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Abstract

Distortions in the elicitation of economic variables arise frequently. A common problem

in household surveys is that reported values exhibit a significant degree of rounding. We

interpret rounding as a filter that allows limited information about the relationship of in-

terest to pass. We argue that rounding is an active decision of the survey respondent, and

propose a general structural model that helps to explain some of the typical distortions

that arise out of this active decision. Specifically, we assume that there is insufficient abil-

ity of individuals to acquire, process and recall information, and that rational individuals

aim at using the scarce resources they devote to a survey in an optimal fashion. This

model implies selection and places some structure on the selection equation. We use the

formal model to correct for some of the distorting effects of rounding on the relationship

of interest, using all the data available. Finally, we show how the concepts developed in

this paper can be applied in consumer demand analysis by exploiting a controlled survey

experiment, and obtain plausible results.
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1 Introduction

Motivation: The distribution of responses to quantitative survey questions often exhibits a

structure that reflects specific features of both the objects to be elicited, as well as the way the

question is posed. Figure 1, explained in detail below, shows a typical example of a phenomenon

known as heaping or rounding.1 When respondents in the “Health and Retirement Study”

are asked about their weekly “food outside home” expenditures, the distribution of responses

shows a striking degree of heaping at focal values (the figure shows the relative frequencies of

the reported values), in particular multiples of 50 dollars.

Figure 1: Spikeplot of responses to question on weekly food consumption expenditure on eating
outside home (HRS 2006).

An obvious explanation for this phenomenon is rounding – in the presence of uncertainty,

1In this paper, we use the term rounding since it appears to be more commonly used in economics. In
the statistics literature, the following definitions are used (see Heitjan and Rubin (1991)). (i) Coarsening of
data: Only a subset of the complete-data sample space in which the true, unobservable data lie is observed.
This includes as special cases rounding, heaping, censoring, missing data, etc. (ii) Rounding : Data values are
observed or reported only to the nearest integer. (iii) Heaping : A dataset is said to be heaped if it includes
items reported with various levels of coarseness.
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individuals pick the nearest significant integer. While similar examples are ubiquitous in applied

economics, this phenomenon has received, with a few exceptions, surprisingly little attention.

Instead, in applications basically two strategies are being pursued. The first is to simply

ignore the problem altogether, and use all the data available. The second is to discard the

subsample which rounds (the “rounders”, henceforth), and work with the remaining subsample

(the “nonrounders”).

This paper argues that, at least in some applications, both strategies may be problematic:

The first strategy creates biases associated with the coarsening of information, the second, as

we shall argue, potential problems of selection, and is wasteful in terms of observations. To

deal with these biases, we argue that we have to first understand the mechanism which causes

individuals to round, and hence parts of the observations to be rounded. More specifically,

we provide a model in which optimizing individuals make an active choice about whether to

round or not. It is based on a cost-benefit analysis, not unlike a Roy type treatment effect

model. This model motivates us to employ an IV strategy to deal with the selection aspect

of rounding, where the instruments are exogenous factors that impact the costs associated

with actively remembering the exact number. We also model the limited dependent variable

character of the outcome equation, so that in sum our model bears some resemblance with a

structural treatment effect model with a limited dependent variable, where rounding can be

thought of as a treatment. However, what distinguishes our approach from standard treatment

effects models is that we are not primarily interested in the effect of the treatment (rounding),

but rather want only to correct the biases rounding induces on the structural relationship of

interest.

The illustration of these issues through an application from consumer demand, using in

fact the same data that were used to generate Figure 1, is an important part of this paper.

Throughout much of the demand literature, the structural relationship of interest is the relation

between (food outside of home) expenditures and income; however, these expenditures are

rounded for nearly half of the sample. Since the sample at hand consists largely of retired

individuals, and the population which rounds may be less fit mentally and physically, and
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hence also the less active population with fewer expenditures outside home, we may expect

a selection bias. Also, excluding the rounders from this application results in a large loss of

information.

The results we obtain from the application confirm this intuition. After correcting for

selection and the limited dependent variable character generated by application, we obtain

quite similar results for the structural relationship between food outside demand and income,

for both the rounder and nonrounder subpopulations. As such, this application illustrates that

our approach produces sensible results in an important application.

Related literature: While, at least in our opinion, rounding did not receive the attention

that it deserves in the literature, we are by no means the first to point out the implications

of rounding. Indeed, Heitjan and Rubin (1991) already note that rounding implies that the

measured variable is coarsened, and that hence information is lost which in turn affects statis-

tical and econometric analysis. Although, as already mentioned, this problem is omnipresent

in survey measurements of continuous variables, it is often ignored in applied work. In some

situations, this might be justified if the degree of coarsening is inconsequential (Wright and

Bray, 2003). Generally, however, rounding cannot be ignored. For instance, Battistin, Miniaci,

and Weber (2003) and Pudney (2007) document striking amounts of rounding in self-reported

consumption measures. Questions on subjective probabilities are another example of severe

coarsening of data that cannot be ignored in statistical analysis (Manski, 2004; Manski and

Molinari, 2010).

Heitjan and Rubin (1991) present a general model for coarsened data, including rounded,

heaped, censored, and missing data. They define a “coarsened at random” condition under

which the coarsening mechanism can be ignored. Heitjan (1994) defines a “coarsened completely

at random” condition. In essence, these conditions ensure that the likelihood can be constructed

conditionally on the coarsening and that there is no need for an explicit model of the process

by which coarsening occurs. In a comparison with treatment effects, these approaches to

rounding correspond to assuming treatment be randomly assigned (exogenous). However, in

most experimental or survey applications, these ignorability conditions are shown not to hold
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(Wright and Bray, 2003).

