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1. Introduction

The consequences of many economic decisions only materialize in the future. Examples of such

decision problems include weekly grocery shopping, planning a summer vacation months ahead, as

well as making investment decisions that may have profound effects on living standards later in life.

The standard model of rational behavior assumes that individuals facing such decision problems

maximize their expected utility, implying that individuals are both aware of all the relevant choice

alternatives and capable of correctly anticipating their future consequences. The model also implies

that the state of the world at the time of decision making is irrelevant for the choices made, as

long as today’s state is not linked to future outcomes of interest. In contrast, recent psychological

models suggest mechanisms through which current conditions may nevertheless affect intertemporal

decisions. For example, one strand of the literature argues that individuals have the tendency to

overestimate the degree to which future states resemble the current one, either due to extrapolative

expectations (e.g. Fuster et al., 2010; Barberis et al., 2015) or due to projection bias (Loewenstein

et al., 2003). Another strand of the literature puts forward the argument that the salience of choice

alternatives or future contingencies may depend on the choice context at the time of decision making

(e.g. Bordalo et al., 2012, 2013; Koszegi and Szeidl, 2013).

In this paper, we test whether the conditions at the time of the decision affect choices in an

environment in which it is particularly transparent that only future states matter for the experienced

utility. We study online advance ticket orders of an outdoor movie theater. These advance tickets

are only valid for one specific movie night, so that the utility from visiting the outdoor theater

mainly depends on the conditions on the day of the movie.

As one might expect, the utility of watching a movie outdoors seems to be highly dependent on

the weather. One indication for this is that ticket sales on the day of the movie night, when there

remains little uncertainty about the weather during the show, are highly correlated with current

weather, but cannot be explained by the general popularity of the movie (as measured by box office

sales for indoor movie theaters). Predicting their future weather-related utility should hence be an

important task for customers who consider purchasing their tickets in advance. This is even more

so, because the weather at the theater’s location is highly variable and because the accompanying

weather risk is fully borne by customers whose tickets are only valid for one specific movie night.

This risk is prominently pointed out on the ticketing website, so that customers can be expected

to be fully aware of it when they make their decisions.1 Note, moreover, that the weather risk is

measured by free and unbiased weather forecasts, so that this real-world decision problem comes

fairly close to a standard stylized decision problem under risk (as opposed to a decision problem

under Knightian uncertainty).

Despite the simplicity of the decision problem, we find that customers are overly influenced by

1On the website, this is stated as follows: “There are two issues you should be aware of [when ordering tickets].
First: We are going to show the movie regardless of weather conditions. Second: You have to pay for your tickets
even if you [decide to let them expire] by not picking them up at the call window.” (authors’ translation from
https://www.didax.de/kms/index.php [22 November 2013]).
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the current weather when ordering their advance tickets. We show that ticket orders are 40 to

50 percent higher on a day with completely clear skies than on a completely cloudy day. This

finding holds regardless of the purchase horizon, that is, regardless of whether tickets are ordered

between one and four days or up to four weeks in advance. Reinforcing the interpretation that

current, as opposed to recent, weather conditions affect decisions, we also show that the effect of

sunshine duration on ticket orders is present for short-run weather fluctuations, as hourly changes

in sunshine duration cause hourly changes in ticket sales. In addition to the effect of sunshine,

rainfall on the day of purchase seems to exert a (negative) effect on ticket orders.

We rule out potential explanations for these findings that are consistent with the standard model

of rational decision making under risk. First, we show that the weather on the day of purchase

has at most negligible predictive power for the weather on the day of the movie.2 The current

weather thus does not constitute an informative signal for future weather. Second, we argue that

a “precautionary” rationale for purchasing tickets in times of good weather cannot explain the

weather dependence of ticket orders. The idea is that good weather on a given day may increase

the perceived probability for the theater to sell out. If this were the case, good weather would

cause customers to purchase their tickets earlier. However, the data contains no evidence of such

short-run substitution of ticket orders across days. If a precautionary rationale was driving ticket

orders, we would moreover expect current weather to have no effect on very early ticket orders or on

hourly variation in sales, as the perceived probability of the theater’s selling out is unlikely to vary

with weather in these domains. Third, we consider the possibility that inexperienced customers

use current weather conditions to learn about their utility of visiting the theater under different

weather conditions. Yet, it is unlikely that our results are primarily driven by learning, as ticket

orders of repeat customers react similarly, if not more strongly, to current weather conditions than

the ticket orders of the average customer. Interestingly, this also holds for customers who had

experienced rainfall during a previous movie night and could thus have learned from unpleasant

surprises.

Next, we discuss psychological mechanisms that may be able to explain our findings. The first

set of theories we consider suggests that good weather leads customers to overvalue their future

utility, either due to projection bias or extrapolative expectations. The second set of theories argues

that current weather conditions either remind customers of the option of visiting the theater or

increase the salience of weather-related product attributes. We propose to use the fact that movie

tickets are perishable to distinguish between the hypothesis that weather affects the salience of

product attributes from the other three psychological mechanisms. The idea is that customers

who, at times of good weather, focus on the favorable good weather attributes of visiting the movie

theater, should only be more inclined to buy tickets if the weather outlook for the day of the

movie was sufficiently good. We test whether the weather dependence of ticket orders is indeed

conditional on expected future conditions by exploiting variation in expected movie-date weather;

2For brevity, we will refer to the weather on the day of purchase as “purchase-date weather” and to the weather on
the day of the movie as “movie-date weather” in the remainder of the paper.
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we find that the evidence is predominantly in line with an unconditional effect of weather on sales.

The remaining three psychological mechanisms are consistent with all our empirical findings.

Our paper is part of the growing literature that takes behavioral models to field data (see DellaV-

igna, 2009, for an overview). The articles most closely related to ours are Conlin et al. (2007) and

Busse et al. (2015), who study how weather affects the purchasing behavior for durable goods.

Conlin et al. (2007) point out that the overvaluation of a good at the time of purchase should

lead to a higher fraction of customers who regret their choices ex post. They confirm this hy-

pothesis by showing that customers who purchased winter apparel at times of cold weather are

subsequently more likely to return those items. After ruling out a number of alternative explana-

tions, they conclude that their results can be interpreted as evidence for projection bias. Busse

et al. (2015) demonstrate that customers are more likely to buy convertibles in times of warm and

sunny weather, and are more likely to opt for a four-wheel drive vehicle right after a snow storm.

They thus convincingly show that projection bias and/or salience may play a role in high-stakes

decisions. This paper complements this earlier work by finding similar results in a study of the

purchasing behavior for a perishable good, where the decision problem closely resembles a standard

expected utility maximization problem under risk.

The remainder of the article proceeds as follows. The next section describes our data. Section 3

provides a simple graphical analysis of our main results, and proceeds to discuss the identification

strategy as well as the main empirical results. In Section 4, we evaluate explanations for our results

consistent with rational behavior. In Section 5, we first follow the approach of Conlin et al. (2007)

and show that customers who had purchased their tickets during beautiful weather are more likely

to let their tickets expire later on. We interpret this as an additional indication for psychological

mechanisms driving our results. Subsequently, we discuss these mechanisms and their empirical

implications in depth. Section 6 concludes.

2. Data

In this section, we describe the data that we use for the empirical analyses in the remaining sections.

2.1. Weather and Forecast

Due to the proximity of the Alps, the weather in Munich is highly variable during the season of

the outdoor theater, which typically covers the months of June to August.3 This manifests itself in

high monthly precipitation during the summer months, when total precipitation is on average 123

mm per month (for comparison: London 51 mm, New York City 92 mm, and Berlin 61 mm).4 In

addition, long periods of stable good weather are the exception. Rather, there are frequent shifts

in weather conditions: on average, there are 12.4 rain days (days with at least 1 mm of rain) per

3See Section 2.1 for an empirical analysis of the predictive power of current for future weather.
4Sources of long term monthly averages: World Meteorological Organization

http://worldweather.wmo.int/en/home.html [4 October 2012].
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Table 1: Summary Statistics: Weather and Forecast

Weather

All day Evening SD within day

Avg. Sunshine Duration 0.53 0.47 0.20
(0.34) (0.38) (0.14)

Avg. Rainfall per Hour 0.11 0.19 0.28
(0.24) (0.63) (0.63)

Avg. Temperature 18.98 19.14 3.02
(3.89) (4.24) (1.28)

Forecast

Minimum Maximum

Temperatures Forecast 12.66 23.56
(2.75) (4.02)

Notes: We report means and standard deviations (in parentheses) of the variables. Sunshine duration is measured as
a fraction of an hour, temperature is measured in degrees Celsius, and rainfall is measured in mm per hour. In the
column “SD within day” we report the average of the variable’s standard deviations across hours within a single day.

month between June and August (London 10.5 days, New York City 8 days, and Berlin 8.7 days).

For our empirical analyses, we use high quality weather data from the weather station of the Me-

teorological Institute of the University of Munich. The data includes hourly measures of sunshine

duration (a meteorological measure of the fraction of an hour during which direct solar irradiance

exceeds a threshold value), rainfall (measured in mm per hour), and temperature (in degrees Cel-

sius). For most analyses, we use daily averages of these weather variables. For the average of

sunshine duration, we restrict attention to hours between 8 am and 7 pm in order to not confound

the measure by the changing times of dusk and dawn.

Further evidence concerning the instability of the local weather in Munich is contained in the

summary statistics of the weather variables in Table 1. The between-day variation in weather can

be read from the first two columns. The first column reports the average sunshine duration between

8 am and 7 pm as well as 24 hour averages of hourly rainfall and temperature. The second column

reports the average sunshine duration in the early evening (between 5 pm and 7 pm) as well as

average hourly rainfall and temperature during the hours during which the movie is usually shown

(between 7 pm and 11 pm). The coefficients of variations (CV) for both sunshine duration (CV

equal to 0.64) and rainfall (CV equal to 2.18) are relatively large. In addition, note that in the

evening average precipitation per hour is almost twice as high as for the entire day. To further gauge

the extent of within-day variation of weather, we report the mean of the within-day (i.e., across

hours) standard deviations of all weather variables. Again, sunshine duration and precipitation

exhibit high within-day variation.5

To control for the weather forecast, we hand collected the forecast from the archives of the daily

5 The within-day variation of temperature should be interpreted with caution due to the cyclical pattern of tem-
perature over the day.
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newspaper Süddeutsche Zeitung, which is published every day except Sundays and public holidays.

It provides a regional forecast for each day, one to four days into the future, for the greater Munich

area. The forecast includes forecast maximum and minimum temperatures (in degrees Celsius) and

one of the following weather symbols: sunny, partly sunny, scattered thunderstorms, shower, and

rain.6 The summary statistics of minimum and maximum forecast temperatures are displayed in

Table 1. As expected, they are in a similar range as the average temperatures. The distribution

of forecast symbols, which does not vary substantially by forecast horizon, is again indicative of

the variability of weather in Munich during the summer: rather unstable weather conditions like

scattered thunderstorms (11 percent of the days) and showers (42 percent of the days) are forecasted

for more than half of the days in our sample. Sunny or partly sunny conditions are forecasted for

44 percent of the days and rain is forecasted for 3 percent of the days.

2.2. Ticket Sales

The data on ticket sales were provided by Kino, Mond und Sterne [Movies, Moon, and Stars], one

of four outdoor movie theaters in Munich. The theater has a total of 1,300 seats available, tickets

for which are sold at the box office and various advance ticket sales locations. Because the movie is

shown regardless of weather conditions, tickets are non-refundable: customers who buy their ticket

in advance hence bear the full weather risk.

Our dataset comprises all online ticket orders between 2004 and 2011. For each order, the system

records the number of tickets purchased, the exact date of the transaction, the birth date of the

customer, as well as a unique alphanumeric customer ID which allows us to track repeat customers.7

Online sales constitute a substantial fraction of total ticket sales. Between the years 2009 and 2011,

for which we know the overall number of sales, online sales amount to 24 percent of total sales.

More than half (almost 60 percent) of online tickets are sold on the day of the show, when there is

little weather-uncertainty left. Between one and four days in advance, for which there is data on

the weather forecast available, 30 percent of online tickets are sold, with percentages declining the

earlier the tickets are purchased. The remaining 10 percent of online tickets are sold five or more

days before the show.8

Our main variable of interest is aggregate ticket orders on a daily basis. More precisely, each

6There are in all 12 observations of the symbol overcast, which we group with “shower” to simplify the exposition
of the results. Undoing this grouping does not lead to any significant changes throughout.

7 Online ticket prices have been stable at 5.70 Euro (about 7.85 Dollar) each over the entire period. This includes
the regular ticket price of 5 Euro plus a 0.70 Euro service surcharge for buying online; the price is charged to the
customer’s credit card as soon as the order is completed. There is no further price discrimination with respect
to when or where a ticket is bought. The only difference between online ticket holders and customers who buy
tickets at the box office is that there may be, depending on demand for the movie night, a separate line for online
ticket holders to pick up their tickets (all tickets need to be purchased at the box office or picked up at the call
window, which are both located at the entrance of the theater). All tickets allow entry into the theater. There is
no assigned seating and none of the seats are covered. See Figure 10 in Appendix E for a picture of the theater.

8We observe customers who do not buy their tickets online only in a survey which we conducted at the cinema in
2011 (see the next subsection). In Appendix D, we list all questions asked in this survey and present summary
statistics of the customers’ answers separately for online and offline customers. Based on these statistics, both
groups of customers appear to be very similar.
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Table 2: Summary Statistics: Ticket Orders

Day of Show 1 Day in Advance 2 Days in Adv. 3 Days in Adv. 4 Days in Adv.

Avg. Daily Orders 24.74 7.18 2.78 1.36 0.89
(33.97) (10.82) (4.30) (2.24) (1.37)

Tickets per Order 2.46 2.55 2.55 2.63 2.58
(0.69) (0.92) (0.88) (1.24) (1.24)

Notes: We report means and standard deviations (in parentheses) of daily ticket orders and of the number of tickets
per order for all orders between the day of the movie and four days in advance.

observation is the sum of ticket orders on a single day for a specific show. If no tickets are sold

on a day at most four weeks before the movie night, we add an observation with aggregate orders

of zero. This results in at least 29 observations for every single movie shown, one for each day

between 0 and 28 days in advance. The summary statistics for ticket orders are presented in Table

2, organized according to how far in advance the ticket was sold. The average number of ticket

orders decreases from 7 one day in advance to 1 four days in advance, representing a declining

pattern of orders. The number of tickets sold per order remains stable at about 2.6, independent of

the time horizon. About half of the ticket orders are placed by repeat customers, who have bought

tickets online more than once.

For 2009–2011, we additionally know for each order whether customers used their tickets or

whether the ticket expired. Of the total of 4,102 online orders in those years, the vast majority (88

percent) were used.

2.3. Survey

During the 2011 season, we conducted a survey among visitors of the cinema. We will use the

results from the survey to provide supporting evidence for our arguments. Overall we received 443

questionnaires at 13 different days with considerable variance in weather conditions (and accordingly

varying number of questionnaires obtained per day). This amounts to more than 10 percent of the

audience on these days on average. The purchasing behavior of the surveyed customers matches the

overall purchasing behavior very well: 25 percent of surveyed customers bought their tickets online

(compared to 24 percent of all customers 2009–2011) and 7 percent purchased them between one

and four days in advance (compared to 8 percent of all customers). Appendix D lists the questions

asked and presents summary statistics of the visitors’ answers.

3. Weather Effects on Ticket Orders

In this section, we first provide a simple graphical illustration of our main argument. We then

discuss our identification strategy and show econometrically that variation in purchase-date weather

explains variation in advance ticket orders for all purchase horizons as well as for short-run (within

day) weather fluctuations.
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Figure 1: Ticket Orders and Movie-Date Weather / Movie Popularity
This figure plots the average of residuals of log online ticket orders (termed “atypical ticket orders” in the text) on
the day of the movie night for each decile of residual movie-date sunshine duration (panel (a), termed “atypical
sunshine duration” in the text) and for each decile of a movie’s popularity measured by gross ticket sales (for indoor
theaters) on its opening weekend in Germany (panel (b)). Residuals are the values of the respective variable net of
their movie-date and purchase-horizon specific conditional means.

