AUTOMOTIVE ENGINEERING AND LITIGATION
Volume 2

Edited by George A. Peters, J.D., P.E.
and Barbara J. Peters, J.D.
Peters and Peters
Attorneys at Law
Santa Monica, California

Garland Law Publishing
New York & London
Contents

Preface

xxvii

1 Rollover Protective Systems (ROPS)

David V. MacCollum

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. INTRODUCTION</td>
<td>4</td>
</tr>
<tr>
<td>II. EARLY HISTORY</td>
<td>6</td>
</tr>
<tr>
<td>III. EARLY EFFORTS TO REDUCE INJURIES</td>
<td>9</td>
</tr>
<tr>
<td>IV. LIABILITY AS A SAFETY INCENTIVE</td>
<td>20</td>
</tr>
<tr>
<td>V. EDUCATIONAL EFFORTS</td>
<td>21</td>
</tr>
<tr>
<td>VI. MAGNITUDE OF THE RISK</td>
<td>21</td>
</tr>
<tr>
<td>VII. TECHNICAL FEASIBILITY</td>
<td>22</td>
</tr>
<tr>
<td>VIII. TYPES OF INJURY</td>
<td>24</td>
</tr>
<tr>
<td>IX. SEAT BELTS</td>
<td>25</td>
</tr>
<tr>
<td>X. REMEDIES</td>
<td>27</td>
</tr>
<tr>
<td>XI. MORAL CONSIDERATIONS</td>
<td>30</td>
</tr>
<tr>
<td>XII. MANAGEMENT STRUCTURE</td>
<td>31</td>
</tr>
</tbody>
</table>

REFERENCES | 32 |

2 Human Factors in Highway-Railroad Grade Crossing Accidents

Rudolf G. Mortimer

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. ACCIDENT STATISTICS</td>
<td>41</td>
</tr>
<tr>
<td>II. ADVANCE WARNING SIGNS</td>
<td>44</td>
</tr>
<tr>
<td>III. CHARACTERISTICS OF GRADE CROSSINGS</td>
<td>47</td>
</tr>
<tr>
<td>A. Grade Crossing Signs</td>
<td>47</td>
</tr>
<tr>
<td>A.1. CROSSBUCKS</td>
<td>47</td>
</tr>
<tr>
<td>A.2. STOP SIGNS</td>
<td>48</td>
</tr>
<tr>
<td>A.3. OTHER SIGNS</td>
<td>48</td>
</tr>
<tr>
<td>A.4. FLASHING LIGHT SIGNALS</td>
<td>48</td>
</tr>
<tr>
<td>A.5. WIGWAGS</td>
<td>48</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>A.6.</td>
<td>HIGHWAY TRAFFIC SIGNALS</td>
</tr>
<tr>
<td>A.7.</td>
<td>BELLS</td>
</tr>
<tr>
<td>A.8.</td>
<td>NO SIGNS OR SIGNALS</td>
</tr>
<tr>
<td>A.9.</td>
<td>PAVEMENT MARKINGS</td>
</tr>
<tr>
<td>A.10.</td>
<td>SMALLEST CROSSING ANGLE</td>
</tr>
<tr>
<td>A.11.</td>
<td>CROSSING SURFACE</td>
</tr>
<tr>
<td>A.12.</td>
<td>TRAIN MOVEMENTS</td>
</tr>
<tr>
<td>A.13.</td>
<td>TRAIN SPEEDS</td>
</tr>
<tr>
<td>A.14.</td>
<td>AVERAGE DAILY TRAFFIC</td>
</tr>
<tr>
<td>IV.</td>
<td>FLASHING LIGHT WARNINGS</td>
</tr>
<tr>
<td>V.</td>
<td>GATED CROSSINGS</td>
</tr>
<tr>
<td>VI.</td>
<td>ROADWAY VARIABLES</td>
</tr>
<tr>
<td></td>
<td>A. Horizontal Alignment</td>
</tr>
<tr>
<td></td>
<td>B. Vertical Alignment</td>
</tr>
<tr>
<td></td>
<td>C. Crossing Roughness</td>
</tr>
<tr>
<td></td>
<td>D. Sight Distance</td>
</tr>
<tr>
<td></td>
<td>E. Ambient Lighting</td>
</tr>
<tr>
<td>VII.</td>
<td>WEATHER CONDITIONS</td>
</tr>
<tr>
<td></td>
<td>A. Misting of Windows</td>
</tr>
<tr>
<td>VIII.</td>
<td>TRAIN VARIABLES</td>
</tr>
<tr>
<td></td>
<td>A. Contrast and Apparent Size</td>
</tr>
<tr>
<td></td>
<td>B. Paint Schemes</td>
</tr>
<tr>
<td></td>
<td>C. Locomotive Lights</td>
</tr>
<tr>
<td></td>
<td>D. Locomotive Horns</td>
</tr>
<tr>
<td>IX.</td>
<td>DRIVER FACTORS</td>
</tr>
<tr>
<td></td>
<td>A. Distance and Speed Estimation</td>
</tr>
<tr>
<td></td>
<td>B. Decision-Making</td>
</tr>
<tr>
<td></td>
<td>C. Driver Variability</td>
</tr>
<tr>
<td>X.</td>
<td>RECOMMENDATIONS</td>
</tr>
<tr>
<td></td>
<td>A. Barriers to Road Traffic</td>
</tr>
<tr>
<td></td>
<td>B. Advance Warning Signs</td>
</tr>
<tr>
<td></td>
<td>B.1. REDUNDANT SIGNING AND ALERTING</td>
</tr>
<tr>
<td></td>
<td>B.2. INFORMATION CONTENT</td>
</tr>
<tr>
<td></td>
<td>C. Constant Warning Time</td>
</tr>
<tr>
<td></td>
<td>D. Train Direction-of-Approach Indication</td>
</tr>
<tr>
<td></td>
<td>E. Safe-to-Cross Signal</td>
</tr>
<tr>
<td></td>
<td>F. Flashing Signal Intensity</td>
</tr>
<tr>
<td></td>
<td>G. Visibility of Trains</td>
</tr>
<tr>
<td></td>
<td>H. Crossing Illumination</td>
</tr>
<tr>
<td>XI.</td>
<td>EVALUATION OF CONTRIBUTING CAUSES IN HIGHWAY-RAILROAD GRADE CROSSING ACCIDENTS</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>68</td>
</tr>
</tbody>
</table>

3 Motorcycle Accident Reconstruction

John Fiske Brown and Kenneth S. Obenski

I. UNDERSTANDING MOTORCYCLES

71
A. Why Motorcycles Are Fundamentally Different than Cars 75
 A.1. LEANING INTO CURVES 75
 A.2. STABILITY 75
 A.3. PERFORMANCE CHARACTERISTICS OF MOTORCYCLES 76
B. Speed Wobble 76
C. Mechanical Problems Related to Traffic Accidents 77
D. Brakes 78
 D.1. LAYING IT DOWN 79
E. Small Size 80
F. Electrical Systems 80
G. Weather 80

