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Abstract

In biomedical research, boosting-based regression approaches have gained much atten-
tion in the last decade. Their intrinsic variable selection procedure and their ability to
shrink the estimates of the regression coefficients toward 0 make these techniques appro-
priate to fit prediction models in the case of high-dimensional data, e.g. gene expressions.
Their prediction performance, however, highly depends on specific tuning parameters, in
particular on the number of boosting iterations to perform. This crucial parameter is
usually selected via cross-validation. The cross-validation procedure may highly depend
on a completely random component, namely the considered fold partition. We empirically
study how much this randomness affects the results of the boosting techniques, in terms
of selected predictors and prediction ability of the related models. We use four publicly
available data sets related to four different diseases. In these studies the goal is to predict
survival end-points when a large number of continuous candidate predictors are available.
We focus on two well known boosting approaches implemented in the R-packages Cox-
Boost and mboost, assuming the validity of the proportional hazards assumption. Finally,
we empirically show how the variability in selected predictors and prediction ability of the
model is reduced by averaging over several repetitions of cross-validation in the selection
of the tuning parameters.

Keywords: Boosting - Cross-validation - Parameter tuning - High dimensional data -
Survival analysis

1 Introduction

Boosting-based regression approaches have gained a lot of attention in the last decade, showing
both interesting theoretical properties (Biihlmann and Yu, 2003; Biithlmann, 2006; Tutz and
Binder, 2006) and yielding good empirical results in terms of prediction accuracy, including
applications to prediction with high-dimensional data. In this paper we focus specifically
on two boosting approaches that are based on a solid theoretical framework, implemented
in user-friendly software, and able to efficiently cope with high-dimensional data and handle
censored survival end-points: the model-based boosting approach (Bithlmann and Yu, 2003),
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implemented in the R package mboost (Hothorn et al, 2015); and the likelihood-based boosting
approach (Tutz and Binder, 2006) adapted to survival end-points by Binder and Schumacher
(2008) and implemented in the R package CozBoost (Binder, 2013).

In our analyses we focus on prediction models for time-to-event outcomes: this kind
of application, despite being extremely common in biomedical practice, has not been well
investigated in statistical literature in the case when a large number of candidate predictors,
such as gene expressions, are available. In this context, boosting techniques can play an
important role. They have, indeed, two important characteristics which are essential in
providing a good prediction model when the number of the predictors exceeds the sample
size: the ability to shrink the parameter estimates toward 0, and the identification of the
relevant predictors (variable selection). The latter is performed by allowing only a moderate
number of parameters to have non-zero values. These two properties suggest the existence of
a relation between boosting techniques and methods based on penalized regression. Works
which have investigated this connection, mainly focusing on the similarities between Lo-
boosting and lasso, are Hastie et al (2001), Efron et al (2004) and Bithlmann and Hothorn
(2007).

Another common characteristic of the boosting and the penalized regression techniques
is the presence of one or more tuning parameters. In particular, as boosting is an iterative
method in which a weak learner is sequentially applied to a suitable modification of the data,
the most critical parameter to set is the number of iterations (boosting steps). Its choice
greatly impacts the number of involved predictors and the complexity of the resulting predic-
tion model. Despite the importance of this parameter, literature on its choice is scarce. The R
packages mboost and CoxBoost exploit cross-validation-based procedures. In particular, when
the working with proportional hazards models, both packages implement the cross-validated
partial log-likelihood by Verweij and Van Houwelingen (1993). The package mboost also offers
a different procedure, based on the Akaike information criterion: introduced by Biihlmann
(2006) and investigated in the survival analysis context by Hothorn et al (2006), its use in
practice is actually discouraged due to its tendency to overshoot the optimal value (Hofner
et al, 2014). This tendency is primarily due to the systematic underestimation of the true
degrees of freedom in component-wise boosting algorithms (Mayr et al, 2012). An advantage
of AIC-based stopping criteria is that they can be made totally data-driven, avoiding the
necessity of pre-specifying a range of values to search for the optimum. The works of Chang
et al (2010) and, especially, Mayr et al (2012) focus on this approach, with the latter adjusting
for the underestimation of the degrees of freedom using a re-sampling method, at the expense
of computation time.

However, the aforementioned approaches are not really well-known and cross-validation is
by far the most popular procedure used in practice to choose the number of boosting steps.
Unfortunately, cross-validation is often implemented without taking into account its possible
drawbacks and the effect that these can have on the tuning procedure. An important problem
of cross-validation and related approaches is the high variability of the results (Boulesteix
et al., 2013): the output may be completely different for two different random partitions into
the K folds used in the procedure, in the sense that different numbers of boosting steps are
identified as optimal depending on the considered random partition. As a consequence, the
final prediction model - fit using the selected number of boosting steps - may greatly depend
on a completely random component, namely the considered partition into the K folds.

In this paper we address the issue of the choice of the number of boosting steps from
an empirical perspective. In particular, we specifically address three questions related to the



variability of cross-validation-based results: (i) how much does the prediction accuracy of the
final prediction model depend on the random CV partition used for the choice of the number
of boosting steps? (ii) how much do the set of selected predictors depend on the random CV
partition used for the choice of the number of boosting steps? (iii) to what extent can this
variability be reduced through adapting the cross-validation tuning procedure by averaging
over several random partitions into K folds? Despite the focus on the prediction of censored
survival end-points from high-dimensional data, most conclusions are generalizable to other
types of end-points and/or other type of predictors.

This paper is structured as follows. Section 2 gives an introduction to the two considered
boosting methods, cross-validation for tuning and the evaluation of survival prediction models
using the Brier score. An empirical study based on four high-dimensional gene expression
data sets, each consisting of both learning and test sets, is presented in Section 3. The effect of
considering several partitions in the cross-validation procedure is shown in Section 4. Finally,
Section 5 contains some conclusions.

2 Methods

The general idea of a boosting procedure is to repeatedly fit a weak estimator to the data in
order to minimize a loss function. Here we focus on the implementation to survival data of
the model-based boosting and the likelihood-based boosting approaches. Both depend on two
tuning parameters: a penalty parameter, whose choice is usually hardly influential, and the
number of boosting steps, mstop, which, on the contrary, greatly affects the performance of the
procedure and, consequently, the behavior of the resulting prediction model. In this section,
we briefly review the two boosting algorithms, we sketch how to apply the cross-validation
technique in order to select msgop, and we provide some information on the Brier score, the
measure of prediction ability that we use in the paper.

2.1 Model-based boosting

Model-based boosting is a direct implementation of the gradient boosting idea described in the
seminal paper of Friedman (Friedman, 2001), which provides a statistical view of the boosting
technique introduced by Freund and Schapire (1996) in the machine learning literature. In
the Friedman paper, boosting is characterized as a gradient descent algorithm, where in each
iteration a base learner is fit to the negative gradient of a loss function. Here we focus on
its adaption to survival data which fit the Cox model assumptions, as implemented in the
package mboost within the function glmboost with argument family=CoxPH(). In particular,
this version uses the negative partial likelihood as the loss function and the ordinary least
squares estimator as the base-learner. The derivation of the negative gradient vector was
firstly provided in Ridgeway (1999). Based on the mboost function, other implementations
using specific weights (Hothorn et al, 2006) or considering non-linear effect for the predictors
(e.g., Schmid and Hothorn, 2008) are available through the mboost function, but are not
considered here.

The package mboost implements the component-wise boosting version, the use of which is
often motivated by the challenges typical of high-dimensional data. This procedure consists of
updating the vector of regression coefficient estimates only one dimension at a time. At each
step, for all the vector components, a possible update is computed by fitting a least squares
estimator on the gradient vector. Among all possible updates, the one which decreases the



loss function the most is selected, and it is added, suitably multiplied by a penalty parameter,
to the related regression coefficient estimate. This updating procedure ends when the pre-
specified number of boosting steps mgtop is reached. It is worth stressing the crucial role of this
parameter: if it is too small the estimates of the regression coefficients may be insufficiently
refined, leading to a prediction model unable to explain the outcome variability; if it is too
large, the final model risks being too complex and overfitting the learning data. The number
of boosting steps highly affects the variable selection property of the boosting procedure as
well: the chance of including a predictor in the model, indeed, increases with the number of
iterations. Therefore, if the number of steps performed is too small, a relevant predictor may
be excluded from the model, while if it is too large, irrelevant predictors may be included,
with high risk, especially in the high-dimensional data context, of overfitting. In contrast,
the choice of the penalty term is unimportant, and, in our analyses, we keep the default value
(0.10, see, e.g., Bithlmann and Hothorn, 2007).

