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ABSTRACT

We give a purely representation theoretic discription of the multiplicative structure
of the Verlinde algebras over the representation ring of SU(2).

7ZUSAMMENFASSUNG

In der vorliegenden Bachelorarbeit entwickeln wir die multiplikative Struktur der
Verlinde Algebren iiber dem Darstellungsring von SU(2) mit Methoden der Dar-
stellungstheorie.
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SYMBOLVERZEICHNIS

Wir setzen einige bekannte Zeichen aus der Linearen Algebra und Analysis, wie
z. B. Tensorprodukt (®), isomorph (~) oder Spur (tr), voraus. Fiir alle weiteren
Zeichen wird jeweils das erste Auftreten im Text vermerkt.

M,,(C) Menge der n x n Matrizen iiber C, S. 1

SU(2) spezielle unitiare Gruppe der Dimension 2, S. 1

K Einheitssphiire im R"*! mit euklidischer Norm, S. 1

U(n) unitdre Gruppe der Dimension n, S. 3

GL(n) lineare Gruppe der Dimension n, S. 3

O(n) orthogonale Gruppe der Dimension n, S. 3

SO(n) spezielle orthogonale Gruppe der Dimension n, S. 3

! es existiert genau ein, S. 3

PM Wirkung einer Gruppe G auf eine Menge M, S. 4

1y V —V, v gu fiir ¢ € G Gruppe, V Vektorraum, S. 4

Vi C — Vektorraum der homogenen Polynome vom Grad n, S. 5

[ dg G — invariantes Haarintegral, S. 7

(u,v) G — invariantes Skalarprodukt fiir u,v € V' Vektorraum, S. 10
et 0

e(t) = (0 6_“)’ S. 13

Xv Charakter der Darstellung V', S. 14

KM Menge der K — Linearkombinationen von Elementen

der Menge M, S. 16
Hom(V,W)  Menge der Homomorphismen V' — W, S. 17

% Dualraum von V', S. 17

f* duale Abbildung zur Abbildung f, S. 17

Ve ={veV:gu=vVge G}, S. 18

(X, X) = fﬁ(g)@dg fiir v, x Charaktere von G, S. 18

Homg(V, W) ={f € Hom(V,W): f dquivariant}, S. 18
V konjugierte Darstellung von V', S. 19
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R(SU(2)) Darstellungsring bzw. Darstellungsalgebra von SU(2),S. 22
V] Aquivalenzklasse von V, S. 24

O, = sign(z)id, S. 25

by, Basiselement von R(SU(2)) bzw. V;(SU(2)), S. 27
Vi(SU(2)) k — te Verlinde Algebra iiber SU(2), S. 31

(by) Hauptideal von b,,, S. 31

(bo,...,br)  vonden by,...,b erzeugter Z — Untermodul von R(SU(2)), S. 32
|z Gaufklammer —max{z € Z: z <z € R}, S. 37



EINLEITUNG

Die Verlinde Algebra hat ihren Ursprung in der konformen Feldtheorie (siehe
E. Verlinde [23]), tritt aber in den letzten Jahren zunehmend auch in anderen
Bereichen, wie der K —Theorie auf.

Grundlage fiir die Betrachtung der Verlinde Algebra als Teil der konformen
Feldtheorie ist die Operatorproduktentwicklung, insbesondere also das zugrunde
liegende Axiomensystem!. Damit lassen sich sogenannte Fusionsregeln bzgl. einer
zugrunde liegenden Gruppe G erkliren. Im Allgemeinen ist es nicht trivial bzw.
nicht mdoglich, eine explizite Form dieser Fusionsregeln zu bestimmen.

Fiir den Spezialfall einer einfachen (kompakten) Lie-Gruppe G reduziert sich das
Problem jedoch auf die Betrachtung der Darstellungstheorie von G. Genauer
lassen sich die Fusionsregeln durch die multiplikative Verkniipfung in den Verlinde
Algebren iiber G beschreiben. Die Verlinde Algebren wiederum lassen sich aus
der Darstellungstheorie der Gruppe ableiten.

Eines der klassischen Beispiele einer einfachen kompakten Lie-Gruppe ist die
spezielle unitdre Gruppe SU(2).

Neben der besonderen Bedeutung, welche die Gruppe SU(2) innerhalb der Physik
(z. B. weist das heutige Standardmodell SU(2)-Symmetrien auf) einnimmt, sind
aus mathematischer Sicht ihre Darstellungen besonders anschaulich.

Wir mochten uns deshalb der Darstellungstheorie und schliefslich der Verlinde
Algebra im Fall SU(2) ausfiihrlich widmen und versuchen die algebraische Struktur
der Verlinde Algebra V}(SU(2)) explizit darzulegen.

Im ersten Kapitel legen wir einige Grundlagen, die uns zeigen, dass wir SU(2)
als kompakte Lie-Gruppe behandeln kénnen. Diese Eigenschaften nutzen wir im
folgenden Kapitel um zunéchst irreduzible Darstellungen von SU(2) zu bestim-
men. Fiir den Beweis der Irreduzibilitit miissen wir etwas ausholen und zunéchst

1Osterwalder-Schrader-Axiomatik.
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einmal kldren, dass sich Darstellungen {iberhaupt in irreduzible Komponenten zer-
legen lassen. Dazu werden wir das Haarmaf auf der Gruppe SU(2) einfiithren. Im
Anschluss zeigen wir die Eindeutigkeit dieser irreduziblen Darstellungen.

Nach einigen formalen Erweiterungen werden wir in Kapitel 3 schrittweise zeigen,
dass die Menge der Darstellungen von SU(2) eine abelsche Gruppe, ein Ring und
ein freier Z—Modul ist. Entscheidend ist dabei die Wahl einer geeigneten Basis
(bp)neny mit der wir das Tensorprodukt in eine direkte Summe umschreiben kon-
nen. Diese Basis besteht gerade aus den im vorangegangenen Abschnitt definierten
irreduziblen Darstellungen.

Aus dem Darstellungsring R(SU(2)) und der so gefundenen Basis b,, ldsst sich in
Kapitel 4 die Verlinde Algebra als Quotient des Darstellungsrings nach dem von
einem Basiselement erzeugten Ideal - R(SU(2))/(by) - definieren. Als Quotient ist
die Verlinde Algebra ebenfalls ein Ring.

Um das Produkt in der Verlinde Algebra schlieflich aus dem Produkt im Darstel-
lungsring ableiten zu konnen, werden wir den Darstellungsring R(SU(2)) in das
Hauptideal (b) und einen Z—Modul zerlegen. Als Ergebnis erhalten wir eine sehr
kompakte Darstellung der gesuchten Multiplikation.

Ein kurzer letzter Abschnitt dient einigen weiter gehenden Bemerkungen zu Eigen-
schaften der Verlinde Algebra.



Di1E GRUPPE SU(2)

1.1. FUNDAMENTALE EIGENSCHAFTEN

In diesem ersten Kapitel werden wir hauptséchlich grundlegende Eigenschaften der
Gruppe SU(2) auflisten. Dabei setzen wir einige Begriffe aus der Algebra, Topolo-
gie und Differentialgeometrie voraus. Diese finden sich z. B. in Bosch [3]| (Algebra),
Jénich [15] (Topologie, Satz von Heine-Borel), Jost [16] (Differentialgeometrie).

Definition 1.1.1. U € M,,(C) ist in SU(2) :& UT =: U* = U, det(U) = 1.

Folgerung 1.1.2. Aus U* = U~ folgt fiir a,b,c,d € C:
a b
U= (C d) € SU(2)

:>UU*:(CL b) (@ E):(a6+§l_) a6+b§l):(l 0)
c d)\b d ac+bd cc+dd 01
= det(U) =ad — bc =1

= ad + bb =1 = ada + bbd = d

= d =1a(l+ bc) + b(—ac) = a + abc — abc = a

= @+dd=1= bcc+dbd =b

= b= (ad — 1)¢+ d(—ac) = acd — ¢ — acd = —¢

=U = <_a[—) _),a@—l—bl_)—l

Q

Fiir a = xo+izy, b = xo+ix3, z; € RV0 < i < 3 folgt aus aa+bb = 1: Z?:o r?=1.
Somit ist = := (zg, 71, T2, 73) € S®. Insbesondere ist

b a+a@ a—a b+b b—>b
: 2 S? @
p o SU(@) = ’(—b‘)H(2’2z”2’2i>

a
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o SMSU@),(%?xl,xQ,m)H(“””““” "”“’”)

—X9 + 13 T — 121
ein Diffeomorphismus, da komponentenweise C*° und linear.

S? ist als Sphéire eine Mannigfaltigkeit und SU(2) eine Gruppe. Auferdem sind die
Matrizenmultiplikation und Inversion differenzierbar, d. h. fiir a = z¢ + ix1,b =
I2+iﬂ?3,cz Yo +Zy1,d: Y2 +iy3,ﬂ?i,yi e R VY0 < 1 < 3:

Aie <_ag 2) B = (fg Cal)

= ()O(AB) = (p07p17p27p3)7

wobei die p; Polynome in xq, z1, 2, 3, Yo, Y1, Y2, y3 sind. Polynome sind aber be-
liebig oft differenzierbar und somit auch p(AB). Ebenso gilt fiir die Inversion

L (a b
=5 )
= (A" = (g, —21, =T, —T3)

Differenzierbarkeit.
Damit haben wir gezeigt, dass SU(2) eine Lie-Gruppe ist.

Definition 1.1.3. Eine Lie-Gruppe ist eine glatte reelle oder komplexe Mannig-
faltigkeit auf der sich eine Gruppenstruktur so definieren lésst, dass die Gruppen-
verkniipfung und die Inversion beliebig oft differenzierbar sind.

Bemerkung 1.1.4. Auf S" = {z € R""! : ||z|| = 1} existiert eine differenzierbare

Struktur. Man erhilt zwei Karten (und damit einen Atlas) via stereographer
Projektion. Sei e = (1,0,...):

U = {zeS":x#e}
p1 U —R"
1 1
(xl,...,xn)—><—~m1,...,—'xn)
1=z I =21
Uy = {ze€S":a2# —¢}
vy : U = R"
1 1
(:El,...,xn)—>(m-xl,...,m-xn>
pa = 2200 gy RV} o R {0},

= 1, o Hombomorphismen, ¢ C'*°—Diffeomorphismus.
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Bemerkung 1.1.5. Allgemeiner sind auch die Gruppen SU(n), U(n), GL(n), O(n),
SO(n) fiir alle n € N Lie-Gruppen.

Folgerung 1.1.6. SU(2) ist kompakt, denn S* ist beschrinkt und abgeschlossen
in R? - abgeschlossen als Urbild von 1 unter der stetigen Abbildung ||- || : R* — R,
beschriinkt, da Vo € S* : ||z]| = 1 < co. Nach dem Satz von Heine-Borel ist S3
kompakt und somit ist SU(2) als Bild einer kompakten Menge unter der stetigen
Abbildung ¢! ebenfalls kompakt.

Wir haben damit den folgenden Satz gezeigt.
Satz 1.1.7. SU(2) ist eine kompakte Lie-Gruppe.

Bemerkung 1.1.8. Wir fiihren an dieser Stelle noch eine Parameterdarstellung
von S? und somit von SU(2) ein, die wir spiter bendtigen werden. Im Folgenden
verwenden wir, dass cos auf [0, 7] injektiv ist und sin nicht negativ auf dem selben
Intervall.

