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Abstract

Objective Bayesians hold that degrees of belief ought to be chosen
in the set of probability functions calibrated with one’s evidence. The
particular choice of degrees of belief is via some objective, i.e., not agent-
dependent, inference process that, in general, selects the most equivocal
probabilities from among those compatible with one’s evidence. Max-
imising entropy is what drives these inference processes in recent works
by Williamson and Masterton though they disagree as to what should
have its entropy maximised. With regard to the probability function one
should adopt as one’s belief function, Williamson advocates selecting the
probability function with greatest entropy compatible with one’s evidence
while Masterton advocates selecting the expected probability function rel-
ative to the density function with greatest entropy compatible with one’s
evidence. In this paper we discuss the significant relative strengths of
these two positions. In particular, Masterton’s original proposal is further
developed and investigated to reveal its significant properties; including
its equivalence to the centre of mass inference process and its ability to
accommodate higher order evidence.

Keywords: Maximum Entropy, Objective Bayesianism, Inference Process,
Centre of Mass, Language Invariance

1 Introduction

“How should one form graded beliefs?” is a question that has long fascinated
philosophers. The answer to this question is highly relevant throughout science,
law, operational research and policy-making. Intuitively, it is obvious that one’s
evidence ought to matter when forming beliefs, whether graded or binary. The
best way of caching out this ubiquitous intuition is, however, a matter of lively
disagreement. The main philosophical protagonists in this debate are: the sub-
jective Bayesians, who can be further subdivided into the radical (de Finetti
[5]) and empirical (Lewis [15]) varieties; the objective Bayesians (Jaynes [10],
Williamson [27]) and those who favour imprecise probabilities (Joyce [11], Gaif-
man [6]).

This paper is concerned with objective Bayesianism. Objective Bayesians,
like their subjective brethren, hold that one’s degrees of belief ought to be con-
sistent with one’s evidence. However, in cases where the evidential constraints
are satisfied by more than one probability function the objective Bayesians differ
from the subjective Bayesians in holding that the choice of a particular probabil-
ity function from those consistent with the evidential constraints ought to made
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in an objective—i.e., agent-independent—manner. Typically, such a choice is
made by applying an inference process that picks from among the probability
functions consistent with the evidential constraints that function which is, in
some sense, maximally equivocal.1

Objective Bayesianism is (still!) a minority view with a relatively small but
dedicated group of advocates. Even in this relatively small group there are
disagreements. One such recent disagreement is that between Williamson [27]
and Masterton [16] on how to understand maximal equivocation.

We shall herein first rehearse Williamson’s account in Section 2.1 and 2.2.
Then we improve on Masterton’s approach by reformulating it, Section 2.3.
This reformulation reveals Masterton to be advocating a centre of mass infer-
ence process. This lays bare a previously unknown and unsuspected connection
between the centre of mass inference process and the maximum entropy prin-
ciple, Section 2.5. This connection not only demonstrates the surprising con-
nection between these two apparently different approaches, we can also use it
to efficiently calculate the probability function Masterton advocates adopting,
see Section 2.6. Furthermore, we overcome the problems of disjunctive evidence
and open evidence which beset Masterton’s original proposal. In Section 3 we
show how Masterton’s approach naturally generalises to cases in which an agent
possesses higher order evidence.

In Section 4 we study an expansion of the language to include sentence
which enable the agent to express such higher order evidence. If no such higher
order evidence is available, then Masterton’s approach applied to this more
expressive language gives the same degrees of belief on the original language
as Masterton’s approach applied to the original language. Surprisingly, the
corresponding invariance does not hold for Williamson’s approach. We discuss
this and further points of interest in the final part of this paper (Section 5).

2 Objective Bayesian Accounts

2.1 The Framework à la Williamson

2.1.1 Language

Throughout, we consider an agent with a fixed language L generated from a
finite set of n propositional variables {A1, A2, . . . , An}, the standard logical
connectives ¬, ∧, ∨, → and ↔.2 Let SL be the set of all sentences that can be
built from L using the logical connectives. A state (or elementary event) ω is a
sentence of the form ±A1∧±A2∧ . . .∧±An, where +Ai := Ai and −Ai := ¬Ai.
The set Ω of such states (elementary events) has cardinality N := 2n. The set
of the subsets of Ω, denoted by PΩ, is the set of propositions (or events).

1In awkward cases “maximally equivocal” is replaced by “sufficiently equivocal”, but for
the most part we shall ignore this subtlety.

2To avoid unnecessary complications we here work over a propositional language; rather
than a language of first-order logic.
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2.1.2 Probabilities

The set of probability functions P is identified with

P = {P : PΩ −→ [0, 1] :
∑
ω∈Ω

P (ω) = 1

& P (X) + P (Y ) = P (X ∪ Y ) ∀X,Y ∈ PΩ with X ∩ Y = ∅} . (1)

Notation is abused in the usual way, writing P (ω) as shorthand for P ({ω}).
The probability of an arbirtrary sentence ϕ ∈ SL is then defined as P (ϕ) :=∑

ω∈Ω
ω�ϕ

P (ω).

The set of probability functions P is characterised by the axioms of prob-
ability which require the following for all functions P : SL −→ [0, 1] and all
sentences χ, ϕ, θ ∈ SL:

P1: If |= χ, then P (χ) = 1.

P2: If |= ¬(θ ∧ ϕ), then P (ϕ) + P (θ) = P (ϕ ∨ θ).

2.1.3 Evidence

An agent’s evidence E in some context is whatever they rationally take for
granted in that context; it need not be expressible in the agent’s language,
nor even be part of what the agent knows. We assume that evidence comes
in two types3: all evidence that “imposes quantitative equality constraints on
rational degrees of belief that are not mediated by evidence of chances”[27,
p. 47] is qualitative evidence, all such evidence that is mediated by evidence
of chances is quantitative. For instance, the evidential independence of θ and
ψ—P (θ|ψ) = P (θ)—is a piece of qualitative evidence, whereas the stochastic
independence of these sentences—ch(θ|ψ) = ch(θ)—is a piece of quantitative
evidence.

At [27, pp. 42-43] Williamson gives an account of how to translate evidence
E into constraints on rational belief by computing a set P∗ ⊆ P consisting of the
set of probability functions that are calibrated with the evidence E . Roughly,
this account has P∗ as the set of probability functions left epistemically open
when one’s evidence is exhausted by E .

2.2 Williamson’s Norms

Williamson put forward three norms that jointly govern the choice of the agent’s
degrees of belief. These norms have appeared in a number of works and have
remained virtually stable. We here refer to their latest published version for
propositional languages, which we take from [13].

Probability. The strengths of an agent’s beliefs should satisfy the axioms of
probability. That is, there should be a probability function PE : SL −→

3Both ourselves and Williamson freely allow that there may be other types of evidence
and that these will place their own constraints on reasonable credence. Hence, we allow that
the calibration norm as explicated herein may be incomplete. This does not make what is
presented here unsound, it merely means that it may not be the full story on calibration.
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[0, 1] such that for each sentence θ of the agent’s language L, PE(θ) mea-
sures the degree to which the agent, with evidence E , believes sentence θ.
Formally:

PE ∈ P .

