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Abstract

To date most medical tests derived by applying classification methods
to high-dimensional molecular data are hardly used in clinical prac-
tice. This is partly because the prediction error resulting when apply-
ing them to external data is usually much higher than internal error
as evaluated through within-study validation procedures. We suggest
the use of addon normalization and addon batch effect removal tech-
niques in this context to reduce systematic differences between external
data and the original dataset with the aim to improve prediction per-
formance. We evaluate the impact of addon normalization and seven
batch effect removal methods on cross-study prediction performance for
several common classifiers using a large collection of microarray gene
expression datasets, showing that some of these techniques reduce pre-
diction error. All investigated addon methods are implemented in our
R-package bapred.

1 Introduction

A large variety of modern classification methods can be used to construct
tests on the presence of diseases or disease outcomes of interest on the basis
of high-dimensional, molecular data. Such tests, denoted prediction rules in
the following, could potentially be established as useful tools to assist med-
ical doctors in their decision finding (van’t Veer and Bernards, 2008). Nev-
ertheless, to date they are hardly applied in daily medical practice. Apart
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from policy reasons, a major stumbling block counteracting a broader ap-
plication is lacking comparability of the data from patients to predict, from
now on denoted as “test data”, to that the prediction rules are obtained
on, in the following denoted as “training data”. This leads to a higher pre-
diction error when applying prediction rules to independent external data
in practice than dataset internal validation through cross-validation sug-
gests. High-dimensional bio-molecular measurements are highly sensitive
to external conditions of the data generation procedure (Scheerer, 2009).
Moreover, different datasets studying the same biological phenomenon also
vary depending on the study population. For these reasons, the perfor-
mance of prediction rules can be expected to be worse or even considerably
worse in practice than the results of dataset-internal error estimation suggest
(Castaldi et al., 2011; Bernau et al., 2014). From now on, we use the term
“cross-study” to refer to situations where a prediction rule is learned using
data from a study and applied to independent external data from another
study.

It is a desirable goal to reduce the error frequency resulting when apply-
ing a constructed prediction rule in cross-study settings. There are various
batch adjustment methods which are frequently used to make the distri-
butions of different datasets more similar not only within a study but also
across studies. However, it is far less acknowledged that these methods can
also be applied to make test data more similar to the training data in the
context of prediction. Some of these methods have to be adjusted slightly
before being applicable in the context of prediction. The reason for this is
that the training data must not change when adjusting the test data. This
in turn ensures that the prediction rule remains fixed when new test data
arrives. We speak of “addon batch effect adjustment” when batch effect
adjustment is performed in this way. See Hornung et al. (2016), who discuss
addon batch effect adjustment in detail.

Independently from addon batch effect adjustment, by normalizing the
training and test data simultaneously, the severity of batch effects would
already be strongly reduced. However, as noted above, in the context of
prediction the prediction rule is required not to depend on the test data.
This condition would however not be fulfilled when normalizing training and
test set together, because the training data would change each time new test
data arrives. This pitfall can be addressed by the so-called “addon normal-
ization”: the normalization of the training data is done without considering
the test data. When normalizing the observations in the test data, for those
parameters of the normalization procedure which do not entirely depend on
the individual samples, estimates obtained from the training data only are
used. Such an addon normalization procedure exists for Robust Multi-array
Average (RMA) normalization, see Kostka and Spang (2008).

In this paper we study the potential improvement of cross-study pre-
diction yielded by the use of addon normalization, addon batch effect ad-
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justment and the combination of these two through application to 34 raw
microarray datasets of the same chiptype. Our study represents a large-scale
neutral comparison study following the recommendations of Boulesteix et al.
(2013) and Boulesteix (2013). Beyond small illustrative (and often biased)
real data studies provided in the great majority of papers presenting new
methods, such neutral comparison studies yield crucial evidence to guide
data analysis practice (Boulesteix, 2013; Gatto et al., 2016). The high num-
ber of datasets considered in these studies considerably increases the relia-
bility of the conclusions (Boulesteix et al., 2015). We consider seven batch
effect adjustment methods and the addon normalization procedure for RMA
by Kostka and Spang (2008). The target variable considered for all datasets
is “sex”. Cross-validation delivers error rates close to zero here, because
the biological signal present in gene expression for explaining “sex” is very
strong. However, the error rate estimated by cross-study validation will be
seen to be much higher, although from a biological point it should also be
possible to perfectly predict sex based on microarray gene expression data in
cross-study settings. This illustrates that batch effects can considerably de-
teriorate prediction accuracy in this context and that cross-validation does
not reflect the true error rate to be expected when applying a prediction
rule to an external dataset in practice.

