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Abstract

In ordinal regression the focus is typically on location effects, potential variation
in the distribution of the probability mass over response categories referring to
stronger or weaker concentration in the middle is mostly ignored. If dispersion
effects are present but ignored goodness-of-fit suffers and, more severely, biased
estimates of location effects are to be expected since ordinal regression models
are non-linear. A model is proposed that explicitly links varying dispersion to
explanatory variables. The embedding into the framework of multivariate gen-
eralized linear models allows to use computational tools and asymptotic results
that have been developed for this class of models. The model is compared to
alternative approaches in applications and simulations. In addition, a visualiza-
tion tool for the combination of location and dispersion effects is proposed and
used in applications.

Keywords: Proportional odds model; scale-dispersion model; ordinal response mod-
els; dispersion modelling.

1 Introduction

Since the seminal paper of McCullagh (1980) ordinal regression models have been
widely applied in various fields of research, see, for example, Liu and Agresti (2005)
and Agresti (2010). An important class of ordinal regression models is the class of cu-
mulative models. The most prominent example is the proportional odds model, which
will be considered exemplarily in the following before considering general cumulative
models.

Let Y ∈ {1, . . . , k} denote the response and x a vector of explanatory variables.
Then the basic form of the proportional odds model is given by

log
P (Y ≤ r|x)

P (Y > r|x)
= θr + xTβ, r = 1, . . . , k − 1, (1)

where βT = (β1, . . . , βp). An attractive feature of the model is the simple inter-
pretation of parameters, which results from the proportional odds property. This
property is seen from considering two sets of explanatory variables x, x̃ and the
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corresponding cumulative odds γ(r|x) = P (Y ≤ r|x)/P (Y > r|x) and γ(r|x̃) =
P (Y ≤ r|x̃)/P (Y > r|x̃). Simple derivation shows that the proportion of the cumu-
lative odds for the two sets of variables is given by

γ(r|x)

γ(r|x̃)
= exp((x− x̃)Tβ),

and therefore does not depend on the category r. Consequently, the interpretation
of parameters does not depend on the category. More concise, exp(βj) represents the
factor by which all the cumulative odds P (Y ≤ r|x)/P (Y > r|x) change if variable xj
increases by one unit.

The simple interpretation gets lost in an extended version of the model in which
parameters are category-specific. That means the predictor ηr = θr + xTβ in model
(1) is replaced by ηr = θr + xTβr. The corresponding partial proportional odds model
frequently shows a better fit to the data but interpretation of parameters is more
difficult. Moreover, severe restrictions are postulated. While the simple proportional
odds model only postulates the ordering of the intercepts θ1 ≤ · · · ≤ θk−1 the extended
version postulates θ1+xTβ1 ≤ · · · ≤ θk−1+xTβk−1 for all values x, which can severely
restrict the possible values of explanatory variables. Therefore, often simple Fisher
scoring does not work and estimation of parameters fails. For special link functions
the cumulative model is equivalent to the sequential model, which allows to avoid the
ordering of thresholds, see Tutz (1991) and, more recently Peyhardi et al. (2015). The
class of partial proportional odds models has been investigated in particular by Brant
(1990), Peterson and Harrell (1990) and Bender and Grouven (1998), graphical checks
were proposed by Kim (2003) and Liu et al. (2009).

Despite its disadvantages the partial proportional odds model is often used if the
fit of the proportional odds model is unsatisfactory. However, the lack-of-fit can also
be caused by an insufficient modelling of dispersion effects. In the present paper the
focus is on the modelling of varying dispersion in ordinal regression.

For illustration let us consider a simple example that has already been used by
McCullagh (1980). Table 1 shows Stuart’s (1953) quality of right eye vision data for
men and women. From the data it is obvious that women are more concentrated in the
middle categories while men have relatively high proportions in the extreme categories.
By construction the proportional odds model and other cumulative models without
dispersion effects are not able to capture the different variability of subpopulations.

Table 1: Quality of right eye vision in men and women.

Vision Quality
Highest (1) 2 3 Lowest (4)

Men 1053 782 893 514
Women 1976 2256 2456 789

Ignoring dispersion effects is less severe in linear models. Varying dispersion, which
for linear models is called heteroscedasticity, affects the precision of least squares
estimates but they are still unbiased. However, ordinal regression models are non-linear
models. For this class of models biased estimates are to be expected if dispersion is not
modelled. In general, the modelling of variability is much harder than the modelling
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of the mean of the response. For ordinal responses an additional difficulty is that one
cannot use the variance of a univariate response because the response is multinomial
and therefore multivariate. Although categories are ordered treating it as an univariate
response would mean to ignore the scale level.

Here a model is proposed that models dispersion by including special effects in the
linear predictor, which yields a model that can be estimated within the generalized
linear model framework. In Section 2 the model is introduced and an illustrative ap-
plication is given. In Section 3 the model is compared to the location-scale model and
consequences of ignored dispersion effects are briefly considered. After the consider-
ation of non-symmetric responses in Section 4, in Section 5 alternative strategies to
model ordinal response data by including category-specific effects or dispersion effects
are discussed.

2 Separating Location and Dispersion

In this section we briefly show how cumulative ordinal models, which include the
proportional odds model, and the extended location-scale model can be motivated
from an underlying metric response model. Then we consider the model with shifted
thresholds, which handles dispersion in a quite different way.

