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Nomenklatur
G=(V,E) Graph mit Knotenmenge V' und Kantenmenge F
N, Anzahl der Knoten
N, Anzahl der Kanten
A Adjazenzmatrix
deg(v) Grad des Knotens v
degin(v) Eingangsgrad des Knotens v
degout (V) Ausgangsgrad des Knotens v
{deg(v)}vev Gradfolge
dist(u,v) geodatische Distanz zwischen Knoten v und v
ca(v) Nahezentralitat von Knoten v
cp(v) Intermediationszentralitdt von Knoten v
cpi(v) Eigenwertzentralitdt von Knoten v
den(Q) Dichte des Graphen G
73(G) Anzahl der 2-Stars in G
a(G) Anzahl der Triangles in G
c(QG) Clusterkoeffizient von G
clr(G) Cluster-Transitivitatskoeffizient
C={C,...,Ck} Partition
mod(C) Modularitat der Partition
L Laplacematrix
A Eigenwert
X Eigenvektor
B Modularitatsmatrix
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Abstract

Diese Bachelorarbeit beschaftigt sich mit den deskriptiven Analysemdglichkeiten von Netz-
werken und wendet sie auf einen Patentdatensatz des Max-Planck-Instituts fiir Innovation
und Wettbewerb an.

Deskriptive Analysemethoden solcher Daten umfassen zum einen die Untersuchung von Ei-
genschaften der Netzwerkbausteine. Hierbei stehen insbesondere Mafle fiir die verschiede-
nen Konzepte zur Messung des Einflusses einzelner Knoten im Fokus. Zum anderen werden
Methoden zur Messung der Netzwerkkohésion, also dem Grad der Vernetzung der einzel-
nen Akteure im Netzwerk, und geeignete Mittel zum Identifizieren von Gruppenstrukturen

vorgestellt.
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1 Einleitung

In Zeiten boomender sozialer Netzwerke besteht ein starkes Interesse daran, die Struktur
solcher Netzwerke zu untersuchen und Riickschliisse daraus zu ziehen. Derartige Netz-
werkstrukturen kann man auch in zahlreichen technologischen und biologischen Konzep-
ten finden, insbesondere auch bei der Erforschung von auf neuronalen Netzen beruhender

kiinstlicher Intelligenz.

Thema dieser Arbeit ist die deskriptive Analyse von Netzwerken. Mit der wachsenden
Untersuchung von Netzwerkstrukturen sowohl im Alltag als auch in der Forschung ge-
winnt die statistische Analyse der hierbei anfallenden Daten zunehmend an Bedeutung.
Aufgrund der besonderen Struktur dieser Daten sind hierzu spezielle Werkzeuge und Me-
thoden erforderlich. Dazu werden im Kapitel 2 zundchst die Grundbegriffe und Konzepte
der Netzwerkanalyse vorgestellt, die aus der mathematischen Graphentheorie stammen.
Anschlieflend wird in den Kapiteln 3 und 4 auf Methoden zur Beschreibung von Netzwer-
ken eingegangen. Dabei werden in Kapitel 3 zunichst Mafle besprochen, die auf dem Grad
der Vernetzung der Akteure im Netzwerk basieren, und anschliefend werden verschiede-
ne Konzepte zur Messung der Wichtigkeit einzelner Bestandteile des Graphen vorgestellt.
Kapitel 4 konzentriert sich auf den Zusammenhang des Netzwerks. Hierzu wird die lokale
und globale Struktur des Netzwerkgraphen genauer untersucht und im Anschluss werden

Moéglichkeiten der sinnvollen Unterteilung des Netzwerks in einzelne Gruppen vorgestellt.

1.1 Patentdatensatz

Ein Grofiteil der vorgestellten deskriptiven Analysemethoden in der vorliegenden Arbeit
wird auf ein Netzwerk von Patententwicklern angewandt. Es umfasst 10208 Entwickler, die
Patente angemeldet haben. Wenn zwei Entwickler bei einem Patent zusammengearbeitet

haben, besteht eine Verbindung zwischen diesen beiden Entwicklern.

Die Datenanalyse wurde mit R basierend auf den Methoden, die in Kolaczyk and Csardi
(2014) vorgestellt werden, durchgefithrt. Dabei wurde in erster Linie die Netzwerkanalyse-

Pakete igraph, sand und ergm benutzt.
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2 Einfiihrung in die Netzwerkanalyse

Zunéchst werden im folgenden Kapitel einige Grundbegriffe aus der Graphentheorie einge-
fiihrt und héufig vorkommende Strukturen in Graphen vorgestellt. Im Anschluss wird auf
Moéglichkeiten, Netzwerkgraphen in komprimierter Form darzustellen, und Rechenaspekte

eingegangen.