There are only a few structural models of rounding in survey responses we are aware of,

all of which are parametric. Pudney (2007) develops a two-stage response model in which

respondents first choose a response mode (unrounded, rounded, or other heuristics) and then, if

they are in the rounding mode, use interval reporting with heterogeneous degrees of coarsening.

Kleinjans and van Soest (2014) propose a structural model of the response process in subjective

probability questions. Their model allows for rounding (with 50% focal point responses being

included separately) and item nonresponse. Ruud, Schunk, and Winter (2014) present a model

of rounding in which the degree of coarsening depends on the respondent’s uncertainty about

the underlying quantity, a notion they support using data from a laboratory experiment where

respondent uncertainty could be controlled.

The econometrics literature on measurement error has long stressed the fact that the in-

tuitive attenuation result holds on in simple parametric models and for classical measurement

error while simple solutions such as instrumental variables fail in nonlinear models; see Chesher

(1991) for a concise statement of the identification problem and Wansbeek and Meijer (2000)

for a textbook discussion. More recent research, reviewed by Schennach (2013), explored iden-

tification in nonlinear and nonparametric models. Important findings concern identification in

the presence of non-classical covariate measurement error using instrumental variables (Hu and

Schennach, 2008) and identification in the presence of classical covariate measurement error

that do not require any outside information (Schennach and Hu, 2013). Hoderlein and Winter

(2010) study the consequences of nonclassical measurement error in the dependent variable

when errors are due to imperfect recall; the present paper is related in that it puts structure

on the measurement errors that is motivated by the survey response process.

The econometric approach to rounding we propose in this paper is also related to the

recent literature in the identification and estimation of treatment effects, e.g., Imbens and

Angrist (1994) and Heckman and Vytlacil (2005). Since we employ a binary instrument, and

consequently develop our theory for a binary IV, our approach is closer to the former than the

latter. It is also related to Melly and Huber (2011) who consider a structural quantile model
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under a selection mechanism.

Structure of the paper: In the following section, we introduce and analyze the structural

model of rounding behavior. Based on the insights we obtain, we discuss identification in the

third section. The fourth section is concerned with the application: we introduce the demand

setup analyzed in this paper, discuss the data, and implement our approach. Finally, an outlook

concludes.

2 Structural implications from a formal model of round-

ing

The purpose of this paper is to model the impact of rounding due to imperfect recollection

of a random variable Y . We propose that rational individuals try to balance the costs and

benefits of memorizing to obtain an optimal “amount” of memory, and round if that optimal

amount is below a certain threshold.2 Formally, assume that there is a collection of infinitely

many random variables (ξs) , ξs ∈ R, s ∈ R[0,1], each of which can be thought of as giving

one standardized “unit of information”. Let Fm ≡ σ {ξs|0 ≤ s ≤ m} denote the σ-algebra

spanned by (ξs)0≤s≤m, and note that by construction Fm+δ ⊇ Fm ⊇ Fm−δ, ..., δ > 0, i.e.,

{Fm, 0 ≤ m ≤ 1} is a filtration. Let E [·|Fm] denote the conditional expectation given the σ-

algebra Fm. To determine the optimal amount of information, the individual chooses now a

finite number m∗, where m∗ is defined as

m∗ = arg max
m∈[0,1]

E
{
P1

[
L0 − L

(
Y, Ỹm

)]
− c (m,P2) |F0

}
, (2.1)

where P = (P1,P ′2)′ ∈ R×P2 is a (possibly infinite dimensional) individual specific parameter

which may vary across the population (think of prices), such that σ(P) ⊂ F0. Moreover, L

is a standard loss function defined on R × R and Ỹm denotes the individual’s forecast of Y

for a fixed sigma algebra Fm. Hence Ỹm = g ((ξs)0≤s≤m), where g is a functional mapping the

2The model of memorizing and survey response is related to the notion of rational inattention (Sims, 2003).
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process (ξs)0≤s≤m into R, and L0 = E
[
L
(
Y, Ỹ0

)
|F0

]
. The leading example is when L is the

squared error loss so that L (z, zm) = (z − zm)2, and Ỹm = E [Y |Fm] (i.e., g is the conditional

expectation operator). Finally, c is a nonrandom cost function giving the minimal costs of

building up memory m for every p2.

Because of the law of iterated expectations we may rewrite the optimization problem (2.1):

m∗ = arg max
m∈[0,1]

{P1l0(m)− c (m,P2)} ,

where

l0(m) = E
{
L0 − E

[
L
(
Y, Ỹm

)
|Fm

]
|F0

}
.

Note that l0(·) is a monotonically increasing function of m because E
[
L
(
Y, Ỹm

)
|F0

]
≥

E
[
L
(
Y, Ỹm+δ

)
|F0

]
for every δ > 0 as the set of potential optimizers is increasing. More-

over, we maintain the assumption that P1 and P2 have no elements in common which allows

us to separate both parts of the optimization problem. This is plausible since the rewards indi-

viduals obtain should not enter the cost function. Hence, for fixed m individuals first minimize

the expected loss E
[
L
(
Y, Ỹm

)
|Fm

]
by choosing Ỹm for every fixed m, and then pick the m

that minimizes the whole expression.

We now discuss the building blocks of the individual’s optimization problem.