II. MOTORCYCLE ACCIDENT RECONSTRUCTION 81
 A. Locked-Wheel Skids 81
 B. Centrifugal Skids 84
 C. Effect of Water on Pavement 84
 D. Crash Damage 85
 D.1. EVIDENCE OF MINOR CONTACT WITH OTHER VEHICLES 88
 E. Additional Factors in Accident Reconstruction 88
 F. Momentum 89
 G. Rider Injuries 90

III. STATISTICAL CONSIDERATIONS 91
 A. Available Data 91
 B. Accident Causation 91
 C. Modified Motorcycles 92
 D. Rider Profile 93

IV. MOPEDS, MINIBIKES, AND MOTORIZED BICYCLES 93

4 Motorcycle Design: New Materials 95
 Donald F. Adams and Edwin M. Odom

 I. INTRODUCTION 99
 II. PROPERTIES OF CANDIDATE MATERIALS 104
 III. CASE STUDY OF NEW MATERIALS SUBSTITUTION 112
 A. Summary 112
 B. Introduction 113
 C. Design Parameters 115
 D. Design Analysis 117
 E. Fabrication 119

CITATIONS 94
5 Collision Dynamics of Motorcycles Impacting Passenger Vehicles

Max Lindenmann, Jürgen Grandel, and F. Alexander Berg

I. ABSTRACT
II. INTRODUCTION
III. TEST SETUP AND PROCEDURE
IV. TEST RESULTS
A. Motion Sequences
 A.1. INITIAL IMPACT IN AREA OF FRONT AXLE OF PASSENGER CAR
 A.2. INITIAL IMPACT IN AREA OF FRONT DOOR OF PASSENGER CAR
 A.3. INITIAL IMPACT IN AREA OF REAR AXLE OF PASSENGER CAR
B. Vehicle Damage
 B.1. DAMAGE TO PASSENGER CAR
 B.2. DAMAGE TO MOTORCYCLE
CITATIONS

6 Skidmark Nomograph

Max Lindenmann

I. INTRODUCTION
II. DIRECTIONS FOR USE OF THE CHARTS
III. EXPLANATIONS AND EXAMPLES — CHARTS A AND B
 A. Example 1
 B. Example 2
 C. Example 3
 D. Example 4
 E. Explanatory Notes
IV. EXPLANATIONS AND EXAMPLES TO CHART C
 A. Example 1
 B. Example 2

7 Tire and Rim Failures

O. Edward Kurt

I. INTRODUCTION
II. HISTORICAL PERSPECTIVES
III. DESIGN DEFECTS—TIRES 168
 A. Passenger Tires 168
 B. Truck Tires 173
 C. Agricultural, Industrial, and Other Tires 178
IV. DESIGN DEFECTS—RIMS/WHEELS 182
 A. Passenger Rims 182
 B. Heavy Truck Rims 185
 C. Light Truck Rims 187
V. MANUFACTURING DEFECTS—TIRES 190
 A. Passenger Tires 190
 B. Heavy and Light Truck Tires 192
VI. MANUFACTURING DEFECTS—RIMS 194
 A. Passenger Rims 194
 B. Heavy Truck Rims 194
 C. Light Truck Rims 194
VII. EXAMINATION AND EVALUATION OF FAILED PASSENGER TIRES 194
VIII. EXAMINATION AND EVALUATION OF FAILED TRUCK TIRES 197
IX. EXAMINATION AND EVALUATION OF FAILED LIGHT TRUCK TIRES 199
X. EXAMINATION AND EVALUATION OF OTHER TIRES 200
XI. EXAMINATION AND EVALUATION OF FAILED RIMS 201

8 Tire Life and Failure Analysis 203

Lawrence R. Sperberg

I. USER EXPECTATIONS 208
II. INDIVIDUAL TIRE DIFFERENCES 208
III. WHAT IS A DEFECT? 209
IV. TIRE CLASSIFICATION 210
V. CORD TENSION 211
 A. Power Flow and Fatigue 211
 B. Separations and Adhesion 211
VI. OXIDATION AND REVERSION OF RUBBER 213
 A. Antioxidants and Antiozonants 213
VII. TECHNICAL DEFENSES IN LAWSUITS 214
VIII. LITIGATION ALLEGATIONS 215
 A. Basic Questions 215
 B. Scientific Laboratory Analyses 215
 C. Bead Wire Failures 216
 D. Inflation Pressure and Cord Tension 217
 E. Maximum Load, Tire Inflation Pressure, Ride, and Durability 218
F. Tire Markings, Underinflation, and Overload

IX. TRAPPED CONTAMINANTS 219

X. HEAT IN TIRES 222
 A. Sources 222
 B. Dissipation of Heat 223
 C. Effects of Heat Upon a Tire 223

XI. PRESSURE BUILDUP WITHIN THE CORD STRUCTURE 224

XII. TIRE FAILURES BEFORE WEAR-OUT—A CHEMICAL OXIDATION REACTION 224

XIII. NITROGEN INFLATION OF TIRES 226

XIV. ELECTRON MICROPROBE FOR DETERMINATION OF CHEMICALLY COMBINED OXYGEN 227

XV. USE OF THIN-LAYER CHROMATOGRAPHY TO DETERMINE ANTIOXIDANT EXHAUSTION 229

XVI. IMPLICATIONS FOR TIRE BUILDING 232

XVII. TACTICAL PROCEDURES IN LITIGATION 232

XVIII. CONCLUSION 235

GLOSSARY OF TECHNICAL TERMS 236
 Accelerators (of Vulcanization) 236
 Activators (of Vulcanization) 236
 Adjustments (Tire) 236
 Antioxidants and Antidegradants 239
 Antiozonants 241
 Bead 241
 Belts (of Tires) 242
 Bias (Tire) 243
 Body or Carcass (of Tire) 244
 Crown, Shoulder, Buttress, and Sidewall 245
 Destructive and Nondestructive Testing 245
 Driving Control During Blowouts 246
 Expert Witness (Forensic Tire Expert) 249
 Force Variation 254
 Heat in Tires 254
 Punctures (Nail Penetrations) 256
 Radial (Tire) 258
 Scientific Instruments 259
 A. LIGHT MICROSCOPE 259
 X-RAYS 259
 FLUOROSCOPY 259
 ELECTRON MICROSCOPE 259
 ELECTRON MICROPROBE 260
 AUGER ELECTRON SPECTROSCOPIC ANALYSIS 261
 ATOMIC ABSORPTION 261
9 Rear-End Crashes

Rudolf G. Mortimer

I. ACCIDENT DATA ANALYSES 278
II. PERCEPTUAL FACTORS 283
III. THE BASIS FOR DISTANCE JUDGMENTS 285
IV. VEHICLE MARKING AND SIGNALING SYSTEMS 286
 A. Marking 286
 B. Signaling 286
V. ENVIRONMENTAL AND VEHICLE FACTORS AFFECTING THE REAR VISIBILITY OF VEHICLES 296
 A. Motorcycles 298
 B. Bicycles 298
VI. THE FEASIBILITY OF IMPROVEMENTS IN VEHICLE REAR LIGHTING AND SIGNALING 299
VII. SUMMARY 303
CITATIONS 303