(a) Same-Day Ticket Orders by Movie-Date Sunshine
Duration

(b) Same-Day Ticket Orders by Movie Popularity

3.1. Illustrative Evidence

We first present evidence that movie-date weather and movie-date ticket orders are strongly cor-

related. Because little uncertainty regarding the weather for the movie night is left on the day

of the movie, the strong correlation between realized movie-date weather and ticket orders shortly

before the movie indicates that good weather prompts many potential customers to buy tickets and

hence suggests that for the majority of customers the weather needs to be sufficiently good to enjoy

watching a movie outdoors.

Our main identification strategy (outlined in Section 3.2) uses atypical weather to explain atypical

ticket orders. We will mimic this strategy in the following graphical illustrations. For ticket orders,

we use the transformation ln(orders+1) to account for the count-data characteristics of aggregate

daily orders (non-linearity of orders over time, many observations equal to zero). Atypical ticket

orders are defined by the deviation of ln(orders + 1) from its movie-date and purchase-horizon

specific mean for all purchase dates up to four weeks prior to the day of the movie. Atypical

weather is constructed accordingly.9

Panel (a) of Figure 1 displays the average of atypical same-day ticket orders by decile of atypical

movie-date sunshine duration.10 It becomes apparent that both variables exhibit a strong positive

9Formally, atypical ticket orders and atypical weather are the residuals of a regression of ln(orders + 1) or the
relevant weather variable on dummies for the purchase horizon (measured in days ahead of the day of the movie)
and movie-date fixed effects for purchase horizons between the day of the movie and the date 28 days prior to
the day of the movie. The goal of taking the logarithm of ticket orders is to transform the exponential Poisson
regression model (used in the econometric analyses below) into a linear form in order to enable the standard
interpretation of atypical ticket orders as the deviation from a conditional mean.

10In Appendix A, we repeat the analysis presented here with rainfall as the relevant weather dimension.
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correlation. In the highest deciles of atypical sunshine duration, ticket orders are on average about

2.5 log points higher than in the lowest deciles, corresponding to a difference in ticket orders of more

than two times the mean.11 Note, moreover, that atypical ticket orders are positive, once atypical

sunshine duration is above its median. To put this result in perspective, Panel (b) of Figure 1

shows average atypical same-day ticket orders by decile of the movie’s gross ticket (indoor) sales

on its opening weekend in Germany. Interpreting the initial gross ticket sales as an indicator of the

popularity of the movie, there is at best little correlation between same-day ticket sales and the

movie’s popularity. Hence, it seems that good weather motivates customers significantly more to

buy tickets on the day of the movie than the movie’s popularity, suggesting customers’ experienced

utility varies heavily with realized weather during the movie.12

Given that movie-date weather is a seemingly important determinant of the experienced utility,

we expect that customers carefully use available information (e.g., from weather forecasts) to predict

future weather when they consider buying tickets in advance. This would imply a relation between

movie-date weather and advance ticket orders. The four panels of Figure 2 plot average atypical

ticket orders between one and four days ahead of the day of the movie by deciles of atypical movie-

date sunshine duration. As expected, there is a positive correlation between advance orders and

movie-date weather, at least up to two days prior to the day of the movie. The correlation seems

to become weaker three days ahead, and more or less ceases to exist four days ahead, reflecting,

perhaps, the decreasing reliability of weather forecasts.

The correlations presented so far show that customers make their purchasing decisions condi-

tional on (expected) movie-date weather, consistent with the standard model of (expected) utility

maximizing individuals. Yet, several psychological models of behavior predict that individual de-

cisions under uncertainty are also affected by the state of the world at the time of the decision,

in our case purchase-date weather. To illustrate this possibility, Figure 3 shows the average of

atypical ticket orders between one and four days ahead of the day of the movie, but this time by

decile of purchase-date atypical sunshine duration. For ticket orders one and two days in advance,

the correlation of (current) purchase-date weather and advance sales is similar in magnitude to

the correlation of (future) movie-date weather and ticket orders. However, while the correlation

between movie-date weather and orders starts to break down three days in advance and earlier, the

correlation of purchase-date weather and sales remains fairly stable. Moreover, note that atypical

purchase-date sunshine duration above the median is associated with positive atypical advance

ticket orders, while atypical weather below its median is associated with negative atypical orders.

This substantial correlation between current weather and advance ticket orders potentially implies

that intertemporal biases play an important role in explaining the behavior of customers. Before

11In the lowest two deciles, the sun is shining on average 7 percent of the time, while in the highest two deciles, the
sun is shining 92 percent of the time.

12It is unlikely that finding no correlation between ticket orders and movie popularity is due to insufficient variation,
as the coefficient of variation of opening weekend gross sales equals 1.5 and is thus relatively large. Note, however,
that we partial out movie-date fixed effects and hence control for the movie’s effect on total online orders. Yet,
in the previous version of this paper we also find no correlation between gross sales and same-day ticket orders in
unadjusted data.
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Figure 2: Movie-Date Sunshine Duration and Advance Ticket Orders
This figure plots the average of residuals of log ticket orders (termed “atypical ticket orders” in the text), separately
for orders one to four days in advance, for each decile of residual movie-date sunshine duration (termed “atypical
sunshine duration” in the text). See the notes of Figure 1 for the definitions of the variables.

(a) Ticket Orders One Day Ahead (b) Ticket Orders Two Days Ahead

(c) Ticket Orders Three Days Ahead (d) Ticket Orders Four Days Ahead

we discuss potential explanations for this correlation, however, we first establish its presence by

more formal empirical analyses.

3.2. Identification Strategy and Empirical Model

The following data generating process governs our choice of empirical models. At date t, potential

customers who actively consider purchasing a ticket for the movie night at τ > t are assumed to

arrive at a specified rate. Each of these customers then orders a ticket with a specific probability.

We assume that both the arrival rate of the customers as well as the probability of ordering tickets

are functions of purchase-date weather, expected movie-date weather (as predicted, for example, by

the weather forecast), the purchase horizon τ −t, as well as fixed movie characteristics. Ticket orders

follow a Poisson process if, conditional on these variables, the arrival rate of potential customers

is memoryless; under this assumption, expected ticket orders ytτ are given by the product of the

arrival rate and the purchasing probability.

We use count regressions to estimate the effect of the current weather (and other covariates) on

9



Figure 3: Purchase-Date Sunshine Duration and Advance Ticket Orders
This figure plots the average of residuals of log ticket orders (termed “atypical ticket orders” in the text), separately
for orders one to four days in advance, for each decile of residual purchase-date sunshine duration (termed “atypical
sunshine duration” in the text). See the notes of Figure 1 for the definitions of the variables.

(a) Ticket Orders One Day Ahead (b) Ticket Orders Two Days Ahead

(c) Ticket Orders Three Days Ahead (d) Ticket Orders Four Days Ahead

ticket orders.13 This means that the conditional mean of advance ticket orders ytτ is modeled by

the (piecewise) exponential function

ytτ = exp
(

Weather′
t βW +Forecasttτ

′ βF +µτ + δtτ

)

. (1)

Weathert is a vector including purchase-date average sunshine duration and average hourly rain-

fall, as well as their two-week moving averages to control for recent weather trends. The vector

Forecasttτ controls for expected movie-date weather by either the forecast as of date t of the

weather for date τ (maximum and minimum forecast temperatures; dummy variables for each fore-

cast symbol) or by a proxy for the expected weather given by the interaction of realized movie-date

weather (average sunshine duration and rainfall) and dummies for the purchase horizon τ − t. In

addition to the weather and forecast variables, (1) includes purchase-horizon fixed effects δtτ , which

control for the time-trend of advance orders: orders tend to increase for days of purchase closer to

13Under more restrictive assumptions, the hazard rate of ticket orders among potential customers can be identified
and estimated via event history analysis. See Appendix B.1 for details.

10



the day of the movie. We also control for movie-date fixed effects µτ , which absorb fixed movie-

date characteristics. As a consequence, we identify the effect of the weather on ticket orders from

variations in weather over the purchase horizon for a given movie (e.g., the change in the weather

between three and two days before the movie).14

There are various empirical models to estimate the conditional mean (1). We follow the standard

approach and use Poisson panel regressions for the estimations.15

3.3. Empirical Results

Table 3 shows the parameter estimates of model (1). The main parameters of interest are the

elements of βF, that is, the coefficients of purchase-date average sunshine duration (measured as a

fraction of an hour) and average rainfall per hour (measured in millimeters). Due to the properties

of Poisson regressions, these parameters can be interpreted as the percentage increase in ticket

orders due to a one-unit change in the corresponding weather variable.

Despite being irrelevant for enjoying the movie night and similar to the graphical analysis in

Figure 3, the estimates show that purchase-date weather—in particular sunshine duration —affects

ticket orders in an economically and statistically significant way. The estimates imply that ticket

orders on a completely sunny day are 50 percent higher than when it is completely cloudy. Similarly,

for each additional millimeter of rainfall per hour, ticket orders decrease by about 20 percent on

average. These magnitudes are fairly constant across specifications. In Columns 1 and 2, we

consider only ticket orders between one and four days in advance, which is the interval for which the

weather forecast for the day of the movie is available. In Column 1, we control for expected movie-

date weather via variables of the weather forecast. In Column 2, the expected weather is proxied

by realized movie-date weather interacted with dummies for the purchase horizon. Mirroring the

graphical analyses in Figure 2, expected movie-date weather only affects purchase-date ticket orders

one and two days in advance, which are the purchase horizons for which the forecast is the most

accurate.

In Columns 3 and 4 we repeat the analysis for purchase horizons up to four weeks in advance.16

The estimated parameters of purchase-date weather are hardly affected, with the notable exception

that the parameter of rainfall becomes statistically significant. This is possibly due to an increase

in the within movie-date variation in average daily rainfall, for which many observations are zero

14Note that using the time variation in covariates for identification is non-standard here, due to the inherent variation
of ticket orders over purchase horizons (i.e., a non-stationarity of ticket orders). As a consequence, the weather
and horizon effects may interact. In Appendix B.2 we describe and estimate an empirical model that uses the
“cross-sectional” variation in weather across ticket orders with a fixed purchase horizon. These estimates are
robust to a potential interaction of the horizon and weather effects, and are very similar to the ones identified
using model (1).

15 Poisson regressions may be inadequate if the data has overdispersion, that is, a conditional variance of ticket
orders larger than the conditional mean ytτ . However, we reject the hypothesis of overdispersion when estimating
(1) via the NB2 model, possibly due to controlling for heterogeneity via fixed effects (see Cameron and Trivedi,
1998).

16In Column 3, in which we control for expected movie-date weather via the weather forecast, we set the forecast
variables to zero for all observations 5 days in advance or earlier.

11



Table 3: The Effect of Purchase-Date Weather on Ticket Orders

Daily Ticket Orders

1–4 Days Ahead 1–28 Days Ahead
(1) (2) (3) (4)

Avg. Sunshine Duration 0.52∗∗∗ 0.46∗∗∗ 0.48∗∗∗ 0.47∗∗∗

(0.11) (0.10) (0.08) (0.07)
Avg. Rainfall per Hour −0.27 −0.15 −0.18∗ −0.19∗

(0.18) (0.16) (0.09) (0.11)
Avg. Sunshine Past 14 Days 0.02 −0.67 1.46∗∗∗ 1.51∗∗∗

(0.88) (0.89) (0.46) (0.58)
Avg. Rainfall Past 14 Days −1.86 −1.77 −1.44∗∗ −1.46∗∗∗

(1.56) (1.54) (0.63) (0.55)
Forecast Maxtemp. 0.02 0.10∗∗∗

(0.02) (0.02)
Forecast Mintemp. −0.02 −0.02

(0.02) (0.02)
Symbol Partly Sunny 0.05 −0.22∗∗

(0.07) (0.10)
Symbol T-Storm −0.11 −0.63∗∗∗

(0.09) (0.12)
Symbol Shower 0.01 −0.49∗∗∗

(0.13) (0.14)
Symbol Rain −0.50 −1.36∗∗∗

(0.49) (0.42)
1 Day Ahead × Movie-Date Sunshine 0.97∗∗∗ 1.03∗

(0.25) (0.62)
1 Day Ahead × Movie-Date Rainfall −1.26∗∗∗ −1.66∗∗

(0.31) (0.68)
2 Days Ahead × Movie-Date Sunshine 0.51∗∗ 0.57

(0.23) (0.61)
2 Days Ahead × Movie-Date Rainfall −0.48∗∗ −0.82

(0.23) (0.69)
3 Days Ahead × Movie-Date Sunshine 0.05 0.13

(0.24) (0.61)
3 Days Ahead × Movie-Date Rainfall −0.26 −0.55

(0.29) (0.72)

Horizon FEs yes yes yes yes
Horizon × Movie-Date Weather

for more than 3 Days Ahead no no no yes
Movie-Date FEs yes yes yes yes
Observations 1353 1710 12383 12790

Notes: We report the coefficients and standard errors (clustered on the movie-date level) from Poisson panel re-
gressions of daily ticket orders on purchase-date weather conditions (average sunshine duration as a fraction of an
hour, average hourly rainfall in mm, and their 14-day moving averages), variables describing expected movie-date
weather at the time of purchase, purchase-horizon fixed effects, and movie-date fixed effects. See the empirical model
(1) for details. Columns 1 and 2 restrict the data to ticket orders between one and four days ahead of the day of
the movie, Columns 3 and 4 estimate (1) for orders up to four weeks in advance. In Columns 1 and 3 we control
for expected weather using the variables of the weather forecast (maximum and minimum temperatures in degree
Celsius, mutually exclusive forecast indicators); the omitted forecast category is “sunny.” These variables are set to
zero for purchase horizons earlier than four days, for which data on forecasts for the day of the movie is unavailable.
In the remaining columns, we proxy for expected movie-date weather by interactions of realized movie-date weather
and dummies for the purchase horizon. Level of significance: * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table 4: The Effect of Purchase-Date Weather on Early Ticket Orders

Daily Ticket Orders

7–28 Days Ahead 14–28 Days Ahead 21–28 Days Ahead

Avg. Sunshine Duration 0.42∗∗∗ 0.33∗∗ 0.49∗∗

(0.09) (0.15) (0.24)
Avg. Rainfall per Hour −0.02 0.11 0.12

(0.12) (0.20) (0.27)
Avg. Sunshine Past 14 Days 1.14∗∗ 1.09 1.32

(0.45) (0.80) (1.23)
Avg. Rainfall Past 14 Days −2.06∗∗∗ −3.08∗∗ −3.29

(0.79) (1.42) (2.79)

Horizon FEs yes yes yes
Horizon × Movie-Date Weather yes yes yes
Movie-Date FEs yes yes yes
Observations 7579 3503 973

Notes: We report, for different purchase-horizons, the coefficients and standard errors (clustered on the movie-date
level) from Poisson panel regressions of daily ticket orders on purchase-date weather conditions (average sunshine
duration as a fraction of an hour, average hourly rainfall in mm, and their 14-day moving averages), purchase-horizon
fixed effects, and movie-date fixed effects. Interactions of realized movie-date weather and dummies for the purchase
horizon are used to proxy for expected movie-date weather. Level of significance: * p < 0.10, ** p < 0.05, *** p < 0.01.

valued. In addition, good recent weather, as measured by 14-day moving averages of prior sunshine

duration and rainfall, seems to exert a positive impact on ticket orders.17

One possible concern regarding the results in Table 3 could be that they are exclusively driven

by ticket orders on days close to the day of the movie, when the current weather may be perceived

to have predictive power for movie-date weather (which is not the case, as we will demonstrate in

Section 4.1). For this reason, we estimate the effect of the current weather on ticket orders earlier

than one, two, or three weeks before the movie. The results in Table 4 show that good purchase-date

weather is associated with an increase in orders independently of the particular purchase-horizon.