Dal=|z|> > |2 = -1 <a2p<1=30<60<7:25 = cos(d). Da

= [|z]| > |zo|® + |21 |* = cos?(0) + 23 = 22 <1 — cos?(A) = sin?*(f) = —sin(f) <
rp < sin(f) = 310 < ¢ < 7 : x; = sin(f)cos(¢y).! Analog gilt weiter 1 =
1] = |wof* + |21]* + [2|* + |23]* = cos*(6) + sin®(9) cos®(¥)) + [z2|* + |25]* =
sin?(f) = sin?(0) cos?(p) + 22 + 22 = sin?(0)(1 — cos?(¢)) = sin*(f) sin?(¢y)) =
3+ 23 = 30 < ¢ < 27 1wy = sin(f) sin(y) sin(¢), z3 = sin(f) sin(t)) cos(¢).?
Zusammengefasst erhilt man fiir jedes x € S? genau ein Tripel (0,1, ¢) € M :=
0, 7] x [0, 7] x [0,27[\ ({0, 7} x]0, 7] x]0, 27 [U([0, 7] \ {7/2}) x {0, 7}x]0, 27[):*

xg cos(0)

T | _ sin(6) cos(1))

To sin(#) sin(v)) sin(¢)
To sin(#) sin(w)) cos(¢)

= VYU € SU(2) 3! (0,¢,0) € M:

~ (cos(0) + isin(#) cos(v) sin(#) sin(v))e™®
U= < —sin(f) sin(¢)e™  cos() — isin(f) Cos(w)) ’

!Eindeutigkeit von 1 gilt nicht fiir den Fall § € {0, 7}. In diesem Fall wiihle man 1 = 0.

?Eindeutigkeit von ¢ gilt nicht fiir die Félle 6§ € {0, 7} oder ¢ € {0,7}. In diesen Fillen wiihle
man ¢ = 0.

®Die Menge M kommt dadurch zustande, dass fiir den Fall § € {0, 7} die Parameter 1, ¢ nicht
eindeutig festgelegt sind und fiir ¢ € {0, 7} der Parameter ¢ nicht eindeutig festgelegt ist. Da wir
Eindeutigkeit spater noch bendtigen, stellen wir diese durch die Wahl von M sicher. Tatsédchlich
wird der Anteil, der von [0, 7] x [0, 7] x [0, 27| abgezogen wird kein Rolle mehr spielen.



DARSTELLUNGSTHEORIE
VON SU(2)

Das Ziel dieses zweiten Kapitels ist die Klassifikation der Darstellungen der Gruppe
SU(2).

Nachdem wir zunéichst gewisse Darstellungen von SU(2) einfiihren (siehe Brocker
& tom Dieck [5], S.84f oder Schottenloher [18|, S.176ff) miissen wir im zweiten
Abschnitt auf allgemeinere Aussagen der Darstellungstheorie eingehen, um den
Begriff der Zerlegbarkeit einer Darstellung, insbesondere der Irreduzibilitét, ver-
wenden zu kénnen. Dazu werden wir das Haarmaf auf SU(2) einfithren. Dieses
findet man bei Brocker & tom Dieck [5], S.40ff fiir Lie-Gruppen und allgemeiner
bei Barut & Raczka |2|, S.67ff, Hilgert & Ross |12], S.232ff und Hewitt & Neeb
[11], S.184ff fiir lokal-kompakte Gruppen.

Die Irreduzibilitdt der Darstellungen folgt schlieflich aus der Betrachtung dquiv-
arianter Endomorphismen; Endomorphismen, die mit der Wirkung der Gruppe G
kommutieren.

Der Charakter einer Darstellung, der wie wir sehen werden alle Informationen iiber
deren Isomorphieklasse enthélt, wird nicht nur die Frage der Eindeutigkeit 16sen,
sondern auch beim Beweis der Clebsch-Gordon-Formel am Anfang des néchsten
Kapitels Verwendung finden.

2.1. DARSTELLUNGEN VON SU(2)

Definition 2.1.1. Eine Darstellung der Lie-Gruppe G auf einem endlich-
dimensionalen Vektorraum V' ist eine stetige Wirkung p : G x V. — V von G
auf V sodass Vg € G die Translation [, : v — p(g, v) eine lineare Abbildung ist.

p ist Wirkung von G auf V < p(e,v) = v, p(g, p(h,v)) = p(gh,v) Yv € V,Vg, h €
G, e € (G neutrales Element.

Vereinfacht schreiben wir p(g,v) = gv.

Bemerkung 2.1.2. Wir werden im Folgenden nur endlich-dimensionale Darstel-
lungen, d. h. der zugrunde liegende Vektorraum ist endlich-dimensional, betra-
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chten.

Definition 2.1.3. Sei V G—Modul. Ein G—invarianter Untervektorraum U C V/,
d. h. gu € U,Vg € G,Vu € U, heiltt Untermodul oder Unterdarstellung von V.
Eine nicht leere Darstellung V' heifst irreduzibel, wenn es aufer {0} und V' keinen
weiteren Untermodul gibt.

Wir betrachten den C—Vektorraum V,, der homogenen Polynome in zwei Variablen
21, 29 vom Grad n, d. h. alle Monome eine Polynomes in V,, haben den gleichen
Grad n.! Offensichtlich ist eine Basis dieses Raums gegeben durch Py (z1, z3) =
28 207F fiir 0 < k < n. Damit hat V,, Dimension n + 1.

Lemma 2.1.4. Definiere eine Wirkung von G = SU(2) auf V,, durch (¢P)(z) =
P(zg) VP € V,,,¥g € G und z = (21, z5). Mit dieser Wirkung ist V,, eine Darstel-
lung im Sinne von Definition 2.1.1.

Bewess.

Behauptung. [, : P(z) — (gP)(z) = P(zg) ist linear.
Fir o, f € C, P(21,22) = >4, ar2fzy ", Qz, z) = D k=0 b2tz " € Vi

ly(aP +BQ)(2) = (gl ozP+ﬁQ N(z) = (aP + BQ)(29)
= aak Yok aph 4 Z(ﬁbk)Z{“zgk) ((29)1: (29)2)

= aak)(zg) (z9)5~ k+z Bbi)(z9)5 (29)5 "

=0
— ( aszz’; k) (z9) + 5 (Z bzt 20~ k) (29)
k=0

= aly(P)(2) + Bl (Q)(z)
Behauptung. V,, C C[z, 23] ist Unterraum.

Es gilt 0 =027 € V,,. Fiir jedes A € C VP (21, 22) = > p_p arzi 25" € Vi,

k. n—k _ k n— k
AP = E )\ak 21 25 E CLZy %y V.

kofck

10 € V,, wegen 0 - 21" = 0 obwohl deg(0) = —oo0.
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SchlieBlich gilt fiir P(z1, 20) = > p_anztzs ™", Q(z1,20) = > p_ybratzy ™" € Vi

n

P+Q = Z apzi ok 4 Z ety h = Z (ar + by) 27 25"
k=0 k=0

k=0 —

n
= E A VA
k=0

Behauptung. V,, C C[z, 25 ist SU(2)—invariant.

Sei P(21,2) = Yo ansi2y " € Vi,

o= (2 }) esve.

dann gilt

z2q = (21 z2) (CCL Z) = (azl + cz9 bz + dZQ) )

Wir erhalten
(gP)(z) = P(zg) = P(az + cza,bz1 + dzs)

= Z ar(az + cz0)"(bzy + dzy)" ™"
k=0

k=0 1=0

k n—k
= E ag g ( a'zick i I 1Y A S
i i
. 1=0 O

= zn:ak zk: j viwj_i> (2.1.4.1)

k=0 J

- " (kN (n—k - .
= S a (DD (D)5 el ke
- 2 ] —1
k=0 j=0 i=0
n k i
SaY R\ (1 —=k\ § jijio e
= ag ) . ‘ azck_zbj_zdn_k_]'ﬂzi—w ZZQ i+n G+i
— < v J—1
k=0 7=0 =0
n k j
KN ‘n—k\ .. . . . o S
- akE ) a2 eV,
- 1 ] —1
k=0 7=0 7=0
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da deg(z]2)7) = n fiir alle 0 < j < n. Insbesondere haben wir bei (2.1.4.1) das

Cauchyprodukt fiir Polynome verwendet. m
Da (gP)(z) = P(zg) auch komponentenweise stetig ist, ist V}, eine Darstellung von
SU(2). O

Bemerkung 2.1.5. (i) 1} ist die triviale Darstellung auf C, da Polynome von
Grad 0 gerade die Elemente des Kérpers sind, G also als Identitit wirkt.

(ii) V4 ist die Standarddarstellung auf C?, wobei die Wirkung durch Matrizen-
multiplikation gegeben ist, d. h. fiir

b
g = ((Cl d) < SU(Q), P(Zl,ZQ) = 121 + ag29

= (9P)(=) = P(2g) = (21 2) (Z fl) ()

(iii) Die Vj, sind paarweise nicht isomorph, da sich ihre Dimensionen unterschei-
den, dim(V,,) =n + 1.

2.2. ZERLEGUNG VON DARSTELLUNGEN

Lemma 2.2.1. Sei G eine kompakte Gruppe und sei U ein G—Modul mit Unter-
modul V. Dann existiert ein komplementarer Untermodul W, sodass U =V & W
ist. Weiter ist jeder G—Modul direkte Summe von irreduziblen Untermodulen.

Bemerkung 2.2.2. Die direkte Summe von zwei Darstellungen V, W ist mit der
Wirkung G x Ve W — V& W, (g, (v,w)) — (gv,gw) ebenfalls eine Darstel-
lung, denn e(v,w) = (ev,ew) = (v,w), g(h(v,w)) = g(hv, hw) = (ghv, ghw) =
(gh)(v,w) und Linearitét von Iy ®" und Stetigkeit der Wirkung folgen komponen-
tenweise.

Um Lemma 2.2.1 zu beweisen, ist es notwendig ein G—invariantes Skalarprodukt
auf U zu definieren. Die Existenz eines solchen Skalarproduktes zeigt man mittels
der Existenz eines Haarmafes auf G.2 Wir werden uns dabei auf den Spezialfall
G = SU(2) beschrénken.

Definition 2.2.3. Ein Integral auf der Lie-Gruppe G heifst links-invariant, wenn
fiir alle h € G gilt:

/f(hg)dg:/f(g)dg, Vf integrierbar.
G G

2Fiir die allgemeine Konstruktion auf Lie-Gruppen siehe Brocker & tom Dieck [5], S.40ff oder
fiir lokalkompakte topologische Gruppen siehe Barut & Raczka [2], S.67ff, Hilgert & Neeb [12],
S.232ff oder Hewitt & Ross [11], S.184ff.
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Ein Integral ist normiert, wenn fG ldg = 1.

Ein (links-)invariantes normiertes regulires Borelmaf auf G heifit (linkes) Haar-
mak.

Bemerkung 2.2.4. Wie bereits erwdhnt ist ein Haarmaf bis auf einen konstanten
Faktor eindeutig. Auf einer Lie-Gruppe folgt mit der Links-Invarianz auch schon
die Rechts-Invarianz. Im Folgenden werden nur Haarmafe auftreten, die sowohl
links- als auch rechts-invariant sind.