10 Vehicle Collision Analysis

Raymond M. Brach

I. INTRODUCTION 310
II. LIST OF SYMBOLS 311
III. IMPULSE AND MOMENTUM 312
IV. IMPACT EQUATIONS INCLUDING ROTATIONAL EFFECTS 316
 A. Physical Properties and Problem Variables 316
11 Warnings and Instructions

George A. Peters

I. THE IMPORTANCE OF WARNINGS 337

II. THE ILLUSTRATIVE VEHICLE WARNINGS 338
 A. Vehicle Turn Signals 338
 B. Reverse Crash Warnings 340
 C. Brake Warnings 342
 D. Service Manuals 343
 E. Owner Manuals 345
 F. Effects of Other Warnings 346

III. CONSTRUCTION SITES 347

IV. WARNING DESIGN 348
 A. Space and Location 348
 B. Space Expansion 349
 C. Basic Criteria 350
 D. Conclusion 351

V. EVALUATION CRITERIA 352
 A. Readability 352
 B. Understandability 353
 C. Comprehensibility 353
 D. Practicality 354
 E. Effectiveness 355
 F. Behavior Modification 356
 G. Compatibility 356
 H. Conspicuity 357
 I. Durability 357
 J. Reliability 357
 K. Reinforcement 358
L. Urgency 358
M. Placement 358
N. Novelty 359
O. Type 359
P. Associated Cost 359
Q. Failure Mode Consequences 360
R. Priority Effect 360
S. Human Overload 360
T. Adverse Effects 361
VI. RATING WARNINGS 361
VII. JURY INSTRUCTIONS 362
A. Introduction 362
B. California 363
C. Texas 364
D. Commentary 365
REFERENCES 366

12 Preparation of Service, Operation, and Inspection Manuals 369
Roger J. Koppa

I. INTRODUCTION 373
II. REQUIREMENTS FOR DOCUMENTATION 373
III. ORGANIZATION OF DOCUMENTATION 375
IV. FORMAT EFFECTIVENESS IN PROCEDURES MANUAL 379
V. CASE STUDY: DEVELOPMENT OF A HEAVY TRUCK AND BUS SAFETY INSPECTION MANUAL 390
A. Safety Inspection of Heavy Trucks and Buses 390
B. Resources for Training Vehicle Inspectors 391
C. Contents of Training and Job Aids 391
D. Format of the Final Manual 393
E. Use of Manual by Inspector 404
F. Evaluation of Manual 406
G. Commentary on This Case Study 406
VI. RESOURCES 406
CITATIONS 407

13 Human Capabilities and Limits 409
Gordon H. Robinson

I. PEOPLE AS INFORMATION PROCESSORS 412
A. Introduction 412
B. Attention 414
C. Memory 416
D. Choice and Action 417

II. WARNINGS 422
A. As Communication 422
B. Information Processing 423
C. Warning Systems 423
D. On “Obvious” and Appreciation 425

III. PEOPLE AND MACHINES 426

IV. SYSTEM DESIGN AND RESPONSIBILITY: AN ILLUSTRATION FROM A FRONT LOADER ACCIDENT WITH HUMAN LIMITS IN ANTHROPOMETRY AS AN IMPORTANT FACTOR 428
A. Background 428
B. Factors Affecting the Data 429
C. Machine Factors 430
D. Use Factors 430
E. Accident History Factors 430
F. Possible Countermeasures 431
G. Foreseeable Use and Control 432

V. ROLE OF THE HUMAN FACTORS SPECIALIST 433
REFERENCES 433

14 Workstation Design 435
Richard J. Hornick

I. INTRODUCTION 438

II. WORKSTATION FACTORS 439
A. Anthropometry 439
 A.1. THE CONCEPT 439
 A.2. RANGE 439
 A.3. APPLICATION AND IMPLICATIONS 440
B. Controls and Displays 441
 B.1. CONTROLS 441
 B.2. DISPLAYS 443
 B.3. CONTROL/DISPLAY INTEGRATION 444
 B.4. A LITIGATION EXAMPLE 445
 B.5. IMPLICATIONS 445
C. Signs and Labels 446
 C.1. THE CONCEPT 446
 C.2. REQUIREMENTS 446
 C.3. PROBLEMS AND CHALLENGES 447
 C.4. A LITIGATION EXAMPLE 448
 C.5. IMPLICATIONS 449
D. Body Support and Seating 449
 D.1. THE SUPPORT ITSELF 449
 D.2. INTEGRATION WITH THE WORKSTATION 450
 D.3. IMPLICATIONS 451
E. Accessibility 451
 E.1. MAINTENANCE 451
 E.2. INGRESS/EGRESS 452
F. Safety Devices and Safeguards 453
 F.1. PURPOSE 453
 F.2. TYPES OF SAFEGUARDS 453
 F.3. HUMAN RESPONSES 454
 F.4. IMPLICATIONS 455
III. INTERACTIONS 455
 A. Their Importance 455
 B. Litigation Examples 456
 B.1. AN AIRCRAFT 456
 B.2. AN AUTOMOBILE 456
 B.3. A LAWN MOWER 457
IV. CONCLUSION 457
CITATIONS 458

15 Stress Effects 461
Michael Smith, Gavriel Salvendy,
and Joseph Sharit

I. ACCIDENT POTENTIAL AND STRESS 465
II. CHARACTERISTICS OF STRESS 465
III. MEASUREMENT OF STRESS 467
 A. Physiological Measures 467
 B. Biochemical Measures 468
 C. Psychological Measures 470
 D. Behavioral Measures 471
IV. FACTORS RELATED TO STRESS 472
 A. Mental Work Load 472
 B. Fatigue 473
 C. Arousal 474
V. SOURCES OF OCCUPATIONAL STRESS 474
 A. Individual Sources 475
 B. Environmental and Task Sources 476
 C. High-Stress Occupations 478
VI. MANAGEMENT OF OCCUPATIONAL STRESS 479
VII. COMMENTS ON STRESS AND ACCIDENTS 483
REFERENCES 483
BIBLIOGRAPHY 487
16 Effects of Alcohol and Drugs

Dennis L. Price

I. INTRODUCTION
 A. Statement of the Problem
 A.1. GENERAL DESCRIPTION
 A.2. GENERAL DEFINITION OF A DRUG ABUSER
 B. Costs of Drug Abuse in Industry
 B.1. SOURCES OF COSTS
 B.2. AMOUNT OF LOSS
 C. Industrial Awareness of the Problem

II. ALCOHOL ABUSE
 A. Prevalence of Alcohol Abuse Among the Employed
 A.1. PREVALENCE IN THE GENERAL POPULATION
 A.2. PREVALENCE BY AGE AND OCCUPATION
 B. Effects of Alcohol on Performance
 B.1. PSYCHOPHYSICAL STUDIES

III. DRUG ABUSE
 A. Prevalence of Drug Abuse
 B. The Effects of Drugs on Human Performance
 B.1. MARIJUANA
 B.2. STIMULANTS
 B.3. MINOR TRANQUILIZERS
 B.4. BARBITUATES
 B.5. HALLUCINOGENS

