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Nomenklatur
G = (V,E) Graph mit Knotenmenge V und Kantenmenge E
Nv Anzahl der Knoten
Ne Anzahl der Kanten
A Adjazenzmatrix
deg(v) Grad des Knotens v
degin(v) Eingangsgrad des Knotens v
degout(v) Ausgangsgrad des Knotens v
{deg(v)}v∈V Gradfolge
dist(u, v) geodätische Distanz zwischen Knoten u und v
ccl(v) Nähezentralität von Knoten v
cB(v) Intermediationszentralität von Knoten v
cEi(v) Eigenwertzentralität von Knoten v
den(G) Dichte des Graphen G
τ3(G) Anzahl der 2-Stars in G
τ∆(G) Anzahl der Triangles in G
cl(G) Clusterkoeffizient von G
clT (G) Cluster-Transitivitätskoeffizient
C = {C1, . . . , CK} Partition
mod(C) Modularität der Partition
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Abstract

Diese Bachelorarbeit beschäftigt sich mit den deskriptiven Analysemöglichkeiten von Netz-
werken und wendet sie auf einen Patentdatensatz des Max-Planck-Instituts für Innovation
und Wettbewerb an.

Deskriptive Analysemethoden solcher Daten umfassen zum einen die Untersuchung von Ei-
genschaften der Netzwerkbausteine. Hierbei stehen insbesondere Maße für die verschiede-
nen Konzepte zur Messung des Einflusses einzelner Knoten im Fokus. Zum anderen werden
Methoden zur Messung der Netzwerkkohäsion, also dem Grad der Vernetzung der einzel-
nen Akteure im Netzwerk, und geeignete Mittel zum Identifizieren von Gruppenstrukturen
vorgestellt.



1. EINLEITUNG 5

1 Einleitung

In Zeiten boomender sozialer Netzwerke besteht ein starkes Interesse daran, die Struktur
solcher Netzwerke zu untersuchen und Rückschlüsse daraus zu ziehen. Derartige Netz-
werkstrukturen kann man auch in zahlreichen technologischen und biologischen Konzep-
ten finden, insbesondere auch bei der Erforschung von auf neuronalen Netzen beruhender
künstlicher Intelligenz.

Thema dieser Arbeit ist die deskriptive Analyse von Netzwerken. Mit der wachsenden
Untersuchung von Netzwerkstrukturen sowohl im Alltag als auch in der Forschung ge-
winnt die statistische Analyse der hierbei anfallenden Daten zunehmend an Bedeutung.
Aufgrund der besonderen Struktur dieser Daten sind hierzu spezielle Werkzeuge und Me-
thoden erforderlich. Dazu werden im Kapitel 2 zunächst die Grundbegriffe und Konzepte
der Netzwerkanalyse vorgestellt, die aus der mathematischen Graphentheorie stammen.
Anschließend wird in den Kapiteln 3 und 4 auf Methoden zur Beschreibung von Netzwer-
ken eingegangen. Dabei werden in Kapitel 3 zunächst Maße besprochen, die auf dem Grad
der Vernetzung der Akteure im Netzwerk basieren, und anschließend werden verschiede-
ne Konzepte zur Messung der Wichtigkeit einzelner Bestandteile des Graphen vorgestellt.
Kapitel 4 konzentriert sich auf den Zusammenhang des Netzwerks. Hierzu wird die lokale
und globale Struktur des Netzwerkgraphen genauer untersucht und im Anschluss werden
Möglichkeiten der sinnvollen Unterteilung des Netzwerks in einzelne Gruppen vorgestellt.

1.1 Patentdatensatz

Ein Großteil der vorgestellten deskriptiven Analysemethoden in der vorliegenden Arbeit
wird auf ein Netzwerk von Patententwicklern angewandt. Es umfasst 10208 Entwickler, die
Patente angemeldet haben. Wenn zwei Entwickler bei einem Patent zusammengearbeitet
haben, besteht eine Verbindung zwischen diesen beiden Entwicklern.

Die Datenanalyse wurde mit R basierend auf den Methoden, die in Kolaczyk and Csàrdi
(2014) vorgestellt werden, durchgeführt. Dabei wurde in erster Linie die Netzwerkanalyse-
Pakete igraph, sand und ergm benutzt.
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2 Einführung in die Netzwerkanalyse

Zunächst werden im folgenden Kapitel einige Grundbegriffe aus der Graphentheorie einge-
führt und häufig vorkommende Strukturen in Graphen vorgestellt. Im Anschluss wird auf
Möglichkeiten, Netzwerkgraphen in komprimierter Form darzustellen, und Rechenaspekte
eingegangen.

2.1 Grundbegriffe

b

d

ea c

Abbildung 1: Beispiel eines Netzwerkgraphen

Die Struktur von Netzwerken lässt sich mathematisch durch einen Graphen modellieren,
wie in Abbildung 1 dargestellt. Ein Graph G = (V,E) ist eine mathematische Struktur,
die aus einer Menge von Knoten V (Vertex) und einer Menge von Kanten E (Ed-
ge) besteht. Die Kantenmenge E selbst besteht wiederum aus Knotenpaaren {u, v}, wobei
u, v ∈ V , u 6= v gilt, und beschreibt, wie die einzelnen Knoten miteinander verbunden sind.
Bei einem einfachen, ungerichteten Graphen ist die Menge der Kanten eine Teilmenge aller
zweielementigen Teilmengen von V . Die Anzahl der Knoten Nv = |V | wird die Ordnung
und die Anzahl der Kanten Ne = |E| die Größe eines Graphen G genannt.

Betrachtet man nur einen Teil eines Graphen, so spricht man von einem Subgraphen
H = (VH , EH) von G = (V,E), wenn man eine Untermenge der Knotenmenge VH ⊂ V

und Kanten aus E betrachtet, deren Knoten in VH liegen. Von einem induzierten Sub-
graphen G′ = (V ′, E ′) spricht man, wenn zu einer vorgegebenen Knoten-Untermenge
V ′ ⊂ V alle Kanten E ′ ⊂ E, deren zugehörige Knoten in V ′ liegen, betrachtet werden.
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Wählt man aus dem Netzwerk in Abbildung 1 die Knoten V ′ = {a, b, c, d, e} aus, so ist der
dazugehörige induzierte Subgraph in Abbildung 2 abgebildet.

a

b

c

d

e

Abbildung 2: Durch V ′ = {a, b, c, d, e} induzierter Subgraph von Abbildung 1

Multigraphen sind eine Erweiterung der einfachen Graphen, die Loops und Multi-Edges
zulassen. Loop bezeichnet hierbei eine Kante, bei der Anfangs- und Endknoten identisch
sind. Multi-Edges bezeichnet den Fall, dass zwischen zwei Knoten mehr als eine Kante
existiert. Solche Multigraphen können beispielsweise benutzt werden, um die verschiedenen
Arten von Beziehungen in einem sozialen Netzwerk zu modellieren. Dabei könnte beispiels-
weise dazwischen unterschieden werden, ob man miteinander befreundet ist, oder ob auch
eine Verwandtschaft oder andere Beziehung zueinander besteht, wie in Abbildung 3 skiz-
ziert. Dabei könnten die grünen Kanten Freundschaften zwischen den Akteuren darstellen,
während die gelben Kanten Verwandtschaft und die orangenen Kanten die Zugehörigkeit
zum selben Sportverein anzeigen.

Ein anderer Spezialfall von Graphen sind Digraphen bzw. gerichtete Graphen G∗ =
(V ∗, E∗), wie in Abbildung 4 skizziert. Die Kanten in einem gerichteten Graphen werden
dann gerichtete Kanten oder Bögen genannt. Im Vergleich zu Kanten ist Bögen zu-
sätzlich zu den zwei Knoten auch eine Richtung zugeordnet und bestehen im Gegensatz zu
vorher aus geordneten Knotenpaaren (u∗, v∗), u∗, v∗ ∈ V ∗, u∗ 6= v∗, wobei u∗ den Anfangs-
knoten und v∗ den Endknoten des Bogens bezeichnet. (u∗, v∗) und (v∗, u∗) bezeichnen also
zwei verschiedene Bögen. Gerichtete Graphen sind nicht notwendigerweise Multigraphen.
Zwischen zwei Knoten können bei gerichteten Graphen zwei Bögen mit entgegengesetzter
Richtung bestehen.
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Abbildung 3: Beispiel eines Multigraphen
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Abbildung 4: Beispiel eines Digraphen

Zwei Knoten eines ungerichteten Graphen heißen adjazent, wenn es eine Kante gibt, die
beide Knoten miteinander verbindet. Analog dazu heißen zwei Kanten adjazent, wenn
beide über einen gemeinsamen Knoten verbunden sind. Man spricht davon, dass ein Kno-
ten inzident zu einer Kante ist, wenn der Knoten ein Endpunkt dieser Kante ist. Wenn
man für einen gegebenen Knoten v ∈ V die Menge der zugehörigen adjazenten Kno-
ten N(v) = {u ∈ V |{u, v} ∈ E} betrachtet, die auch als Nachbarschaft eines Kno-
tens bezeichnet wird, so wird die Kardinalität |N(v)| als Grad deg(v) des Knotens v be-
zeichnet. Die Anordnung der Knotengrade eines Graphen nach aufsteigender Größe nennt
man Gradfolge. Summiert man die Elemente einer solchen Gradfolge für einen Graphen
G auf, so erhält man die doppelte Anzahl der Kanten in diesem Graphen, es gilt also∑
v∈V deg(v) = 2|E|. Das lässt sich dadurch erklären, dass man den Grad eines Knotens

statt über die Anzahl der adjazenten Knoten auch über die Anzahl der angrenzenden Kan-
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ten berechnen kann. Eine Kante fließt daher immer zweimal, also einmal pro zugehörigen
Knoten, in die Gradsumme mit ein. Daraus lässt sich folgern, dass die Gradsumme für
jeden Graphen eine gerade Zahl ist. Für den Beispielgraphen in Abbildung 1 ist die resul-
tierende Gradfolge beispielsweise {1, 1, 1, 2, 2, 2, 4, 4, 5}.

Bei gerichteten Graphen betrachtet man sowohl den Eingangsgrad degin(v∗) als auch den
Ausgangsgrad degout(v∗) eines Knotens v∗ ∈ V . Der Eingangsgrad degin(v∗) gibt die An-
zahl der Bögen an, die in v∗ enden, und der Ausgangsgrad degout(v∗) beschreibt die Anzahl
der Bögen, für die v∗ der Startknoten ist. Analog zum ungerichteten Fall lässt sich auch
hier die Eingangs- undAusgangsgradfolge eines gerichteten Graphen G∗ definieren. Für
den Beispielgraphen in 4 ist die Ausgangsgradfolge dementsprechend {0, 1, 1, 1, 1, 2, 2, 3, 5}
und die Eingangsgradfolge {1, 1, 1, 1, 1, 2, 2, 3, 4}.

