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Abstract

Background: In applications of supervised statistical learning in the biomedical field it is necessary to assess the
prediction error of the respective prediction rules. Often, data preparation steps are performed on the dataset—in its
entirety—before training/test set based prediction error estimation by cross-validation (CV)—an approach referred to
as “incomplete CV”. Whether incomplete CV can result in an optimistically biased error estimate depends on the data
preparation step under consideration. Several empirical studies have investigated the extent of bias induced by
performing preliminary supervised variable selection before CV. To our knowledge, however, the potential bias
induced by other data preparation steps has not yet been examined in the literature. In this paper we investigate this
bias for two common data preparation steps: normalization and principal component analysis for dimension
reduction of the covariate space (PCA). Furthermore we obtain preliminary results for the following steps:
optimization of tuning parameters, variable filtering by variance and imputation of missing values.

Methods: We devise the easily interpretable and general measure CVIIM (“CV Incompleteness Impact Measure”) to
quantify the extent of bias induced by incomplete CV with respect to a data preparation step of interest. This measure
can be used to determine whether a specific data preparation step should, as a general rule, be performed in each CV
iteration or whether an incomplete CV procedure would be acceptable in practice. We apply CVIIM to large
collections of microarray datasets to answer this question for normalization and PCA.

Results: Performing normalization on the entire dataset before CV did not result in a noteworthy optimistic bias in
any of the investigated cases. In contrast, when performing PCA before CV, medium to strong underestimates of the
prediction error were observed in multiple settings.

Conclusions: While the investigated forms of normalization can be safely performed before CV, PCA has to be
performed anew in each CV split to protect against optimistic bias.
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Background
In supervised statistical learning, it is widely recognized
that prediction models should not be constructed and
evaluated using the same dataset. While the training
dataset is used for all steps towards obtaining the predic-
tion rule, the test dataset is used to evaluate its prediction
error and, ideally, should not be at all involved in the train-
ing phase. Cross-validation and related procedures consist
of considering several divisions into training data and test
data and averaging the estimated prediction errors of the
respective prediction rules constructed in each iteration.
In our paper we use K-fold cross-validation (“CV”), but all
ideas and procedures can be extended to other resampling
techniques used for prediction error estimation.
By “incomplete CV” [1], we are referring to CV proce-

dures in which some analysis steps are performed before-
hand using the whole dataset. With incomplete CV, at
each iteration the excluded fold acting as test data may
affect the derived prediction rule, since it was prelimi-
narily used for data preparation—which contradicts the
principle of test data requiring perfect separation [2]. In
contrast, if all steps leading to the prediction rules are per-
formed in each CV iteration using only the corresponding
training set, the CV procedure is “full CV”.
The problems resulting from incomplete CV have been

extensively studied in the literature with regard to pre-
liminary variable selection for classification based on
high-dimensional microarray data [1, 3–5]. If performed
before splitting the dataset into K folds, supervised vari-
able selection often leads to strongly downwardly biased
error estimates. The now widely adopted procedure to
avoid this problem consists of conducting the variable
selection step in each CV iteration anew using the train-
ing dataset only [1, 3], i.e. considering it as part of the
classifier construction process. Similarly, it has been sug-
gested that parameter tuning should be performed using
the training dataset only [6–8]. However, the bias result-
ing from incomplete CV with respect to parameter tun-
ing has to our knowledge never been investigated in the
literature.
Variable selection and parameter tuning are—by far—

not the only procedures often run in practice before CV.
For example, raw data from high-throughput biological
experiments such as microarrays have to be normalized
before so-called high-level analyses such as predictive
modeling can be conducted. The selection of features
which exhibit high variability across the observations is
another example of a data preparation step often per-
formed when analyzing microarray data. Further exam-
ples relevant to any type of data include imputation of
missing values, dichotomization and non-linear transfor-
mations of the features. In this paper, all these procedures
are designated preparation steps to stress that they are
performed before the construction of the prediction rule.

Preparation steps are not limited to these few exam-
ples. The analysis of growingly complex biomedical data
(including, e.g., imaging or sequencing data) increasingly
requires the use of sophisticated preprocessing steps for
making raw data analysable. Note, however, that the ques-
tion of the impact of CV incompleteness is not relevant
to those data preparation steps which prepare the obser-
vations independently of each other, such as background
correction for microarray data.
It is an open question whether preparation steps lead

to underestimation of the prediction error if performed
before splitting the dataset into K folds, as seen with vari-
able selection. To date there seems to be no consensus on
whether it is necessary to include all steps in CV: Some
authors postulate that all steps are required to be included
[9], which seems to be done rarely, regardless; others only
suggest this procedure for variable selection [3] or more
general supervised steps [10].
Practical problems which deter researchers from per-

forming full CV are, among others, the computational
effort often implied by the repetition of time-intensive
preparation steps, that some preparation steps such as
variable selection are sometimes conducted “in the lab”
before the data are given to the statistician [11], and the
lack of user-friendly implementations of addon proce-
dures allowing the adequate preparation of the excluded
fold when the preparation step has been conducted using
the training folds only; see the section Addon procedures
for more details on addon procedures. Another example
is genotype calling in the context of genetic association
studies: it is common practice to use not only the whole
dataset of interest, but also further datasets, to improve
genotype calling accuracy.
In the context of high-dimensional data, two fur-

ther important preparation steps often performed using
the whole dataset are dimension reduction proce-
dures such as Principal Component Analysis (PCA)
and normalization—for example normalization using the
RMA (“Robust Multi-array Average”) method [12] for
microarray gene expression data. It is not clear whether
the resulting prediction error estimate is optimistically
biased if one applies these two methods to the whole
dataset before splitting the data into K folds. In an effort
to answer this question we present a new measure which
enables the quantification of the impact of incomplete
CV with regard to steps of interest, the “CV Incomplete-
ness Impact Measure” (CVIIM). It is based on the ratio of
the CV prediction error resulting when the investigated
preparation steps are applied only once using the whole
dataset to the CV prediction error resulting when they
are incorporated into CV. By incorporating preparation
steps into CV we mean that they are performed in CV on
each training dataset anew and subsequently applied to
the excluded fold via so-called addon procedures.