• Π(m) = P1l0(m) can be interpreted as the profit associated with choosing m. For all

commonly used loss functions, Π is a concave function of m. A further implication is

that E
[
L
(
Y, Ỹm

)
|Fm

]
≤ E [L (Y, g ((ξs)0≤s≤m)) |Fm] , for all other functionals g, and all

m. Hence, Ỹm is the optimal predictor for fixed m, and (under some differentiability

and interiority conditions) the following well known (and principally testable) first order

condition holds:

E
[
∂ymL

(
Y, Ỹm

)
|Fm

]
= 0. (2.2)

• The cost function c (m, p2) can be seen as the optimizer of the cost minimization problem
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of building up memory m, i.e., it solves the problem:

min
ζ≥0

b′ζ s.t. ρ(ζ, λ) ≥ m,

where ρ : Rl×L → (0, 1) denotes the memory production function that maps the l-vector

of input factors ζ ∈ Rl and parameters λ ∈ L into the unit interval, and b ∈ Rl
+ denotes

the prices associated with these inputs. Note that p2 = (b′, λ′)′, and that because of

standard producer theory the factor demands ζ = ϕ(m, b, λ) obtain some structure, e.g.

that the matrix of price derivatives for fixed λ and m is negative semidefinite or that

demands be zero homogenous in b.3

• The parameter P : we have chosen the letter P to denote parameters to emphasize the

economic association between the parameters and prices. An example for P2 is the price

or opportunity cost for the time needed to answer the survey, an example for P1 is the

price (or the reward) an individual obtains from answering correctly. We think primarily

of money, as proposed in Philipson (2001) or McFadden (2012).

Our notion of bounded rationality is a formal one, and we believe that individuals still

try to behave optimally, given their constraints. This assumption may indeed be criticized

as requiring individuals to act overly rational – they have to solve a potentially complicated

optimization problem. However, as most economic theory this should be seen as approximation

of reality, where individuals choose the effort to “backcast” according to some intention.

The advantages of setting up a formal model instead of a specifying a response heuristic

are twofold: First, if individuals act (at least approximately) as our model assumes them to

do, then we may obtain testable implications and structural predictions. Testable implications

are in particular the rational demand structure on the factors needed to build up memory, as

3These two elements formalize the notion of optimization, and make the “economic” association clear. There
are also some parallels with existing concepts in statistical decision theory: for fixed m and p, Π0 is formally
similar to the Bayes Risk. However, note that in the Bayesian framework it is a (random) parameter that is of
interest whereas in our case it is precisely the random vector Z. Moreover, the dependence on m and the focus
on heterogeneity via the parameter vector P is novel.
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well as the optimality condition for the optimal backcast. Structural predictions means that we

may provide a welfare or money measure of the incentive we would have to provide to improve

the individual’s response behavior (see also McFadden, 2012). Ultimately, this may allow to

assess the total costs of improving the quality of the data, and help set up a decision problem

for researchers or survey field agencies that administer household surveys. Since our focus in

this paper is on determining the consequences of insufficient information acquisition leading to

rounding, we will leave such an analysis for future research.

More important for our analysis is hence the second advantage of this structural modelling

approach: It provides economic guidance about variables that should enter the “choice of

rounding” equation. As such, it provides an economic rationale for our exclusion restriction.

We will use in particular the insight that these excluded exogenous variables are cost-factors in

the build-up of memory. In our application, we will follow this guidance and identify such cost

factors in a demand dataset.

3 Identification

This section is concerned with modelling the impact of rounding econometrically. The second

section already introduced a formal model that argues that some variables impact the choice

of effort, i.e., of memory, which governs the question of whether somebody rounds, while not

impacting the choice decision. In econometrics terms, an exclusion restriction in the first stage

(FS) selection equation is plausible. This section shows that such a restriction can be used

profitably to obtain an unbiased estimate of the effect of interest.

3.1 Model and baseline assumptions

Throughout this paper, we postulate that there is a structural model out there, i.e., relationship

between variables Y and X, which we want to uncover. Following the recent approach in the

nonparametric identification literature, we emphasize the generality of this relationship, as well
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as the complexity of unobserved heterogeneity, by assuming that

Y = φ(X,A),

for a general smooth function φ of a (for simplicity scalar) variable of interest X, and a high

dimensional vector of unobserved heterogeneity A. The parameter of interest in this framework

is

E [∂xφ(x,A)] ,

for certain values of x ∈ X , i.e., the average causal marginal effect for individuals with X = x

in a heterogeneous population. This parameter is called local average response in Chamberlain

(1984), and is related to the LASD of Hoderlein and Mammen (2007). It reduces to standard

quantities in textbook models: If the model is linear, i.e., Y = β0 + Xβ1 + A, then it equals

β1. In case of a random coefficient model as in Hoderlein, Klemelä and Mammen (2011), i.e.,

Y = Xβ1(A), it becomes E [β1(A)]. However, at this point we do not want to restrict the

structural function φ to be of any of these forms, and hence we formulate our model on this

general level.

To define the entire framework formally, we make use of the following set of assumptions.

For ease of notation we suppress the dependence on S :

Assumption 1. Let (Ω,F , P ) be a complete probability space on which are defined the random

vectors (A, V ) : Ω→ A× V , A ⊆ R∞,V ⊆ R and (Y ∗, X, Z) : Ω→ Y∗×X ×Z, Y∗ ⊆ R,X ⊆

R,Z = {0, 1}, such that (i) E(Y ∗) <∞; (ii)

Y ∗ = φ(X,A)

D = I {P (Z) < V }

Y = Y ∗D + g(Y ∗)(1−D),

where φ : X ×A → Y∗, g : Y∗×{0, 1}→ Y and P : Z → X are bounded Borel measurable

function; and (iii) realizations of (Y,X,Z) are observable, whereas those of (A, V ) are not.
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Assumption 2. (A, V ) are independent of Z,X.

Assumption 3. V is absolutely continuous with respect to Lebesgue measure, s.th. V |Z v

U [0, 1].