Auf Graphen sind verschiedene Arten von Routen definiert, je nachdem, ob man Knoten
oder Kanten mehrmals oder höchstens einmal passieren darf. Die grundlegende Route ohne
Restriktionen wird Weg genannt. Auf einem Graphen G = (V,E) wird ein Weg von ei-
nem Anfangsknoten v0 ∈ V zu einem Endknoten vl ∈ V durch eine abwechselnde Folge von
Knoten und Kanten, die durchlaufen werden beschrieben werden, (v0, e1, v1, . . . , vl−1, el, vl).
Dabei ist ei die Kante, die vi−1 und vi miteinander verbindet. Die Länge l eines Weges
ist die Anzahl der Kanten, die bei diesem Weg durchlaufen werden. Verbietet man nun
das mehrmalige Durchlaufen eines Knotens, spricht man von einem Pfad, und verbietet
man das mehrmalige Durchlaufen von Kanten, liegt ein Trail vor. Man beachte dabei,
dass zwar jeder Pfad ein Trail ist, aber nicht jeder Trail auch ein Pfad, wie in Abbildung
5 dargestellt. Da der Trail (rechts) den Knoten bmehrmals passiert, liegt hier kein Pfad vor.

e

a d

b

c

a

c

da

c

b

d

e b e

Abbildung 5: Beispiele für einen Weg, einen Pfad und einen Trail, der zugleich auch ein
Kreis ist
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Eine weitere Art von Routen in einem Graphen sind solche mit identischem Anfangs- und
Endknoten. Ein Trail mit v0 = vl nennt man einen Kreis. Ein Kreis der Länge l ≥ 3, bei
dem aber sonst alle Knoten nur einmal passiert werden, heißt Zyklus. Kommt kein Zyklus
im gesamten Graphen vor, so spricht man von einem azyklischen Graphen. Die Defini-
tionen können direkt auf den Fall von gerichteten Graphen übertragen werden, indem man
statt Kanten die Bögen des Graphen betrachtet.

Die Knoten und Kanten eines Graphen können auch mit Gewichten versehen werden. Wer-
den Kanten Gewichte zugewiesen, spricht man von Kantengewichten we, die Notation
für Knotengewichte ist analog wv. Die Länge eines Weges bei gewichteten Kanten wird
nun durch Aufsummierung der einzelnen Kantengewichte berechnet. Die Länge von unge-
wichteten Graphen ist also ein Spezialfall mit we = 1,∀e ∈ E. Gewichtete Kanten werden
in der Praxis dazu benutzt, die Länge, die Wichtigkeit oder auch die Kapazität einer Kante
darzustellen.

Oft ist es von Interesse, die Kohäsion, also den Grad der Vernetzung eines Graphen zu
betrachten. Wenn man ein Knotenpaar v und u in einem Graphen G betrachtet, nennt
man u erreichbar von v, wenn es einen Weg gibt, der von v nach u führt. Gilt, dass
jeder Knoten u von jedem beliebigen anderen Knoten v in dem Netzwerk erreichbar ist,
also ∃l ∈ N∀u ∈ V ∀v ∈ V : ∃ {v = v0, e1, . . . , el, u = vl}, so nennt man den Graphen
verbunden. Ein unverbundener Graph zerfällt in mehrere Komponenten. Komponen-
ten eines Graphen sind maximale Subgraphen, die verbunden sind. Maximal bedeutet in
diesem Zusammenhang, dass es keinen weiteren Knoten im Graphen gibt, den man zu der
Komponente hinzunehmen könnte, ohne dass die Komponente nicht mehr verbunden ist. In
Abbildung 6 ist rechts ein verbundener Graph mit der Knotenmenge {a, b, c, d, e, f, g, h, i}
und links ein unverbundener Graph, der aus zwei Komponenten besteht, zu sehen. Die
erste Komponente besteht aus der Knotenmenge {a, b, c, d, e} und die zweite Komponente
aus der Knotenmenge {f, g, h, i}.

Für gerichtete Graphen unterscheidet man zwischen zwei Arten von Vernetzung. Man nennt
einen gerichteten Graphen schwach verbunden, wenn es zwischen allen Knoten eine Ver-
bindung gibt, falls man die Richtung ignoriert, also nur den zugrundeliegenden ungerichte-
ten Graphen betrachtet. Im Gegensatz dazu heißt ein gerichteter Graph stark verbunden,
wenn jeder Knoten von jedem anderen Knoten aus unter Berücksichtigung der Richtung
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der Bögen erreichbar ist.
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Abbildung 6: Beispiele für einen verbundenen Graphen (links), sowie einen unverbundenen
Graphen mit zwei Komponenten (rechts)

Die Distanz oder auch geodätische Distanz dist(u, v) zwischen zwei Knoten u und v

in einem Graphen ist die Länge des kürzesten Pfades zwischen den beiden. Dabei muss
der kürzeste Pfad nicht eindeutig sein, es kann auch mehrere Pfade mit minimaler Länge
geben. maxu,v∈V d(u, v), also die größte Distanz in einem Graphen, wirdDurchmesser des
Graphen genannt. Auf gerichtete und gewichtete Graphen wird diese Definition entspre-
chend übertragen. Liegt ein unverbundener Graph vor, so wird für ungewichtete Graphen
entweder die Anzahl der Knoten Nv als maximal mögliche Distanz in dem Graphen oder
aber die maximale Distanz zweier Knoten in verbundenen Komponenten des Graphen an-
gegeben.

2.2 Formen von Graphen

Teile von Graphen haben oft eine besondere Struktur. Einige solcher Strukturen, die be-
sonders häufig vorkommen, sollen in diesem Unterkapitel vorgestellt werden.

In einem kompletten Graphen sind alle Knoten direkt miteinander verbunden. Für einen
Graphen ohne Kantengewichte heißt das, dass ∀u, v ∈ V : d(u, v) = 1 gilt. Ist eine Teilmen-
ge eines Graphen, also ein Subgraph, komplett, so nennt man diesen Subgraphen Clique.
Eine solche Clique nennt man maximal, wenn man keinen Knoten, der noch nicht in der
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Clique enthalten ist, zu ihr dazu nehmen kann, ohne dass der Subgraph nicht mehr kom-
plett ist. Ein Beispiel für eines kompletten Graphen ist in Abbildung 7 zu sehen.

a

b c

e

d

f

Abbildung 7: Beispiel eines kompletten Graphen

Haben alle Knoten in einem Graphen denselben Grad, so nennt man den Graphen regulär.
Haben alle Knoten in dem Graphen den Grad d, so sagt man auch der Graph ist d-regulär.
Solche d-regulären Graphen können inhaltlich so interpretiert werden, dass man von jedem
Knoten aus immer d verschiedene andere Knoten erreichen kann, also eine spezielle Git-
terstruktur in dem Netzwerk vorliegt. Ein Beispiel für einen 3-regulären Graphen ist in
Abbildung 8 dargestellt.

a

b c

e

d

f

Abbildung 8: Beispiel eines 3-regulären Graphen

Ein azyklischer, zusammenhängender Graph heißt Baum. Besteht ein Graph aus mehreren
unzusammenhängenden Subgraphen, wo jeder für sich alleine genommen ein Baum ist, so
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nennt man den Graphen einen Wald. Sind die Kanten des Graphen mit einer Richtung
versehen, so spricht man von einem gerichteten Baum. Bäume dieser Art haben oft einen
Knoten, der der einzige Knoten in dem Baum ist, von dem aus man alle anderen Knoten
erreicht und dieser Knoten heißt Wurzel. Entscheidungsbäume, wie in Abbildung 9 ge-
zeigt, sind Beispiele für Bäume mit Wurzelnknoten, die man dann gewurzelte Bäume
nennt.

Abbildung 9: Beispiel eines Entscheidungsbaums

Der Knoten u∗, von dem ein Pfad zu einem anderen Knoten v∗ führt, heißt Vorfahre von
v∗. v∗ wird dann Nachkomme von u∗ genannt. Knoten unmittelbar vor anderen Knoten
werden Eltern, Knoten unmittelbar nach anderen Knoten werden Kinder genannt. Ein
Knoten, von dem kein Bogen wegführt, der also keine Kinder hat, wird Blatt genannt. Ein
DAG ist ein gerichteter (directed), azyklischer Graph. Im Gegensatz zu einem gerichteten
Baum, enthält ein DAG einen Zyklus, wenn man die Richtung der Kanten ignoriert. Ein
solcher DAG ist in Abbildung 10 dargestellt. DAGs oder Baumstrukturen findet gerade im
Design von effizienten Berechnungsalgorithmen Anwendung.

Manche Graphen erfüllen die Eigenschaft der Bipartitheit. Bipartitheit bedeutet, dass die
Menge der Knoten V in zwei disjunkte Klassen V1 und V2 zerfällt, sodass V1 ∪V2 = V gilt,
und nur Knoten verschiedener Klassen mit einer Kante verbunden werden können. Man
könnte zum Beispiel die Vereine und Spieler in der Fußball Bundesliga als ein Netzwerk



2.2 Formen von Graphen 14

Abbildung 10: Beispiel eines DAG

darstellen, bei dem eine Kante zwischen einem Spieler-Knoten und einem Vereins-Knoten
besteht, wenn der Spieler bereits für den Verein aktiv war. Für bipartite Graphen wird oft
ein induzierter Graph G1 = (V1, E1) durch eine Knotenklasse V1 definiert, wobei zwischen
zwei Knoten aus V1 eine Kante besteht, wenn beide im ursprünglichen bipartiten Graphen
mindestens einen gemeinsamen Nachbarn in V2 hatten. Eine Skizze von einem bipartiten
Graphen und dem dazugehörigen durch die roten Knoten induzierten Graphen ist in Ab-
bildung 11 dargestellt.

a

f

b

g

c

e h
e

f g

h

Abbildung 11: Beispiel eines bipartiten Graphen (links) und der durch die roten Knoten
induzierte Graph (rechts)
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2.3 Matrixdarstellung eines Graphen

Gerade bei größeren Graphen, die graphisch nur schwer darstellbar sind, macht es Sinn, die
Struktur und die Eigenschaften eines Graphen G mithilfe von Matrizen in komprimierter
Form darzustellen.

Die wichtigste Matrix, die die grundlegenden Verbindungen in einem ungerichteten Gra-
phen wiedergibt, ist die sogenannte Adjazenzmatrix A. Dabei handelt es sich um eine
symmetrische Nv ×Nv-Matrix mit binären Einträgen. Nummeriert man die Knoten eines
Graphen mit 1 bis Nv durch, sind die Einträge der Matrix A definiert durch

Aij =

1, für {i, j} ∈ E

0, sonst

wobei {i, j} für die Kante zwischen zwei Knoten i und j steht. Wenn also eine Kante
zwischen dem i-ten und j-ten Knoten besteht, so ist der Eintrag in der i-ten Zeile und
j-ten Spalte und der Eintrag der j-ten Zeile und i-ten Spalte der Adjazenzmatrix eine 1,
ansonsten 0. Einen Beispielgraphen und die daraus resultierende Adjazenzmatrix finden
sich in Abbildung 12.

a

b

c

d

e

0   1   0   0   0
 1   0   1   1   1
 0   1   0   0   0
 0   1   0   0   1
0   1   0   1   0

Abbildung 12: Beispiel eines Netzwerks und der dazugehörigen Adjazenzmatrix

Durch diese Struktur kann man über die Adjazenzatrix noch andere Informationen über
den zugrundeliegenden Graphen extrahieren. Bildet man die Zeilensumme in der i-ten Zeile
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Ai+ = ∑Nv
j=1 Aij, so erhält man den Grad von Knoten i. Den Grad von Knoten i würde

man aufgrund der Symmetrie der Matrix auch durch die Spaltensumme der i-ten Spalte
erhalten. Bildet man die r-te Potenz der Adjazenzmatrix Ar, so erhält man in den Ein-
trägen Ar

ij die Anzahl der Walks der Länge r zwischen Knoten i und j. Es gilt außerdem,
dass G genau dann ein regulärer Graph ist, wenn der größte Grad des Graphen dmax ein
Eigenwert von A ist. Zur Eigenwertberechnung wird auf den Appendix verwiesen.

Für Digraphen wird die Definition der Adjazenzmatrix insofern abgewandelt, dass die Ein-
träge Aij der Matrix nur dann 1 sind, wenn ein Bogen von i nach j existiert. Da ein Bogen
von i nach j nicht per se auch einen Bogen von j nach i impliziert, ist die Adjazenzmatrix
für Digraphen nur noch in Sonderfällen symmetrisch. Auch sind Spalten- und Zeilensum-
me nun entsprechend anders zu interpretieren. Ai+ entspricht dem Ausgangsgrad des i-ten
Knotens deg(i)out und A+j dem Eingangsgrad des j-ten Knotens deg(j)in.

