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We consider simulation studies on supervised learning which measure the performance of
a classification- or regression method based on i.i.d. samples randomly drawn from a pre-
specified distribution. In a typical setting, a large number of data sets are generated and split
into training and test sets used to train and evaluate models, respectively. Here, we consider
the problem of the choice of an adequate number of test observations.
In this setting, the expectation of the method’s performance is independent of this choice,
but the variance and hence the convergence speed may depend substantially on the trade-off
between the number of test observations and the number of simulation iterations. Therefore,
it is an important matter of computational convenience to choose it carefully.
Here, we show that this problem can be formulated in terms of a well-defined optimization
problem that possesses a solution in terms of a simple closed-form expression. We give exam-
ples to show that the relative contributions of each term can vary considerably between data
sets and settings. We discuss the statistical estimation of the solution, giving a confidence
interval for the optimal number of test observations.
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1. Introduction

Suppose we are interested in the performance of a considered supervised learning method
in terms of the prediction error. An option is to use real data sets to estimate the per-
formance. In this approach, each data set is split into non-overlapping training and test
data sets. The considered learning method is used to construct a prediction rule from
the training data set, and this prediction rule is subsequently applied to classify the test
data. By comparing the true and predicted responses for this test data set, one estimates
the prediction error. This procedure can be repeated for several splits into training and
test sets. The well-known cross-validation procedure can be viewed as a variant of this.
However, each data set’s response and predictor variables follow an (unkown) distribu-
tion which typically leads to a high variance of the observed errors [1], making reliable
comparisons of learning methods on real data difficult. In contrast, in a simulation study
the underlying distribution is chosen by the experimenter who can, therefore, draw a
large number of observations in order for the observed error to converge.
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In the following, we will use the term “test chunk”, defined as an arbitrary but small
fixed number of test observations used to measure a model’s performance. We treat any
scenario where a performance measure on a metric scale is associated to a learned model
and a test chunk in such a way that the interesting quantity is its expectation and can,
consequently, be estimated by an average across several test chunks. We simultaneously
treat regression where the performance is usually measured by the mean-squared error,
and classification where the performance may be measured by an arbitrary loss function
or sensitivity/specificity etc. Sometimes, one is interested in performance measures such
as the area under the ROC-curve (AUC) that require several observations to compute,
in contrast to measures such as the misclassification loss which are already defined on a
single test observation, i.e., test chunks of size one. Thus, typically, the test chunk size
can be set to one, but for AUC a larger number is required. Note that the expected value
of the AUC does not depend on the test chunk size, nor does any other performance
measure introduced above. In any case, we will always refer to the true expectation of
the performance measure as to the “error” because the case of binary classification is the
most intuitive example case, and to the estimated error computed as an average across
several test chunks, as to the “observed error”.
In some cases, it is advisable to investigate the error of the considered prediction method
as a function of particular parameters of the distribution from which the data are drawn.
For example, one might be interested in the relationship between the method’s perfor-
mance and distribution characteristics such as the correlation between predictors, the
number of predictors having an effect on the response, or their effect sizes. Determining
the prediction error of the prediction method of interest on simulated data may then be
a valuable approach, which has often been taken in the literature [1].
The goal of this paper is to determine the optimal number of test chunks in this situation,
providing guidance to design such a simulation in such a way that it achieves the most
reliable approximation of the error within a given computation time. More precisely, we
are going to determine the test chunk size that minimizes the total variance of the ob-
served error. Before describing further the contribution of the paper, let us introduce a
few important notions.
First, let us give a simple example of a joint distribution P to make things clearer.
Consider a case with two continuous predictors X1 and X2 and a binary response
Y . A joint distribution P for X1, X2 and Y is defined by letting the random vector
X = (X1, X2)T follow a multivariate normal distribution with mean (0, 0)> and identity
covariance matrix, and then setting the conditional distribution of Y given X1 and X2

to log(P (Y = 1)/P (Y = 0)) = β0 +
∑
βiXi for some coefficients β1, β2. The joint dis-