Calibration. The strengths of an agent’s beliefs should satisfy constraints im-
posed by her evidence E . In particular, if the evidence determines just
that physical probability (aka chance) ch is in some set P∗ of probability
functions defined on SL, then PE should be calibrated to physical prob-
ability insofar as it should lie in the convex hull 〈P∗〉 of the set P∗.(We
assume throughout this paper that chance is probabilistic, i.e., that ch is
a probability function. Furthermore, we restrict attention to non-empty
P∗.) Formally:

PE ∈ 〈P∗〉 .

Equivocation. The agent should not adopt beliefs that are more extreme than
is demanded by her evidence E . That is, PE should be a member of
〈P∗〉 that is sufficiently close to the equivocator function P= which gives
the same probability to each ω ∈ Ω, where the states ω are sentences
describing the most fine-grained possibilities expressible in the agent’s
language.

Much explication and justification of these norms has been offered in the
literature. We have nothing to add to this literature here and we feel that both
the probability and calibration norms are fully transparent as presented above.
We now briefly introduce the equivocation norm in more detail.

2.2.1 Equivocation Norm

The Shannon entropy of a probability function P ∈ P is defined by

H(P ) := −
∑
ω∈Ω

P (ω) · log(P (ω)) .

A convention we adopt throughout is 0 log(0) := 0. According to the Maxent
version of objective Bayesianism that Williamson adheres to, probability func-
tion P ∈ P is more equivocal than probability function Q ∈ P if, and only if,
H(P ) > H(Q).

Let ⇓ 〈P∗〉 ⊆ 〈P∗〉 be the set of sufficiently equivocal E-calibrated probabili-
ties. Sufficiently equivocal E-calibrated probability functions P are those whose
Shannon entropy H(P ) is greatest or, if such do not exist, those whose entropy
meets some pragmatically decided threshold. Thus, if

↓ 〈P∗〉 =

{
PE ∈ 〈P∗〉 : H(PE) = −

∑
ω∈Ω

PE(ω) log(PE(ω)) is maximized

}
6= ∅,

then ⇓ 〈P∗〉 =↓ 〈P∗〉.
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If ↓ 〈P∗〉 = ∅, then ⇓ 〈P∗〉 is decided pragmatically by setting a level of
entropy that is sufficiently exclusive. Then the equivocation norm in our setting
is formally:

PE ∈⇓ 〈P∗〉 .

This recipe may fail to determine a unique PE — ⇓ 〈P∗〉 may not be a sin-
gleton — and to the extent that this is so, some room for subjective preference
remains [27, p. 158] even where credences are relativised to evidence and lan-
guage. Arguably, the objective Bayesian can accept this by maintaining that
objectivity is not binary, but rather comes in degrees, and that objective Bayes-
ianism is simply a more objective version of Bayesianism than its rivals. This
is how Williamson responds to this failure of the equivocation norm to specify
a unique credence function in all cases. If PE is unique, then we denote this
probability function by P †.

2.3 Masterton

For the time being, we follow [16] by working within the same formal frame-
work as Williamson: i.e., we work on a propositional language and accept the
Probability Norm as formulated above. Furthermore, we apply Williamson’s ap-
proach to what constitutes evidence and how to turn evidence into constraints
on degrees of belief: i.e., how to compute P∗.4 Generally speaking, disagreement
arises between these parties with respect to how to understand equivocation,
and to a lesser degree, calibration.

The most substantial difference between Masterton and Williamson is over
what one should equivocate; Williamson advocates equivocating over the prob-
ability functions P ∈ P∗ while Masterton advocates equivocating over the prob-
ability densities % ∈ C1

P∗ consistent with P∗, soon to be described. We shall
revisit this disagreement in due course, Section 5, but first we turn to Master-
ton’s account.

2.3.1 A reformulation of Masterton’s approach

Instead of reiterating Masterton’s original formulation, we give a more efficient
and essentially equivalent formulation.

First, we introduce calibrated density distributions % on the set of probability
functions P∗. That is, a calibrated density distribution % is a map from P∗ to
R≥0 such that: ∫

P∈P∗
%(P ) · P dP ∈ P . (2)

The set of such evidence calibrated density distributions % is denoted by C1
P∗ ,

C1
P∗ : = {% : P∗ → R≥0 :

∫
P∈P∗

%(P ) · P dP ∈ P} .

The meaning of the superscript in C1
P∗ shall become clear in Section 4.

4Nothing important hinges on this, we are happy with every approach to evidence as long
as it results in a set of calibrated functions P∗.

5



The above recipe may fail to be well-defined, if P∗ is not Lebesgue measurable
or if the dimension of P∗ is strictly less than the dimension of P. To address
these technical difficulties we will always take the Lebesgue measure used for
integration to be of the same dimension as P∗. For example, if P∗ is convex
and contains more than a single point, then the integral is with respect to the
Lebesgue measure of dimension dim(P∗). For continuum-sized P∗, we let a
denote the maximal natural number, such that there exists a set U ⊆ P∗ of
dimension a which is open in the standard topology of Ra. We will also always
assume that P∗ is properly Lebesgue measurable in this sense: i.e., the integral∫
P∈P∗ dP is well-defined and strictly between zero and +∞. So, if P∗ is the

union of a line segment and a triangle, then a = 2. We can think of no real life
scenarios where the P∗ fails to be properly Lebesgue measurable, so we deem
that this limitation is of negligible practical consequence.

Finally, for finite P∗ we interpret (2) in this natural sense:∑
P∈P∗

%(P ) · P ∈ P . (3)

That is, we interpret convex combinations of the P ∈ P∗ with the density %
specifying the weights for the calibrated probability functions.

The set of density distributions C1
P∗ plays a crucial role within Masterton’s

account. Masterton’s equivocation norm requires that one selects the density
from this set with greatest entropy. The entropy of a density5 % is given by

H(%) = −
∫
P∈P∗

%(P ) log(%(P )) dP .

According to Masterton, degrees of belief on L have then to be set to

P †M (ϕ) :=

∫
P∈P∗

%†(P (ϕ))P (ϕ) dP , (4)

for all sentences ϕ ∈ SL where %† is the density in C1
P∗ with greatest Shannon

entropy. (4) is a well known consequence of the theorem of total probability
and Miller’s (1966) principle. It implies that the probability of a sentence is the
expected probability of that sentence relative to some density function. Mas-
terton’s equivocation norm merely asserts that the density function in question
should be that calibrated density over P∗ which is most equivocal. The subscript

M of P †M stands for “Masterton”.
In essence, the Lebesgue integral is an ingenious tool to compute weighted

combinations of the points of a Lebesgue measurable set. By canonically em-
bedding P∗ into P as a subset, we can thus simply read-off that

P †M ∈ 〈P
∗〉 .

Thus Masterton, like Williamson, endorses the calibration norm, but does
so for different reasons. Williamson endorses the norm because it is the weakest

5Two different densities %, %′ ∈ C1
P∗ which only differ on a null-set of P∗ have the same

entropy. However, the expected probabilities with respect to %, %′ are equal: i.e.,
∫
P∈P∗ %(P ) ·

PdP =
∫
P∈P∗ %

′(P ) · PdP . Null-sets of P∗ are thus of no interest to us. With some abuse

of language we say that the calibrated density with greatest entropy %† equals the uniform
density on P∗. We do this in spite of the fact that there exist densities with the same entropy
as %†.
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constraint that minimises worst case expected logarithmic loss6 that also offers
a non-arbitrary solution to the problem of disjunctive evidence7. Masterton
endorses the calibration norm because it is a consequence of (4).