Für gewichtete Graphen kann man die Adjazenzmatrix dahingehend abwandeln, dass die
Einträge für die existierenden Kanten nicht 1 sind, sondern dem Gewicht entsprechen, wel-
ches der Kante zwischen i und j zugeordnet wurde.

Eine Abwandlung der Adjazenzmatrix ist die Inzidenzmatrix B. Hierbei handelt es sich
um eine Nv ×Ne-Matrix mit binären Einträgen

Bij =

1, wenn Knoten i inzident zu Kante j ist

0, sonst

2.4 Datenstruktur und Algorithmen

2.4.1 Datenstruktur

Die Daten eines Netzwerkgraphen können üblicherweise auf zwei grundlegende Arten re-
präsentiert werden. Die Adjazenzmatrix ist eine naheliegende Art, die Verbindungen des
Netzwerkes darzustellen, jedoch bringt sie gerade für große Netzwerke auch einige Proble-
me mit sich. Der Speicherbedarf einer solchen Matrix ist mit O(N2

v ) quadratischer Natur,
was für große Graphen einen hohen Speicherbedarf bedeutet. Insbesondere wenn die ein-
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zelnen Knoten eines solchen großen Graphen nicht eng miteinander vernetzt sind, ist der
Speicheraufwand für eine solche Adjazenzmatrix groß, obwohl die Adjazenzmatrix zum
Großteil nur Nulleinträge enthält.

Daher bietet es sich für solche Graphen an, statt der Adjazenzmatrix eine Adjazenzliste
zu betrachten. Eine Adjazenzliste ist eine Liste, in der der i-te Eintrag die Knoten aufführt,
zu denen der i-te Knoten eine direkte Kante hat. Die Länge der Einträge der Adjazenzliste
ist im einfachen Graphen 2Ne, im Digraphen Ne. Damit reduziert sich der Speicherauf-
wand zu O(Nv +Ne). Für den Fall, dass Ne ∼ Nv, reduziert sich der Speicheraufwand also,
während er für den Fall eines dichten Graphen, für den Ne ∼ N2

v gilt, ähnlich wie für die
Adjazenzmatrix ist.

Eine andere Variation der Adjazenzliste ist eine Liste der im Graphen vorkommenden Kan-
ten. Hier besteht jeder Eintrag aus einem Knotenpaar, das durch eine Kante miteinander
verbunden ist.

2.4.2 Algorithmen

Während viele Eigenschaften eines Graphen direkt aus der Datenstruktur abgelesen werden
können, erfordern andere Fragestellungen komplexere Algorithmen. Solche Fragestellungen
werden in zwei Kategorien eingeteilt. Die lösbaren Fragestellungen erfordern einen Re-
chenaufwand polynomer Ordnung O(np). Manche Fragestellungen erfordern aber einen
exponentiellen Rechenaufwand der Ordnung O(an). Gerade bei großen Graphen ist ein Al-
gorithmus mit exponentiellem Rechenaufwand, oder auch schon mit polynomialen Rechen-
aufwand bei großem p, gar nicht oder nur mit extrem großen Zeitaufwand durchführbar.

Oft wird ein Graph mittels Algorithmen nach bestimmten Strukturen, zum Beispiel Zyklen
oder maximalen Komponenten, durchsucht. Dabei startet man bei einem Anfangsknoten
und bewegt sich dann systematisch von diesem Knoten aus zu allen von hier erreichbaren
Knoten. Man unterscheidet zwischen zwei grundlegenden Suchstrategien.

Beim breadth-first-search, kurz BFS, werden ausgehend von einem Ausgangsknoten zu-
erst direkt benachbarte Knoten erforscht, dann die Knoten, die zwei Kanten entfernt sind,
usw., bis alle erreichbaren Knoten durchlaufen wurden. Ein Schema dieser Suchmethode
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Abbildung 13: Suchschema eines breadth-first-Suchalgorithmus

wird in Abbildung 13 gezeigt. Die zugrundeliegende Struktur dieses Algorithmus ist ein
Baum, bei dem der Pfad vom Anfangsknoten zu einem anderen Knoten dem kürzesten
Pfad entspricht.

Die andere Variante, einen Graphen zu durchsuchen, ist depth-first-search, kurz DFS.
Hierbei wird, wieder ausgehend von einem Anfangsknoten, zuerst über einen Nachbarkno-
ten so weit wie möglich durch den Graphen geschritten, bevor dann nach und nach die
Abzweigungen von diesem Pfad erforscht werden. Eine Skizze dieses Suchalgorithmus ist
in Abbildung 14 dargestellt.

2

4

5

1

3 6 7

Abbildung 14: Suchschema eines depth-first-Suchalgorithmus

Welcher von beiden Suchalgorithmen gegebenenfalls sinnvoller ist, hängt von der Frage-
stellung ab, nach der der Graph durchsucht wird. Der BFS-Algorithmus wird oft für die
Berechnung des kürzesten Pfade zwischen zwei Knoten benutzt, siehe auch den Algorith-
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mus von Brandes im Appendix, während der DFS sich z.B. als Teil eines komplexeren
Algorithmus zur Untersuchung, ob ein Graph azyklisch ist, bewährt hat.

2.5 Grundlegende Grapheigenschaften des Patentdatensatz

Bei dem zu untersuchenden Patentdatensatz handelt es sich um einen einfachen, ungerichte-
ten, ungewichteten und nicht-bipartiten Graphen mit Nv = 10 208 Knoten und Ne=21 976
Kanten. Der Graph ist nicht verbunden und zerfällt in mehrere Komponenten. Der Durch-
messer des Graphen beträgt 30, wobei hier beachtet werden sollte, dass diese Zahl für einen
unverbundenen Graphen dem maximalen Durchmesser einer verbundenen Komponente im
Graphen entspricht.
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3 Eigenschaften von Knoten und Kanten

In diesem Kapitel sollen nun einige Charakteristiken der Elemente eines Netzwerkgraphen
präsentiert werden. Diese Charakteristiken lassen sich in zwei Kategorien unterteilen. In
Unterkapitel 3.1 werden die Eigenschaften erläutert, die auf dem Knotengrad basieren, und
in 3.2 werden verschiedene Konzepte zur Messung der Zentralität bzw. der Wichtigkeit eines
Knotens sowie die Erweiterung auf die Wichtigkeit von Kanten vorgestellt.

3.1 Gradmaße

In einem Netzwerkgraphen G = (V,E) ist der Grad dv eines Knotens v als Anzahl der in v
inzidenten Kanten des Graphen definiert. Aufgrund dieser Definition ist der Grad der Kno-
ten ein Maß für die Vernetzung des Graphen. Hierfür betrachtet man dann die Gradfolge
{deg(v)}v∈V = {deg(1), . . . , deg(Nv)} und definiert auf dieser Grundlage verschiedene Ma-
ße. Für den Fall eines Digraphen wird anstelle des Grads jeweils der Eingangsgrad degin(v)
und der Ausgangsgrad degout(v), sowie die entsprechenden Gradfolgen {degin(v)}v∈V und
{degout(v)}v∈V betrachtet.

3.1.1 Gradverteilung

Für den Grad der einzelnen Knoten eines Netzwerkgraphen kann man nun eine Dichte-
funktion f definieren. Dabei ist fd der Anteil an Knoten v ∈ V mit Grad deg(v) = d. Die
dazugehörige Verteilungsfunktion ist gegeben durch Fd = ∑d

k=0 fk .

Gerade für große Netzwerke ist die Gradverteilung eine einfache Möglichkeit die Konnekti-
vität des Graphen zusammenzufassen. Für den Patentdatensatz ist die Gradverteilung als
Histogramm in Abbildung 15 dargestellt. Der minimale Grad des Patentnetzwerks ist 1,
der maximale Grad 56. Der Knotengrad 2 kommt mit 2147-mal am häufigsten im Daten-
satz vor. Insgesamt ist die Verteilung stark rechtsschief. Der Durchschnittsgrad liegt etwa
bei 4.3, der Mediangrad bei 3.

Plottet man die Häufigkeit der verschiedenen Grade auf einer log-log-Skala, erhält man für
den Patentdatensatz Abbildung 16. Das ist gerade bei solchen Verteilungen wie hier sinn-
voll, da zwar ein Großteil der Knoten einen geringen Grad hat, es aber auch viele einzelne
Knoten mit bedeutend größerem Grad gibt. Oft liegt eine Power-Law Komponente in der
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Abbildung 15: Knotenverteilung des Patentdatensatzes

Verteilung vor, d.h.
fd ∝ d−α, α ∈ R. (1)

Die Unbekannte in der Gleichung, die es zu schätzen gilt, ist also α. Hierzu gibt es ver-
schiedene mehr oder weniger vorteilhafte Ansätze. Logarithmiert man beide Seiten der
Gleichung (1), folgt

log(fd) ∼ C − α log(d), (2)

wobei C eine Konstante ist. Womöglich ist der intuitive Ansatz hierzu, mithilfe einer li-
nearen Regression von log(d) auf log(fd) einen Schätzer für α zu erhalten. Ein Beispiel für
die resultierende Regressionsgerade ist 16 gegeben. Die lineare Regression liefert α̂ = 2.544
und eine Anpassungsgüte von R2 = 0.907.

In der Praxis kann dieser Ansatz jedoch problematisch sein, da es wegen der hohen Knoten-
grade mit geringer Häufigkeit zu großer Ungenauigkeit der Schätzung kommen kann. Eine
Möglichkeit, dieses Problem zu umgehen, ist, statt der normalen Häufigkeit die kumulierte
Häufigkeit F (d) zu benutzen. Die kumulierte Randhäufigkeit nimmt dann folgende Form
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Abbildung 16: Knotenverteilung des Patentdatensatzes in einer log-log-Skala mit linearer
Regressionsgerade

an
F̄ (d) = 1− F (d) ∼ d−(α−1). (3)

Im Anschluss kann hier wieder ein regressionsbasierter Ansatz benutzt werden, um α zu
schätzen.

Eine weitere Variante ist die Schätzung von α über die Hill-Schätzer γ̂k

α̂k = 1 + γ̂−1
k , (4)

mit γ̂k = 1
k

k−1∑
i=0

log
(
d(Nv−i)

d(Nv−k)

)
, (5)

wobei d(1) ≤ . . . ≤ d(Nv) die geordneten Knotengrade sind. k ist dabei ein Wert, der selbst
gewählt werden muss. Die Wahl von k erfolgt, indem γ̂k für verschiedene Werte von k

geplottet wird und einen Wert für k gewählt wird, bei dem die Werte γ̂k sich stabilisiert
haben. Ein solcher Hill-Plot für das Patentnetzwerk ist in Abbildung 17 gegeben, siehe
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auch Drees et al. (2000). Es wurde ein Wert bei einem Knotengrad von 9 ausgewählt. Der
Hill-Schätzer beträgt γ̂k = 0.43. Damit ist der entsprechende Schätzer α̂ ≈ 3.33 und es gilt
F̄ (d) = 1− F (d) ∼ d−2.33.
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Abbildung 17: Hillplot für den Patentdatensatz

Eine andere interessierende Eigenschaft eines Netzwerkes kann sein, welche Knoten mit wel-
chen Knoten verbunden sind. Dazu ist die Gradfolge alleine nicht ausreichend, da sie nicht
spezifiziert, wie die einzelnen Knoten miteinander verbunden sind. Zwei Netzwerkgraphen
können dieselbe Gradfolge haben, jedoch trotzdem strukturell komplett unterschiedlich
aufgebaut sein.
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3.1.2 Gradkorrelation

Um den Zusammenhang zwischen zwei Knoten in Abhängigkeit von deren Graden genau-
er zu beschreiben, führt man ein 2-dimensionales Pendant zur Gradverteilung ein. Hierzu
betrachtet man die Häufigkeit, mit der zwei Knoten verbunden sind, von denen der eine
Knoten den Grad d1 und der andere den Grad d2 hat. Bei Digraphen ist das geordnete
Knotenpaar e = (v1, v2), das eine Kante beschreibt, klar definiert, bei ungerichteten Gra-
phen muss man die Knoten jedoch nach einer bestimmten Logik ordnen.