Lemma 2.2.5. Auf SU(2) existiert ein normiertes Haarmafk.

Beweis. Man verwende die Parameterdarstellung von SU(2) aus Bemerkung 1.1.8.
Weiter definieren wir

dp = ZL sin?(#) sin (1)) dOdapdep.

T2

Dies ist gerade das n—dimensionale Volumenmaf fiir n = 4 und eingeschrénkt auf
die Sphire S? - Radius 7 = 1 - mit einem zusiitzlichen Normierungsfaktor.

dp ist ein reguldres Borelmaf auf [0,7] x [0,7] x [0,27[, da die Lebesguemafe
df, di, d¢ reguldre Borelmake sind. Wir zeigen Normiertheit:

/1dg = /ﬁsm ) sin(v)dOdpdg

1
= / — 81n2(0) sin(y)dOdyde
[0,7] x [0,7] x[0,27] 2772

_ /0%/0 Hsin(lp)dwgb:/o% %dqb: 1

Die Linksmultiplikation g — 1,,(¢g) fiir z;,y; € R,0 <i < 3,

_ [ To+ix1  xpFix3 b Yo+ 1y1 Y2 +iys
—Ty +ir3 To— il —Yo + Y3 Yo — iy
- hg _ (yo+iy1) (zvo+iz1)+(y2+iys) (—z2+izrs) (yo+iy1)(zo+ixs)+(y2+iys)(zo—iz1)
(—y2+iys) (zo+iz1)+(yo—iy1)(—x2+izs) (—y2+iys)(wa+izs)+(yo—iy1)(wo—izr1)
2yoxo+iy1-(2ix1) —2y2x2+iy3-(2ix3)

2
2x01y1+2ix1 y() 2:v2zy3 +2iz3y2

= @(hg) - 2yox0+1y3- ( 21$1)+2y012+2y1 (22I3)

2x01y3 —21x1Y2 +2x22y1 +2ix3Y0
2i

3SMit M := [0, ] x [0, 7] x [0, 27 [\ ({0, 7} x]0, 7] x]0, 27 [U([0, 7] \ {7 /2}) x {0, 7} x]0, 27[), wobei
{0, 7} x]0, ] x]0, 2w [U([0, 7] \ {mw/2}) x {0, 7}x]0,2x[ Mak O hat.




2.2. ZERLEGUNG VON DARSTELLUNGEN |

YoTo — Y1T1 — Y22 — Y3T3
Y1To + YoT1 — Y3T2 + Y23
YaZo + Y31 + YoT2 — Y173
YsTo — Y21 + Y1T2 + YoT3

= ¢(hg)' =

ist auf S? gegeben als

Zo Y —Y1 —Y2 —Y3 Zo
7= Ty N U(y)x — U1 Yo —UY3 Y2 1
T2 Y2 Y3 Yo —U o)
xs3 Ys —Ya2 U Yo x3

Fiir U(y) gilt wegen Z?:o y? =1

Yo —Y1 —Y2 —UY3 Yo Y1 Yo Ys

U)\U* _ Yy Yo Y3 Y2 —Y1 Yo Ys  —Y2
(y) (y) Y2 Y3 Y —Y —Y2 —Y3 Yo n
Ys —Y2 U1 Yo —Ys Y2  —UYr Yo
Yoy YoU1 — YoY1 + Ya¥s — Yal3
3 2
_ V1Yo — Yoy + Yols — YsY2 > im0 Yi
YoYo — Y1Ys — Yo¥Y2 + Y3Y1  Y1Y2 + YoY3s — YoY3z — V1Yo

YsYo + YoU1 + YoU1 — YsYo  YsYr — YaYo — Y1Y3 + Yole

YolY2 — Y1Ys — Y2Yo + Y1¥Ys  YoUs + Y1Y2 — Y2Y1 — YoUs3
Y1Y2 + YoYs — Yo¥s — Y1¥Y2  Y1Y3 — YoY2 — Y1Y3 + YoYo

Z?:o y; Y2Ys — YsY2 + YoY1 — Y1Yo
3 2
YsY2 — Y2Ys + V1Yo — YolY1 > icoYi
1 000
B 0100
- 0010
0 001
Yo —Ys Y2 —Y —Y2 Y3
det(U(y)) =* wyodet | ys wo —w1| —wudet| ys % —m
—Y2 N Yo —Y2 N Yo
—Yy —Y2 Y3 —Yr —Y2 Y3
+yodet [ yo —ys Y2 | —wysdet | vo —y3 w2
—Y2 N Yo Ys Yo —Y

ofol) (o )
o) (- ()
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U(y) bzw. ¢ + 1,(g) ist also eine Drehung. Mit der Rotationsinvarianz des
Lebesguemates folgt nun die SU(2)—Invarianz des Integrals.
Somit ist g ein normiertes Haarmaf. ]

Behauptung. Auf einer Darstellung V' einer kompakten Gruppe G lisst sich ein
G—invariantes Skalarprodukt erkliren, d. h. IV xV — C,(u,v) — (u,v) :
(gu, gv) = (u,v) Vg € G,Yu,v € V.

Beweis. Wir beschrianken uns auf den Fall G = SU(2): Sei b : V x V — C ein
beliebiges Skalarprodukt und definiere

c(u,v) = / b(gu, gv)dg
a
wobei das Integral normiert und G—invariant ist (siche Lemma 2.2.5). Dann ist ¢
ein Skalarprodukt:

(i) c ist linear in u, da b in u linear ist und das Integral ebenfalls linear ist. ¢
ist konjugiert linear in v, da b diese Eigenschaft hat und das Integral linear
ist. Folglich ist ¢ sesquilinear.

(ii) c ist hermitesch, da

c(v,u) = /Gb(gv,gu)dg = /Gb(gv,gu)dg = / b(gu, gv)dg = c(u,v).

G
(iii) c is positiv definit:
¢(0,0) — /b(g-O,g-O)dg:/b(0,0)dg:/Odg:O.
G G G

c(r,z) =7 /Gb(g-x,g-x)dg>/GOdg:0, fiir # # 0.

>0

Schlieflich ist ¢ auch G—invariant, da das Integral G-invariant ist, d. h. Vh € G

c(hu, hv) = / b(gh - u,gh-v)dg = / b(g-u,g-v)dg = c(u,v).
G G

]

4Entwicklung nach der ersten Spalte.
?ly invertierbar (Igol,-1(z) = g(g~'z) = (99~ ')z = ex = z) und linear < {gz = 0 = z = 0}.

Es folgt b(gx, gx) = b(0,0) =0 < z = 0.
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Bemerkung 2.2.6. Eine Darstellung V' mit einem G—invarianten Skalarprodukt
heift auch unitire Darstellung. Dieser Term wird jedoch zumeist verwendet, wenn
man an V zusidtzlich die Bedingung der Vollstdndigkeit stellt, d. h. V Hilber-
traum mit G—invariantem Skalarprodukt. Im Fall von unitdren Darstellungen
liefert der bekannte Satz von Peter und Weyl schon eine Zerlegung jeder (auch
unendlich-dimensionaler) Darstellung in endlich-dimensionale irreduzible Darstel-
lungen. Einen Beweis, der unser Vorgehen verallgemeinert findet man in Brécker
& tom Dieck [5], S.133ff. Einen weiteren Beweis gibt Sugiura [20]. Dieser benutzt
unter anderem die Sdtze von Banach-Steinhaus und Hilbert-Schmidst.

Schlieflich kénnen wir Lemma 2.2.1 fiir den Fall G = SU(2) zeigen.

Beweis von Lemma 2.2.1. Man wahle ein G—invariantes Skalarprodukt c¢ auf
U und sei W das orthogonale Komplement von V in U. Dann ist W ein
G—Untermodul, denn fiir wy,w, € W,v € V, g € G gilt

(i)
(ii)
(ii)
(iv)

Behauptung. Jeder G—Modul ist direkte Summe von irreduziblen Untermod-
ulen.

Diese zweite Aussage des Lemmas zeigen wir mittels Induktion nach der Dimension
von U. Fiir dimU =1 folgt mit dim U = dim V' 4 dim W ohne Beschrankung der
Allgemeinheit dimV = 1,dimW =0 =W = {0} = V = U. Folglich ist U schon
irreduzibel.

Fir n = dimU, n — n + 1: Wenn U irreduzibel ist, sind wir fertig. Sei U
reduzibel, d. h. IV, W Cc U : U =V e W, 0 <dimV,dimW < dimU. Nach
Induktionsvoraussetzung zerfallen V' und W in irreduzible Untermodule. Folglich
zerfdllt auch U in irreduzible Darstellungen. O]

2.3. IRREDUZIBILITAT DER DARSTELLUNGEN V,,
Definition 2.3.1. Sei G eine Gruppe, X,Y Mengen und

GxX—>X, (g9,2)—gx

6Nach Definition von W bereits erfiillt, aber zur Vollstéindigkeit angegeben.
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eine Wirkung von G auf X. Eine Abbildung f : X — Y heillt G—aquivariant,
wenn fiir alle g € G,z € X: f(gz) = gf(x) gilt.

Lemma 2.3.2. Jeder SU(2)—édquivariante Endomorphismus von V,, ist A - id fiir
ein A € C.

Beweis. Sei A dquivarianter Endomorphismus und

Ja = <8 a()l) €SU(2), acUl)={zeC:aT =1}

Seien Py(z1,2) = 2F207%, 0 < k < n die Basispolynome von V,,, z = (21, 2), dann

folgt

(gapk)(z)

a 0
Pi(29a) = Py <(21 22) <0 a—l)) = Py (mia za™")
_ (Zla)k(zéafl)nfk _ akf(nfk)zfzgfk _ CLQkinPk(Z).

= a®~" ist Eigenwert von g, zum Eigenvektor Pj.

Man wihle a, sodass alle a?*™", 0 < k < n, paarweise verschieden sind, z. B.
a = €/".7 Die Eigenrdume zu den Eigenwerten a?*",0 < k < n, sind folglich
1—dimensional.

A dquivariant = ¢,AP, = Ag,P, = Aa**"P, = a** "AP, = AP, Eigenvektor
zum Eigenwert a?*~". Da der Eigenraum die Dimension 1 hat existiert ¢, € C :
Apk = CkPk.

Betrachte ebene Drehmatrizen r;, = (Cos(t) —sin(t)

sin(t)  cos(t) ) €5U2), teR.

AriP,(z) = A
= A

(21 cos(t) + zosin(t), z2 cos(t) — 21 sin(t))
(21 cos(t) + zasin(t))" (2 cos(t) — 2 sin(t))°

= Z (Z) cost(t) - sin™F(t) - Azknk

- (Z) cos® (t) - sin™ ¥ (t) - 1. Py

k=0
1 AP, (z) = rienPu(z) =cp Z (Z) cos®(t) - sin" () - P,
k=0
_ i n k . n—k P
= ;. ) cos (t) - sin"""(t) - ¢ P
k=0

-1 < 2Een o %‘? -1<1= %T*" € [-1,1] C [-n/2,7/2] - Eindeutigkeit mit exp(ix)
27w —periodisch.