2.3.2 Alternative densities?

At this point, we want to point out that there is another natural way of setting
up densities and equivocating over them. This alternative way is inconsistent
with the axiom of probability and hence forbidden in the present Bayesian set-
ting.

One could define densities over the sentences of L, rather than over the prob-
ability functions on L. One then defines the entropy of a density in the obvious
way and computes for all sentences of L the density with greatest entropy. The
degree of belief in a sentence ϕ of L is then set to the expectation of this density.

For P∗ = P and all contingent sentences ϕ of L it holds that every value in
[0, 1] is possible for P (ϕ). Thus, the density for ϕ with greatest entropy is the
uniform density over [0, 1]. It follows that the degree of belief in ϕ equals 1

2 . If
Ω contains three or more states, then the so-obtained degrees of belief violate
the axioms of probability,

∑
ω∈Ω P (ω) = 1

2 · |Ω| > 1.8

2.4 Placing Masterton’s and Williamson’s Objective Bayes-
ianism in context

Before moving on to the relationship between Masterton’s Objective Bayesian-
ism and Center of Mass Objective Bayesianism it is useful to reflect on the
similarities and differences between Masterton’s Bayesianism and Williamson’s
and how they both differ from other variants of Objective Bayesianism. First,
the two positions are similar in that they assume the same formal framework,
with the sole exception that Masterton includes chance hypotheses in the agent’s
language. Second, as stated previously, both Masterton and Williamson are in
complete agreement on the probability and calibration norms, though they differ
in their reasons for accepting the latter. Third, they both agree that equivoca-
tion is about maximising entropy, though they disagree about just what should
have its entropy maximised.

An important point with respect to the wider debate is that Masterton’s
and Williamson’s endorsement of the calibration norm makes their versions
of objective Bayesianism entirely kinematic. There are no prior or posterior

6Williamson’s [2010, p.64-5] argument here is as follows: If an agent’s probability function
P is not in the convex hull of the P∗ determined by their evidence, then there is some other
probability function P ′ ∈ 〈P∗〉 which has a strictly better worst case expected logarithmic loss
than P as shown by [7]; see also [12, 13].

7This problem is best exemplified by considering a sentence θ that, according to our evi-
dence, is settled one way or the other; so that P∗ = {P : P (θ) ∈ {0, 1}}. Arguably, restricting
credence to any subset of 〈P∗〉 other than P∗ would be arbitrary, but restricting credence to
P∗ would, by Williamson’s equivocation norm, yield the conclusion that one should either be
certain of θ or else be certain of its negation. This is highly counterintuitive, as typically one
would think that in such a situation one should be as certain in the sentence as its negation,
which is the result one obtains by applying the equivocation norm to 〈P∗〉. Thus no, non-
arbitrary, subset of 〈P∗〉 avoids the issues posed by disjunctive evidence, while 〈P∗〉 does avoid
those issues.

8Degrees of belief in tautologies in L are one and degrees of belief in contradictions are
zero; which is consistent with the axioms of probability.
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credences in their respective Bayesianisms; no new or old evidence. There is
simply the evidence the agent has at time t, which determines the (set of)
credence function(s) that it is reasonable/rational for the agent to have at t. If at
time t+1 the agent’s evidence has changed, then this will typically mean that a
different (set of) credence function(s) will be reasonable/rational for the agent at
t+1. No functional relationship between the reasonable credence function of the
agent at t and her credence function at t+1 is assumed. This makes Masterton’s
and Williamson’s versions of objective Bayesianism substantially different from
those dynamic versions, such as Jaynes [9], that seek to identify objective prior
probabilities to then conditionalize on new evidence to get objective posterior
probabilities. Perhaps most significantly, the problem of old evidence cannot
arise in purely kinematic Bayesianism for there is no old or new evidence, just
evidence at each moment in time for each agent9.

Another agreement between Masterton’s and Williamson’s objective Bayes-
ianism is that while they agree that the ideal is that an agent’s language and
evidence should force a unique probability function upon them as reasonable,
they both allow that this can fail to happen. The sources of potential failure in
this regard are different for the two authors; the source in Williamson’s case is
that there may be no unique sufficiently equivocal evidence calibrated probabil-
ity function, while the source in Masterton’s case is that there may be no unique
sufficiently equivocal evidence calibrated density function. However, both agree
that the possibility of such failure in their respective inference processes entails
that their Objective Bayesianism is not fully objective. This seems to imply
that both Masterton’s and Williamson’s versions of Objective Baysianism do
not fit well in any of Bandyopadhyay’s et al. [2] 4 categories of Objective Bayes-
ianism. Neither position is technically ‘strongly’ objective as they both allow
that the inference process may fail to deliver a unique probability (though they
are arguably strongly objective in spirit), but nor is either position ‘moderately’
objective because they do not envisage scientific inference as a problem of de-
ciding between competing theories [3]. Certainly, neither position is a version of
a Carnapian [4] style of logical/‘necessary’ objective Bayesianism. Finally, they
are not ‘quasi’ objective as simplicity plays no role in the inference process and
though Masterton and Williamson also allow that the inference process may
result in a number of probability functions being equally reasonably they do
not condone this fact but rather see it as an unavoidable evil.

9While Masterton and Williamson avoid the unique probability objection raised by [2],
nothing in their previous writings deals with Bandyopadhyay’s et al criticism that often in
science hypotheses are accepted on the strength of the evidence despite their posterior prob-
ability in the light of such evidence being very low. While Masterton and Williamson do
not have posterior probabilities in their accounts, it is the case that significant evidence for a
hypothesis may fail to result in high credence in that hypothesis in their frameworks. Master-
ton’s response to this concern is that while a high degree of belief in a hypothesis is a sufficient
condition for its acceptance, it is not a necessary one. Thus, he allows that a hypothesis’ ac-
ceptance by an agent may be warranted by, e.g., a significant experimental result even when
the reasonable degree of belief for that agent on the basis of that evidence is low. That is
Masterton, much like van Fraassen [26], holds acceptance and belief to be two entirely distinct
doxastic states where warranted acceptance is easier to come by than warranted belief.
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2.5 Masterton’s approach and the centre of mass inference
process

We now show how to frame Masterton’s approach in terms of the centre of mass
inference process. Slightly generalising the definition at [18, p. 69] we define an
inference process to be a map from non-empty sets of probability functions to
P.

The centre of mass inference process, (CM), applied to P∗, picks out the

probability function P †CM at the centre of mass of P∗. P †CM is usually defined
as follows:

P †CM :=

∫
P∈P∗ P dP∫
P∈P∗ dP

.

Since %† is the uniform density satisfying
∫
P∈P∗ %

†(P ) dP = 1 it follows that

P †M =

∫
P∈P∗

%†(P ) · P dP

=

∫
P∈P∗ P dP∫
P∈P∗ dP

=P †CM .

Thus, Masterton unwittingly advocated adopting the same probability function
as the centre of mass inference process picks out.