2.1 Grundbegriffe

Abbildung 1: Beispiel eines Netzwerkgraphen

Die Struktur von Netzwerken lasst sich mathematisch durch einen Graphen modellieren,
wie in Abbildung 1 dargestellt. Ein Graph G = (V, E) ist eine mathematische Struktur,
die aus einer Menge von Knoten V (Vertez) und einer Menge von Kanten E (FEd-
ge) besteht. Die Kantenmenge E selbst besteht wiederum aus Knotenpaaren {u, v}, wobei
u,v € V, u # v gilt, und beschreibt, wie die einzelnen Knoten miteinander verbunden sind.
Bei einem einfachen, ungerichteten Graphen ist die Menge der Kanten eine Teilmenge aller
zweielementigen Teilmengen von V. Die Anzahl der Knoten N, = |V| wird die Ordnung

und die Anzahl der Kanten N, = |E| die Grofe eines Graphen G genannt.

Betrachtet man nur einen Teil eines Graphen, so spricht man von einem Subgraphen
H = (Vy,Eyg) von G = (V, E), wenn man eine Untermenge der Knotenmenge Vg C V
und Kanten aus E betrachtet, deren Knoten in Vy liegen. Von einem induzierten Sub-
graphen G' = (V' E’) spricht man, wenn zu einer vorgegebenen Knoten-Untermenge

V' C V alle Kanten E’ C FE, deren zugehorige Knoten in V' liegen, betrachtet werden.
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Wiahlt man aus dem Netzwerk in Abbildung 1 die Knoten V' = {a, b, ¢, d, e} aus, so ist der
dazugehorige induzierte Subgraph in Abbildung 2 abgebildet.

Abbildung 2: Durch V' = {a, b, ¢,d, e} induzierter Subgraph von Abbildung 1

Multigraphen sind eine Erweiterung der einfachen Graphen, die Loops und Multi-Edges
zulassen. Loop bezeichnet hierbei eine Kante, bei der Anfangs- und Endknoten identisch
sind. Multi-Edges bezeichnet den Fall, dass zwischen zwei Knoten mehr als eine Kante
existiert. Solche Multigraphen konnen beispielsweise benutzt werden, um die verschiedenen
Arten von Beziehungen in einem sozialen Netzwerk zu modellieren. Dabei konnte beispiels-
weise dazwischen unterschieden werden, ob man miteinander befreundet ist, oder ob auch
eine Verwandtschaft oder andere Beziehung zueinander besteht, wie in Abbildung 3 skiz-
ziert. Dabei konnten die griinen Kanten Freundschaften zwischen den Akteuren darstellen,
wahrend die gelben Kanten Verwandtschaft und die orangenen Kanten die Zugehorigkeit

zum selben Sportverein anzeigen.

Ein anderer Spezialfall von Graphen sind Digraphen bzw. gerichtete Graphen Gx =
(V*, E*), wie in Abbildung 4 skizziert. Die Kanten in einem gerichteten Graphen werden
dann gerichtete Kanten oder Bogen genannt. Im Vergleich zu Kanten ist Bogen zu-
satzlich zu den zwei Knoten auch eine Richtung zugeordnet und bestehen im Gegensatz zu
vorher aus geordneten Knotenpaaren (u*,v*), u*,v* € V* u* # v*, wobei u* den Anfangs-
knoten und v* den Endknoten des Bogens bezeichnet. (u*, v*) und (v*, u*) bezeichnen also
zwei verschiedene Bogen. Gerichtete Graphen sind nicht notwendigerweise Multigraphen.
Zwischen zwei Knoten konnen bei gerichteten Graphen zwei Bogen mit entgegengesetzter
Richtung bestehen.
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Abbildung 3: Beispiel eines Multigraphen
/ ® / ?
//,. @ O

Abbildung 4: Beispiel eines Digraphen

Zwei Knoten eines ungerichteten Graphen heiflen adjazent, wenn es eine Kante gibt, die
beide Knoten miteinander verbindet. Analog dazu heiflen zwei Kanten adjazent, wenn
beide iiber einen gemeinsamen Knoten verbunden sind. Man spricht davon, dass ein Kno-
ten inzident zu einer Kante ist, wenn der Knoten ein Endpunkt dieser Kante ist. Wenn
man fiir einen gegebenen Knoten v € V die Menge der zugehorigen adjazenten Kno-
ten N(v) = {u € V|{u,v} € E} betrachtet, die auch als Nachbarschaft eines Kno-
tens bezeichnet wird, so wird die Kardinalitat |N(v)| als Grad deg(v) des Knotens v be-
zeichnet. Die Anordnung der Knotengrade eines Graphen nach aufsteigender Grofie nennt
man Gradfolge. Summiert man die Elemente einer solchen Gradfolge fiir einen Graphen
G auf, so erhdlt man die doppelte Anzahl der Kanten in diesem Graphen, es gilt also
> vev deg(v) = 2|E|. Das lésst sich dadurch erkléren, dass man den Grad eines Knotens