IV. CONCLUSIONS
REFERENCES

17 Human Factors Aspects of Road Traffic Safety

Herbert Gstalter and C. Graf Hoyos

I. WHAT DOES TRAFFIC SAFETY REALLY MEAN?
II. TRAFFIC AS A MAN-MACHINE SYSTEM
III. PSYCHOLOGICAL MODELS OF THE DRIVER AS AN INFORMATION PROCESSOR
IV. HUMAN FACTORS IN ROADWAY DESIGN
V. HUMAN FACTORS IN VEHICLE DESIGN
CITATIONS
REFERENCES
18 Speed Estimation
Thomas J. Triggs

I. INTRODUCTION
II. HOW IS SPEED PERCEIVED
 A. Some General Characteristics
 B. The Relationship Between Subjective and Objective Speed
III. DRIVER'S ESTIMATE OF OWN VEHICLE SPEED
 A. Visual vs. Auditory Information
 B. The Role of Other Sensory Cues
 C. Peripheral vs. Central Vision
 D. Speed Adaptation Effects
 E. Environmental Effects
 F. Subjective Speed Scale of a Moving Observer
IV. ESTIMATION OF APPROACHING VEHICLE SPEED
 A. Reliability and Accuracy of Estimates
 B. Subjective-Objective Speed Relationships
 C. Underestimates vs. Overestimates
V. DETECTION OF RELATIVE VELOCITY WHEN CAR-FOLLOWING
VI. SPEED JUDGMENTS BY CHILDREN
VII. CONCLUDING COMMENTS
CITATIONS

19 Vehicle Vibration
David J. Oborne

I. INTRODUCTION
 A. Vehicle Vibration: Performance and Safety
 A.1. THE AROUSAL/PERFORMANCE MODEL
 A.2. THE SPARE MENTAL CAPACITY MODEL
II. THE BASES OF VIBRATION EFFECTS
III. HEALTH PROBLEMS DUE TO VIBRATION
IV. PERFORMANCE EFFECTS OF VIBRATION
 A. Visual Performance Effects of Vibration
 A.1. VIBRATING THE OBJECT ALONE
 A.2. VIBRATING THE OBSERVER ALONE
 A.3. VIBRATING THE OBJECT AND THE OBSERVER TOGETHER
 B. Motor Performance Effects of Vibration
C. The Effects of Vibration on Reaction Time and Information Processing 617

V. VEHICULAR VIBRATION AND COMFORT 619
A. Qualitative Effects of Vibration on Comfort 620
B. Quantitative Effects of Vibration on Comfort 621

VI. MOTION SICKNESS 623

VII. A VIBRATION STANDARD 624

CITATIONS 627

20 Agricultural Vehicles 631

Chitranjan Saran

I. HUMAN ENVIRONMENT SYSTEM 637
II. FARM ACCIDENT FACTS 638
III. UNIQUENESS OF FARMING 638
IV. SELECTED FARM HAZARDS 640
A. Natural Environment Hazards 640
B. Man-made Environmental Hazards 641
 B.1. MACHINES AND EQUIPMENT 641
 B.2. AIRBORNE CONTAMINANTS AND ATMOSPHERIC CONDITIONS 642
 B.3. SOIL, LAND, WATER, AND CROPS 646
 B.4. LIVESTOCK AND OTHER ANIMALS 646
 B.5. FARM STRUCTURES AND ELECTRICITY 648
 B.6. HAND TOOLS, WORKSHOP, AND HOME APPLIANCES 649
 B.7. FIRES 649
 B.8. BIOLOGICAL PRODUCTS AND BY-PRODUCTS 649
 B.9. AGRICULTURAL CHEMICALS 649
C. Psychosocial and Physiological Factors 650
 C.1. KINDS OF FARM WORKERS 650
 C.2. AGE 651
 C.3. LEGAL STATUS OF FARMS AND FARM WORKERS 651
 C.4. UNSAFE ACTS AND CONDITIONS 653
 C.5. THRESHOLD VALUES 654
D. Diseases and Injuries 654
 D.1. CAUSED BY THE ENVIRONMENT 654
 D.2. TRANSMITTED BY ANIMALS 654
 D.3. CAUSED BY PLANTS, INSECTS, ALGAE, AND FUNGI 654
V. STATE OF THE ACT 655
 A. Present Federal Standards and Areas for Future Consideration 655
Contents

A.1. ENVIRONMENTAL PROTECTION AGENCY (EPA) 656

B. Voluntary Standards 657
 B.1. INTERNATIONAL STANDARD ORGANIZATION (ISO) 658

C. The Tractor: The Major Killer 658
 C.1. U.S. DEPARTMENT OF TRANSPORTATION REPORT TO CONGRESS 658
 C.2. PRIORITY PROBLEM AREAS 659

D. Safety Education and Research 660
 D.1. FARM MACHINERY MANUFACTURERS 660
 D.2. FARM ORGANIZATIONS 660
 D.3. AGRICULTURAL EXTENSION SERVICE 660
 D.4. AGRICULTURAL SAFETY IN THE UNIVERSITIES 661

VI. LITIGATIONS 661
 A. Human Factors Involvement 661
 B. Typical Action or Type of Injuries 663
 B.1. PLOWS 663
 B.2. HARROWS 663
 B.3. END-GATE SEEDERS 663
 B.4. COMBINE HARVESTERS 663
 B.5. CORN PICKERS 664
 B.6. FORAGE HARVESTERS 664
 B.7. MOWERS 664
 B.8. HAY BALERS 664
 B.9. SILO STORAGE IMPLEMENTS 665
 B.10. TRACTORS 665

ACKNOWLEDGMENTS 666
CITATIONS 666
REFERENCES 667

21 Propane as an Automotive Fuel 671

Robin V. Myers

I. INTRODUCTION 675

II. CHARACTERISTICS OF PROPANE 675
 A. Name 675
 B. Source 675
 C. Physical and Chemical Properties 675
 D. Toxicity 676
 E. Comparison with Gasoline and Diesel Fuel 676

III. COMPONENTS OF A PROPANE FUEL SYSTEM 677
 A. General 677
 B. Fuel Tank 677
 B.1. SAFETY RELIEF VALVE 680
 B.2. REFUELING CONNECTION 680
B.3. FIXED LIQUID-LEVEL GAUGE 681
B.4. FUEL GAUGE 681
B.5. FUEL OUTLET 681
B.6. EXCESS-FLOW VALVE 682
C. Relief Valve 682
D. Shut-off Valve 682
E. Converter 682
F. Primer 683
G. Carburetor 683
H. Dual-Fuel Systems 683
I. Hose, Piping, and Tubing 685
J. Labeling 685

IV. VEHICLE OPERATING CHARACTERISTICS 685
 A. Starting 685
 B. Driving 686
 C. Fuel Switching 686
 D. Maintenance 688
 E. Refueling 688
 F. Lead Emissions 689
 G. Costs 689
 H. Range 689

