsprechen die V j geeignet definierten Designmatrizen und γj den Koeffizientenvektoren.

Ein Überblick zu den in der Arbeit verwendeten Termen findet sich in Tabelle 7.1.

Die generelle Form der Priori für γj ist

p(γj |τ2
j ) ∝ exp

(
− 1

2τ2
j

γ ′jKjγj

)
,

wobei Kj der jeweiligen Strafmatrix entspricht. In den meisten Fällen hat diese keinen vollen

Rang, sodass die Priori teilweise uneigentlich ist, d.h. es gilt rg(Kj) > 0, aber nicht rg(Kj) =

dim(γj)).

Um den strukturiert-additiven Prädiktor (7.1) als GLMM darzustellen werden die Regressions-

koeffizienten γj , j = 1, . . . , p in einen penalisierten und einen nicht penalisierten Teil zerlegt.

Bezeichne im Folgenden dj = dim(γj) die Dimension des j-ten Koeffizientenvektors und rj =

rg(Kj) den Rang der korrespondierenden Strafmatrix. Dann definieren Fahrmeir et al. (2004)

die Zerlegung

γj = V unp
j γunpj + V pen

j γpenj ,

mit den dj × (dj − rj) bzw. dj × rj dimensionalen Designmatrizen V unp
j und V pen

j .

Durch eine geeignete Wahl der Designmatrizen (genauere Betrachtung siehe Fahrmeir et al.

(2004)) kann errreicht werden, dass der Parametervektor γunpj als Vektor fester Effekte und

γpenj ∼ N(0, τ2
j I) als Vektor zufälliger Effekte aufgefasst werden kann.

Der Prädiktor (7.1) lässt sich damit umschreiben in

ηstrukt =

q∑
j=1

V jγj +Xβ =

q∑
j=1

(V jV
unp
j γunpj + V jV

pen
j γpenj ) +Xβ = X̃γunp + Ṽ γpen,

wobei X̃j = V jV
unp
j und Ṽ j = V jV

unp
j .
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7. Geoadditive Modelle - BayesX

Die Designmatrizen und Vektoren sind dabei wie folgt zusammengesetzt

Ṽ = (Ṽ 1Ṽ 2 · · · Ṽ q)

γpen = ((γpen1 )′, . . . , (γpenq )′)′

Ũ = (Ũ1Ũ2 · · · ŨpU)

γunp = ((γunp1 )′, . . . , (γunpq )′β′)′

Dadurch ergibt sich ein GLMM mit festen Effekten γunp und zufälligen Effekten γpen ∼ N(0,Λ),

wobei Λ = diag(τ2
1 , . . . , τ

2
1 , . . . , τ

2
q , . . . , τ

2
q ), sodass sich die üblichen Schätzverfahren dieser Me-

thode verwenden lassen.

Termtyp Designmatrix V Strafmatrix K

P-Spline Basisfunktionen ausgewertet an den
Beobachtungen.

K = D′kDk, mit Dk Differenzenma-
trix k-ter Ordnung

2D-P-Spline 2D-Basisfunktionen ausgewertet an
den Beobachtungen.

K = I ⊗K1 +K2 ⊗ I mit Einheits-
matrix I und Strafmatrizen K1 und
K2 wie für univariate P-Splines.

Kriging Auf der Korrelationsfunktion basie-
rende Basisfunktionen.

K = R, mit Korrelationsmatrix R.

Markov-Zufallsfeld 0/1 Inzidenzmatrix, die Beobachtun-
gen und Regionen verknüpft.

K = Nachbarschaftsmatrix.

Zufällige Konstante 0/1 Inzidenzmatrix, die Beobachtun-
gen und Cluster verknüpft

K = I, mit Einheitsmatrix K = I.

Tabelle 7.1.: Übersicht über verwendete Modellterme mit zugehöriger Design- und Strafmatrix; Quelle:
in Anlehnung an Fahrmeir et al. (2009, Tab. 8.2)
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8. Auswertung

8.1. Beispiel: Phänologie

8.1.1. Deskriptive Analyse

Zur Analyse stehen, außer dem gemessenen relativen Grünwert, lediglich die Koordinaten der

jeweiligen Webcam, sowie der Tag der Messung zur Verfügung. Es liegen 12864 Beobachtungen

verteilt auf 182 Stationen und 73 Tage des Jahres 2011 vor.

Rel. Grünwerte

rel. Grünwert

D
en

si
ty

0.1 0.2 0.3 0.4 0.5 0.6

0
2

4
6

8
10

12
14 Kerndichteschätzung

Dichte der NV

Abbildung 8.1.: Histogramm und Kerndichteschätzung.