Assumption 4. φ is differentiable in x, with continuous and bounded first derivative. g(Y ∗) 6=

Y ∗. Moreover, ∂xφ is square integrable and uniformly bounded.

Discussion of assumptions: The first of these assumptions defines the econometric

structure of our model. Specifically, individuals provide the correct answer Y ∗ if memory

is above a specific threshold; else, they provide a distorted answer, g(Y ∗). For instance, sup-

pose the individuals choose values rl (say, 50) if Y ∗ ≤ 75 and ru (say, 100) if Y ∗ > 75. Then,

g(Y ∗) = 50I {Y ∗ ≤ 75}+ 100I {Y ∗ > 75} , providing a strong version of rounding.

The second assumption specifies the dependence structure in our model. In particular,

neither X nor Z are correlated with the error term; however, the fact that the population

who rounds is not a random selection of the entire population causes a distortion. The third

assumption in connection with the first specifies the unobservable in the selection equation to

enter additively separable and be uniformly distributed. Heckman and Vytlacil (2005) contain

a lucid discussion of this issue in the context of treatment effect models; in the case of binary

treatment this specification turns out to be equivalent to instrument monotonicity in the LATE

framework of Imbens and Angrist (1995). This assumptions implies P (Z) = P(D = 1|Z), and

is common in the literature. In abuse of notation, we will write P instead of P (Z) henceforth.

Finally, the fourth assumption specifies the functions, in particular differentiability of φ and

nontriviality of g.

3.2 What if we ignore rounding?

The first step is to ask what the mean regression identifies, if we simply ignored rounding. The

following argument is instructive to understand the various effects of rounding. For simplicity,

we focus on the case where g(Y ∗) = ruI {Y ∗ > c} + rlI {Y ∗ ≤ c}, i.e., rounding individuals
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choose ru if they are above c, and rl if they are below. This can be written as

g(Y ∗) = rl + (ru − rl)I {Y ∗ > c} ,

and for simplicity, we choose c = (ru+rl)/2. Observe that ru, rl are known constants, and hence

so is c. In our application rl is 50, rh 100, and c = 75.

Consider now the empirical regression of Y on X = x. This produces

E [Y |X = x]

= E [Y ∗D|X = x] + rlP [D = 0|X = x] + (ru − rl)E [I {Y ∗ > c} (1−D)|X = x]

= E [φ(x,A)D|X = x] + rlP [D = 0|X = x] + (ru − rl)E [I {φ(x,A) > c} (1−D)|X = x] ,

This expression is intransparent, and in order to make progress, we assume in addition that

the unobserved heterogeneity is additively separable, i.e., φ(x, a) = m(x)− a.4

E [Y |X = x] = m(x) + (rl −m(x))P [D = 0|X = x]

−E [AD|X = x]

+(ru − rl)E [I {A ≤ m(x)− c} (1−D)|X = x]

Differentiating wrt x produces

∂xE [Y |X = x] = m′(x)(1− P [D = 0|X = x])

+(rl −m(x))∂xP [D = 0|X = x]

−∂xE [AD|X = x]

+(ru − rl)∂xE [I {A ≤ m(x)− c} (1−D)|X = x]

To make further progress, we invoke the (empirically testable) assumption that A,D indepen-

4Note that the under additive separability, the additive term could have been α(A), but then we could relabel
α(A) = Ã, implying that this formulation is without loss of generality.
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dent of X, i.e., that rounding and X are not associated. Then we obtain that

∂xE [Y |X = x] = m′(x)P [D = 1]

+(ru − rl)∂xE [I {A ≤ m(x)− c} (1−D)]

Adding the observation that

E [I {A ≤ m(x)− c} (1−D)] = FA|1−D(m(x)− c; 1)P [D = 0] ,

we obtain

∂xE [Y |X = x] = m′(x)P [D = 1] + (ru − rl)m′(x)fA|1−D(m(x)− c; 1)P [D = 0]

= m′(x)
{
P [D = 1] + (ru − rl)fA|1−D(m(x)− c; 1)P [D = 0]

}
.

This result gives a clear idea about the two effects of rounding. The first equality decomposes

the effect into two separate terms. The first term is associated with the rounding population -

only a proportion of P [D = 1] displays the original effect. The second term gives the distortion

of effects in the rounded sample, and is related to the difference between the two focal values,

(ru − rl), and fA|1−D(·; 1), the density of outcome unobservables given rounding, i.e., how the

distribution of A changes in the rounders subpopulation. Note that the first term could be seen

as a direct effect of rounding because only parts of the population round, while the second acts

more like a selection effect: as x changes some of the individuals in the rounder group switch

from the lower focal answer rl to the upper ru, these individuals have a certain value of a. As

is obvious from this expression, if (ru − rl)fA|1−D(m(x) − c; 1) > 1, the structural marginal

effect is magnified, while otherwise it is attenuated. Obviously, neither the direction nor the

magnitude of bias are clear, though at least the sign does not change. However, in areas of A

where fA|1−D is small, we are likely going to see attenuation. If we dispense with some of the

simplifying assumptions, we obtain even more bias terms, and not even the sign needs to be

preserved.
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Note that just taking the non-rounders does not solve the problem in general, since

E [Y |X = x,D = 1] = E [Y ∗|X = x,D = 1] = E [φ(x,A)|X = x,D = 1] ,

and hence

∂xE [Y |X = x,D = 1] = E [∂xφ(x,A)|X = x,D = 1] + E [φ(x,A)∂xS|X = x,D = 1] ,

where S is the score log fA|X,D(A;X, 1) for the non-rounders. The second term is called the

“heterogeneity bias” in Chamberlain (1984). If A is independent of X given D (which would be

implied by joint independence of A,D from X), the second term vanishes as the score is not a

function of x, and the first term becomes E [∂xφ(x,A)|X = x] . However, this means that there

is no selection effect; the non-rounders are, in terms of their unobservables, like the population

at large. Else, the first term will generally depend on D, and S will not be zero in general. The

decisive issue that clarifies whether we can simply use the non-rounders is hence whether we

believe there to be selection, or whether we think of the non-rounders as essentially the same

individuals as the rounders, at least in terms of the unobservables that govern the outcome

equation. Still, even in the case where we believe there not be a selection issue, throwing away

all rounders may be very wasteful in terms of observations, and being able to say something

about them may be beneficial.