2.4. CHARAKTERE UND KLASSENFUNKTIONEN | 13

Aus AryP, = riAP,,Vt € R folgt ¢, = ¢,,VO < k <nund A =c¢,-id, da A linear
ist und somit fiir ein beliebiges P(z) = >} _, axPe(2) € V,,:

AP(z)=A (Z akPk(z)> = ZakAPk(z) = ZakcnPk(z) = ¢, P(2).

]

Satz 2.3.3. Die Gruppe der homogenen Polynome vom Grad n, V,,, ist irreduzibel
fiir alle n € N.

Beweis. Angenommen V,, ist reduzibel, dann existieren nach Lemma 2.2.1 Unter-
darstellungen U, W : V,, = U & W. Wir kénnen v € V,, eindeutig zerlegen in
v=u+w,u € Uw e W. Man erhélt einen dquivarianten Endomorphismus f,
f):= flu+w) = f(u)+ f(w) = I+ Nw fir \, N € C,\ # N. f ist tatsdchlich
dquivariant, denn Vg € SU(2) : f(gv) = Agu + Ngw = g u + g\N'w = gf(v). Aber
f lasst sich nicht als p - id fiir ein g € C schreiben - ein Widerspruch zu Lemma
2.3.2. O

2.4. CHARAKTERE UND KLASSENFUNKTIONEN

Bemerkung 2.4.1. (i) VA € SU(2) gilt:
e 0
A~ e(t) = (O e—it) )

d. h. 3Q, € GL(2) : Q;'AQ; = e(t). Denn fiir A € SU(2) : AA*
E = A*A = A normal. Mit dem Spektralsatz® folgt die Existenz von U,
U(2) : UfAU, = diag(A\,Xe) = B, M, A2 € C. Da A, U, € U(2) = B
UfAU, € U(2). Aber det(B) = det(U;AU,) = det(U;)det(A)det(U)
det(A)det(E) = 1 = B € SU(2). Folglich gilt \;\; = 1,5 € {1,2} = 3¢,
[—m, 7,7 € {1,2} : \; = €. Mit det(B) = 1 folgt weiter e1¢'t2 = ¢iltitt2)
l=t:=t = —t,.

m

hm |

(ii) e(t) und e(s) sind genau dann dhnlich, wenn s = +tmod 2w, denn A =

¢ Z) € GL(2) mit

3 ei(t—s)a e—i(s-‘rt)b
A l@(S)A = e(t) = A = €<—S)A€(t) = (ei(5+t)c ei(st)d)

existiert genau dann wenn s = 4+t mod 27, da fiir s # +t mod 27 : e*(t+5) £
1; somit gilt ey = 2 < x = 0,Vz € {a,b,c,d} - ein Widerspruch zu
A e GL(2).

8siehe Bosch [3], S. 268.
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Definition 2.4.2. Eine Funktion f : G — C heifst Klassenfunktion, wenn sie auf
den Konjugationsklassen konstant ist.

Folgerung 2.4.3. f : SU(2) — C Klassenfunktion = f. : R — C,t — f(e(?))
ist eine gerade 2wr—periodische Funktion. Gerade weil e(t) und e(—t) nach der
vorangegangen Bemerkung konjugiert sind, also f(e(t)) = f(e(—t)) fiir f Klassen-
funktion; 2w —periodisch, da e(¢) und e(t + 27) konjugiert sind.

Umgekehrt wird jede gerade 2m—periodische Funktion g : R — C eine Klassen-
funktion g auf SU(2), in dem man fiir alle A € SU(2): g(A) = g(e(t)) := g(t) setzt
fiir e(t) ~ A.

Somit kann man den Raum der stetigen geraden 2w —periodischen Funktionen R —
C (bijektiv) mit dem Raum der stetigen Klassenfunktionen auf SU(2) identifizieren.

Definition 2.4.4. Der Charakter einer Darstellung V' von G ist die Funktion
xv:G—=C, g tr(ly),

wobei tr(l,) die Spur der linearen Abbildung l, : V' — V,v +— guv ist.
Der Charakter einer irreduziblen Darstellung heifst irreduzibler Charakter.

Bemerkung 2.4.5. V ist endlich-dimensional und /, nach Definition einer Darstel-
lung linear. Es existiert also fiir jede Basis (v;); von V eine Darstellungsmatrix von
ly. Da die Spur unabhéngig von der Wahl der Basis ist, ldsst sie sich direkt aus
jeder Darstellungsmatrix ablesen. Weiter ist yy : G — C stetig, da die Wirkung
einer Darstellung nach Definition stetig ist und somit die Spur als Summe stetiger
Komponentenfunktionen ebenfalls stetig ist.

Lemma 2.4.6. Der Charakter y, von V, nimmt an der Stelle e(¢) den Wert
xn(e(t)) = p_,cos((n — 2k)t) an.
Beweis. Fiir P(z) =Y} _,aP, € V,, gilt

(e(t)P)(2) = P(ze(t)) = P(ze", ze ) = Z azetit- =kt p,

k=0
n

_ Z ake(Qk—n)ith'

k=0

Das heifit, dass der Linksmultiplikation mit e(t) bzgl. der Basis Pj gerade die
folgende Matrix entspricht
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Die Spur dieser Matrix ist x,(e(t)) = S_p_, et = S0 (cos((n — 2k)t) +
isin((n —2k)t)) = > p_,cos((n —2k)t), da Y ;_,sin(n — 2k)t = sin(—n) + ... +
sin(n) = 0, wegen sin(—z) = —sin(z), Vo € R und sin(0) = 0. O

Folgerung 2.4.7. Mit cos(z) = cos(—z),Vx € R kann man weiter vereinfachen
zu

(c(t)) = 2cos(nt) + ...+ 2cos(2t) + 1 fiir n gerade
Xl =9 2 cos(nt) + ...+ 2cos(t) fiir n ungerade.

Insbesondere ist der von den yx,0 < k < n erzeugte C—Vektorraum genau der
Vektorraum, der von 1, cos(t), ..., cos(nt) erzeugt wird.

Satz 2.4.8. Der von cos(nt), n € N erzeugte C—Vektorraum W liegt (gleichméfig)
dicht im Raum der geraden 27 —periodischen Funktionen V.

Beweis. Wir werden den Beweis dieses Lemmas auf den bekannten Satz von Weier-
straf zuriickfithren. Einen Beweis dazu findet sich z. B. in Reed & Simon [17],
S.1024T.

Satz von (Stone-)Weierstraft 2.4.9. Sei K C R",n € N kompakt. Dann liegen
die Polynome dicht bzgl. || - ||~ in Cr(X).

Man assoziiere jede Funktion f in V eindeutig mit einer Funktion f : [0,7] — R
via f = f|[0,7r].9 Da arccos : [—1,1] — [0, 7] bijektiv und stetig ist, existiert
Vf e Cr([0,7]) g € Cr([-1,1]) : g = f o arccos bzw. gocos = f.

Die Basis cos(nt),n € N von W transformiert sich aufgrund der Additionstheoreme
wie folgt:1°

n

cos(narccos(x)) = Z (—1) (2 ) (sin(arccos(z)))? (cos(arccos(z)))" %

§=0 J

- SR (2) (v e
[n/2]

wobei wir sin(arccos(z)) = v/ 1 — 22 wegen sin(x) = /1 — cos?(x) genutzt haben.

cos(n arccos(x)) ist somit ein Polynom vom Grad

deg(cos(n arccos(z))) = deg ((x2 — 1)j> +deg (" %) =2j+n—2j =n.

9Da f gerade ist, gibt es genau eine gerade Fortsetzung von f auf [—7, 7] und wegen Peri-
odizitédt genau eine eindeutige gerade 2w —periodische Fortsetzung auf ganz R.
Ogiehe Brontein u. a. 6], Seite 81.
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Somit sind die cos(narccos(z)),n € N paarweise linear unabhéngig und damit
Basis des Vektorraums der Polynome auf [—1, 1]. Diese liegen nach dem Satz von
(Stone-)Weierstraf dicht in Cr([—1,1]). Folglich existiert fiir jedes

g € Cr([—1,1]) eine Folge (a,)nen € RY, sodass Vo € [—1,1] : g(z) = > 2,

a, (cos(k arccos(w))). Da fiir jedes f € Cr([0,n]) g € Cr([-1,1]), z € [0, 7]:

f(z) = gocos(x) = Z ay, (cos(k arccos(cos(x)))) = Z ay, cos(kx),
k=0 k=0
liegt W dicht in V. O

Definition 2.4.10. Zwei Darstellungen heifen isomorph, wenn es eine dquivari-
ante, bijektive, lineare Abbildung f: V — W gibt.

Lemma 2.4.11. Sind V, W isomorphe Darstellungen, dann gilt xv = xw-.

Beweis. Sei f: V — W Isomorphismus im Sinne der vorausgegangenen Definition.
Dann gilt l_}f/f(v) =gf(v) = f(gv) = fl;/(v), wobei l;/ VoV gv,l;’V W —
W, w +— gw. Es folgt die Aussage mit

xvig) =te(ly) = t(f 0V f) = te(fgf) = te(gff1) = te(l})) = xw(g).
O

Definition 2.4.12. Das Tensorprodukt zweier Darstellungen V' und W ergibt
sich aus dem Tensorprodukt der Vektorrdume. Dieses ist gegeben als Quo-
tient CV>*W/N, wobei CY*W die Menge der formalen Linearkombinationen
M cow(v,w),v € Viw € W ound N € CV*W der von (v, w; + wy) — (v,wy) —
(v, wa), (V1 +v2,w) — (V1, W) — (v, W), (v, w) — A(v,w), (v, \w) — A(v,w) erzeugte
Unterraum ist. Sei ¢ : CV>*" — V @ W die kanonische Abbildung, dann definiere
man das Tensorprodukt als Einschrinkung VxW — VW : v@w = ¢|yxw (v, w).
Insbesondere ergeben sich aus der Aquivalenzrelation auf V @ W die folgenden
Regeln fiir v, vy, v9 € V,w,wy,wy € W, A € C:

(i) v® (w1 + ws) = v @ wy + v wa,
(i) (v +v2) @w =11 @ w+ v @ w,
(iii) (W) @w =v® (Aw) = AM(v @ w).

Kommen wir nun zu Darstellungen: Fiir V', W Darstellungen mit py : GXV — V|
pw : G x W — W. Dann ist durch pygw : G X (VW) - (Ve W), (¢,v®
w) = pv(g,v) @ pw(g,w) eine Darstellung gegeben: pyew als Kombination
stetiger Abbildungen stetig und l;/‘g’w mit der Linearitdt des Tensorprodukts
ebenfalls linear. Weiter gilt pyew(e,v ® w) = py(e,v) ® pw(e,w) = v @ w,
pvew (g, pvew (h,v ® w)) = pvew(g, pv(h,v) @ pw(h,w)) = pv(g, pv(h,v)) ®
pw (g, pw (h, w)) = pv(gh,v) @ pw(gh, w) = pvew (gh,v @ w).
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Lemma 2.4.13. Seien V und W Darstellungen.
(1) xvew = xv + xw und Xvew = XvXw-

(i) xv+(9) = xv(g™)-
Beweis. (i) Diese Eigenschaften folgen unmittelbar aus den entsprechenden

Eigenschaften der Spur: Die Darstellungsmatrix von g hat bzgl. der Basis
(vi, ;) 1<i<n=dimv von VW - (v;); Basis von V', (w;); Basis von W - Block-

1< <m=dim W
diagonalgestalt mit zwei Blocken, einem fiir V' und einem fiir W. Die Spur

von g ist somit gerade die Summe der Blocke: tr(ly ") = tr(l)) + tr(l}").
Sei I} (v;) = Y01y agvi, )Y (wy) = Y7 | briwy, insbesondere

A= (aij)lgid‘gn bzw. B = (bij>1§i,j§m darstellende Matrix von l;/ bzw. lgv
Dann folgt mit der Linearitit des Tensorprodukts

l;®w<vj Y wl) = l;/(l)]) ® lgv(wl) = (Z CLijUZ') ® (Z bklwk>
k=1

i=1

= Z Z ;b (v; @ wy)

i=1 k=1

Die Koeffizienten der Darstellungsmatrix von I} " (v; ®w;) sind a;;by, wobei
auf der Diagonale gerade die Koeffizienten liegen fiir die + = j und [ = k gilt:

r (1VeW) ZZa“bkk (Z a,,) (Z bkk) = tr(1)) tr(1lV).