Die relativen Grünwerte schwanken zwischen 0.09 und 0.63, wobei 75% der Daten zwischen 0.33

und 0.41 liegen. Es liegt eine schwach linkssteile Verteilung der Werte vor, die jedoch nicht stark

von der Normalverteilung abweicht (vgl. Abbildung 8.1).
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Web-Cams

Die ausgewählten Web-Cams liegen alle innerhalb Deutschlands zwischen dem 6. und 15. Längen-

und dem 47. und 54. Breitengrad. Wie man auf der Karte in Abbildung 8.2 erkennen kann,

stehen für den Norden Deutschlands nur sehr wenige Web-Cams zur Verfügung. In den Alpen,

im Bayrischen Wald, am Bodensee, sowie in der Schwäbischen Alp und dem Schwarzwald liegen

hingegen vergleichsweise viele Messstellen vor. Insgesamt scheinen die Webcams vor allem in

größeren Höhenlagen oder um Seen und große Städte angesiedelt zu sein. Da das Klima und

somit die Phänologie vermutlich mit der Höhe der Messstation in Zusammenhang steht, wäre

diese Variable für die Analyse von hohem Interesse. Diese steht jedoch nicht zur Verfügung.

Abbildung 8.2.: ausgewählte Web-Cams in Deutschland.
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Zeitpunkte

Für die Analyse stehen die Tage 84 bis 159 des Jahres 2011 zur Verfügung. Zwischen Tag 141

und 143 kam es zu einem Ausfall des Servers, sodass diese im Datensatz fehlen. Über die Zeit

hinweg, lässt sich ein Anstieg in den aggregierten relativen Grünwerten erkennen (vgl. Abbildung

8.3).

100 120 140 160
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34
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38
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Abbildung 8.3.: Zeitreihe von DOY 84 bis 159.

Verlauf für einzelne Stationen

Abbildung 8.4 zeigt die Verläufe der einzelnen Stationen. Um einen besseren Vergleich zu

ermöglichen, wurde der Bereich der rel. Grünwerte auf 0.3 bis 0.5 beschränkt. Es sind dadurch

nur weniger als 2% der Daten nicht sichtbar.

Es zeigt sich auch einzeln betrachtet für die meisten Messstationen ein Anstieg in den relativen

Grünwerten. Um den Vergleich der Verläufe in Bezug auf SOS und MAT zu erleichtern, wurden

die Daten skaliert und in Abbildung 8.5 abgetragen. Es lässt sich für die meisten Stationen

die gleiche funktionale Form im Verlauf der Grünwerte erkennen. Der Grünwert liegt auf einem

Grundniveau, bis er ab dem Erscheinen der ersten Blätter (SOS) bis zur vollständigen Reife

des Laubs (MAT) auf einen Maximalwert ansteigt. Es zeigen sich jedoch Phasenverschiebungen,

Veränderungen in der Differenz zwischen SOS und MAT sowie in der Amplitude (vgl. Abbildung

8.6).
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Abbildung 8.4.: Verläufe der einzelnen Stationen (nach Alphabet) über die Zeit.
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8. Auswertung
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Abbildung 8.5.: Verläufe der skalierten einzelnen Stationen (nach Alphabet) über die Zeit.
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Abbildung 8.6.: Theoretischer Anstieg des relativen Grünwertes mit möglichen Veränderungen
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8.1.2. Modellvarianten

Um eine mögliche räumliche Heterogenität optimal zu modellieren, wurden unterschiedliche

Modelle betrachtet und mittels AIC verglichen. Die verschiedenen Varianten sind in Tabelle 8.1

zusammengefasst. Der zeitliche Effekt wurde in allen Modellen durch einen P-Spline mit 20 in-

neren Knoten und einem Strafterm basierend auf Differenzen zweiter Ordnung modelliert. Der

strukturierte räumliche Effekt wurde mit zweidimensionalen P-Splines (Model 2), einer zweidi-

mensionalen Funktion auf Basis des Krigingansatzes (Modell 3) bzw. einem Markov-Zufallsfeld

(Modell 4) geschätzt. Bei der Modellierung durch das MZF wurden diejenigen Beobachtun-

gen als benachbart betrachtet, welche weniger als 120km voneinander entfernt lagen. Zusätzlich

zum strukturierten räumlichen Effekt wurden teilweise unabhängige zufällige Effekte mit auf-

genommen. In der Schätzung der Modelle mit zufälligen Effekten (Modelle 2, 3 und 4) kam es

zu Konvergenzproblemen innerhalb des Algorithmus. Dies liegt an dem sehr kleinen Varianz-

parameter der räumlich strukturierten Oberfläche. Da dadurch das Maximum der marginalen

Likelihood am Rand des Parameterraums liegt, versagt der Fisher-Scoring Algorithmus. Dies

führt zu einem Abbruch der Schätzung kleiner Varianzen in BayesX (Belitz et al. 2015, Kap.

6.2).