3.3 How to account for selection induced by rounding

There are many applications where the researcher believes that the non-rounders are a selected

sample, and we provide one such example in the application. To deal with this aspect, we make

use of an IV identification strategy not unlike LATE, Imbens and Angrist (1994). Borrowing

the counterfactual notation D1 = I {P (1) < V } and D0 = I {P (0) < V }, and noting that the

set D0 > D1 defines the so-called (subpopulation of) compliers according to our treatment

definition, we employ the model as defined in assumption 1. In this setup, we can think of
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rounding as a participation in a treatment, which individuals make in a first stage decision.

The causal effect of rounding on the outcome variable is then easily seen to be a conditional

(on X) LATE, i.e.,

E [Y |X = x, Z = 1]− E [Y |X = x, Z = 0]

E [D|X = x, Z = 1]− E [D|X = x, Z = 0]
= E [Y ∗ − rl − (ru − rl)I {Y ∗ > c} |X = x,D0 > D1] ,

and whether or not the conditional LATE is zero, i.e., rounding has no effect on the conditional

mean on average, depends on whether or not φ(x,A)− rl − (ru − rl)I {φ(x,A) > c} is zero on

average for the complier subpopulation.

More interesting than quantifying this effect - and at the center of this paper - is to be able

to obtain an unbiased estimate of the average causal effect, ∂xφ(x, a). By standard arguments

from the treatment effect literature, one can show that

ψNR(x) =
E [Y D|X = x, Z = 1]− E [Y D|X = x, Z = 0]

E [D|X = x, Z = 1]− E [D|X = x, Z = 0]

= E [φ(x,A)|X = x,D0 > D1]

= E [φ(x,A)|D0 > D1] ,

because of X indep of V,A, implying that

ψ′NR(x) = E [∂xφ(x,A)|D0 > D1] ,

is the average causal effect for compliers. This quantity solves the selection problem associated

with rounding, and also the direct impact of rounding, but at the expense of throwing away all

rounders, potentially a large fraction of the population. The obvious question is then how to

use the rounders as well. To this end, we will largely use the specification φ(x, a) = m(x)− a,

so that

ψNR(x) = m(x)− E [A|D0 > D1] ,

and add the error location normalization E [A|D0 > D1] = 0.
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3.4 Using the rounders

By similar arguments as in the previous subsection,

ψR(x) =
E [Y (1−D)|X = x, Z = 1]− E [Y (1−D)|X = x, Z = 0]

E [D|X = x, Z = 1]− E [D|X = x, Z = 0]
= rl+(ru−rl)E [I {φ(x,A) > c} |D0 > D1] ,

To make further progress, we impose the additional structure, φ(x, a) = m(x) − a. We then

obtain that

ψR(x) = rl + (ru − rl)FA|D0>D1(m(x)− c).

Assuming as above that c = (ru + rl)/2, a known constant, letting m̃(x) = m(x) − c, this

becomes a standard single index model, i.e.,

ψR(x)− rl
(ru − rl)

= FA|D0>D1(m̃(x)).

Usually, identification is resolved at this stage by normalization. We have to be careful at

this point, however, because the non-rounders already yield identification of the model. In

particular, note that under the specification φ(x, a) = m(x)− a, arguments as in the previous

subsection yield that FA|D0>D1(a) is identified through

λ(x) =
E [I {Y −m(x) < a}D|X = x, Z = 1]− E [I {Y −m(x) < a}D|X = x, Z = 0]

E [D|X = x, Z = 1]− E [D|X = x, Z = 0]
,

from the non-rounder sample, and thus can be treated as known. If A is continuously distributed

for the compliers, we hence obtain that

m(x) = (ru + rl)/2 + F−1
A|D0>D1

(
ψR(x)− rl
(ru − rl)

)

in the rounder subsample. This opens up the way for nonparametric estimation, and this is

indeed the route that we consider in the application. For more general cases of rounding,

however, we suggest a more semiparametric estimator. To understand its’ structure, we have
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to first understand the general structure of identification.

3.5 More than two rounding values, but one degree of rounding

In this subsection, we introduce the first generalization. We allow for more than two focal

values, but the degree of rounding stays the same. For instance, individuals round to the values

50, 100 and 150, so the steps between rounded values are known. Observe that the general

model structure does not change, i.e, we still have

Y ∗ = φ(X,A)

D = I {P (Z) < V }

Y = Y ∗D + g(Y ∗)(1−D),

but the function g(y∗) is now given by

g(Y ∗) =
∑

k=0,...,K

rkI {Y ∗ ∈ Ik} ,

where I0 = (−∞, y1) , IK = [yK ,∞), and for k = 1, ..., K−1, we have Ik = [yk, yk+1). Moreover,

note that yk − yk−1 = c, where c is known constant, independent of k (in our example, 50),

and note that rk = (yk+1 + yk)/2, r0 = r1 − c, and rK = rK−1 + c. Finally, for ease of notation,

we choose the specification φ(x, a) = µ(x) + a, which is without loss of generality compared to

the previous section, and just employs a different normalization.