2.2 Likelihood-based boosting

The second algorithm that we consider is the adaptation to survival data of likelihood-based
boosting (Tutz and Binder, 2006), introduced by Binder and Schumacher (2008) and imple-
mented in the R package CoxBoost. This algorithm uses a penalized version of the negative
partial log-likelihood as the loss function, which it minimizes by repeatedly fitting a first order
approximation of the ridge estimator. In the component-wise version used in this paper, only
one regression coefficient per iteration is updated, although the R package offers the chance
to update more at each step (Binder and Schumacher, 2008). In practice, at each step all
possible updates (one for each regression coefficient) are computed, and then the most rele-
vant — namely that which, once plugged into the loss function, leads to the smallest value —
is selected. This “best” update is incorporated in an offset term, which is simply the linear
predictor obtained in the previous boosting step. Again, the total number of boosting steps
performed is highly relevant in determining the behavior of the resulting prediction model,
and a good choice of this tuning parameter is again crucial. As with the model-based boosting
technique, there is a second tuning parameter to consider, the penalty term. In this case, it
is directly applied to the partial log-likelihood, through the Ls norm which characterizes the
ridge regression. The penalty term is usually selected through the rough method implemented
in the function optimCoxBoostPenalty of the package CoxBoost. In this paper: (i) to have a
more robust result, we repeat the procedure 100 times and take the median value; (ii) since
we will consider several kinds of cross-validation (leave-one-out, 3-, 5-, 10 and 20- fold), we
repeat the procedure for each kind of cross-validation and we select the median value among
the 5 penalty parameters. The use of a single penalty term for all kinds of cross-validation
procedure assures the comparability of their results in terms of the number of boosting steps.
Obviously this procedure does not optimize the value of the penalty parameter, but it quickly
provides a term with a reasonable magnitude: as with model-based boosting, the choice of
the penalty parameter is not crucial. The original paper only claims that a “large enough”
value is necessary (Binder and Schumacher, 2008).

2.3 Choice of the tuning parameter based on cross-validation

The number of boosting steps is highly relevant in both boosting procedures considered. We
stated in the introduction that the usual way to compute its value is through cross-validation



(CV). The general idea of cross-validation is to mimic the presence of a learning and a test set
by splitting the available data set D into K disjoint and approximately equal-sized subsets
Dy, ..., Dg. Each fold of this split is then separately used as test set to evaluate the behavior
of a model fit on the other K — 1 folds.

In the R implementation of the two boosting procedures analyzed, the evaluation is made
in terms of the cross-validated partial log-likelihood introduced by Verweij and Van Houwelin-
gen (1993),

K
copl(m) = 3 (B, ) = P (B )

k=1
where pl(-) denotes the complete partial log-likelihood, pl(~P%)(-) the partial log-likelihood

~ (=D
computed without the observations contained in the k-th fold and ﬁin k) denotes the vector
of the regression coeflicient estimates computed using the D\ Dy, subset. Note that the value
of the first term on the right hand side of Equation 1 increases with increasing proximity

~ (=D
of ,Bgn k) to the maximum likelihood estimate (mle). The second term, instead, penalizes
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for possible overfitting: it is computed on the data used to obtain Bv(; , and therefore it

k)

decreases the value of cvpl(m) as much as BE,: P explains too much the data variability.

The cross-validated partial log-likelihood is used to estimate the optimal number of boost-
ing steps. The estimates of the regression coefficients, indeed, depends on m, as highlighted by
the subscripts in Equation 1. The optimal value mgop, therefore, is obtained by maximizing
over m the cross-validated partial log-likelihood.

2.4 Brier score and integrated Brier score

The Brier score is a quadratic score rule originally developed to measure the accuracy of
weather forecasts (Brier, 1950) and adapted to the context of survival analysis by Graf et al
(1999). Tt is based on the predicted survival probability S;(t), that, ideally, at time ¢ should
be 1 if the subject ¢ is alive, 0 otherwise (Schumacher et al, 2007). If I(7; > t) indicates
whether the observation 7 is or is not alive at time ¢, the Brier score can be estimated as

~

BS(t) = iznj Wi(t) (I(Ti >t) - 9¢<t))2

where n is the number of the observations in the test data set and Wz(t) are weights introduced
in order to deal with censored observations (for further details, see Gerds and Schumacher,
2006; Mogensen et al, 2010). Please note that the survival probability estimation S is com-
puted using the test set, but is calculated based on the model determined using the learning
set.

When plotted with respect to time, the Brier score leads to the so-called prediction error
curves, which can be used to graphically investigate the behavior of the predictive model.
Alternatively, we can summarize the information in a single value, called the “integrated
Brier score”, by integrating the Brier score with respect to the time. The integrated Brier
score corresponds to the measure of the area under the prediction error curves,

T
IBS = / BS(t)dt,
0



Table 1: The four data sets used in our empirical study.

. sample size (events)  number of reference
disease . .
learning set  test set predictors
breast cancer 282 ( 57) 182 (41) 22283 Hatzis et al (2011)
diffuse large B-cell lymphoma 149 (179) 73 (48) 7399 Rosenwald et al (2002)
acute myeloid leukemia 163 (103) 79 (32) 44754 Metzeler et al (2008)
neuroblastoma 242 ( 40) 120 (35) 9978  Oberthuer et al (2008)

where T is the value up to which the integral is considered. In our study, we select T as the
largest time value in the test set.

3 Empirical study

3.1 Data

In our analyses, we consider four publicly available medical data sets with survival outcome
and information on the gene expression of the patients (see Table 1). Each of these data
sets consists of a learning set, using which we compute the optimal number of boosting steps
and fit the model, and a test set, for which we compute the integrated Brier score. It is
particularly important to keep the learning and the test data totally separated in order to
have a reliable evaluation of the prediction abilities of the resulting models.

Breast cancer data: This data set comes from a prospective multicenter study conducted
by Hatzis et al (2011) to develop genomics predictors for neoadjuvant chemotherapy. It
involves patients with newly diagnosed ERBB2 (HER2 or HER2 /neu)-negative breast cancer,
for which information is provided on the (possibly censored) distant relapse-free survival
time and the gene expressions of 22283 probe sets, obtained through the Affymetrix U133A
GeneChip. The data set consists of a learning set, containing information on patients who
had their biopsy between June 2000 and December 2006, and an independent test set, whose
patients had their biopsy between April 2002 and January 2009. Specifically, we use the
observations considered in De Bin et al (2014): the sample sizes are 282 patients (with 57
events) and 182 patients (41 events) for the learning and test sets, respectively. The data are
publicly available from the Gene Expression Omnibus, reference GSE25066.

Diffuse large B-cell lymphoma:  The second data set comes from the study of Rosenwald
et al (2002) on patients with diffuse large B-cell lymphoma. It contains 7399 gene-expression
measurements from 240 patients who had no previous history of lymphoma, divided in a
learning set (160 patients) and a test set (80 patients). The outcome of interest is the overall
survival time. In our paper we use the data set as pre-processed by Bgvelstad et al (2009),
which contains the information of only the 222 patients for which the International Prognostic
Index is also available. However, we did not consider this predictor in our analysis. As a result
of this restriction, the learning and test sets contains 149 and 73 patients, respectively. Due
to the presence of censored data, the effective sample sizes are 79 (learning set) and 48 (test
set).



Acute myeloid leukemia data: The third data set contains information on patients
with acute myeloid leukemia enrolled between 1999 and 2003 (learning set) or in 2004 (test
set) in a multicenter trial of the German AML Cooperative Group (Metzeler et al, 2008). The
outcome of interest is the overall survival, defined as the time between study entry and death
from any cause. The learning set contains 163 patients, of which 103 died. The data consist
of the gene-expression measurements of 44754 probe sets, obtained using the Affymetrix HG-
U133 A&B microarray. For the 79 patients belonging to the test set (32 events), instead, the
gene expressions were derived using Affymetrix HG-U133 plus 2.0 microarray. The data are
publicly available from the Gene Expression Omnibus, reference GSE12417.