V. DIFFERENCES BETWEEN PROPANE-FUELED AND GASOLINE-FUELED VEHICLES 690
 A. Diesel-Fueled Vehicles 690
 B. Compression Ratio 690
 C. Valve System 690
 D. Ignition System 690
 E. Piston Rings 691
 F. Intake Manifold 691
 G. Cooling System 692
 H. Control of Exhaust Emissions 692
 I. Fuel Pump 693
 J. Suspension 693
 K. Fuel Tank 693

VI. SAFETY 694
 A. General 694
 B. Collision Damage 694
 C. Leaks 695
 D. Gasoline Leaks 696
 E. Direction of Pressure Relief 696
 F. Fires 697
 G. Modification 697
 H. Safety Warnings 697

VII. INTERNATIONAL REGULATIONS 698

VIII. OTHER AUTOMOTIVE APPLICATIONS 699

CITATIONS 700
Gear Design and Analysis

Ronald L. Huston

1. **Introduction** 706
2. **Spur Gear Terminology** 708
3. **Spur Gear Kinematics** 711
 - Conjugate Tooth Forms
 - Involute Curves and Tooth Forms
 - Gear Action
 - Design Considerations
4. **Manufacturing, Maintenance, and Stress** 715
 - Manufacturing
 - Maintenance
 - Stresses

Paints

Daniel Klempner

1. **Introduction** 727
2. **Components of Paint** 729
 - Binders
 - Vehicle
 - Pigments
3. **Paint Properties** 732
 - Wet Paint Properties
 - Weight per Gallon
 - Percent Solids
 - Viscosity
 - Hiding Power
 - Fineness of Grind
 - Flash Point
 - Flocculation and Settling
 - Cured (Dry) Paint Properties
 - Adhesion
 - Hardness and Flexibility
 - Appearance
 - Thickness
 - Toughness and Britteness
4. **Curing of Paints** 734
 - Solvent Loss
 - Paint Reaction
 - Air Reaction
Contents

D. Emulsion Drying 735
E. Fusion, Melting, and Resolidification 735

V. PAINT FAILURE 735

VI. KINDS OF PAINTS 738
A. Primers 738
B. Sealers and Surfacers 738
C. Topcoats 739
D. House Paints 739
D.1. WATER BASE (LATEX) SYSTEMS 739
D.2. OIL BASE SYSTEMS 739
D.3. VARNISHES 740
D.4. STAINS AND VARNISH STAINS 740
D.5. WOOD FILLERS AND SEALERS 740
D.6. GENERAL BEHAVIOR 740

E. Special Purpose Paints 741
E.1. FIRE RETARDANT PAINTS 741

F. Reflective and Luminescent Paints 742
G. Heat Resistant Coatings 742

VII. METHODS OF PAINT APPLICATION 742
A. Brushing 743
B. Roller Coating 743
C. Spraying 743
D. Dipping and Flow Coating 746
E. Electrodeposition 746
F. Powder Coatings 747

VIII. PAINT FILM DEFECTS 747
A. Orange Peel 747
B. Sagging 747
C. Flooding, Floating, and Mottle 748
D. Silking 748
E. Popping, Bubbling, Pinholing, and Cratering 748
F. Fisheyes 748
G. Wrinkling 748
H. Blushing 748
I. Crazing, Checking, and Cracking 749

IX. SAFETY 749
A. Fires 749
B. Toxicity 752
C. Equipment 754
D. Miscellaneous Areas of Safety 754

CITATIONS 754

24 Sealants 757

Adolf Damusis

I. SEALANTS AS COMPARED TO
CAULKING COMPOUNDS AND TO ADHESIVES
A. Modern Elastomeric Sealants
B. Comparison with Caulking Compounds
C. Comparison with Adhesives

II. JOINTS IN MOTION
A. Factors in Joint Motion
B. Shape of Joints
C. Widening and Closing of Joints
D. Depth and Width Ratio
E. Back-up Materials
F. Release Materials
G. Freezing of Joint

III. GENERIC RESINS AS BINDERS
A. Silicones
B. Urethanes
C. Polysulfides
D. Polychloroprene (Neoprene) Sealants
E. Acrylics, Butyl Rubber and Other Solvent Release Sealants
 E.1. ACRYLICS
 E.2. BUTYL RUBBER
 E.3. OTHER SOLVENT RELEASE AND LATEX SEALANTS

IV. PIGMENTS AND MISCELLANEOUS ADDITIVES
A. Pigments
B. Miscellaneous Additives

V. RHEOLOGY OF SEALANTS
A. Flow of Viscous Liquids
 A.1. NEWTONIAN FLOW
 A.2. PLASTIC BINGHAM FLOW
 A.3. PSEUDOPластIC FLOW
 A.4. DILATANT FLOW
 A.5. THIXOTROPIC FLOW
B. Stress-Strain Relationship of Elastomeric Sealants

VI. ADHESION AND ITS PROBLEMS

VII. RESISTANCE TO ULTRAVIOLET RADIATION, OXIDATION AND HYDROLYSIS
A. Ultraviolet Light
B. Resistance to Oxidation
C. Sensitivity to Hydrolysis

VIII. TABLES OF COMPARATIVE DATA
A. Cost Comparison
B. Physical Properties
C. Curing Time and Pot Life
Contents

IX. SAFETY 781
X. DEFECTS AND FAILURES 781
CITATIONS 782
REFERENCES 782

25 Quality Assurance Terminology 785
Richard A. Freund

I. INTRODUCTION 790
II. QUALITY COMMITMENT 790
III. QUALITY DEFINITIONS 791
IV. QUALITY AND GRADE 792
V. QUALITY CONTROL, QUALITY ASSURANCE, AND QUALITY MANAGEMENT 794
VI. IMPERFECTION, NONCONFORMITY, AND DEFECT 796
VII. TECHNICAL DEFINITIONS 799
VIII. CONCLUSION 800
CITATIONS 800
REFERENCES 801

26 Photographic Evidence 803
Max Lindenmann

I. INTRODUCTION 807
II. DESIGN AND CONSTRUCTION OF THE EQUIPMENT 807
III. EXPLANATION OF THE PRACTICAL APPLICATIONS 809
IV. PHOTOGRAPH ENLARGEMENTS 811
V. SHOOTING PHOTOGRAPHS WITH THE AID OF A FISHING ROD 813
VI. CAUTIONS IN THE USE OF PHOTOGRAPHS 815

27 Claims Handling for Construction Vehicles 817
George A. Peters

I. INTRODUCTION 820
II. NEW FACTORS TO CONSIDER 821
III. PRESENT CLAIMS HISTORY PRACTICES 822
IV. PRESSURES TO CHANGE 823
A. Bad Faith 823
Contents

B. Prejudgment Interest 823
C. High Legal Cost 824
D. Reliance on External Opinions 824
E. Deference to Lawyers 824

28 Protective Orders 827

Barbara J. Peters

I. TRADE SECRETS VS. OPEN DISCOVERY AND FREE SPEECH 830
A. Burden of Proof 831
B. Trade Secret 831
C. Purpose of the Request 833
II. ETHICS 834
III. CONSTITUTIONAL CONSTRAINTS 835
IV. BREADTH OF RELIEF 835
V. CONCLUSIONS 836
CITATIONS 836