Hornung et al. BMCMedical ResearchMethodology  (2015) 15:95 Page 3 of 15

The goal of this paper is two-fold: (i) to provide a new
measure—the “CVIIM”—which is intended to be used
by methodological researchers or statisticians working
on statistical learning applications to determine whether
a particular preparation step should—in general—be
trained in each CV iteration successively or whether it can
be safely performed as a preliminary step on the whole
dataset without generating a relevant optimistic bias; and
(ii) to apply this new measure to answer this question and
provide guidelines for two important preparation steps,
PCA and normalization, in the case of high-throughput
molecular data.
The paper is structured as follows: the section Methods

first presents the microarray gene expression datasets
used in our studies, the concept of addon procedures
and the two methods—normalization and PCA. Then
we introduce CVIIM and briefly illustrate its use and
behavior in the well-investigated case of variable selec-
tion, using four example datasets. Concluding this section
we describe the designs of the studies on the impact of
CV incompleteness with respect to normalization and
PCA; the results of these studies are presented in the
section Results. In the section Discussion we present pre-
liminary results obtained for other data preparation steps
and discuss further issues. The section Conclusions sum-
marizes the main conclusions of the paper.

Methods
Data material
We used a wide range of publicly available, high-
dimensional, mostly transcriptomic datasets in our real
data analyses. See Table 1 for an overview.With the excep-
tion of ProstatecTranscr all datasets were down-
loaded from the ArrayExpress database [13] or the NCBI
GEO database [14]. All datasets feature a binary target
variable and are of human origin. Details on the biologi-
cal background of the datasets may be obtained online via
the respective accession numbers available from Table 1
and via the R scripts written for the preparation of the
individual datasets for analysis. The latter are available
from Additional file 1 and can be used to download and
prepare the individual datasets automatically. The dataset
ProstatecTranscr appeared in [15] and is available in
the form of an Rda-file fromAdditional file 1 as well. Here
we also provide R scripts for reproducing all our analyses.
In the search for suitable datasets we excluded those

which featured a strong class imbalance or which would
have been difficult to handle from a computational point
of view.

Addon procedures
In this section we give a brief overview of the crucial
concept of addon procedures. When a data preparation
step has been conducted on the training data only, the

test data must be prepared equivalently: to not do so
might render the test data nonsensical with regard to—
or even incompatible with—the prediction rule derived
on the training data. A naive but straightforward proce-
dure for steps which do not involve the response vari-
able (“unsupervised” steps) such as normalization (see the
section (Addon) normalization), is to prepare the test data
completely independently, i.e. without using any informa-
tion from the preparation of the training data. For the
prediction of external data, such a separate data prepa-
ration procedure may be suitable in some situations, for
example when the external data behaves very differently
from the training data: by a separate processing the data
preparation procedure can adjust itself to the peculiari-
ties of the external data; see e.g. [16]. However, in general
this approach may lead to a higher prediction error in the
case of small test datasets because of the larger variance
of the output of preparation steps. Test datasets of size 1
(corresponding to, say, patients examined one at a time)
are an extreme case where this approach is completely
infeasible. Moreover, for some preparation steps such as
variable filtering by variance this naive approach cannot
be applied since it would lead to the selection of different
variables in the training and test datasets and thus make
the application of the prediction rule impossible.
Another straightforward idea is to “train” the prepara-

tion step on the training data and to use the output of
the preparation step to prepare the test data. We refer
to such a procedure as an “addon procedure”. This term
was originally introduced in the specific case of normal-
ization for microarray data [17] but is employed here for
all types of data preparation steps. We give the follow-
ing definition: an addon procedure for a preliminary step
is a procedure which prepares an observation in the test
data precisely as it would prepare a corresponding obser-
vation in the training data, using empirical information
derived exclusively from the training data. Note that by
“performing” a preliminary step we mean more precisely:
1) conduct the preparation step on the considered data;
2) store all information necessary for addon preparation
of new observations. Addon procedures are trivial in some
cases, for instance that for dichotomization according to
cutpoints determined from the training data (one simply
uses the training-data-derived cutpoint to dichotomize
the test data) or in the case of variable selection (select-
ing precisely those variables in the test data which were
selected based on the training data). In other cases, like
normalization ofmicroarray data or imputation ofmissing
values, however, this task is more complex.