Moreover, the size of the effect of the weather on sales seems to be fairly constant over time, as the

estimated coefficients of sunshine duration for early orders take on similar values as the coefficients

for the entire purchase horizon in Table 3.

If it is indeed the current weather (as opposed to recent weather) that causes advance ticket

orders, we would expect to find orders affected not only by daily variation in the weather, but

also by weather changes within a day, e.g., from one hour to the next. To test this conjecture, we

disaggregate daily ticket orders by hour and use the hourly ticket orders as the dependent variable

in a variant of model (1), in which we include hourly measures of weather (sunshine duration and

rainfall) as well as hour-of-day fixed effects as additional independent variables. In addition, we

restrict the sample to hours with potentially positive sunshine duration (8 am to 8 pm) as well as to

hours in the morning (8 am to 2 pm) and afternoon (2 pm to 8 pm) for days of purchase between one

and four days ahead of the movie. In this empirical model, the effect of the hourly weather on ticket

17In Columns 1 and 2 of Table 12 in Appendix E we show that the effect of weather on ticket orders is independent
of the movie’s genre, the day of the week of its showing, and day of the week of the purchase.
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Table 5: The Effect of Hourly Weather on Ticket Orders per Hour

Hourly Ticket Orders (1–4 Days Ahead)

Daytime Morning Afternoon
(1) (2) (3)

Current Sunshine Duration 0.16∗∗ 0.16 0.20∗

(0.07) (0.13) (0.11)
Current Rainfall −0.01 −0.04 −0.01

(0.04) (0.10) (0.04)
Avg. Sunshine Duration 0.36∗∗∗ 0.36∗ 0.32∗∗

(0.12) (0.21) (0.15)
Avg. Rainfall per Hour −0.22 −0.26 −0.18

(0.17) (0.21) (0.23)
Avg. Sunshine Past 14 Days −0.59 −0.34 −0.76

(0.95) (1.41) (1.08)
Avg. Rainfall Past 14 Days −2.36 −0.80 −3.52∗∗

(1.63) (2.64) (1.69)

Horizon FEs yes yes yes
Hour-of-Day Dummies yes yes yes
Horizon × Movie-Date Weather yes yes yes
Movie-Date FEs yes yes yes
Observations 19464 8036 8705

Notes: We report the coefficients and standard errors (clustered on the movie-date level) from Poisson panel regres-
sions of hourly ticket orders (1 to 4 days in advance) on current weather conditions (hourly sunshine duration as
the fraction of the hour, hourly rainfall in mm, as well as the daily averages and 14 day moving averages of these
variables), purchase-horizon fixed effects, hour-of-day fixed effects, and movie-date fixed effects. Interactions of real-
ized movie-date weather and dummies for the purchase-horizon are used to proxy for expected movie-date weather.
Column 1 reports coefficients for all orders between 8 am and 8 pm. In the two remaining columns we split the
dataset into orders before and after 2 pm. Level of significance: * p < 0.10, ** p < 0.05, *** p < 0.01.

orders per hour is identified from the variation of the weather within a day, holding constant the

average weather conditions on that day.18 Table 5 shows that the within-day variation in weather

explains the hourly variation in ticket orders to a significant degree. If sunshine duration were to

change from cloudy to sunny, hourly ticket orders would increase by 16 to 20 percent. The size of

this effect is similar for morning and afternoon sales, but only the latter is statistically significant,

which may be due to the higher variation in ticket orders during the afternoon hours, which is when

most tickets are sold.19

18An alternative approach would be to regress hourly changes in ticket orders on hourly changes in weather. In count
models, however, such a first-difference specification does not admit a closed form likelihood for any observation,
as each possible difference can be generated by infinitely many combinations of Poisson arrivals across hours (i.e.,
a difference of 1 can be generated by orders of 0 and 1, 1 and 2, and so on). In a previous version of this paper, we
estimate a first difference model via OLS and find statistically significant effects of changes in weather on changes
in sales.

19In Appendix B.1 we estimate the hourly hazard rate of ticket orders using event history models and find effects
with similar sizes.
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Figure 4: Predictive Power of Current Sunshine Duration
This figure provides a scatterplot of the residuals of current sunshine duration against the residuals of future evening
sunshine duration (5 pm to 7 pm, 1 to 4 days into the future). Both residuals are relative to the respective year and
month specific means. The black solid line depicts the linear regression of future on current sunshine residuals. The
95 percent confidence interval is given by the gray lines.

(a) 1 Day into the Future (b) 2 Days into the Future

(c) 3 Days into the Future (d) 4 Days into the Future

4. Rational Explanations for the Weather Effect

In the previous section, we have shown that good weather on the day of purchase prompts the

customers of the movie theater to buy advance tickets, even though purchase-date weather is

irrelevant for enjoying a movie on a later date. In this section, we discuss whether there could be

explanations for this weather effect apart from psychological mechanisms.

4.1. Information Content of Current Weather for Future Weather

An immediate concern for our analysis so far is that individuals use current weather to update

their beliefs about future weather conditions. There are two reasons why this could be optimal.

First, current weather may be informative in itself. so that consulting the weather forecast is

unnecessary. Second, current weather may enhance the prediction of future weather, even given

the weather forecast. This may be the case, for example, if the forecast cannot take regional factors

into account sufficiently well.
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Figure 5: Predictive Power of Weather Forecasts
This figure provides a scatterplot of current forecast symbols against residuals of a regression of future evening
sunshine duration (5 pm to 7 pm, 1 to 4 days into the future) on month and year dummy variables. To visualize the
variation within a forecast category, random noise is added to the observations. The black solid line connects the
means of the residuals conditional on the forecast, the gray lines connect the 95 percent confidence intervals of the
conditional means.

(a) 1 Day into the Future (b) 2 Days into the Future

(c) 3 Days into the Future (d) 4 Days into the Future

We argue that the information content of the current weather for future weather is, in general,

limited if not nil due to large day to day fluctuations of local weather in Munich. In Figure 4, we

plot average evening sunshine duration one to four days ahead against current sunshine duration

(both purged for seasonal effects by year and month dummies). It turns out that tomorrow’s

sunshine hours are at best slightly positively related to today’s sunshine duration. Furthermore,

today’s weather has no explanatory power for weather two or more days into the future.

In contrast, the weather forecast is able to explain future sunshine duration well. Figure 5

plots average evening sunshine duration purged for seasonal effects as above, but this time against

the forecast as given by forecast symbols. Evidently, there is a clear positive correlation between

symbols indicating good future weather and realized sunshine duration.

In order to check that the predictive power of current weather, even when not controlling for the

forecast, is low, we complement the graphical analysis above with empirical estimates. In particular,

we forecast Sh, the evening sunshine duration h days into the future, with the following model
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Sunshineth = Weather′
tγW +Forecast′

thγF +N′
tγN + ξth, (2)

where controls Nt include year and month dummies. Current weather Weathert is defined as

above and the forecast vector Forecastth includes all variables of the weather forecast of date t

for date h.We estimate model (2) for time horizons h between one and four days, with and without

including the forecast; the results are displayed in Table 13 in Appendix E. Confirming the graphical

results, the current weather seems to be uninformative for future weather. The exception to this

rule is column (1) in Table 13, where the coefficients of current sunshine duration are statistically

significant but quantitatively small (a one percent increase in sunshine duration today leads to an

increase in sunshine tomorrow of 0.12 percentage points on average). In contrast, the predictive

power of the forecast is sizable: adding it to the model leads to a strong increase in variance

explained.20

Our results indicate that it cannot be optimal for customers to interpret the current weather as

an informative signal for future weather. Hence, rational expectations cannot explain the previously

found dependence of ticket orders on the current weather. Even if the vast majority of customers

are locals and hence familiar with local weather patterns, we cannot rule out the possibility that

customers perceive current weather to be informative. Yet, we have just shown that such perceptions

would be at odds with the data, and should hence be attributed to a psychological rather than a

rational mechanism. For this reason, we defer the discussion of this possibility to Section 5.3.

4.2. Precautionary Ticket Orders and Purchase Timing

Another concern is that due to capacity constraints higher ticket orders at any given point in time

lead to a greater risk that the movie may sell out. In fact, this is not a relevant risk, as the theater

in question is quite large (1,300 seats) and has been sold out only 13 percent of the time over the

entire time span of our analysis. Over the entire analysis, however, it has never been sold out in

advance, so that customers would always be able to buy tickets online until 6 pm on the day of the

screening (the latest date for buying tickets online).21

Nevertheless, customers may believe that the availability of tickets later on decreases with good

current weather, which may lead to a weather dependent precautionary motive for buying tickets

in advance. There may be two ways to support an equilibrium in which the precautionary motive

may play a role. First, rational customers may expect that purchasing decisions of others are

20Survey results indicate that customers appreciate the predictive power of the weather forecast and consult the
forecast frequently. From all respondents, 84 percent consult the weather forecast at least every other day or
when they are planning weather related activities. Customers also appreciate the forecast’s reliability: 85 (86)
percent state that the forecast for tomorrow (two days ahead) will be correct at least 80 (60) percent of the time.
See Appendix D for details.

21Survey results indicate that the main motivation for customers to buy tickets in advance is the worry that the
theater may sell out (for 70 percent of advance customers), followed by the desire to avoid the line at the box
office (23 percent of advance customers). This is despite the fact that 84 (74) percent of advance customers state
that it is “unlikely” or “very unlikely” that tomorrow’s screening will be sold out in advance (sold out at the box
office shortly before the movie starts). See the answers to questions 6, 7 and 18 of the survey in Appendix D.
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Figure 6: Distributed Lag Analysis of Sunshine Duration and Rainfall
This figure shows the coefficient values and 95 percent confidence intervals of the effect of daily lags of average
sunshine duration (Panel (a)) and daily lags of average rainfall (Panel (b)) on advance ticket orders. Coefficients
are estimated with the same model underlying Column 4 of Table 3, except that the 14-day moving averages of the
weather variables are replaced by 14 daily lags.

(a) 14 Lags of Sunshine Duration (b) 14 Lags of Rainfall

driven by psychological mechanisms. Then, the weather dependence of ticket orders would be

caused by non-rational customers in the first place, but amplified by the precautionary motive of

rational customers. Second, with only rational customers, the precautionary motive may prevail

as an (inefficient) equilibrium of a coordination game. For this to be an equilibrium, the perceived

increase in the risk that the theater sells out must cause exactly the boost in ticket orders underlying

the increase in risk.

The first implication of the precautionary motive for purchase is that good weather causes rational

customers to shift their purchasing decisions to an earlier date than originally planned. In other

words, good weather leads to an intertemporal substitution of ticket orders from later to earlier

dates. If the weather dependence of ticket orders were predominantly caused by precautionary

motives, we would hence expect to find a decrease in today’s orders if past weather was good.

In contrast to this prediction, the coefficients of the 14-day moving averages of sunshine duration

and rainfall found in Tables 3 and 4 already suggest that past good weather is, if anything, positively

associated with today’s ticket orders. To further substantiate this finding, we estimate a distributed-

lag variant of our baseline empirical model (1) in which we replace the moving averages of past

weather by 14 daily lags of sunshine duration and rainfall.22 Figure 6 plots the coefficients and

95 percent confidence intervals of current (daily lag equal to zero) and lagged sunshine duration

and rainfall. The results show a large and significant positive effect of current sunshine duration

(coefficient equal to 0.48) and a negative effect of current rainfall (coefficient equal to −0.20) on

ticket orders; these are almost identical to the estimates of the main analysis in Table 3. In addition,

the coefficients of past sunshine duration are positive, but statistically insignificant most of the time.

Past rainfall, in turn, has a negative effect on sales, at least for the past 10 days. Recall that these

coefficients should have the opposite signs if the positive association between purchase-date weather

22See Busse et al. (2015) for a similar analysis.
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and ticket orders were caused by intertemporal substitution. We can hence dismiss the possibility

that this is the sole mechanism driving our results.

A second implication of the precautionary motive for purchase is that potential customers should

only consider rescheduling their purchase timing if good weather leads to a considerable increase

in the risk that the theater sells out. At times, this may not be the case. For particularly early

purchase horizons of one week or earlier, deferring the purchasing decision to a later date is riskless.

Similarly, hourly variations in weather can be assumed to have little impact on the probability of

ticket availability, as the hourly rate of ticket sales is low. The precautionary motive for ticket

purchases is, hence, unable to explain the sizable effects of weather on early ticket orders or the

increase in hourly sales caused by hourly improvements in weather shown in Tables 4 and 5,

respectively. We conclude that purchase-date weather does not affect ticket orders indirectly via

market interactions that govern the probability of ticket availability. Rather, good weather seems

to directly increase the number of ticket orders.

4.3. Consumer Learning

A third concern could be that the results are driven by inexperienced customers who have difficulty

imagining their utility of watching a movie outdoors under different weather conditions. Such

customers may try to infer their utility using current weather as an anchor, which could possibly

lead to an overestimation of the expected utility at times of good weather. Before we discuss this

hypothesis, we note that this mechanism already constitutes a misprediction of future utility linked

to current weather conditions. As such, it is closely related to the psychological mechanisms we

discuss in Section 5.3. The distinction between misprediction due to inexperience and misprediction

due to psychological mechanisms is that the former can be cognitively overcome by learning from

experience, while it may be more difficult to learn about and overcome deeply rooted psychological

biases.

The data contains the entire history of customers’ online purchases (provided they always used

the same account), so that there is information about their past experiences with visiting the

theater. We use this information to study the purchase behavior of different subsets of experienced

customers. To do so, we aggregate, for each combination of day of purchase and day of the movie,

all ticket orders of four groups of repeat customers, and use these aggregates as the dependent

variable in the empirical model (1). The subsets of customers considered are, first, all customers

who are ordering their tickets at least the second time within the entire period from 2004 to 2011,

second, customers who place at least the second order within any given summer, third, customers

who experienced rainfall during a show they previously purchased tickets for, and fourth, customers

who previously ordered a ticket on the day of the movie (which would be rational given the negligible

risk of the theater’s selling out: see Section 4.2).

Table 6 shows that the influence of purchase-date weather on ticket orders is fairly constant across

all sets of customers. Ticket orders by the four subsets of experienced customers are between 42

and 59 percent higher on a completely sunny day than on a completely cloudy day, close and
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Table 6: Effect of Purchase-Date Weather on Ticket Orders of Repeat Customers

Ticket Orders (1 - 28 Days Ahead) of Repeat Customers

Repeat Customers Considered: All within Season Bad Experiences Movie-Date Order
(1) (2) (3) (4)

Avg. Sunshine Duration 0.48∗∗∗ 0.51∗∗∗ 0.64∗∗∗ 0.50∗∗∗

(0.10) (0.17) (0.17) (0.13)
Avg. Rainfall per Hour −0.24 −0.04 −0.21 −0.47∗

(0.20) (0.26) (0.27) (0.27)
Avg. Sunshine Past 14 Days 1.27∗ 2.72∗∗ 1.44 0.93

(0.68) (1.06) (0.93) (0.92)
Avg. Rainfall Past 14 Days −2.07∗∗∗ −0.22 −2.17∗∗ −2.01∗∗

(0.78) (1.36) (1.03) (0.97)

Horizon FEs yes yes yes yes
Horizon × Movie-Date Weather yes yes yes yes
Movie-Date FEs yes yes yes yes
Observations 11332 7845 7994 8782

Notes: We report the coefficients and standard errors (clustered on the movie-date level) from Poisson panel re-
gressions of (1). In each column, we use a different subsample of ticket orders to calculate daily ticket orders (the
dependent variable). These criteria are related to customers’ experiences with previous visits to the cinema. In the
first (second) column, an order is only considered if it is not the customer’s first order (not the first order in the
current season). In the third and fourth columns, an order is only considered if the customer had previously ordered
tickets for a movie-date at which there was rainfall during the night of the movie (Column 3) or if the customer has
previously ordered tickets on the day of the movie (Column 4). The independent variables are as defined in Table 3.
Level of significance: * p < 0.10, ** p < 0.05, *** p < 0.01.

statistically indistinguishable to the baseline estimate of 47 percent. Note, in particular, that

purchasing decisions of customers with the unpleasant experience of rainfall during a previous visit

are no less affected by current sunshine than are the decisions of all customers. Similarly, advance

ticket orders of the most “rational” customers—those who had previously purchased tickets on the

day of the show—are driven by purchase-date weather. Overall, these results strongly indicate that

the weather dependence of purchasing decisions cannot be overcome by learning.