Eine Möglichkeit besteht darin, die Kanten e = (v1, v2) ∈ E derart zu sortieren, dass
d(v1) ≤ d(v2). Für jedes Paar d1 < d2 wird dann die Hälfte der relativen Häufigkeit zu
fd1,d2 zugeordnet und die andere Hälfte zu fd2,d1 . Für den Fall d1 = d2 wird fd1,d2 die relative
Häufigkeit komplett zugeordnet. Damit ist die so definierte Verteilung {fd,d′} symmetrisch.
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Abbildung 18: Gradkorrelation

Eine graphische Darstellung der Knoten, die miteinander verbunden sind, ist in Abbildung
18 dargestellt. Hier wurde jedem Knoten der durchschnittliche Knotengrad seiner Nachbarn
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zugeordnet. Wie hier zu sehen ist, sind Knoten mit niedrigem Grad sowohl mit anderen
Knoten mit niedrigem Grad als auch mit Knoten mit höherem Grad verbunden. Knoten hö-
heren Grades sind jedoch tendenziell auch mit anderen Knoten höheren Grades verbunden.

Aufbauend auf dieser Verteilung kann man auch die bedingte Verteilung fd′|d betrachten.
Mit dieser bedingten Verteilung wird die Wahrscheinlichkeit beschrieben, dass ein Kno-
ten mit Grad d mit einem anderen Knoten mit Grad d′ verbunden ist. Abbildungen der
Mittelwerte dieser bedingten Verteilungen

d̄(d) =
∑
d′
d′fd′|d (6)

als von d abhängige Funktion können die Art des Zusammenhangs zwischen Knoten mit
hohem und niedrigem Grad wiedergeben.

Eine andere, einfache Maßzahl für die Gradkorrelation ist die Korrelation, die durch die
gemeinsame Verteilung fd,d′ und ihren marginalen Verteilungen definiert ist. Trotz der
Definition der verschiedenen Maßzahlen für die Gradkorrelation ist es ratsam zu betrachten,
was inhaltlich für das entsprechende Netzwerk Sinn macht oder überhaupt möglich ist.

3.2 Zentralitätsmaße

Zentralitätsmaße zielen darauf ab, die “Wichtigkeit” eines Knotens in einem Netzwerk zu
quantifizieren. Es gibt verschiedene Auffassungen darüber, was die Wichtigkeit und damit
die Zentralität eines Knotens ist, und daher gibt es auch zahlreiche unterschiedliche Zentra-
litätsmaße. Im Folgenden werden die gängigsten Zentralitätsmaße vorgestellt und erläutert.

3.2.1 Gradzentralität

Ein gängiges Maß für die Zentralität eines Knotens haben wurde bereits in Kapitel 3.1
vorgestellt: den Knotengrad. Die Gradzentralität CD(v) eines gegebenen Knotens v, für
einen Graphen G = (V,E) mit Nv Knoten und Ne Kanten ist definiert als der Grad
des Knotens deg(v). Für Digraphen wird entsprechend zwischen Eingangsgradzentralität
und Ausgangszentralität unterschieden. Im Gegensatz zu anderen Zentralitätsmaßen ist
die Gradzentralität ein lokales Maß. Zur Berechnung für einen bestimmten Knoten ist nur
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die Anzahl der direkten Nachbarn relevant, der Rest des Graphen hat keinen Einfluss.

Everett and Borgatti (1999) erweitern die Definition von Gradzentralität auf Gruppen von
Knoten. Die Gradzentralität einer Gruppe ist definiert als die Anzahl von Knoten, die mit
Knoten der Gruppe verbunden sind. Ist ein Knoten mit mehreren Knoten der Gruppe ver-
bunden, wird dies trotzdem nur einmal gezählt.

3.2.2 Nähezentralität

Die grundlegende Idee der Nähezentralität ist, dass die Wichtigkeit eines Knotens dar-
über definiert ist, wie nahe er zu anderen Knoten des Netzwerkes ist. Sei G = (V,E) ein
ungerichteter Graph. Die Nähezentralität eines Knotens v ist definiert als

cCl(v) = 1∑
u∈V dist(v, u) , (7)

wobei dist(v, u) die geodätische Distanz zwischen den Knoten u und v bezeichnet. Um
die Vergleichbarkeit der Nähezentralität zwischen Graphen verschiedener Größen zu erhal-
ten, wird das Maß auf das Intervall [0, 1] normiert, indem man es mit dem Faktor Nv − 1
multipliziert. Dabei bedeutet ein Wert von 1, dass alle Knoten u ∈ V in der direkten
Nachbarschaft von v liegen. Für Knoten, die nicht miteinander verbunden sind, wird hier
meist die Anzahl der Knoten Nv als Distanz genommen.

Für die Berechnung der geodätischen Distanz zwischen zwei Knoten muss der kürzeste Weg
zwischen den Knoten gefunden werden. Um die Länge des kürzesten Wegs zwischen zwei
Knoten zu berechnen, wird der Dijkstra-Algorithmus benutzt, der im Appendix genauer
erläutert wird.

Die Definition von Nähezentralität wird kompliziert, wenn der zu untersuchende Graph
nicht verbunden ist, da die geodätische Distanz dann für ein Knotenpaar, das nicht mitein-
ander verbunden ist, den Wert∞ annimmt und cCl(v) damit 0 wird. Eine Möglichkeit, auch
für solche Graphen eine Aussage über die Nähezentralität zu treffen, besteht darin, die Nä-
hezentralität für verbundene Komponenten des Graphen separat zu berechnen. Wenn der
Graph aus einer giant component, also einer verbundenen Komponente, die einen Großteil
der Knoten in dem Graphen enthält, besteht, so beschränkt man die Analyse häufig nur
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Nv Ne Mean Minimum Maximum
Komponente 1 969 3353 0.1851 0.1172 0.2715
Komponente 2 754 3101 0.1098 0.0659 0.1591
Komponente 3 386 1085 0.0934 0.0592 0.1322
Komponente 4 325 930 0.1913 0.1020 0.2962
Komponente 5 149 548 0.2795 0.1263 0.4077
Komponente 6 125 488 0.2717 0.1981 0.4052
Komponente 7 109 403 0.3087 0.1878 0.4887

Tabelle 1: Übersicht über die Nähezentralität der größten Komponenten

auf diese giant component. Ist das nicht der Fall, so kann man die geodätische Distanz
für zwei unzusammenhängende Knoten umdefinieren. Statt dem Wert∞ kann der Distanz
zum Beispiel der Wert Nv zugeordnet, werden. Die Wahl von Nv ist damit zu begründen,
dass die maximal mögliche geodätische Distanz von zwei Knoten in einem zusammenhän-
genden Graphen Nv − 1 ist.

Für die Knoten im Patentdatensatz wird die normierte Nähezentralität betrachtet. Die
durchschnittliche Nähezentralität beträgt hier 9.988 10−5, der Knoten mit der kleinsten
Nähezentralität hat einen Wert von 9.797 10−5, der Knoten mit der höchsten Nähezentra-
lität hat einen Wert von 1.082 10−4. Ingesamt sind die Werte sehr nahe an 0. Ein Grund
dafür ist, dass der Graph unverbunden ist und daher in einzelne Komponenten zerfällt. Für
Knoten v, u aus verschiedenen Komponenten wird daher dist(v, u) = Nv = 10208 gewählt.
Um das zu umgehen, wurden minimale, maximale und durchschnittliche Nähezentralität
in den Komponenten des Patentdatensatz mit mehr als 100 Knoten in Tabelle 1 darge-
stellt. Hier ist zu sehen, dass sich für die einzelnen Komponenten wesentlich größere Werte
ergeben.

Wie schon zuvor die Gradzentralität kann auch die Definition von Nähezentralität auf
Gruppen von Knoten angewandt werden, wie von Everett and Borgatti (1999) vorgestellt.

3.2.3 Intermediationszentralität

Intermediationszentralität beschreibt, inwiefern ein Knoten auf den einzelnen Pfaden ei-
nes Graphen liegt. Knoten, die auf vielen Pfaden liegen, werden hier als wichtiger bzw.
zentraler für das Netzwerk bewertet als andere. Freeman (1977) definiert die Intermediati-
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Nv Ne Median in 10−3 Minimum Maximum
Komponente 1 969 3353 0.0000 0.0000 0.1817
Komponente 2 754 3101 0.0000 0.0000 0.5146
Komponente 3 386 1085 0.0000 0.0000 0.5152
Komponente 4 325 930 0.0000 0.0000 0.4795
Komponente 5 149 548 1.5300 0.0000 0.2151
Komponente 6 125 488 0.0164 0.0000 0.2516
Komponente 7 109 403 0.0000 0.0000 0.3827

Tabelle 2: Übersicht über die Intermediationszentralität der größten Komponenten

onszentralität eines Knotens v als

cB(v) =
∑

s 6=t6=v∈V

σ(s, t|v)
σ(s, t) , (8)

wobei σ(s, t|v) die Anzahl der kürzesten Pfade zwischen s und t, die durch v führen, ist
und σ(s, t) die Gesamtanzahl der kürzesten Pfade zwischen s und t ist. Wenn die kürzesten
Pfade zwischen zwei Knoten in einem Graphen eindeutig sind, so misst cB(v) die Anzahl
an kürzesten Pfade in G, die durch v gehen. Eine Normierung kann auch hier durch die
Division mit dem Faktor (Nv − 1)(Nv − 2)/2 erfolgen.

Um die Intermediationszentralität für alle Knoten v in G zu berechnen, muss die Länge
aller kürzesten Pfade zwischen allen Knotenpaaren bestimmt und für jeden Knoten auf-
summiert werden. Daher ist die Berechnung der Ordnung O(N3

v ) gerade für große Netz-
werke sehr aufwändig. Eine Berechnungsalternative mit geringerem Aufwand ist mit dem
Brandes-Algorithmus gegeben, der die Rechenzeit auf O(NvNe) verkürzt. Eine genauere
Beschreibung des Algorithmus ist im Appendix gegeben.

Für den Patentdatensatz wird wieder die normierte Intermediationszentralität betrachtet.
Statt des Mittelwerts der Intermediationszentralität wird hier nun der Median betrachtet,
da extreme Werte vorliegen, die den Mittelwert verzerren würden. Die minimale Interme-
diationszentralität sowie der Medianwert liegen bei 0, die maximale Intermediationszen-
tralität bei 2.797 10−3. In Tabelle 2 sind die entsprechenden Werte wieder für die sieben
größten Komponenten gegeben. Das Minimum liegt jeweils immer bei 0, der Median bis
auf Komponenten 5 und 6 ebenfalls. Die Maxima variieren zwischen 0.18 und 0.52.
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Nv Ne Median in 10−2 Minimum in 10−2 Maximum
Komponente 1 969 3353 0.00150 0.00000 1.00000
Komponente 2 754 3101 0.00003 0.00000 1.00000
Komponente 3 386 1085 0.00118 0.00000 1.00000
Komponente 4 325 930 2.15500 0.00001 1.00000
Komponente 5 149 548 10.17000 0.00002 1.00000
Komponente 6 125 488 8.59100 0.01728 1.00000
Komponente 7 109 403 8.22800 0.05720 1.00000

Tabelle 3: Übersicht über die Eigenvektorzentralität der größten Komponenten

3.2.4 Eigenvektorzentralität

Ein viertes Zentralitätsmaß misst die Wichtigkeit bzw. die Zentralität eines Knotens da-
nach, wie zentral die Nachbarn eines Knotens sind. Bonacich (1972), basierend auf Katz
(1953), definiert ein Eigenvektorzentralitätsmaß

cEi(v) = α
∑

{u,v}∈E
cEi(u), (9)

wobei cEi = (cEi(1), . . . , cEi(Nv))T die Lösung zum Eigenwertproblem AcEi = α−1cEi mit
der Adjazenzmatrix A ist. Eine Wiederholung der Berechnung von Eigenwerten und Ei-
genvektoren einer Matrix ist im Appendix gegeben. Nach Bonacich (1972) ist der größte
Eigenwert von A die optimale Wahl von α−1. Ist ein Graph G zusammenhängend und un-
gerichtet, so ist der größte Eigenwert eindeutig und der dazugehörige Eigenvektor besteht
aus Einträgen ungleich null, die alle dasselbe Vorzeichen haben.