(Addon) normalization
Normalization ofmicroarray data is, roughly speaking, the
transformation of the data in such a way as to eliminate—
or reduce—systematic differences between observations
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Table 1 Overview of the datasets used in the studies on normalization and PCA. The following information is given: accession number,
number of observations, number of variables, proportion of observations in the smaller class, data type

Study Label/ Num. of Num. of Prop. smaller Data type ID

acc. number observ. variables class

Normalization E-GEOD-10320 100 22283 0.42 transcription 1

Normalization E-GEOD-47552 74 32321 0.45 transcription 2

Normalization E-GEOD-25639 57 54675 0.46 transcription 3

Normalization E-GEOD-29044 54 54675 0.41 transcription 4

Normalization E-MTAB-57 47 22283 0.47 transcription 5

Normalization E-GEOD-19722 46 54675 0.39 transcription 6

Normalization E-MEXP-3756 40 54675 0.50 transcription 7

Normalization E-GEOD-34465 26 32321 0.35 transcription 8

Normalization E-GEOD-30174 20 54675 0.50 transcription 9

Normalization E-GEOD-39683 20 32321 0.40 transcription 10

Normalization E-GEOD-40744 20 20706 0.50 transcription 11

Normalization E-GEOD-46053 20 54675 0.40 transcription 12

PCA E-GEOD-37582 121 48766 0.39 transcription 13

PCA ProstatecTranscr 102 12625 0.49 transcription 14

PCA GSE20189 100 22277 0.49 transcription 15

PCA E-GEOD-57285 77 27578 0.45 DNA methyl. 16

PCA E-GEOD-48153 71 23232 0.48 proteomic 17

PCA E-GEOD-42826 68 47323 0.24 transcription 18

PCA E-GEOD-31629 62 13737 0.35 transcription 19

PCA E-GEOD-33615 60 45015 0.35 transcription 20

PCA E-GEOD-39046 57 392 0.47 transcription 21

PCA E-GEOD-32393 56 27578 0.41 DNA methyl. 22

PCA E-GEOD-42830 55 47323 0.31 transcription 23

PCA E-GEOD-39345 52 22184 0.38 transcription 24

PCA GSE33205 50 22011 0.50 transcription 25

PCA E-GEOD-36769 50 54675 0.28 transcription 26

PCA E-GEOD-43329 48 887 0.40 transcription 27

PCA E-GEOD-42042 47 27578 0.49 DNA methyl. 28

PCA E-GEOD-25609 41 1145 0.49 transcription 29

PCA GSE37356 36 47231 0.44 transcription 30

PCA E-GEOD-49641 36 33297 0.50 transcription 31

PCA E-GEOD-37965 30 485563 0.50 DNA methyl. 32

ArrayExpress accession numbers have the prefix E-GEOD-, NCBI GEO accession numbers have the prefix GSE

which are unrelated to biological differences. In this
paper we consider two different methods of microar-
ray data normalization: 1) RMA; and 2) RMA where
the quantile-normalization step is expanded by VSN
(“Variance Stabilization Normalization”) [18] without cal-
ibration (RMAglobalVSN) [19]. VSN transforms the gene
expression values in such a way that the variance of the
differences between values of different observations is
approximately constant along the whole intensity range.
For the quantile normalization step of RMA we use the
addon procedure provided by Kostka and Spang [17]
whenever full CV is performed. Here, the quantiles of
the test observations are replaced by the quantiles of

the training observations after quantile normalization
of the latter. Since background correction and summa-
rization are performed on an array-by-array basis, no
addon strategies are necessary for these procedures. In
the vignette of the Bioconductor package vsn, Huber
[19] presents a version of variance stabilization in which
no calibration is performed, i.e. only a global variance
stabilization transformation is conducted. In contrast
to standard VSN this procedure does not involve any
observation-specific parameters, so it is possible to deter-
mine an addon procedure: the global VSN parameters
estimated on the training data are used to transform the
test data.
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(Addon) principal component analysis (PCA)
PCA is an unsupervised dimension reduction method
commonly used in the context of high-dimensional data
analysis. The principal components are calculated using a
singular value decomposition of the centered data matrix.
The addon procedure works as follows: 1) Center the
values of each variable by subtracting the corresponding
variable mean estimated from the training data; 2) Mul-
tiply the matrix resulting from 1) by the PCA loading
matrix derived from the training data to obtain the princi-
pal components. The principal components with highest
variance can be viewed as summarizing the data in fewer
dimensions, and are often used in practice for graphical
representation of the data. In the context of classification
using high-dimensional data, it is common to fit a predic-
tion rule with a prediction method such as Discriminant
Analysis using principal components as predictors instead
of the original variables [20].

The cross-validation incompleteness impact measure
(CVIIM)
In the following we present CVIIM, our new measure for
the extent of bias induced by incomplete CV with respect
to a data preparation step of interest. Let s be the avail-
able dataset from which a prediction rule is to be derived.
s is assumed to be an i.i.d. sample of size n with observa-
tions drawn from the distribution P, where P is the joint
distribution of predictors and response variable. Note that
the assumption of i.i.d. observations made here is owing
to the fact that throughout this paper we are concerned
with cross-validation, i.e. dataset internal validation. With
external validation this assumption is generally not appro-
priate. Further, let efull,K (s) be the prediction error esti-
mated by full K-fold CV, i.e. when all steps leading to
the prediction rule, including data preparation steps, are
performed at each CV iteration anew based only on the
training dataset. Similarly let eincompl,K (s) be the predic-
tion error estimated by incomplete K-fold CV, i.e. when
the data preparation step(s) of interest is performed before
CV, using the whole dataset. For simplicity of notation,
we additionally assume that efull,K (s) and eincompl,K (s) are
obtained by averaging over a large number of CV runs, i.e.
over a large number of random partitions, and can thus be
treated as deterministic.
For S ∼ Pn, our new measure “CVIIM”, “Cross-

Validation Incompleteness Impact Measure”, is defined as:

CVIIMP,n,K :=

⎧⎪⎪⎨
⎪⎪⎩

1 − E[eincompl,K (S)]
E[efull,K (S)] if E[eincompl,K (S)]< E[efull,K (S)]

and E[efull,K (S)]> 0

0 otherwise.