Neuroblastoma data: The last data set contains information on the patients with neu-
roblastoma studied by Oberthuer et al (2008). The original learning set consists of 256 pa-
tients recruited between 1989 and 2004 for the German Neuroblastoma Trial NB90-NB2004
for which the overall survival time and the gene expressions of 9978 probe sets are available.
The test set, instead, consists of 120 patients with the same disease, but collected in several
countries (29 in Germany, 26 in the US, 26 in France, 12 in Spain, 11 in Italy, 6 in Belgium, 5
in the UK and 5 in Israel), for which the same outcome and probe sets were measured. In our
study, we did not directly use the data from the original study (available from the ArrayEx-
press database, accession number E-MTAB-16), but those pre-processed by Bgvelstad et al
(2009), in which 14 patients are excluded due to missing data. Since it was not possible to
recover the original split into learning and test sets, here we randomly split the whole data set
into a learning set of 242 patients (40 events) and a test set of 120 patients (35 observations),
which are the sample sizes used by Bgvelstad et al (2009).

3.2 Study design

The main focus of our study is on the cross-validation-based choice of the optimal number of
boosting steps in model-based and likelihood-based boosting. We consider values between 0
(null model) and 200. We investigate how the variability caused by the randomness due to the
cross-validation fold-split affects the results of the boosting procedures in terms of number of
iterations performed, selected predictors and prediction ability of the models.

In our analysis, for both boosting techniques we replicate 2000 times the following algo-
rithm:

e we apply the 3-, 5-, 10- and 20-fold cross-validation procedures to compute the optimal
number of boosting steps, using only the observations from the learning set;

e we fit a prediction model by applying the boosting technique to the learning set, using
the tuning parameter obtained in the previous point;

e we note the number of predictors selected in the model,

e we evaluate the prediction ability of the model by estimating the integrated Brier score
on the test set.

In addition, we collect the same information (number of boosting steps, number of selected
predictors, integrated Brier score) when using leave-one-out cross-validation: since this pro-
cedure is deterministic, this operation is performed only once.



3.3 Results
3.3.1 Number of boosting steps

The first goal of this empirical study is to evaluate how the optimal number of boosting steps
(mstop) is influenced by the different random splits — into learning and test sets — of the
cross-validation procedure. Figure 1 shows the distribution of the values obtained over 2000
iterations, for each data set and using the cross-validation procedures implemented both in
mboost and in CoxBoost. For now we focus on the white boxplots, which show the results
for the regular cross-validation. The gray boxes will be discussed in the following section.
Regardless of the boosting technique chosen, the variability of msgicp is very large, with values
that range from 0 (minimum) to 200, the upper limit that we considered in our experiment.
In particular, this means that, using the same data, we can obtain completely different results
simply due to the particular fold-split used. The four considered example data sets suggest
that this result may be partially mitigated by a large sample size (although this different
behavior may of course also be simply due to random variations): we notice that in the
acute myeloid leukemia example, in which we have 103 events, we experience less variability
(see Figure 1, first row, third column) than in the other data sets, especially when applying
mboost. Nevertheless, it is worth noting that the sample sizes and, more in general, the
characteristics of all our data sets, are typical of biomedical studies, and therefore in practical
situations we may experience this large variability in the choice of mgiop. As expected, the
variability seems to decrease with an increase in the number of folds, because increasing the
number of folds means approaching to (the completely deterministic) leave-one-out cross-
validation. Leave-one-out cross-validation produces extreme numbers of steps in mboost for
the all data sets except the Neuroblastoma data set and for CozBoost in the DLBCL data
set. All extreme numbers of steps for leave-one-out cross-validation are higher than most
or all numbers of steps computed by other cross-validation procedures. This suggests that
leave-one-out cross-validation leads to models that are more likely to overfit the data in these
cases.

3.3.2 Selected predictors

The high variability in the choice of mgtop is not a problem itself, but it may substantially
affect the model building process and consequently the properties of the prediction model.
We first consider the selection of the relevant predictors. We report in Figure 2 how many
predictors are selected in each of the replications of our experiment for the model-based
(mboost) and the likelihood-based (CoxBoost) boosting procedures, respectively. Moreover,
we report in Figure 3 the number of predictors selected at least once. Note that the number
of predictors selected at least once and the number of predictors always selected is equivalent
for leave-one-out cross-validation, because it is deterministic and was only computed once.
Again, we first focus on the regular cross-validation, represented as dots. The complete tables
of the selected predictors, including the information on the number of times they are selected,
are available in the Supplementary material (Tables 2 — 5).

The different values of myg;p as determined by the random fold-splits in the cross-validation
procedure, greatly influence the prediction models in terms of selected predictors. In particu-
lar, extremely low values of mgiop prevent the boosting technique from including many predic-
tors in the model: as a consequence, very few predictors are selected in all 2000 replications
performed in our study. On the other hand, high values of msop can result either in higher



Figure 1: Number of boosting steps (mstop) selected in the 2000 iterations (except leave-one
out CV) computed using different CV folds in the four data sets with both CozBoost (left)
and mboost (right). The color defines the type of cross-validation. White stands for normal,
gray for repeated cross-validation.
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Figure 2: Number of predictors selected in each iteration using different CV folds in the
four data sets with both CoxzBoost and mboost (right). The shape defines the type of cross-
validation with respect to number of repetitions.
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Figure 3: Number of predictors selected at least once in 2000 iterations computed using
different CV folds in the four data sets with both CoxzBoost (left) and mboost (right). The
shape defines the type of cross-validation with respect to number of repetitions.
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values for the estimates of a few predictors or in a high number of selected predictors: in our
examples the latter seems to happen, as shown by the relatively large number of predictors
selected at least once.

The (relatively) greater stability in the choice of mstop induced by a larger number of
folds in the cross-validation procedure results both in an increase in the number of predictors
selected in all replications and a decrease in the predictors selected at least once. This is
least strong in the application of the breast cancer data: both for mboost and CoxzBoost, the
variability of mygop slightly decreases with increasing number of folds but not as strong as in
the other applications (see Figure 1, first row). This reflects in a less evident stabilization
in the predictors selected. For example using CoxBoost the number of predictors always
included is 0 for the 3-fold cross-validation, 1 for the 5-fold, 3 for the 10-fold and 2 for the
20-fold for the breast cancer data, whereas for the acute myeloid leukemia data it is 3 for the
3-fold, 3 for the 5-fold, 9 for the 10-fold and 10 for the 20-fold cross-validation. The number
of predictors selected at least once is always 45 for the breast cancer data but goes down from
43 (3-fold) to 21 (20-fold) for the acute myeloid leukemia data.

Leave-one-out cross-validation tends to favor more complex models, which are more likely
to overfit the learning data. Figures 2 and 3 support that in mboost for all data sets except
the neuroblastoma data set. For CoxBoost a similat behavior can be seen for the DLBCL
data. So essentially all examples that showed extremely high values for mygiop also show many
predictors included in the model.

Finally, we note that in all the four data sets the rank of the predictors based on their
inclusion frequencies is slightly different between mboost and CoxBoost. This is a consequence
of the differences in the learning path for the two boosting techniques (for further details, see
De Bin, 2015).

3.3.3 Connection between the number of boosting steps and the number of
selected predictors

Through the paper, we stressed the influence of the number of boosting steps on the model
sparsity. To better understand this statement, we plot in Figure 4 all values of mgop obtained
in our replications against the number of predictors included in the corresponding models.
We note that models are less sparse as the value of the optimal number of boosting steps
increases, resulting in a non-decreasing function. Steps in this function occur when predictors
are chosen that have already been chosen before. Please note that the boosting learning path
is deterministic. Therefore, once we know the number of boosting steps (and the penalty
factor), we can determine uniquely the fitted model.

Figure 4 shows once again how important a stable selection of the number of boosting
steps is. Extremely large values may result in extremely complex models and the other way
around for extremely small mgiop, With obvious implications in terms of interpretation and
prediction accuracy.

We note that the slopes of the curves for mboost and CozBoost are fairly similar. The
largest difference occurs in the Neuroblastoma data set. Here for the most extreme value
that we allow for mgop, namely 200, the number of predictors is much lower for mboost (28)
than for CozxBoost (53). Please note that the slopes of the curves are also strongly related
to the value chosen for the penalty parameter. The stronger the penalty (i.e., smaller v for
mboost, larger X for CoxBoost, see also De Bin, 2015), the less steep the curve. For mboost
we used v = 0.1 and for CoxBoost A\ = 2052 for the breast cancer data, A = 1422 for the

12



Figure 4: Optimal number of steps chosen via cross-validation plotted against the number of

predictors included in the respective model, for both CoxBoost (left) and mboost (right).
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DLBCL data, A = 1854 for the AML data and A = 720 for the neuroblastoma data. Larger
values of the penalty parameter correspond to smaller step-wise updates of the coefficients,
and consequently to more stationary point; with a larger penalty it may be necessary to
perform two boosting steps to obtain the same coefficient update obtained in one step in case
of a small penalty.