2.1 Cumulative Type Models for Ordinal Responses

Cumulative type models like the proportional odds model can be motivated by latent
variables. The basic assumption is that the observed categories represent a coarser
(categorical) version of an underlying (continuous) regression model. Let Ỹ be an
underlying latent variable that follows a regression model:

Ỹ = −xTβ + ε,

where ε is a noise variable with continuous distribution function F . Furthermore, let
the link between the observable categories and the latent variable be given by

Y = r ⇔ θr−1 < Ỹ ≤ θr,

where −∞ = θ0 < θ1 < · · · < θk =∞ are thresholds on the latent scale. One obtains
immediately

P (Y ≤ r|x) = P (−xTβ + ε ≤ θr) = P (ε ≤ θr + xTβ) = F (θr + xTβ).

The model is essentially a univariate response model since it is assumed that a uni-
variate response Ỹ is in the background. The response Y is just a coarser version of
Ỹ where the thresholds θr determine the preference for categories and the covariates
produce a shifting on the latent scale. If F (·) is chosen as the logistic distribution
function one obtains the proportional odds model (1).

A model that accounts for additional dispersion is obtained by assuming for the
latent variable Ỹ = −xTβ+ τxε, where τx is the variance of the underlying regression
model, which may depend on x. The corresponding cumulative model with dispersion,
also called location-scale model, is given by

P (Y ≤ r|x) = F

(
γ0r + xTβ

τx

)
, r = 1, . . . , k − 1, (2)
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see McCullagh (1980). In cases where the concentration in response categories varies
across populations, the model is more appropriate than the simple cumulative model.
The simple cumulative model is based on the underlying continuous regression model
Ỹ = −xTβ + ε, where the distribution of ε does not depend on x. Thus the model
assumes that with varying x the probability mass is merely shifted on the latent
scale, therefore xTβ is often called the location effect. If the probability mass is
more concentrated in one population and spread out in other populations, the simple
cumulative model is unable to model the varying dispersion. The inclusion of a variance
that varies over populations can capture this effect. Since the model includes a shifting
and a dispersion or scaling effect it is often called a location-scale model.

One has to find appropriate ways to link the dispersion parameter to covariates. For
example, one can use τx = exp(xTγ), which makes τx positive. However, the model
is highly non-linear and one is no longer within the framework of (multivariate) gen-
eralized linear models. Special software is needed to fit the model. For example, Cox
(1995) used non-linear regression programs available in SAS. For further investigation
of the model see also Nair (1987) and Hamada and Wu (1996).

2.2 Modeling Dispersion by Shifted Thresholds

In the following an alternative way to account for varying dispersion is proposed. Let
us consider first the case with an even number of response categories k; then m = [k/2]
splits the response categories into equally sized sets {1, . . . ,m} and {m + 1, . . . , k}.
Moreover, it is assumed that the ordered categories refer to a symmetric response,
for example by categories of agreement as strongly disagree, moderately disagree,...,
moderately agree, strongly agree. Let z be an additional vector of explanatory variables,
which can be identical to x but does not have to.

Let now the thresholds in the proportional odds model be determined by

θr = β0r − zTα, r = 1, . . . ,m− 1

θm = β0m

θr = β0r + zTα, r = m+ 1, . . . , k − 1.

That means the center threshold θm remains fixed, but lower and upper thresholds are
shifted by δ = zTα. If δ is positive the intervals defined by thresholds are widened, in-
dicating weaker dispersion, if δ is negative the intervals are shrunk, indicating stronger
dispersion. With π(r) = P (Y ≤ r|x, z) the model has the form

π(r) = F (β0r + xTβ − zTα), r = 1, . . . ,m− 1

π(m) = F (β0m + xTβ)

π(r) = F (β0r + xTβ + zTα), r = m+ 1, . . . , k − 1,

Since it is composed of a location component and a shifting of thresholds it is called
the location-shift model. It is easily derived that P (Y = m|x, z) + P (Y = m +
1|x, z) = F (β0,m+1 +xTβ+δ)−F (β0,m−1 +xTβ−δ). Therefore if δ →∞ one obtains
P (Y = m|x, z) +P (Y = m+ 1|x, z)→ 1, which means a tendency toward the middle
categories and therefore weak dispersion.

The effect of the additional term δ = zTα is illustrated in Figure 1 for a response
with k = 8 categories and a binary covariate x ∈ {−1, 1} with β = 1. We set x = z
and chose θ1 = −3, θ2 = −2, . . . , θ6 = 2, θ7 = 3. Figure 1 shows the distribution
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Figure 1: Probability distribution of a response with eight categories for several

values of α.

of probabilities without dispersion (α = 0) and with dispersion effects α = 0.4 and
α = −0.4. It is seen that for α = 0.4 the distribution is more concentrated in the
middle if x = 1 and stronger dispersed if x = −1 when compared to the baseline
distribution (first row). For α = −0.4 one sees the reverse effect, stronger dispersion
if x = 1 and more concentration in the middle if x = −1.