Note that it is of course not meaningful to predict “sex” from a clinical
point of view. However, for the purpose of our systematic large-scale study it
is important to analyze a high number of datasets with the same phenotype
target variable and collected using the same chiptype, which was possible
only for the target variable “sex”. Omitting the fact that the biological
signal present in gene data for explaining “sex” is very strong, “sex” can
be seen as a substitute for a meaningful phenotype target variable. More-
over, “sex” has the advantage of being a clearly defined target variable. By
contrast, for clinically relevant target variables it is often difficult to find
several datasets which do feature the same two biological groups and defi-
nitions may be ambiguous. Keeping in mind that prediction performance is
usually better for “sex” than for most other target variables, in our study
we will not examine the absolute sizes of the performance measure values
but deliberately focus on the effect of addon batch effect adjustment and
addon normalization.

Modern next generation sequencing (NGS) data is commonly associ-
ated with a strongly reduced variability in comparison to microarray data
(Bullard et al., 2010), wherefore here batch effects should be weaker. Never-
theless also for NGS data, batch effects have been found to pose a problem
(Hansen and Irizarry, 2012). The question investigated in our study is thus
relevant beyond the special case of microarray data.

The study by Luo et al. (2010) on addon batch effect adjustment investi-
gates a question related to the question considered in our paper. The crucial
difference is that Luo et al. do not consider cross-study prediction but cross-
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batch prediction within the same study. In their paper, batches are different
parts of a common dataset which are incomparable for reasons unrelated to
the biological signal of interest. Since their batches originate from the same
study, these share certain common characteristics. For example, the labo-
ratory used for the data generation or the personnel involved may be the
same for all batches. Such similarities between training and test data are
however not present in general in cross-study settings when a prediction rule
is made publicly available and applied by other teams throughout the world.
Therefore, our analysis design better reflects practically relevant situations.
Moreover, by considering a large number of datasets we obtain more stable
results.

The paper is structured as follows: In the Methods Section, after a
description of the data material we detail the analyses performed in the
cases of cross-study-prediction using batch effect adjustment and addon-
normalization. The following Results Section describes important features of
our results. In the Discussion we interpret several of our findings and propose
further possibilities for application of the methodology. The Conclusions
Section summarizes the main messages of the paper.

2 Methods

2.1 Data material

All datasets were obtained from ArrayExpress (Kolesnikov et al., 2015). As
a first step we searched for datasets which met the following criteria: avail-
ability of a variable denoted as “sex” in the phenotypic data, availability
of the raw data (necessary for (addon) normalization), number of samples
between 30 to 500, human origin of the samples, samples of microarray
chip type HG-U133PLUS2. From the corresponding search results we ini-
tially considered the 39 most recently published datasets, which actually met
these criteria. Subsequently we investigated for each dataset whether there
were repeated measurements and if so, randomly chose one sample per pa-
tient. Following this, we excluded any datasets which contained duplicates
from other datasets. Lastly, we excluded those datasets which featured less
than 20 observations after removal of repeated measurements resulting in
34 datasets used in the analysis. Supplementary Table S1 provides basic
informations on these datasets after removal of repeated measurements.

2.2 (Addon) Batch effect adjustment

The seven considered batch effect adjustment methods are: ComBat (John-
son et al., 2007), frozen SVA (fSVA) (Parker et al., 2014), mean-centering,
standardization, ratio-A, ratio-G (Luo et al., 2010) and FAbatch (Hornung
et al., 2016). For ComBat we use the addon method presented by Luo et al.
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(2010). Frozen SVA is an addon method for the batch effect adjustment
method SVA (Leek and Storey, 2007). We consider both variants of this
method presented in Parker et al. (2014): the “exact fSVA algorithm” and
the “fast fSVA algorithm”. For FAbatch we use the addon method presented
in Hornung et al. (2016). All remaining methods do not have to be altered
for addon batch effect adjustment, because these are performed batch-by-
batch, in our case dataset-by-dataset, respectively. For a detailed discussion
of addon batch effect adjustment, see Hornung et al. (2016).