5. Psychological Mechanisms

So far, we have shown that good purchase-date weather increases ticket sales for the outdoor cinema

and that it is difficult to reconcile this finding with rational behavior. In this section, we turn to

candidate psychological theories that predict a relation between ticket orders and weather conditions

on the day of purchase. Specifically, we will focus on the reminder effect of weather, projection

bias, and extrapolative expectations, as well as the salience of choice alternatives as psychological

mechanisms that may be able to explain the empirical evidence. Before we discuss each of these

mechanisms in turn, however, we ask whether customers are more likely to erroneously purchase

tickets at times of beautiful weather than at times of unpleasant weather in the sense that they

let their tickets expire with higher probability. The answer to this question is not indicative for a

specific mechanism to be at work. Nevertheless, we would expect that customers who are triggered
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to purchase tickets by some psychological bias have a higher rate of ex post mistakes than rational

customers.

5.1. Do Customers Erroneously Buy Tickets when the Weather is Nice?

Customers may ex post decide that purchasing tickets was a mistake and that, on the day of the

movie, they are better off letting their tickets expire. Conlin et al. (2007) propose to use such ex

post mistakes to test for the presence of psychological biases. Specifically, they argue that customers

who overestimate their future utility derived from a product are more likely to find, ex post, that

their purchase has been a mistake. In our setting, the overestimation of future utility at times of

good weather is only one potential psychological mechanism that could be consistent with both

higher ticket orders and a higher rate of errors. Another explanation for both findings could be

that good weather reminds customersto buy tickets, and that the marginal customer on days with

nice weather is more sensitive to changes in weather than the marginal customer at times of bad

weather. We return to these potential explanations in the following sections.

We estimate the probability that customers let their tickets expire using the Probit model

Pr(tickets expire)tτ = Φ
(

Weather′
t βW +Movie-Date Weatherτ

′ βMW ,

+Forecast′
tτ βF +Mτ

′ βM + δtτ

)

, (3)

where Φ(·) is the normal cdf. Our goal is to test whether good purchase-date weather at t, as

measured by the usual vector Weathert, causes customers to let their tickets expire more frequently

at τ . In addition, we control for the weather during or shortly before the movie summarized by

the vector Movie-Date Weatherτ (including the duration of evening sunshine as well as the

temperature and rainfall during the movie), the weather forecast at the time of purchase, horizon

fixed effects δtτ , and movie-date characteristics Mτ (year, month, and day-of-week fixed effects).

The first column of Table 7 shows that a longer sunshine duration and less rainfall on the day of

purchase are both associated with a higher likelihood that the tickets will not be used. However, the

estimated coefficient of sunshine duration is statistically significant only with a p-value of 0.13, and

the coefficient of rainfall is insignificant. We conjecture that this is due to the limited variance of

the dependent variable: only 11 percent of customers let their tickets expire. This is not surprising,

considering that there is no systematic reason to let tickets go to waste if the day of the movie

has good weather. Instead, such days merely add noise to the potential impact of purchase-date

weather on ex post errors.

We next turn our attention to subsamples of customers for whom movie-date weather turns out

worse than potentially expected. In these subsamples, there is a greater scope for errors that may

lead customers to let their tickets expire. We first restrict the sample to purchase decisions for which

there was less sunshine duration on the day of the movie than on the day of purchase. This would

be a negative surprise if customers were to extrapolate current weather conditions into the future.

Second, we restrict the sample to customers for whom expected sunshine duration as predicted by
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Table 7: Purchase-Date Weather and the Probability that Tickets Expire

1 if Tickets Expire, 0 if Tickets Used

Sample Restrictions: Full Sample Movie Sunshine Movie Sunshine Rainfall on
less than at Purchase less than Predicted the Movie-Date

(1) (2) (3) (4)

Avg. Sunshine Duration 0.18 0.53∗∗ 0.45∗∗∗ 0.33∗

(0.12) (0.22) (0.17) (0.17)

Average Predicted Likelihood that Tickets Expire
At Sunshine Duration = 0 0.10 0.12 0.17 0.21
At Sunshine Duration = 1 0.13 0.21 0.26 0.29

Avg. Rainfall per Hour −0.05 −0.05 −0.08 −0.03
(0.15) (0.26) (0.21) (0.22)

Sunshine before the Movie −0.70∗∗∗ −0.85∗∗∗ −1.30∗∗∗ −1.12∗∗∗

(0.12) (0.20) (0.39) (0.26)
Rainfall during the Movie 0.13∗∗∗ 0.16∗∗∗ 0.18∗∗∗ 0.14∗∗∗

(0.04) (0.05) (0.04) (0.04)
Temperature during the Movie −0.11∗∗∗ −0.14∗∗∗ −0.16∗∗∗ −0.14∗∗∗

(0.01) (0.02) (0.02) (0.02)

Horizon FEs yes yes yes yes
Forecast Variables yes yes yes yes
Year & Month FEs yes yes yes yes
Movie-Date’s Day-of-Week FEs yes yes yes yes
Pseudo R2 0.26 0.26 0.25 0.23
Observations 3476 1479 1337 1169

Notes: We report the coefficients and robust standard errors of Probit regressions of (3); see the text for details.
Column 1 uses the full sample of advance sales in the years 2009 to 2011 for the estimation. In Column 2, we restrict
the sample to orders for which average sunshine duration was lower on the day of the movie than on the day of
purchase. In Column 3, we restrict the sample to orders for which average movie-date sunshine duration between 5
pm and 7 pm was lower than predicted on the day of purchase using model (2). In Column 4, we restrict the sample
to ticket orders for which there was positive precipitation on the day of the movie. We further report, for each sample,
the average predicted likelihood that tickets expire if average purchase-date sunshine duration is 1 (completely sunny)
and 0 (completely cloudy). Level of significance: * p < 0.10, ** p < 0.05, *** p < 0.01.

the forecast via model (2) is higher than the realized sunshine duration shortly before the movie.

This would be a negative surprise if customers were to predict the weather using the forecast. And

finally, we restrict the sample to date of movie’s with positive rainfall. In these subsamples, 19 to

25 percent of customers let their tickets expire, so that there is a considerably higher fraction of

“mistakes” than in the full sample.

Columns (2) to (4) of Table 7 show that, for the restricted samples, better purchase-date weather

leads to a statistically significant increase in the probability that customers let their tickets go to

waste. The estimated coefficients imply that it is on average 8 to 9 percent more likely that

a customer lets her tickets expire when purchased on a completely sunny day (sunshine duration

equals one) compared to a completely cloudy day (sunshine duration equals zero). These are sizable

effects, considering that the average probabilities are between 19 and 25 percent. Overall, good

purchase-date weather thus clearly increases the number of ex post mistakenly purchased tickets.
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5.2. Salience of Consideration Sets

The first psychological mechanism we discuss in detail is that good weather reminds customers

of the possibility of visiting the theater. The idea is that customers face cognitive restrictions

regarding the number of options they can consider at a given time and only consider an alternative

if it “comes to mind.” As such, the salience of a choice alternative determines the number of

potential customers and consequently the size of the demand side.23 Thus, it seems natural that

the choice option “outdoor movie theater” is particularly salient during good weather, of which

sunshine duration is the most salient indicator.

In order to be consistent with all the findings presented thus far, consideration set salience needs

to have the following three properties. First, the weather needs to scale the number of potential

customers independently of the purchase timing, as we find that the effect of the weather on ticket

orders is largely independent of the purchase horizon. This seems plausible, as reminders are

naturally independent of the properties of the particular object of which one is reminded. Second,

the reminder effect of weather has to operate (at least partially) via short-term changes in the

weather in order to explain the effect of hourly changes in the weather on ticket orders. Again, this

seems to be a sensible implication, as we would expect that it is the current state of the world that

reminds individuals of options relevant in this state.

The third implication of the empirical findings in the context of consideration set salience is that

those customers who are reminded of their option of buying tickets are more sensitive to the weather

and thus let their tickets expire with greater probability. On the one hand, it seems plausible that

predominantly marginal customers need a reminder to consider the outdoor cinema as a viable

option for spending a night out. On the other hand, marginal customers should be expected to be

more cautious in their purchasing behavior than the average customer and, for example, to avoid

purchasing tickets many days ahead. This, however, would be at odds with the finding that good

weather affects earlier and later ticket orders in the same way. It is moreover not obvious that

customers who are reminded to visit the theater are necessarily the marginal ones. It seems equally

plausible that sunny weather reminds those who highly value the outdoor movie experience to buy

their tickets, as these are the ones who “lose” most when they forget to visit the theater. That the

purchasing behavior of repeat customers, who presumably enjoy visiting the theater more than the

average first-time visitor, is equally affected by the current weather as the behavior of the average

customer could be interpreted in favor of the latter argument.

To further investigate the plausibility of the consideration set salience plus selection hypothesis,

we can ask what fraction of those customers who were supposedly reminded to buy tickets at times

of good weather would have to let their tickets expire for this hypothesis to be consistent with the

23See Eliaz and Spiegler (2011) for a recent theoretical treatment of the idea that marketing may direct customers’
attention to certain choice alternatives. In addition, there are a number of empirical papers that demonstrate
the importance of reminders for choice behavior. See, for example, Alba et al. (1991), Barber and Odean (2008),
Chetty et al. (2009), Finkelstein (2009), or Karlan et al. (2010).

23



data. Under the assumption that our findings are solely due to the reminder effect of the weather

Pr(tickets expire|y1) =
Pr(tickets expire|y0)y0 +Pr(tickets expire|∆y)∆y

y1
,

where y1 (y0) denotes the number of ticket orders when the average sunshine equals 1 (equals 0)

on the day of purchase, ∆y denotes the “marginal orders” y1 −y0, and Pr(tickets expire|x) denotes

the probability that tickets expire among the set of orders x. We assume that customers who buy

their tickets even when the weather is completely cloudy have a different ex ante probability of

not using their tickets than do the “selected” customers who only buy tickets when it is sunny.

Because βsun, the coefficient of average sunshine duration estimated in Table 3, is a semi-elasticity,

we have y1 ≈ (1 + βsun)y0, which enables us to solve for Pr(tickets expire|∆y) as a function of

βsun, Pr(tickets expire|y1), and Pr(tickets expire|y0). Taking βsun = 0.524 and the estimated prob-

abilities that tickets expire from Table 7, we find that, to be consistent with the data, reminded

customers need to let their tickets expire with a probability of 0.19 unconditional of movie-date

weather and with a probability of up to 0.44 when it is raining on the day of the movie. Even

though these values do not seem to be outright implausible they are rather high and imply that

selected customers would take on a sizable risk when purchasing their tickets if the consideration

set salience hypothesis were true.

We also test directly whether there is evidence that customers who order their tickets when the

weather is good are different from customers who order tickets when the weather is bad. To this

end, we regress average sunshine duration on the day of purchase on the customer characteristics

that are observable in the data. Table 14 in Appendix E shows that neither a customer’s age, nor

her number of visits—in total or within a year—nor whether or not she had previously purchased

tickets for a rainy day of the movie are related to sunshine duration on the day of purchase. Only

those customers who previously had purchased a ticket on the day of the movie seem to order their

tickets during slightly better weather conditions than others, but this coefficient is only statistically

significant at a p-value of 0.13. Even though this evidence is thus suggestive at best, it is consistent

with a selection of more weather-sensitive customers at times of good weather, as those should also

be the ones most likely to purchase their tickets on the day of the movie, when the weather risk is

smallest.

5.3. Projection Bias and Extrapolative Expectations

Projection bias describes the tendency of individuals to underestimate the magnitude of a change

in utility that may go along with a change in the state of the world. In our setting, projection bias

describes the possibility that on a sunny day, potential customers dwell on the potential upside of

enjoying a great summer night at the movies, but underestimate how unpleasant it is to sit outside

on a rainy or cold evening. Similarly, on a cloudy or rainy day, customers have a hard time to

24P r(tickets expire|∆y) is decreasing in βsun, so that assuming a βsun at the higher end of the estimates of Table 3
gives a lower bound for the probability that the tickets of marginal customers expire.
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imagine the full extent to which they would enjoy a summer night out.25

Based on earlier psychological work, Loewenstein et al. (2003) introduce a formalization of pro-

jection bias into the economics literature. Applied to our setting, their model of “simple projection

bias” assumes that visiting the cinema on date τ , c, provides instantaneous utility u(c,wτ ),which

depends on the weather at τ , wτ . Projection bias implies that customers who attempt to predict

their future utility at an earlier date t < τ overestimate the degree to which future utility resembles

the instantaneous utility they would receive under current weather conditions, given by u(c,wt).

Assuming that customers form (rational) beliefs about the weather at τ , described by the cdf

Htτ (wτ ), a customer would thus exhibit projection bias if her estimated future utility Ũ(·) were

given by

Ũ(c,Htτ (wτ )|wt) = αu(c,wt)+(1−α)

ˆ

u(c,wτ )dHtτ (wτ ). (4)

Here, α ∈ [0,1] describes the degree of projection bias; (4) evidently nests expected utility for α = 0.

This formalization of projection bias assumes that customers form correct beliefs Htτ (wτ ) about

the weather at τ , but err in anticipating the degree to which changes in the weather affect their

utility. An alternative interpretation of (4) could be that customers correctly anticipate the weather

dependence of their utility, but put an excessive probability weight α on the event that the future

weather is identical to the current weather (this has been pointed out by DellaVigna, 2009).26 Such

extrapolative expectations and projection bias are observationally very similar in our setting, which

is why we discuss their implications jointly.

The empirical findings are well in line with the predictions of the above model of projection bias

or extrapolative expectations. The model predicts that good weather leads to an overvaluation of

visiting the theater in the future (and bad weather leads to an undervaluation). Customers are

hence expected to order tickets with a greater probability when it is sunny than when it is rainy;

this holds for all purchase horizons as well as for short-run fluctuations in the weather. Moreover,

as formally shown by Conlin et al. (2007), this also implies that customers who had ordered their

tickets on a sunny day may realize ex post that their initial valuation of the night at the movie has

been too high, resulting in a larger probability that their tickets will not be used.

Nevertheless, there are a few objections that may speak against the interpretation of the empirical

findings as evidence for projection bias or extrapolative expectations. If projection bias were the

explanation for our findings, we would expect that the dimension of utility that plausibly matters

the most for utility—rainfall—predominantly explains the variations in ticket orders.27 In practice,

25In addition to the work by Conlin et al. (2007) and Busse et al. (2015) discussed in the Introduction, Simonsohn
(2010) finds empirical evidence for projection bias. Another line of recent work structurally estimates the degree
of projection bias as one of at least two parameters describing deviations from rational behavior (Kliger and Levy,
2008; Levy, 2010; Acland and Levy, 2015).

26Extrapolative and adaptive expectations have received renewed interest in the macroeconomics and finance litera-
ture. See, for example, Fuster et al. (2010) and Barberis et al. (2015) for recent theoretical applications. Benartzi
(2001), Kaustia and Knüpfer (2008), Barber et al. (2009), or Choi et al. (2009) empirically show that individuals
tend to choose assets with high current returns more frequently than other assets. See also Hommes (2011) for
an overview of the related literature on heterogeneous expectations.