tribution P is thus fully specified. Logistic regression is a simple example of a method,
which is known to perform well for this distribution P for a sufficiently large size g of
the training data set since the relationship between response Y and predictors X1 and
X2 follows exactly a logistic regression model.
One now defines the unconditional error as the true (expected) error for test data drawn
from P of a prediction rule constructed with the considered method from a fixed data set
consisting of g learning observations drawn from P , i.e., from a data set drawn from P g.
The unconditional error is to be contrasted with the error of a specific prediction rule,
which corresponds to the error conditioned on the observation of a training data set.
A simulation allows to approximate the unconditional error of the considered method
for a given joint distribution P of response class and predictors, for instance the simple
one defined above, and a given size of the training set. Note that in this definition the
training data set of size g is considered as a random variable, the constructed regres-
sion/classification rule and its observed error are thus also random variables, and the
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unconditional error is just the expectation of the latter. It is called unconditional error
because it does not refer to a specific training data set. It is a parameter which depends
only on the distribution P , the size g of the training data set and the considered regres-
sion/classification method.
the learning method sometimes involves a cross-validation resampling scheme, often with
the goal to optimize an inner parameter. In such cases, some authors [2] speak of three
different kinds of data: the training data, the validation data, and the test data, where
the cross-validation happens on the first two.
Here, we will not treat the case involving cross-validation separately. We will always
simply consider a training data set of size g, no matter whether the learning procedure
internally splits these data or not, subsuming the validation data under what we call
training data. Thus, Hastie’s training and validation data together constitute what will
be called training data in this note, whereas for the test set, consisting of all test chunks
for a given learning set, our terminology coincides with Hastie’s in all cases.
To approximate the unconditional error of a given learning method for a given P and a
given g through a simulation, one has to repeat the following procedure a large number
of times N :

(1) A training data set is randomly drawn from P g.
(2) A prediction rule is constructed from this training data using the considered learning

method.
(3) The error of this prediction rule is approximated by comparing the true and

predicted response by means of a loss such as the mean squared error in the case of
regression, or by comparing true and predicted classes for test data from a test data
set in the case of classification. The test data set randomly drawn from Pn

test, where
ntest denotes the size of the test data set; P b·ntest where b is the test chunk size, in
case b 6= 1, and ntest denotes the number of test chunks.

when this procedure has been performed a large number of times, the errors obtained
in step three are averaged, yielding an approximation of the unconditional error. At his
stage, it is important to note that:

(1) the more times this procedure is repeated (i.e. the larger N is), the better the ap-
proximation of the expectation is,

(2) the bigger the test data set used in step 3 to approximate the error of the prediction
rule constructed in step 2 (i.e. the larger ntest is), the better the approximation of
the error is.

Briefly, this simulation procedure involves two parameters N and ntest which should both
be set to large values if a good approximation of the unconditional error is desired. In
practice, computation time is limited, and one cannot increase N and ntest arbitrarily.
When test observations are not re-used, the procedure is guaranteed to converge to the
true unconditional error Θ with probability one, as the number N of iterations converges
to infinity, no matter how many test observations are used in each iteration. This is a
consequence of the strong law of large numbers. (The convergence is almost sure, and
therefore also in probability and in distribution).
Since the computation time available for a simulation study is in practice limited, one
has to set ntest and N to reasonable values and hereby compromise between the precision
of the approximation of the error of each prediction rule —this precision increases with
ntest— and the precision of the expectation, which increases with N . To date, there is
to our knowledge no literature on how to set N and ntest in practice to achieve the most

3



precise approximation of the unconditional error within a fixed computation time. Even
worse, some researchers are not aware that ntest can and should be set to a large value:
they simply set it to a (often small) value “typical for real data sets”, thereby giving up
one of the advantages of performing a simulation study.
In this note, we derive mathematically the optimal number of test chunks to achieve the
best possible approximation of the unconditional error within a fixed computation time.
Its practical usefulness is demonstrated through applications to several realistic scenarios
(i.e. different distributions P , different training set sizes n and different learning methods)
yielding very different optimal sizes ntest of the test data set.
The paper is structured as follows: In Section 2, we will carefully define the setup, in
Section 3, we present the solution, in Section 4 we define an estimator for the optimal
number of test chunks. Finally, Section 5 presents a calculation which shows that even
in a very simple example the optimal number of test chunks can vary considerably.

2. Definitions and notations

In a simulation study, data are drawn from a pre-specified distribution P ; in each itera-
tion, a learning set (always of the same size) is drawn and its conditional error is assessed
by means of test observations. The estimation target, the error Θ, is estimated by an
average taken across several such iterations.
One may either re-use the same test observations across the iterations, or draw new
ones for each iteration. The latter method leads to independence between the iterations,
whence it yields a valid confidence interval for the error Θ–which is, obviously, a great
advantage. The confidence interval is simply that for the mean, taken across the condi-
tional errors, as it is implemented in any standard statistical software.
Suppose each learning set takes the same time C to draw and fit a model on. For practical
reasons, it lends itself to draw test sets in chunks of, say, 100 observations, rather than
one at a time. Also, as noted above, the usage of test chunks instead of test observations
allows to treat the AUC as well. Suppose, furthermore, each such chunk of test observa-
tion on one learning set takes the same time B to draw and evaluate.
As usual, we will denote the predictors by X and the response variable by Y , and pairs
(X,Y ) in such a way that a learning sample is ((X1, Y1), . . . , (Xg, Yg)) = (Z1, . . . , Zg)
which we will abbreviate by Z` where the ` stands for “learning”. We will denote the
i-th learning set by Zi