3.3.4 Prediction ability

When we are interested in explanatory models, knowledge of the selected predictors and the
stability of the resulting model among several repetitions of the same procedure is particularly
important. This is not, however, the main focus of boosting: the boosting approach is mainly
used in the context of prediction models, where the focus is more on the goodness of the
prediction than on the model itself. For example, if we have two strongly correlated predictors,
from a predictive point of view it is equivalent to include the former, the latter, or both with
two coefficients that combine their effects. For this reason, here we investigate the effect of the
randomness of the cross-validation-based choice of mgiop on the prediction ability, analyzing
the differences in the estimates of the integrated Brier score among the resultant models.
We report in the white boxplots of Figure 5 the results for CoxzBoost (left) and for mboost
(right) using 3- 5- 10- 20-fold and leave-one-out cross-validation. The results are based on
2000 iterations, except for the leave-one-out cross-validation, for which, obviously, only one
value is provided.

As a consequence of the decrease in the variability of mgop, and the relative decrease in the
variability in terms of selected predictors, the variability of the integrated Brier score decreases
with an increase in the number of cross-validation folds. We note a peculiar behavior in the
acute myeloid leukemia example: despite it having the lowest variability in terms of mgtop, it
shows a high variability in terms of integrated Brier score, with several cases of extremely high
values (visualized by the outlier-points in the box-plots of Figure 5). Strongly unexpected,
leave-one-out cross-validation leads to good results for mboost on the breast cancer data set.
For some unknown reasons in this case the more complex model is the better model. This does
not happen often, and may be a particularity of this data set, in which weak effect predictors
may result relevant. Note that this result may explain why in the original study a complex
gene-signature (up to 73 probe-sets) leads to good results, which have not been obtained when
focusing on sparse models (see, e.g. De Bin et al, 2014). Please note that, in general, the
inclusion of this kind of predictors decreases the model portability (the model is too specific
for the learning data). In this sense, it is not surprising that this result has been obtained
by using leave-one-out cross-validation, which is known to favor data-specific models. In all
other cases, indeed, the integrated Brier score from leave-one-out cross-validation is higher
than the median of the integrated Brier score from other folds, including CozBoost on the
breast cancer data set. In these cases, leave-one-out cross-validation seems not to be able to
overcome the tendency for sparsity of boosting.

4 Effect of repeated cross-validation

In the previous section we saw that the randomness of the folds split in the cross-validation
procedure causes variation in the results and the prediction ability. From a theoretical point
of view, to avoid this problem we should consider all the combinations of the n observations in
K folds, following the theory of complete cross-validation (Kohavi, 1995), and transform the
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Figure 5: Integrated Brier score for models computed using different CV folds and a different

number of repetitions in the four data sets, for both CoxzBoost (left) and mboost (right).
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estimator of mgiop based on the cross-validated likelihood into a complete U-statistic. With
the usual sample size of a medical study, this is clearly computationally unfeasible (see also
Fuchs et al, 2013). Between the current case of only one split and the theoretical case of all
splits, nonetheless, there are several intermediate cases, in which we can obtain a more stable
result in an acceptable amount of time. For this reason, we suggest the use of a repeated
cross-validation procedure for the choice of the tuning parameter: instead of considering the
cross-validated partial log-likelihood, one should consider a repeated cross-validated partial
log-likelihood,

K
revpl(m) = Z Z (pl(Bin_Dk)> 7pl(—Dk)(ﬁ£;Dk))) 7

(D1,.-.,DK)€Dy k=1

where Dy denotes the random set of the I splits into K subsets of the sample D considered
in our analysis.
Again, the optimal value of Mg, is computed by maximizing the function over m.

4.1 Study design

The repeated cross-validated likelihood should be based on the maximum feasible number of
different splits, i.e. the largest I that is within the constraints of reasonable calculation time.
In our study, involving 2000 replications of 4 kinds of cross-validation, we consider I = 10
as well as I = 50. Obviously, when the goal is to fit a prediction model based on a specific
sample, a larger number can be considered.

The data sets and the methods used in this section are the same as Section 3. Leave-
one-out cross-validation is not considered again because the results do not change. We fit
a prediction model using the tuning parameter computed in a 3-, 5-, 10- and 20-fold cross-
validation procedure and we consider the selected predictors and the prediction ability in
terms of integrated Brier score. The procedure is repeated 2000 times.

4.2 Results
4.2.1 Number of boosting steps

Figure 1 shows the improvements in stability in the choice of the optimal number of boosting
steps using the repeated cross-validated log-likelihood: if we compare the results of repeated
cross-validation in gray and normal cross-validation in white, we note a pronounced decrease
in the variability, both in terms of interquartile and total range. The decrease between
normal cross-validation and the 10 times repeated cross-validation is greater than the decrease
between 10 and 50 repetitions. The medians of the distributions are almost equal with a light
tendency of being lower when computed with the repeated cross-validated log-likelihood. The
reason probably lies in the avoidance of the highest values that characterized the distributions
in the original cross-validation procedure. The absence of the extreme values (especially those
on the borders, namely 0 and 200), in particular, is the most positive improvement obtained
by implementing the repeated cross-validation, because it prevents situations in which mgtep
is chosen incorrectly due to a particularly unfortunate partition of the observations.
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4.2.2 Selected predictors

The superiority of a more stable choice for the optimal number of boosting steps is clear when
examining selected predictors (Figures 2 and 3). Avoiding underestimation and overestima-
tion of msiep, indeed, leads to the identification of a clear group of relevant predictors always
selected in our 2000 replications, and to the decrease of the rarely selected predictors: the
latter property is particularly evident in the acute myeloid leukemia example, in which the
maximum number of selected predictors is 22 when using 10 repetitions and 19 with 50 repe-
titions. We note that with 50 replications we are relatively close to a deterministic result, i.e.
the inclusion frequencies of the predictors is mostly 2000 (always) or 0 (never). The complete
information on which predictors were selected is shown in Tables 2 — 13 in the supplementary
material.

4.2.3 Prediction ability

The analysis of the integrated Brier score also reflects the advantages of using a repeated cross-
validated log-likelihood for the choice of mgiop. As can be seen in Figure 5, the avoidance of
extreme values for the tuning parameter results in the disappearance of the worst prediction
performances obtained with the simple cross-validated log-likelihood. For the acute myeloid
leukemia example for both mboost and CoxBoost the bad predictions experienced in the
previous section do not occurs. The improvement between 10 and 50 repetitions of cross-
validation is not as striking as between none and 10 repetitions but with 50 repetitions we
come even closer to a stable result, especially for 3-fold cross-validation.

5 Conclusions

Boosting techniques have proved to be useful tools in selecting a prediction model, especially
in the important case in which the number of predictors is much higher than the number of
observations. One weakness of boosting is the strong dependence on the tuning parameter
Mstop, Namely the number of boosting steps. Please note that several statistical methods
share this weakness. To now, there has not been a convincing theory developed on the choice
of this parameter and practitioners are compelled to use a cross-validation procedure. We
have seen that this solution is sub-optimal, since it may lead to surprisingly different results
in terms of selected predictors and prediction ability of the model depending on the particular
partition of the observations into the cross-validation folds. A particularly unfortunate split
may cause a severe underestimation or overestimation of the optimal value of boosting steps,
with the consequence that the boosting algorithm may produce a very misleading model. We
have seen that this problem affects the cross-validation procedure irrespectively of the number
of folds used. In our study, we showed that the implementation of a repeated cross-validation
procedure decreases the variability in the choice of the tuning parameter and produces a more
robust result: as a consequence, far fewer extreme values of mgiop would be expected. The
results of the 10-replication cross-validated partial log-likelihood suggest that few replications
are sufficient to greatly improve the selection of the best tuning parameter. The extension
to 50 replications shows that increasing the number of replications may lead to even better
results. As often happens, however, there is no free-lunch solution, and an increase in repli-
cations also results in a large increase in the number of computations to perform. Therefore,
the trade-off between variability reduction and computational time plays an important role
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in the choice of the number of replications. In our opinion 10 (or only a few more, let us
say 15 or 20) replications may be sufficient to avoid extreme cases and, consequently, ob-
tain reliable results. Nevertheless, we note that the advances in computational techniques
(e.g., parallel computing) and computational power (better hardware) constantly relax the
computational time issues, and in the future more replications may be implemented without
noticeable drawbacks.
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Table 2: Number of times each predictor of the Breast cancer data set was selected within 2000
iterations (except leave-one-out CV) using different CV folds with both methods CoxBoost
and mboost. Predictors that were never selected are not shown.