27In the survey, 82 percent of the customers stated that dry weather is either “very important” or “important” for
enjoying the night out.
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it is the most salient dimension of weather—sunshine—which displays the strongest association with

behavior, possibly favoring a salience story instead. At the same time, the data is not conclusive

regarding which dimension of weather is, in fact, most important for customers’ enjoyment of a

movie. For example, movie-date sunshine duration seems to explain same-day ticket orders to a

larger extent than movie-date rainfall (see Figure 1 for the correlation of same-day ticket orders and

sunshine duration and Figure 7 in Appendix A for the correlation of same-day ticket orders and

rainfall). Also, Table 7 suggests that all dimensions of movie-date weather are similarly important

in explaining whether or not customers let their tickets expire.

Moreover, there are two reasons which may render it unlikely that customers extrapolate from

the current weather when forming beliefs about future weather. First, most customers are locals

and should be aware of the poor predictive power of the current weather for the future weather,

especially many days in advance. Second, customers are explicitly warned on the ticketing website

not to be too optimistic regarding future weather. Yet, these arguments, somewhat paradoxically,

use rational reasoning to question a candidate psychological explanation for the observed behavior.

Hence, they fall short in providing a data- or interpretation-driven reasoning why beliefs regarding

the future should not irrationally assign excessive weight to the current state.28

5.4. Salience of Product Attributes

The third psychological mechanism we consider is the possibility that the current weather affects the

salience of choice alternatives (as formalized by Bordalo et al., 2012, 2013 and Koszegi and Szeidl,

2013). This concept of salience describes the idea that the specific choice context determines the

attributes of the available choice alternatives on which individuals will focus their attention. As the

choice context changes, different attributes may become salient and, thus, receive higher decision

weights. Henve, through salience the particular choice context governs the likelihoods with which

choice alternatives are chosen.29

We pause to note that the concept of the “salience of product attributes” is very different from the

idea of “consideration set salience” put forward earlier. The latter posits that salience affects choice

behavior along the “extensive margin” by highlighting the choice alternatives that are actually

available, determining which alternatives are included in the consideration set. In contrast, the idea

here is that the salience of certain product attributes affects the likelihood with which an option is

28That individuals extrapolate from their current experience despite the negligible information content of these
experiences has also been suggested by evidence from individual investment decisions cited in footnote 26. It
is hard to find a convincing argument why “expert knowledge” of the weather should de-bias individuals while
knowledge of capital markets does not, despite the larger stakes in capital markets.

To us, it seems that a clean distinction between projection bias and extrapolative expectations is only possible
in the setting at hand if beliefs are observable. For this reason, we asked customers to state their beliefs regarding
future weather in the survey. Even though the survey data contains only 13 independent observations of the
(expected) weather, there seems to be a robust positive correlation between current weather and customer’s
beliefs regarding tomorrow’s weather. There is no robust correlation for other forecast horizons (see Table 15 in
Appendix E). Due to the very limited statistical power underlying these correlations, however, we caution against
drawing any firm conclusions from them (see Appendix C for further details).

29See, for example, Brown et al. (2010), Lacetera et al. (2012), or Hastings and Shapiro (2013) for empirical evidence
that individuals focus more on some attributes than on others.
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chosen from the consideration set, corresponding to an effect of salience on choice behavior along

the “intensive margin.”

To clarify how we think about the salience of attributes, we adapt the formalization of “focus-

weighted utility” of Koszegi and Szeidl (2013) to choice under uncertainty. We consider a situation

in which an individual may choose between different alternatives of how to spend an evening. These

options are partly described by how appropriate they are for an evening with good weather (an

attribute denoted by gw) or bad weather (an attribute denoted by bw).30 Besides these weather-

related attributes, there may be others, such as the ease of conversing with friends, or the quality

of the food and drink that can be ordered, all of which are elements of the attribute set K. Given

this, the date-t expected focus-weighted utility Û of visiting the outdoor cinema—described by the

multidimensional vector c—at date τ is assumed to be given by

Û(c,Htτ (wτ )) =

ˆ



πgw ugw(cgw,wτ )+πbw ubw(cbw,wτ )+
∑

k∈K\{gw,bw}

πk uk(ck)



 dHtτ (wτ ). (5)

Here, the consumption utility of attribute x, ux(·), depends on the consumption level cx ∈ c that a

visit to the cinema entails for attribute x; in the weather-related dimensions, consumption utility is

also determined by the realized weather wτ . Customers are assumed to hold rational date-t beliefs

regarding the future realizations of the weather, which are denoted by Htτ (wτ ). The focus-weight

utility (5) hence only deviates from standard expected utility in terms of the attributes’ “focus

weights” πx, that are assumed to be increasing in the attributes’ salience.

The salience of an attribute is determined by how much this attribute “stands out” among all

attributes within a consumer’s choice context, which is typically assumed to include all choices in

a customer’s consideration set. Koszegi and Szeidl (2013) suggest that the salience of an attribute

is increasing in the range of the attitude’s possible consumption utilities across all elements of the

consideration set. Hence, customers are assumed to focus on attributes for which the difference

between the highest and the lowest possible (expected) consumption utility is high, while they

rather neglect those attributes for which the maximum difference of expected consumption utilities

is small. Watching a movie outdoors is plausibly a way to spend an evening that provides, compared

with other alternatives, rather high good-weather consumption utility and rather low bad-weather

consumption utility. Then, the maximum difference in the good-weather dimension of utility is high

whenever the consideration set includes the alternative of visiting the cinema at times of beautiful

weather. This increases the salience of the good-weather attribute, and thereby the salience of the

30As noted by Busse et al. (2015), how the product attributes are defined is an important part of this model’s
specification. Given the separate definition of good and bad weather attributes, we would intuitively expect
that good current weather highlights the good weather attribute, a dimension in which the cinema is expected
to provide a high consumption utility, hence causing customers to buy tickets. In contrast, unpleasant current
weather may highlight the bad weather dimension in which the cinema provides very low consumption utility,
potentially causing individuals to shy away from ordering tickets. In contrast, if we were to define only a single
weather-related attribute, this attribute could be highlighted by both, unusually good and unusually bad weather.
In this case, either type of extreme weather could cause an increase in ticket orders, which seems counter-intuitive
and is inconsistent with our results.
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potential upside of visiting the theater. Conversely, if the consideration set includes the option of

visiting the outdoor theater at times of unpleasant weather, the bad-weather attribute is expected

to receive a high focus weight and with it the potential downside of sitting outside when it pours.

Our empirical findings can thus potentially be explained by the current weather’s increasing

the salience of weather-related product attributes. For this to be the case, however, the option

of visiting the cinema evaluated at current weather conditions must enter the consideration set,

even though the consumer is considering buying a ticket for some future date with still uncertain

weather conditions. It seems quite plausible that a potential customer considering ordering tickets

for a future date imagines how enjoyable it would be to visit the cinema today. This, then, would

lead to the observed positive association between pleasant purchase-date weather and ticket orders.

Moreover, whenever the weather changes between the day of purchase and the day of the movie,

the focus weights would change. A customer who experiences less than ideal weather conditions on

the day of the movie may find out ex post that due to good weather at the time of purchase, she

had been focusing too much on the potential upside of spending a beautiful summer night outside.

In this way, the changing salience of product attributes may also explain the higher willingness to

let tickets expire for those customers who had purchased their tickets on a sunny day.31

There is an additional prediction from the psychological mechanism of “salience of product at-

tributes” that can be used to differentiate this mechanism from the other two psychological theories

we have considered earlier. This prediction is based on the assumption that the current weather

may change the salience of weather-related product attributes, but does not disturb the expected

consumption utilities of these attributes. As a consequence, highlighting the good-weather attribute

of the movie theater should lead to a more pronounced increase in ticket orders when the weather is

indeed forecast to be beautiful. Conversely, bad purchase-date weather should result in a stronger

decrease in ticket orders if the future weather is expected to be unpleasant.32

We examine this prediction by testing whether the effect of current sunshine duration and rainfall

on ticket orders depends on the (expected) movie-date weather. To this end, we augment the main

panel specification (1) by interactions of the weather variables with dummy variables that equal

one when the movie-date weather may be expected to be pleasant. Our first indicator of pleasant

31It is more difficult to explain the empirical findings of this paper with the definition of salience put forward by
Bordalo et al. (2012, 2013), which allows the salience of one attribute to differ across choice alternatives. In
their setting, the salience of an alternative’s attribute is increasing in the difference between the attribute’s
consumption utility for this alternative and the average consumption utility of the attribute across the elements
of the consideration set. Following this definition, good weather on the day of purchase may increase the average
consumption utility for the good-weather attribute, and, thus, decrease the salience of the good-weather attribute
for the alternative of visiting the theater in the future. Even though the models of Bordalo et al. (2012, 2013)
and Koszegi and Szeidl (2013) share the intuition that attributes which “stand out” should be more salient, the
specific formalization of this idea may thus lead to different empirical implications. Note, also, that for both
conceptualizations of salience, it is important which choice alternatives enter the consideration set. See Busse
et al. (2015) for an extensive discussion of this issue.

32Obviously, it may be the case that purchase-date weather simultaneously increases the salience of product attributes
and distorts beliefs regarding future weather in the direction of the current weather. However, we argue in Section
5.3 that distorted beliefs are sufficient to explain all empirical findings thus far. Occam’s Razor would hence lead
us to prefer such an explanation to the more complex combination of “salience of product attributes” and distorted
beliefs.
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Table 8: Effect of Purchase-Date Weather on Ticket Orders Conditional on Movie-Date Weather

Ticket Orders (1-4 Days Ahead)
(1) (2) (3)

Avg. Sunshine Duration 0.53∗∗∗ 0.52∗∗∗ 0.32∗

(0.17) (0.17) (0.18)
× I(Forecast “Sunny” or “Partly Sunny”) −0.02

(0.18)
× I(Movie-Date Sunshine > Median) −0.01

(0.21)
× I(Movie-Date Rainfall = 0) 0.29

(0.21)
Avg. Rainfall per Hour −0.45∗ −0.15 −0.17

(0.24) (0.23) (0.21)
× I(Forecast “Sunny” or “Partly Sunny”) 0.33

(0.29)
× I(Movie-Date Sunshine > Median) −0.18

(0.32)
× I(Movie-Date Rainfall = 0) −0.24

(0.31)
Avg. Sunshine Past 14 Days −0.04 0.03 0.10

(0.88) (0.88) (0.89)
Avg. Rainfall Past 14 Days −1.91 −1.85 −1.62

(1.56) (1.52) (1.56)

Forecast Variables yes yes yes
Horizon FEs yes yes yes
Movie-Date FEs yes yes yes
Observations 1353 1353 1353

Notes: We report the coefficients and standard errors (clustered on the movie-date level) from Poisson panel re-
gressions of (1). The specification is the same as in Column 1 of Table 3, except that interactions of purchase-date
weather variables and indicators that equal 1 when movie-date weather is (expected to be) pleasant are added to the
set of independent variables. This indicator equals 1 if movie-date weather is forecast to be either “sunny” or “partly
sunny” (in Column 1), if movie-date sunshine duration is above its median (in Column 2), or if the weather on the
day of the movie was dry (in Column 3). Level of significance: * p < 0.10, ** p < 0.05, *** p < 0.01.

future weather is a forecast of either “sunny” or “partly sunny” conditions for the day of the movie.

The second and third indicators use ex post realizations of the weather as proxies for the expected

weather. Specifically, the second indicator of good movie-date weather equals one when movie-date

sunshine duration is greater than the median, and the third indicator equals one whenever there is

no rainfall on the day of the movie. To ensure that customers are able to form reasonably accurate

expectations regarding movie-date weather, we restrict the sample to ticket orders between one and

four days in advance.33

Overall, Table 8 shows at best suggestive evidence for the prediction that the weather dependence

of customers’ purchase behavior is related to expected future weather conditions. Good expected

33Note that this test crucially relies on the fact that tickets are valid on the day of the movie only, which allows us to
use variation in expected weather to proxy for variation in expected consumption utility. Such credible variation
in expected utility is presumably much harder to find for durable goods, so that it may be a challenge to apply
the same test within choice contexts like the ones studied by Conlin et al. (2007) and Busse et al. (2015).
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weather strengthens the effect of sunshine duration on orders only for the specification in Column

3, where good expected weather is proxied by the absence of rainfall on the day of the movie.

Otherwise, the coefficient of sunshine duration is very robustly independent of the expected weather

indicators. For rainfall, we expect to find negative coefficients of higher magnitudes when the

expected weather is unfavorable for spending a night outside. This, however, is only the case

in Column 1 which shows that the effect of current rainfall on purchases is only significantly

negative when the forecast predicts weather conditions worse than “sunny” or “partly sunny.” The

coefficients of the rainfall interactions in Columns 2 and 3 have the wrong sign.

6. Conclusion

In this article, we demonstrate that even simple forward-looking decisions may be influenced by

psychological biases. We show that advance sales of an outdoor movie theater are caused by weather

conditions at the time of purchase even though the latter is irrelevant for the experience of visiting

the theater in the future. This finding is consistent with customers being exposed to either projec-

tion bias, extrapolative expectations, or salience effects of the weather (consideration set salience

or salience of product attributes) when they make their purchasing decisions. Moreover, we have

utilized the perishable nature of the movie tickets to test an implication of the “salience of prod-

uct attributes” explanation that distinguishes this theory from the other psychological mechanisms

we considered. Yet, the evidence of this test is too weak to make a definite statement regarding

whether “product attribute salience” or the other psychological mechanisms are more in line with

our findings. Overall, there thus remains some uncertainty as to which specific psychological mech-

anism affects the customers’ intertemporal decision making. An important task for future work

is therefore to find testable implications as well as empirical settings which allow further teasing

apart of the alternative psychological theories considered in this paper.34

The exact nature of the specific psychological factor(s) that affect intertemporal choice has pro-

found consequences for the design of policies that may help people to make better decisions.35 If

projection bias was an important driver of choice behavior, for example, individuals could benefit

from “cooling-off” periods that would allow them to re-evaluate their choices in different states of

the world and to potentially reverse their decisions. If individuals’ beliefs assign excessive prob-

ability weight to the current state, it would better serve peoples’ interests if they were informed

about those states of the world that are both likely and “different” from today’s conditions. And

finally, if individuals have difficulty recalling the relevant choice alternatives, they may benefit from

receiving condensed information on viable options.

While all of these policies should rather be applied to more important decision problems than

the planning of a night out, we believe that such simple situations provide fruitful settings to single

out the most probable errors individuals make in intertemporal choice problems.

34In Appendix C we discuss empirical strategies which would be suitable for achieving this goal in the setting
considered here, even though we either lack the statistical power or the data necessary to implement them.

35See Camerer et al., 2003, for a detailed discussion of more specific variants of these policies.
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Appendix (for online publication)

A. Illustrative Evidence With Rainfall as the Relevant Weather

Dimension

In this section, we graphically illustrate the correlations between atypical rainfall and atypical ticket

orders; the discussion thereby parallels the one regarding the correlation between atypical sunshine

duration and atypical ticket orders in Section 3.1 of the main text.36 One notable difference is that

it is infeasible to split the data by deciles of rainfall, because almost 50 percent of the days in our

sample had no rainfall. Instead, all figures shown in this section display the averages of atypical

ticket orders for atypical rainfall above and below its median.

Figure 7: Same-Day Ticket Orders and Movie-Date Rainfall
This figure plots the average of residuals of log online ticket orders (termed “atypical ticket orders” in the text) on
the day of the movie night for residual movie-date rainfall (termed “atypical rainfall” in the text) above and below
its median. Residuals are the values of the respective variable net of their movie-date and purchase-horizon specific
conditional means.