2.3 (Addon) quantile normalization

RMA normalization (Irizarry et al., 2003) will be used in our analysis. The
latter consists of three steps: 1) background correction; 2) quantile nor-
malization (Bolstad et al., 2003); 3) summarization. Background correction
and summarization are performed on an array-by-array basis, wherefore no
addon strategies are necessary for these procedures. The quantile normal-
ization step is conceptionally performed as follows. Be xsort,i∗j the j smallest
variable value of array i∗. Then for each array i ∈ {1, . . . , n} the j smallest
value is determined and the average x̄sort,j over these n values taken. Finally
xsort,i∗j is replaced by x̄sort,j . By performing this procedure for all variable
values, the empirical distributions of all arrays become equal. When nor-
malizing the test observations using addon quantile normalization (Kostka
and Spang, 2008) the averages over the j smallest values are obtained using
the training data only, i.e. excluding the corresponding test observations.
As a consequence the scale of the normalized test observations is consistent
with that of the normalized training observations without the latter having
being changed in the procedure.

2.4 Cross-study validation

Bernau et al. (2014) suggest “cross-study validation” for obtaining estimates
of the error expected when applying prediction rules to external data. This
procedure requires a collection of I datasets studying the same biological
phenomenon. The prediction rule of interest is learned once using each
of the I datasets and its error evaluated in turn on every other dataset.
This results in I(I − 1) error estimates which are more realistic than cross-
validation error estimates as far as the application of prediction to external
data in practice is concerned.

We altered this procedure slightly to fit our purposes. Instead of an error
estimator we consider a performance metric, namely the Matthews Corre-
lation Coefficient (MCC). The absolute size of the latter is interpretable
analogously to that of the well-known Bravais-Pearson correlation coeffi-
cient used in the case of metric data. For this reason, we favoured it over
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the more common misclassification error rate. The MCC is calculated as:

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
, (1)

where TP designates the number of true positive predictions, TN the num-
ber of true negatives, FP the number of false positives and FN the number
false negatives. We consider female and male patients as “positives” and
“negatives”, respectively. The MCC-values according to formula (1) are not
calculable in cases where the denominator in the calculation of the MCC-
value is zero. Therefore, firstly, for each of the I training sets we separately
sum up the TP -, the TN -, the FP - and the FN -values, respectively, over
the I−1 test set evaluations. Secondly, we apply formula (1) to the summed
up TP -, TN -, FP - and FN -values. Here, in some cases it occurred that
formula (1) was still not applicable, because the denominator was zero also
in case of the summed up TP -, TN -, FP - and FN -values. In each of these
cases, the respective prediction rule either classified all observations as neg-
ative or positive, respectively so that TP + FP or TN + FN , respectively,
was zero. Such prediction rules, which simply assign all observations to one
class are no more effective than random guessing. Therefore we simply as-
signed a MCC-value of zero in these rare cases where either TP + FP or
TN+FN was zero. The MCC-values calculated using the summed up TP -,
TN -, FP - and FN -values are denoted as MCCrule. This measure reflects
the mean cross-study prediction performance of a specific prediction rule
evaluated on a arbitrary test dataset.