statt iiber die Anzahl der adjazenten Knoten auch iiber die Anzahl der angrenzenden Kan-
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ten berechnen kann. Eine Kante flieit daher immer zweimal, also einmal pro zugehérigen
Knoten, in die Gradsumme mit ein. Daraus lasst sich folgern, dass die Gradsumme fiir
jeden Graphen eine gerade Zahl ist. Fiir den Beispielgraphen in Abbildung 1 ist die resul-
tierende Gradfolge beispielsweise {1,1,1,2,2,2,4,4,5}.

Bei gerichteten Graphen betrachtet man sowohl den Eingangsgrad deg;, (v*) als auch den
Ausgangsgrad deg,,;(v*) eines Knotens v* € V. Der Eingangsgrad deg;,(v*) gibt die An-
zahl der Bogen an, die in v* enden, und der Ausgangsgrad deg,.;(v*) beschreibt die Anzahl
der Bogen, fiir die v* der Startknoten ist. Analog zum ungerichteten Fall lasst sich auch
hier die Eingangs- und Ausgangsgradfolge eines gerichteten Graphen G* definieren. Fiir
den Beispielgraphen in 4 ist die Ausgangsgradfolge dementsprechend {0,1,1,1,1,2,2,3,5}
und die Eingangsgradfolge {1,1,1,1,1,2,2,3,4}.

Auf Graphen sind verschiedene Arten von Routen definiert, je nachdem, ob man Knoten
oder Kanten mehrmals oder hochstens einmal passieren darf. Die grundlegende Route ohne
Restriktionen wird Weg genannt. Auf einem Graphen G = (V| F) wird ein Weg von ei-
nem Anfangsknoten vy € V' zu einem Endknoten v; € V' durch eine abwechselnde Folge von
Knoten und Kanten, die durchlaufen werden beschrieben werden, (vg, €1, vy, ..., v_1, €, 0;).
Dabei ist e; die Kante, die v;_; und v; miteinander verbindet. Die Lange [ eines Weges
ist die Anzahl der Kanten, die bei diesem Weg durchlaufen werden. Verbietet man nun
das mehrmalige Durchlaufen eines Knotens, spricht man von einem Pfad, und verbietet
man das mehrmalige Durchlaufen von Kanten, liegt ein Trail vor. Man beachte dabei,
dass zwar jeder Pfad ein Trail ist, aber nicht jeder Trail auch ein Pfad, wie in Abbildung

5 dargestellt. Da der Trail (rechts) den Knoten b mehrmals passiert, liegt hier kein Pfad vor.

© ©) © © ©) ©)
N N N N NN

J /

Abbildung 5: Beispiele fiir einen Weg, einen Pfad und einen Trail, der zugleich auch ein
Kreis ist
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Eine weitere Art von Routen in einem Graphen sind solche mit identischem Anfangs- und
Endknoten. Ein Trail mit vg = v; nennt man einen Kreis. Ein Kreis der Lange [ > 3, bei
dem aber sonst alle Knoten nur einmal passiert werden, heifit Zyklus. Kommt kein Zyklus
im gesamten Graphen vor, so spricht man von einem azyklischen Graphen. Die Defini-
tionen konnen direkt auf den Fall von gerichteten Graphen tibertragen werden, indem man

statt Kanten die Bogen des Graphen betrachtet.

Die Knoten und Kanten eines Graphen koénnen auch mit Gewichten versehen werden. Wer-
den Kanten Gewichte zugewiesen, spricht man von Kantengewichten w,, die Notation
fir Knotengewichte ist analog w,. Die Linge eines Weges bei gewichteten Kanten wird
nun durch Aufsummierung der einzelnen Kantengewichte berechnet. Die Linge von unge-
wichteten Graphen ist also ein Spezialfall mit w, = 1,Ve € E. Gewichtete Kanten werden
in der Praxis dazu benutzt, die Lange, die Wichtigkeit oder auch die Kapazitat einer Kante

darzustellen.