` and the error of the decision rule learnt on the i-the learning set
and evaluated on the j-the test chunk by Kij , where 1 ≤ i ≤ N and 1 ≤ j ≤ ntest. Thus,
the data comes in the form of a N × ntest-matrix K. Since the marginal expectation of
any Kij is the same, namely the true unconditional error which we will call Θ, the values
Kij can be considered as “elementary” estimators of the error. Also, we will consider an
additional “generic” learning set i = 0 and test chunk j = 0 on which the error K00 is
only considered as random variable.
Let us also denote the true conditional error of learning set i = 1 . . . N by mi(Z

i
`) :=

E(Ki0|Zi
`).

In case the researcher wants to re-use the same test observations for all learning sets–
thereby sacrificing the independence between the learing iterations–the following remains
approximately valid when B is taken to be the time for evaluation of a pre-existing test
observation; in reality, the dependence between the learning iterations then leads to a
slighty optimistic expression for the variance which then becomes very hard to estimate.
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3. The optimal ntest

Let us denote the number of learning sets by N and the number of test observations
(for each learning set) by ntest. Then, the total processor time required for the numerical
study is approximately

t = N(C +Bntest) (1)

The conditional errors mi are i.i.d. random variables. Each mi(Z
i
`), or mi for short, is

estimated by an average taken across ntest test observations:

m̂i := n−1
test

ntest∑

j=1

Kij . (2)

The obivous estimator of the unconditional error is the average of the mi, taken across
all i:

Θ̂ := N−1n−1
test

∑

i,j

Kij = N−1
N∑

i=1

m̂i

As introduced above, we ill, for sake of the argument, consider another random inde-
pendent learning set with conditional error m0 and test evaluations K01,K02, . . . , and
another random independent test chunk j = 0, with associated elementary error esti-
mator K00 and conditional error m0 = m0(Z0

` ) = E(K00|Z0
` ). The true variance of Θ̂

is

V(Θ̂) = N−1V(m̂0) (3)

due to the independence between the learning iterations. The true variance can, of course,
be expressed only in terms of the additional learning set i = 0 and test chunk j = 0 due
to the i.i.d. setup. We are faced with the optimization problem

V(Θ̂)→ min

subject to the constraint

t = const. (4)

The variance appearing in (3) can be understood by conditioning on the random variable
m1: By the law of total variance, we have

V(m̂0) = E(V(m̂0|Z0
` )) + V(E(m̂0|Z0

` )). (5)

Both summands can be made more explicit. For the first, we calculate

V(m̂0|Z0
` ) = n−1

testV(K00|Z0
` ) (6)

where we resort, again, to the independent test chunk j = 0 using the i.i.d. assumption.
The second summand of (5) is V(E(K00|Z0

` )) because m̂0 is, of course, an unbiased
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estimator of m0, i.e., E(m̂0|Z0
` ) = m0 by (2). Plugging this and (6) into (5), we obtain

V(m̂0) = n−1
testE(V(K00|Z0

` )) + V(E(K00|Z0
` )) (7)

The first summand describes the variances “within”; the second the variance “between”
the learning sets. Thus, by (3)

V(Θ̂) = N−1
[
n−1

testE(V(K00|Z0
` )) + V(E(K00|Z0

` ))
]

(8)

Abbreviating the constant of the right-hand side of (4) by T–the scheduled simulation
running time– and using (1), we have a fixed relation between N and ntest:

N = (C +Bntest)
−1T

Plugging this into (8), we arrive at the optimization problem

(C +Bntest)T
−1
[
n−1

testE(V(K00|Z0
` )) + V(E(K00|Z0

` ))
]
→ min (9)

which is by expanding the terms equivalent to

T−1
(
Cn−1

testE(V(K00|Z0
` ))+CV(E(K00|Z0

` ))+BE(V(K00|Z0
` ))+BntestV(E(K00|Z0

` ))
)
→ min

for pre-specified T . Since only ntest can be chosen by the user, this is equivalent to

Cn−1
testE(V(K00|Z0

` )) +BntestV(E(K00|Z0
` ))→ min

For the problem at hand we can view ntest as a real-valued variable, so we can derive the
left-hand side by ntest and equal the result to zero