29 Psychiatric Disorders Related to Automotive Accidents 839

Byron Crawford

I. INTRODUCTION 842
II. THE PSYCHIATRIC EXAMINATION 843
III. DIAGNOSIS OF POSTACCIDENT PSYCHIATRIC DISORDERS 844
IV. COMMON PSYCHIATRIC DISORDERS 845
A. Psychological Reaction to Physical Injury 845
B. Post-Traumatic Stress Disorder: Acute, Chronic, or Delayed 845
C. Dysthymic Disorder or Depressive Neurosis 847
D. Generalized Anxiety Disorder 848
E. Psychogenic Pain Disorder 849
F. Conversion Disorder 850
G. Major Depressive Episode 852
H. Brief Reactive Psychosis 853
V. TREATMENT 853
VI. MENTAL SEQUELA OF HEAD INJURY 854
VII. SEVERE CLOSED HEAD TRAUMA 857
VIII. CONCLUSION 859
CITATIONS 859
REFERENCES 862
APPENDIX: ILLUSTRATIVE CASE
SUMMARY 863
Dr. Herbert Gstalter is an Applied Psychologist with special interest in traffic safety research. He has helped to develop the Traffic Conflicts Technique in Germany and has written many reports and publications on this topic. In addition to work on methodological and statistical questions, his present work is on stress and strain in driving. He maintains an office at the Institute for Psychology, Technische Universität München, Lothstrasse 17, 8000 München 2, Federal Republic of Germany (089-2105, ext. 4211).

Carl G. Hoyos is professor of Psychology in the Department of Psychology and Education, at the Technical University of Munich. He is "Diplom-Psychologe" and has a Ph.D. in Psychology from the University of Hamburg. His employment history includes teaching psychology at the University of Hamburg, University of Regensburg and the Technical University of Munich. For five years he worked for the "Medizinisch-Psychologisches Institut, Technischer Überwachungsverein Hannover" in the field of driver ability assessment. His main research interests are work safety, traffic safety, work analysis, and workstress. He chaired the
Human Factors Society in 1975. He is also member of the Deutsche Gesellschaft für Psychologie, Berufsverband Deutscher Psychologen, the American Psychological Association, and the Gesellschaft für Arbeitswissenschaft.
I. WHAT DOES TRAFFIC SAFETY REALLY MEAN?	557
II. TRAFFIC AS A MAN-MACHINE SYSTEM	559
III. PSYCHOLOGICAL MODELS OF THE DRIVER AS AN INFORMATION PROCESSOR	560
IV. HUMAN FACTORS IN ROADWAY DESIGN	563
V. HUMAN FACTORS IN VEHICLE DESIGN	565
REFERENCES	568
I. WHAT DOES TRAFFIC SAFETY REALLY MEAN?

The question "What does traffic safety really mean?" seems to be one that can be answered quite easily, but the contrary is true. It is by no means clear or even agreed upon what the concept "traffic safety" or safety in general should cover. As we shall see, there are two different approaches to a safety philosophy, each of which implies its own research methodology. Even more important to the central topic of this section, is that each approach results in different aspects of human factors being considered in safety problems.

Hauer\(^1\) states, "Safety is the expected number of accidents and severity of accidents occurring on a system per unit of time." This has been a commonly shared notion: Safety as the absence of accidents. This concept initiated a century of traffic accident research, beginning shortly after the invention of the automobile.

The history of accident research has produced many useful results that have led to a deeper understanding of accident causes and accident effects. Nevertheless, there are two shortcomings inherent in accident research. The first follows directly from the choice of the accident criterion itself: it is by no means clear how an accident should be defined (see, e.g., the discussion in Taylor\(^2\)). But, independent from these conceptual problems, the accident is a very doubtful safety, or better "unsafety," criterion for methodological reasons, which have been documented widely.\(^3\)

The second aspect has to do with theories of accident causation that followed as a consequence of accident research philosophy. The attempt has often been made to associate an accident with a special accident cause, which in turn, was often found to lie in the persons involved in the accidents. This has led to many misconceptions including the single cause accident theory (Plotkin, 1984), the theory of personal causation of accidents, and the theory of accident proneness as a personality trait. Most conceptual errors have been clarified from a scientific point of view, but such misperceptions will always recur in accident research because they are deceptively simplistic and look so very plausible to laymen. An excellent example is the discussion since 1920, about the existence of "accident proneness," as a rather constant personality factor and which could be stopped by no arguments or evidence to the contrary.

To summarize, it can be said that the definition of safety as the absence of accidents seems to be a doubtful way of arriving at a broader understanding of safe or unsafe behavior. This does not mean, however, that accident research is useless or has to be replaced by other concepts. It can be useful in throwing some light on a very rare event at the extreme of a safety/unsafety continuum, but it has to be complemented by a research strategy concerned with the description.
and explanation of safe behavior. This line of reasoning will be called "safety research" throughout this section.

Clearly, safety research needs a different definition of safety. Hammer2 puts it the following way: "Safety: frequently defined as 'freedom from hazards.' However, it is practically impossible to completely eliminate all hazards. Safety is therefore a matter of relative protection from exposure to hazards: the antonym of danger." A hazard is a situation with the potential of causing an accident. A danger—perceived as an exposure to hazards—in a man-machine environment can thus be eliminated by a temporal or spatial segregation of man and hazards. This idea is incorporated in some traffic safety countermeasures, e.g., building pedestrian bridges over busy roads or separation of traffic streams by means of signalization. But generally, of course, only very specific dangers can be eliminated that way. Traffic systems without any hazards are not realistic possibilities. More interesting, therefore, is the observation of people acting in an environment containing some hazards, i.e., normal behavior in risky situations. Analyses of "normal" behavior will also supply information about conflicts, near accidents, and other critical events. Compared to accident data, these events have more desirable qualities from a psychometric point of view: they occur more frequently; they can be observed in their actual development; questions of guilt do not distort the data collection; the reliability of observation methods can be controlled for and improved, etc. The best established method using critical incidents as a safety index is the Traffic Conflicts Technique (TCT).5,6

Developed in the United States in 1968, TCT has become a research tool for traffic engineers and psychologists in most Western countries. The main ideas have been to use the TCT as an accident surrogate, to quickly evaluate traffic safety countermeasures, and to localize hazardous maneuvers, especially in intersections. Recent approaches try to apply traffic conflicts in residential areas with low traffic density, on pedestrian crossings and bicycle lanes. The use of conflicts, however, gives rise to a number of problems including the validity of near misses with respect to accident data, selection and training of conflict observers, and the reliability of conflict occurrence.

Because the TCT is still in a developmental stage, its utility in future applications on a broader scale can only be estimated. Most empirical studies of accident-conflict relationship show positive correlation coefficients, which are otherwise not high enough to allow for sufficiently precise accident predictions. But, as it seems to be beyond reasonable doubt, that accidents and conflicts have many more common features than could be expected by chance, the application of the TCT as an additional (not surrogate!) measure of traffic safety and level of service of a traffic facility can be strongly recommended.
To summarize the second attempt to resolve the safety problem: safe and unsafe behavioral acts in situations involving exposure to hazards are analyzed. Contrary to accident research, the safety-oriented approach investigates the normal course of action in a man-machine system rather than the exception to the normal course of action.