Unsurprisingly, given the agreement demonstrated above, the basic intu-
itions cited in support of these inference processes are very similar.

treat all probability functions that satisfies the constraints as equally
likely. [..] immediately suggests approximating, or estimating, the
true probability by taking the ’average’ of all probability function
satisfying the constraints. [19, p. 276-277]

Where there is a maximally equivocal element in the evidence-calibrated
set of densities over chances, then the reasonable credence to have
in θ, according to this approach, is the expected chance of θ relative
to [...] that most equivocal density function.[16, p. 422]

2.6 Examples

With the centre of mass formulation of Masterton’s approach in place we are now
in position to compute P †M straight-forwardly using only elementary geometry.

2.6.1 P∗ is finite

Example 1: There are only finitely many pairwise different probability functions
P1, . . . , Pq which are calibrated to the agent’s evidence. We have

P∗ ={P1, . . . , Pq}

%†(P ) =

{
1
q , if P ∈ {P1, . . . , Pq}
0 , else .
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P †M is then simply the arithmetic mean of the Pi

P †M =
P1 + P2 + · · ·+ Pq

q
.

2.6.2 Disjunctive Evidence

Example 2: Let L contain only a single variable A1 and let

P∗ := {P ∈ P : P (A1) ∈ [0.1, 0.3] ∪ [0.5, 0.8]} .

The density with greatest entropy %† (see Figure 1) thus assigns every P ∈ P∗

the value 2. The centre of mass of P∗, P †M (A1), then has to satisfy

3 · (0.65− P †M (A1)) = 2 · (P †M (A1)− 0.2) .

We find that this constraint is uniquely solved by P †M (A1) = 0.47.

P †M (A1)

P (A1)

%†

Figure 1: The most equivocal density over P∗, with P †M (A1) marked in the
figure.

2.6.3 A Trapezium

Example 3: Let L = {A1, A2} and let

P∗ = {P ∈ P : P (ω1) ∈ [0.7, 0.9] &P (ω4) = 0} .

P∗ is a trapezium T with vertices P1 = (0.9, 0.1, 0, 0), P2 = (0.9, 0, 0.1, 0), P3 =
(0.7, 0.3, 0, 0), P4 = (0.7, 0, 0.3, 0).

Letting P0 = (1, 0, 0, 0) we find that the area of the trapezium T is the area
of the equilateral triangle ∆3 := 〈P0, P3, P4〉 minus the area of the equilateral
triangle ∆1 := 〈P0, P1, P2〉, see Figure 2.

For the area of T we now easily find

area(T ) =
2
√

3

4
0.32 −

2
√

3

4
0.12 = 0.02 · 2

√
3 .
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P0P3 P1

P2

P4

P=

T

∆0

Figure 2: Projection of trapezium onto the plane with P (ω4) = 0. The dotted
lines are axis of symmetry.

By the symmetry of P∗ we can infer that the most equivocal density is
invariant under permuting ω2 and ω3. We thus infer P †M (ω2) = P †M (ω3) and

also that P †M (ω4) = 0. We are thus looking for the point X = (1−x, x2 ,
x
2 , 0) ∈ T

on the line segment h connecting (0.9, 0.05, 0.05, 0) and (0.7, 0.15, 0.15, 0) which
is the centre of mass of T .

Note that X is not the midpoint of h. Rather, X needs to lie on the line
segment which connects Px := (1 − x, x, 0, 0) and P x := (1 − x, 0, x, 0) which
cuts T into two equally large trapeziums T1 and T2

T1 = 〈P1, P2, Px, P
x〉

T2 = 〈P3, P4, Px, P
x〉

area(T1) = area(〈Px, P
x, P0〉)− area(∆0)

area(T2) = area(∆3)− area(〈Px, P
x, P0〉) .

The geometry is depicted in Figure 3.
We thus obtain the following constraint on x

area(T1) = x2
2
√

3

4
− 0.12

2
√

3

4
= 0.32

2
√

3

4
− x2

2
√

3

4
= area(T2)

=
area(T )

2
= 0.01 · 2

√
3 ,

which is uniquely solved by x = 2
√

0.05 ≈ 22.36%.
We thus find P †M as follows

P †M = (1− 2
√

0.05,
2
√

0.05

2
,

2
√

0.05

2
, 0) ≈ (77.64%, 11.18%, 11.18%, 0) .

The entropy maximiser P † is P † = (0.7, 0.15, 0.15, 0). P †M and P † are plotted
in Figure 4.
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P0P3 P1

P2

P4

Px

P x

T2
T1

∆0

P=

Figure 3: Geometry of the trapeziums T1 ∪ T2 = T , T1 ∪∆0 = ∆1.

P0P3 P1

P2

P4

Px

P x

P=

P †P †M

Figure 4: P † and P †M for P∗ = T

3 Non-uniform Equivocation

We now further develop Masterton’s account. Let us first consider a simple
example.

3.1 Biased Coins

Consider an agent which rationally grants that the coin about to be flipped has
been produced by one of three machines:

A Machine A produces fair coins, PA(Heads) ∈ [0.48, 0.52] = P∗A

B Machine B produces coins which are slightly biased in favor of heads,
PB(Heads) ∈ [0.54, 0.72] = P∗B and

C Machine C produces coins which are strongly biased in favor of heads,
PC(Heads) ∈ [0.68, 0.84] = P∗C .
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We assume that the agent does not have any further evidence; in particular, the
agent does not have any further evidence on the chances of heads from coins
from a particular machine. What ought the agent’s degrees of belief be?10

Williamson’s account gives P †(Heads) = 0.5, since 〈P∗〉 = [0.48, 0.72] and
in Williamson’s account one ought to adopt the Shannon entropy maximiser in
〈P∗〉. Masterton’s answer is

P †M (Heads) =
4 · 0.5 + 20 · 0.69

24
=

15.8

24
= 65.83̄% .

According to [16] the problem with Williamson’s account is that his answer
P †(Heads) = 0.5 is not influenced by the possibility of the coin being produced
by Machine B or Machine C.

A similar problem besets Masterton’s own account. Let us modify our exam-
ple such that there are now fifty machines of type C, one single machine of type
A and one single machine of type B. Masterton’s, as well as Williamson’s, ac-
count advocate adopting the same belief function in both examples. This seems
peculiar. The coin to be tossed has, with overwhelming likelihood, been pro-
duced by a C-type machine. Yet, P †M (Heads) = 0.6583̄ and P †(Heads) = 0.5
are incompatible with the possibility that the coin was produced by a C-type
machine.

The number of machines of type C ought to influence rational degrees of
belief, we claim. We now turn to a suggestion for how this might be.

3.2 Scenario Equivocation

In this concrete example with 52 coin-producing machines we want to suggest
the following approach. First, the agent equivocates over the possibilities re-
garding which machine produced the coin. Then the agent equivocates over the
probability functions in P∗A, respectively P∗B and P∗C . We obtain

P †M+(HEADS) =
1

52
· 50% +

1

52
· 63% +

50

52
· 76%

=
50 + 63 + 50 · 76

5200
=

3913

5200
= 0.7525 .

As expected, P †M+ is not only calibrated to P∗C but P †M+ is close to the centre
of P∗C .