Effects and Interpretation of Parameters

Let first x and z be distinct. It is easily derived that then the proportional odds as-
sumption still holds for the x-variables With γ(r|x, z) = P (Y ≤ r|x, z)/P (Y > r|x, z)
denoting the cumulative odds for category r one obtains for two sets of explanatory
variables x, x̃

log
γ(r|x, z)

γ(r|x̃, z)
= (x− x̃)Tβ

Therefore the proportion of cumulative odds γ(r|x, z) and γ(r|x̃, z) are the same for all
categories r. A consequence is that the parameter βj from the vector βT = (β1, . . . , βp)
is given by

eβj =
γ(r|(x1, . . . , xj + 1, . . . , xp), z)

γ(r|(x1, . . . , xj, . . . , xp), z)
(3)

That means, if xj increases by one unit the cumulative odds for each category change
by the factor eβj . For eβj > 1 the increase of variable xj favors low response categories.
Thus the main advantage of the proportional odds model, namely simple interpretation
of parameters, is kept.
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For the z-variables the interpretation is different. One obtains for two sets of
explanatory variables z, z̃

log
γ(r|x, z)

γ(x, z̃)
=

{
−(z − z̃)Tα, r ∈ {1, . . . ,m− 1}

(z − z̃)Tα, r ∈ {m+ 1, . . . , k − 1}.
Thus for αj from the vector αT = (α1, . . . , αq) one obtains

e−αj =
γ(r|x, (z1, . . . , zj + 1, . . . , zq))

γ(r|x, (z1, . . . , zj, . . . , zq))
, r ∈ {1, . . . ,m− 1}

eαj =
γ(r|x, (z1, . . . , zj + 1, . . . , zq)

γ(r|x, (z1, . . . , zj, . . . , zq))
, r ∈ {m+ 1, . . . , k − 1}

That means, if zj increases by one unit the cumulative odds for categories r < m
change by the factor e−αj and for categories r > m by the factor eαj . For αj > 0
the increase of variable zj decreases the cumulative odds for categories r < m and
increases the cumulative odds for categories r > m, which means that the response
probabilities for extreme categories get smaller. The effect is not a shifting of the
probability mass of the response but a stronger concentration in the middle.

If x = z the interpretation of parameters is similar. For simplicity we consider an
one dimensional x. It is immediately seen that

eβ =
γ(m|x+ 1)

γ(m|x)
.

Thus eβ represents the odds ratio for categories smaller or equal m if x increases by
one unit. It corresponds to the parameter in a binary logit model that distinguishes
between categories {1, . . . ,m} and {m+ 1, . . . , k}. For the other cumulative odds one
obtains

γ(r|x+ 1)

γ(r|x)
=

{
eβe−α, r ∈ {1, . . . ,m− 1}
eβeα, r ∈ {m+ 1, . . . , k − 1}. (4)

Thus e−α and eα modify as factors the basic preference for categories from {1, . . . ,m}
or {m + 1, . . . , k}. For symmetric categories as considered here one obtains a more
intuitive form by using for large categories the complementary odds defined by γ̃(r|x) =
P (Y ≥ r|x)/P (Y < r|x), which give the odds for categories larger or equal r. They
are linked to the usual cumulative odds by γ̃(r|x)−1 = γ(r − 1|x). One obtains for
categories r ∈ {m+ 1, . . . , k}

γ̃(r|x+ 1)

γ̃(r|x)
= e−βe−α, r ∈ {m+ 1, . . . , k − 1}.

Thus the scaling factor that modifies the basic preference is again e−α. If one considers,
for example, only the extreme categories one has

γ(1|x+ 1)

γ(1|x)
= eβe−α and

γ̃(k|x+ 1)

γ̃(k|x)
= e−βe−α.

Thus the modification of the odds for category 1 as compared to all other categories
and the odds for category k as compared to all other categories (the complementary
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cumulative odds) are both modified by the factor e−α, which means for α > 0 that
both are shrunk by the factor e−α.

The parameter α itself is given by

e−2α =
γ(s|x+ 1)/γ(s|x)

γ(r|x+ 1)/γ(r|x)
=
γ(s|x+ 1)γ̃(r|x+ 1)

γ(s|x)γ̃(r|x)

for any s < m, r > m. The product γ(s|x)γ̃(r|x) is a measure for the concentration
of the probabilities in extreme categories. It is large if the probabilities of extreme
categories are large. Therefore, e−2α represents the change of the concentration in
extreme categories if x increases by one unit.

Eye Vision Example

Let us consider the simple quality of eye vision example from Table 1. The fitted
values of the simple proportional odds model and for the location-shift model with
dispersion effect are shown in Table 2. It is seen that in both models the location
effect (β̂ = −0.038 and β̂ = 0.042) is rather weak and not significant at the 0.05
level. In contrast the dispersion parameter in the model with dispersion α̂ = 0.353
can definitely not be neglected. The deviance of the proportional odds model is 128.39
on 2 df but reduces to 5.896 on 1 df for the model with location and dispersion effect.
The estimated shrinkage factor is e−α̂ = 0.70, which means that for females the odds
for the extreme categories 1 and 4 are shrunk by the factor 0.70 when compared to
males.

Table 2: Parameter estimates, standard errors and z-values for the eye vision data.