−Cn−2
testE(V(K00|Z0

` )) +BV(E(K00|Z0
` )) = 0

Solving this for ntest, we obtain for the optimal ntest the expression

ntest =

√
CE(V(K00|Z0

` ))

BV(E(K00|Z0
` ))

(10)

and one easily checks, using elementary analysis, that this expression indeed minimizes
the left-hand side of (9). The formula (10) makes sense: The longer the learning procedure
takes, compared to the duration of an evaluation, the more testing should be done in an
iteration. Also, the higher the ratio of the conditional variance of K00 is, compared to
the variance of the conditional errors, the more testing should be done in an iteration.
For instance, suppose hypothetically, the variance V(E(K00|Z0

` )) across the learning sets
is very small compared to that conditional variance. Then, there is no point in drawing
many learning sets, and all variance is due to the conditional variance between the
test observations. On the other hand, suppose the conditional variance between the test
observations is very small, but the condtional errors vary a lot. Then, there is less need
to assess each single conditional error to a very high precision.
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4. Confidence intervals

Let us first construct an estimator and a confidence interval for the ratio
E(V(K00|Z0

` ))/V(E(K00|Z0
` )) on N ′ training sets and n′test test chunks each (Since this

estimation procedure is to be done before the simulation, we use N ′ and n′test instead of
N and ntest.) Thus, the data has the form of an N ′ × n′test-matrix.
We consider the estimator

vi := (n′test(n
′
test − 1))−1

∑

l 6=m

(K ′il −K ′im)2/2

as the obvious variance estimator of the i-th row as well as its average

v := (N ′ntest(ntest − 1))−1
N ′∑

i=1

∑

l 6=m

(K ′il −K ′im)2/2

taken over all rows. Their expectations are E(V(K00|Z0
` )), the mean row variance.

The variance estimator of the i-th row is (under normality) marginally distributed as

v ∼ E(V(K00|Z0
` ))

n′test − 1
χ2
n′

test−1

which has variance

2(E(V(K00|Z0
` )))2(n′test − 1)−1

Thus, the variance of v is 2(E(V(K00|Z0
` )))2(N ′(n′test− 1))−1. Since a linear combination

of chi-squares with different coefficients is difficult to treat analytically, we approximate
the distribution of v by a single chi-square by matching the expected value E(V(K00|Z0

` ))
and the variance 2(E(V(K00|Z0

` )))2(N ′(n′test − 1))−1 with that of

(E(V(K00|Z0
` )))(N ′(n′test − 1))−1χ2

N ′(n′
test−1)

which is a very good approximation to the distribution of v.
In contrast, the term V(E(K00|Z0

` )) can be estimated by

w :=
∑

i 6=j

(
n−1

test

∑

l

(K ′il −K ′jl)
)2
/2

which has expectation V(E(K00|Z0
` )) and is approximately distributed as

V(E(K00|Z0
` ))(N ′ − 1)−1χ2

N ′−1

Thus, the ratio v/w can be approximated by

(E(V(K00|Z0
` )))(N ′(n′test − 1))−1

V(E(K00|Z0
` ))(N ′ − 1)−1

N ′(n′test − 1)

N ′ − 1
FN ′(n′

test−1),N ′−1 =
E(V(K00|Z0

` ))

V(E(K00|Z0
` ))

FN ′(n′
test−1),N ′−1
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and we can “invert” this information to a confidence interval for
E(V(K00|Z0

` ))
V(E(K00|Z0

` )) as follows:

With probability 1− α, one has

E(V(K00|Z0
` ))

V(E(K00|Z0
` ))

FN ′(n′
test−1),N ′−1(α/2) ≤ v

w
≤ E(V(K00|Z0

` ))

V(E(K00|Z0
` ))

FN ′(n′
test−1),N ′−1(1− α/2)

which happens if and only if

v

w
FN ′−1,N ′(n′

test−1)(α/2) ≤ E(V(K00|Z0
` ))

V(E(K00|Z0
` ))
≤ v

w
FN ′−1,N ′(n′

test−1)(1− α/2)

The approximation gets better when new data are used for w so that v and w become
independent.