It may be useful to point out the two different types of accident prevention methods derived from accident versus safety research. Accident analysis can help find accident causes and accident circumstances. This is an adequate strategy for increasing safety by trying to eliminate or reduce the influence of these factors. Safety research tries to find components of safety behavior and should, in its applications, try to reinforce positively safe actions.

II. TRAFFIC AS A MAN-MACHINE SYSTEM

On-the-road behavior can only be understood in terms of a system consisting of main road users (drivers, cyclists, pedestrians), the vehicle, the road, and its environment as subsystems. What has often been overlooked is the fact that vehicles and the main parts of the road environment (pavement markings, signs, signals) have been designed and constructed by humans. This should always be kept in mind if we hear of "poor driving," "human failure," and similar concepts. We, therefore, must extend the scope of "the human factor" in transportation to include all these elements of the system and their interrelationships.

The model in Figure 17–1 shows the information flow in the man-machine system. The information flow is acted upon by the system elements: driver, controls, and vehicle. Speed and direction of the vehicle as the system output provide sensory feedback to the

![Figure 17–1 Information flow in the man-machine system (from G. E. Briggs, 1968).](image-url)
driver. Feedback loops contain visual, auditorial, tactile, mechanical, and proprioceptive information.

Johannsen has proposed a hierarchical model of the driving task consisting of a navigation, guidance, and control level. In the navigation level, the driver has to choose his route in the roadway system. Navigation-related activities (reading maps, etc.) are often done before the actual trip begins. The guidance level comprises the perception of the momentary and future course of the forcing function by the forward view of the road and the response to it in an anticipatory open-loop control mode. In the control level, any occurring deviations from the forcing function are compensated for in a closed-loop control mode.

In the following discussion we will focus attention on the guidance and control levels and review the subsystems of the man-machine system beginning with the driver. We will start from a general psychology point of view, including a glimpse of a road-user model as an information processor. Some selected individual and group differences will be noted, followed by remarks on time-dependent human factors relevant to traffic safety.

III. PSYCHOLOGICAL MODELS OF THE DRIVER AS AN INFORMATION PROCESSOR

With the development of cognitive psychology during the last few decades, it has become usual to describe the driving task as an information-processing task. Space limitations do not allow a detailed discussion of all issues and materials that have been brought into the debate. We will restrict ourselves to the presentation of a block diagram showing the most important steps in the information process and its importance in road safety (see Figure 17–2). The model can be useful as a frame of reference for the following reasons. To successfully negotiate a vehicle on the road, the driver has to process continuously new information, anticipate events in the near future, and make appropriate decisions. The majority of the relevant stimuli has to be perceived using the visual channel. The limitations on the human information-processing capacities imply a selection of stimuli, both off the road and on the road. Two strategies of information reduction have been analyzed in more detail: the distribution of attention and visual search. Several models of attention have been developed in the past. The amount of attention allocated to the driving task varies as a function of the situational demands, the drivers internal state of arousal and motivation. The key role of motivation on the perception of highway signs has been demonstrated in many studies;
for a summary, see Näätänen and Summala. Of similar importance is the distribution of attention over the visual scene. Most investigations use registration of eye movements and look for the visual search strategies of different drivers. Differences between novice and experienced drivers have demonstrated the role of learning and experience in the process of information selection by eye fixations. Alert drivers tend to look toward the end of the road more often. They scan the edges of the road close to the vehicle, using peripheral vision most of the time. Novice drivers, who are more concerned with maintaining their cars on the road, fixate on nearer points and often shift their attention from left to right.

The amount of information needed to feel safe and/or behave safely differs with the difficulty of the traffic situation and personal attributes of the drive. The less attention he has to pay to the driving task, the more spare capacity the driver gains for listening to the radio,

Figure 17–2 A psychological model of the driving task (simplified version from V. Benda, 1977)
talking, smoking, etc. With increasing amounts of information processed, driving becomes safer but more stressful. The quantity of information perceived and processed is, therefore, a function of the traffic participant’s estimation of the danger involved in the actual situation. This has been called “dynamic risk” and has been investigated under different methods. The most adequate method of reducing stress is reduction in speed, which decreases the input of information per unit of time.

Once information is selected, it has to be interpreted to arrive at appropriate decisions. With special regard to traffic safety, we shall call this process “risk calculation.” Most theoretical approaches state the individual level of risk acceptance as the level against which estimated subjective risks must be compared. The expected risk has to be calculated taking into consideration the rewards and costs of that particular behavior, the anticipated maneuvers of the other road users, and the behavioral alternatives of the driver in question.

A highly interesting model with various conclusions for the effects of different traffic safety countermeasures has been brought into the debate by Wilde and is called risk homeostasis. The “risk homeostasis” theory states that road users behave in a manner such that the amount of property damage, personal injuries, and deaths occurring in the use of the roads is directly proportional to the amount of time spent on the roads multiplied by the level of risk accepted in that activity in return for the benefits occurring from behavior in that activity. This theory is still the topic of a very lively debate, see Slovic & Fischhoff (1982), McKenna (1982), Huguenin (1982) for cons and Wilde (1982b, 1984), Wilde & Kunkel (1984) for pros. A recent argument is documented in Wilde et al (1985), a critical review is given by Michon (1985). The highly complex processes associated with risk calculation have yet to be clarified. Hoyos provides a description of theoretical assumptions and empirical findings.

The driver acts on his perceptions and judgments by making decisions. In driving it is important to make the right decisions at the right time and to arrive at these decisions quickly. Therefore, decision time has been investigated in its relation to external and internal factors. Decision times have been shown to be lengthened whenever the driver has to respond to an unexpected traffic situation, has little experience in the particular task, or if the stimulus situation and the appropriate response to it are incompatible.

At the end of the information-processing circle we have the box “action,” see Figure 17-2, which is related to the overt behavior of the driver. The loop back to the traffic situation shows that the driver’s action creates a new traffic constellation, and the whole process must start all over. Most studies on drivers’ overt behavior refer to steering
and braking behavior and the relation of speed and accuracy of hand or foot movements.19

In addition to the general psychology approach to driver behavior, numerous attempts have been made to link individual and group characteristics to traffic safety. According to Häkkinen,16 these factors can be classified with respect to their variation in time. To find rather stable personality characteristics closely connected with safe or unsafe traffic behavior would, of course, be of great importance to driver licensing and selection. It also could give valuable hints for driver education and improvement programs. Unfortunately, only very few variables allow for sufficiently valid predictions of future driving behavior or even accident involvement. Only the age and experience of the driver and some biographical data show rather systematic variations. Young novice and old drivers seem to be overrepresented in accident statistics, but even this is not beyond doubt because of different quantitative and qualitative exposures to risky situations. The effects of aging on driver performance are described in Planek.21 Summarizing discussions of personality factors and traffic safety can be found in Lucas22 and Hoyos.23