We first note, that the analysis of nonrounders does not change, including the fact that

(and the means by which) we can obtain FA|D0>D1 . Next, for the rounders, we obtain again by

standard arguments, that

ψR(x) = rK +
∑

k=1,...,K−1

(rk+1 − rk)FA|D0>D1(rk −m(x))

= rK + c
∑

k=1,...,K−1

FA|D0>D1(rk −m(x)),

17



implying that

ψR(x)− rK
c

=
∑

k=1,...,K−1

FA|D0>D1(rk −m(x)).

Since all of these objects are known (rK and c), or identified from data (ψR, FA|D0>D1), it gives

us a second, usually numerical, way to solve for m(x). We can use this result to estimate m.

Finally, what if people round to different degrees, e.g., part of the population do not round

at all, some round to the nearest 10, some to the nearest 50? Obviously, this complication

corresponds to multiple treatment with endogeneity. We conclude from the analysis of Imbens

and Angrist (1995) that there is no good solution in this setup, which is why we defer this topic

until further progress has been made in the treatment effects literature.

3.6 Using the entire sample in a semiparametric estimator

While this shows identification using information from both rounded and nonrounded obser-

vations as embodied in ψR and ψNR in a nonparametric fashion, we now propose to use a

parametric specification, i.e., m(x) = x′θ1. Note that

ψNR(x; θ1)P(NR) + ψR(x; θ)(1− P(NR)),

where P(NR) is the fraction of nonrounders in the population, and

ψR(x, θ) = rK + c
∑

k=1,...,K−1

G(rk − x′θ1; θ2),

and G is a parametric cdf, e.g., probit (normal cdf) with parameter θ2. The estimators are

then obtained as minimizers of the distance between nonparametric estimates of ψNR and ψR

and this expression, i.e.

θ̂ = arg min
θ∈Θ
{
∫ (

ψ̂NR(x)− x′θ1

)2

π(NR)

+

(
ψ̂R(x)− rK + c

∑
k=1,...,K−1

G(rk − x′θ1; θ2)

)2

(1− π(NR))fX(x)dx}
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where π(NR) is the fraction of nonrounders in the sample.

4 Application: Correcting for rounding in consumer de-

mand

4.1 A quick comparison with the literature

Applications involving consumer demand have a long history in economics, and date back at

least to the early work of Stone (1954). Key milestones were the (parametric) flexible functional

forms demand systems (e.g., the Translog, Jorgenson et al.,1980; the Almost Ideal, Deaton and

Muellbauer, 1980; and the extension by Blundell, Banks and Lewbel, 1996). Most of these

approaches use budget shares, i.e., they divide the expenditure for a given product by the total

expenditure for all nondurable products. The same is true for nonparametric approaches that

are close to our model, because they involve heterogeneity in an explicit fashion, e.g., Lewbel

(2001) and Hoderlein (2011). Since the divisions by total expenditure have the tendency to

obscure rounding, like in the early work of Stone (1954) and Jorgenson et al (1982), we use

total expenditure. To the best of our knowledge, there are no papers in consumer demand that

attempt to correct for rounding; as already mentioned, it is standard practice to form budget

shares and subsequently ignore the problem. Since we focus on food consumption outside the

home, however, our result can be compared with many papers. A common finding is that this

aggregate good is a luxury, see, e.g., Lewbel (1999) for an overview. Hence, we expect similar

quantitative results.

4.2 Data and data clearance

To illustrate our method, we use data from the Health and Retirement Study (HRS) and

from the Consumption Activity Mail Survey (CAMS). The HRS is a longitudinal panel study

that biennially surveys a representative sample of US-Americans aged 50+. The HRS collects

information on various topics of US daily life, including health and cognition, income and ex-
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penditures. In off years, the HRS collects information on household consumption and spending

in a supplemental survey, the Consumption and Activities Mail Survey (CAMS). Both data

sets have been used before for the analysis of self-reporting errors in surveys (see Manski and

Molinari, 2010; Hoderlein and Winter, 2010). We analyze data from the 2006 wave of the

HRS, and from the 2007 wave of CAMS. In 2006, the HRS interviewed 18,469 individuals

from 12,288 households, and 4,572 individuals (3,392 households) were also participating in the

CAMS survey 2007.

In this application, the outcome of interest is the self-reported amount that respondents

spend per week on eating food outside home, which is our Y variable. The variable is elicited

in the following way: “About how much do you (and other family members living there) spend

eating out in a typical week, not counting meals at work or at school?”. Memorizing the exact

quantity in an interview situation requires a considerable amount of effort. Thus, instead of

reporting exact expenditures, respondents may decide to facilitate the answering process and

provide a rounded value. Depending on the true latent amount of these expenditures people

may round to different focal values such as 10, 25, 50, 100, 150 and so on. This implies that

respondents use different rounding strategies e.g. multiple of USD 50 for different expenditure

levels.

We restrict the sample to only individuals who report food outside expenditures between

USD 25 and USD 125 for several reasons. First, by only considering focal values of USD 50

and USD 100 we reduce the complexity involved by different rounding strategies, e.g. rounding

to a multiple of 10. Such respondents may use strategies which is beyond the scope of our

theoretical model. An extension of the model that deals with multivariate rounding strategies

is a topic for future research. Second, our range of values excludes the possibility to round

down to zero expenditures, preventing us from running into additional selection issues between

the two populations. Third, most data lie between USD 20 and USD 100 (see figure 1). Using

the entire range of data implies that we do not have enough nonrounder observations for high

expenditure levels. The range of values between 25 and 125, however, provides sufficient data

points to make the rounder and the nonrounder population comparable to each other.
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The rounding mechanism which is assumed in our model is as follows: A respondent strictly

rounds up to the value of 50 if the true value for food expenditures lies in the interval [26, 49],

and she rounds off for true values of [51, 75]. Using the identical strategy reporting food

expenditures of 100 is the result of rounding up for values [76, 99] or rounding off for values

[101, 125]. For a true, latent value between rl = 50 and ru = 100, the decision for rounding up

or off is made at the threshold value c = rl+rl
2

= 755.