Für den Patentdatensatz liegt das Minimum sowie der Medianwert bei 0. Die maximale
Eigenvektorzentralität eines Knoten beträgt 1. In Tabelle 3 sind die entsprechenden Werte
für die sieben größten Komponenten gegeben. Das Maximum liegt jeweils bei 1, das Mini-
mum reicht von 0 bis zu 5.72 10−4.

Die vorgestellten vier Zentralitätsmaße haben unterschiedliche Auffassungen von Wichtig-
keit von Knoten, daher können die Zentralitätsbewertungen für einzelne Knoten vonein-
ander abweichen. In Abbildung 19 sind vier Targetplots der Komponente 7 für die eben
vorgestellten Zentralitätsmaße gegeben. Der rote Knoten mit dem höchsten Wert ist in je-
dem Fall derselbe Knoten, er bekommt also von allen vier Maßen die höchste Zentralitäts-
bewertung. Dieses Ergebnis lässt sich jedoch nicht auf den gesamten Graphen ausdehnen.
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Gradzentralität Nähezentralität

Intermediationszentralität Eigenvektorzentralität

Abbildung 19: Target-Plot für die vier Zentralitätsmaße.

3.2.5 Erweiterung auf Kantenzentralität

Alle bisher vorgestellten Maße haben gemeinsam, dass sie die Zentralität von Knoten be-
trachtet. Es gibt jedoch auch Zentralitätsmaße, die statt auf Knoten auf Kanten angewandt
werden können, wie zum Beispiel die Intermediationszentralität. Statt den Anteilen der
kürzesten Pfade, die durch einen Knoten v gehen, werden hier die Anteile der kürzesten
Pfade, die durch eine Kante e = (u, v), u, v/inV gehen, betrachtet, siehe Girvan and New-
man (Girvan and Newman).

Andere Zentralitätsmaße sind nicht direkt auf Kanten übertragbar. Um solche Maße trotz-
dem anwenden zu können, wird der duale GraphG′′ = (V ′′, E ′′) eines GraphenG = (V,E)
verwendet. Bei einem dualen Graphen werden Kanten und Knoten gewissermaßen ver-
tauscht. Das heißt, dass die Knoten v′′ ∈ V ′′ die Kanten e ∈ E darstellen. Die Kanten
e′′ ∈ E ′′ stehen dafür, dass die beiden dazugehörigen Kanten im ursprünglichen Graphen
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G inzident in einem gemeinsamen Knoten sind, siehe Brandes and Erlebach (2005). Ein
Beispiel für einen Graphen und den dazugehörigen dualen Graphen ist in Abbildung 20
gegeben.

a

c

d f

e

    b

b

c

a d

f

e

Abbildung 20: links: Beispielgraph mit Kanten a, b, c, d, e, f; rechts: dazugehöriger dualer
Graph
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4 Netzwerkkohäsion

Während in Kapitel 3 Netzwerkcharakteristika basierend auf den Knoten präsentiert wur-
den, soll nun der Zusammenhang des Netzwerks genauer untersucht werden. Wieder gibt
es verschiedene Maße für den Zusammenhalt eines Netzwerkes, die auf unterschiedliche
Fragestellungen eine Antwort geben sollen. Wie schon bei den Zentralitätsmaßen gibt es
auch hier lokale und globale Herangehensweisen.

4.1 Lokale Dichte

Oft ist es von Interesse, ob eine Teilmenge der Knoten lokal dicht beieinander liegt. Das
klassische Beispiel für solche eng-vernetzten Knoten ist die Clique, also eine Teilmenge von
Knoten, bei der jeder Knoten ein direkter Nachbar des anderen ist. Je größer eine Clique
ist, desto seltener kommt sie in der Praxis vor, da das Netzwerk dazu sehr dicht vernetzt
sein muss. Turán (1941) hat gezeigt, dass es für die Existenz einer n-Clique in einem Gra-
phen hinreichend ist, wenn Ne > (N2

v /2)[(n− 2)/(n− 1)] gilt. Jedoch ist diese Bedingung
in der Praxis gerade für größere n selten erfüllt, da Ne und Nv oft von ähnlicher Ordnung
sind. Für den Patentdatensatz ist diese Bedingung bereits für Cliquen der Ordnung n = 3
nicht erfüllt. Dabei ist darauf hinzuweisen, dass trotzdem Cliquen der Ordnung n = 3
oder höher im Patentdatensatz bestehen können. Die Cliquenzahl ω(G) gibt die Anzahl
der Knoten in der maximalen Clique von G an. Für den Patentdatensatz ergibt sich eine
Cliquenzahl von ω(G) = 16.

a

b c

e

d

f

a

b c

e

d

f

Abbildung 21: links: Beispiel eines 3-Cores; rechts: Beispiel eines 3-Plex

Eine andere, weniger restriktive Art als Cliquen, Netzwerkkohäsion zu messen, sind Plexe.
Ein n-Plex ist ein Subgraph, der aus m Knoten besteht, wobei m > n gilt, und in dem
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kein Knoten einen geringeren Grad als m − n hat. Wenn kein Knoten einen geringeren
Grad als m−n hat, darf jeder Knoten mit maximal n−1 anderen Knoten nicht verbunden
sein. Da in einer Clique jeder Knoten den Grad m− 1 hat, ist jede Clique auch ein 1-Plex.

In der Praxis hat es sich jedoch als sehr aufwändig erwiesen, maximale Cliquen oder Plexe
zu finden. Eine weitere Lockerung der Anforderungen an eine lokale Struktur führt zu
Cores. Ein k-Core ist ein Subgraph, in dem jeder Knoten mindestens den Grad k hat, und
von dem es keine Obermenge mit dieser Eigenschaft gibt, der diesen Subgraphen enthält.
In Abbildung 21 ist ein Beispiel für einen 3-Core und einen 3-Plex gegeben. Ein maximaler
Core kann inO(Nv+Ne) berechnet werden, verglichen mitO(N2,376

v ) für maximale Cliquen.
Ein Targetplot der Cores in Komponente 7 ist in Abbildung 22 gegeben. Die schwarzen
Kreise am äußersten Rand stehen für 1-Cores, die roten Kreise für 2-Cores, usw.. Die
maximalen Cores sind 8-Cores, von denen es 9 in der Komponente gibt und die durch die
grauen Kreise in der Mitte des Targetplots dargestellt werden.

Abbildung 22: Targetplot der Cores in Komponente 7
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Die Maße, die wir bis jetzt kennengelernt haben, basieren alle darauf, dass man im Graphen
nach vordefinierten Strukturen sucht. Alternativ kann man Maße für die lokale Dichte eines
Graphen definieren, indem man die Anzahl der Kanten mit der Anzahl der möglichen
Kanten vergleicht. So folgt für die Dichte eines Subgraphen H = (VH , EH)

den(H) = |EH |
|VH |(|VH | − 1)/2 . (10)

Die Dichte ist auf das Intervall [0, 1] normiert und sagt aus, wie sehr der Subgraph einer
Clique ähnelt. Ist die Dichte 1, so existieren in dem Subgraph alle möglichen Kanten und es
liegt eine Clique vor. Wählt manH = G, so erhält man ein Maß für die Dichte des gesamten
Graphen. Für den Patentdatensatz ergibt sich hier eine Dichte von den(G) = 4.2183 10−4.

Eine andere Herangehensweise, den gesamten Graphen zu beschreiben, wurde von Watts
and Strogatz (1998) beschrieben und liegt in der Berechnung der Dichte für die Nach-
barschaft N(v) eines jeden Knotens v. Bildet man dann das arithmetische Mittel über
den(N(v)) für alle Knoten v ∈ VH , so kann man das Ergebnis als einen Clusterkoeffizien-
ten für den gesamten Graphen G betrachten.

a

b

c

a

b

c

Abbildung 23: Links: 2-Star, Rechts: Triangle

Eine weitere Möglichkeit, den Grad der Clusterbildung in dem Graphen zu beschreiben ist,
wie häufig 2-Stars, also drei Knoten, die durch zwei Edges verbunden sind, zu Triangles,
also einer 3er-Clique, werden, wie in Abbildung 23 dargestellt. Sei dazu τ∆(v) die Anzahl
der Triangles, zu denen ein Knoten v gehört, und τ3(v) die Anzahl an 2-Stars, zu denen
v gehört. τ3(v) lässt sich als

(
n
dv

)
berechnen. Der Clusterkoeffizient nach Watz Strogatz
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den(Hv) lässt sich damit für Knoten v mit τ∆(v) > 0 umschreiben zu

den(Hv) = cl(v) = τ∆(v)
τ3(v) . (11)

Analog wird dann der Clusterkoeffizient für ganz G geschrieben als

cl(G) = 1
V ′

∑
v∈V ′

cl(v), (12)

wobei V ′ ⊂ V die Menge an Knoten beschreibt, für die dv ≥ 2 gilt.

Da der Clusterkoeffizient in Gleichung (12) jedoch ein Mittelwert über die Mittelwerte
cl(v) ist, kann es informativer sein, stattdessen das gewichtete Mittel

∑
v∈V ′ τ3(v)cl(v)∑

v∈V ′ τ3(v) (13)

zu betrachten. Das kann umgeschrieben werden zu

clT (G) = 3τ∆(G)
τ3(G) , (14)

wobei τ∆(G) = 1/3∑v∈V τ∆(v) der Anzahl von Triangles im Graphen und τ3(G) = ∑
v∈V τ3(v)

der Anzahl von 2-Stars entspricht. Die Kennzahl clT (G) in Gleichung (14) wird auch Tran-
sitivität eines Graphen genannt. Sie beschreibt, in welchem Anteil von Fällen die Knoten
der 2-Stars auch ein Triangle bilden.

Da sich die beiden Clusterkoeffizienten cl und clT zwar oft ähnlich verhalten, es aber Ex-
tremfälle gibt, in denen beide stark voneinander abweichen, ist es wichtig, immer genau
anzugeben, welcher von beiden Koeffizienten benutzt wird.