Among the various time-dependent human factors having relevance to safety aspects, the effects of alcohol play a predominant role. Numerous investigations have studied the influence of different levels of blood alcohol concentration (BAC) on driver performance and attitude. Overviews are given by Martin24 and Simpson and Warren.25 Effects of other drugs on driver behavior are summarized in Buttiglieri, Brunse and Case.26 Several studies are concerned with fatigue as a consequence of long-distance driving. Results of those studies are described by Hulbert.27 Combined effects of alcohol and fatigue are discussed by Nelson.28

\textbf{IV. HUMAN FACTORS IN ROADWAY DESIGN}

Driver behavior cannot be described or understood without the physical context within which it takes place. The main parameters of this context are the road environment and the individual motor vehicle. An extensive analysis of the highway-traffic environment subsystem is given by Baerwald.29 Detailed information on both remaining subsystems is also provided by Forbes.30

Highway improvements can be an important factor in accident reduction. Design and construction of roadways and their environment, however, have to follow guidelines set by drivers' capacity limits and general perceptual habits. Some significant principles that the human factors approach to roadway design have adopted are outlined below and are illustrated by several examples.
The most important principle to follow probably is that the design of the roadways must fit driver expectancies. Shinar lists some common driver expectancies, e.g., “Expressway exits are from the right lane, an exit will have fewer lanes than the continuing expressway . . .” Whenever one of these expectancies is violated, confusion is likely to occur, decision and reaction times of the driver are prolonged, and typical “driver errors” occur. Automatic and fast responses that have been built up over a long period of time have to be replaced by decisions in a new and surprising driving task. Different types of expectation phenomena such as “continuity expectancy,” “event expectancy,” and “temporal expectancy” are discussed in Näätänen and Summala. Standardization of roadway design and control devices cannot be overestimated in assisting expectancies to be learned in a consistent manner. In most countries these standards are fixed in handbooks.

With the majority of driving-relevant stimuli being visual, every design consideration has to take into account the limitations and needs of our visual perception. This relates to the design of road signs, roadway illumination, pavement markings, traffic lights, etc. There is a large body of research on visibility and legibility of road signs, varying letter size, brightness contrast, color effects, mounting position, etc. A summary is provided by Forbes. Some new studies are described in Erke and Gottlieb. Rules giving necessary letter sizes for different distances, velocities, and visual angles are at hand. It is important to note that these standards are based on the “normal” or average driver’s visual acuity, but they should always be responsive to the limits of most drivers rather than to the average driver. Equally important is the attention value of road signs, a value that is influenced by their location, luminance, design, and contrast against the background.

Nighttime driving must be facilitated by roadway illumination in addition to the small area covered by the vehicle’s headlights. Permanent lighting should be installed at high traffic density areas and at those points on the roadway that require maneuvers or decisions on the part of the driver.

Roadway markings and signs help the driver perceive the geometry of the roadway ahead. They can be particularly useful where perception is susceptible to illusions and wrong judgments. A famous study by Shinar has demonstrated the “illusive curve phenomenon.” These misperceptions can be restricted by good optical guidance design. Another demonstration of the use of markings is the optic brake: perpendicular stripings with decreasing distance between adjoining stripes are painted on the road to give the driver the illusion of acceleration. This has proven to be a good speed reduction technique, although local drivers become used to it to some extent.
To sum up: good highway design must consider drivers' expectations, their perceptual limitations and habits, and their decision-making capabilities.

V. HUMAN FACTORS IN VEHICLE DESIGN

Many successful efforts have been made to improve the crashworthiness of vehicles. Here we will provide a short review of precrash vehicle design improvements. For a more detailed discussion, see Forbes.36

It is well known that safety features and human design aspects are only two principles guiding vehicle design and advertisement among various others, for example, aesthetics and aerodynamics. Other aspects may even seem to contradict safety requirements in trying to serve what Näätänen and Summala37 call "extra motives" of the driver besides the mere need of transportation.

Nevertheless, many attempts have been made to improve traffic safety by means of better vehicle design for such items as mirror systems, rear light and headlight constructions, head-up information displays, and various vehicle control systems.

Innovative mirror systems try to enlarge the driver's visual field. Convex and periscope mirrors have been investigated for this purpose. As long as the curvature of convex mirrors is relatively low, they give the driver rather undistorted information. Distortion of the visual field leading to wrong distance and speed judgments is, of course, no problem with the usual plane mirror systems. Combinations of plane and convex mirrors have also been used.

Headlight technology has overcome most visibility difficulties associated with nighttime driving but still suffers from the glare produced by oncoming cars. A solution seems to be the use of polarized light, but this creates organizational problems because all cars on the road would have to be equipped with the same system. A summary of work in this field is given by Shinar.38

Rear lights have the important task of communicating the vehicle's position and its driver's behavior to other road users. The deficiency of the present systems—giving information that often is not accurate enough and comes too late—has been addressed by a number of sophisticated approaches.

Most alternatives to the present systems try to give more levels of information by differentiating between coasting with the foot off the accelerator and maintaining speed (or accelerating) with the foot on the accelerator. Examples for innovative systems are the "trilight," the acceleration information display (AID), and variable flashing de-
acceleration lights. The trilight system indicates braking, coasting and foot on the accelerator by red, yellow and green lights, respectively. Acceleration and deceleration are indicated by horizontal rows of green and red lights in the AID-system. Variable flashing deceleration lights are flashing at an increasing rate with greater pressure applied to the brakes.

In-vehicle displays have the task of providing the driver with information that cannot be observed directly. Even today some of the basic ergonomic principles, such as stimulus-response compatibility, are often violated. Recent developments in this area are head-up displays and the master warning light. Most of these approaches, however, are still in their developmental stages.

Much work has been devoted to vehicle control systems over the last few years. Antilock-braking systems are probably the most prominent examples. They attempt to compensate for the driver's difficulties in maximizing the brakes' stopping capabilities.

These technological improvements cannot be described in detail here, but two general principles have to be mentioned in this context. The first applies to the installation of additional information displays, for example, electronic route guidance systems. The processing of additional information has been shown to prolong the driver's decision and reaction time and can interfere with the tracking accuracy. The value of the displayed information thus has always to be checked against the driver's limited mental capacities.

The second principle is more general and refers to all technical improvements designed to increase traffic safety. The objective gain in safety does not automatically lead to safer driver behavior. As many empirical studies suggest, the driver compensates many safety countermeasures effects by adjusting his behavior in a way to keep his individual target level of risk constant; for example, he drives faster if he feels safer with new tires, etc. These findings are in agreement with recently developed theoretical explanations of driver behavior as proposed by Wilde \(^{39}\) or Klebelsberg.\(^{40}\) Thus technological improvements should always be accompanied by efforts to influence the level of risk tolerated by the driver.

CITATIONS

8. See note 4 supra.

18. See note 14 supra.

23. See note 14 supra.

26. See note 17 supra.
29 See note 1 supra.
31 See note 19 supra.
32 See note 12 supra.
33 See note 30 supra.
36 See note 30 supra.
37 See note 12 supra.
38 See note 19 supra.
39 See note 16 supra.
40 See note 3 supra.

REFERENCES