(1)

Note that we defined CVIIMP,n,K as a theoretical quan-
tity, not calculable, but estimable from real data. It is
simply estimated by replacing the expected CV errors by
their empirical counterparts eincompl,K (s) and efull,K (s):

CVIIMs,n,K :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 − eincompl,K (s)
efull,K (s) if eincompl,K (s) < efull,K (s)

and efull,K (s) > 0

0 otherwise.

(2)

Clearly, CVIIMP,n,K ∈ [ 0, 1]. The same holds for the
estimator CVIIMs,n,K . CVIIM is based on the ratio of the
incomplete CV error to the full CV error, which is more
revealing than their difference as a measure of the impact
of CV incompleteness. Indeed, the latter would strongly
depend on the value of the error (large error values lead-
ing to large differences), as suggested by the results shown
in the section Alternative measures of CV incompleteness
and by our simulation presented in the section Simulation
study and in Appendix A (Additional file 2). Truncation at
0 prevents CVIIM from being negative in the unlikely case
that incomplete CV error is larger than the full CV error.
A large value of CVIIM indicates that CV incompleteness
results in a large underestimation of prediction error.
The discrepancy between eincompl,K (s) and efull,K (s)

depends on how strongly the specific preliminary step
conducted on the whole dataset increases the homogene-
ity of the covariate values across observations and (for
supervised preparation steps) the empirical association
between the covariate values and the values of the target
variable.
With the interpretation of CVIIMs,n,K in mind and

based on real data results and expectations regarding
the impact of specific data preparation steps, we define
the following tentative rules of thumb for categoriz-
ing the computed values in terms of the impact of CV
incompleteness with regard to the considered step(s):
[ 0, 0.02]∼ no influence, ] 0.02, 0.1]∼ weak, ] 0.1, 0.2]∼
medium, ] 0.2, 0.4]∼ strong, ] 0.4, 1]∼ very strong.
We outline an artificial example to demonstrate, step

by step, a possible application of CVIIMP,n,K . We are
interested in measuring the extent of overoptimism con-
nected with performing the quantile normalization step of
RMA before CV in gene expression based classification.
Suppose we have a dataset with gene expression mea-
surements from 32 patients suffering from breast cancer
and from 22 disease-free patients. Per patient we have
measurements of the expression of 54,675 genes. As clas-
sification method we use Nearest Shrunken Centroids
(NSC). The error eincompl,5(s), as estimated by incomplete
5-fold CV, is computed by conducting the RMA normal-
ization beforehand on the whole dataset and performing
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5-fold CV on the normalized dataset. In this procedure
only the fitting of NSC is repeated in each CV iteration
on the training datasets. The CV is repeated 300 times to
obtain more stable results. The full CV error efull,5(s) is
computed by performing a 5-fold CV in which the quan-
tile normalization step of RMA (as well as the fitting of
the NSC) is re-performed in each CV iteration on the
respective training set, with addon normalization of the
corresponding test set through the addon procedure by
Kostka and Spang [17]. This procedure is again repeated
300 times. Suppose we were to obtain eincompl,5(s) =
0.15 and efull,5(s) = 0.1503. Then, CVIIMs,n,K = 1 −
0.15/0.1503 ∼ 0.002. According to our rules of thumb
this would correspond to no influence on the estimated
error.
This result obtained for a specific dataset and spe-

cific classifier, however, may not be representative of all
datasets and classifiers in the field of gene expression
based classification. Extending this example, we point
out that it is necessary to study several datasets and
several analysis settings representative of the considered
field in order to formulate recommendations regarding
incomplete CV for a particular step. Alternatively, specific
guidelines could be formulated for particular settings and
data types within the considered field; however, this might
easily lead to overly complicated guidelines.
For a formal introduction to the concepts involved in

this section such as prediction rules, prediction error, and
its estimation via full and incomplete CV the interested
reader may consult Appendices B.1 and B.2 (Additional
file 2).

Global CVIIM
As outlined above, the value of CVIIMs,n,K obviously
depends on the specific dataset. For a general assessment
of the bias attributable to a specific step we need a more
global measure summarizing the results obtained on sev-
eral datasets. To this end we define the global CVIIM
as the quantity resulting when replacing E[ eincompl,K (S)]
and E[ efull,K (S)] in (1) by, roughly speaking, their means
over the universe of datasets from the area of interest
(see [21] for a more formal description of this concept in
another context). Consider the following example: at this
time the standard approach in microarray data analysis is
to perform quantile normalization of RMA on the whole
dataset before performing CV. Suppose that the predic-
tion error is, on average, 0.2 over all datasets from the area
of interest, but if full CV were performed with respect
to quantile normalization it would equal 0.201. Then the
global CVIIM in this scenario would be 1 − 0.2/0.201 ∼
0.005, a negligibly weak overall bias.
To estimate the global CVIIM we suggest the plug-in

estimator obtained by replacing eincompl,K (s) and efull,K (s)

in Eq. (2) by the averages of their values obtained on
several datasets from the considered area of application:
CVIIMglobals(1),...,s(L);K

:=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 − 1
L

∑L
l=1 eincompl,K (s(l))

1
L

∑L
l=1 efull,K (s(l))

if 1
L

∑L
l=1 eincompl,K (s(l)) <

1
L

∑L
l=1 efull,K (s(l))

and 1
L

∑L
l=1 efull,K (s(l)) > 0

0 otherwise,

where s(1), . . . , s(L) are the datasets used. Note that this
estimator is not strongly affected by individual extreme
CVIIM estimates, which can occur in the case of very
small values of E[ efull,K (S)]. For a detailed discussion of
this phenomenon, see Appendix B.3 (Additional file 2).