Im Patentdatensatz liegen 30 055 Triangles und 157 398 2-Stars vor. Damit ergibt sich für
den Clusterkoeffizienten clT (G) = 0.5728. Während die beiden vorgestellten Clusterkoeffi-
zienten auf der Basis von Triangles, also 3-Cycles, berechnet werden, können solche Clus-
terkoeffizienten auch für Cycles mit höherem k berechnet werden, siehe Newman (2010)
oder Fronczak et al. (2002).
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Knotenanzahl 2 3 4 5 6 7 8 9 10 11 12 13 14
Häufigkeit 722 433 236 104 60 33 30 33 17 18 11 6 4
Knotenanzahl 15 16 17 18 19 20 21 22 24 26 27 28 29
Häufigkeit 6 3 6 2 3 2 2 1 2 1 1 1 2
Knotenanzahl 30 31 32 33 34 45 49 55 60 78 80 82 95
Häufigkeit 1 1 1 1 1 2 2 1 1 1 1 1 1
Knotenanzahl 109 125 149 325 386 754 969
Häufigkeit 1 1 1 1 1 1 1

Tabelle 4: Übersicht über die Komponenten des Patentdatensatz

4.2 Konnektivität

Während im vorhergehenden Unterkapitel in erster Linie nach zusammenhängenden Un-
terstrukturen geringer Größe gesucht wurde, soll nun untersucht werden, wie der Graph
vernetzt ist, und, falls es sich um ein unverbundenes Netzwerk handelt, wie der Graph in
verbundene Komponenten zerfällt.

4.2.1 Verbundene Komponenten und “Small Worlds”

Eine verbundene Komponente eines Graphen ist ein möglichst großer verbundener Sub-
graph. Ein Graph, der nicht verbunden ist, lässt sich in einzelne verbundene Komponenten
unterteilen. Ob ein Graph verbunden ist, oder nicht, sowie seine Unterteilung in verbun-
dene Komponenten lässt sich mit BFS oder DFS-Algorithmen in O(Nv + Ne) Rechenzeit
herausfinden.

Bei nicht-verbundenen Graphen gibt es häufig eine giant component. Eine giant compo-
nent ist ein verbundener Subgraph, der den Großteil der Knoten des Graphen enthält. In
solchen Fällen werden dann die weiteren Analysen nur auf die giant component angewandt.

Für den Patentdatensatz ist in Tabelle 4 eine Übersicht der einzelnen maximalen Kompo-
nenten gegeben. Da die größte Komponente mit 969 Knoten nicht einmal 10% der Knoten
umfasst, kann hier nicht von einer giant component gesprochen werden. Besonders die hohe
Anzahl an kleinen Komponenten ist auffällig. Über 40% der Knoten entfallen auf Kompo-
nenten mit 5 oder weniger Knoten.

Zusammenhängende Graphen oder giant components weisen zudem manchmal die “small-
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world”-Eigenschaft auf. Die erste Idee dazu kam von Milgram (1967), der behauptet hat,
dass jeder Mensch durchschnittlich über nur sechs Bekannte mit jedem anderen Men-
schen auf der Erde verbunden ist. Generell beschreibt das “small-world”-Phänomen die
Eigenschaft von großen Netzwerken, bei denen die durchschnittliche Distanz zwischen zwei
Knoten im Vergleich zu ihrer Größe relativ klein ist. Formal ausgedrückt gilt, dass ein
Netzwerkgraph diese Eigenschaft erfüllt, wenn

l̄ = 1
Nv(Nv + 1)/2

∑
u6=v∈V

dist(u, v) (15)

kleiner gleich O(logNv) ist. Watts and Strogatz (1998) haben beobachtet, dass eine geringe
durchschnittliche Distanz in dem Graphen mit einem hohen Clusterkoeffizienten einher-
geht.

Eine andere interessante Fragestellung hinsichtlich Konnektivität ist, wieviel Einfluss ein-
zelne Knoten oder Kanten eines Netzwerkes auf die Konnektivität eines Netzwerkgraphen
haben. In Abbildung 24 ist ein Spezialfall zu sehen, bei dem der rote Knoten die einzige
Verbindung zwischen dem linken und dem rechten Teil des Graphen ist. Würde man diesen
Knoten entfernen, wäre der Graph nicht mehr verbunden.

Abbildung 24: Beispiel eines 1-Knoten verbundenen Graphen

Ein Graph ist k-Knoten-verbunden, wenn die zwei folgenden Bedingungen erfüllt sind:

1. Nv > k

2. Wenn man weniger als k Knoten des Graphen entfernt, ist der überbleibende Graph
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verbunden.

Dieselbe Definition lässt sich auch auf Kanten eines Graphen beziehen. Ein Graph ist dem-
nach k-Kanten-verbunden, wenn der Graph mindestens Ne = 2 Kanten hat und das
Entfernen von weniger als k < Ne Kanten den Graphen verbunden lässt.

Basierend auf dieser Definition ist die Knoten/Kanten-Konnektivität durch den größ-
ten ganzzahligen Wert k gegeben, für den der Graph k-Knoten/Kanten-verbunden ist. Die
Knoten-Konnektivität ist nach oben durch die Kanten-Konnektivität beschränkt, während
die Kanten-Konnektivität wiederum durch den geringsten Knotengrad min deg(v) im Gra-
phen nach oben beschränkt ist.

Die sieben größten Komponenten des Patentdatensatz haben alle eine Knoten- und Kanten-
Konnektivität von 1. Das heißt, schon das Entfernen von einem bestimmten Knoten oder
einer bestimmten Kanten würde die Komponenten in mehrere Subkomponenten zerfallen
lassen.

Ein direktes Kriterium, wann ein Graph k-Knoten/Kanten-verbunden ist, liefert das Theo-
rem von Menger. Es besagt, dass ein nichttrivialer Graph genau dann k-Knoten/Kanten-
verbunden ist, wenn alle nicht-adjazenten Knoten u, v ∈ V, u 6= v über einen Pfad mit k
unterschiedlichen Knoten/Kanten erreicht werden können.

Eine Menge von Knoten oder Kanten, ohne die der Graph unverbunden ist, nennt man
Knoten/Kanten-Cut. Meist ist man daran interessiert, herauszufinden, was der kleinst-
möglichste Knoten/Kanten-Cut ist. Muss nur ein wohlgewählter Knoten aus dem Graphen
entfernt werden, um ihn in Subkomponenten zerfallen zu lassen, nennt man einen solchen
Knoten Cut-Knoten. Solche Cuts lassen sich genauer beschreiben. So ist ein u-v-Cut eine
Partition der Knoten in zwei unverbundene, nichtleere Knotenmengen S, S̄ ⊂ V , bei der
Knoten u ∈ S und Knoten v ∈ S̄. Liegen an den Kanten zusätzlich Gewichte we vor, so
nennt man einen solchen u-v-Cut minimal, wenn die Summe der Gewichte an Kanten, die
Knoten in S mit Knoten in S̄ verknüpfen, minimal ist. Sind alle Kanten mit we = 1 gewich-
tet, so ist es äquivalent, den minimalen u-v-Cut oder den Kanten-Cut mit der geringsten
Anzahl an Kanten zu finden, der den Graphen in zwei Komponenten teilt, wobei u ein
Teil der ersten und v ein Teil der zweiten Komponente ist. Wenn die geringste Mächtigkeit
solcher minimaler Kanten-Cut Mengen für Knoten u, v ∈ V, u 6= v gleich k ist, so ist die
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Nv Anzahl an Cut-Knoten relativer Anteil an Cut-Knoten
Komponente 1 969 87 0.0898
Komponente 2 754 76 0.1008
Komponente 3 386 63 0.1633
Komponente 4 325 39 0.1200
Komponente 5 149 13 0.0872
Komponente 6 125 11 0.0880
Komponente 7 109 10 0.0917

Tabelle 5: Übersicht über Anzahl und Anteil der Knoten, die durch ihr Entfernen die
Komponente in Subkomponenten zerfallen lassen in den größten Komponenten

Kanten-Konnektivität des Graphen k − 1.

Betrachtet man einen Digraphen statt eines ungerichteten Graphen lassen sich die zu-
vor präsentierten Konzepte anpassen. Da man bei der Verbundenheit von Digraphen zwi-
schen schwach und stark verbunden unterscheidet, wird auch bei der Definition von k-
Knoten- und k-Kanten-verbunden zwischen schwach und stark unterschieden. Ein Digraph
ist schwach k-Knoten/Kanten-verbunden, wenn die Bedingungen für einfache Graphen für
das zugrundeliegende Netzwerk ohne Richtung erfüllt ist. Sind die Bedingungen sogar er-
füllt, wenn man die Richtungen der Kanten berücksichtigt, so ist er stark k-Knoten/Kanten-
verbunden. Die Definition für Cuts bleibt unverändert, bis auf dass man nun die Richtung
der Kanten berücksichtigt. Daher wird nun bei einem cut (S, S̄) eine der Mengen, z.B. S
als Source und S̄ als Sink bezeichnet, um die Richtung der Bewegung von S zu S̄ wie-
derzugeben.

Da für die sieben größten Komponenten des Patentdatensatz schon das Entfernen von ei-
nem ausgewählten Knoten zum Zerfallen führt, wurde nun zudem in Tabelle 5 betrachtet,
wieviele Knoten diese Eigenschaft besitzen. Komponente 3 scheint am instabilsten zu sein.
Der Anteil an Cut-Knoten ist hier mit ca. 16% fast doppelt so hoch wie in Komponenten
1, 5 oder 6.

4.3 Graphenpartitionierung

Oft macht es Sinn, einen Graphen zu partitionieren. Eine Partition einer Menge S ist
ganz allgemein eine Unterteilung der Menge in disjunkte, nichtleere Untermengen C =
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(C1, . . . , CK) von S, sodass gilt ⋃̇Kk=1Ck = S. Bei Netzwerkgraphen wird eine Partition
vorgenommen, um zusammenhängende Cluster von Knoten im Netzwerk zu finden. Das
Ziel einer Partitionierung ist also, die Knoten zu Untermengen zusammenzufassen, die in
sich eine besonders hohe Kohäsion aufweisen. Dabei wird eine Untermenge als besonders
kohäsiv angesehen, wenn die enthaltenen Knoten unter sich stark vernetzt und gleichzeitig
von den anderen Knoten des Netzwerks relativ gut getrennt sind.

Die Menge der Kanten, die die Knoten aus zwei beliebigen Mengen Ck, Cl ∈ C, k 6= l

verbinden, sei E(Ck, Cl). E(Ck) sei analog die Menge der Kanten, die Knoten innerhalb
der Menge Ck miteinander verbinden. Formal ausgedrückt sucht man für gegebenen Gra-
phen G = (V,E) nach einer Partition C = (C1, . . . , CK) der Menge der Knoten V , sodass
E(Ck, Cl) im Vergleich zu E(Ck) und E(Cl) klein ist. Zwei Methoden der Graphenparti-
tionierung werden im Folgenden genauer vorgestellt.

4.3.1 Hierarchisches Clustering

Hierarchisches Clustering ist ein generelles Konzept, aus dem viele andere Partitionierungs-
techniken abgeleitet wurden, die sich hinsichtlich ihrer Clusterkriterien und zugrundeliegen-
den Optimierungsalgorithmen unterscheiden. Man unterscheidet zwischen agglomerativen
und divisiven Verfahren. Agglomerative Verfahren gehen zunächst von jedem Knoten
einzeln aus, um eng verbundene Knoten nach und nach in Cluster zusammenzufassen,
während divisive Verfahren von der Gesamtmenge der Knoten V ausgehen, um diese
nach und nach in möglichst weit entfernte Cluster zu unterteilen.

Beide Arten von Verfahren gibt es mit verschiedenen Feinheiten der Endpartition, von
dem Extremfall, in dem jeder Knoten für sich alleine einen Cluster bildet, also die Parti-
tion C = {{v1}, . . . , {vNv}}, bis hin zu dem anderen Extrem, in dem das Netzwerk nicht
unterteilt ist. Um die Cluster auf den verschiedenen Ebenen graphisch darzustellen, wird
im Allgemeinen auf ein Dendrogramm zurückgegriffen, wie in Abbildung 25 dargestellt.