In terms of the causal explanatory variable in whose effect we are interested in, a subset

of X in our notation, we use log total weekly expenditure, again in line with the literature

(see Lewbel (1999)). We drop outliers in total weekly spending reports (upper and lower 0.2%

percentile). In order to control for household characteristics, we compute an indicator from

valid reports on the respondents’ marital status, race, gender, age and labor force status6. As

a third control, we include the total interview time in our analysis. Eventually, we obtain an

analytic sample of 2,467 individuals. These three variables together form the set of explanatory

variables, i.e., X in our notation. A would then be unobserved heterogeneity that shifts the

causal relationship.

As introduced in the section before, D denotes the treatment indicator for non-rounding. It

takes the value 1 if an individual reports any exact value but the focal values 50 and 100, and

is zero otherwise. Rounding is not exogenously determined but the result of a decision process,

leading to a selection bias. We instrument the treatment by exploiting a unique feature of our

data. In 2006, the HRS randomly assigns respondents to a module on physical health measures

and biomarkers, such as blood samples or high blood measures. While about 50 percent of

the respondents participate in this module in 2006, the other 50 percent received the identical

module in 2008. This induces extra time to the total interview time, thus increasing the respon-

dents’ costs of memorizing the exact value of weekly food expenditures. The additional costs

may decrease the amount of information provided by respondents. Accordingly, respondents

who entered the module on physical health measures in 2006 are assumed to hold a higher

5We neglect the case of USD 50 or USD 100 being exact expenditures for food outside home.
6Dimensionality of the single covariates is reduced by conducting a principal component analysis, providing

us with a single continuous measure of household characteristics.
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probability of rounding in food expenditures in 2006 than those who receive the module two

years later7. This defines our instrument Z, and since the allocation was random, we feel that

the exogeneity assumption is well justified.

4.3 Econometric specifications

To formalize this issue, we use precisely the specification outlined in assumption 1 in conjunction

with the other assumptions. We then use this structure to correct for the influence of selection

associated with rounding by first estimating the structural function

ψNR(x) =
E [Y D|X = x, Z = 1]− E [Y D|X = x, Z = 0]

E [D|X = x, Z = 1]− E [D|X = x, Z = 0]

All conditional expectations in this expression are estimated by nonparametric local linear

regressions, using a second order Gaussian Kernel8. More specifically, we first split the sample

according to whether respondents participated in the 2006 module of health measures and

biomarkers, Z = 1, or not, Z = 0, and then apply local polynomial regression, using ỸNR = Y D

(and analogously ỸR = Y (1−D) later for ψR(x)) as new dependent variables. The estimates for

ψNR(x) are then obtained by forming the ratio of the numerator and the denominator at a grid

of x-values containing 45 values for log total spending, and at the sample mean of household

characteristics and the total interview time. Clearly, the estimation of ψNR(x) is based on the

entire sample of HRS respondents, rounder and nonrounders. For the sake of brevity, because

we have only nonzero values for nonrounders in this expression, we refer to estimates of ψNR(x)

as to nonrounder regressions, while we define estimates for ψR(x) as rounder regressions. As

regards the details of ψ̂NR(x), the selected bandwidths are provided by table 1.

This provides us with an estimate for the structural demand function m, using m̂ = ψ̂NR(x).

The estimation of ψ̂R(x) proceeds analogously. However, for the estimation of m using the

rounders equation, as outlined in section 3.4 we require first an estimate of FA|D0>D1(a). This is

7It is important to note that the physical health measures were taken before respondents were asked about
their weekly food expenditures.

8Nonparametric estimation was performed using the “np” package for the statistical software R (Hayfield
and Racine, 2008).
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Table 1: Bandwidth selection for the nonparametric estimation of ψNR(x)

log total spending HH characteristics total interview time
E(Y D|X = x, Z = 1) 2.00 1.30 1300
E(Y D|X = x, Z = 0) 2.40 2.20 2100
E(D|X = x, Z = 1) 1.80 0.70 1600
E(D|X = x, Z = 0) 1.9040 1.20 2800

straightforwardly obtained from the residuals in the nonrounders regression, i.e., using the fact

that m̂ = ψ̂NR, we calculate Yi − ψ̂NR(Xi) = Âi, providing us with the sample residual distri-

bution. Using the values of equispaced five percent percentiles, ak = 5, 10, 15, ..., 85, 90, 95, as

thresholds, we compute 19 dummy variables which take the value zero as long as the individual

residual value Âi is absolutely larger than the percentile residual value ak. Multiplying with

the treatment dummy D allows us to estimate λ̂(x) = λ̂a1(x), λ̂a2(x), . . . , λ̂a19(x)9. Using the

results of the rounder regression, the focal values rl = 50/ru = 100, and the threshold value

c = rl+ru
2

= 75, we transform each value of ψ̂R(x) to a probability value and map this to the

corresponding percentile value of the unobserved heterogeneity distribution FA|D0>D1 . Finally,

we compute

m̂R(x) = (ru + rl)/2 + F̂−1
A|D0>D1

(
ψ̂R(x)− rl
(ru − rl)

)

4.4 Empirical Results

We start by considering figure 2, which illustrates the first stage results. It shows estimates of