Illustration
To give a first illustration of the application of CVIIM
as a proof of concept, we apply it to supervised variable
selection, which is expected to yield high CVIIM values.
We use the datasets ProstatecTranscr, GSE33205,
GSE20189 and GSE37356, which are also considered in
the PCA study; see Table 1.
For each variable a two-sample t-test is conducted to

test the equality of the means of the two groups. The vari-
ables with the smallest p-values are selected. Because it
is expected that the result substantially depends on the
number of selected variables, the analysis is repeated for
different numbers of variables: 5, 10, 20 and half of the
total number p of variables. After selecting 5, 10 and 20
variables we use LDA as a classification method. When
selecting half of the variables LDA cannot be applied,
because the involved empirical covariance matrices are
not well-behaved in general when the number of vari-
ables is higher than the number of observations. In this
case, we use Diagonal Linear Discriminant Analysis, i.e.
LDA under the simplifying assumption that within the
two classes the variables are independent; see Hastie
et al. [10].
In all analyses performed in the paper, eincompl,K (s) and

efull,K (s) are obtained by averaging the results from B =
300 runs of K-fold CV, where K takes the values 3, 5 and
10 successively.
The CVIIMs,n,K -values obtained for all settings are dis-

played in Fig. 1. In the plots the error bars represent the
25 %- and 75 %-quartiles (computed over the B = 300
iterations) of the iterationwise non-truncated incomplete-
ness measure estimates (INIMEs) CVIIMs,n,K ,b := 1 −
eincompl,K (s)b/efull,K (s)b, where the index b indicates that
these errors are obtained for run b (with b = 1, . . . ,B). It
is important to note that the error bars should be used for
comparisons between each other only, since their abso-
lute lengths have no relevant interpretation. Note that due
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Fig. 1 CVIIMs,n,K -values from variable selection study. The numbers distinguish the datasets. psel denotes the number of selected variables

to the unboundedness of the INIMEs the error bars—
as opposed to the CVIIMs,n,K -values—are not bound by
zero.
While CVIIMs,n,K is especially large for small num-

bers of selected variables, relatively large values are also
observed when half of the variables are selected (with
the exception of the dataset with the fewest variables).
Although the differences in CVIIMs,n,K for the selection
of 5, 10 and 20 variables are not large, the estimates
of the global CVIIM given in Table 2 indicate that the
bias induced by incomplete CV tends to decrease with
an increasing number of selected variables. Dataset 30
stands out through its noticeably larger CVIIMs,n,K -values
in all plots. This dataset comprises only 36 observations
but 47,231 variables (see Table 1), which may at least
partly explain the larger values. Extreme values above 0.9,
however, are surprising.
In this illustrative analysis, through our new measure

CVIIM we have confirmed the conclusion previously
obtained in the literature: performing supervised variable
selection before CV leads to a strong bias of the resulting
error estimate.

Table 2 Estimates of global CVIIM from the variable selection
study

Number of sel. K = 3 K = 5 K = 10
variables

5 0.5777 0.5927 0.6126

10 0.5557 0.5617 0.5505

20 0.3971 0.4706 0.4511

p/2 0.2720 0.2702 0.2824

Study design
The investigation of normalization is based on the
first 12 microarray datasets listed in Table 1. We use
the two variants of normalization described in the
section (Addon) normalization. Two different classifica-
tion methods are used successively to derive prediction
rules: NSC and Linear Discriminant Analysis performed
on Partial Least Squares components (PLS-LDA). For
NSC the shrinkage intensity � is chosen from the grid
{0.05, 0.1, 0.25, 0.5, 1, 1.5} and for PLS-LDA the number of
components ncomp is chosen from the grid {1, 2, . . . , 10}.
Parameter choice is done in the following way. For each
considered training dataset, we perform 3-fold internal
CV for each candidate parameter value from the grid. The
candidate parameter value yielding the smallest 3-fold CV
error is selected.
The study on PCA is based on the last 20 microarray

datasets listed in Table 1. The constructed principal com-
ponents are used as predictors in Linear Discriminant
Analysis (LDA) and Random Forest (RF), successively.
For RF, the crucial parameter mtry, denoting the num-
ber of predictors considered as candidates in the splits of
the trees, is chosen by 3-fold internal CV from the grid
{1, 2, 3, 5, 10}. Since the results can be assumed to strongly
depend on the number of principal components used
as predictors, we repeat the analyses for four different
numbers: 2, 5, 10 and 15.