Die geschätzten strukturierten räumlichen Effekte der Modelle 2(.1) und 3(.1) finden sich in den

Abbildungen 8.7-8.10. Darin zeigt sich die geringe Varianz der Oberflächen in den Modellen mit

zufälligen Effekten. Es dominiert in diesen Fällen der unstrukturierte Effekt. Ohne die zufälligen

Effekte ergibt sich für die Modellierung durch den P-Spline eine sehr unruhige Modellierung.

Hier scheinen zufällige Effekte sinnvoller zu sein. Auch die Betrachtung der AIC’s (vgl. Abbil-

dung 8.11) lässt darauf schließen, dass eine Modellierung ohne strukturierten räumlichen Effekt

gerechtfertigt ist. Es kann somit zur traditionellen Analyse logitudinaler Daten mit Random-

Intercept übergegangen werden. Der geschätzte zeitliche Effekt dieses Modells (Modell 1) ist in

Abbildung 8.12 zu sehen. Es ist ein Anstieg des rel. Grünwertes zu erkennen. Dieser stagniert

etwa am DOY 120 (MAT). Der genaue Anfang der Wachstumszeit (SOS) ist hingegen nicht

direkt erkennbar.

Modell formula

0 relG ∼ s(doy)
1 relG ∼ s(doy) + bi
2 relG ∼ s(doy) + P-Spline + bi

2.1 relG ∼ s(doy) + P-Spline
3 relG ∼ s(doy) + Kriging + bi

3.1 relG ∼ s(doy) + Kriging
4 relG ∼ s(doy) + MZF + bi

Tabelle 8.1.: Modellvarianten - s(doy) entspricht P-Spline-Modellierung des zeitlichen Effekts.
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Abbildung 8.7.: Geschätzter strukturierter räumlicher Effekt (P-Spline, Modell 2).
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Abbildung 8.8.: Geschätzter strukturierter räumlicher Effekt (P-Spline, Modell 2.1).
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Abbildung 8.9.: Geschätzter strukturierter räumlicher Effekt (Kriging, Modell 3).
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Abbildung 8.10.: Geschätzter strukturierter räumlicher Effekt (Kriging, Modell 3.1).
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Abbildung 8.11.: AIC-Differenzen zum besten Modell für die verschiedenen Modellvarianten.
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8.2. Beispiel: Hochschulen

Nun sollen die in Kapitel 3.2 vorgestellten Daten analysiert werden.

Für das Jahr 2004 ist die Herkunft von 7483 Studienanfängern der Ludwig-Maximilians-Uni-

versität (LMU) dokumentiert. Im Jahr 2011 sind es bereits 11001 Studienanfänger. Die meisten

Studierenden stammen dabei in beiden Jahren aus dem Stadtgebiet München. Es gibt 58 (2004)

bzw. 18 (2011) Landkreise in denen kein Studienanfänger seine Hochschulzugangsberechtigung

(HZB) erworben hat. Für Gesamtdeutschland ergibt sich eine Inzidenzrate von 9.1 (2004) bzw.

13.7 Studenten pro 100000 Einwohner (2011).

Die “Population unter Risiko”wurde durch die Einwohnerzahl der einzelnen Kreise definiert.

Eine bessere Herangehensweise wäre die Betrachtung der Personen mit HZB. Diese Zahlen liegen

jedoch nicht vor, sodass von einer homogenen Verteilung über ganz Deutschland ausgegangen

werden muss.

8.2.1. Standard-Inzidenzraten (SIR) und p-Werte

2004

Die berechneten Standard-Inzidenzraten sind in Abbildung 8.13 visualisiert. Dabei fallen vor

allem die erhöhten Raten um München herum sowie in einigen Städten Bayerns auf. Die minimale

(größer Null) bzw. maximale Standard-Inzidenzrate ist 0.02 bzw. 24.48. Die maximale Rate

tritt in Rosenheim auf. Hier wird jedoch nur eine Anzahl von 5.47 Studenten erwartet. Die

Standardabweichung sdi =
√
Oi/Ei in diesem Kreis liegt bei 2.11 und nimmt damit den höchsten

beobachteten Wert ein. An diesem Beispiel zeigt sich die Unsicherheit der Schätzung der SIR

bei einer geringen Anzahl erwarteter Fälle.

Abbildung 8.14 zeigt die berechneten p-Werte für den Test auf θ1 = 1 auf Basis der Poisson-

bzw. der Negativ-Binomialverteilung. Auch diese sprechen für erhöhte Raten im näheren Umfeld

der LMU. Dabei sind die p-Werte der Negativ-Binomialverteilung wie erwartet höher, da hier

eine größere Varianz zugelassen wird.