Covariate Proportional Odds Model Location-Shift Model
estimate std error z value estimate std error z value

Intercept1 -0.905 0.034 -26.613 -0.721 0.037 -19.397
Intercept2 0.293 0.033 8.911 0.236 0.033 7.104
Intercept3 2.005 0.039 50.398 1.710 0.045 37.563
gender-location -0.038 0.038 -1.003 0.042 0.038 1.109
gender-dispersion 0.353 0.031 11.348

Model for Odd Number of Response Categories

Let now categories refer to a symmetric response with categories of agreement as
strongly disagree, moderately disagree,..., moderately agree, strongly agree but with a
neutral category in the middle. Then the number of categories k is an odd number.
The model with a dispersion component has the same basic structure but now one
parameterizes for m = [k/2] + 1, which denotes the middle category,

θr = β0r − zTα, r = 1, . . . ,m− 1

θr = β0r + zTα, r = m, . . . , k − 1.

The interpretation is similar as in the case with an even number of response categories.
For eβj one obtains the same interpretation, that is, (3) is still the same. Also for the
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scaling parameters one obtains the same values , but they hold for different response
categories. One obtains

e−αj =
γ(r|x, (z1, . . . , zj + 1, . . . , zq))

γ(r|x, (z1, . . . , zj, . . . , zq))
, r ∈ {1, . . . ,m− 1}

eαj =
γ(r|x, (z1, . . . , zj + 1, . . . , zq)

γ(r|x, (z1, . . . , zj, . . . , zq))
, r ∈ {m, . . . , k − 1}

The same holds for (4), which is still valid but for accordingly modified categories.

2.3 Shifting of Thresholds with Scaling

In the models considered in the previous sections the thresholds have been shifted
away from the middle by the value δ = zTi α. The effect is a widening of the middle
category if k is odd and of the two categories in the middle if k is even. However, the
other categories have not been widened. Alternatively one can understand dispersion
as a widening of all the categories by using scale values for the widening of the intervals
between two thresholds. Let us consider again the case k even and m = [k/2].

Let the thresholds be determined more generally by

θr = β0r − srzTα, r = 1, . . . ,m− 1

θm = β0m

θr = β0r + srz
Tα, r = m+ 1, . . . , k − 1,

where sr are scale values that reflect the distance between categories r and m. A
simple choice is s1 = . . . = sk−1 = 1, which yields the model used in the previous
section.

A particularly attractive choice of scales is obtained by shifting of the thresholds
proportional to the distance from the middle threshold. Then one uses sr = m− r for
r = 1, . . . ,m and sr = r −m for r = m+ 1, . . . , k − 1 to obtain the model

π(r) = F (β0r + xTβ − (m− r)zTα), r = 1, . . . ,m

π(r) = F (β0r + xTβ + (r −m)zTα), r = m+ 1, . . . , k − 1
(5)

The effect is that the intervals between all thresholds are widened by the value δ =
zTi α. In the case of four response categories the model with scaling is equivalent to
the basic model without scaling. However, for more than four categories the models
differ. We will refer to the model (5) as the model with scaling.

The interpretation of parameters is similar to the interpretation of parameters in
the basic model. If x and z are distinct (3) still holds, which means, if xj increases
by one unit the cumulative odds for each category change by the factor eβj . For the
α-parameters one obtains

e−(m−r)αj =
γ(r|x, (z1, . . . , zj + 1, . . . , zq))

γ(r|x, (z1, . . . , zj, . . . , zq))
, r ∈ {1, . . . ,m}

e(r−m)αj =
γ(r|x, (z1, . . . , zj + 1, . . . , zq)

γ(r|x, (z1, . . . , zj, . . . , zq))
, r ∈ {m+ 1, . . . , k − 1}
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For adjacent categories holds

eαj =
γ(r|x, (z1, . . . , zj + 1, . . . , zq))/γ(r|x, (z1, . . . , zj, . . . , zq))

γ(r − 1|x, (z1, . . . , zj + 1, . . . , zq))/γ(r − 1|x, (z1, . . . , zj, . . . , zq))

In the case x = z, one obtains now

γ(r|x+ 1)

γ(r|x)
=

{
eβe−(m−r)α, r ∈ {1, . . . ,m}
eβe(r−m)α, r ∈ {m+ 1, . . . , k − 1},

in particular for middle category m one obtains again

eβ =
γ(m|x+ 1)

γ(m|x)
.

For positive α the value e−(m−r)α is smaller than 1, which means it is a shrinkage factor
for categories r < m. The value e(r−m)α is greater than 1 and therefore increases the
odds ratios for large r.

For the case k odd widening of the intervals between thresholds by a fixed value is
more difficult. Let again m = [k/2] + 1 denote the the middle category. The widening
of the intervals by the value δ = zTi α is obtained by

θr = β0r − [(m− r − 1) + 1/2]zTα, r = 1, . . . ,m− 1

θr = β0r + [(r −m) + 1/2]zTα, r = m, . . . , k − 1

Again, for x and z distinct (3) holds and the interpretation of the β parameters are
the same.

2.4 Inference and Computation of Estimates

The strength of the proposed modelling of dispersion effects is that the resulting mod-
els can be embedded within the framework of multivariate generalized linear models
(GLMs). That means they have the form

g(π) = Xβ or π = h(Xβ),

where πT = (π1, . . . , πq) is the vector the of response probabilities with components
πr = P (Y = r|x), X is a design matrix constructed from the predictors x and z, β is
the total parameter vector, g = (g1, . . . , gq) : Rq → Rq is a vector-valued link function
and h(·) = g(·)−1 is the response function. The components of the vector Xβ are
the linear predictors (η1, . . . , ηq), where q = k − 1. For details of the representation
as a multivariate GLMs see Fahrmeir and Tutz (2001), Tutz (2012). Thus the whole
machinery of multivariate GLMs, including algorithms, can be used to obtain estimates
and standard errors. Also testing of effects, analysis of residuals and goodness-of-fit
tests developed for GLMs can be used.