In general, we want to suggest the following: if all the agent takes for granted
is that she is in one of t mutually exclusive scenarios, then she ought first to
equivocate over this set of possible scenarios. That is, the agent ought to have
a degree of belief 1

t for each of those scenarios that it is her scenario. Then,
in each scenario i the agent calculates the set of epistemically open probability
functions, P∗i for 1 ≤ i ≤ t. Next, the agent calculates the maximally equivocal

10To keep the example simple, we restrict ourselves here to the case in which there is no
information as to how likely any given situation is. If such information is available, then it
ought to be taken into account, in an appropriate manner. For example, if situation i is taken
to be twice as likely as situation k, then situation i should be given double the weight of
situation k. We shall come back to higher order evidence in Section 4. Lewis describes a
similar procedure at [15, p. 266].
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P †M+
P † P †M

P (HEADS)

Likelihood

Figure 5: Likelihoods of biases and the value of maximum entropy functions P †,
P †M and P †M+ for HEADS.

function in P∗i à la Masterton. Finally, the agent adopts the arithmetic mean
of these maximally equivocal functions.

With this picture in mind, we now find

P †M+ =
1

t
·

t∑
i=1

P †CM (P∗i )

=
1

t
·

t∑
i=1

∫
P∗i
P dP∫

P∗i
dP

=
1

t
·
∫
P∈P∗

P ·
( t∑
i=1

ρ†i (P )
)
dP

=

∫
P∈P∗

P · ρ†(P ) dP ,

where the last formulations are well defined, if and only if all P∗i have the same
dimension. ρ†(P ) for Heads in our coin machine example is given in Figure 5.
For t = 1 this agrees with Masterton’s approach, while generally:

P †M+ =
1

t

t∑
i=1

P †Mi
.

An alternative equivocation norm results if one takes the maximally equiv-
ocal function in P∗i for each i à la Williamson:

P †+ :=
1

t

t∑
i=1

P †i .

In the coin machine example,

1

t

t∑
i=1

P †i =
0.5 + 0.54 + 50 · 0.68

52
= 0.674 6= 0.7525 =

1

t

t∑
i=1

P †Mi .
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Indeed, we find that P †+(Heads) is incompatible with the coin being produced
by machine C. Thus, this approach does not overcome the concern we raised
for Williamson’s and Masterton’s inference principles.

3.3 Centre of Mass Infinity

A possible complication at this point is that centre of mass CM equivocation
over the P∗i may be found objectionable on the grounds that such inference is
not language invariant. That is, an agent with a larger language L′—obtained
from L by adding further propositional variables—with the same evidence would
draw different inferences about the sentences ϕ ∈ SL than the present agent.
General representation dependence of inference is well-known to be virtually un-
avoidable (see [8]) but language invariance is achievable, and has been achieved
by Williamson and those of his ilk.

To the extent that one finds this objection serious one might be tempted to
return to equivocating in Williamson’s fashion despite the previously identified
concerns. However, there is another response; namely, using centre of mass
infinity (CM∞)[23] equivocation over the P∗i instead of straight CM .1112 This
solves any concerns about language invariance as it has been shown (ibid) that
CM∞ is a language invariant inference process. It follows that if CM∞ replaces
CM as the form of equivocation over each P∗i , then the result of the new norm
is a convex combination of language invariant processes, which will itself be
language invariant. For a longer discussion on these issues see [19, Section 4].

For convex and closed P∗, the function picked out by CM∞ maximises∑
ω∈ΩI

log(P (ω)) (5)

where ΩI is the subset of states ω such that P (ω) > 0 is consistent with P∗,
see [18, page 74].13 The probability function picked out by this inference process

is denoted by P †CM∞
. We argue in Section 5 that this option is ultimately

unappealing despite it satisfying the desideratum of language invariance.

3.4 An Objection of Feasibility

An opponent of the above suggested scenario equivocation might object that it
is not always possible for the agent to determine whether her epistemic situation
can be neatly split into finitely many distinct scenarios. For example, an agent
might take it rationally for granted that P ∗ ∈ P∗A ∪ P∗B ∪ P∗C but be unsure
about why exactly that is. The objection is that we have not spelled out how
the agent ought to proceed. Williamson’s account is, of course, immune to this
objection.

We concede the point that we have not put forward an approach which covers
such cases. We would like to make two points. First, in many applications it
will be clear whether there are such scenarios or not. We claim that at least

11Another approach satisfying language invariance, via marginalisation of Dirichlet priors,
has been taken in [14].

12Interest in CM∞ has waned in recent years until it very recently resurfaced in [1] and
[29].

13If ω ∈ Ω \ ΩI , then P (ω) = 0 for all P ∈ P∗. Hence, log(P (ω)) = −∞. So, would the
above sum contain such an ω, then the entire sum would have value −∞.
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in these cases scenario equivocation is appropriate. Second, a case as in the
above objection is simply an epistemically “hard” case. We do not have a
general approach to “hard” cases at this time. In general, we suspect that the
appropriate course of action in such cases is dependent on the exact epistemic
situation of the agent; hence a single, general inference process for all such cases
is likely a pipe dream.

Before moving on, we consider one related objection which we feel has
less merit than the above. An agent faced with the situation we describe in
Section 3.1 might split the world into 4 scenarios (rather than three) as fol-
lows: in Scenario 1 P ∗ ∈ [0.48, 0.5], Scenario 2 P ∗ ∈ [0.5, 0.52], Scenario 3
P ∗ ∈ [0.54, 0.72] and Scenario 4 P ∗ ∈ [0.68, 0.84]. This agent would assign
P ∗ ∈ [0.48, 0.52] a likelihood of 0.5 6= 1

3 . So, our approach gives two different
answers. We would argue that in this case the agent’s evidence determines how
to spilt the world into scenarios. Therefore, our approach only gives one answer.
We shall revisit such “problems” of language dependence in Section 5.2.

4 Chance Invariance

One criticism of CM is the dependence of inferences on the underlying language,
i.e., CM is not language invariant. While Williamson’s equivocation procedure
is language invariant it suffers from a related problem. It matters whether one
equivocates over probability functions or over probability densities. As we saw
earlier, equivocation over densities requires one to adopt the centre of mass
probability function P †CM and not the Shannon entropy maximiser P †.

We here show that Masterton’s approach does not suffer from a related
problem. If one equivocates over densities of some order greater or equal than
the order one has evidence for, then one adopts the same probability function
for decision making. That is, decisions do not depend on the agent’s language as
long as the language is sufficiently rich to allow the formalisation of the agent’s
total evidence. To allow for this richer language we now enrich L to include
densities.

4.1 The Base Case

Let us first consider the case in which the agent does not have any higher order
evidence. That is, the agent has no evidence which favors one of the P ∈ P∗
over the others.

We define densities of higher order n ≥ 1 as follows:

C0
P∗ : = P∗

C1
P∗ : = {f1 : P∗ → R≥0 :

∫
P∈P∗

f1(P ) · P dP ∈ P}

C2
P∗ : = {f2 : C1

P∗ → R≥0 :

∫
f1∈C1

P∗

f2(f1) · f1 df1 ∈ C1
P∗}

and so on...