2011

Für 2011 ergeben sich sehr ähnliche Werte, sodass hier auf eine genauere Betrachtung verzichtet

wird. Die SIR für dieses Jahr sind in Abbildung 8.15 abgetragen. Hier zeigt sich noch etwas

klarer der Zusammenhang mit der Distanz von der LMU als in 2004.
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Abbildung 8.13.: Herkunft der Studienanfänger der LMU 2004 (Standardized Incidence Ratio - SIR).
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Abbildung 8.14.: p-Werte aus Basis der (a) Poisson- bzw. (b) Negativ-Binomialverteilung für das SIR
der Studienanfänger an der LMU 2004.
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Abbildung 8.15.: Herkunft der Studienanfänger der LMU 2011 (Standardized Incidence Ratio - SIR).
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8.2.2. Räumliche Modelle

Für die folgenden Analysen wurde eine Nachbarschaftsmatrix auf Basis gemeinsamer Grenzen

erstellt. Zu diesem Zweck wurde die Insel Rügen aus dem Datensatz für 2004 entfernt, da diese

keine Verbindung zu anderen Kreisen besitzt. In 2011 war dies nicht nötig, da es in diesem Jahr

aufgrund von Gebietsreformen zu einer Eingliederung des Kreises in den Kreis Nordvorpommern

kam. In Abbildung 8.16 ist der Graph der Nachbarschaften abgebildet.
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Abbildung 8.16.: Nachbarschaften auf Basis gemeinsamer Grenzen.

Um festzustellen, ob räumliche Autokorrelation vorliegt wurde Moran’s I auf Basis der SIR

berechnet. Hierbei konnte auch nach Berücksichtigung vorliegender Überdispersion in beiden

Jahren eine räumliche Autokorrelation festgestellt werden.

Markov-Zufallsfelder

Aus diesem Grund wurde im nächsten Schritt ein Modell mit strukturierten und unstrukturierten

Effekten gemäß Kapitel 6.2 geschätzt.
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2004

Die geschätzten Effekte sind in Abbildung 8.17 visualisiert. Der räumlich strukturierte Effekt

überwiegt dabei deutlich den unstrukturierten Effekt. Es zeigt sich, wie bereits erwartet, ein

positiver Effekt in der Nähe der LMU. Außerdem ergeben sich in beiden Termen höhere Werte

für die Städte im Gegensatz zu den Landkreisen. Dies könnte an einer erhöhten Anzahl an

Personen mit HZB in den Städten liegen. Für einen Vergleich mit den Standard-Inzidenzraten
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Abbildung 8.17.: Schätzungen des strukturierten (a) und des unstrukturierten (b) räumlichen Effekts;
Modell ohne weitere Kovariablen 2004.

wurden die geschätzten Werte für θ̂i = exp(β̂0 + f̂i,geo + b̂i) in Abbildung 8.18 visualisiert.

Die Werte scheinen mit wachsender Entfernung von der LMU zu sinken. Aus diesem Grund

wurde im nächsten Schritt die Distanz des jeweiligen Zentroiden eines Kreises zur LMU als

nichtlinearer Effekt mit in das Modell aufgenommen. Außerdem wurde eine Dummy-Variable

zur Unterscheidung zwischen Landkreisen und Kreisfreien Städten eingeführt. Daraus ergibt sich

der lineare Prädiktor

ηi = β0 + β1Landkreisi + f(distancei) + fi,geo(si) + bi + log(Ei), (8.1)

Die geschätzte Funktion für die Distanz ist in Abbildung 8.19 zu sehen. Für die Schätzung

wurde ein P-Spline mit 20 inneren Knoten und einem Strafterm basierend auf Differenzen zweiter

Ordnung verwendet. Die Anzahl der Studierenden nimmt, wie bereits in den vorherigen Grafiken

ersichtlich, mit wachsender Distanz zur LMU immer weiter ab. Erst ab etwa 500km stagniert

die Kurve, sodass hier kein Unterschied mehr durch weitere Distanzen entsteht.
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Abbildung 8.18.: Geschätzte Standard-Inzidenzraten: (a) θ̂i = Oi/Ei (b) θ̂i = exp(β̂0 + f̂i,geo + b̂i).

Die Variable Landkreis hat einen signifikanten, negativen Einfluss. Aus den Landkreisen stam-

men im Erwartungswert um den Faktor exp(β1) = exp(−0.9260) = 0.396 weniger Studi-

enanfänger als aus Kreisfreien Städten. In Abbildung 8.20 sind erneut die Schätzungen der

strukturierten und unstrukturierten räumlichen Effekte abgetragen. Auffällig sind hier hohe

Werte in den süd-östlichen Gebieten Ober- und in den östlichen Teilen Niederbayerns. Bei den

unstrukturierten Effekten fallen vor allem die Kreise Regensburg, Augsburg, Heidelberg und

Nürnberg ins Auge. Hier scheint die Anziehungskraft der eigenen Universitäten höher zu sein,

als die der LMU.
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Abbildung 8.19.: Geschätzter Effekt für die Distanz der Zentroiden zur LMU 2004.
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Abbildung 8.20.: Schätzungen des strukturierten (a) und des unstrukturierten (b) räumlichen Effekts;
Modell mit Kovariablen 2004.
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2011

Die gleichen Modelle wurden für 2011 geschätzt. Im Modell ohne Kovariablen (vgl. Abbil-

dung 8.21) werden stark negative Effekte für einige Gebiete Brandenburgs und Sachsen-Anhalts

geschätzt. Diese sind sowohl im unstrukturierten wie auch im strukturierten Effekt dominant.
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Abbildung 8.21.: Schätzungen des strukturierten (a) und des unstrukturierten (b) räumlichen Effekts;
Modell ohne weitere Kovariablen 2011.