Figure 7 is the counterpart of Panel (a) of Figure 1, and displays the average of atypical same-

day ticket orders for atypical movie-date rainfall above and below its median. As in the case

of sunshine duration, atypical same-day orders are higher when the weather is good, and hence

negatively correlated with atypical movie-date rainfall. Specifically, atypical ticket orders on those

movie days with below median rainfall are, on average, 0.8 log points larger than on days with

above median rainfall. The magnitude of the effect of atypical movie-date rainfall on same-day

ticket orders is thus exactly half as large as the effect of atypical movie-date sunshine duration on

same-day ticket orders.

36As atypical sunshine duration, atypical rainfall is defined as the residual of a regression of rainfall on movie-date
and purchase-horizon fixed effects for a window of 29 days between the day of the movie and the date 28 days
prior to the day of the movie. Atypical rainfall is hence the deviation of rainfall from its four week average prior
to (and including) the day of the movie.
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Figure 8: Movie-Date Rainfall and Advance Ticket Orders
This figure plots the average of residuals of log ticket orders (termed “atypical ticket orders” in the text), separately
for orders one to four days in advance, for residual movie-date rainfall (termed “atypical rainfall” in the text) above
and below its median. See the notes of Figure 7 for the definitions of the variable.

(a) Ticket Orders One Day Ahead (b) Ticket Orders Two Days Ahead

(c) Ticket Orders Three Days Ahead (d) Ticket Orders Four Days Ahead

If the absence of rainfall were an important determinant of customers’ utility from visiting the

theater, we would expect them to carefully forecast the future rainfall before making a purchasing

decision. If these forecasts are on average correct, we would expect to find a negative correlation

between realized movie-date rainfall and advance ticket orders as well. Figure 8 provides an analog

to Figure 2 in that it displays the average of atypical ticket orders between one and four days ahead

of the day of the movie for movie-date atypical rainfall above and below its median. It becomes

apparent that the magnitude of the negative correlation between movie-date rainfall and advance

ticket orders declines for orders between one and two days before the movie. For ticket orders three

days before and earlier, this correlation ceases to exist. The correlation between movie-date rainfall

and advance ticket orders seems thus to be weaker than the corresponding correlations of sunshine

duration and ticket orders. This may be the case, because rainfall is supposedly more difficult to

predict than more general weather patterns. Also, the general weather patterns described by a

forecast probability of rain of, for example, 60 percent are likely to be more accurately reflected by

the realized sunshine duration (or, equivalently, the degree of cloudiness) than by whether or not

it actually rains.
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Figure 9: Purchase-Date Rainfall and Advance Ticket Orders
This figure plots the average of residuals of log ticket orders (termed “atypical ticket orders” in the text), separately
for orders one to four days in advance, for residual purchase-date rainfall (termed “atypical rainfall” in the text)
above and below its median. See the notes of Figure 7 for the definitions of the variables.

(a) Ticket Orders One Day Ahead (b) Ticket Orders Two Days Ahead

(c) Ticket Orders Three Days Ahead (d) Ticket Orders Four Days Ahead

Finally, we illustrate the possibility that customers’ purchasing decisions not only depend on

the realized or expected weather, but also on the weather at the time of purchase, even if it is

irrelevant for the utility of watching the movie outdoors on a future date. Figure 9 mirrors Figure 3

in the main text in showing the average of atypical ticket orders between one and four days before

the movie, but this time for atypical purchase-date rainfall above and below its median. The four

panels of Figure 9 show that purchase-date rainfall is (in contrast to movie-date rainfall) negatively

correlated with ticket orders across all purchase horizons, even if this correlation becomes extremely

small for ticket orders four days ahead.

We conclude that the correlations of ticket orders and rainfall display similar properties as the

correlations, discussed in the main text, between ticket orders and sunshine duration. Despite

this general similarity the magnitudes of the correlations between ticket orders and rainfall are

clearly smaller than those between ticket orders and sunshine duration. As alluded to above, this

does not necessarily mean that customers care less about rainfall than they care about sunshine.

Instead, the smaller correlation between rainfall and ticket orders may be due to the lower variation

of rainfall along the “extensive” margin of whether or not it rains, and the accompanying lower
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statistical power of this weather variable. In addition, the smaller magnitude of the correlations

may reflect the possibility that sunshine duration better represents general weather patterns than

the observation of whether or not it is raining.

B. Alternative Empirical Approaches

B.1. Event History Analysis

Event history analysis constitutes an alternative method to estimate the effect of purchase-date

weather on ticket orders, as it models the factors that determine a member of a population at

risk (prospective customers) to experience an event (order tickets). As such, event history analysis

makes use of individual-level data, in contrast to count data techniques, which employ aggregate

data.

The central statistic of this empirical approach is the daily, discrete-time, hazard rate htτ at

which a representative customer orders tickets at t for the day of the movie τ . Depending on

the definition of the population at risk, there are two possible ways to interpret the hazard rate

in our setting. First, the population at risk may be equated to the set of potential customers

who actively consider buying tickets for the movie theater. This definition of the population at

risk implies a daily hazard rate that is equal to the potential customers’ purchasing probability.

Alternatively, the population at risk may be equalized with the entire population (whether or

not they are actively considering visiting the cinema). The daily hazard rate for this population

at risk is the product of the purchasing probability of the potential customers with the rate at

which individuals from the entire population start to actively consider visiting the movie theater.

Regardless of its interpretation, we maintain the assumption underlying the Poisson model (1),

that the continuous-time hazard is piecewise exponential (the continuous-time proportional hazard

assumption). This implies that the daily, discrete-time, hazard htτ is given by

htτ = 1− exp
[

−exp
(

Weather′
t βW +Forecast′

tτ βF +µτ + δtτ

)]

, (6)

which can be transformed into the complementary log-log form for estimation via maximum likeli-

hood (see Jenkins, 2005, p. 41 ff.).

Standard empirical procedures for estimating (6) require the observation of a random sample of

the population at risk.37 It is not clear whether this is the case for the data available, as only those

customers are observed who actually order tickets. Nevertheless, one possibility could be to define

those customers as being at risk of purchasing tickets at t who have not purchased their ticket for

a particular movie yet but will either buy at t or later. This means that the number of individuals

at risk of buying a ticket at t for the movie at τ is given by
∑

t′∈[t,τ ] ŷt′τ , where ŷt′τ denotes the

number of ticket orders for the day of the movie τ observed as of the date t′. If we were willing

to assume that time-varying covariates (like the weather) solely affect the timing of purchases,

37Right censoring or left truncation can easily be accommodated, but neither is a problem here.
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but not the expected number of total tickets sold, the set of customers is a random sample of the

set of potential customers. Then, standard methods can be used to estimate the hazard rate htτ .

However, if time-varying covariates affect the total number of customers who order at t or later,

the set of actual customers represents a selected sample of the population at risk, and the hazard

rate cannot be estimated with standard procedures.38

For the time being, we assume that our sample allows consistent estimation of the daily hazard

rate htτ via the standard method, a binary regression model with complementary log-log link

function. To run this regression, the dataset needs to be organized in person–period format. This

means that for each customer who orders a ticket at t, an observation is created for each date

between the day of purchase t and the date 28 days prior to the movie.39 After the purchase-date,

the customer drops out of the sample, as no longer being “at risk” for purchasing a ticket. For each

observation created, a “purchase indicator” equals 0 for the dates prior to the day of purchase and

1 on the day of purchase. This dataset is then merged with the time-varying covariates, and (6)

is estimated by performing a binary regression of the “purchase indicator” on the set of covariates

(see Jenkins, 2005, or Allison, 1984, for details). Because (6) contains movie-date fixed effects, the

effect of the covariates on the hazard rate is identified via the time variation of the covariates.

Table 9 displays the results from the estimation of (6) with the same empirical specifications as

the main results reported in Table 3. Apparently, the coefficients estimated via an event history

analysis are very similar to those estimated via the Poisson panel regressions. In particular, the

coefficient of sunshine duration in Table 9 implies that a member of the “population at risk” is

50 percent more likely to order tickets on a day with completely clear skies than on a completely

cloudy day. This corresponds exactly to the predicted percentage increase in ticket orders estimated

via the count models in the main body of the text. The effect of purchase-date rainfall estimated

via event history models is negative, but statistically insignificant. Despite the potential selection

problem discussed above, we thus arrive at very similar empirical findings irrespective of whether

we employ an event history or a count data approach for the estimations.

Another possibility of utilizing event history analysis is to analyze purchase behavior within days

(across hours). Here, the potential selection problem from the above can be curtailed by considering

only those individuals to be at risk of purchasing tickets that have not yet but will buy tickets on

the same day for the same movie.40 That is, we estimate the hourly hazard rate of ticket orders for

38It is unlikely that sample selection is not an issue here. In Section 4.2 we have shown that good weather tends to
increase the total number of tickets sold and thus does not solely affect purchase timing. In addition, the majority
of tickets are ordered on the day of the movie, and we have shown in Figure 1 that same-day ticket orders vary
considerably with the movie-date weather. As a consequence, defining those customers at risk of purchasing a
ticket who have not yet ordered their ticket leads to a large “population at risk” for movies, for which movie-date
weather turns out to be good, and vice versa for dates of movies with bad weather.

39Individuals with online ticket orders on the day of the movie are also considered. This is because neglecting these
customers would lead to a “population at risk” one day ahead of the day of the movie that only consists of
customers ordering on this date. The “empirical hazard rate” would then uniformly equal 1 for all observations
one day ahead, so that all these observations would drop from the sample as they would be perfectly explained
by the purchase-horizon fixed effect.

40This “population at risk” is most likely selected nevertheless, but assuming that the arrival rate of customers is
independent of the variation of covariates within a day seems more reasonable than assuming the independence
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Table 9: Event History Estimates of the Effect of Weather on Ticket Orders

Daily Ticket Orders

1-4 Days Ahead 1-28 Days Ahead
(1) (2) (3) (4)

Avg. Sunshine Duration 0.50∗∗∗ 0.50∗∗∗ 0.47∗∗∗ 0.50∗∗∗

(0.11) (0.10) (0.07) (0.07)
Avg. Rainfall per Hour −0.17 −0.11 −0.11 −0.11

(0.18) (0.16) (0.09) (0.10)
Avg. Sunshine Past 14 Days −0.26 −0.57 0.91∗∗∗ 0.90∗∗∗

(0.80) (0.87) (0.23) (0.25)
Avg. Rainfall Past 14 Days −1.05 −1.38 −1.00∗ −1.30∗∗

(1.51) (1.61) (0.55) (0.54)
Forecast Maxtemp. 0.00 0.07∗∗∗

(0.02) (0.02)
Forecast Mintemp. −0.01 −0.02

(0.02) (0.02)
Symbol Partly Sunny 0.12 −0.15∗

(0.08) (0.09)
Symbol T-Storm 0.06 −0.31∗∗

(0.12) (0.12)
Symbol Shower 0.12 −0.26∗∗

(0.13) (0.11)
Symbol Rain 0.10 −0.38

(0.34) (0.31)
1 Day Ahead × Movie-Date Sunshine 0.19 −0.23

(0.26) (0.66)
1 Day Ahead × Movie-Date Rainfall −0.68∗ −1.35∗∗

(0.35) (0.60)
2 Days Ahead × Movie-Date Sunshine 0.11 −0.39

(0.23) (0.65)
2 Days Ahead × Movie-Date Rainfall −0.09 −0.69

(0.29) (0.62)
3 Days Ahead × Movie-Date Sunshine −0.15 −0.68

(0.24) (0.65)
3 Days Ahead × Movie-Date Rainfall −0.09 −0.58

(0.35) (0.64)

Horizon FEs yes yes yes yes
Horizon × Movie-Date Weather

for more than 3 Days Ahead no no no yes
Movie-Date FEs yes yes yes yes
Observations 52554 66819 499757 514048

Notes: We report the coefficients and standard errors (clustered on the movie-date level) of estimates of (6) via
the complementary log-log model described in the text. The set of independent variables includes purchase-date
weather conditions (average sunshine duration as a fraction of an hour, average hourly rainfall in mm, and their
14-day moving averages), variables describing expected movie-date weather at the time of purchase, purchase-horizon
fixed effects, and movie-date fixed effects. Columns 1 and 2 restrict the data to ticket orders between one and four
days ahead of the day of the movie, Columns 3 and 4 estimate (6) using orders up to four weeks in advance. In
Columns 1 and 3 we control for expected weather using the variables of the weather forecast (maximum and minimum
temperature in degree Celsius, mutually exclusive forecast indicators); the omitted forecast category is “sunny.” These
variables are set to zero for purchase horizons earlier than four days, for which data on forecasts for the day of the
movie is unavailable. In the remaining columns, we proxy for expected movie-date weather by interactions of realized
movie-date weather and dummies for the purchase horizon. Level of significance: * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table 10: Event History Estimates of the Effect of Hourly Weather on Ticket Orders per Hour

Hourly Ticket Orders (1-4 Days Ahead)

Daytime Morning Afternoon
(1) (2) (3)

Current Sunshine Duration 0.13∗∗ 0.15∗ 0.15∗

(0.06) (0.09) (0.09)
Current Rainfall 0.05 −0.10 0.08

(0.04) (0.12) (0.05)

Horizon FEs yes yes yes
Hour-of-Day Dummies yes yes yes
Movie-Date FEs yes yes yes
Observations 48714 29347 17787

Notes: We report the coefficients and standard errors (clustered on the movie-date level) of the hourly hazard rate of
ticket orders (1 to 4 days in advance) estimated by the complementary log log model described in the text. The set of
independent variables includes hourly weather conditions (sunshine duration as a fraction of an hour, hourly rainfall
in mm), as well as purchase-horizon fixed effects, hour-of-day fixed effects, and movie-date fixed effects. Column 1
reports coefficients for all orders between 8 am and 8 pm. In the two remaining columns we split the dataset into
orders before and after 2 pm. Level of significance: * p < 0.10, ** p < 0.05, *** p < 0.01.

individuals who have ordered the ticket on a particular day. To this end, we bring all individual

ticket orders on a given date for one particular movie into the person–period format described

above. The hourly hazard rate of ticket orders is then estimated using the complementary log-log

model; the explanatory variables included in this model are hourly sunshine duration and rainfall

as well as purchase-horizon, hour-of-day, and movie-date fixed effects. The empirical model is thus

similar in spirit to those Poisson regressions in Section 3.3 which estimate the conditional mean of

hourly aggregate orders. One notable difference between the two approaches is, however, that we

control for daily conditions (average purchase-date weather, expected movie-date weather) explicitly

in the Poisson regressions, while in the event history approach this is achieved via restricting the

population at risk to orders on a particular day. To ensure comparability with the count regressions,

moreover, we restrict the sample to ticket orders during the daytime, between one and four days

ahead of the day of the movie, for the estimations.

The results in Table 10 show that the event history analysis of the purchasing behavior within a

day leads to very similar findings as the corresponding Poisson regressions in the main text (Table

5). Customers are estimated to be about 13 to 15 percent more likely to order tickets during an

hour in which the sky is completely clear than during an hour in which the sky is completely cloudy.

Also, the effect of sunshine duration on the hazard rate of ticket orders seems to be equally strong

during the morning and afternoon hours.

B.2. Count Regressions Using the Cross-Sectional Dimension of the Data

In the main empirical analyses of this paper, we use Poisson panel regressions to estimate the effect

of the weather on ticket orders. This empirical approach uses the time variation in the covariates

of the variation of covariates across days.
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for identification (i.e., the change in weather from three to two days before the movie). A non-

standard issue that arises here is, however, that expected ticket orders are non-stationary: they

tend to increase for dates closer to the movie’s showing. As a consequence, weather and purchase-

horizon effects may interact in such a way that for the identification strategy to be valid, the horizon

fixed-effects δtτ need to control for the horizon-dependent variation in ticket orders sufficiently well.