Results
Normalization
Figure 2 depicts the CVIIMs,n,K -values from the normal-
ization study together with the estimates of global CVIIM.
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Fig. 2 CVIIMs,n,K -values from normalization study. The grey lines connect the values corresponding to the same datasets. The diamonds depict the
estimates of global CVIIM

The latter are also given in Table 3. For both normalization
approaches we observe very small CVIIMs,n,K -values for
all datasets and both classifiers. In the majority of cases
the measure estimates suggest no bias resulting from
incomplete CV for normalization as defined by our rule of
thumb. The global CVIIM estimates seem to confirm that
in general there is no bias. We obtain slightly higher val-
ues for PLS-LDA than for NSC, but the difference is not
noteworthy.
For the individual datasets there is no visible depen-

dency of the measure estimates on K, although in general
we expect a negative dependency; see the section Further
issues for a discussion of this topic. The fact that we do
not observe such a decrease with K for normalization can

Table 3 Estimates of global CVIIM from the normalization study

Normalization Classification K = 3 K = 5 K = 10
method method

RMA NSC 0.0000 0.0000 0.0000

PLS-LDA 0.0030 0.0064 0.0000

RMAglobalVSN NSC 0.0000 < 0.0001 0.0000

PLS-LDA 0.0000 0.0030 0.0000

likely be explained by the small values of the estimates:
eincompl,K (s) and efull,K (s) are very similar here. There-
fore the non-systematic fluctuations across the different
K-values are attributable to small—probably random—
fluctuations of eincompl,K (s) and efull,K (s) over K, which
could overshadow a potential dependency on K.
In contrast to the section Illustration, we do not present

iteration-based error bars for the individual CVIIMs,n,K -
values here. When depicting the results of a study with
a larger number of datasets individual error bars make
the corresponding plots increasingly unclear. Instead
in this situation we focus on the distribution of the
CVIIMs,n,K -values across datasets—the results over indi-
vidual datasets are less important. Nevertheless extreme
individual results should be examined more closely.
Given the small CVIIM estimates we conclude that

RMA and RMA with global VSN can be safely performed
before CVwithout inducing a relevant bias in the resulting
error estimate.

Principal component analysis
Figure 3 and Table 4 show the results of the PCA study.
Note that the scale of Fig. 3 is much larger than that of
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Fig. 3 CVIIMs,n,K -values from PCA study. The grey lines connect the values corresponding to the same datasets. The diamonds depict the estimates
of global CVIIM

the corresponding plot for normalization (Fig. 2). Globally
the results suggest a weak but existent underestimation of
the true error E[ efull,K (S)] by performing PCA before CV.
Exceptions are LDA in those instances where the number
of components is greater than five, where zero values of
the global CVIIM-estimates are obtained.
For LDA the impact of incomplete CV seems to dimin-

ish with an increasing number of components in PCA.
The global CVIIM-estimates are in general larger for RF

than for LDA. While the overall effects of performing
PCA before CV seem to be weak, Fig. 3 reveals that there
are several settings in which the CVIIM-estimates sug-
gest a strong bias—according to our rules of thumb—for a
non-neglible number of datasets. Therefore, these results
strongly suggest the use of full CV over incomplete CV
with respect to PCA.
A closer look at Table 4 reveals that, in general, the

global CVIIM-estimates decrease with increasing value



Hornung et al. BMCMedical ResearchMethodology  (2015) 15:95 Page 10 of 15

Table 4 Estimates of global CVIIM from the PCA study

Classification Number of K = 3 K = 5 K = 10
method components

LDA 2 0.0974 0.0805 0.0582

5 0.0397 0.0371 0.0354

10 0.0000 0.0000 0.0000

15 0.0000 0.0000 0.0000

RF 2 0.0855 0.0747 0.0659

5 0.0686 0.0558 0.0516

10 0.0907 0.0613 0.0368

15 0.1117 0.0988 0.0794

of K (for all settings with non-zero values). For exam-
ple, this decrease is noticeable for LDA with ncomp = 2
and RF with ncomp = 10. This suggests that the esti-
mates of global CVIIM are overly high in these cases,
due to the greater upward bias of efull,K (s) compared
to eincompl,K (s) as detailed in the section Further issues.
The global CVIIM-estimates depend on the means in the
efull,K (s)- and the eincompl,K (s)-values calculated over the
included datasets. The decrease with larger values of K
is induced by the mean of the efull,K (s)-values becoming
more similar to the mean of the eincompl,K (s)-values with
increasing value of K. For most settings we do not observe
a substantial decrease of the global CVIIM-estimates. This
suggests that the two cases for which the decrease with K
was strong are connected to aberrant results for individual
datasets, which was confirmed by more closely inspecting
the individual values obtained for each setting and each
dataset.
Motivated by this observation we performed a sim-

ple type of sensitivity analysis. First for each of the
two settings we left out the dataset which displayed the
largest difference between efull,3(s) and efull,10(s) and re-
estimated the global CVIIM-values. For the LDA with
ncomp = 2 the results were 0.0812 (K = 3), 0.0681
(K = 5) and 0.0524 (K = 10), and for RF with ncomp = 10
we obtained 0.0590 (K = 3), 0.0351 (K = 5) and 0.0222
(K = 10). The values are obviously more similar across
the three different K-values for both settings compared to
the results obtained when using all 20 datasets; see again
Table 4. This is especially noticeable in the case of the val-
ues for K = 5 and K = 10 in “LDA with ncomp = 2”.
Nevertheless there are still significant differences. There-
fore, as a second step we repeated the same procedure,
this time however leaving out the three datasets with the
largest differences between efull,3(s) and efull,10(s). The
results were: 0.0676 (K = 3), 0.0575 (K = 5) and 0.0499
(K = 10) for LDA with ncomp = 2, and 0.0067 (K = 3),
0.0000 (K = 5) and 0.0000 (K = 10) for RF with ncomp =
10. For the former setting the similarity across K-values
has obviously increased, while at the same time the sizes of

the values have not decreased strongly. The (almost) zero-
values for the second setting are quite striking given that
we observed values as high as 0.0907 forK = 3when using
all 20 datasets. We also performed the same analysis for
all other settings (results not shown): the global CVIIM-
estimates in these settings tended to be more robust to
the removal of datasets than the ones of the settings pre-
sented here. These results—especially those obtained for
the setting “RF with ncomp = 10”—illustrate that a strong
decrease in the global CVIIM-estimates with increasing
value of K should be interpreted with caution. We recom-
mend performing sensitivity analysis in the form of the
one conducted here in such cases.