Cn+1
P∗ : = {fn+1 : Cn

P∗ → R≥0 :

∫
fn∈Cn

P∗

fn+1(fn) · fn dfn ∈ Cn
P∗} .
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Intuitively, the fn+1 specify how likely the densities fn are. We have already
encountered the densities of order 1 in C1

P∗ in Section 2.3.1. In Section 2.6, we
gave a geometric interpretation of these densities.

We now go on to show that the Cn
P∗ are Lebesgue measurable. For the

remainder of this paper we will always take it that densities are well-enough
behaved that the above integrals exist, i.e., are well-defined. We cannot envision
a practical application in which densities are not Lebesgue measurable.

Proposition 1. Cn
P∗ is convex for all n ≥ 1.

Proof: We proceed by induction. For n = 1 and f1, f
′
1 ∈ C1

P∗ we have∫
P∈P∗

f1 + f ′1
2

(P ) · P dP =
1

2

(∫
P∈P∗

f1(P ) · P dP +

∫
P∈P∗

f ′1(P ) · P dP
)
.

Since P is convex, this function is in P.
For general n+ 1 and fn+1, f

′
n+1 ∈ Cn+1

P∗ we have∫
fn∈Cn

P∗

fn+1 + f ′n+1

2
(fn) · fn dfn

=
1

2

(∫
fn∈Cn

P∗

fn+1(fn) · fn dfn +

∫
fn∈Cn

P∗

f ′n+1(fn) · fn dfn
)
.

By definition of Cn+1
P∗ , both integrals are members of Cn

P∗ . Since Cn
P∗ is convex

by the induction hypothesis, the function on the right hand side of the equality
symbol is a function in Cn

P∗ . �

Following the template of Shannon Entropy we define the entropy of higher
order densities. The Shannon Entropy of P is its negative expected logarithmic
utility where P is summed over all states ω ∈ Ω. Arguably, the entropy of a
density fn+1 can be measured by computing its negative expected logarithmic
utility. As a (n + 1)-density applies to n-densities, so the underlying space is
Cn

P∗ . Since this space is infinite and continuous, the sum is replaced by a uniform
integral. Since convex sets are Lebesgue integrable the expressions below are
well-defined.

We define the entropy of an fn+1 ∈ Cn+1
P∗ by

H(fn+1) : = −
∫
fn∈Cn

P∗

fn+1(fn) · log(fn+1(fn)) dfn . (6)

Though this notion of entropy on a continuous domain might be rather arcane
to the formal epistemologist, it is widely used in the applied sciences.

The density f†n+1 with maximal entropy (modulo null-sets) is constant, i.e., it
assigns every density fn ∈ Cn

P∗ the same value. This is in-line with the intuition
that maximum entropy functions are maximally equivocal, i.e., assign the same
value to all members of the underlying domain.

Computing the expected n-density with respect to f†n+1 we obtain∫
fn∈Cn

P∗

f†n+1(fn) · fn dfn. (7)
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By definition, this is a density fn ∈ Cn
P∗ . Furthermore, f†n+1(fn) is constant on

Cn
P∗ . So, it must be equal to ||Cn

P∗ ||−1. Hence,∫
fn∈Cn

P∗

f†n+1(fn) · fn dfn =
1

||Cn
P∗ ||

∫
fn∈Cn

P∗

fn dfn (8)

is the centre of mass of Cn
P∗ , CM(Cn

P∗).
On the other hand, we can understand (8) as a function from Cn−1

P∗ to R≥0

which is constant on Cn−1
P∗ . But this means that (8) is equal to f†n. We thus

obtain

CM(Cn
P∗) =

∫
fn∈Cn

P∗

f†n+1(fn) · fn dfn = f†n . (9)

So, the expected n-density relative to the most equivocal (n+ 1)-density is the
most equivocal n-density. More informally, taking expectations with respect to
the maximally equivocal (n+ 1)-density yields the centre of mass of Cn

P∗ which
equals the maximally equivocal n-density.

We already saw a special case of this phenomenon in Section 2.3.1. CM(P∗)
can be obtained by computing expectation with respect to the maximally equiv-
ocal function in C1

P∗ , if no first (nor any higher) order evidence is available.
We now find

P †CM =

∫
P∈P∗

f†1 (P ) · P dP (10)

=

∫
P∈P∗

f†1︷ ︸︸ ︷(∫
f1∈C1

P∗

f†2 (f1)f1 df1

)
(P ) · P dP (11)

=

∫
P∈P∗

(∫
f1∈C1

P∗

f†2︷ ︸︸ ︷(∫
f2∈C2

P∗

f†3 (f2)f2 df2

)
(f1)f1 df1

)
︸ ︷︷ ︸

f†1

(P ) · P dP. (12)

The upshots are two-fold. On whatever density order one equivocates, as long as
one computes expectations as above, one always obtains P †CM . A phenomenon
we term chance invariance.

Furthermore, the centre of mass of Cn
P∗ and the density with greatest entropy

in Cn
P∗ are one and the same function for n ≥ 1.

4.2 Higher Order Evidence

Let us now consider the case in which the agent does have higher order evi-
dence. We already considered such a case in the above 52 machine example, see
Figure 5. To tackle the general case, we first have to define the sets of evidence
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calibrated density functions. We define:

D0
P∗ : = P∗

D1
P∗ : = {f1 ∈ C1

P∗ : f1 consistent with the agent’s evidence}
D2

P∗ : = {f2 ∈ C2
P∗ : f2(f1) = 0 for all f1 /∈ D1

P∗ & f2 consistent with the agent’s evidence}
and so on...

Dn+1
P∗ : = {fn+1 ∈ Cn

P∗ : fn+1(fn) = 0 for all fn /∈ Dn
P∗ & fn+1 consistent with the agent’s evidence} .

Note that Dn
P∗ ⊆ Cn

P∗ , so we immediately obtain that the entropy of densities in
Dn

P∗ is also well-defined.
For example, in the situation depicted in Figure 5 we have

D1
P∗ : = {f1 ∈ C1

P∗ : f1 =
1

52
fA +

1

52
fB +

50

52
fC

for some fA ∈ C1
P∗A
, fB ∈ C1

P∗B
, fC ∈ C1

P∗C
}

D2
P∗ : = {f2 ∈ C2

P∗ : f2(f1) = 0 for all f1 /∈ D1
P∗}

and so on...

Dn+1
P∗ : = {fn+1 ∈ Cn+1

P∗ : fn+1(fn) = 0 for all fn /∈ Dn
P∗} .

We plotted the density in D1
P∗ with greatest entropy in Figure 5.

In practical applications, there will be a finite upper bound on the order of
the agent’s evidence. Let N ∈ N be that bound. Since the agent does not have
any higher order evidence, the agent does not have a reason to favor one of the
densities in DN

P∗ over another such density. Hence, an agent ought to equivocate
over these densities.

So, an agent computes the density f†N+1 ∈ DN+1
P∗ with maximum entropy.

Again, the maximum entropy density assigns all fN ∈ DN
P∗ the same weight.

Hence, the expected N density with respect to f†N+1 is the centre of mass of DN
P∗ .

Armed with this density it is then straight forward to compute the probability
used for decision making by computing expectations:∫

f1∈D1
P∗

(∫
f2∈D2

P∗

. . .
(∫

fN∈DN
P∗

f†N+1(fN )fNdfN

)
. . . (f2)f2df2

)
(f1)f1df1 ∈ P.