=1 k=1 =1

(ii) G wirkt auf Hom(V,W) mit (¢f)v = gfg 'v fiir f € Hom(V,W), da
(L f)w) = f),(g-(h- ) = (g- (hfh7))(v) = ghfh™g (v) =
ghf((gh)™")(v) = (gh) - f(v).

Fir W = K ist W eine Darstellung mit der trivialen Wirkung, d. h.
G x K — K,gv = v. Dies ist tatsichlich eine Darstellung. Damit ergibt
sich fiir die Translation I, auf V* = Hom(V,K): 0} (f)(v) = (g9/f)(v) =
9fg M (v) = flg~lv) = f(lv w) fiir f e V.

Es gilt somit I;" = (1}, )*, wobei (1)"1)" die duale Abbildung'' zu 1", ist,
d. h. (I1)"(f) = f(I)"1). Die Spur ist jedoch invariant unter dem Wechsel
zur dualen Abbildung, da tr(f*v) = tr(vf) = tr(fv). Es ergibt sich

tr(l}) = tr((l;/_l)*) = tr(l)1).

Folglich xv-(g) = tr(l}") = tr(l;/_l) =xv(g™1).
O

"' Nach Definition gilt fiir die duale Abbildung f* : W* — V* der linearen Abbildung f:V —
W f*(w*) =w* o f, Vw* € W* - V, W endlich-dimensionale Vektorrdume.
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Lemma 2.4.14. Fiir V und W endlich-dimensional gilt Hom(V, W) ~ V* @ W
mit dem kanonischen Isomorphismus ¢ : v* @ w — (u +— v*(u)w).

Beweis. Linearitat folgt unmittelbar aus der Definition von ¢. Fiir W endlich-
dimensional, d. h. (w;)i1<i<p—aimw Basis von W mit dualer Basis (w])<;<, von
W* definiere man

¢ :Hom(V,IWW) =V @ W, [~ 2:(11);k o f) ® wj.
i=1
¢’ ist offensichtlich auch linear. Aufkerdem ist ¢ invers zu ¢: Mit w =

S, wi(w)w; folgt

e @w)) = Z(WZ‘ o (ur v (uw) @ wi =Y (ur v*(ww)(w)) ® w

]

Bemerkung 2.4.15. Fiir einen unendlich-dimensionalen Vektorraum lasst sich
im Allgemeinen keine duale Basis konstruieren.

Satz 2.4.16. Seien V und W endliche Darstellungen.

i) [xv(g) dg—durnVGfurVG—{vEV gv=v Vg € G}.

(i) (xv,xw) = [ xv(9)xw(9)dg = dim Home(V, W) mit Homg(V,W) = {f €
Hom(V, W) : f aquwarlant}

R : 4o e 1 fir Vew,

(iii) Fiir V und W irreduzibel: [ Yy xw dg = { 0 sonst.

Beweis. (i) Definiere p : V. — V¢ ’U — [gvdg. Diese Abbildung ist
wohldefiniert, d. h. Vh € G : hp(v) = [hgvdg = [ gvdg = p(v), wegen
den G—Invarianz des Integrales. Welter gilt fiir o € V& : p(0) = [ godg =
Jodg = v [dg = © wegen Normiertheit des Integrales. p ist somit eine



(iii)

2.4. CHARAKTERE UND KLASSENFUNKTIONEN | 19

Projektion von V auf V¢ Man erweitere eine Basis (e;)1<i<q,d = dim V¢
zu einer Basis von V. Damit ist die darstellende Matrix von p aufgefasst
als Abbdildung V' — V bzgl. dieser Basis von V' eine Blockmatrix mit zwei
Diagonalblcken - E und 0. Folglich tr(p) = dim V.

= e = u) = ([ ids) = [w@pis= [xwlors

da tr linear ist und somit mit dem Integral kommutiert. Dies zeigt (i).

Es gilt Homg(V, W) = Hom®(V, W), denn mit der Wirkung aus dem Be-
weis zum Lemma 2.4.13 gilt fiir f € Homg(V, W) : (¢f)(v) = gfg ' (v) =
fgg'(v) = f(v) und fix f € Hom®(V,W) : f(gv) = (9f)(gv) =
9f(g"gv) = gf(v). Mit Teil (i):

dim HOHlG(‘/, W) = / XHom(V,W) (g)dg

Mit Lemma 2.4.13 folgt nun
dim Homg(V, W) = /XHom(v,W)(g)dg = /XV*@de

= [l Datois = [ 5ol

wobei wir im letzten Schritt verwendet haben, dass V ~ V* mit Isomorphis-
mus v — (-, v) uns Lemma 2.4.11 anwenden lisst. Hierbei entsteht V indem
man die Skalarmultiplikation auf V, d. h. C x V — V,(z,v) — zv, nach
C xV = V,(z,v) — Zv abiindert. V heikt konjugierte Darstellung von V.'2

Fiir den letzten Teil verwende man das Lemma von Schur unten. Teil (ii)
von Satz 2.4.16 und Teil (iii) des Lemma’s von Schur zeigen nun die Aussage.
[

Lemma von Schur 2.4.17. Sei G eine Gruppe, V und W irreduzible Darstel-
lungen. Dann gilt:

(i)

(1)

Eine lineare dquivariante Abbildung f : V — W ist entweder 0 oder ein
Isomorphismus.

Jede lineare dquivariante Abbildung f : V' — V hat die Form f(v) = v fiir
ein A € C.

By (- v) ist tatséchlich linear, da das Skalarprodukt im zweiten Argument semilinear ist,
also A -v = (-, ) = M-, 0) = A(-,v).
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(iii) dimHomg(V, W) =1 fir V ~ W, dim Homg(V, W) = 0 fiir V %2 W.

Beweis. Einen Beweis fiir dieses grundlegende Lemma der Darstellungstheorie
findet sich z. B. in Brocker & tom Dieck [5], S.69, James & Liebeck [14], S.78ff. [

Bemerkung 2.4.18. Allgemein kann man (-, -) als Abbildung C(G,C) x
C(G,C) — C definieren, wobei C'(G,C) die Menge der stetigen Abbildungen von
G nach C ist. Damit ist (-, -) sesquilinear (y,v,¢ € C(G,C), X € C):

(Alx +14),¢)

I
=
=
+
E
S
P
Q
S~—
QU
<

(AW +0) = / N DNE T O (g)dg

(-, ) ist auch hermitesch:

(X, ¥) = /X(g)wdg = /Wgw(g)dg = /@@b(g)dg = (¥, x).

SchlieRlich ist (-, -) auch positiv semidefinit, denn [ x(g)x(g)dg
= [ x(9)I>dg > 0.
N——

>0

Satz 2.4.19. Eine Darstellung ist durch ihren Charakter eindeutig festgelegt.

Beweis. Sei V = @j aj‘7j, a; € N eine Zerlegung von V' in paarweise nicht isomor-

phe irreduzible Darstellungen \7j Dann gilt mit Lemma 2.4.13 yy, = Zj a;Xy,

und a; = (xv,Xxy,). Dies wird deutlich, wenn man Vi = V,®.. .oV =
—_——

aj—mal

Xay 750 X77) = (X7, + - X0 X7,) = @5(Xv;5 Xy,) = @50y schreib. O

Bemerkung 2.4.20. Jeder Charakter ist eine Klassenfunktion, da x(ghg™') =
tr(ghg™") = tr(g~'gh) = tr(h) = x(h).

Satz 2.4.21. Jede irreduzible Darstellung von SU(2) ist isomorph zu einem der
Vi

Beweis. Angenommen es existiert eine Darstellung mit Charakter y, die nicht iso-
morph zu einem der V,,n € N ist, d. h. insbesondere (x,x,) = 0 Vn € Ny,
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{(x;x) = 1 nach Satz 2.4.16 (iii). Sei nun (f,)nen eine Folge die x gleichmékig ap-
proximiert, f,, : SU(2) — C, f,(A) := fu(e(t)) = fu(t), fu € W = ((cos(nt))nen)
mit der Bijektion aus Folgerung 2.4.3. Diese existiert, da jeder Charakter nach
Bemerkung 2.4.20 Klassenfunktion ist und man jede stetige Klassenfunktion nach
Folgerung 2.4.3 mit einer stetigen geraden 2w —periodische Funktion R — C iden-
tifizieren kann. W liegt nach Satz 2.4.8 jedoch dicht im Raum der stetigen geraden
2w —periodischen Funktionen.

kn
=VneN: f,=> Mxir ko €N, €CVni €N

=0
kn
= Vn e N:(x, fn) = X,ZA Xi) =) A (X)) =0
1=0

Wir zeigen, dass (x, -) stetig bzgl. Supremumsnorm ist. Die Aussage folgt dann
aus dem Widerspruch

O6x) =170= Tim (x, fu) = (x; lim_fu) = (6 x0)-
Sei f, — x gleichmékig.
= |<X7>~<> - <X>fn>| = |<X7>~<_ fn>| S 1 |<X’X>|\/|<>2_fn7>~<_ fn>|
——

=1

- \/ / (x — £.)(9)[2dg

Wegen gleichméfiger Konvergenz gilt: Ve > 0 Ing € NVn > ng : [(x — fu)(9)| < ¢
Vg € SU(2).

= I(X—fn)(g)|2d9</ e2dg=s2/ dg =&
u() su(2)

SU(2) SU(2
= |(x) — (6 fa)] <e— 0, fiire — 0.

[]

13Verwende die Ungleichung von Cauchy-Schwarz. Da wir nicht gezeigt haben, dass (-,-)
ein Skalarprodukt ist, werden wir diese Ungleichung zeigen. VA € C, x,v Charaktere, also
insbesondere (¢, 1) # 0:

0 < < Y, x = M) = (X, X) — (X, AY) — (A, X) + (A, M)
< >X< V) — M, x) + AN, ).

/\

Man wéahle nun \ = é;c},w)

. Es ergibt sich

g

oy = 1P < 10ex) I, ol



DER DARSTELLUNGSRING
VON SU(2)

In diesem dritten Kapitel beschiftigen wir uns mit der Struktur des Darstel-
lungsrings R(SU(2)), welcher eine formale Erweiterung der Menge der Isomor-
phieklassen irreduzibler Darstellungen darstellt. Dies ist besonders deshalb
lohnenswert, da wir im folgenden Kapitel daraus die Struktur der Verlinde Al-
gebra ableiten konnen.