Im Modell mit Kovariablen wird eine ähnliche Funktion für den Einfluss der Distanz wie in

2004 geschätzt (vgl. Abbildung 8.22). Auch die Variable Landkreis hat erneut einen signi-

fikanten, negativen Einfluss. Aus den Landkreisen stammen in diesem Fall um den Faktor

exp(β1) = exp(−0.7221) = 0.486 weniger Studienanfänger als aus Kreisfreien Städten. Der An-

teil von Studenten aus den Landkreisen ist also im Vergleich zu 2004 angestiegen. Die räumlichen

Effekte im Modell mit Kovariablen sind sehr ähnlich zu denen in 2004. Es kommen mehr Stu-

dienanfänger aus Gebieten süd-östlich von München als durch die pure Betrachtung der Di-

stanz zu erwarten wäre. Interessant ist jedoch, dass hingegen weniger Studierende für die neuen

Bundesländer erwartet werden. Bei den unstrukturierten Effekten hebt sich erneut der Kreis

Regensburg deutlich ab. Auch hier zeigen Kreise mit eigener Universität eher einen negativen

Effekt. Ausnahmen sind dabei Berlin, Hamburg und Göttingen mit einem vergleichsweise star-

kem positiven Effekt.
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Abbildung 8.22.: Geschätzter Effekt für die Distanz der Zentroiden zur LMU 2011.
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Abbildung 8.23.: Schätzungen des strukturierten (a) und des unstrukturierten (b) räumlichen Effekts;
Modell mit Kovariablen 2011.
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Kriging

Eine weitere Möglichkeit den räumlichen Effekt zu schätzen, ist das Regression-Kriging über die

Zentroide der Kreise. Das Vorgehen wird im folgenden Abschnitt am Beispiel der Daten für die

LMU in 2004 erläutert.

Die besondere Art der Aufteilung in Kreise und Kreisfreie Städte führt dabei in Deutschland zu

einem Problem, das eine sinnvolle Schätzung des Variogramms bei kleinen Distanzen unmöglich

macht. In vielen Fällen liegt eine kreisfreie Stadt innerhalb eines Kreises (vgl. Abbildung 8.24),

sodass der Zentroid der Stadt und der des Kreises sehr nahe beieinander liegen. Dies führt

zu einer Überschätzung der Semivarianz bei kleinen Distanzen. Aus diesem Grund wurden die

Kreisfreien Städte dem jeweils nächsten Landkreis hinzugefügt.

Abbildung 8.24.: Kreisfreie Städte in Deutschland.

Im nächsten Schritt wurde der Trend, der durch die Distanz zur LMU entsteht, über ein Quasi-

Poisson-Modell herausgerechnet. Zur Schätzung eines räumlichen Effekts wurden dann die stan-
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dardisierten Pearson-Residuen

rP∗i
..=

1√
Ei

yi − µ̂i√
µ̂i

=
1√
Ei
rPi

berechnet (vgl. Abbildung 8.25). Die Standardisierung durch die erwartete Anzahl an Stu-

dierenden Ei aus Region i folgt dabei der gleichen Logik, wie die Verwendung eines Offsets

bei der Poisson-Regression. Um einen sinnvollen Schätzer für den Nugget-Effekt zu erhalten,
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48
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[−1.05316,−0.21568)
[−0.21568,−0.12753)
[−0.12753,−0.05989)
[−0.05989, 0.00796)
[ 0.00796, 0.08461)
[ 0.08461, 0.20289)
[ 0.20289, 1.33161]

Abbildung 8.25.: Standardisierte Pearson Residuen.

wurden außerdem einige Hotspots (Beobachtungen mit sehr verschiedenen Nachbarn) aus der

Variogramm-Analyse ausgeschlossen. Das geschätzte Variogramm ist in Abbildung 8.26 abgebil-

det. Zur Schätzung des räumlichen Effekts wurde dann ein Grid über Deutschland gelegt und

gewöhnliches Kriging auf die Residuen durchgeführt. Das Ergebnis ist in Abbildung 8.27 zu se-

hen. Es deckt sich mit den geschätzten strukturierten Effekten mittels eines Markov-Zufallsfeldes

im vorherigen Abschnitt.
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Abbildung 8.26.: Geschätztes Variogramm; Matern, psill=0.03, range=69.45, kappa= 0.5.
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Abbildung 8.27.: Kriging Vorhersage und Varianz auf die standardisierten Pearson-Residuen.
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8.2.3. Vergleich mit der Humboldt-Universität zu Berlin