(a) CoxBoost (b) mboost

3 5 10 20 loo 3 5 10 20 loo
x221874_at 1995 2000 2000 2000 1 x221874_at 2000 2000 2000 2000
x205428 s_at 1994 1998 2000 2000 1 x205428_s_at 1986 1994 2000 1999
x211110_s_at 1993 1997 2000 1999 1 x211110_s_at 1986 1993 1999 1999
x212811_x_at 1989 1995 1999 1996 1 x212811x.at 1979 1990 1996 1999
x203860_at 1974 1988 1980 1977 1 x219648_at 1959 1969 1976 1993
x201928_at 1965 1979 1974 1969 1 x203860_at 1946 1964 1969 1992
x221681.s_at 1957 1973 1963 1969 1 x201928_at 1934 1949 1967 1992
x217769_s_at 1948 1966 1957 1969 1 x221681_s_.at 1917 1941 1960 1992
x220298 s_at 1925 1941 1955 1969 1 x217769_s_at 1908 1934 1959 1992
x214778_at 1890 1902 1937 1969 1 x220298s.at 1833 1900 1946 1992
x219648_at 1879 1894 1935 1969 1 x214778_at 1723 1852 1934 1992
x207417s_at 1774 1796 1888 1964 1 x207417_s_at 1502 1713 1877 1986
x209383_at 1737 1767 1852 1955 1 x209383_at 1467 1686 1862 1983
x202145_at 1725 1754 1839 1948 1 x202145_at 1457 1669 1852 1980
x210254_at 1550 1621 1659 1754 1 x210254_at 1180 1445 1622 1808
x212531_at 1540 1611 1644 1723 1 x212531_at 1098 1334 1487 1593
x207639_at 1316 1358 1217 893 0 x207639.at 833 1040 1037 754
x207750_at 1164 1138 872 363 0 x200927s.at 718 924 861 490
x218650_at 1150 1126 845 331 0 x218650_at 708 912 843 447
x200927_s_at 1130 1108 825 307 0 x207750_.at 690 892 813 417
x203208_ s_.at 1116 1089 801 287 0 x203208s.at 621 833 747 318
x210820_x_at 1059 1022 685 216 0 x203576_at 574 772 683 269
x214952_at 1002 962 611 172 0 x214465_at 530 709 617 218
x214465_at 918 857 533 141 0 x214952_at 463 623 527 191
x217505_at 845 782 464 130 0 x210820x.at 455 609 515 190

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

x204527_at 761 683 380 113 x217505_at 403 530 449 179

x201932_at 734 659 362 112 x204527_at 373 485 428 176

x205476_at 707 627 345 110 x205476_at 358 466 411 176

x203889_at 698 618 339 110 x218701_at 333 426 387 172

x222009_at 647 566 315 106 x201932_at 329 417 385 172

x218701_at 621 533 296 105 x203889.at 294 371 361 168

x203576_.at 603 509 289 105 x210648 x_.at 268 339 353 166
x201097_s_.at 563 468 276 104 x222009_at 253 321 345 163
x217566s.at 516 426 238 100 x217566.s.at 241 311 333 163

x215369_at 509 420 237 98 x201097s_at 187 267 300 162
x209149_s_.at 503 406 230 98 x206847s.at 186 259 297 160
x206847s_at 470 383 222 94 x209149s.at 174 230 278 160
x210648 x_.at 351 282 153 85 x215369_at 152 208 263 160

x217944_at 333 255 144 85 x207680_x_at 38 60 86 79
x207680x-at 329 249 141 85

x214191_at 281 205 116 79

x214386_at 241 183 96 69
x208603s_at 214 162 81 60

x203892_at 208 160 76 99

x220067_at 183 139 68 47

= = T S e e e e e T el e e e e e N = N e S e e e e Y e e e e e e
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Table 3: Number of times each predictor of the DLBCL data set was selected within 2000
iterations (except leave-one-out CV) using different CV folds with both methods CoxBoost
and mboost. Predictors that were never selected are not shown.

(a) CoxBoost (b) mboost

3 5 10 20 loo 3 5 10 20 loo

V1685 1993 1998 2000 2000 V1685 2000 2000 2000 2000
V1829 1986 1998 2000 2000 V1829 1983 1999 2000 2000
V3836 1950 1997 2000 2000 V3836 1951 1993 2000 2000
V1192 1944 1997 2000 2000 V1192 1944 1992 2000 2000
V3176 1927 1995 2000 2000 V3176 1937 1991 2000 2000
V5031 1916 1994 2000 2000 V5031 1924 1991 2000 2000
V7361 1909 1994 2000 2000 V7361 1881 1986 2000 2000
V3805 1895 1991 2000 2000 V3805 1857 1986 2000 2000
V1680 1834 1979 2000 2000 V3826 1754 1970 1998 2000
V2583 1773 1957 1997 2000 V1680 1724 1964 1998 2000
V1460 1740 1951 1996 2000 V2583 1557 1921 1998 2000
V2906 1668 1924 1990 2000 V1460 1411 1879 1996 2000
V6611 1616 1894 1979 1998 V2906 1236 1796 1989 1999
V6960 1512 1833 1966 1993 V6611 1163 1752 1971 1999
V7T 1135 1574 1810 1938 V6960 961 1626 1917 1994
V1988 1080 1528 1776 1930 VT 507 1194 1724 1947
V1302 854 1294 1635 1875 V1988 483 1156 1698 1943
V4885 824 1268 1589 1864 V1302 363 942 1555 1908
V4130 635 991 1369 1764 V4885 317 814 1457 1883
V1101 603 917 1315 1737 V1101 254 693 1379 1855
V6370 577 884 1280 1719 V97 194 564 1245 1786
V704 529 788 1203 1642 V704 132 387 990 1668
V97 504 761 1173 1611 V6370 126 364 961 1638

O OO OO OO OO OO OO R R H R R R R e R R e R R e e e e e e e

e e e el e e e e e T T e e T T e T e T e T e T e T e e e e R e e e R S S L

V5734 356 548 854 1353 V4130 95 296 833 1541
V4261 302 448 713 1166 V5734 57 212 591 1350
V4481 190 264 363 561 V4261 49 159 458 1122
V5837 160 219 278 404 V3582 33 120 335 908
Ve701 129 199 200 276 V4481 19 68 144 444
V3582 97 131 86 92 V5701 13 45 87 269
V34 67 73 35 23 V5837 12 39 81 230
V5836 58 61 27 8 V5836 2 15 9 13
V2441 49 51 19 4 V5700 2 8 2 0
V21 33 32 5 1 V21 2 5 2 0
V5700 17 17 3 0 V2441 2 5 2 0
V6456 16 14 3 0 V34 2 5 2 0
V4795 11 10 1 0 V6456 2 4 1 0
V6989 11 10 1 0 V6989 2 4 1 0
V3458 8 4 1 0 V1010 1 2 0 0
V6391 8 4 1 0 V3458 1 2 0 0
V1010 8 1 0 0 V4795 1 2 0 0
V4328 8 1 0 0 V247 0 0 0 0
V4723 8 1 0 0 V4328 0 0 0 0
V5984 8 1 0 0 V4723 0 0 0 0
V6686 8 1 0 0 V5984 0 0 0 0
V247 ) 0 0 0 V6391 0 0 0 0
V6686 0 0 0 0

V7282 0 0 0 0
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Table 4: Number of times each predictor of the AML data set was selected within 2000
iterations (except leave-one-out CV) using different CV folds with both methods CoxBoost
and mboost. Predictors that were never selected are not shown.