E(D|X = x, Z = 0) and E(D|X = x, Z = 1), which are the building block for the difference

E(D|X = x, Z = 1) − E(D|X = x, Z = 0) in the denominator. The solid line corresponds to

respondents who receive the module on physical health measures and biomarker in 2008. For

this group of respondents the probability of reporting an exact value is always higher than for the

other group. The differences between the two estimates is negative and between 5–12 percent,

depending on the level of total weekly expenditures. It suggests that the extra interview time

devoted to this module increases the probability of reporting rounded values which is consistent

9As for the estimation of the structural function we use a nonparametric local linear estimator with a second
order Gaussian Kernel. The bandwidth values of the denominator are the same as in table 1. For each λak

with
k = 1, . . . , 19 an arbitrary bandwidth was selected.
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Figure 2: First stage results from nonparametric regression on the probability of not rounding

with our assumption of increasing costs of memorizing. Moreover, it also shows that higher

total expenditures, which are associated with higher life cycle income, increase the probability

of rounding as well, indicating higher opportunity costs (recall that we are conditioning on

socio-economic characteristics such as education). The decrease in the difference between the

two probabilities makes sense as well, if one assumes decreasing marginal effects of opportunity

costs. Finally, note also that our instrument is quite informative, as the relative magnitude

of the change is reasonably large (e.g., an decrease in the probability from 0.85 to 0.75 is

substantial).

We next move to the results that show ψ̂NR and ψ̂R. Both, the denominator and the nu-

merator take negative values, so that ψ̂NR and ψ̂R are strictly positive. Note that under our

assumptions, the former provides and estimate of the structural function m, while the latter

does not have a structural interpretation. It is hence instructive to look at the two graphs in

comparison. The left graph in figure 3 shows the results of the nonrounder regression. For
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Figure 3: Results nonparametric (non)rounder regressions

low expenditures the amount spent on food outside home raises only moderately with an one

percent increase in total expenditures. In contrast, the reaction of food expenditures to an one

percent increase in total expenditures is very strong for high total expenditures. Altogether, the

estimated function ψ̂NR indicates that the demand for food outside home increases more than

proportionally with raising total expenditures. Thus, eating outside home can be characterized

as a luxury good, which makes a lot of sense and is in line with other findings in the literature,

see Lewbel (1997). Note that in our framework ψ̂NR(x) has a structural interpretation since it

solves the selection problem associated with rounding and is not affected by the direct impact

of rounding. However, the disadvantage is that the rounder information is not properly used10.

From the right graph in figure 3 it becomes clear that the estimation of the relationship

between weekly expenditures for eating outside home and log total weekly expenditures is

different for the rounder regression. First, the values of ψ̂R(x) range between roughly 55 and 70,

while the range for ψ̂NR(x) is roughly between 30 and 65. Second, the functional form is almost

linear, indicating that ψ̂R(x) does not identify the structural relation between food spending

and total expenditures in the rounder sample. This illustrates nicely that even accounting

for the selection effect of rounding, there is a pronounced difference between ψ̂R(x) and the

10The fraction of rounder is significant. In our empirical example dropping rounders corresponds to excluding
about 33 percent of the sample, raising general concerns of representativeness.
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structural function which is due to the bias associated with rounding: Since the estimate is a

weighted average of the values of the rounded observations, i.e., 50 and 100, it is bound to be

confined to lie in this interval (as would any mean regression). However, the estimate of the

structural function m̂ = ψ̂NR reveals that there are far more observations that are actually

rounded up to 50 (from below), then rounded off to 50 (or to 100), especially at lower incomes.

As such, we have a sizable distortion in particular at the lower end, which also conflicts with the

character of eating outside home as a luxury good. Indeed, if ψ̂R(x) is true consumers would

almost uniformly spend around 65 USD a week, even if their income triples. This illustrates

nicely that the rounders results cannot be used directly, and motivates the need for a procedure

like the one advocated in this paper.

Figure 4: m̂(x) and ψ̂(x), with 95% c.i. for nonrounder regression

We now turn to the estimation of m using the nonrounders regression ψ̂R(x) in the way

outlined in the previous subsection. Figure 4 presents the corrected function m̂(x), and the

results of the nonrounder regression as well as the naive bootstrap 95 percent confidence inter-
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vals for ψ̂NR(x) 11. The results show that the proposed correction method that employs the

estimated cdf of the residuals, produces coherent results: The estimated relationship between

spending for food outside home and total weekly expenditures, as expressed by ψ̂NR, is very

close to the relationship from the rounder regressions, and – together with economic plausibility

arguments – raises the confidence that the result really displays the structural relationship. A

final estimate of m may be obtained as a pointwise weighted average of these two regressions

with weights that are inversely related to the pointwise variance, but since they do not differ

much, we desist from displaying this here.

5 Conclusion

This paper introduces a flexible framework that allows to consider both the selection and the

information reduction aspect of rounding in survey responses. We provide a formal model

that explains why individuals round. The model introduces a structural Roy-type cost-benefit

analysis, which suggests the use of cost factors as instruments in a threshold crossing treatment

effects approach. We develop this approach by showing identification first in the simplest and

stylized case and then extend our insights to a more realistic setting. Finally, we apply our

approach to a consumer demand problem.

An open issue in this framework is how to deal with different degrees of rounding, which

corresponds to the multivalued treatment case. Since this case is poorly understood in the

treatment effects literature, we presume that a general partial identification approach may be

pursued in our setup as well.

11Confidence intervals of ψ̂NR(x) are computed by bootstrap resampling (100 times). We trim the denomi-
nator in the bootstrap estimations against zero, using a cut off value of 0.05.
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