Estimates can be obtained by using the R-package VGAM (Yee, 2010; Yee, 2014). The
function vglm() allows to estimate various multivariate GLMs (Yee and Wild, 1996).
By appropriate specification of the design matrix the proposed location-shift model
with dispersion effects can be fitted by using vglm(). A proportional odds model as
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considered here can by specified by the family function cumulative(reverse=FALSE,

parallel=FALSE∼1), where the second argument ensures that only the thresholds are
category-specific. In the location-shift model the z-variables can be seen as a special
case of category-specific covariates that differ according to a constant factor (depending
on the number of response categories and the type of shifting). For the specification of
category-specific covariates argument xij can be used when calling vglm(). Estimates
can easily be obtained after building the design matrix that includes the z-variables
in the specific form.

Table 3: Parameter estimates, standard errors and z-values for the government data.

Covariate Proportional Odds Model Location-Shift Model
estimate std error z value estimate std error z value

location effects Gender -0.157 0.068 -2.303 -0.138 0.069 -1.991
Income -0.076 0.021 -3.510 -0.076 0.025 -3.040
Age 0.076 0.019 4.009 0.079 0.019 4.127
Age2 -0.079 0.010 -7.680 -0.079 0.010 -7.703

Little -0.874 0.124 -7.071 -0.693 0.130 -5.311
Medium -1.129 0.114 -9.889 -0.960 0.121 -7.939
Strong -1.267 0.129 -9.843 -1.098 0.135 -8.143
Very Strong -0.892 0.148 -6.030 -0.745 0.154 -4.842

dispersion effects Gender 0.189 0.040 4.699
Income 0.013 0.013 1.024
Age -0.020 0.011 -1.776
Age2 0.005 0.006 0.872

Little 0.265 0.067 3.948
Medium 0.255 0.060 4.226
Strong 0.321 0.071 4.488
Very Strong 0.075 0.074 1.007

2.5 Application: Confidence in the Federal Government

We consider data from the general social survey of social science, in short ALLBUS,
a study by the German institute GESIS. The data is available from http://www.

gesis.org/allbus. Our analysis is based on a subset containing 2935 respondents
of the ALLBUS in 2012. The response is the confidence in the federal government
measured on a symmetric scale from 1 (no confidence at all/excessive distrust) to 7
(excessive confidence). As explanatory variables we consider the gender (0: male, 1:
female), the income in thousands of Euros, the age in decades (centered at 50) with
a linear and a quadratic term and the self reported interest in politics from 1 (very
strong interest) to 5 (no interest at all). For modelling we chose category “no“ as
reference. The deviance of the location-shift model (without scaling) is 10, 179.51. For
the model with scaled shifting of thresholds one obtains a remarkably smaller value of
10, 140.91. Hence we will present results for the model with scaling. The likelihood
ratio test statistic for the null hypotheses H0 : α = 0 is 54.5 on 8 degrees of freedom
and therefore dispersion should definitely be taken into account.
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for the government data.

The estimated coefficients and corresponding standard errors of the simple propor-
tional odds model and the location-shift model with scaling are given in Table 3. It is
seen that for both models the location effects of all four covariates should be included
in the model. The location-shift model typically yields estimates that are closer to
zero. Among the dispersion effects only the variables gender and political interest
obtain large z-values and seem to be needed in the model.

To simplify the interpretation of effects, Figure 2 shows the tupel (eα̂, eβ̂) for the
linear effects of the model with dispersion. The first value, eα̂, represents the mul-
tiplicative dispersion effect on the odds, for values larger than one one has larger
dispersion, for values smaller than one one has smaller dispersion than in the simple
proportional odds model. The second value, eβ̂, represents the multiplicative loca-
tion effect on the odds obtained by the shifting of the underlying continuous response
model. For values larger than one small response categories are favored, for values
smaller than one large response categories are favored. The coefficients for gender and
income are shown in the left panel, the coefficients for political interest are visualized
in the right panel. In Figure 2 we also included pointwise 95% confidence intervals
that are represented by stars where the horizontal and vertical lengths corresponds to
the confidence intervals of eα̂ and eβ̂, respectively. From the left panel it can be seen
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that females tend to choose higher response categories and therefore show a higher
confidence in the government than males. At the same time they show smaller dis-
persion than males, responses are more concentrated in the middle. The confidence
also increases with increasing income. However, the dispersion effect is very close to
one and can be neglected. The right panel shows that the confidence is higher among
all respondents that had at least some political interest. Furthermore, respondents
that did not choose one of the extremes (“no“ or “very strong interest“) show reduced
dispersion. This could be interpreted as a response style, people who tend to choose
middle categories have the same tendency in all questions.

For non-linear effects as the effect of age, star plots as in Figure 2 are not useful.
Therefore, in Figure 3 the fitted non-linear location (left) and dispersion (right) effects
of the variable age, denoted by floc(age) and fdis(age), are given as a function of
age. The dispersion effect is not significant, nevertheless, for illustration we show
the corresponding curve. The location curve in the left panel shows that confidence
is weakest at about 55 years of age but is definitely stronger for younger and older
persons.