Die Clebsch-Gordon-Formel werden wir, wie schon am Anfang von Kapitel 2
erwahnt, mit Hilfe von Charakteren und mit Hilfe der geometrischen Reihe be-
weisen. Sie wird die Grundlage fiir die explizite Beschreibung des Tensorprodukts
in R(SU(2)) legen. Zuvor jedoch kann auf R(SU(2)) eine abelsche Gruppenstruktur
sowie eine Z—Modulstruktur und insbesondere auch eine Basis erklirt werden.!

3.1. DiE GrRupPE R(SU(2))

Lemma: Clebsch-Gordon-Formel 3.1.1.
Vi ® Vi = ) Visi—zj,  m = min{k,1}.
j=0

Beweis. Es geniigt sich auf Charaktere zu beschrénken (siche Satz 2.4.19). Da die
Charaktere von SU(2) bereits durch ihre Werte auf e(t) eindeutig bestimmt sind?
reicht es aus die Identitét

() () 5 ()

§=0 i=0

!Zumeist wird in der Literatur der Darstellungsring als solcher nicht explizit beschrieben,
insbesondere nicht fiir den Spezialfall SU(2) mit zusétzlicher Z—Modulstruktur. Wir werden
deshalb in diesem Kapitel auf weitere Quellenangaben verzichten.

Zsiehe Folgerung 2.4.3.
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fiir x = e zu zeigen. Dabei haben wir die im Beweis von Lemma 2.4.6 hergeleitete
Formel y,,(e(t)) = Y, e~ 2Mt = 3™ cos((n—2k)t) fiir den Charakter verwen-
det. Im Folgenden nutze man unter anderem, dass x # 0 fiir x = €%, ¢t € R. Mit
der geometrischen Reihe und o. B. d. A. k <[, also m = k:

(Zf:o xk—2i>

= (Zf:o Ikdi)

Ebenso erhalten wir

k+1—2j

Z pRH—2i—2i
i=0

()

s ()

(7))

okt (m—Q(k+l)—4

7m—2k—27x—2l—2+1)

1=0

ohH=2) (x72(k+l72j+1) _ 1)

=0

(@ 2-1)7
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Bemerkung 3.1.2. Setzt man V(k/2) := Vj so liest sich die Clebsch-Gordon-
Formel in der symmetrischen Form

2m

VK)o V() = Vy®Vy = @ Vogtoi—2j,  m = min{k,{}
=0

= Vk+haVE+i-Da...oV(k-1)?

Diese Notation ist in der Literatur ebenfalls gebrauchlich, wird von uns aber nicht
weiter benotigt.

Definition 3.1.3. Sei R(SU(2)) die Menge der formalen Differenzen [V] —[W] von
Isomorphieklassen endlich-dimensionaler Darstellungen V' und W mit der folgen-
den Aquivalenzrelation: [V] — W]~ [V] - [W] e VoW o Z~V oW & Z fir
eine weitere Darstellung Z.

Die Isomorphieklasse einer Darstellung V' bezeichnen wir im Weiteren mit [V].

Wir zeigen zuniichst, dass dies tatséichlich eine Aquivalenzrelation ist. Dabei gelten
Reflexivitét und Symmetrie nach Definition. Transitivitdt ergibt sich wie folgt:
Sei [V] — [W] ~ V] —[W], [V] = [W] ~ [V] — [W} d. h. es gibt Darstellungen
ZZrmtV@W@Z V@W@ZundV@W@Z VeWeaZ. Dann gilt
VeaWaeZ~VeWaeZfirZ=VaeZoZoder auch fir Z=W o Zo Z. Wi
erhalten [V] — [W] ~ [V] — [W].

Lemma 3.1.4. R(SU(2)) := R(SU(2))/~ ist mit der Verkniipfung
£t R(SU()) x R(SU(2)) = R(SU(2)). ~
(V] =W V] = [W) = [V V]) - (W e W]

eine abelsche Gruppe.

Beweis. (i) Die Addition ist wohldefiniert, da mit V, V bzw. W, W auch V@V
bzw. W & W Darstellungen sind und fiir [V] — [W] ~ [V'] = [W'] = V &
WeaZ~=VaWwaZ V- W~ V] -W=VeWaeZeVaeWweZ:

VavVeWeWwWezZeZ ~ VoW aezZoVeW oz
ViewaeZeV oWeaeZ
~ VaoaVeWeWeZeZ

12

Es folgt Vo V] - [WaoW]~ [V oV]—[W oW,

3 Auch diese direkte Summe soll nur als Summe iiber 2(min{k, [} +1) Summanden verstanden
werden.
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=
|
=
<)
|
=
m

(ii) Die Verkniipfung ist assoziativ, da fir [V] — [W],
R(SU(2)):

= (V] =W+ (Ve V] - [Wae W)
—VeVeV]l-WaWaeW
=(VeVl-WeW)+(V]-W)
= (V] = [W]) + (V] = [W]) + ([V] — [W])).
(ili) + ist kommutativ:
(V] = W)+ (V] = W) = (Ve V) - (WaeW)
='(Vev)-(Wew)

(iv) [0] — [0] is neutrales Element:®

(VI=WD) + (0] = [0]) = [V @ 0] - [Wa0] = [V] - [W]

(v) ¥[V] - [W] € R(SU(2)) 3[V] — [W] € R(SU(2)):
(V=) +(V]-W)= (VeV]) - (WeW])= 0] - [0

Wihle V=W, W =V :VaWalx=WaVaeo= (VaV])—((WaW]) =
[0] — [0] in R(SU(2)).° §

3.2. BASIS, Z—MODUL- UND RINGSTRUKTUR

Lemma 3.2.1. R(SU(2)) ist ein Z—Modul, wobei die Skalarmultiplikation durch
- Z x R(SU(2)) — R(SU(2))

gegeben ist. Hierbei definieren wir ¢, = sign(z)id fiir z € Z, d.h V[V] — [W] €
R(SU(2)),z < 0: . ([V] = [W]) = [W] = [V]; oo = 0 und fiir z > 0 : ¢, = id.
Fiir die leere Summe erhiilt man: Y0 ([V] — [W]) = [0] — [0].

Werwende VoV ~VaV=[VaV]=[VaV].
"Mit Kommutativitit folgt aus linksneutral /linksinvers schon rechtsneutral /rechtsinvers.
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Beweis. Fiir ¢, gilt ©,,., = ©., @z, V21,22 € Z. Auberdem ist ¢, als Vielfaches
der Identitdt homomorph.

(i) - ist wohldefiniert, denn wegen der Kommutativitit der Addition ist dies
gerade die Addition von Termen [V] — [W], [W] — [V] und [0] — [0].

(ii) Assoziativitit:

|2
2 (- [VI=[W]) = 2 (Zsﬁzz([V]—[W]))

1] |22]

21|22

|z122]

= (a12) - ([V] = [W]).
(iii) Distributivitat:

2 (V] = W) + (V] = (W) =2+ (V@ V] - W o W)

i=1
||

[ 12| |2| |2]
= |pvePV bwoePpw
=1 =1 =1 =1

(@] 1) (@] )

|2| |=|
= DoV = WD+ (V] = [W))

= 2 (V] =[W]) +z- (V] = [W)).

Man beachte weiter, dass |21 + 22| = sign(z; + 22)(sign(z1)|z1] + sign(z2)|22|)

6Fiir z < 0 vertausche ab dieser Stelle V <> W, V <+ W. Der Fall z = 0 ist trivial.
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flir z1, 2o € Z. Wir erhalten

|z1+22]

(214 22) - (V] = [W]) = Z Pt (V] = [W])

|21]
= sign(z1 + 22) sign(z1) Z Ptz (V] = [W])
|22]
+sign(z1 + 22) sign(22) Z otz (V] = [W])

|21 |22

_ Z 0. ([V] = [W]) + Z 0 ([V] = [W])
=z - (VI= W)+ 2 (V] - W]).

Somit ist R(SU(2)) ein Z—Modul. O

Lemma 3.2.2. b, = [V,] — [0],n € N bilden eine Basis des Z—Modul R(SU(2)).
R(SU(2)) wird so zu einem freien Z—Modul.

Beweis. Die (b,)nen bilden ein linear unabhingiges System, da Vj, paarweise nicht
isomorph sind. Genauer Zle a;bj, = 0,a; € Z fiir j; € N genau dann wenn a; = 0.

Um dies zu zeigen definiere man die Dimension eines Elementes [V] — [W] €
R(SU(2)) als Differenz der Dimensionen von V und W - dim([V] — [W]) =

| dim V' — dim W] -, insbesondere dimy b, = dim V,,.” Somit dim, <Zf:1 aibji) =

dim (@1, iV, ) = S0 aidim (V;,) = dimyy([0] = [0]) = 0. Wegen dim (V;,) =
Ji +1 >0 muss also a; = 0,V: € N gelten.
Wegen Lemma 2.2.1 wissen wir, dass jede Darstellung V' von SU(2) direkte Summe

irreduzibler Darstellungen ist, also direkte Summe von V/,.
Es gilt fiir [V] — [W] € R(SU(2)) und o. B. d. A. k > m:®

k m
@ ‘N/]z - [@ sz'
i=1 i=1

7dim; | ist wohldefiniert, denn fiir [V] — [W] ~ [V] = [W] & VoW ~Va W = dm(V) +

dim(W) = dim(V) + dim(W) = dim(V) — dim(W) = dim(V) — dim(W).
®Setze Wl =0firm+1<i<k @?:1 sz‘ = @:il WJL ® @f:_lm(o) = @:7;1 Wji =

[@f:l WL} - [@;11 sz} :

k

= Z([‘;.;z] - [WJJ%

i=1

V=] =
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‘7j¢> VT/] irreduzibel und nach Satz 2.4.21 fiir gewisse nicht notwendigerweise ver-
schiedene j;, I;, m; € NU {—1}:?

k k

Vi-Ww] = Z(%]—[Wg‘i])ZZ(MJ—[WJ)

2k

— Zaibm“ a; & Z

i=1

Dies zeigt, dass (b, )neny R(SU(2)) erzeugt.
Als linear unabhéingiges Erzeugendensystem ist (b,),en eine Basis. O

Lemma 3.2.3. R(SU(2)) ist mit dem Tensorprodukt

(
x = R(SU(2)) x R(SU(2)) — R(SU(2))
(VI=W]L V] =W]) = [VeV]—[We W]

ein kommutativer Ring.

Beweis. Offensichtlich ist [0 ® 0] = [0], da schon 0 x 0 ~ 0. Die Clebsch-Gordon-
Formel iibertrigt sich von den (V},),en auf die Basis (b,)nen

b x b = ([Vi] = [0]) @ (Vi] = [0]) = [V @ Vi] = [0]

min{k,l} min{k,l} min{k,l}
= | D Viro| —01= D (Vi) Z Diti—2;
j=0 j=0

Mit den in Definition 2.4.12 beschriebenen Eigenschaften (i) und (ii) erhélt man
Distributivitdt zwischen Addition und Multiplikation. Zusammen mit der Dis-
tributivitat der Skalarmultiplikation lasst sich die Struktur von der Basis auf ganz

R(SU(2)) fortsetzen, d. h. fiir [V] — [W], [V'] — [W'] € R(SU(2)):
V]~ V) x (V] - W) = (Z mbm> . (Z b)
Z CLmZCn] "J)

j=0

I
Mw

Il
o

7

Um die Notation zu erleichtern setze man V_; := 0, b_; := [0] — [0].
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k l min{mi i }

- § E A, an E bmi—i-nj —2r

i=0 j=0 r=0

k { min{m;,n;}

= § E amicn]' bm¢+njf2r7

i=0 j=0  r=0

fir gewisse k,1 € N, m;,n; € N und ap,,,c,, € Z.