To check whether this may be a threat to the identification strategy employed in the main text,

we estimate the “cross-sectional” equivalent of model (1), holding the purchase horizon fixed. For

this empirical specification, the conditional mean of ticket sales h days before the movie is given by

yth = exp
(

Weather′
t βW +Forecast′

th βF +M′
th βM

)

for fixed h = τ − t. (7)

Since the purchase horizon h is fixed, there is a single observation for each date of a movie τ . We,

hence, cannot control for movie-date characteristics via fixed effects, but instead control explicitly

for observable factors via the vector Mth consisting of dummies for the movie-date’s weekday, the

year, and the month.41 In the empirical model (7), the effect of weather on ticket orders is identified

from “cross-sectional” variation in weather across the dates of the movies for fixed purchase horizons.

As such, identification is robust to potential interactions of weather and purchase-horizon effects.

This robustness comes at the cost of losing statistical power by only using one observation per date

of a movie in the estimations. Also, the “cross-sectional” data seems to exhibit overdispersion,

which we take into account by assuming that the ticket orders are distributed according to the

negative binomial distribution (of order 2); we hence estimate (7) via the NB2 model.42

The “cross-sectional” model (7) is estimated separately for each purchase horizon between one

and four days before the movie. As in the main analysis, we control for expected movie-date weather

either by including the variables of the weather forecast or by using the realized movie-date weather

as a proxy. Table 11 summarizes the results. In general, the coefficients of purchase-date sunshine

duration are in a similar range as those in the main specification reported in Table 3; interaction

effects hence do not seem to be a relevant concern. Moreover, except for the cross-section of ticket

orders four days ahead of the movie, the coefficients tend to be slightly larger when we proxy for

expected movie-date weather via its ex post realization. In line with the graphical analysis in Figure

2, Table 11 also suggests that the effect of the weather forecast on ticket orders declines with the

deteriorating quality of the forecast. This becomes apparent through the decrease in the predictive

power of the forecast variables for earlier ticket orders. In contrast, the positive association between

good purchase-date weather and orders remains stable throughout.43

41Ideally, we should also control for the movie’s popularity by including opening-weekend gross sales among the set
of covariates. However, this data is only available for roughly three-quarters of the movies shown. That being
said, the results do not change when gross sales are included.

42Assuming that (1) describes the conditional mean of Poisson-distributed ticket orders, ticket orders conditional on

the purchase horizon are distributed according to the negative binomial distribution if exp(µτ + δtτ ) is Gamma
distributed (see Cameron and Trivedi, 1998). Given the flexibility of the Gamma distribution, it is likely that this
is a good approximation.

43Three days in advance, neither the coefficient of sunshine duration nor that of rainfall is, by itself, statistically
significant in the specification that controls for the expected weather via the forecast. Jointly, however, they are,
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Table 11: Effect of Purchase-Date Weather on Cross-Sections of Ticket Orders

Purchase-Date Ticket Orders

1 Day Ahead 2 Days Ahead 3 Days Ahead 4 Days Ahead

Avg. Sunshine Duration 0.52∗∗∗ 0.82∗∗∗ 0.66∗∗∗ 0.89∗∗∗ 0.33 0.61∗∗∗ 0.57∗∗∗ 0.45∗∗

(0.18) (0.17) (0.21) (0.18) (0.24) (0.21) (0.21) (0.21)
Avg. Rainfall per Hour −0.59∗ −0.74∗∗∗ 0.20 −0.18 −0.45 −0.18 0.37 0.01

(0.32) (0.28) (0.32) (0.29) (0.39) (0.34) (0.37) (0.34)
Avg. Sunshine Past 14 Days 0.31 0.63∗ −0.15 0.21 0.16 0.53 −0.18 0.07

(0.36) (0.37) (0.38) (0.42) (0.51) (0.46) (0.52) (0.48)
Avg. Rainfall Past 14 Days −1.38 −3.02∗∗∗ −3.61∗∗∗ −3.02∗∗∗ −2.76∗ −1.96 −3.63∗∗∗ −2.83∗∗

(1.03) (0.97) (1.11) (1.05) (1.42) (1.20) (1.32) (1.19)
Forecast Maxtemp. 0.15∗∗∗ 0.14∗∗∗ 0.10∗∗∗ 0.05∗

(0.03) (0.03) (0.03) (0.03)
Forecast Mintemp. 0.02 0.01 −0.00 0.02

(0.03) (0.04) (0.04) (0.03)
Symbol Partly Sunny −0.35∗∗ −0.45∗∗ −0.11 −0.57∗∗∗

(0.14) (0.18) (0.21) (0.19)
Symbol T-Storm −0.63∗∗∗ −0.98∗∗∗ −0.46∗∗ −0.54∗∗∗

(0.17) (0.19) (0.22) (0.18)
Symbol Shower −1.09∗∗∗ −0.52∗∗∗ −0.18 −0.28

(0.18) (0.20) (0.24) (0.22)
Symbol Rain −4.04∗∗∗ −1.24∗∗ −0.46 −0.32

(1.14) (0.48) (0.73) (0.78)
Movie-Date Sunshine 1.56∗∗∗ 1.34∗∗∗ 0.96∗∗∗ 0.86∗∗∗

(0.18) (0.18) (0.20) (0.19)
Movie-Date Rainfall −1.43∗∗∗ −0.56∗∗ −0.24 0.01

(0.31) (0.28) (0.32) (0.23)

Year & Month FEs yes yes yes yes yes yes yes yes
Movie’s Day-of-Week FEs yes yes yes yes yes yes yes yes
Observations 393 473 390 472 384 471 383 470

Notes: We report the coefficients and robust standard errors from negative binomial regressions of daily ticket orders on purchase-date weather conditions (average
sunshine duration as a fraction of an hour, average hourly rainfall in mm, and their 14-day moving averages), expected movie-date weather, either as indicated by
the weather forecast (omitted forecast symbol: “sunny”) or proxied by realized weather, year and month fixed effects, as well as dummies for the day of the week
of the movie’s showing. These statistics are reported separately for “cross-sections” of ticket orders between 1 and 4 days in advance; see the empirical model (7)
for details. Level of significance: * p < 0.10, ** p < 0.05, *** p < 0.01.
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C. How To Distinguish Between Candidate Psychological

Mechanisms

We have argued that it is hard to distinguish between the candidate explanations “consideration

set salience,” “projection bias,” and “extrapolative expectations.” A natural question that may

arise is whether there are ways to cleanly distinguish between these psychological mechanisms. In

this section, we discuss potential ways to, hypothetically, achieve this. The discussion remains

hypothetical, because we either lack the statistical power or the data needed to further tease the

psychological explanations apart.

Consideration set salience vs. projection bias / extrapolative expectations. By remind-

ing customers of the option of visiting the cinema at times of beautiful weather, consideration set

salience affects ticket orders via the size of the demand side. In contrast, projection bias and ex-

trapolative expectations affect the individual purchasing behavior via the weather-related over- or

under-estimation of future utility. One possibility of identifying the exact psychological mechanism

at work is, hence, to verify that weather on the day of purchase indeed affects individual behavior.

Conlin et al. (2007) follow this strategy by including customer fixed effects in their empirical spec-

ification, thus using variation in the weather experiences of individual customers for identification.

A similar test could, in principle, also employed in this setting. Unfortunately, though, we lack a

sufficiently large number of customers who visit the theater frequently enough, so all the statistical

analyses are heavily underpowered when customer fixed effects are included.

Instead of looking for evidence regarding the weather dependency of individual behavior, it is

also possible to test whether weather affects the size of the demand side. For the case of the movie

theater’s online ticket orders, this could be achieved by using the number of hits on the webpage

that gives a brief description of the movie played on a particular date as a proxy for the number of

potential customers.44 This data has, unfortunately, not been archived by the cinema.

Given the data available, there thus seems to be no clean way to distinguish between the reminder

effect of the weather and weather related distortions of estimated future utility. Instead, one could

reiterate the arguments in favor of the salience effect of weather, namely that we are finding

the strongest results for the most salient dimension of weather—sunshine—and that the explicit

disclaimer about the weather risk on the ticketing should help customers to carefully evaluate their

future utility. However, when favoring a salience-related hypothesis, one would also have to accept

that good weather leads to the selection of customers with a very high sensitivity to the weather

in order to explain the strong increase in the number of erroneously purchased tickets at times

of good weather documented in Section 5.1, which is much easier explained by projection bias or

extrapolative expectations. Overall, we are hence inclined to conclude that our primary results are

consistent with both these psychological mechanisms.

with a p-value of 0.07.
44See, for example, http://www.kino-mond-sterne.de/kms.php/pirates-of-the-caribbean-fremde-gezeiten/.
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Extrapolative expectations vs. projection bias. We have already argued in Section 5.3 that

the difference between extrapolative expectations and projection bias essentially boils down to two

distinct interpretations of the same functional form of the estimated future utility (4). For explain-

ing the weather-dependent purchasing behavior of the theater’s customers, both interpretations

seem equally plausible. To tease these mechanisms apart, additional data—for example, on the

beliefs held by customers—would be needed.

In the survey conducted at the cinema, we collected coarse data on the beliefs about future

weather. In particular, question 2 of the survey asked customers about their beliefs regarding the

future weather 1, 3, 5, 7, and 14 days ahead. For each forecast horizon, customers could tick one

of the boxes reading “sunny,” “partly sunny,” “overcast,” “rainy,” “scattered thunderstorms,” and

“no statement possible” (see Section D for additional details regarding the survey procedures and

the exact question asked). We test whether these stated beliefs are affected by the current weather

and/or the weather forecast by estimating the following linear regression

Beliefit = Weather′
t βW +Forecast′

tτ βF +εit,

where Beliefit is an index taking the values 5 (for “sunny”) to 1 (for “thunderstorms”) depending

on the box ticked. (Customers, who ticked the box “no statement possible” are excluded from the

sample.) We chose this linear index as the dependent variable, because we clearly lack statistical

power: the variation in the weather and forecast variables comes from only 13 distinct movie nights

during which customers were surveyed.

Table 15 in Appendix E shows that the beliefs regarding tomorrow’s weather seem to be correlated

with today’s weather conditions. There seems to be no correlation between the current weather

and the weather beliefs for all the other forecast horizons (3, 5, 7, and 14 days ahead) for which we

have extracted these beliefs. However, we reiterate that these correlations should be interpreted

with great caution as we have only 13 independent data points of current weather conditions

and weather forecasts. This is obviously not enough to draw reliable conclusions regarding the

effect of the current weather on customers’ beliefs. Finding an environment to distinguish between

extrapolative expectations and projection bias hence remains a challenge for future work.

D. The Survey and the Survey’s Results

The survey was conducted on 13 different movie nights of the 2011 season. The survey had to take

place in a leisurely and casual setting which means that we could not interview customers face to

face. Instead, we handed out a questionnaire when customers entered the theater, and collected

all filled-out questionnaires shortly before the screening started. As a consequence, we had little

control over the survey conditions. For example, customers may have filled out the questionnaire

in groups of two or more individuals, or may have consulted information sources on their phones

when they deemed it necessary to do so.

Below, we provide a list of all the questions that we asked in the survey, together with summary
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statistics of the answers. Since the survey is the only data source in which we observe customers

who had purchased their tickets either online or offline (at the box office or at one out of three

advance ticket booths), all summary statistics are computed separately for “online” and “offline”

customers in order to enable the comparison of both groups. In total, we observed 109 customers

who purchased their tickets online, and 334 customers who purchased their tickets offline.

Alternatively, the sample could be split between customers who had bought their tickets one

or more days in advance (online tickets can be ordered until 6 pm of the day of the movie) and

customers who had bought their tickets on the day of the movie. In our sample, there are 58

customers who purchased advance tickets and 385 who purchased their tickets on the day of the

show. To preserve the readability of the tables, we perform this split only for questions 5 and 6

(beliefs regarding the possibility that the theater would sell out), as we refer to these comparisons

in the main text. We would like to mention, though, that advance customers seem to be even

more similar to same-day customers than online customers are similar to offline customers. The

main differences between advance customers and same-day customers are what one might have

expected: advance customers are less likely to have considered an alternative to spending the night

out (question 10), more likely to have experienced bad weather conditions in the past (heavy rain,

question 20), and a larger fraction of them had let their tickets expire in the past due to bad weather

(question 21). In addition, advance customers are significantly more likely to be male (question 1).

1. First, we would like to ask you some questions about yourself.

We asked for gender, age, ZIP code, whether customers have internet access, and occupation.

Occupation could be written down freely and is thus not reported here. The table below

reports the means of the remaining variables for online and offline customers as well as the

p-value of a t-test for the equality of means.

mean offline mean online difference p-value

female 65.9 % 63.3 % 2.6 % 0.63

age in years 31.7 31.7 -0.0 0.97

lives in the greater Munich area 91.0 % 93.6 % -1.6 % 0.62

has internet access 98.7 % 99.0 % -0.3% 0.82

2. How is the weather in Munich going to be tomorrow / in 3 days / in 5 days / in 1 week / in

2 weeks?

The purpose of this question is to extract customers’ beliefs regarding future weather. For each

forecast horizon, they could tick boxes reading either “sunny”, “partly sunny,” “overcast,”

“rainy,” “scattered thunderstorms,” and “no statement possible.” Summary statistics for the

first five options are not really meaningful, as beliefs are likely to depend on the current

forecast and, possibly, the weather conditions on the night of the movie. We have tested

whether there is a correlation between the latter variables and the customers’ beliefs already

in Appendix C. Here, we therefore show the percentage of customers who tick the box “no
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statement possible” for each forecast horizon. A major fraction of the customers seems to be

pessimistic regarding their ability to say something about future weather three or more days

ahead, reflecting, perhaps, the variable weather conditions in Munich. Moreover, “online”

customers seem to be more cautious than “offline” customers.

percentage of customers who tick “no statement possible” by forecast horizon

1 day ahead 3 days ahead 5 days ahead 1 week ahead 2 weeks ahead

offline 1.5 % 6.2 % 18.7 % 32.4 % 47.5 %

online 1.8 % 5.6 % 24.5 % 42.7 % 58.3 %

3. How often do you check the weather forecast?

once or twice when I plan weather

daily every other day a week never related activities

offline 54.1 % 16.5 % 12.3 % 2.1 % 15.0 %

online 54.1 % 14.7 % 14.7 % 4.6 % 11.9 %

4. If you check the weather forecast: what is your preferred source? (multiple answers possible)

online weather service newspaper radio TV

offline 77.2 % 9.6 % 45.6 % 34.5 %

online 75.0 % 6.5 % 48.1 % 23.1 %

5. How frequently is the weather forecast’s prediction correct for the weather . . .

almost in 4 out in 3 out in 2 out in 1 out almost

always of 5 cases of 5 cases of 5 cases of 5 cases never

. . . tomorrow

offline 48.9 % 37.2 % 12.0 % 0.6 % 0.0 % 1.2 %

online 49.5 % 33.9 % 14.6 % 1.8 % 0.0 % 0.0 %

. . . in 2 days

offline 7.2 % 41.8 % 35.4 % 13.3 % 0.9 % 1.2 %

online 5.5 % 34.9 % 46.8 % 11.0 % 1.8 % 0.0 %

. . . in 4 days

offline 1.8 % 9.1 % 34.7 % 32.6 % 14.9 % 6.7 %

online 0.9 % 4.6 % 32.1 % 37.6 % 15.6 % 9.1 %

6. How likely is it that the movie theater is going to be sold out tomorrow shortly before the

beginning of the movie, that is, how likely is it that there will be no tickets available at the
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box office shortly before the screening starts?

very unlikely unlikely likely very likely

offline 34.8 % 44.5 % 18.7 % 1.8 %

online 26.1 % 42.0 % 20.5 % 11.2 %

Customers with online tickets are, in general, more worried that the theater sells out. How-

ever, this seems to be particularly true for those online customers who order on the day of

the movie: The results in the table below indicate that customers with advance tickets and

(online and offline) customers who purchased their tickets on the day of the show share a

rather similar beliefs regarding whether it is likely that the theater will sell out. (That online

customers are more worried that the theater sells out may be a selection issue. If customers

are rational and assign a sufficiently high probability to the event that the theater sells out,

the optimal choice is to purchase tickets online on the day of the movie.)

very unlikely unlikely likely very likely

same-day customers 34.2 % 42.6 % 19.2 % 4.0 %

advance customers 22.1 % 52.6 % 19.3 % 5.3 %

7. How likely is it that tickets for the movie theater are going to sell out online, that is, how

likely is it that there will be no single ticket available at the box office tomorrow evening?

very unlikely unlikely likely very likely

offline 63.4 % 25.6 % 7.8 % 3.0 %

online 52.3 % 31.1 % 11.9 % 4.6 %

There is a similar difference between advance customers’ and same-day customers’ assess-

ments of the likelihood that tickets sell out online:

very unlikely unlikely likely very likely

day-of customers 62.0 % 26.2 % 8.6 % 3.1 %

advance customers 51.7 % 32.7 % 10.4 % 5.2 %

8. Where did you buy your tickets?

291 customers (out of 441 asked) had purchased their tickets at the box office. While the

majority of advance tickets are sold online (108 out of 150), there are three ticket booths at

which tickets for the cinema are available. See question 15 for details regarding the sales at

the different advance sales locations.
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The table below shows the frequency of advance ticket orders by purchase horizon. (All tickets

not sold at the box office are regarded as advance tickets, which is why it is possible to buy

advance tickets “today.”)

today yesterday 2 days ago 3 days ago 4 days ago earlier

offline 61.9 % 16.6 % 4.7 % 7.1 % 2.3 % 7.1 %

online 62.9 % 23.1 % 1.8 % 2.7 % 2.7 % 6.4 %

9. Including today, how often have you visited this movie theater so far?

this is the first time 2 to 5 times more than 5 times

offline 36.4 % 41.2 % 22.3 %

online 37.6 % 35.7 % 26.6 %

10. If you were not here today, would you have spent the night out in a different way?

Customer could say either yes or no; 44 percent of offline customers and 48 percent of online

customers stated that they did not have alternative plans for the night. Customers answering

with yes could add in writing, how they would have spent their evening. The most frequent

answers are “going for drinks” (33 times), “spending an evening at the beer garden” (24 times),

or “going to the movies” (21 times; most probably referring to an indoor movie theater).