Interessant ist nun, ob die Erkenntnisse aus den Modellen für die LMU auch auf andere Uni-

versitäten übertragbar sind. Zu diesem Zweck wurden die Daten der Humboldt-Universität zu

Berlin (HUB) im Jahr 2011 für die weitere Analyse herangezogen. In Abbildung 8.28 sind die

SIR visualisiert. Es zeigt sich auch hier ein starker regionaler Bezug bei der Studienplatzwahl.

Aus diesem Grund wurde direkt das Modell mit Kovariablen (Modell 8.1) auf die Daten an-
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(4.92,11.8]

Abbildung 8.28.: Herkunft der Studienanfänger der HUB 2011 (Standardized Incidence Ratio - SIR).

gewendet. Der strukturierte Effekt wurde erneut durch ein Markov-Zufallsfeld geschätzt. Die

Ergebnisse sind in den Abbildungen 8.29 und 8.30 abgetragen. Für die Variable Landkreis

ergab sich ein signifikanter, negativer Einfluss. Aus den Landkreisen stammen in diesem Fall

um den Faktor exp(β1) = exp(−0.9698) = 0.379 weniger Studienanfänger als aus Kreisfreien

Städten. Die Funktion für die Distanz zur HUB ist ähnlich im Verlauf wie die bei der LMU. Im

räumlich strukturierten Effekt erkennt man positive Effekte für die Gebiete nördlich von Berlin.

Dies ist vermutlich darauf zurückzuführen, dass hier im näheren Umfeld nur Universitäten in
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Rostock und Greifswald zur Verfügung stehen. Negative Effekte werden hingegen in der Nähe

der Universitätsstädte Leipzig, Chemnitz und Dresden geschätzt.

Insgesamt weisen die Daten auf einen starken regionalen Bezug bei der Wahl des Studienortes

hin. Interessant wäre ein Vergleich mit weiteren Universitäten des Bundesgebiets. Dabei wäre

es außerdem sinnvoll von der einfachen Distanz zu einer Definition über die Erreichbarkeit (via

Auto, öffentliche Verkehrsmittel etc.) überzugehen.
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Abbildung 8.29.: Geschätzter Effekt für die Distanz der Zentroiden zur HUB 2011.
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Abbildung 8.30.: Schätzungen des strukturierten (a) und des unstrukturierten (b) räumlichen Effekts;
Modell mit Kovariablen HUB 2011.
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9. Zusammenfassung und Ausblick

Diese Masterarbeit beschäftigte sich mit der Modellierung räumlicher Abhängigkeiten. Grund-

lage vieler statistischer Modelle ist die Annahme unabhängiger Beobachtungen (gegeben den

Kovariablen). Eine häufige Charakteristik räumlicher Daten ist jedoch die Tatsache, dass sich

nahe Beobachtungen ähnlicher sind als weit entfernte. Eine Folgerung daraus ist, dass die-

se Daten nicht dem Paradigma der Unabhängigkeit folgen und somit einer Modellierung von

Abhängigkeiten bedürfen.

Die vorliegende Arbeit gibt einen Überblick über die Theorie zur Modellierung zweier räumlicher

Datentypen: geostatistische Daten und Gitterdaten. Bei geostatistische Daten liegt die räumliche

Information stetig, in Form von Koordinaten vor, bei Gitterdaten ist sie auf eine abzählbare

Menge an Regionen aggregiert. Es wird in beiden Fällen von einem zugrundeliegenden, daten-

generierenden stochastischen Prozess

{Z(s) : s ∈ D}

ausgegangen. Dabei entspricht s ∈ Rd einer Lokation im d-dimensionalen euklidischen Raum

und D einer Indexmenge mit D ⊂ Rd.
Die gebräuchlichste Methode der Geostatistik ist das Kriging. Mit Hilfe des sogenannten Vario-

gramms werden hier räumliche Abhängigkeiten ausgedrückt und so die Schätzung von Werten

an unbeobachteten Orten ermöglicht.

Gitterdaten hingegen werden mittels Markov-Zufallsfeldern modelliert. Die Ähnlichkeit bzw.

Abhängigkeit zweier Regionen wird in diesem Fall über deren Nachbarschaftsverhältnis berück-

sichtigt.

Beide Ansätze lassen sich in die Theorie der Geoadditiven Modelle einbetten. Das Programm-

paket BayesX (Umlauf et al. 2015) stellt die nötigen Funktionen zur Verfügung um eine Aus-

wertung dieser Modelle in R (R Core Team 2014) durchzuführen.