Thus, a confidence interval at level 1− α for
√
CE(V(K00|Z0

` ))/(BV(E(K00|Z0
` ))) is

[√
Cv

Bw
FN ′−1,N ′(n′

test−1)(α/2),

√
Cv

Bw
FN ′−1,N ′(n′

test−1)(1− α/2)

]

5. An analytical example

In order to illustrate the within- and between-iterations variances, we are going to con-
sider a simple example where these terms are analytically accessible. The random variable
X is univariate with arbitrary distribution, and the joint distribution of (Y,X) is

Y = β0 + β1X + ε,

where ε ∼ N (0, σ2) with β0 and σ2 unknown, and we suppose that β1 is already known.
Being given the generic learning sample Z0

` = (X0
1 , Y

0
1 , . . . , X

0
g , Y

0
g ) of size g, we introduce

the natural abbreviation satisfying

Y 0
i = β0 + β1X

0
i + ε0i ,

where (ε01, . . . , ε
0
g)T =: ε0` is the i.i.d. vector from N (0, σ2) of errors occuring in the generic

learning sample. (In this analytical example, we only speak of the generic learning data
and a generic test observations, so that no confusion with the index i introduced in
Section 2 should arise.) the intercept estimator is the average residual

β̂0 = g−1
g∑

i=1

(Y 0
i − β1X

0
i ) = g−1

g∑

i=1

(β0 + β1X
0
i + ε0i − β1X

0
i ) = β0 + ε0` .

Then, the generic test observation is (X0
0 , Y

0
0 ) where Y 0

0 = β0 + β1X
0
0 + ε00 where ε00 ∼

N (0, σ2), and the “generic” simulated squared loss can be written in terms of the errors
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ε0` , ε
0
0 as

K00 =
(
β̂0 + β1X

0
0 − Y 0

0

)

=
(
β0 + ε0` + β1X

0
0 − (β0 + β1X

0
0 + ε00)

)

= (ε0` − ε00)2

which follows the (1 + g−1)σ2-fold of a chi-squared distribution on one degree of freedom

because ε0` is normal with mean zero and variance σ2/g and ε0` − ε00 is normal with mean
zero and variance σ2(1 + g−1). Thus, the true unconditional error is

EK00 = E((1 + g−1)σ2χ2
1) = (1 + g−1)σ2

and the total variance of K00 is

VK00 = V((1 + g−1)σ2χ2
1) = 2σ4(1 + 2g−1 + g−2). (11)

The conditional error is

E(K00|ε0` ) = E((ε0` − ε00)2|ε0` )
= E((ε0` )

2 − 2(ε0` )ε
0
0 + (ε00)2|ε0` )

= (ε0` )
2 + 0 + σ2

which is distributed as σ2 plus the g−1σ2-fold of a chi-square on one degree of freedom.
This implies that the between-iterations variance is

V(E(K00|ε0` )) = V(g−1σ2χ2
2) = 2σ4g−2. (12)

The conditional variance of K00, given a learning sample Z0
` with errors ε0` = ε01, . . . , ε

0
g,

can be seen to be

V(K00|ε0` ) = 4(ε0` )
2σ2 + 2σ4

after a short calculation. Thus, the average within-iterations variance is

E(V(K00|Z0
` )) = E

(
4(ε0` )

2σ2 + 2σ4
)

= 2σ4(1 + 2g−1). (13)

One checks that the sum of (12) and (13) is (11), as the law of total variance implies.
Thus, the ratio of within- to between-iterations variances is

E(V(K00|Z0
` ))

V(E(K00|Z0
` ))

=
2σ4(1 + 2g−1)

2σ4g−2
= g−2 + 2g−3

which decreases, as expected, in g. Thus, the larger g is, the fewer testing observations
need to be drawn. One might conjecture that this relationship holds in more generality.
As a side result, we have seen that error estimates after a test observations vary for a
single learning set on the same order of magnitude as the conditional errors vary between
learning sets. This might be interesting in itself.
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Table 1. Estimation of ntest for a logistic learner on data from a logistic model. We compared three

scenarios, each of which is represented in a row of the table. We report the resulting times A and B in
nanoseconds, the point estimator for the variance ratio E(V(K00|Z0

` ))/vbl, and the confidence interval

for ntest. Clearly, the resulting ntest can vary considerably.

g es A B varRatioPoint ntestLower ntestPoint ntestUpper

10 1000 6721594 107476.0 21.15 28.66 36.37 44.13
30 10 6909372 126840.4 20.95 26.78 33.78 40.83

1000 1 176303859 732111.9 33.58 71.49 89.93 108.49

Also, it seems that the ratio of between- to across-iteration variance merits independent
attention in further research.

We drew of p = 4 features and a response with the logistic model using the linear pre-
dictor Xβ where β = (beta0, 0, 0, 0)T and fitted coefficients on g = 10, 30, 1000 learning
observations with β0 = 1000, 10, 1, respectively, by a usual support vector machine. The
results are shown in Table 1, illustrating that the optimal number of test chunks can
vary considerably.
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Supplemental material

The file simTestSize 1.0.tar.gz contains an R-package that contains the proposed
methodology. It also contains a function reproduce that allows to reproduce the results
of this paper.
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