Now suppose the agent equivocated over some higher order N + k with k > 1.
The agent would then compute the density in DN+k

P∗ with maximum entropy,

f†N+k, being fully indifferent towards these densities. Computing expectations

over DN+k−1
P∗ with respect to f†N+k yields the centre of Mass of DN+k−1

P∗ since

f†N+k is constant on DN+k−1
P∗ . Repeating this step k−1-many further times, the

agent obtains f†N+1. Thus Masterton’s approach generalised to higher order’s
has the nice property that equivocating on any order greater than that imme-
diately above the order for which one has evidence (> N + 1) has no impact on
the inference process.

We now apply the above recipe to our 52 machines examples. Observe that
the centre of mass of any object can be found by i) decomposing the object into
disjoint parts, ii) compute the centre of mass of every part and iii) multiply each
centre of mass of a part with the relative weight of this part and then iv) sum
all these weighted centres of mass. We apply this well-known recipe here.
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The centre of mass of C1
P∗A

, f†A, assigns every P ∈ P∗A the same weight. We

thus obtain by following the recipe

f†A(P ) =

{
0 , if P (HEADS) /∈ [0.48, 0.52]

1
0.04 , if P (HEADS) ∈ [0.48, 0.52]

f†B(P ) =

{
0 , if P (HEADS) /∈ [0.54, 0.72]

1
0.18 , if P (HEADS) ∈ [0.54, 0.72]

f†C(P ) =

{
0 , if P (HEADS) /∈ [0.68, 0.84]

1
0.16 , if P (HEADS) ∈ [0.68, 0.84] ,

and obtain overall

f†1 (P ) =



0 , if P (HEADS) /∈ [0.48, 0.52] ∪ [0.54, 0.84]
1
52 ·

1
0.04 ≈ 0.48 , if P (HEADS) ∈ [0.48, 0.52]

1
52 ·

1
0.18 ≈ 0.11 , if P (HEADS) ∈ [0.54, 0.68]

1
52 ·

1
0.18 + 50

52 ·
1

0.16 ≈ 6.12 , if P (HEADS) ∈ [0.68, 0.72]
50
52 ·

1
0.16 ≈ 6.01 , if P (HEADS) ∈ [0.68, 0.84] ,

which is plotted in Figure 5.

5 Discussion

5.1 The right inference process?

We have discussed three distinct ways of maximally equivocating: Williamson’s
approach, and two refinements of Masterton’s approach – applying CM respec-
tively CM∞. The natural question to ask is: “So, which way is the right way?”
The answer, invariably, depends on the exact nature of our normative enterprise.

If our goal is to set subjective common-sensical probabilities as does Jeff
Paris in [20]:

The probabilities assigned by Maxent (in this context) are subjective
probabilities, quantified expressions of degrees of belief. What they
are not is estimates of objective probabilities.
emphasis original

then Williamson’s account (Maxent in Paris’s terms) seems to be the clear
objective Bayesian frontrunner, see [21, 22, 24].

Common sensicality is cached out in terms of satisfying intuitively right (or
so it is claimed) common sense principles. While each principle is, in its own
right, intuitive to some degree; taken all together they are clearly not intuitive.
Who in her/his right mind sets intuitive subjective degrees of belief equal to
the unique function P † ∈ 〈P∗〉 which maximises −

∑
ω∈Ω P (ω) log(P (ω))? So,

if rationally is construed as an explication of intuitive rationality in Carnap’s
sense (see [4]), then Maxent clearly fails.

A significant number of writers, Lewis [15] for example, have defended
chance-credence coordination principles that require agents to set degrees of be-
lief equal to the chances as they know, or justifiably believe, them to be. If these
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writers are right, then rational agents do aim at estimating chances (objective
probabilities in Paris’s terminology). Maxent picks a probability function from
among those left epistemically open by one’s evidence of chances, so it meets
this desideratum. It is not alone in this, however; centre of mass inference pro-
cesses do likewise. As we have shown, this means that inference processes—like
Masterton’s—that pick a density function from among those left epistemically
open by one’s evidence of chances also meet the desideratum. But Maxent,
CM , and CM∞ pick out different functions generally. Hence, the importance
of the question as to which is the right inference process. Indeed, the conditions
under which Maxent and CM agree are very specific and occur only rarely. We
now establish what those conditions are.

Proposition 2. Let f : P → [0,+∞] be a strictly concave function which has
a unique global maximum at P=. If P∗ is convex, closed and P= /∈ P∗, then
arg supP∈E f(P ) contains a unique element, P+

f , and P+
f is an element of the

boundary of P∗ facing P=.

Proof: For P∗ as above and for every point P ∈ P∗ it holds that f(P ) <
f(P=). By strict concavity of f , f(λP= + (1 − λ)P ) strictly decreases with
decreasing λ ≤ 1 as long as f(λP= + (1 − λ)P ) is defined, that is, as long as
λP= + (1 − λ)P ∈ P. For all Q in the interior of P∗ there exists a point PQ in
the boundary of P∗ (P∗ is closed!) which is a convex combination of Q and P=.
Hence, f(Q) < f(PQ). So, the maximum of f over P∗ cannot obtain at Q. �

Corollary 3. Let I be an inference process which picks out the probability func-
tion which maximises some strictly concave function f with a unique maximum
at P=. Let P∗ be convex and closed.

• If P= ∈ P∗, then P+
f = P=.

• If P= /∈ P∗, then P+
f is an element of the boundary of P∗ facing P=.

The requirement that the unique maximum of f obtains at P= ensures that
the inference process satisfies the principle of indifference: If P∗ = P, then
P+
f = P=.

Corollary 4. Let P∗ be convex and closed.

• If P= ∈ P∗, then P † = P †CM∞
= P=.

• If P= /∈ P∗, then P † and P †CM∞
are elements of the boundary of P∗ facing

P=.

Proof: It suffices to note that the two functions
∑

ω∈ΩI
log(P (ω)) and H(P ) =

−
∑

ω∈Ω P (ω) log(P (ω)) are strictly concave on P with a unique maximum at
P=. �

Proposition 5. If P∗ is convex and closed and if P∗ is of the same dimension
as P, then the following are equivalent

1. P †CM = P †
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2. P †CM = P=

3. P †CM = P †CM∞
.

Proof: 1 implies 2: We show that not 2 implies not 1. Suppose that
P †CM 6= P=. There are two mutually exclusive and exhaustive cases.

Case 1 P= ∈ P∗.
Then P † = P=. But since P= 6= P †CM we obtain P † = P= 6= P †CM .
Case 2 P= /∈ P∗.
Then P † lies on the boundary of P∗, on the other hand P †CM is in interior

point of P∗.14 Hence, P † 6= P †CM .

2 implies 1: If P †CM = P=, then P= ∈ P∗. But then P † = P=.

2 implies 3: If P †CM = P=, then P= ∈ P∗. But then P †CM∞
= P=.

3 implies 2: We show that not 2 implies not 3. Suppose that P †CM 6= P=.
There are two mutually exclusive and exhaustive cases.

Case 1 P= ∈ P∗.
Then P †CM∞

= P=. But since P= 6= P †CM we obtain P †CM∞
= P= 6= P †CM .