(i) Daraus folgt unmittelbar die Kommutativitit:

l k
(Z cnjbn].> X (Z amibmi>
j=0 =0

kool
= ZZamicnj (bn]. X bmi)

i=0 j=0

(V=) > (V] = [W])

min{m;,n;}

k l
- E E Qm; Cn, § bml +nj—2r

i=0 j=0 r=0

= (V=] x (V'] = W),

(ii) Dal;s Einselement ist by, denn by x ([V] — [W]) = S35, (bo X by,) =
Zi:o @b, = [V] = [W].

(iii) Wir zeigen Assoziativitdt zunéchst auf der Basis. Dazu induziere man nach
n, wobei n der gréfite Index eines b; ist. Der Induktionsanfang, n = 0 ergibt
sich zu (by X by) X by = by X by = by x (byg X by). Fiir den Induktionsschritt
n — n+ 1 verwende man b, 1 = b, X by —b,_1. Fiir 0 <[, k < n ergibt sich
somit:

(by X byg1) X by = (b x (by X by —by—1)) X by
= (b x (by X b1)) X b+ (b X (=bp—1)) X by
=V by x (b X by) X bg) + by X ((=bp_1) x by)
= by X ((by X by —by_1) X bg)

= b X (bpy1 X by).

Fiir die Félle [ = n + 1 oder £k = n 4+ 1 kann man ebenso zerlegen und
die Distributivgesetze ausnutzen. Somit gilt fiir alle 0 < 7.k, 1 < n + 1:
(by X bj) x by, = b x (b; x by). Damit ist die Induktion abgeschlossen und
die Verkniipfung somit assoziativ, da sich diese Eigenschaft von der Basis auf
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ganz R(SU(2)) iibertrégt, d. h. fir [V]—[W], [V']—[W], [V]—[W] € R(SU(2))
und gewisse p,,Cp,dy, € Z, mi,nj,pe € L, k,l,q € N:

i=0 j=0 t=0
k l q
= Zzzamicmdm((bW X bn;) X by,)
i=0 j=0 t=0
k l q
- (m;Cn dpt(bmi X (bn X bpt))
=0 7=0 t=0
k I q
— Zamlbmz> X (chnjdpt(bnj X bpt)>
i=0 =0 t=0

Bemerkung 3.2.4. Ein Ring der gleichzeitig Z—Modul ist, wird auch
Z—Algebra genannt.

Tatsdchlich kann man den Ring und die Z—Algebra R(SU(2)) zu einer
C—Algebra R(SU(2)) ®z C erweitern. Wir kénnen R(SU(2)) ®z C als Menge
der formalen C-Linearkombinationen von Elementen in R(SU(2)) auffassen, wobei
die C-Skalarmultiplikation ,,x“ die Skalarmultiplikation aus Lemma 3.2.1 auf dem
Z—Modul R(SU(2)) erweitert, d. h. z x ([V] — [W]) = z - ([V] — [W]) fiir z € Z.
Insbesondere ist (b,,),en eine Basis der C—Algebra.



DIE VERLINDE ALGEBRA

Den entscheidenden Schritt auf dem Weg zur expliziten Beschreibung des Pro-
dukts in den Verlinde Algebren iiber SU(2) wird in diesem Kapitel der Satz 4.1.3
darstellen, der uns eine Zerlegung des Darstellungsrings in ein Z—Untermodul und
ein Ideal ermoglicht. Leider liegt mir kein Beweis zu dieser Aussage vor, welche
jedoch z. B. von Andras Szenes bewiesen worden sein soll.!

Deshalb werden wir versuchen diese Zerlegung elementar zu beweisen. Dieser Satz
liefert uns mit der im Beweis von Satz 4.2.3 gezeigten Behauptung schlieklich eine
explizite Beschreibung der multiplikativen Verkniipfung in den Verlinde Algebren
tiber SU(2). Die beiden verwendeten Bedingungen (Satz 4.1.3 und die genannte
Behauptung) konnen auf anderem Wege auch aus Uberlegungen der K —Theorie
abgeleitet werden, wie in ,,Basic Bundle Theory and K —Cohomology Invariants®,
Seite 270 gezeigt wird. Die explizite Produktdarstellung findet sich bei Schotten-
loher [19], S. 231.

4.1. ZERLEGUNG VON R(SU(2))

Definition 4.1.1. Der Quotientenring V} := Vi (SU(2)) = R(SU(2))/(bx+1) heifst
k—te Verlinde Algebra. Hierbei bezeichnet (by), k& € N das von by erzeugte Ideal
in R(SU(2)).

Bemerkung 4.1.2. Jeder Quotientenring R/Z = {a +Z : a € R} (bzw. Faktor-
ring bzw. Restklassenring) ist mit

. RJIxR/T—R/T
(a+Z,b+7Z)— (a+0b)+ T,
R/T x R)T — R/T
(a+Z,b+7Z)w— (ab) +Z,

lsiehe Bott [4], S.89.
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ein Ring. Im Falle eines kommutativen Ringes R ist auch der Quotientenring
kommutativ.?

Satz 4.1.3.
R(SU(2)) = (bis1) & (bos -, bi)s k=0
wobei (bg, ..., bg) der von den by, ..., by erzeugte Z—Untermodul ist.

Wir zerlegen den Beweis von 4.1.3 in einige Hilfslemmata. Man beachte zunéchst,
dass fiir ein V € R(SU(2)) und a; € Z, V1 <i <m €N

bo X b =Y bpprgj, fiirn <k,

j=0

k
bo X b =Y bnprj, fiivn >k,
=0

n

m k—1 m k
=V xXb, = (Z anbn> X by, = Zan Z brnyk—2j + Zan mekﬂj,
n—0 n=0  j=0 n—k  j=0
k—1 n m k
= (b) = { An Y bpjpr—oj + Zan an+k—2j tay € Z} ;
n==k 7=0

n=0  j=0
gilt.
Lemma 4.1.4. b; ¢ (by) fiir 0 <i < k.

Beweis. Angenommen b; € (by) fiir 7 < k, dann existieren a; € ZV1 <i <m € N,
sodass

k—1 n m k
bl' = Z Ay bn+k72j -+ Z Qp, Z bn+k72j (4141)
n=0 7=0 n=~k 7=0

Wir betrachten zunéchst einen Spezialfall (k = 2).* Der allgemeine Beweis verlduft
dann analog. Die Beweisidee liegt darin, dass wir versuchen Gleichung 4.1.4.1 zu
erfiillen und dabei schrittweise die a; festlegen, es aber immer ein b;, j # ¢ auf der
rechten Seite von Gleichung 4.1.4.1 gibt, das nicht verschwindet.

’Diese Aussage findet sich in den meisten Algebrabiichern, z. B. Bosch [3].
3Fiir k = 1 geht man ebenso vor.
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Angenommen by € (bs), dann lisst sich by wie folgt darstellen:

m

by = apby + a1(by + b3) + Z an(bnto + by + bp—2)

n=2

Es muss ay = 1 gelten, da nur fiir n = 2, b,,5 + b, + b,_o den Summanden
by enthilt. Somit existieren auf der rechten Seite der Gleichung auch der
Ausdruck bs 4+ by. Da wir ag beliebig wahlen konnen, fallt der Term b,
weg. Damit by nicht linger auftaucht, miissen wir a4 und ag so wahlen, dass
ay + ag = —1. Somit verschwindet by, jedoch erhalten wir einen neuen Term

- —bg.

as=1=ap=—1=ap=0=ayu=1=a=—-1=...

= At = _1>a6t+2 = 17a8t+4 =0, Vvt > 1.
Da wir jedoch nur endliche Linearkombinationen betrachten (m < oo) und
offensichtlich lim; .., a; # 0, erhalten wir einen Widerspruch. Folglich kann

by nicht in (b) sein.
Analog folgt der Fall fiir b: Sei nun by € (bs)

by = apby + a1(by + b3) + Z an(bnto + by + bp—2)

n=2
sataz=1=a;=—1=a,+ag=1=a1=—1=...
= agtr1 + Az = —1, agys = —1, =0,

Auch hier ergibt sich ein Widerspruch zur Endlichkeit der Linearkombination

- by ¢ (ba).
Kommen wir nun zum allgemeinen Fall £ > 0. Angenommen b; € (by) fiir
ein i € {0,...,k — 1}. Dann gilt

k—1

n m k
bi=) a0 Y bupk—zj+ Y an Y bnpraj. (4.1.4.2)
n=~k 7=0

n=0 7=0

fiir gewisse a,, € Z.
Sei

n k
Ay = {a, : b Summand von Z bytk—2j + Z brtk—2j

j=0 J=0
= {a,|35 €{0,... ,max{n,k}} :n+k—25=1i},
Bl = {TLGN:CLneAl}
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= Zanzl.

neB;

Sei

= max{n € By : a, # 0},

Qe(1)s

S
~—~
—_ =
~— ~—
\

b(1)

bc(1)+k'

Dann ist a(1)b(1) gerade der am hochsten indizierte nicht verschwindende
Summand in der Summe

n k
Z Ap Z bn+k—2j + Z Ay, Z bn+k—2j-

neBy 7=0 neBy 7=0
n<k n>k

Er verschwindet nicht, da a(1) # 0 (nach Definition von a(1)) und b(1) kein
Summand in

n k
ST @ burkeait Y. an Y burky

neBi\{c(1)} j=0 neB1\{c(1)} Jj=0
n<k n>k

ist und somit wegen der linearen Unabhéngigkeit der b,, nicht verschwinden

kann. Insbesondere gilt ¢(1) + k > k > i.t

Definiere nun rekursiv fiir { > 2

Ay = H{a,|37€{0,... max{n,k}}:n+k—2j=c(l—1)+k},
B, = {neN:a, €A}
= Z a, = —a(l —1).
neB\c(l—1)
c(l) = max{n € B;: a, # 0},
a(l) = ac,
b(l) = Dbe(t)sk-

Es ist jeweils a(l)b(1) der hochsten indizierte nicht verschwindende Summand
in der Sumime Zne% an ZQ 0 bngr—2j + anfg an, Z] o bnsr—2j-
Wegen min{n : n € B;} > ¢(l — 1) und ¢(I — 1) durch den vorangegangenen

Schritt bereits fest, muss es um den Term a(l — 1)b(l — 1) auszugleichen ein
n € B;,n > ¢(l — 1) geben, mit a,, # 0. Insbesondere ¢(I) > ¢(l —1). Es

4Diese Aussage unterscheidet die Fille i < k und i > k; sieche auch Bemerkung 4.1.5.
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existiert somit eine Teilfolge (acq))ien von (an)nen mit acqy # 0,0 € N. Da
wir b; aber nur als endliche Linearkombination schreiben diirfen (m < oo)
ergibt sich ein Widerspruch zu b; € (by).