3 Comparison of Models and and Consequences of Ignored Dis-

persion

Varying dispersion can be modelled by the proposed location-shift model but also by
the location-scale model (2). In the location-shift model the dispersion is modelled
by an explicit shifting of the thresholds which is determined by the parameter α. In
the location-scale model the dispersion is generated by the variance τx = exp(xTγ) of
the underlying continuous regression model. The effect, determined by the parameter
γ, is now multiplicative on the thresholds since the predictor has the form ηr =
γ0r exp(−xTγ) + xTβ exp(−xTγ). Moreover, the dispersion also modifies the location
term. Although the models are not equivalent in applications we found the differences
in terms of goodness-of-fit can be rather small.

For illustration we first consider the eye vision data example. We draw sub samples
of size n = 200 from the data set and computed the location effect, the dispersion effect
and the deviances of the location-scale and the location-shift model. As it is seen
from Figure 4 the estimates and deviances of the two models show strong correlation.
In particular the deviances of the two models are very close. Therefore, in cases
with almost no location effect the models yield similar estimates and goodness-of-fit
measures.

Since in the eye vision data example the data generating model is not known,
we illustrate the fitting in a small simulation study in which the data generating
models are known. We consider two binary covariates with βT = (0.5, 0.5), k = 5
response categories and thresholds θr ∈ {−2, . . . , 2}. First data are generated by the
location-scale model with varying strength of dispersion in the first variable. Then the
location-scale and the location-shift model are fitted. The first row of Figure 5 shows
the resulting deviances. In order to match the strength of dispersion we computed the
parameter α of the location-shift model that shows approximately the same dispersion
as the corresponding parameter γ of the location-scale model. The relation between
these two parameters is non-linear, large values of α correspond to small values of
γ. Then data were generated by the location-shift and again both models are fitted.

12



The resulting deviances are shown in the second row of Figure 5. It is seen that the
deviances of the two models are quite close with just slightly better fits of the data
generating model. If, however, the dispersion is ignored and a simple proportional
odds model is fitted, the fit suffers strongly.
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Figure 4: Deviances of model fits for sub samples of size n = 200 from the eye vision

data.
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Figure 5: Deviances of model fits for data generated by the location-scale model

(first row) and data generated by the corresponding location-shift model (second row).

If strong variation is present the omission of corresponding effects might not only
yield large deviances but also reduce the accuracy of the estimates of the location
effect. The effect is illustrated by using the same data generating model as before but
now we focus on the estimation of the first parameter. Figure 6 shows the estimates of
the location effect β1. In the first row the location-scale model was the data generating
model, in the second row the location-shift model. It is seen that there is no bias if
no dispersion effect is present. However, with increasing dispersion the estimates are
biased.

In both models we used β1 = 0.5. However, one should be aware that the pa-
rameters cannot compared directly since they represent different effects in the two
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models. In the location-scale model the predictor has the form ηr = γ0r/ exp(xTγ) +
xTβ/ exp(xTγ). In particular, the dispersion is also included in the location term.
For a simple binary predictor x ∈ {0, 1}, the location term is xTβ/ exp(xTγ) =
xβ/ exp(xγ), which for x = 1 takes the value β/ exp(γ). Thus, if one ignores the
possible variation and fits a model that does not account for it one estimates the
parameter β/ exp(γ) instead of β. Therefore, if γ is positive one can expect a bias
towards zero, if γ is negative, one will overestimate the strength of the location effect.
This effect is seen from the first row of Figure 6. The bias can be severe if γ is large,
for example, if γ = 1.5, estimates are very close to zero, which is not surprising since
β/ exp(γ) = 0.5/4.48 = 0.11. In the location-shift model the tendency of the bias is
different. As is seen from the second row small values of α (stronger dispersion) yield
stronger location effects. For positive values of α the estimated effects are weaker
(α = 0.8), for large values of α (α > 2), however, even the sign of the effect changes.
The effects are similar if one considers negative values of β1 (not shown). Overall, it
is seen that ignoring dispersion effects may yield strongly biased estimates.
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Figure 6: Estimates of the location parameter β1 for data generated by the location-

scale model (first row) and data generated by the corresponding location-shift model

(second row).

4 Non-Symmetric Responses

4.1 Modelling Varying Dispersion in Non-Symmetric Responses

In the previous section we considered symmetric responses, which often occur in sur-
vey data if the extent of the agreement to a statement is evaluated. However, also
non-symmetric responses may show dispersion that varies over sub populations. The
dispersion modelled so far means varying variability centered at a middle category,
which is quite natural for a symmetric response. For non-symmetric responses one
may pick a category m and model the variability with a centering between m and
m+ 1 as in model (5).
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Table 4: Parameter estimates and standard errors and z-values for knee injury data.

Covariate Proportional Odds Model Loc-Shift Model (m=3)
estimate std error z value estimate std error z value

Intercept1 2.541 1.940 1.309 3.980 2.250 1.769
Intercept2 3.803 1.957 1.943 3.564 2.011 1.773
Intercept3 4.809 1.971 2.440 3.059 2.598 1.177
Intercept4 6.823 2.016 3.385 3.729 3.669 1.017

location effects Treatment 0.938 0.331 2.834 1.309 0.372 3.513
Age -0.372 0.129 -2.871 -0.345 0.149 -2.312
Age2 0.006 0.002 3.006 0.006 0.002 2.437

dispersion effects Treatment 0.636 0.254 2.508
Age 0.032 0.094 0.343
Age2 -0.001 0.002 -0.194

For distinct variables x and z the interpretation of the parameters is the same as in
model (5) because the derivation of the parameters does not depend on the chosen m.
Thus one has several models depending on the chosen category m. The goodness-of-fit
of the model measured by the deviance can be used to select a model. It turned out
that the estimated location effect β depends very weakly on the choice of m whereas
the values of the dispersion effects α do depend on m.