2.5 Study design

We vary five parameters in our analyses:

• normalization type: “addon normalization” (addon), “separate nor-
malization” (separate)

• batch effect adjustment method: “No batch effect adjustment” (none),
“ComBat” (combat), “mean-centering” (meanc), “standardization”
(stand), “ratio-G” (ratiog), “ratio-A” (ratioa), “fast frozen SVA”
(fsva f), “exact frozen SVA” (fsva e), “FAbatch” (fabatch)

• Training set size: “original size of dataset, but maximal 70 observa-
tions” (trainlarge), “20 observations” (trainsmall)

• Test set size: “original size of dataset, but maximal 70 observa-
tions” (testlarge), “20 observations” (testsmall), “5 observations”
(testverysmall)

• Classification method: “Linear Discriminant Analysis using Partial
Least Squares” (PLS-LDA), “PLS-LDA using the 2000 variables with the
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smallest p-values out of two-sample t-tests” (PLS-LDA varsel), “Com-
ponentwise boosting with logistic loss function (LogitBoost)” (Boost),
“Boost using the 2000 variables with the smallest p-values out of two-
sample t-tests” (Boost varsel), “Nearest Shrunken Centroids” (NSC),
“Random Forests” (RF), “k-Nearest-Neighbors classification using the
2000 variables with the smallest p-values out of two-sample t-tests”
(kNN varsel)

For k-Nearest-Neighbors (kNN) classification we perform initial variable se-
lection for the following reason: unlike the other classification methods used
in our analysis kNN classification does not weigh the variables by impor-
tance, wherefore its performance relatively highly depends on the quality
of the variables included (Pohjalainen et al., 2015). We consider all pos-
sible combinations of the values of these parameters, leading to a total of
756 settings (2 × 9 × 2 × 3 × 7). In cases where subsetting was necessary,
we drew random samples from the datasets. Here, except in the case of
testverysmall, we ensured that the smaller class was represented by at
least five observations. Because we consider all possible pairs of training
and test datasets, for each setting there exist 34 MCCrule-values, each cor-
responding to a specific training dataset.

All R-code written to produce and evaluate our results is available online
from the Supplementary Materials.

3 Results

Supplementary Figures S1 to S7 shows boxplots of the MCCrule-values for
each classification method, separated by batch effect adjustment method,
normalization type, training and test dataset size. In the following, unless
otherwise stated, the description of the results of our study is based on these
plots.

3.1 Addon quantile normalization

In many of the studied settings without addon batch effect adjustment, ad-
don normalization improved performance and in no setting did it lead to
a decrease of classification performance, see Figure 1. While addon batch
effect adjustment, if applicable, is usually more effective than addon normal-
ization, in some situations it impairs performance, see further down. Given
performance was not impaired by addon normalization in any of the set-
tings we studied, we recommend the following: addon normalization should
be performed whenever test observations are not available in groups and
addon batch effect adjustment is thus not possible and in the case of set-
tings where addon batch effect adjustment tends not to improve results (see
further down). While both approaches improve performance, there is no
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Figure 1: MCCrule-values for the 34 datasets for each setting without addon
batch effect adjustment. The grey and the white boxplots show the results
when using addon and separate normalization, respectively.

benefit from using addon batch effect adjustment in combination with ad-
don normalization over using addon batch effect adjustment alone. Instead
in many cases the performance is slightly deterioriated by additional addon
normalization, see also the discussion. Therefore, from now on, we will only
examine the results obtained by either addon normalization or addon batch
effect adjustment but not by the combination of these two.

3.2 Addon batch effect adjustment

3.2.1 Influence of training and test set size

As expected, the MCCrule-values tended to be smaller for the setting with
small training datasets. A striking observation is that RF did only deliver
useful predictions in the setting with larger training datasets. Sonka et al.
(2014) already noted that random forests do not generalize well when using
small datasets as training data. While the size of the training dataset did
influence the cross-study prediction performance, it had almost no influence
on the benefit yielded by addon normalization and addon batch effect ad-
justment. For the sake of clarity, we will thus in the following focus only on
the setting with large training datasets.
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Figure 2 shows the median MCCrule-values for all settings with large
training datasets and separate normalization. Generally, we observe hardly
any differences between the results for addon batch effect adjustment when
using a large and a small test dataset. However, when using a very small test
dataset (five observations), theMCCrule-values tend to become considerably
smaller. This frequently leads to a small deterioration by addon batch effect
adjustment. Therefore we can further conclude that, as a general rule, for
addon batch effect adjustment to be effective very small test datasets should
be avoided.