Sowohl für agglomerative als auch für divisive Verfahren muss man vorher Kohäsion quanti-
fizieren. Dafür gibt es verschiedene Maße, die zumeist darauf basieren, die (Un-)Ähnlichkeit
xij zwischen zwei Knoten vi, vj ∈ V oder auch zwischen zwei Knotenmengen Ci und Cj

mit i 6= j zu beschreiben. Zwei übliche Ansätze, um die Ähnlichkeit von Knotenmengen
zu beschreiben, sind das single-linkage und das complete-linkage Verfahren. Das single-
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Abbildung 25: Beispiel eines Dendogramms

linkage Verfahren definiert die Unähnlichkeit bzw. den Abstand Dsingle−linkage(C1, C2) für
zwei Knotenmengen C1 und C2 als das Minimum über alle xij, für die vi ∈ C1 und vj ∈ C2

ist, also
Dsingle−linkage(C1, C2) = min

vi∈C1,vj∈C2
xij. (16)

Das complete-linkage Verfahren hingegen definiert die Unähnlichkeit zwischen Mengen
C1 und C2 als

Dcomplete−linkage(C1, C2) = max
vi∈C1,vj∈C2

xij. (17)

Auch für die Unähnlichkeit xij zwischen zwei Knoten selbst gibt es verschiedene Maße. Die
”Euklidische Distanz” Unähnlichkeit beispielsweise ist definiert als

xij =
√∑
k 6=i,j

(Aik − Ajk)2, (18)

woebei A die Adjazenzmatrix des Graphen ist. Diese Unähnlichkeit misst die euklidische
Distanz zwischen den Zeilen i und j.

Jedoch benutzen nicht alle hierarchischen Clustermethoden ein Unähnlichkeitsmaß für
Knoten. So optimiert Newman (2010) stattdessen die sogenannte Modularität einer Parti-
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tion. Die Modularität mod (C) einer Partition C = (C1, . . . , CK) ist gegeben durch

mod (C) =
K∑
k=1

[fkk(C)− f ∗kk(C)]2, (19)

wobei fkk(C) der Anteil der Kanten E ist, der Knoten aus Ck miteinander verbindet, und
f ∗kk der erwarteten Anteil der Kanten ist, die bei einer zufälligen Kantenzuweisung Knoten
aus Ck miteinander verbinden würden. Häufig wird f ∗kk als fk+f+k definiert, also als Pro-
dukt der k-ten Zeilen- und Spaltensumme der Matrix K = (fij). Große Modularitätswerte
deuten darauf hin, dass die Vernetzung innerhalb der einzelnen Mengen aus der Partition C
über die zufällige Vernetzung hinausgehen, und weisen damit auf eine Gruppenstruktur hin.

Der Vorteil an dieser Herangehensweise ist, dass ein einziges Qualitätsmaß auf alle mög-
lichen Partitionen angewandt und damit nicht nur eine Hierarchie erstellt wird, sondern
direkt auch die optimale Partition in dieser Hierarchie ausgewählt wird.

Für Komponente 7 des Patentdatensatzes ist in Abbildung 26 eine Partitionierung durch
hierarchisches agglomeratives Clustering mithilfe der Optimierung der Modularität darge-
stellt. Das dazugehörige Dendogramm wird aus Gründen der Übersichtlichkeit nicht abge-
bildet.

4.3.2 Spektralpartitionierung

Eine andere Herangehensweise zur Partitionierung von Netzwerkgraphen ist die Spektral-
partitionierung. Sie benutzt die Eigenwertanalyse von Graphmatrizen, um Rückschlüsse
auf die Konnektivität des Graphen zu ziehen. Die zwei gängigsten Methoden basieren auf
der Adjazenz- und der Laplace-Matrix eines Graphen G.

Für die erste Methode wird zunächst eine Spektralanalyse der Adjazenzmatrix durchge-
führt. Hierbei werden die (maximal) Nv Eigenwerte sowie die dazugehörigen Eigenvektoren
bestimmt. Für die genaue Berechnung wird auf den Appendix verwiesen. Die resultieren-
den, nach der Größe geordneten Eigenwerte λ1 ≤ · · · ≤ λNv sowie die dazugehörigen
Eigenvektoren x1, . . . , xNv erfüllen dann die Gleichung

Axi = λixi. (20)
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Abbildung 26: Partitionierung von Komponente 7 durch hierarchisches agglomeratives
Clustering mithilfe der Optimierung der Modularität

Dann wird zuerst der betragsmäßig größte Eigenwert betrachtet und dessen Eigenvektor-
Einträge ebenfalls der Größe nach geordnet. Die Knoten mit besonders großen negativen
oder positiven Einträgen in diesem Eigenvektor, sowie ihre direkte Nachbarschaft, wird
dann zu einem Cluster zusammengefasst. In der Praxis werden so normalerweise nur die
K größten Eigenwert-Eigenvektorpaare untersucht, wobei K ∼ logNv.

Die Idee hinter dieser Herangehensweise ist folgende: Wenn ein Graph eigentlich aus zwei
d-regulären Graphen besteht, die nur durch wenige Knoten miteinander verbunden sind,
so werden die zwei größten Eigenwerte der Matrix ähnlich groß wie d sein und die an-
deren Eigenwerte der Adjazenzmatrix werden deutlich geringer sein. Es wird also einen
deutlichen Unterschied zwischen dem zweit- und dem drittgrößten Eigenwert geben. Die
dazugehörigen beiden Eigenvektoren werden zudem für Knoten des einen Clusters stark
positive Werte und für die Knoten des anderen Clusters stark negative Werte aufweisen.

Das Problem dieser Methode liegt in der Idee selbst. Oft sind die Cluster, in die ein Graph
unterteilt werden soll, deutlich nicht regulär, sondern es liegt in dem Graphen eine starke
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Streuung der Knotengrade vor. Als Resultat wird die resultierende Partition eine Trennung
nach Knotengrad sein, die die zugrundeliegende Gruppenstruktur oft nicht erfasst. Eine
Lösung, die Gkantsidis et al. (2003) vorgeschlagen haben, umfasst eine Umformung der
Adjazenzmatrix, sodass die Zeilensummen alle 1 sind.

Eine andere Methode basiert auf der Spektralanalyse der Laplace-Matrix

L = D−A, (21)

wobei A die Adjazenzmatrix ist und D = diag[(dv)]. Laut Kolaczyk (2009) besteht ein
Graph G genau dann aus K verbundenen Komponenten wenn gilt

λ1(L) = . . . = λK(L) = 0 (22)

und
λK+1(L) > 0. (23)

Der kleinste Eigenwert der Laplace-Matrix L ist immer gleich 0 und hat den dazugehöri-
gen Eigenvektor x1 = (1, . . . , 1)T . Wenn also vermutet wird, dass der Graph G annähern
aus K = 2 Komponenten besteht, würde man nach obiger Aussage erwarten, dass auch
λ2(L) ≈ 0.

Da eine Bisektion, also eine Partition des Graphen in zwei Teile, oft von Interesse ist,
wird in diesen Fällen der isoperimetrische Wert eines Graphen betrachtet. φ(S, S̄) =
|E(S, S̄)|/|S| ist der Anteil des Cuts (S, S̄). Um eine möglichst gute Bisektion des Graphen
zu erreichen, muss man eine derartige Menge S finden, wo der Anteil der Kanten, die
Knoten aus S und S̄ verbinden, möglichst klein ist. Der isoperimetrische Wert ist daher
definiert als

φ(G) = min
S⊂V :|S|≤Nv/2

φ(S, S̄). (24)

Die Minimierung der Anteile ist rechnerisch sehr aufwändig, jedoch kann man untere und
obere Schranken für den isoperimetrischen Wert angeben:

λ2

2 ≤ φ(G) ≤
√
λ2(2dmax − λ2), (25)

wobei dmax den höchsten Grad in G und λ2 der zweitgrößte Eigenwert der Laplace-Matrix
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ist. Nimmt λ2 also kleine Werte an, so wird auch φ(G) klein.

Nach Fiedler (1973) wird eine Bisektion nun vorgenommen, indem man den zu λ2 gehörigen
Eigenvektor x2 betrachtet. Die Knoten, für die der Eigenvektor positive Einträge hat,
werden der einen Knotenmenge zugeordnet:

S = {v ∈ V : x2(v) ≥ 0}. (26)

Die Knoten, für die der Eigenvektor negative Einträge hat, werden S̄ zugeordnet:

S̄ = {v ∈ V : x2(v) < 0}. (27)

Der Eigenwert λ2 wird auch Fiedler-Wert und der dazugehörige Eigenvektor x2 Fiedler-
Vektor gennant. Eine solche Spektralbisektion wird daher als Approximation genutzt, um
den besten Cut für φ(G) zu erhalten.

Oftmals soll ein Graph in mehr als zwei Partitionen unterteilt werden. Eine Herangehens-
weise ist hier, die oben vorgestellte Bisektion als iteratives Verfahren an den erhaltenen
Partitionen nochmals durchzuführen. Eine Verbesserung dieses Verfahren schlägt Newman
(2006) vor. Hierbei wird statt der Laplacematrix die Modularitätsmatrix B mit den Ein-
trägen

Bij = Aij −
deg(i)deg(j)

Ne

(28)

optimiert.

Das Resultat einer solchen Spektralpartition von Komponente 7 ist in Abbildung 27 ab-
gebildet. Dabei werden Knoten zwar verglichen mit der hierarchischen Partitionierung in
Abbildung 26 oft in ähnliche Gruppen zusammengefasst, jedoch bildet die Spektralpartitio-
nierung nur 6 Gruppen, während die hierarchische Partitionierung in 8 Clustern resultiert.

Das Problem bei den vorgestellten Methoden zur Spektralpartition ist, dass eine Eigen-
wertzerlegung für große Graphen relativ aufwändig ist. Der Rechenaufwand verringert sich
jedoch für Graphen mit wenigen Kanten und auch bei einer Bisektion, wenn der Abstand
zwischen zweitgrößtem und drittgrößtem Eigenwert groß ist.
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Abbildung 27: Partitionierung von Komponente 7 durch Spektralpartitionierung mithilfe
der Optimierung der Modularität

4.4 Assortativity & Mixing

Im vorangegangen Kapitel wurde nach einer Clusterstruktur von ähnlichen Knoten im
Netzwerkgraphen gesucht. Oft haben ähnliche Knoten auch ähnliche Eigenschaften oder
Attribute, die jedoch latent sind. Graphenpartitionen sind in solchen Fällen daher sehr
nützlich, um die Knoten trotzdem Clustern zuordnen zu können.

Sind diese Knoteneigenschaften nicht latent, sondern bekannt, kann man mit einigen Kenn-
zahlen quantifizieren, inwiefern eine Eigenschaft auf die Partition einen Einfluss hat. Haben
diese Eigenschaften einen Einfluss auf die Vernetzung zwischen den Knoten, so spricht man
von assortativem Mixing. Um nun den Einfluss dieser Eigenschaften zu quantifizieren,
kann man diverse Assortativitäts-Koeffizienten berechnen. Einige dieser Maßzahlen, die im
Grunde auf dem Konzept der Korrelation basieren, sollen nun vorgestellt werden.