Discussion
In this section we first discuss possible alternative mea-
sures of CV incompleteness—using the PCA example—
and why we deem them less appropriate than our measure
CVIIM. Then we present as an outlook some preliminary
results obtained for further data preparation steps beyond
normalization and PCA. Finally, we discuss various fur-
ther issues related to CVIIM.

Alternative measures of CV incompleteness
An important question with respect to the definition of
CVIIM is whether it depends on E[ efull,K (S)]. Such a
dependence is not desirable, since CVIIM should not be
a measure of the error but of the impact of CV incom-
pleteness. To investigate this in the context of the PCA
study, we plot CVIIMs,n,K against efull,K (s) in the upper
panel of Fig. 4, where the different analysis settings for
a given dataset are represented using the same colour
and number, and the mean of each dataset is displayed
as a black point. This plot suggests no relevant depen-
dency of CVIIMs,n,K on the full CV error efull,K (s). For
two of the smallest errors we observe extreme CVIIM-
estimates, resulting from random fluctuations in the error
estimates as discussed in Appendix B.3 (Additional file 2).
However, this problem—concerning only two values out
of 480 error values in total—seems to be negligible. The
lower panel of Fig. 4 displays the zero-truncated difference
between efull,K (s) and eincompl,K (s) against efull,K (s). This
plot clearly suggests a comparatively strong dependence
of the estimates of this measure on the full CV error—
as also observed in the results obtained in the simulation
study presented in Appendix A (Additional file 2)—and
thus provides evidence supporting the use of a ratio-based
measure rather than a difference-based measure. Analo-
gous plots give a very similar picture in the case of normal-
ization; see Figure S6 in Appendix C (Additional file 2).
An obvious, but less insightful, way of visualizing the

impact of CV incompleteness, is to simply plot efull,K (s)
and eincompl,K (s) for the individual datasets. Figure 5 shows
such a plot for the PCA study. Without closer inspection
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Fig. 4 Dependency on CV errors in PCA study. Upper panel: CVIIMs,n,K -values versus efull,K (s)-values for all settings; Lower panel: Zero-truncated
differences of efull,K (s)- and eincompl,K (s)-values versus efull,K (s)-values for all settings. The colors and numbers distinguish the different datasets. The
filled black circles depict the respective means over the results of all settings obtained on the specific datasets
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Fig. 5 Errors in PCA study. efull,K (s)- and eincompl,K (s)-values for all datasets and settings from the PCA study

we observe that in some cases eincompl,K (s) is considerably
smaller than efull,K (s), indicating the strong bias already
suggested by the CVIIMs,n,K -values.
However, this visualization has two crucial disadvan-

tages. Firstly, in contrast to the plot of the CVIIM-
estimates, it does not show values which allow immediate
interpretation of the extent of overoptimism for the
individual datasets. Secondly, it draws attention to the
different sizes of the errors across individual datasets

rather than highlighting the discrepancies between the
efull,K (s)- and eincompl,K (s)-values, which should be the
actual focus of interest.

Outlook: other preparation steps
We performed additional analyses for further data prepa-
ration steps, although with fewer datasets and fewer
analysis settings than in the studies for normalization
and PCA. These preparation steps were: optimization
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of tuning parameters, variable filtering by variance and
imputation of missing values. See Appendix D (Additional
file 2) for the study designs and detailed results. Here, in
general, optimization of tuning parameters was connected
with weak, but non-negligible optimistic biases. For vari-
able filtering by variance and imputation of missing values
the bias was negligible. Note that, due to the limited num-
ber of datasets and analysis settings, the results should not
be over-interpreted. Further validation is required before
practical guidelines can be formulated with respect to
these preparation steps.

Simulation study
In addition to the real data studies presented above, we
also conducted a simulation study to investigate gen-
eral statistical properties of CVIIMs,n,K . As the prepara-
tion step we used supervised variable selection, which
displayed the largest CVIIMs,n,K -values in the real data
analyses. The data-driven simulation design uses the
ProstatecTranscr dataset and involves 2000 cor-
related normally distributed predictors. The methods
and detailed results are presented in the Appendix A
(Additional file 2).
Briefly, in the simulations the variance of CVIIMs,n,K

as an estimator of CVIIMP,n,K was relatively high and
decreased with decreasing CVIIMP,n,K -values. The bias
was negligible. When displaying the CVIIMs,n,K -values
graphically in the section Illustration we added error
bars representing the variability of the (untruncated)
CVIIMP,n,K -estimates from individual repetitions of CV.
Our assumption that this variability measure also reflects
the actual variance of CVIIMs,n,K was confirmed by the
simulation, whereby this similarity in behavior was most
pronounced for K = 3. This indicates that the error bars
obtained for the small K-values—of all considered val-
ues of K (see the section Further issues)—are the most
appropriate for comparing the variability of individual
CVIIMs,n,K -values.