3.2.2 Specific classification methods

Given a test dataset that comprises more than a few observations, whether
or not batch effect adjustment significantly improved the result depended
on the classification method used. For most classification methods we saw
an improvement by certain addon batch effect adjustment methods, see the
next subsection for details. The exceptions were Boost (Supplementary Fig-
ure S3), Boost varsel (Supplementary Figure S4) and RF (Supplementary
Figure S6).

For Boost and Boost varsel the observed deterioration by addon batch
effect adjustment can likely be explained by the very good performance
these methods exhibit without addon batch effect adjustment. Here, with-
out batch effect adjustment the MCCrule-values are very high and have
almost zero variance apart from a few outliers (Figure 1). See the disussion
for an explanation why boosting may especially be suitable in cross-study
prediction. Closer inspection of the results revealed that the small variance
of theMCCrule-values observed for boosting without batch effect adjustment
can be explained as follows: there are two to three datasets which perform
bad as training and test datasets, while the other datasets exhibit an almost
perfect performance. This has the effect that the MCCrule-values for the
good training datasets are very similar, because in these cases the summed
up values used for calculating the MCCrule-values are almost the same: the
corresponding prediction rules classify the observations from the good test
datasets almost perfectly and that from the bad test datasets equally worse.
What is more, the variability associated with the batch effect adjustment
can change predictions. In the cases where the predictions are already al-
most perfect, the performance is necessarily diminished by changes in some
predictions. This explains why in the cases of Boost and Boost varsel the
MCCrule-values tend to be lower after batch effect adjustment. The out-
liers in the lower domain mentioned further above show the results obtained
when using the bad datasets as training datasets.

As noted above, also for RF no batch effect adjustment method lead to
an improvement of the prediction. The boxplots corresponding to combat,
meanc, stand, ratiog and ratioa have a very similar form. These meth-
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Figure 2: Medians of the MCCrule-values over the 34 datasets for each
setting with large training dataset and separate normalization. The solid,
dotted and dashed lines show the results obtained when using a large, small
and very small test dataset, respectively.
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ods have in common that they assimilate the means of the training and
test data. Closer inspection of the results revealed that the small 25%-
quartiles of the MCCrule-values displayed in the boxplots (Supplementary
Figure S6) can be attributed to the results of five training datasets. Here,
the results substantially worsened by batch effect adjustment through the
methods mentioned further above. These five datasets were imbalanced to
a significantly stronger degree than the other datasets (p-value out of two-
sided wilcoxon test: 0.0055). When excluding the results corresponding to
training datasets with imbalanced class frequencies, batch effect adjustment
by the methods mentioned above lead to a quite strong improvement of
the prediction accuracy of RF (results not shown). The bad performance
for these problematic datasets is not directly due to the fact that in these
cases the class frequencies are imbalanced in the training data. Instead,
the actual reason is that the class frequencies tend to be strongly different
in the test datasets than in the training data if the latter is imbalanced.
In the discussion we will explain the mechanism by which RF in particular
suffers by differing class frequencies between training and test data, when
used in combination with batch effect adjustment methods which involve an
assimilation of the means in training and test data.

For boosting, pre-selection of influential variables as performed by
Boost varsel in our study did not further improve results (Figure 1). By
contrast PLS-LDA seems to be improved by initial supervised variable se-
lection, which was also found by Li et al. (2007).

3.2.3 Performance of individual batch effect adjustment methods

As seen above, we marked down those settings in which addon batch effect
adjustment was not valuable. In those settings where it did improve perfor-
mance there were in general several well-performing methods with no clear
ranking between them (Figure 2). Four methods were always among the best
here: combat, meanc, ratiog and ratioa. While also stand was frequently
among the best methods, it was very bad for PLS-LDA, PLS-LDA varsel

and kNN varsel. Thus, the value of this method strongly depends on the
classifier used, wherefore it cannot be recommended. In contrast to Luo
et al. (2010) we could not find that ratioa and ratiog may be preferable
over the other well-performing methods. fsva f, fsva e and fabatch did
not improve performance in any of the settings and more importantly these
methods were often harmful. Therefore these methods should not be used
for cross-study prediction. Note that in the paper presenting fsva f and
fsva e (Parker et al., 2014) it is stated that these methods rely on similar-
ity between training and test data, an assumption most often not given in
cross-study prediction. Our study shows that these methods can also impair
performance when the assumption of similarity cannot be made.
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4 Discussion