Case 2 P= /∈ P∗.
Then P †CM∞

lies on the boundary of P∗, on the other hand P †CM is in interior

point of P∗. Hence, P †CM∞
6= P †CM .

�

So, P † agrees with P †CM , if and only if the centre of mass of P∗ is the equivocator
function P=; this is quite a rare case.15 Not only do they rarely agree, they are
quite different in a great number of cases:

Corollary 6. If P∗ is convex and closed and if P∗ is of the same dimension as
P, then P † and P †CM∞

are on the boundary of P∗ facing P=. P †CM is an interior
point of P∗.

For a graphical illustration see Figure 4.
Convex, closed and non-empty sets P∗ are the paradigm examples in our

setting.16 In such a paradigm case with P= /∈ P∗ Maxent selects a point on
the boundary of P∗. The most basic intuition for the purposes of estimating
an objective probability or at least tracking objective probabilities to the best
as one can is, we would argue, to pick an interior point of P∗17. We conclude
that Maxent fails as an explication of everyday scientific estimation of objective
probabilities because it either singles out the equivocator or a probability func-
tion on the boundary of (a convex, closed and non-empty set) P∗ as uniquely
rational.

14Interior and exterior are here understood in the induced topology on P∗. If P∗ has a lower

dimension than P∗, then P †CM is not necessarily an interior point of P∗.
15The same holds mutatis mutandis for P †CM∞

.
16Non-convex P∗ are notoriously hard cases. The study of note in this case which does not

simply consider the convex hull of P∗ is [25].
17Paris & Vensovská have, of course, also found a natural way in which Maxent is uniquely

rational for the purposes of estimating objective probabilities [21]. In a later paper [19,
p. 275-276], Jeff Paris is somewhat more sympathetic towards CM for estimating objective
probabilities.
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5.2 The role of language

It is well-established and accepted [8, 20] that inferences have to depend in
some way on the underlying language. However, the number of possible worlds
depends on the agent’s evidence and thus the dependence of inferences on the
underlying language is rooted in the agent’s epistemic state and not in the
agent’s whimsicality.

Language invariance on the other hand is a desideratum that can be satisfied,
and indeed is satisfied, by Maxent though CM fails to satisfy this desideratum.
This clearly tells against the approach we expounded here.

As we saw in Section 3, including probability densities in the agent’s lan-
guage allows the agent to take higher order evidence into account. In [28],
Williamson expresses the worry that, in principle, agents might be required to
take information on an ever higher order into account and that inference from
such evidence would not eventually stabilise. A phenomenon he calls the un-
certainty escalator. We think that higher order information, if available, ought
to be taken into account and that, in every-day practise, information is only
available up to a certain order. Undoubtedly, an inference process should be
stable in the sense that the result of that process is the same no matter which
order above that for which one has evidence one begins the inference process,
but we have shown that our approach meets this desideratum. That is, we argue
that our approach is not vulnerable to the uncertainty escalator for, we argue,
one should ride that escalator at least as far as is warranted by one’s evidence
and we have shown that riding it further has no impact upon the probabilities
one will infer.

Williamson is not (yet?) on the record on how exactly an agent with densi-
ties in her language sets degrees of belief. All we have to go by is his recipe to
equivocate maximally (or at least sufficiently) over the most basic propositions
the agent can express. We feel that it is reasonable to measure the degree of
equivocation of a density distribution by (6). If this is right and Williamson
acknowledges the force of expert principles such as Lewis’s Principal Principle;
then Williamson’s agent would be forced to adopt CM(P∗) as her belief func-
tion in the absence of higher order evidence, if her language includes chance
hypotheses. In the same situation, but with a language that does not contain
such chance hypotheses, this agent would adopt Williamson’s original P † as her
belief function. Clearly, Williamson’s approach fails to satisfy what we have
termed chance invariance. That is, expanding the agent’s language by adding
chance hypotheses while keeping the evidence base the same will alter the out-
come of Williamson’s version of Maxent, given some rather mild assumptions.
This is not the case with our approach, though the outcome of our favoured
inference process is susceptible to simple extension of the agent’s language with
the evidence held fixed.

Thus, considerations concerning the invariance of the results of these pro-
cesses to extensions of the underlying language, far from deciding the issue, have
rather produced an interesting (qualified by language dependence) scoreline of
1 : 1.
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5.3 Non-convex evidence

As we saw in the second example (Section 2.6.2), in certain cases P †M /∈ P∗.
I.e., the belief function Masterton advocates adopting is sometimes ruled out
by the agent’s evidence. Note however, that P †M /∈ P∗ can only happen in

cases of non-convex P∗. Furthermore, for some non-convex P †M ∈ P∗ does hold,
see Section 3.1. Finally, one should further note that this can also occur in
Williamson’s framework.

Overall, we feel that P †M /∈ P∗ for some non-convex P∗ is not a serious flaw,
if it is a flaw at all, in Masterton’s account or, for that matter, Williamson’s. It
is simply a result of a less than ideal evidential state.

5.4 Concluding remarks

In the debate as to what is the right way of equivocating between probability
functions, CM and Maxent are often given prominence. Indeed, often the debate
is characterised as a straight choice between the two. Aside from unfairly failing
to recognise other alternatives, we judge this characterisation to be unhelpful
because it fails to recognise that CM is itself a Maxent inference process. Both
CM and Maxent are processes that select a probability function from those
left epistemically open by one’s evidence by maximising entropy, where they
differ is in the entropy they are maximising. We have shown that the centre
of mass of the probability functions left open by one’s evidence is the expected
function relative to the density compatible with that evidence with greatest
entropy. This allows Masterton’s proposal to be formulated as a centre of mass
inference process, but it also allows the centre of mass of those probability
functions compatible with one’s evidence to be understood as the expectation
relative to the evidence calibrated density with greatest entropy. Viewed in
this way, we were able to generalise the centre-of-mass/Masterton’s inference
process to accommodate higher order evidence and to show this generalisation
to be invariant to choice of starting order for such inference so long as one
begins above the highest order for which one has evidence. Thus much has
been gained from the discovery that the centre of mass inference process is a
maximising entropy inference process of the type outlined by Masterton.

What we have not been able to achieve is a conclusive argument for CM
against Maxent. Both inference processes have virtues and both have weak-
nesses. Maxent is arguably unintuitive in many situations, often picking out
a probability function in the boundary of P∗. Furthermore, it is not chance-
invariant nor does it accommodate higher order evidence easily. CM is arguably
more in line with scientific practice and more intuitive, and accommodates
higher order evidence with aplomb. However, CM is not language invariant
and lacks an elegant characterisation in terms of common sense principles. We
have to entertain the idea that an intuitive, language invariant, chance invari-
ant inference process which picks interior points is still to be discovered. Our
recommendation in lieu of such a discovery is to adopt the Objective Bayesian
inference process that best fits the prevailing circumstances, though we antic-
ipate that this will mostly result in inference according to CM as presented
herein.

We would like to end with quoting Jeff Paris [20, p. 6193] noting that we
could not agree more:
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Most of us would surely prefer modes of reasoning which we could
follow blindly without being required to make much effort, ideally
no effort at all. Unfortunately, Maxent is not such a paradigm; it
requires us to understand the assumptions on which it is predicated
and be constantly mindful of abusing them.
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