However, the case x = z is different. Then it does not matter which category m is
chosen, all models (5) with any fixed m are equivalent. The only difference is in the
interpretation of parameters. The equivalence is seen by transforming the parameters.
Let β

(m)
r0 ,β(m),α(m) denote the parameters of the model (5) for fixed category m. It

can be shown that for two values m and l

β
(m)
r0 = β

(l)
r0 , r = 1, . . . , k − 1, α(m) = α(l), β(m) = β + (m− l)α(l).

That means, the intercepts and the dispersion parameters α do not depend on the
choice of m. The only parameters that depend on the choice of m are the β parame-
ters, and the transformation uses the α parameters. To obtain the interpretation as
dispersion parameters again a middle category is a good choice because one obtains

γ(r|x+ 1)

γ(r|x)
=

{
eβe−(m−r)α, r ∈ {1, . . . ,m}
eβe(r−m)α, r ∈ {m+ 1, . . . , k − 1},

and in particular

eβ =
γ(m|x+ 1)

γ(m|x)
.

That means eβ refers to the increase of x by one unit for the fixed category m and α
is determined by

e−α =
γ(r|x+ 1)/γ(r|x)

γ(r + 1|x+ 1)/γ(r + 1|x)
.

4.2 Application: Knee Injuries

As an application we consider data from a clinical trial (n = 127) that investigates the
effect of a therapy on the recovery of knee injuries. The response is the pain during
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Table 5: Parameter estimates, standard errors and z-values for the retinopathy data.

Covariate Proportional Odds Model Location-Shift Model
estimate std error z value estimate std error z value

location effects SM -0.254 0.191 -1.328 -0.159 0.198 -0.802
DIAB -0.139 0.013 -10.368 -0.148 0.014 -10.524
GH -0.459 0.074 -6.175 -0.485 0.076 -6.324
BP -0.072 0.013 -5.357 -0.071 0.014 -5.204

dispersion effects SM 0.491 0.235 2.087
DIAB -0.037 0.016 -2.254
GH -0.101 0.092 -1.099
BP -0.007 0.015 -0.465

Covariate Partial Proportional Odds Model
estimate std error z value

SM1 -0.405 0.205 -1.972
SM2 0.086 0.254 0.340
DIAB1 -0.129 0.014 -8.889
DIAB2 -0.166 0.018 -9.264
GH1 -0.435 0.080 -5.426
GH2 -0.535 0.097 -5.470
BP1 -0.068 0.014 -4.627
BP2 -0.075 0.017 -4.432

movement measured on a scale from 1 (no pain) to 5 (severe pain), for more details
see Tutz (2012). We model the treatment effect (1: therapy, 0: placebo) and the
effect of the covariate age in years. With a quadratic effect of age the predictor of the
proportional odds model without dispersion has the form

ηr = θr + xtreatβtreat + xageβage + x2ageβage2 , r = 1, . . . , 4

The estimated coefficients and corresponding standard errors for the simple propor-
tional odds model and the location-shift model with scaled shifting of thresholds m = 3
are given in Table 4. For the simple proportional odds model the deviance is 362.9
on 501 degrees of freedom and for the models with location and dispersion effects the
deviance is 356.3 on 498 degrees of freedom. There are significant location effects for
treatment and the linear and the quadratic effect of age. Concerning the dispersion
part only the treatment effect with estimate α̂treat = 0.636 seems to be relevant. How-
ever, the inclusion of dispersion effects yields a stronger location effect of the variable
treatment.

5 Partial Proportional Odds Models versus the Modelling of Dis-

persion

If the proportional odds model does not fit the data well, one option is to introduce
category-specific parameters, which corresponds to using the partial proportional odds
model, the other option is to include dispersion effects. Both modelling strategies will
yield a better fit. In the following we briefly consider these two options.

An interesting case is the modelling of three response categories (k = 3). Then
the two predictors of the location shift model are η1 = β01 + xTβ − xTα, η2 =
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Table 6: Parameter estimates, standard errors and z-values for the election data.

Covariate Proportional Odds Model Location-Shift Model
estimate std error z value estimate std error z value

location effects Gender 0.628 0.088 7.137 0.583 0.091 6.391
Age -0.012 0.002 -4.385 -0.013 0.002 -4.425
Age2 0.001 0.001 5.041 0.001 0.001 4.966
College -1.419 0.095 -14.864 -1.466 0.105 -13.954
Home -0.410 0.096 -4.234 -0.432 0.097 -4.415
Length -1.134 0.149 -7.596 -1.212 0.155 -7.796

dispersion effects Gender 0.141 0.072 1.966
Age -0.001 0.002 -0.445
Age2 0.001 0.001 1.788
College 0.108 0.085 1.279
Home 0.176 0.077 2.266
Length 0.217 0.122 1.772

β02+xTβ+xTα, which is the same as the reparameterized predictors ηr = β0r+xTβr,
where β1 = β − α, β1 = β + α. Therefore, the location-shift model is equivalent to
the partial proportional odds model. Nevertheless, there are some benefits when using
the location-shift parameterization. If the hypothesis H0 : αr = 0 holds the r-th
variable has global and not category-specific effects. The test result is immediately
seen from the z− or p-value of the corresponding parameter. Within the partial
proportional odds model, one has to test the hypothesis H0 : β1 = β2 to investigate if
the r-th variable has global effects, which typically makes refitting of the model under
constraints necessary. This is illustrated in a small example.