(a) CoxBoost (b) mboost

3 5 10 20 loo 3 5 10 20 loo

x201540_at 2000 2000 2000 2000 x201540_at 2000 2000 2000 2000
x203373_at 2000 2000 2000 2000 x218086_at 2000 2000 2000 2000
x218086_at 2000 2000 2000 2000 x203373_at 1998 2000 2000 2000
x209386_at 1990 1998 2000 2000 x209386-at 1965 1998 2000 2000
x229715_at 1988 1996 2000 2000 x229715_at 1947 1997 2000 2000
x202685_s_at 1959 1996 2000 2000 x202685s_.at 1866 1994 2000 2000
x211626x_at 1912 1989 2000 2000 x211626 x_at 1637 1957 1999 2000
x211597s_at 1607 1915 2000 2000 x211597s_at 1333 1885 1999 2000
x209856_x_at 1452 1874 2000 2000 x243809_at 812 1666 1993 2000
x216794_at 1358 1834 1999 2000 x224710.at 741 1602 1984 1998
x233612_at 1222 1755 1990 1999 x216794_at 670 1551 1978 1998
x243809_at 1175 1722 1982 1999 x233612_at 494 1326 1887 1977
x224710-at 1046 1633 1946 1992 x239099.at 272 814 1338 1631
x239099_at 915 1517 1843 1898 x208049s.at 237 740 1193 1507
x208049_s_.at 876 1478 1797 1854 x232996_at 215 664 1065 1361
x210584s.at 608 1086 1187 1013 x210584s.at 163 513 831 1032
x233089_at 510 915 837 605 x209856 x_.at 117 357 504 614
x232996_at 421 686 448 199 x233089_at 90 279 367 383
x223757at 399 623 373 154 x223757_at 75239 295 294
x209794_at 372 576 323 112 x209794_at 59 173 193 170

T T e T e T e T T e e e e R e R R e T el T e T e T T = S SRS G S e

O OO DD DD OO OO DODODOD OO ODODODOOOOO O e =

x237875.at 257 353 100 11 x237875_at 25 67 63 33
x213416_.at 206 250 42 0 x213416_at 20 41 37 13
x216620.s_.at 169 186 21 0 x217201_at 14 21 19 2
x206237s.at 153 174 13 0 x206237_s_at 8 16 11 1
x217201_at 132 114 9 0 x216620_s_at 7 13 9 0
x205266_at 119 101 8 0 x227326_at 7 11 5 0
x227326_at 107 67 2 0 x41469_at 4 4 1 0
x41469_at 83 40 0 0 x205266 _at 4 3 0 0
x207582_at 69 33 0 0 x207582_at 2 1 0 0
x228838_at 53 23 0 0 x228838_at 1 1 0 0
x239111_at 30 8 0 0 x239111 _at 1 0 0 0
x224822 _at 20 1 0 0 x223410_s_at 0 0 0 0
x218412_ s at 4 0 0 0 x224498 x_at 0 0 0 0
x218812_s_at 4 0 0 0 x234358 _at 0 0 0 0
x223410_s_at 4 0 0 0
x226612_at 4 0 0 0
x234358_at 4 0 0 0
x243660_at 4 0 0 0
x235488_at 3 0 0 0
x219143_s_at 1 0 0 0
x224498_x_at 1 0 0 0
x228860_at 1 0 0 0
x240437_at 1 0 0 0
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Table 5: Number of times each predictor of the Neuroblastoma data set was selected within
2000 iterations (except leave-one-out CV) using different CV folds with both methods Cox-
Boost and mboost. Predictors that were never selected are not shown.

(a) CoxBoost (b) mboost

3 5 10 20 loo 3 5 10 20 loo

V2192 2000 2000 2000 2000 V2192 2000 2000 2000 2000
V3384 2000 2000 2000 2000 V3384 2000 2000 2000 2000
V3463 2000 2000 2000 2000 V3463 2000 2000 2000 2000
V3595 2000 2000 2000 2000 V3595 2000 2000 2000 2000
V403 2000 2000 2000 2000 V403 2000 2000 2000 2000
V676 2000 2000 2000 2000 V6816 2000 2000 2000 2000
V6816 2000 2000 2000 2000 V7636 2000 2000 2000 2000
V7636 2000 2000 2000 2000 V986 2000 2000 2000 2000
V986 2000 2000 2000 2000 V676 1999 2000 2000 2000
V7718 1999 2000 2000 2000 V7718 1980 1999 2000 2000
V7514 1998 1999 2000 2000 V7514 1958 1996 2000 2000
V9663 1998 1996 2000 2000 V9663 1954 1996 2000 2000
V2178 1997 1996 2000 1999 V2178 1914 1988 1999 2000
V5368 1977 1973 1992 1995 V2479 1776 1940 1995 1997
V2479 1962 1952 1965 1978 V25 1733 1917 1992 1996
V5070 1954 1933 1952 1956 V5368 1673 1890 1987 1996
V25 1938 1912 1922 1913 V5070 1486 1805 1959 1987
V5323 1924 1898 1895 1846 V6832 1137 1526 1720 1779
V7976 1823 1734 1624 1179 V7976 1097 1455 1637 1685
V6832 1716 1587 1257 554 V5323 1016 1380 1528 1483
V1633 1667 1519 1138 396 V8049 659 889 759 285
V8049 1626 1445 1034 301 V1633 572 725 555 114
V269 1468 1215 742 129 V269 514 665 481 87
V7901 1250 917 448 57 V7901 378 465 306 39
V1542 1141 799 343 46 V6277 307 349 227 28
V6277 1028 682 273 38 V3926 267 304 185 26
V3926 959 639 245 36 V1976 250 290 163 25
V1976 910 590 219 3 V1542 193 233 129 20
V4226 463 265 90
V6822 436 244 78
V553 325 171 61
V2453 231 105 43
V4138 199 90 41
V390 90 38 25
V2326 80 30 25
V3243 66 27 20
V7863 56 24 18
V2758 37 16 15
V9221 32 15 12
V996 14
V3247
V3362
V6756
V4770
V8501
V1108
V2221
V3009
V6115
V380
V7697
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Table 6: Number of times each predictor of the Breast cancer data set was selected within
2000 iterations with 10 repetitions and using different CV folds with both methods CoxBoost
and mboost. Predictors that were never selected are not shown.

(a) CoxBoost (b) mboost

3 ) 10 20 3 5 10 20

x201928_at 2000 2000 2000 2000 x201928_at 2000 2000 2000 2000
x203860_at 2000 2000 2000 2000 x203860_at 2000 2000 2000 2000
x205428_s_at 2000 2000 2000 2000 x205428_s_at 2000 2000 2000 2000
x211110s_.at 2000 2000 2000 2000 x211110-s_at 2000 2000 2000 2000
x212811x_at 2000 2000 2000 2000 x212811.x.at 2000 2000 2000 2000
x214778_at 2000 2000 2000 2000 x217769_-s_at 2000 2000 2000 2000
x217769_s_.at 2000 2000 2000 2000 x219648_at 2000 2000 2000 2000
x219648_at 2000 2000 2000 2000 x221681_s_at 2000 2000 2000 2000
x220298_s_at 2000 2000 2000 2000 x221874_at 2000 2000 2000 2000
x221681s_.at 2000 2000 2000 2000 x220298_s_at 1998 2000 2000 2000
x221874_at 2000 2000 2000 2000 x214778_at 1996 2000 2000 2000
x207417s_at 1999 2000 2000 2000 x207417-s_at 1907 1993 2000 2000
x209383_at 1995 2000 2000 2000 x209383_at 1879 1990 2000 2000
x202145_at 1992 2000 2000 2000 x202145_at 1848 1988 2000 2000
x210254_at 1932 1966 1985 1993 x210254_at 1277 1844 1984 2000
x212531_at 1921 1963 1982 1988 x212531.at 992 1689 1888 1971
x207639_at 1575 1716 1439 644 x207639_at 349 999 904 332

x207750_at 1178 1291 526 9 x200927s.at 192 676 466 34
x218650_at 1138 1244 464 ) x218650_at 168 620 411 23
x200927s_at 1091 1186 402 2 x207750_at 152 585 354 14
x203208 s_.at 1033 1132 351 1 x203208_s_at 90 445 230 2
x210820x_at 852 914 195 0 x203576_at 70 345 127 0
x214952_at 696 720 96 0 x214465_at 39 218 68 0
x214465_at 481 473 35 0 x214952_at 15 118 29 0
x217505_at 386 338 19 0 x210820x_at 12 109 25 0
x204527_at 231 180 5 0 x217505_at 6 46 13 0
x201932_at 196 146 1 0 x204527_at 4 33 11 0
x205476_at 169 117 1 0 x205476_at 4 26 8 0
x203889_at 153 108 1 0 x218701_at 3 19 7 0
x222009.at 115 68 0 0 x201932_at 3 15 5 0
x218701_at 104 56 0 0 x203889_at 2 6 2 0
x203576_at 80 49 0 0 x210648x_at 2 4 1 0
x201097_s_at 59 36 0 0 x222009_at 2 2 1 0
x217566_s_at 39 17 0 0 x217566_s_at 1 2 1 0
x215369_at 35 16 0 0 x201097_s_at 0 0 1 0
x209149_s_at 34 13 0 0 x206847_s_at 0 0 1 0
x206847_s_at 23 9 0 0 x209149_s_at 0 0 1 0
x210648 x_at 2 0 0 0 x215369_at 0 0 1 0
x217944_at 2 0 0 0
x207680_x_at 1 0 0 0
x214191_at 1 0 0 0
x214386_at 1 0 0 0

26



Table 7: Number of times each predictor of the DLBCL data set was selected within 2000
iterations with 10 repetitions and using different CV folds with both methods CoxBoost and
mboost. Predictors that were never selected are not shown.