Es wurden beispielhaft zwei Datensätze mit Hilfe der besprochenen Methoden analysiert. Bei

der Auswertung von relativen Grünwerten aus Webcam-Bildern zur Bestimmung phänologischer

Phasen konnte kein strukturierter räumlicher Effekt festgestellt werden. Es wurden deshalb

unabhängige zufällige Effekte zur Modellierung verwendet. Möglicherweise könnte das Modell

durch die Aufnahme weiterer Kovariablen (Regenfallmenge, Temperatur, Höhe des Standortes

etc.) weiter verbessert werden. Dem Verlauf des relativen Grünwertes liegt zudem an jeder

Station die gleiche funktionale Form zu Grunde. Der Grünwert liegt auf einem Grundniveau bis

er ab dem Erscheinen der ersten Blätter (SOS) bis zur vollständigen Reife des Laubs (MAT) auf
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9. Zusammenfassung und Ausblick

einen Maximalwert ansteigt. Es zeigen sich jedoch Phasenverschiebungen, Veränderungen in der

Differenz zwischen SOS und MAT sowie in der Amplitude (vgl. Abbildung 9.1).

DOY
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M
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M
ax

SOS MAT

Phasenverschiebung
Stauchung/Streckung
Amplitudenveränderung

Abbildung 9.1.: Theoretischer Anstieg des relativen Grünwertes mit möglichen Veränderungen

Sinnvoll wäre hier über diese Arbeit hinaus eine Analyse auf Basis funktionaler Daten und

einer Time-Warping-Funktion (siehe z.B. Silverman & Ramsay (2005)). Möglicherweise lässt

sich dadurch auch doch noch ein räumlicher Effekte identifizieren.

Bei der Analyse der Herkunft von Studienanfängern an der LMU wurde ein starker regionaler

Bezug bei der Studienortswahl festgestellt. Die Anzahl der Studienanfänger in den Kreisen nahm

mit der Entfernung zur Hochschule stetig ab. Beim räumlichen Effekt zeigte sich ein erhöhter

Erwartungswert in den südöstlichen Gebieten Bayerns. Außerdem scheint die Anziehungskraft

der eigenen Hochschule in Landkreisen mit Universitätsstadt größer zu sein, als die der LMU.

Interessant wäre ein weiterer Vergleich mit anderen Universitäten des Bundesgebiets. Lohnend

wäre womöglich eine Gegenüberstellung mit zentraler gelegenen Universitäten. Dabei wäre es

außerdem sinnvoll von der einfachen Distanz zur einer Definition über die Erreichbarkeit (via

Auto, öffentliche Verkehrsmittel etc.) überzugehen.
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A. Datenaufbereitung

Vor der eigentlichen Auswertung mussten zunächst die vorliegenden Daten geeignet aufbereitet

werden. Auf der beigelegten CD befinden sich die fertigen Datensätze. Der folgende Abschnitt

dient der Illustration der nötigen Vorbereitungsschritte.

A.1. Phänologie

Es wurden drei Datensätze zur Verfügung gestellt.

• Metadaten zu den Stationen: Name, Website, Geokoordinaten (Grad, Minuten, Sekunden)

• Rohdaten: Station, filename, meanR, meanG, meanB, relR, relG, relB

• Datenqualität: Beeinträchtigungen, Distanz des Baums zur Kamera, Typ des Baums, ROI,

ausgewählte Tageszeit

Zunächst wurden die Geokoordinaten (Längen- und Breitengrad) in Dezimalgrad umgerechnet,

um eine Verwendung in R zu ermöglichen. Dies geschieht nach der Formel

Koorddez = Grad+Minute/60 + Sekunde/3600.

Außerdem konnte aus der File-Bezeichnung der Rohdaten das Datum der jeweiligen Messung

extrahiert werden.

Mit Hilfe des Qualitätsdatensatzes wurden die Stationen im nächsten Schritt auf 182 verbleiben-

de eingeschränkt. Es wurde jeweils nur eine ROI (Region of Interest) pro Standort ausgewählt.

Außerdem wurde die Art des betrachteten Baums innerhalb der ROI auf den Typ 1 festge-

legt. Leider fehlt hier eine ausreichende Dokumentation der Kodierung. Es wird aber davon

ausgegangen, dass es sich dabei um Laubbäume handelt. In den Fällen in denen mehrere Kame-

ras pro Station verzeichnet waren, wurde diejenige ausgewählt, die eine geringere Distanz zum

Aufnahmeobjekt aufweist.