]

Bemerkung 4.1.5. Fiir i > k kann durchaus b; € (b;) gelten, sogar fiir ¢ > k. Ein
Beispiel dafiir ist z. B. b5 € (by) weil b5 = bs + b3 + by — by — by = by X by — by X by.
Tatséchlich gibt es damit schon unendlich viele b; € (by), denn induktiv erhélt man
bﬁj_l € (bQ),Vj > 1.

Der Beweis von Lemma 4.1.4 scheitert an der Stelle, an der wir annehmen, dass
wir den Anteil b(1) verschwinden lassen miissen, denn ist ¢ > k, so kann b(1) = b;
sein und b; bendtigen wir fiir die Gleichheit in Gleichung 4.1.4.2 - b; lieke sich in
diesem Fall also linear kombinieren.

Folgerung 4.1.6. V € (by,...,bx_1) \ {0} ¢ (b).

Beweis. Die Argumentation verliuft analog zu der im Beweis zu Lemma 4.1.4.
Angenommen V = Zf;ll cib; € (b),c; € Z. Dann gilt

k—1 k—1 n m k
E cib; = g anp E bryk—2j + E Qnp, g byt k—2j-
=1 n=0 7=0 n=~k 7=0

fiir gewisse a,, € Z. Es existiert ein a, # 0, da V # 0. Anstatt einer Menge A,
wahlen wir nun £ Mengen, 0 <1<k —1

AL = {a,|35 €10,... ,max{n,k}} :n+k—2j =i},
B, = {neN:3iec{0,...,k—1}:a,c A},
c(1) := max{n € By :a, # 0}.

Insbesondere gilt ¢(1) + k > k.
Nach diesen leichten Modifikationen kann der Beweis von Lemma 4.1.4 iibernom-
men werden. ]

Folgerung 4.1.7. Folgerung 4.1.6 zeigt auch (b, ...,bx—1) N (bx) = {0}, k > 1,
da 0 offensichtlich in beiden Mengen liegt.

Lemma 4.1.8. Jedes Element in R(SU(2)) ldsst sich als Summe von Elementen
aus (bg,...,bg_1) und (by) fiir k& > 1 schreiben.

Beweis. Da (by,)nen Basis von R(SU(2)) geniigt es zu zeigen, dass sich jedes Ba-
siselement als Summe von Elementen aus (by, ..., b,—1) und (by) schreiben lésst.
Fir 0 < j < k — 1 lassen sich die b; direkt aus (bg,...,bx_1) wihlen. b liegt
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in (bg). Fir j > k induziere man nach j, wobei wir als Induktionsanfang bereits
bo, ..., bg € (bo,...,bk_1) + (br) gezeigt haben. Zeige j — 1 — j =k +1i,i > 1

min{s,k}
b X bi= Y bppia
1=0
min{i,k}
= bk+i = bk X bl + Z (—kari,Ql) c <b0, - ,bk,1> + (bk)
€(by) =1
k N ~ J
siehe IV
O
Beweis von 4.1.3. Folgerung 4.1.7 und Lemma 4.1.8 zeigen Satz 4.1.3. O]

4.2. ADDITION UND MULTIPLIKATION AUF V}

Eine direkte Folgerung aus dem vorangegangenen Satz 4.1.3 ist:

Satz 4.2.1. Die Verlinde Algebra Vj ist als Z—Modul kanonisch isomorph zu
(bo,...,b). Jedes V € Vj ldsst sich darstellen als V- =W + (byi1) = Z?:o a;b; +

(bk+1), W = Z?:O Cijj - <b0, A ,bk>

Folgerung 4.2.2. Die Summe auf V} ist die natiirliche additive Abbildung auf
einem Quotientenring, wie wir sie in Bemerkung 4.1.2 eingefiihrt haben.

Satz 4.2.3. Die Multiplikation auf V} ist die multiplikative Abbildung auf einem
Quotientenring (vgl. Bemerkung 4.1.2).
Damit gilt fiir m,p € N, m+p <k, b4, b, € Vi:°

Bty + (0is1)) X (b + (0is1) =Y bonpj + (brern),
j=0

fiir 2m +p < k und

m
(bintp + (1)) X (b + (bry1)) = Z bomip—2j + (bit1),
j=2m-+p—k
fiir 2m +p > k.
’Da alle weiteren b;, i > k nicht in (b, ...,by) liegen, kénnen wir uns auf m +p < k
beschréinken.

Wegen Kommutativitét der by, lisst sich jedes Produkt b,, x by als byqp X by, schreiben mit
m = min{n, Q}ap - ‘TL - q‘
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Beweis. Fiir 2m + p < k ist das Produkt, das bereits bekannte Produkt aus
R(SU(2)), da das Produkt in (b, ..., by) liegt. Fiir 2m+p > k zeigen wir zunéichst:

Behauptung. Fiir 1 <n < k: by, + bryn € (by)-
(i) Sein = 2m, m € N. Wir fithren eine Induktion nach m mit Induktionsanfang

m = 1 bryo +bp_o = bpyo + by + bpo — b = by X by — by € (bk) Der
Induktionsschritt ergibt sich zu m — m +1 < k/2:

bi—a2(m+1) + Okraime1) = bagma1) X b — bjroi +br_2:)— b € (by).
k—2(m+1) T Okt2(mr1) = bagmy1) X bk Zl( kt2j + bioj) — bp € (bg)
€(br) Jf ~ - E(b)
siehe7

(i) Sei n = 2m + 1, m € N. Mit Induktion nach m, Induktionsanfang m = 0:
bpt1 + b1 = by X by € (bg). Analog zum Fall zuvor erhalten wir den
Induktionsschritt m — m + 1 < k/2:

bi—2(m+1)—1 + brgam+1)+1

= bomrtyr1 X b — Y (brazjr + biajm1) € (bi).
— i
e(by) =0 g ,
siehe TV
m
In R(SU(2)) gilt mit ¢ = | 222+

bin4p X by,
= Z bom+p—2;

§=0

m q—1
= Z b2m+p—2j + Z b2m+P—2j

j=q 3=0

m q—1
= Z bom+p—2j + Z Damtp—2j—(k+1)+(k+1)

J=q Jj=0

m q—1
= Z b2m+p*2j + Z(Z(k+1)+(k+1)—2m—p+2j - b(k+1)+(k+1)—2m—p+2j)

i=q §=0

"Nach Induktionsvoraussetzung in (by).
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m q—1 qg—1
= g bomp—2j — E bo(kt1)—2m—p+2j T g 29(k+1)—2m—p+25
i=aq J=0 j=0

wobeil Wir 2o(p41)—2m—p+2j = D2(kt1)—2m—p+2j +b2mip—2;j € (brt1) gesetzt haben, um
die vorangegangene Behauptung anwenden zu konnen.
Aber fiir 2m 4+ p — k + 1 gerade:

m q—1
E bam+p—25 — E ba(kt 1) —2m—p+2j
Jj=q Jj=0

= (oot £ 41y
— (baks1)—2m—p + -+ F Dokt 1)-2m—pt 2mp—h-1))
= (b1 + -+ bp) = (Dagerry-2mp + -+ big)
=% (bp+ ..+ bokomp) + (Dagrr1)-2mp + -+ br1)
— (b2(k+1)—2m—p +...+ bkfl) + bry1
= (bp+ ...+ bog—2m—p) + brt1

= Z bamp—2j + byt
j=2m—+p—k
Damit erhdlt man
m q—1
brgp X by = Z bom4p—2j + brg1 + Z 29(k+1)—2m—p+2j
j=2m+p—k R Jj=0
E(brs)
= (bitp + (1)) X (b + (bet1)) = Z bam-tp-2j + (Drr1)-
j=2m~+p—k
Fiir 2m +p — k + 1 ungerade = ¢ = M:
m q—1
Z bam+p—2j — Z b2kt 1)—2m—p+2j
Jj=q Jj=0

(D2msp—2mtp—t) + -+ bp)
- (62(k+1)72m7p +...+ b2(k+1)72m7p+(2m+p7k72))
= (b + ...+ by) — (bager)—2m—p + - - - + bi)

m

_9 _
=7 by+...+bogomp= E bam+p—2j-
j=2m+p—k

8Beachte k > p+m =k —m >p= 2k —2m > 2p =2k —2m —p > p.
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Wie zuvor erhilt man

m q—1

brgp X by = E bomip—2j + 22(k+1)—2m—p+2;j
j=2m+p—k 7=0

J/

€(b1)

= (bmip + (0k11)) X (b + (bes1)) = D bamspo; + (bes1)-

j=2m+p—k
Dies schliefit den Beweis von Satz 4.2.3 ab. ]

Folgerung 4.2.4. Das Produkt kann somit explizit in der Form
b % b + (brs1) ZN b+ (1), N € {0,1},

dargestellt werden, wobei die Nilj durch Satz 4.2.3 festgelegt werden.

‘m+p<k=2m+2p<2k+1)=p<2(k+1)—2m—



AUSBLICK

Addition und Multiplikation in der Verlinde Algebra haben wir im vorange-
gangenen Kapitel ausfithrlich beschrieben. Zum Abschluss scheinen mir noch
einige weiter gehende Anmerkungen angebracht, die dem interessierten Leser die
Moglichkeit bieten sollen sich mit weiteren Eigenschaften und aktuellen Entwick-
lungen auseinander zusetzen.

Nach dem Erscheinen des Artikels von E. Verlinde [23] galt die Aufmerksamkeit
zundchst der von Verlinde aufgestellten und ebenfalls nach ihm benannten Ver-
linde Formel, die er selbst unbewiesen lies. In den folgenden sechs Jahren wurden
verschiedene physikalische und mathematische Beweise dieser Formel gegeben, die
mit Faltings |7] einen umfassenden Abschluss fanden. Mit Hilfe der Verlindeformel
lassen sich die Dimensionen der Rdume konformer Blocke bzw. die Dimensio-
nen der Réume verallgemeinerter Thetafunktionen berechnen (siehe Faltings [§]).
Neben den beiden bereits genannten Quellen findet man eine genaue Beschrei-
bung der Verlindeformel auch in ,Basic Bundle Theory and K-Cohomology Invari-
ants“ [13], sowie Szenes [21] und Schottenloher [19]. In allen drei Werken wird im
Besonderen auch auf den Spezialfall SU(2) eingegangen.

Betrachtet man die Verlinde Algebra als C—Algebra (vgl. Bemerkung 3.2.4) so
ist sie auch eine Fusionsalgebra!. Ebenso kann gezeigt werden, dass die Verlinde
Algebra eine Frobeniusalgebra? ist.

Wie schon in der Einleitung erwdhnt, ergibt sich die Verlinde Algebra nicht nur
aus Betrachtungen der konformen Feldtheorie, sondern kann auch mit K'—Theorie
beschrieben werden. Dieser Ansatz ist auf Freed, Hopkins und Teleman zuriick-
zufiihren, die verschiedene Arbeiten zu diesem Thema verdffentlicht haben (siehe z.
B. [9], [10], [22]). In ,Basic Bundle Theory and K—Cohomology Invariants* [13]
findet man neben der allgemeinen Betrachtung auch den Spezialfall SU(2) aus-
fiithrlich beschrieben.

lsiehe Schottenloher [19], S. 228 fiir eine Definition.
Zsiehe Anderson & Fuller [1], S. 261 fiir eine Definition.
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