(a) CoxBoost (b) mboost

3 ) 10 20 3 5 10 20

V1192 2000 2000 2000 2000 V1192 2000 2000 2000 2000
V1680 2000 2000 2000 2000 V1685 2000 2000 2000 2000
V1685 2000 2000 2000 2000 V1829 2000 2000 2000 2000
V1829 2000 2000 2000 2000 V3176 2000 2000 2000 2000
V2583 2000 2000 2000 2000 V3805 2000 2000 2000 2000
V3176 2000 2000 2000 2000 V3836 2000 2000 2000 2000
V3805 2000 2000 2000 2000 V5031 2000 2000 2000 2000
V3836 2000 2000 2000 2000 V7361 2000 2000 2000 2000
V5031 2000 2000 2000 2000 V3826 1999 2000 2000 2000
V7361 2000 2000 2000 2000 V1680 1996 2000 2000 2000
V1460 1997 2000 2000 2000 V2583 1938 2000 2000 2000
V2906 1994 2000 2000 2000 V1460 1810 2000 2000 2000
V6611 1981 2000 2000 2000 V2906 1525 1998 2000 2000
V6960 1931 2000 2000 2000 V6611 1309 1994 2000 2000
VrTT o 1374 1931 1998 2000 V6960 - 785 1957 2000 2000
V1988 1188 1880 1997 2000 v 54 1253 1991 2000

V1302 580 1501 1957 2000 V1988 40 1158 1988 2000
V4885 515 1427 1948 2000 V1302 6 652 1933 2000
V4130 158 725 1727 1999 V4885 4 361 1860 2000
V1101 113 561 1613 1998 V1101 1 226 1726 2000
V6370 98 490 1539 1994 V97 0 81 1456 2000
V704 50 307 1301 1982 V704 0 8 908 1989
Va7 42 255 1193 1973 V6370 0 5 792 1985
V5734 11 50 496 1701 V4130 0 1 508 1953
V4261 3 20 208 1341 V5734 0 0 160 1736
V4481 0 2 6 131 V4261 0 0 51 1373
V5837 0 0 ) 34 V3582 0 0 7 832
V5701 0 0 1 9 V4481 0 0 0 63
V5701 0 0 0 7

V5837 0 0 0 4

27



Table 8: Number of times each predictor of the AML data set was selected within 2000
iterations with 10 repetitions and using different CV folds with both methods CoxBoost and
mboost. Predictors that were never selected are not shown.

(a) CoxBoost (b) mboost

3 5 10 20 3 5 10 20

x201540_at 2000 2000 2000 2000 x201540_at 2000 2000 2000 2000
x202685_s_.at 2000 2000 2000 2000 x202685.s_.at 2000 2000 2000 2000
x203373_at 2000 2000 2000 2000 x203373_at 2000 2000 2000 2000
x209386_at 2000 2000 2000 2000 x209386_at 2000 2000 2000 2000
x211626 x_at 2000 2000 2000 2000 x218086-at 2000 2000 2000 2000
x218086_at 2000 2000 2000 2000 x229715_at 2000 2000 2000 2000
x229715_at 2000 2000 2000 2000 x211626x.at 1946 2000 2000 2000
x211597s_at 1957 2000 2000 2000 x211597.s.at 1632 2000 2000 2000
x209856 x_at 1828 2000 2000 2000 x243809_at 420 1973 2000 2000
x216794_at 1704 1999 2000 2000 x224710_at 317 1941 2000 2000
x233612_at 1406 1998 2000 2000 x216794_at 228 1900 2000 2000
x243809_at 1282 1993 2000 2000 x233612_at 57 1584 1999 2000
x224710_at 959 1982 2000 2000 x239099_at 473 1608 1942
x239099_at 631 1923 1996 2000 x208049_s_at 311 1394 1826
x208049s_.at 530 1885 1994 2000 x232996_at 209 1125 1615

O OO NNNNNJ
=
o

x210584s_.at 115 979 1233 907 x210584_s_at 592 1014
x233089_at 57 557 537 17T x209856 x_at 14 154 246
x232996_at 11 184 71 3 x233089_at 3 27 54
x223757_at 7 143 33 0 x223757_at 0 7 18
x209794_at 5 87 15 0 x209794_at 0 1 0
x237875_at 0 7 0 0
x213416_at 0 1 0 0
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Table 9: Number of times each predictor of the Neuroblastoma data set was selected within
2000 iterations with 10 repetitions and using different CV folds with both methods CoxBoost
and mboost. Predictors that were never selected are not shown.

(a) CoxBoost (b) mboost

3 ) 10 20 3 5 10 20

V2178 2000 2000 2000 2000 V2178 2000 2000 2000 2000
V2192 2000 2000 2000 2000 V2192 2000 2000 2000 2000
V2479 2000 2000 2000 2000 V3384 2000 2000 2000 2000
V25 2000 2000 2000 2000 V3463 2000 2000 2000 2000
V3384 2000 2000 2000 2000 V3595 2000 2000 2000 2000
V3463 2000 2000 2000 2000 V403 2000 2000 2000 2000
V3595 2000 2000 2000 2000 V676 2000 2000 2000 2000
V403 2000 2000 2000 2000 V6816 2000 2000 2000 2000
V5070 2000 2000 2000 2000 V7514 2000 2000 2000 2000
V5368 2000 2000 2000 2000 V7636 2000 2000 2000 2000
V676 2000 2000 2000 2000 V7718 2000 2000 2000 2000
V6816 2000 2000 2000 2000 V9663 2000 2000 2000 2000
V7514 2000 2000 2000 2000 V986 2000 2000 2000 2000
V7636 2000 2000 2000 2000 V2479 1999 2000 2000 2000
V7718 2000 2000 2000 2000 V25 1990 2000 2000 2000
V9663 2000 2000 2000 2000 V5368 1974 2000 2000 2000
V986 2000 2000 2000 2000 V5070 1824 1998 2000 2000
V5323 2000 2000 2000 1999 V6832 1051 1830 1987 2000
V7976 1994 1988 1912 1229 V7976 922 1740 1973 1983

V6832 1967 1905 1304 83 Vb323 682 1576 1882 1888
V1633 1946 1841 1017 29 V8049 86 354 223 2
V8049 1917 1716 713 6 V1633 19 116 19 0
V269 1742 1214 149 0 V269 11 78 5 0
V7901 1251 476 13 0 V7901 0 8 0 0
V1542 939 254 3 0 V1976 0 2 0 0
V6277 636 127 0 0 V3926 0 2 0 0
V3926 507 92 0 0 V6277 0 2 0 0
V1976 395 55 0 0 V1542 0 1 0 0
V4226 23 1 0 0
V6822 19 1 0 0
V553 2 0 0 0
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Table 10: Number of times each predictor of the Breast cancer data set was selected within
2000 iterations with 50 repetitions and using different CV folds with both methods CoxBoost
and mboost. Predictors that were never selected are not shown.