Auch die Kodierung der Störungen ist nicht dokumentiert. Es wurden deshalb alle Stationen

gelöscht, die einen Eintrag enthielten. Um welche Störung es sich dabei handelte, konnte nicht

festgestellt werden. Außerdem kam es in einigen Fällen zu technischen Problemen, die dazu

führten, dass keine neuen Bilder gespeichert, sondern das letzte Bild mehrfach in den Datensatz

mit aufgenommen wurde. Hier wurden die duplizierten Beobachtungen gelöscht.
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A. Datenaufbereitung

A.2. Hochschulen

Aus der Arbeit am Forschungsdatenzentrum konnten Datensätze über die Anzahl der Studi-

enanfänger mit HZB aus den einzelnen Kreisen Deutschlands erstellt werden. Dabei kam es zu

Sperrungen bei geringen Fallzahlen (< 3) innerhalb eines Kreises. Diese fehlenden Werte wurden

im Nachhinein zufällig mit 1 oder 2 ersetzt. Zur Analyse standen danach der Name des Kreises,

die Kreiskennziffer, sowie die Anzahl Studienanfänger zur Verfügung.

Für die räumliche Analyse mussten diese Daten einem Shapefile als Metadaten hinzugefügt

werden. Dabei mussten für die Jahre 2004 und 2011 unterschiedliche Datensätze verwendet

werden, da es in der Zwischenzeit zu Gebietsveränderungen im Bundesgebiet gekommen ist. Das

Shapefile für 2004 stammt aus der GADM database of Global Administrative Areas (2004). Die

Karte für 2011 konnte vom Bundesamt für Kartographie und Geodäsie (2011) bezogen werden.

Für 2004 waren im Shapefile keine Kennziffern vorhanden, sodass die Daten anhand der Kreis-

bezeichnung zugeordnet werden mussten. Da diese nicht einheitlich sind, mussten sie zunächst

angepasst werden um ein Matching zu ermöglichen. Für 2011 konnte dies stark vereinfacht mit

Hilfe der Kennziffern durchgeführt werden.

Um die erwartete Anzahl an Studienanfängern pro Kreis (Ei) berechnen zu können, musste

zunächst die “Population unter Risiko” (Pi) bestimmt werden. Da keine Daten zur Verteilung

der Personen mit HZB im Bundesgebiet vorliegt, wurde diese als homogen angenommen und die

Population unter Risiko durch die Einwohnerzahl der Kreise geschätzt. Diese stehen über die

GENESIS-Online Datenbank des Statistischen Bundesamtes zur Verfügung.

Die erwartete Anzahl an Studienanfängern in Kreis i wurde dann gemäß

Ei = Pir+,

mit r+ = O+

P+
, berechnet (vgl. Kapitel 6).

Außerdem wurde die (Great-Circle-)Distanz der Zentroiden der einzelnen Kreise zur LMU

(Koordinaten: N48◦ 9’ 2.484” E11◦ 34’ 49.296”) berechnet.
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B. Inhalt der CD-Rom

Auf beigelegter CD-Rom finden sich folgende Ordner und Dateien:

• Im Ordner Daten/ befinden sich folgende Unterordner:

– Hochschulen/ :

∗ Germany grid.Rdata : Grid über Deutschland.

∗ [lmu, hub][04, 11] [geo, agg].Rdata : SpatialPolygonsDataFrame mit der

Anzahl Studienanfänger für die LMU bzw. HUB für die Jahre 2004 und 2011.

– Phenology/ : SpatialPointsDataFrame mit den rel. Grünwerten an den Koordinaten

der einzelnen Stationen.

– Deutschlandkarten/ :

∗ SpatialPolygonsDataFrame Deutschlands, der Bundesländer, Regierungsbezirke

und Kreise Deutschlands (2004) im .Rdata-Format.

∗ Kreise (2011) als Shapefile.

• Im Ordner Abbildungen/ befinden sich die in der Arbeit abgebildeten Grafiken.

• Im Ordner Output/ befinden sich die Modelloutputs im .Rdata-Format:

– relG mod[0, 1, 2, 2.1, 3, 3.1, 4].Rdata : Modelle gemäß Tabelle 8.1.

– model[04, 11] [, 1] [, hub].Rdata : Modelle der Hochschulen.

• Im Ordner RCode/ befinden sich folgende Dateien:

– prepare [hochschulen, phenology].R : Code zur Erstellung der fertigen Datensätze

(nicht lauffähig).

– helpfunctions.R : Hilfs-Funktionen für andere Auswertungen.

– descriptive phenology.R : Deskriptive Auswertung der Phänologie-Daten.

– analysis [hochschulen, phenology].R : Code zur Analyse in Kapitel 8.

– graphics [chap4, chap5].R : Code für die Grafiken in Kapitel 4 und 5.

– sub kriging hochschulen.R : Zusätzlicher Code zur Analyse der Hochschuldaten

mittels Kriging.
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B. Inhalt der CD-Rom

• Im Ordner Masterarbeit/ befinden sich folgende Dateien:

– Masterarbeit.pdf : Die Masterarbeit zum Druck formatiert.

– Masterarbeit elektronisch.pdf : Die Masterarbeit als elektronische Version.
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