4.1 Reasons for missing benefit from combining the two ap-
proaches

Used separately, both addon normalization and addon batch effect adjust-
ment improved the performance of cross-study prediction under the condi-
tions worked out in the previous section. However, we saw no additional
gain in prediction performance by using addon batch effect adjustment in
combination with addon normalization in comparison to using addon batch
effect adjustment alone. Two explanations for this could be the following:
1.) the assimilation of the distribution of the test data to that of the training
data by addon batch effect adjustment is not substantially improved by a
preceding addon normalization. Generally, addon batch effect adjustment
leads to a stronger assimilation of the distribution of the test data to that
of the training data than addon normalization. The reason for this is that
addon batch effect adjustment explicitly assimilates the distributions of the
individual variables in the test data to that in the training data. By con-
trast, addon normalization merely assimilates the marginal distributions of
the values belonging to the individual observations. The latter is however
also, implicitely, performed by addon batch effect adjustment; 2.) the vari-
ability connected with the adjustment is increased by combining the two
procedures.

4.2 Random Forests: impaired performance in the presence
of differing class frequencies between training and test
data

When the classes were imbalanced in the training data, the performance of
RF was impaired to the same extent by all addon batch effect adjustment
methods, which involve an assimilation of the variable means in training and
test data. We attributed this to the fact that, if the classes are imbalanced
in the training data, the class frequencies tend to be different in the test data
than in the training data. In the context of conventional batch effect ad-
justment, Nygaard and Rødland (2016) already noted that mean-centering
reduces the class differences when the classes are unevenly represented in the
different batches. While all classifiers can be expected to suffer to some ex-
tent from variable mean adjustment if the class frequencies between training
and test data are different, we expect this to be particularly a problem for
random forests. In the following we will describe the mechanism responsible
for the latter. The classification trees constituting a random forest iteratively
divide the observations into subgroups of decreasing sizes. More precisely,
in each iteration the subgroups are split into two smaller subgroups based
on a threshold of an individual variable. Here, that threshold of that vari-
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able (among a randomly chosen subset) is used that leads to the strongest
separation of the two classes by the two resulting subgroups according to a
specific criterion. As a result, the splits are performed in each case using
that variable (ouf of the candidates), which has the greatest discriminatory
power. The stronger the discriminatory power of a variable, the stronger
it suffers from an adjustment of the means between training and test data,
in case the class frequencies between the two are different. Here, the mean
adjustment leads to the split point in the test data, which is actually the
best, i.e. that which separates the two classes in the test observations best,
being strongly shifted away from the best split point in the training data.
The best split points in the test data are always shifted into the direction
of the same class, namely that which is more frequent in the training than
in the test data. Thus, when splitting the test observations according to
the split points found in the training data, many of the test observations
which belong to the class less frequent in the training data, are placed into
the wrong subnodes. These wrong decisions accumulate as the test observa-
tions reach lower layers of the classification trees. In the extreme case, the
random forest ultimately classifies all test observations as the class which is
more frequent in the training than in the test data. For the five problematic
training datasets mentioned above, we investigated whether we can observe
this phenomenon in the case of ComBat. Here, indeed ComBat leads to
classifiying almost all test observations as the class overrepresented in the
training data. The latter was not the case without batch effect adjustment.