(a) CoxBoost (b) mboost
3 5 10 20 3 5 10 20
x201928_at 2000 2000 2000 2000 x201928_at 2000 2000 2000 2000
x202145_at 2000 2000 2000 2000 x203860_at 2000 2000 2000 2000
x203860_at 2000 2000 2000 2000 x205428_s.at 2000 2000 2000 2000
x205428_s_at 2000 2000 2000 2000 x207417_s_at 2000 2000 2000 2000
x207417_s_.at 2000 2000 2000 2000 x211110-s_at 2000 2000 2000 2000
x209383_at 2000 2000 2000 2000 x212811x.at 2000 2000 2000 2000
x211110_s_at 2000 2000 2000 2000 x214778_at 2000 2000 2000 2000
x212811 x_at 2000 2000 2000 2000 x217769_s.at 2000 2000 2000 2000
x214778_at 2000 2000 2000 2000 x219648_at 2000 2000 2000 2000
x217769s_.at 2000 2000 2000 2000 x220298s.at 2000 2000 2000 2000
x219648_at 2000 2000 2000 2000 x221681_s.at 2000 2000 2000 2000
x220298_s_at 2000 2000 2000 2000 x221874_at 2000 2000 2000 2000
x221681_s_.at 2000 2000 2000 2000 x209383_at 1998 2000 2000 2000
x221874_at 2000 2000 2000 2000 x202145_at 1997 2000 2000 2000
x210254_at 1999 2000 2000 2000 x210254_at 1526 1996 2000 2000
x212531_at 1999 2000 2000 2000 x212531_at 932 1959 1999 2000
x207639_at 1923 1979 1707 391 x207639_at 70 988 740 85
x207750_at 1346 1531 205 0 x200927_s_at 12 402 119 0
x218650_at 1270 1431 144 0 x218650_at 7T 343 73 0
x200927_s_at 1181 1345 87 0 x207750_at 5 287 46 0
x203208_s_at 1082 1245 46 0 x203208.s.at 0 140 5 0
x210820x_at 741 821 8 0 x203576_at 0 56 0 0
x214952_at 428 470 0 0 x214465_at 0 13 0 0
x214465.at 173 147 0 0 x204527_at 0 1 0 0
x217505_at 81 71 0 0 x205476_at 0 1 0 0
x204527_at 14 5 0 0 x210820x_at 0 1 0 0
x201932_at 8 3 0 0 x214952_at 0 1 0 0
x205476_at 4 3 0 0 x217505_at 0 1 0 0
x203889_at 2 3 0 0
x222009_at 1 2 0 0
x218701_at 1 0 0 0

30



Table 11: Number of times each predictor of the DLBCL data set was selected within 2000
iterations with 50 repetitions and using different CV folds with both methods CoxBoost and
mboost. Predictors that were never selected are not shown.

(a) CoxBoost (b) mboost

3 5 10 20 3 5 10 20

V1192 2000 2000 2000 2000 V1192 2000 2000 2000 2000
V1460 2000 2000 2000 2000 V1680 2000 2000 2000 2000
V1680 2000 2000 2000 2000 V1685 2000 2000 2000 2000
V1685 2000 2000 2000 2000 V1829 2000 2000 2000 2000
V1829 2000 2000 2000 2000 V3176 2000 2000 2000 2000
V2583 2000 2000 2000 2000 V3805 2000 2000 2000 2000
V2906 2000 2000 2000 2000 V3826 2000 2000 2000 2000
V3176 2000 2000 2000 2000 V3836 2000 2000 2000 2000
V3805 2000 2000 2000 2000 V5031 2000 2000 2000 2000
V3836 2000 2000 2000 2000 V7361 2000 2000 2000 2000
V5031 2000 2000 2000 2000 V2583 1999 2000 2000 2000
V6611 2000 2000 2000 2000 V1460 1990 2000 2000 2000
V7361 2000 2000 2000 2000 V2906 1813 2000 2000 2000
V6960 1999 2000 2000 2000 V6611 1548 2000 2000 2000
Vrrr o 1597 1999 2000 2000 V6960 510 2000 2000 2000

V1988 1342 1997 2000 2000 vt 0 1400 2000 2000
V1302 245 1794 2000 2000 V1988 0 1205 2000 2000
V4885 188 1703 1999 2000 V1302 0 352 1999 2000
V4130 3 525 1966 2000 V4885 0 94 1998 2000
V1101 1 286 1887 2000 V1101 0 20 1981 2000
V6370 0 198 1824 2000 Vo7 0 1 1813 2000
V704 0 50 1519 2000 V704 0 0 873 2000
Vo7 0 28 1371 2000 V6370 0 0 683 2000
V5734 0 0 200 1957 V4130 0 0 254 2000
V4261 0 0 20 1581 V5734 0 0 15 1947
V4481 0 0 0 9 V4261 0 0 0 1577
V3582 0 0 0 776

V4481 0 0 0 2
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Table 12: Number of times each predictor of the AML data set was selected within 2000
iterations with 50 repetitions and using different CV folds with both methods CoxBoost and
mboost. Predictors that were never selected are not shown.

(a) CoxBoost (b) mboost

3 5 10 20 3 5 10 20

x201540_at 2000 2000 2000 2000 x201540-at 2000 2000 2000 2000
x202685s_at 2000 2000 2000 2000 x202685_s_at 2000 2000 2000 2000
x203373_at 2000 2000 2000 2000 x203373_at 2000 2000 2000 2000
x209386-at 2000 2000 2000 2000 x209386-at 2000 2000 2000 2000
x211597s_.at 2000 2000 2000 2000 x211626_x.at 2000 2000 2000 2000
x211626_x_at 2000 2000 2000 2000 x218086-at 2000 2000 2000 2000
x218086-at 2000 2000 2000 2000 x229715.at 2000 2000 2000 2000
x229715_at 2000 2000 2000 2000 x211597_s.at 1860 2000 2000 2000
x209856 x_at 1994 2000 2000 2000 x243809_at 125 2000 2000 2000
x216794_at 1946 2000 2000 2000 x224710_at 52 2000 2000 2000
x233612_at 1664 2000 2000 2000 x216794_at 17 2000 2000 2000
x243809_at 1494 2000 2000 2000 x233612_at 0 1874 2000 2000
x224710_at 845 2000 2000 2000 x239099_at 0 219 1843 1998
x239099_at 349 1998 2000 2000 x208049_s_at 0 91 1579 1979
x208049s_at 235 1994 2000 2000 x232996_at 0 36 1125 18538
0

0

x210584_s_at 2 949 1357 872 x210584.s_at 3 328 1063
x233089_at 0 248 274 35 x209856_x_at 0 4 48
x232996_at 0 8 0 0
x223757_at 0 3 0 0
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Table 13: Number of times each predictor of the Neuroblastoma data set was selected within
2000 iterations with 50 repetitions and using different CV folds with both methods CoxBoost
and mboost. Predictors that were never selected are not shown.

(a) CoxBoost (b) mboost

3 5 10 20 3 5 10 20

V2178 2000 2000 2000 2000 V2178 2000 2000 2000 2000
V2192 2000 2000 2000 2000 V2192 2000 2000 2000 2000
V2479 2000 2000 2000 2000 V2479 2000 2000 2000 2000
V25 2000 2000 2000 2000 V25 2000 2000 2000 2000
V3384 2000 2000 2000 2000 V3384 2000 2000 2000 2000
V3463 2000 2000 2000 2000 V3463 2000 2000 2000 2000
V3595 2000 2000 2000 2000 V3595 2000 2000 2000 2000
V403 2000 2000 2000 2000 V403 2000 2000 2000 2000
V5070 2000 2000 2000 2000 V5368 2000 2000 2000 2000
V5323 2000 2000 2000 2000 V676 2000 2000 2000 2000
V5368 2000 2000 2000 2000 V6816 2000 2000 2000 2000
V676 2000 2000 2000 2000 V7514 2000 2000 2000 2000
V6816 2000 2000 2000 2000 V7636 2000 2000 2000 2000
V7514 2000 2000 2000 2000 V7718 2000 2000 2000 2000
V7636 2000 2000 2000 2000 V9663 2000 2000 2000 2000
V7718 2000 2000 2000 2000 V986 2000 2000 2000 2000
V9663 2000 2000 2000 2000 V5070 1987 2000 2000 2000
V986 2000 2000 2000 2000 V6832 1018 1987 2000 2000
V7976 2000 2000 1997 1291 V7976 718 1958 2000 2000

V6832 2000 1994 1425 4 V5323 355 1821 1997 1998
V1633 2000 1979 918 0 V8049 0 33 20 0
V8049 1998 1917 432 0 V1633 0 1 0 0
V269 1941 1288 9 0
V7901 1316 158 0 0
V1542 715 29 0 0
V6277 265 1 0 0
V3926 163 0 0 0
V1976 78 0 0 0
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