Further issues
In the section Outlook: other preparation steps we used
a limited number of datasets in our analyses and noted
that the results should thus not be over-interpreted. The
results from the normalization and PCA analyses, in con-
trast, were based on 12 and 20 datasets respectively, and
are thus more reliable. As a rule of thumb we recom-
mend using at least 10 datasets for analyses for which the
goal is the evaluation of the impact of CV incompleteness
for a particular preparation step. However, the number
of datasets to consider of course depends on the hetero-
geneity of the datasets. Quite generally, the variability of
the relative performances of different classification meth-
ods over different datasets has been found to be large
in previous literature [21, 22]. We can frequently make

analogous observations with respect to the distribution of
the CVIIM estimates over datasets. When studying these
distributions, we can implicitly also observe variability
inherent in individual CVIIM estimates. This variabil-
ity is probably hard to estimate, given that the estimator
involves a fraction of two CV estimates, the variance of
which is very difficult to estimate [23].
In CV the training sets are necessarily smaller than

the whole dataset and the CV error estimate is thus an
upwardly biased estimator of the error of the prediction
rule fit on the whole dataset. This type of bias also affects
the relationship between E[ efull,K (S)] and E[ eincompl,K (S)].
Since in E[ eincompl,K (S)] the considered analysis step(s)
is/are performed on the whole dataset, the correspond-
ing parameters are estimated more accurately than in
E[ efull,K (S)] due to the difference in sample sizes. This
leads to a greater upward bias of efull,K (s) compared to
eincompl,K (s) with respect to the prediction error of the
prediction rule fit on the whole dataset. This can occa-
sionally result in increased CVIIMs,n,K values. A strong
decrease of the CVIIM estimates with increasing value of
K is an indication of the presence of this problem. This
is because for increasing K the size of the training sets
gets closer to the full sample size, thereby diminishing the
additional upward inherent bias of efull,K (s). In most of
our analyses we observed no substantial dependence onK.
We nevertheless recommend estimating CVIIM for sev-
eral values of K as a form of sensitivity analysis, as done in
our analyses.
For larger datasets the result of any preliminary step is

expected to be more stable, and in fact results approach
being deterministic as the sample size tends to infinity.
Therefore with larger sample sizes the result of a pre-
liminary step will be less affected when it is conducted
on the whole dataset compared to the correct separation
of training and test data. Thus CVIIM depends nega-
tively on the sample size. In Figures S10, S11 and S12 in
Appendix E (Additional file 2) for each investigated prepa-
ration step we plotted the dataset-specific means of the
CVIIM-estimates over all respective settings against the
sample sizes of the datasets. Here we clearly observe such
a dependency: for large datasets (n ∼ 100) the CVIIM-
estimates were much smaller in most cases. This was also
observed in the simulation study.
In practice, data preparation often consists of a combi-

nation of several preliminary steps, often with a natural
ordering. For example, normalization of microarray data
has to be performed before variable selection. There are,
however, also cases with no predefined ordering. For
example, dichotomization might be conducted before or
after variable selection. Given a specific ordering of the
steps, if one step is performed during CV, for obvious
technical reasons one also has to perform all subsequent
steps during CV. Of course it is also possible to compute
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CVIIMs,n,K globally for the whole combination of steps.
In Appendix F (Additional file 2) we consider an example
of such a combination. In this example a single analysis
step was mainly responsible for the difference between
efull,K (s) and eincompl,K (s).
CVIIM is in its current form only applicable to binary

classification problems. It can however be easily adjusted
to many other regression problems by replacing the mis-
classification errors in Eq. (1) by alternative error mea-
sures. The only requirement is that the loss function
associated with the respective error type has positive
range. Most common loss functions fulfill this require-
ment, for example the quadratic or absolute loss for linear
regression, the integrated Brier score for survival data, the
check function in the case of quantile regression or the
negative log-likelihood as an alternative to the error rate
when the response variable is discrete.
Note again that CV provides dataset-internal error esti-

mation. Consequently it estimates the error expected on
observations which follow the same distribution as the
training data. When a different dataset is used for evalu-
ating the prediction rule—as done in external validation—
the error can be expected to be higher [24]. CV can be
used in the process of obtaining an adequate prediction
rule when no external data is available, but before ulti-
mately applying a prediction rule in medical practice it
must be externally validated [25, 26].

Conclusions
In conclusion, the empirical study using our new measure
of CV incompleteness suggests that 1) RMA normaliza-
tion and RMA normalization in combination with global
VSN can be safely performed as preliminary data prepa-
ration steps on the whole dataset, since they yielded very
small CVIIM-values for all 12 analyzed real datasets; 2)
PCA has to be performed anew in each CV iteration—
i.e. re-trained on each training set—to protect against a
potential optimistic bias, since it yielded large CVIIM val-
ues in some of the 20 analyzed real datasets. The latter
result shows that non-supervised data preparation steps
can also lead to over-optimistic error estimation if per-
formed before CV. Given the ubiquitous use of RMA
in microarray analysis it is reassuring that the common
practice of performing RMA before CV is not harmful.
Due to the complexity of modern biological data, tradi-

tional model assessment tools are often not appropriate or
even employable and CV is the method of choice in evalu-
ating prediction models. It is thus especially important to
have reliable guidelines for its application. Moreover, data
preparation is becoming increasingly important, espe-
cially for data generated by high-throughput technolo-
gies. The need to empirically evaluate the impact of CV
incompleteness with regard to these data preparation
steps likewise increases. Our paper illustrates—through

the application to important data preparation steps—that
CVIIM is a useful tool in this endeavor.
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