4.3 Boosting as a (potentially) robust method avoiding over-
fitting in the context of cross-study prediction

Boosting without batch effect adjustment almost perfectly predicted the
class values across datasets and thus, batch effect adjustment tendentiously
worsened the performance. It has been noted in the literature that boost-
ing is quite resistant to overfitting i.e. to an over-adjustment to the train-
ing dataset, in particular in classification settings (Bühlmann and Hothorn,
2007). While LogitBoost can be prone to overfitting, this can be efficiently
inhibited by early stopping of the boosting iterations (Bühlmann and Yu,
2008), as performed in our study. Conventionally the term “overfitting”
refers to the phenomenon that a classifier is overly strongly adjusted to the
specific observations in the training data. This can have the effect that
it features an increased error frequency when applied to independent test
observations following the same distribution as the training data. In the
context of cross-study prediction, however, independent test observations
follow a different distribution than the training data, which is due to batch
effects, as already mentioned. Therefore, we have to consider a different kind
of overfitting here. A classifier may not only be overly strong adjusted to the
specific observations in the training data, but also to the distribution of the
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training data. Such a classifier, which is too much adjusted to the particular
behavior of the training data, may feature a bad generalizability to differ-
ent, albeit similar data distributions. A classifier of this kind would have a
low cross-validation error but a large cross-study prediction error. By con-
trast a classifier which is not overfitting the training data distribution could
have quite a large cross-validation error, but a low cross-study prediction
error. Accordingly, Bernau et al. (2014) found only a weak positive correla-
tion between cross-validation and cross-study validation error in their study.
The strong performance of boosting with early stopping suggests that this
method may not only be resistant to overfitting the training observations,
but also to overfitting the distribution of the training observations. Early
stopping of the boosting iterations has the effect that only strong, coarse
properties of the relationship between covariates and response in the train-
ing data are taken into account. These properties can be expected to be not
induced by batch effects but common to all datasets studying the biological
phenomenon of interest. As the number of boosting iterations increases,
the classifier is increasingly well adjusted to the training data distribution.
This, together with the fact that boosting is more prone to overfitting for
other prediction settings than classification could explain why the CoxBoost
algorithm was less suitable for cross-study prediction in the study by Bernau
et al. (2014) than LogitBoosting was in our study. Similar to the number
of iterations in boosting, also other classification methods feature tuning
parameters which control the degree to which the algorithm adjusts itself to
the training observations and in consequence also to the distribution of the
training data. Examples include the shrinkage parameter ∆ of NSC or the
penalization parameter λ in L1- and L2-penalized logistic regression. Fur-
ther research could focus on the influence of such parameters on the cross-
study prediction performance of these methods. We feel that the number
of iterations in boosting could be especially useful in this context. Firstly,
this parameter has been seen to greatly influence the performance, see e.g.
Seibold et al. (2016). Moreover, in each iteration the influence of only one
variable is updated, wherefore boosting is not strongly dependent on the
specific correlation structure of the dataset. Instead, new variables are con-
secutively taken into the model based on their importance with respect to
explaining the target variable and the iterations are stopped as soon as the
model is deemed complex enough.

4.4 Further possibilities for application

ComBat holds a special place among the four well-performing batch effect
adjustment methods, because of the peculiarity that the training data is not
altered in any way by the adjustment. As a consequence, ComBat addon
adjustment could be employed to improve the prediction performance of
already existing prediction rules in case the following requirements are met:
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the training data which had been used to learn the prediction rule must be
available and the observations to predict must arrive in groups of sufficient
sizes.

In the analysis performed in this paper we have considered quantile nor-
malization as part of RMA for Affymetrix data. However, quantile nor-
malization is also used for many other biomolecular data types (Okoniewski
and Miller, 2008; Schmid et al., 2010; Bullard et al., 2010; Staaf et al., 2008;
’t Hoen et al., 2008). Therefore addon quantile normalization can also be
used for other data types than Affymetrix data to improve the cross-study
prediction performance of prediction rules obtained from these data types.

5 Conclusions

Assimilating the test data to the training data before the application of pre-
diction rules obtained from gene expression data can considerably improve
prediction accuracy. In this endeavor, both addon normalization and addon
batch effect adjustment are recommendable, however not the combination of
these two approaches. A requirement for addon batch effect adjustment to
be effective is that the test observations are available in groups of sufficient
sizes. In the latter case, addon batch effect adjustment using an appropriate
method is preferable over addon normalization. The following addon batch
effect adjustment methods are recommended and perform comparably well:
combat, meanc, ratiog and ratioa. Strongly differing class frequencies
between training and test data should be avoided, especially when using
random forests as classification method. All methods applied in our study
for assimilating training and test data are available in the R-package bapred,
version 1.0 (Hornung and Causeur, 2016), available from CRAN.
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