Das Knoten-Merkmal, das für die Assortativität betrachtet wird, kann sowohl kategorial,
ordinal als auch metrisch sein. Angenommen, das betrachtete Merkmal sei kategorial und
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hat M verschiedene Kategorien. Für jeden Knoten im Graphen sei die Merkmalsausprä-
gung, also die Kategorie, bekannt. Sei F eine Matrix, deren Einträge fij der relative Anteil
an Kanten im Graphen ist, die Knoten der i-ten Kategorie mit Knoten der j-ten Kategorie
verbinden. fi+ sei dann die i-te Zeilensumme und f+j die j-te Spaltensumme. Dann ist der
Assortativititäts-Koeffizient ra definiert als

ra =
∑
i fii −

∑
i fi+f+i

1−∑i fi+f+i
. (29)

Wenn der Anteil der Verbindungen innerhalb einer Kategorie sich nicht von dem erwarteten
Wert der Verbindungen bei zufälliger Kantenanordnung unterscheidet, so ist der Zähler und
damit ra Null. Analog ist der Koeffizient gleich 1, wenn nur Knoten derselben Kategorie
miteinander verbunden sind, da dann ∑i fii = 1 gilt. Wenn die Kantenanordnung perfekt
disassortativ ist, also nur Kanten zwischen Knoten unterschiedlicher Kategorie bestehen
und ∑i fii = 0 ist, erreicht der Koeffizient seinen minimalen Wert von

rmin
a = −

∑
i fi+f+i

1−∑i fi+f+i
. (30)

Der Wertebereich des Koeffizienten ist also das Intervall (−1, 1], wobei darauf hingewiesen
wird, dass man die untere Grenze von −1 selbst bei perfekten dissortativem Verhalten der
Kanten nicht erreicht.

Liegt statt eines kategorialen ein ordinales oder metrisches Merkmal vor, wird ein anderer
Assortativititäts-Koeffizient benutzt. Seien (xe, ye) die Merkmalsausprägungen der Kno-
ten, die durch eine Kante e ∈ E verbunden sind. Um die Assortativität im Graphen zu
beschreiben, wird nun der Pearson-Korrelationskoeffizient des Paares (xe, ye)

r =
∑
x,y xy(fxy − fx+f+y)

σxσy
(31)

benutzt. Die Summe wird über alle beobachteten Merkmalsausprägungskombinationen
(x, y) gebildet und fxy, fx+, f+y sind analog wie im kategorialen Fall definiert. σx und
σy entsprechen den Standardabweichungen der Verteilungen der Häufigkeiten {fx+} und
{fy+}.

Diese Methoden lassen sich nur auf Netzwerke anwenden, bei denen weitere Informationen
zu Eigenschaften und Attributen der Akteure in dem Netzwerk vorliegen. Im Patentnetz-
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werk ist das nicht der Fall. Würden weitere Informationen jedoch vorliegen, wäre es auch
hier von Interesse, die Clusterstruktur vor dem Hintergrund der Fachdisziplin, der Natio-
nalität, des Alters oder Geschlechts zu analysieren.
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5 Zusammenfassung

Die vorgestellten Methoden zur deskriptiven Analyse von Netzwerken fokussieren sich auf
die Eigenschaften der Kanten und Knoten eines Netzwerks und die Beschreibung des Zu-
sammenhangs eines Netzwerks. Dabei sind nicht immer alle Methoden für jedes Netzwerk
sinnvoll oder anwendbar. Ergebnisse sollten daher immer vor dem Hintergrund interpretiert
werden, was das Netzwerk überhaupt darstellt. Insbesondere für große Netzwerkgraphen
spielt zudem die Effizienz von Algorithmen und damit deren Rechenzeit eine große Rolle.

Für den Patentdatensatz bewerten in den sieben größten Komponenten alle vier vorgestell-
ten Zentralitätsmaße denselben Knoten im Netzwerk als am “wichtigsten” für den Graphen,
für den gesamten Graphen ist das jedoch nicht der Fall. Insgesamt ist der Grad der Ko-
häsion des Netzwerks eher gering, was auch daran liegt, dass das Netzwerk unverbunden
ist und aus mehreren Komponenten besteht. Insbesondere entfallen sehr viele Knoten auf
sehr kleine Subkomponenten mit weniger als 5 Knoten und es liegt keine giant component
vor, auf die sich eine weitere Analyse und die Modellerstellung konzentrieren könnte.
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A Appendix

A.1 Eigenwerttheorie

Für den Kontext dieser Arbeit ist nur die Eigenwerttheorie für endliche Vektorräume re-
levant. Zudem werden Eigenwerte nur in R betrachtet. Gegeben sei also ein Vektorraum
V mit dim(V) = n ∈ N. Dann lässt sich jeder Endomorphismus f : V → V durch ei-
ne n × n-Matrix darstellen. Gilt für ein λ ∈ R und einen Nicht-Nullvektor x ∈ Rn die
Gleichung

Ax = λx, (32)

so nennt man λ einen reellen Eigenwert der Matrix A. Der Vektor x 6= 0 ist dann der
dazugehörige Eigenvektor.

Zur Berechnung der Eigenwerte und Eigenvektoren wird die Gleichung (32) zu

Ax− λEx = 0 (33)

umgeschrieben, wobei E die n-dimensionale Einheitsmatrix ist. Ein Ausklammern des Vek-
tors x liefert

(A− λE)x = 0. (34)

Wegen x 6= 0, ist dieses Gleichungssystem genau dann lösbar, wenn

det(A− λE) = 0. (35)

Diese Determinante ist ein Polynom n-ten Grades in λ und wird auch charakteristisches
Polynom genannt. Dessen Nullstellen

λn + αn−1λ
n−1 + . . .+ α1λ+ α0 = 0 (36)

in R sind die reellen Eigenwerte der Matrix. Die dazugehörigen Eigenvektoren x berechnet
man dann durch Einsetzen der Eigenwerte in Gleichung (34) und Lösen des homogenen
linearen Gleichungssystems. Eigenwerte sind nicht immer einfach, sondern es können auch
mehrfache Nullstellen im charakteristischen Polynom vorkommen. Die Häufigkeit eines
Eigenwerts wird als algebraische Vielfachheit bezeichnet. Die Anzahl der linear un-
abhängigen Eigenvektoren zu einem Eigenwert wird als geometrische Vielfachheit des
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Eigenwertes bezeichnet.
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A.2 Algorithmen

A.2.1 Dijkstra

Der Dijkstra-Algorithmus wurde 1959 vom niederländischen Informatiker Edsger Dijkstra
veröffentlicht, siehe Dijkstra (1959). Es handelt sich hierbei um einen Algorithmus zum
Finden des kürzesten Pfades von einem gegebenen Startknoten zu allen anderen Knoten
eines Netzwerks oder aber zu einem einzelnen vorher spezifizierten Knoten. Die Rechen-
zeit ist mit O(n2) quadratisch. Ein prominentes Anwendungsbeispiel für den Algorithmus
sind Routenplaner, deren Ziel es ist, einen möglichst kurzen Weg von einem Ort zu einem
anderen zu finden.

Dabei geht der Algorithmus für einen vorgegebenen Startknoten s und Zielknoten z wie
folgt vor:

1. Zunächst wird jedem Knoten ein provisorischer Distanzwert zugewiesen. Dem Start-
knoten wird dabei der Wert Null und jedem anderen Knoten der Distanzwert ∞
zugewiesen.

2. Der Startknoten s wird nun als der momentan betrachtete Knoten u gesehen und
alle anderen Knoten werden zu der Menge U der Knoten, die noch nicht überprüft
wurden, zusammengefasst.

3. Die Distanz zu allen Nachbarknoten v des momentan betrachteten Knotens u, die
noch nicht durchschritten wurden, wird berechnet. Sie wird zu der Distanz von u

zu s dazuaddiert. Hat der Nachbarknoten v zuvor einen Wert größer als den nun
berechneten (also zuvor z.B. ∞) gehabt, wird dieser zuvorige Wert durch den neuen
Wert ersetzt.

4. Nachdem Schritt 3 für alle Nachbarknoten von u durchgeführt wurde, wird der mo-
mentan betrachtete Knoten u aus U entfernt.

5. Liegt der Zielknoten z nun nicht mehr in der Menge der unüberprüften Knoten U , so
ist der Algorithmus beendet. Ist die kleinste Distanz der unüberprüften Knoten ∞,
so ist der Algorithmus auch beendet, da dann die unüberprüften Knoten nicht von
dem Startknoten s aus erreichbar sind.
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6. Trifft keine der beiden Bedingungen in Schritt 5 zu, so wird nun der Knoten mit der
geringsten Distanz zum Startwert s ausgewählt und mit Schritt 3 weitergemacht.

A.2.2 Brandes

Um die Intermediatätszentralität der Knoten eines Netzwerks zu berechnen, wird meist
der 2001 von Ulrik Brandes entwickelte Brandes-Algorithmus verwendet, siehe Brandes
(2001). Wie in 3.2 beschrieben, ist die Intermediationszentralität eines der gängigsten Zen-
tralitätsmaße. Zur Berechnung für einen Knoten u ∈ V wird für alle Knotenpaare s, t ∈ V
der Anteil der kürzesten Pfade zwischen s und t berechnet, die durch u gehen. Die Summe
dieser Anteile über alle Knoten in dem Graphen wird dann als Intermediationszentralität
cB(u) bezeichnet.

Für ungewichtete Graphen benötigt der Algorithmus eine Rechenzeit von O(NvNe) und für
gewichtete GraphenO(NvNe+N2

v logNv), verglichen mitO(N3
v ) Rechenzeit für ungewichte-

te Graphen bei einer direkten Berechnung. Im Folgenden soll das Prinzip für ungewichtete
Digraphen dargestellt werden, wie es auch in der Veröffentlichung von 2001 der Fall war.

Für den Algorithmus müssen zunächst einige weitere Kennzahlen definiert werden. Sei
G = (V,E) ein Graph und s, t ∈ V ein fixes Knotenpaar. σ(s, t) sei die Anzahl an kürzesten
Pfaden zwischen s und t. σ(s, t|v) ist dann die Anzahl an kürzesten Pfaden, die durch v ∈ V
gehen. Als Dependency eines Startknoten s auf einen Knoten v wird dann

δs(v) =
∑
t∈V

σ(s, t|v)
σ(s, t) (37)

definiert. Hierfür werden für alle Knoten t ∈ V die Anteile der kürzesten Pfade von s nach
t, die durch v gehen, aufsummiert. Die Intermediationszentralität von v kann dann als die
Summe über die Dependencies aller Knoten s ∈ V, s 6= v dargestellt werden:

cB(v) =
∑

s 6=v∈V
δs(v). (38)

Die essentielle Umformung, auf der der Algorithmus basiert, ist dann, dass man die De-
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pendency (37) eines Startknoten s auf einen Knoten v auch darstellen kann als

δs(v) =
∑

w:v∈P (s,w)

σ(s, v)
σ(s, w)

(
1 + δs(w)

)
, (39)

wobei P (s, w) die Menge aller Vorfahren von w auf dem kürzesten Weg von s zu w sind.

Der Algorithmus von Brandes funktioniert dann wie folgt:

1. Für jeden Knoten s ∈ V werden die kürzeste Pfade berechnet. Bei einem ungewich-
teten Graphen ist das äquivalent zu einer BFS.

2. Bei der Berechnung in Schritt 1 werden auch die Menge der Vorfahren P (s, v) und
die Anzahl der kürzesten Pfade σ(s, v) bestimmt.

3. Für jeden möglichen Startknoten werden mithilfe der Menge der Vorfahren und der
Anzahl der kürzesten Pfade die Dependencies für alle anderen Knoten v ∈ V berech-
net.

4. Um nun die Intermediationszentralität eines Knotens v ∈ V zu berechnen, werden
alle Dependencies für alle Startknoten s aufsummiert.
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Inhalt der CD

Die beigelegte CD-ROM enthält folgende Dateien:

• Die Bachelorarbeit als PDF-Datei

• Den Ordner Grafiken, in dem alle in der Bachelorarbeit enthaltenen Grafiken im
PDF-Format enthalten sind

• Den Patentdatensatz inventornet.dta

• Die folgenden R-Skripte:

1. Datenerstellung.R liest den Patentdatensatz ein

2. Gradverteilung.R enthält alle Analysen zu 3.1

3. Zentralitaet.R enthält alle Analysen zu 3.2

4. Kohaesion.R enthält alle Analysen zu 4
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