Application: Retinopathy Data

In a 6-year followup study on diabetes and retinopathy status reported by Bender and
Grouven (1998) the interesting question is how the retinopathy status is associated
with risk factors. The considered risk factor is smoking (SM = 1: smoker, SM = 0:
non-smoker) adjusted for the known risk factors diabetes duration (DIAB) measured
in years, glycosylated hemoglobin (GH), which is measured in percent, and diastolic
blood pressure (BP) measured in mmHg. The response variable retinopathy status
has three categories (1: no retinopathy; 2: nonproliferative retinopathy; 3: advanced
retinopathy or blind). The simple proportional odds model yields deviance 904.14, the
model with category-specific intercepts yields 892.45, the same as the the location-
shift model. The difference, 11.69, on 4 df shows that at least some of the parameters
should be category-specific. From the fitted parameters of the location-shift model
(Table 5) one sees immediately that smoking and DIAB are susceptible of having
category-specific effects but not GH and BP. This is not seen from the estimates of
the category-specific model.

The location-shift model also provides a different interpretation of the effects of
smoking and DIAB. In the location-shift model DIAB shows a strong shifting effect
and also varying dispersion. Smoking shows no significant shifting effect, also in the
simple proportional odds model the effect is not significant. In the category-specific
model smoking for the first split into categories 1 and {2, 3} seems to be substantial
(z-value −1.972) but not for the other split into categories {1,2} and 3. Within the
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location-shift model this is explained by a different dispersion over response categories
for smokers and non-smokers.
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Figure 7: Visualization of estimated effects of the location-shift model for the election

data including pointwise confidence intervals.
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Figure 8: Non-linear location (left) and dispersion (right) effects of the location-shift

model for the election data for covariate age.

Application: Information about Politics

In the following we consider an application in which the extension to category-specific
effects seems not necessary, however, dispersion effects are present. We use data from
the American National Election Study http://www.electionstudies.org/ contain-
ing 1790 respondents from the study in 2000, see Jackman (2009). The response is on
an ordinal rating scale that represents the general level of information about politics
and public affairs from 1 (very low) to 5 (very high). The obtained level was assessed
by the interviewer assigned to each respondent. Explanatory variables are gender (0:
male, 1: female), age (centered at 47), college degree (College; yes/no), if the respon-
dent or his family owns their home (Home) and the length of the interview (on a log
scale).

When fitting a simple proportional odds model one obtains 4891.198 on 7150 df. To
evaluate if effects are really global we fitted a model with category-specific effects. The
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difference in deviances between the two models was 24.42 on 18 df. Therefore, one can
assume that no category-specific effects are needed and the simple proportional odds
model seems appropriate. However, one might also investigate if there are dispersion
effects. We fitted a location-shift model with only six additional parameters (dispersion
effects) to obtain the deviance 4873.526 on 7144 df. When comparing to the simple
proportional odds model now one obtains a difference in deviances of 17.636 on 6
df, which indicates that dispersion effects are present. The fitted parameters and
corresponding z-values of the location-shift model, given in Table 6, show that the
location effects of all variables should be included in the model. Among the dispersion
effects the two variables gender and home seem to be relevant. From Figure 7 it is
seen that females seem to be less informed about politics and show weaker dispersion.
Respondents who own their home also show weaker dispersion but are better informed
about politics. Figure 8 shows the non-linear effects of the variable age. The location
curve (left panel) shows that the level of information is highest at about 60 and much
lower for younger and older respondents.

6 Concluding Remarks

An alternative model for the explicit inclusion of dispersion effects is proposed. In
terms of goodness-of-fit the model is frequently quite similar to the location-scale
model. Nevertheless the model has some advantages. It can be embedded into the
framework of generalized linear models and therefore all the inference techniques and
asymptotic results that have been shown to hold for this class of models can be used.
The interpretation of parameters differs from that of the parameters of the location-
scale model. When interpreting parameters of the location-scale model one typically
refers to the underlying latent regression model. While the proportional odds model
without dispersion can also be fitted and interpreted without referring to the latent
model, with dispersion, however, it seems unavoidable to refer to the latent model. In
contrast, parameters of the location-shift model can be interpreted straightforward in
terms of log-odds.

We also investigated alternative modelling strategies. One may extend simple
models with global effect to more flexible models like the partial proportional odds
model or examine if dispersion effects as in the location-scale or location-shift model
are present. The former strategy may yield models that are much harder to interpret.
Some authors argue that simpler models as the proportional odds model are often to
be preferred even if the fit is not too good because the obtained first-order effects are
often informative for overall summaries that explain the most important dimension
of an effect (Agresti, 2010). The second strategy, investigating if dispersion effects
are needed, has the advantage that the first-order effects concerning the location are
kept and summary measures concerning the location are still available. In addition, if
dispersion effects are present estimates of the location effects will be less biased.
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