11. One final question on how you spend your free time. How often do you . . .

once a twice a once a more

never year year month often

. . . go to the movies?

offline 0.9 % 6.0 % 37.9 % 37.9 % 8.7 %

online 0.0 % 5.5 % 46.8 % 43.1 % 4.6 %

. . . go to a concert?

offline 8.8 % 38.5 % 41.8 % 8.8 % 2.1 %

online 8.3 % 35.8 % 47.7 % 6.4 % 1.8 %

. . . go to the theater?

offline 19.8 % 50.7 % 23.0 % 5.5 % 0.9 %

online 26.6 % 39.4 % 25.0 % 2.7 % 0.0 %

. . . go to the opera?

offline 58.2 % 29.6 % 9.8 % 1.5 % 0.9 %

online 58.3 % 36.1 % 3.7 % 0.9 % 0.9 %

. . . attend a sports event?

offline 38.4 % 32.3 % 18.9 % 7.0 % 3.3 %

online 35.8 % 34.0 % 19.3 % 7.3 % 3.7 %
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The following two questions apply only to customers who have purchased their tickets at the

box office.

12. Which of the following ways to purchase advance tickets for the outdoor cinema do you know?

(multiple answers are possible)

Advance tickets can be purchased online or at one of three ticket booths (we label these

booths “booth 1,” “booth 2,” and “booth 3”). This applies only to customers with “offline

tickets,” as online tickets are regarded as “advance tickets.”

online booth 1 booth 2 booth 3 none

offline customers 80.6 % 26.9 % 49.7 % 4.4 % 10.8 %

13. Why did you not purchase an advance ticket? (multiple answers possible)

share of

respondents

I did not know that there was the possibility of buying tickets in advance 3.0 %

I wasn’t sure whether I was going to visit the cinema 41.8 %

It is unlikely for the movie to be sold out 30.6 %

I wanted to wait what the weather was going to be 62.2 %

The following questions apply only to customers who have purchased advance tickets.

14. How many tickets did you buy?

1 2 3 4 more than 4

advance customers 7.0 % 65.1% 9.3 % 13.2 % 6.4 %

15. Where did you purchase your ticket?

online booth 1 booth 2 booth 3

advance customers 77.9 % 12.1 % 7.9 % 2.1 %

16. Did you condition your purchasing decision on the weather forecast?

A small majority (57 percent) of customers conditioned their purchasing decision on the

weather forecast.
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17. Do you regret that you purchased tickets in advance?

Only eight customers (5.5 percent) regretted their purchasing decision. The reason all of them

gave was that advance tickets are (slightly) more expensive than tickets at the box office. (See

footnote 7 for details).

18. Why did you purchase your tickets in advance and not at the box office? (multiple answers

possible)

share of respondents

I was worried that the movie might sell out 70.3 %

The line at the box office is too long 23.4 %

If I don’t buy the tickets immediately, I forget it later on 6.2 %

It facilitates the coordination of a larger group 7.6 %

The following questions apply to everyone again.

19. How important are the following factors for you to enjoy a night at the outdoor movie theater

(on a 5 point scale ranging from “very important” to “not important at all”)?

very not important

important at all

the movie shown

offline 61.7 % 28.7 % 8.1 % 0.9 % 0.6 %

online 53.8 % 34.9 % 6.6 % 3.8 % 0.9 %

pleasant temperatures

offline 22.2 % 41.6 % 27.2 % 7.2 % 1.9 %

online 27.2 % 44.7 % 21.4 % 4.9 % 1.9 %

no rainfall

offline 53.2 % 26.6 % 12.7 % 5.3 % 2.2 %

online 54.3 % 30.5 % 11.4 % 1.9 % 1.9 %

good company

offline 62.7 % 23.6 % 7.4 % 2.8 % 3.4 %

online 61.2 % 30.1 % 5.8 % 1.0 % 1.9 %

a good seating area

offline 17.4 % 35.6 % 34.4 % 12.0 % 0.6 %

online 12.8 % 49.0 % 32.3 % 2.9 % 2.9 %

49



20. Did you ever have bad luck when visiting an outdoor movie theater? (multiple answers possi-

ble)

yes, heavy yes, light yes, thunder- yes, it was

no rain rain storms cold

online 53.6 % 24.0 % 14.4 % 12.0 % 14.7 %

offline 45.3 % 32.0 % 10.4 % 11.3 % 14.2 %

21. Did you ever let your tickets expire because of bad weather?

yes no

online 5.9 % 94.1 %

offline 4.8 % 95.2 %

Two more questions were added at the request of the movie theater’s management. The first

question asked customers how they had learned about the movie theater. The second question

asked for feedback and suggestions for improvement. Customers could answer both questions in

writing, which is why we do not report their answers here.

Thank you very much for your participation. Enjoy the movie!
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E. Additional Tables and Figures

Table 12: Effect of Purchase-Date Weather on Ticket Orders: Robustness

Ticket Orders (1-28 Days Ahead)
(1) (2) (3)

Avg. Sunshine Duration 0.467∗∗∗ 0.441∗∗∗ 0.487∗∗∗

(0.071) (0.135) (0.071)
× I(Purchase-Date Fr–Su) 0.006

(0.008)
× I(Movie-Date Fr–Su) 0.014∗

(0.008)
× I(Genre = Drama) 0.097

(0.140)
× I(Genre = Comedy) −0.030

(0.132)
Avg. Rainfall per Hour −0.369∗∗∗ 0.034 −0.183∗

(0.129) (0.234) (0.102)
× I(Purchase-Date Fr–Su) −0.011

(0.013)
× I(Movie-Date Fr–Su) 0.185∗∗∗

(0.034)
× I(Genre = Drama) −0.214

(0.232)
× I(Genre = Comedy) −0.244

(0.239)
# Tickets Sold Earlier −0.006∗∗

(0.003)
Avg. Sunshine Past 14 Days 1.481∗∗∗ 1.513∗∗∗ 1.554∗∗∗

(0.557) (0.579) (0.510)
Avg. Rainfall Past 14 Days −1.366∗∗ −1.455∗∗∗ −1.414∗∗

(0.554) (0.557) (0.592)

Horizon FEs yes yes yes
Horizon × Movie-Date Weather yes yes yes
Movie-Date FEs yes yes yes
Observations 12790 12706 12790

Notes: We report the coefficients and standard errors (clustered on the movie-date level) from Poisson panel regres-
sions of (1). The specification is identical to Column 4 of Table 3 except that further independent variables are added
in each column. In Column 1, interactions of purchase-date weather variables and indicators that equal 1 when either
the day of the movie or the day of purchase was a Friday, Saturday, or Sunday are added. In Column 2, purchase-date
weather variables are interacted with indicators regarding the movie’s genre as defined by http://www.imbd.com. In
Column 3, the number of tickets sold prior to the day of purchase is added to the set of independent variable. Level
of significance: * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table 13: Predictive Power of Current Weather and the Weather Forecast

Evening Sunshine Duration

1 Day into the Future 2 Days into the Future 3 Days into the Future 4 Days into the Future

Avg. Sunshine Duration 0.118∗∗ 0.003 −0.005 −0.017 −0.027 −0.059 0.053 0.073
(0.054) (0.061) (0.058) (0.055) (0.056) (0.053) (0.055) (0.058)

Avg. Rainfall per Hour −0.069 0.108 −0.054 −0.006 −0.091 −0.083 0.008 −0.054
(0.063) (0.082) (0.074) (0.098) (0.074) (0.093) (0.073) (0.083)

Avg. Sunshine Past 14 Days 0.181 −0.000 0.242∗∗ 0.072 0.186 0.136 0.044 0.014
(0.113) (0.112) (0.119) (0.114) (0.119) (0.125) (0.118) (0.125)

Avg. Rainfall Past 14 Days −0.331 −0.230 −0.306 −0.092 −0.519∗ −0.029 −0.655∗∗ −0.296
(0.294) (0.258) (0.304) (0.274) (0.304) (0.288) (0.293) (0.289)

Forecast Maxtemp. 0.020∗∗∗ 0.009 0.015∗∗ 0.013∗

(0.006) (0.008) (0.007) (0.007)
Forecast Mintemp. −0.011 0.001 0.002 0.000

(0.008) (0.010) (0.010) (0.008)
Symbol Partly Sunny −0.237∗∗∗ −0.328∗∗∗ −0.206∗∗∗ −0.201∗∗∗

(0.052) (0.047) (0.060) (0.058)
Symbol T-Storm −0.470∗∗∗ −0.481∗∗∗ −0.363∗∗∗ −0.257∗∗∗

(0.052) (0.052) (0.057) (0.055)
Symbol Shower −0.430∗∗∗ −0.456∗∗∗ −0.439∗∗∗ −0.244∗∗∗

(0.059) (0.061) (0.065) (0.069)
Symbol Rain −0.663∗∗∗ −0.671∗∗∗ −0.496∗∗∗ −0.363∗∗

(0.068) (0.080) (0.108) (0.155)

Year & Month FEs yes yes yes yes yes yes yes yes
Adjusted R2 0.06 0.34 0.04 0.29 0.04 0.24 0.04 0.11
Observations 473 393 472 390 471 384 470 383

Notes: We report the coefficients and robust standard errors of OLS regressions analyzing which variables are able to predict the future duration of sunshine
between 5 pm and 7 pm, 1 to 4 days ahead (the dependent variable). Candidate predictors (the independent variables) are: current weather conditions (average
sunshine duration as a fraction of an hour, average hourly rainfall in mm), the current weather forecast (forecast temperature and weather symbols; only in every
other column), current weather trends (sunshine duration and rainfall in the past fortnight), as well as year and month dummies. Level of Significance: * p < 0.10,
** p < 0.05, *** p < 0.01.
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Table 14: Customer Characteristics and Purchase-Date Sunshine Duration

Average Sunshine Duration on the Day of Purchase

Customer’s Age 0.000
(0.000)

No of Visits 0.002
(0.002)

2nd or Later Visit within a Year −0.007
(0.011)

Cust. w/ Bad Experience 0.013
(0.012)

Cust. w/ Same-Day Purchase 0.014
(0.009)

Horizon FEs yes yes yes yes yes
Year & Month FEs yes yes yes yes yes
Movie’s Day-of-Week FEs yes yes yes yes yes
Observations 8015 8017 8017 8017 8017
Adjusted R2 0.12 0.12 0.12 0.12 0.12

Notes: We report the coefficient and robust standard errors of OLS regressions analyzing whether customer char-
acteristics can explain average purchase-date sunshine duration at the time of advance ticket orders. “2nd or later
Visit within a Year,” “Cust. w/ Bad Experience,” and “Cust. w/ Movie-Date Order” are indicator variables equal
to 1 if the customer visits the theater a second or later time in a given year, if the customer had previously ordered
tickets for a day of the movie on which there was rainfall during the movie, or if the customer had previously ordered
tickets on the day of the movie, respectively. Dummies for the purchase horizon, year and month, and the date of
the movie’s day of the week are added as independent variables in all regressions. Level of significance: * p < 0.10,
** p < 0.05, *** p < 0.01.
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Table 15: Current Weather and Beliefs Regarding Future Weather

Weather Beliefs (Index Value)

1 Day Ahead 3 Days Ahead 5 Days Ahead 1 Week Ahead 2 Weeks Ahead

Avg. Sunshine Duration 0.75∗∗ 0.98∗∗ 0.16 0.47 −0.09 −0.64 −0.64
(0.26) (0.35) (0.19) (0.48) (0.19) (0.48) (0.40)

Avg. Rainfall per Hour −0.67 −0.89 0.66 −0.14 1.78∗∗∗ −0.45 −0.27
(0.39) (0.51) (0.37) (0.44) (0.16) (0.64) (0.86)

Forecast Maxtemp. 0.39∗∗∗ 0.26∗∗∗

(0.04) (0.02)
Forecast Mintemp. −0.40∗∗∗ −0.17∗∗∗

(0.08) (0.03)
Symbol Partly Sunny 0.00 0.12

(.) (0.20)
Symbol T-Storm −1.15∗∗∗ −0.55∗∗

(0.16) (0.18)
Symbol Shower −0.84∗∗∗ −0.96∗∗∗

(0.11) (0.24)
Symbol Rain −2.46∗∗∗ 0.00

(0.24) (.)
Realized Sunshine Duration 1.19∗∗∗ 1.60∗∗∗ 0.55∗∗∗ −0.66 −1.37∗∗∗

(0.17) (0.30) (0.12) (0.50) (0.44)
Realized Rainfall −3.66∗∗∗ −0.18 −0.73∗∗ −0.56 −2.78∗∗

(0.66) (0.67) (0.30) (0.50) (1.21)

Observations 354 431 332 405 333 266 203

Notes: We report the coefficients and clustered standard errors of OLS regressions analyzing whether current weather can explain customers’ beliefs regarding
future weather 1, 3, 5, 7, or 14 days ahead. Beliefs are measured by an index that is an integer between 5 (if weather is expected to be “sunny”) and 1 (if
“thunderstorms” are expected). The units of observation are customers who have answered question 2 of the survey with a definite belief (for each forecast
horizon, they could also answer that they are unable to make a statment regarding expected weather). We control for forecast weather either via the forecast
(available only on dates of movies that fall on a weekday and up to 4 days in advance) or its future realization. See Appendix C for details regarding the empirical
model and Appendix D for details regarding data collection. Standard errors are clustered on the date when customers were surveyed (at most 13 independent
observations). Level of significance: * p < 0.10, ** p < 0.05, *** p < 0.01.
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Figure 10: The Theater
This picture shows the outdoor movie theater. Visitors are sitting in the amphitheater on different rows on flaggings

or on wooden boards (the area at the bottom left corner of the picture). The screen is on the left of this picture (not

shown).
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