Oft ist es von Interesse, die Kohésion, also den Grad der Vernetzung eines Graphen zu
betrachten. Wenn man ein Knotenpaar v und v in einem Graphen G betrachtet, nennt
man u erreichbar von v, wenn es einen Weg gibt, der von v nach u fihrt. Gilt, dass
jeder Knoten u von jedem beliebigen anderen Knoten v in dem Netzwerk erreichbar ist,
also 3l € NVu € V Vo € V : 3 {v = vy, e€1,...,€,u = v}, so nennt man den Graphen
verbunden. Ein unverbundener Graph zerfillt in mehrere Komponenten. Komponen-
ten eines Graphen sind maximale Subgraphen, die verbunden sind. Maximal bedeutet in
diesem Zusammenhang, dass es keinen weiteren Knoten im Graphen gibt, den man zu der
Komponente hinzunehmen kénnte, ohne dass die Komponente nicht mehr verbunden ist. In
Abbildung 6 ist rechts ein verbundener Graph mit der Knotenmenge {a,b,c,d, e, f, g, h,i}
und links ein unverbundener Graph, der aus zwei Komponenten besteht, zu sehen. Die
erste Komponente besteht aus der Knotenmenge {a, b, ¢, d, e} und die zweite Komponente

aus der Knotenmenge {f, g, h,i}.

Fiir gerichtete Graphen unterscheidet man zwischen zwei Arten von Vernetzung. Man nennt
einen gerichteten Graphen schwach verbunden, wenn es zwischen allen Knoten eine Ver-
bindung gibt, falls man die Richtung ignoriert, also nur den zugrundeliegenden ungerichte-
ten Graphen betrachtet. Im Gegensatz dazu heif3t ein gerichteter Graph stark verbunden,

wenn jeder Knoten von jedem anderen Knoten aus unter Berticksichtigung der Richtung
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der Bogen erreichbar ist.

Abbildung 6: Beispiele fiir einen verbundenen Graphen (links), sowie einen unverbundenen
Graphen mit zwei Komponenten (rechts)

Die Distanz oder auch geodatische Distanz dist(u,v) zwischen zwei Knoten v und v
in einem Graphen ist die Lange des kiirzesten Pfades zwischen den beiden. Dabei muss
der kiirzeste Pfad nicht eindeutig sein, es kann auch mehrere Pfade mit minimaler Lange
geben. max, ,ev d(u, v), also die gréte Distanz in einem Graphen, wird Durchmesser des
Graphen genannt. Auf gerichtete und gewichtete Graphen wird diese Definition entspre-
chend tibertragen. Liegt ein unverbundener Graph vor, so wird fiir ungewichtete Graphen
entweder die Anzahl der Knoten N, als maximal mdogliche Distanz in dem Graphen oder
aber die maximale Distanz zweier Knoten in verbundenen Komponenten des Graphen an-

gegeben.

2.2 Formen von Graphen

Teile von Graphen haben oft eine besondere Struktur. Einige solcher Strukturen, die be-

sonders haufig vorkommen, sollen in diesem Unterkapitel vorgestellt werden.

In einem kompletten Graphen sind alle Knoten direkt miteinander verbunden. Fiir einen
Graphen ohne Kantengewichte heifit das, dass Vu,v € V' : d(u,v) = 1 gilt. Ist eine Teilmen-
ge eines Graphen, also ein Subgraph, komplett, so nennt man diesen Subgraphen Clique.

Eine solche Clique nennt man maximal, wenn man keinen Knoten, der noch nicht in der
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Clique enthalten ist, zu ihr dazu nehmen kann, ohne dass der Subgraph nicht mehr kom-

plett ist. Ein Beispiel fir eines kompletten Graphen ist in Abbildung 7 zu sehen.

Abbildung 7: Beispiel eines kompletten Graphen

Haben alle Knoten in einem Graphen denselben Grad, so nennt man den Graphen regular.
Haben alle Knoten in dem Graphen den Grad d, so sagt man auch der Graph ist d-regular.
Solche d-regulédren Graphen konnen inhaltlich so interpretiert werden, dass man von jedem
Knoten aus immer d verschiedene andere Knoten erreichen kann, also eine spezielle Git-
terstruktur in dem Netzwerk vorliegt. Ein Beispiel fiir einen 3-reguldren Graphen ist in
Abbildung 8 dargestellt.

Abbildung 8: Beispiel eines 3-reguldaren Graphen

Ein azyklischer, zusammenhangender Graph heifit Baum. Besteht ein Graph aus mehreren

unzusammenhéngenden Subgraphen, wo jeder fiir sich alleine genommen ein Baum ist, so
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nennt man den Graphen einen Wald. Sind die Kanten des Graphen mit einer Richtung
versehen, so spricht man von einem gerichteten Baum. Baume dieser Art haben oft einen
Knoten, der der einzige Knoten in dem Baum ist, von dem aus man alle anderen Knoten
erreicht und dieser Knoten heifit Wurzel. Entscheidungsbdume, wie in Abbildung 9 ge-
zeigt, sind Beispiele fiir Baume mit Wurzelnknoten, die man dann gewurzelte Baume

nennt.

VAN

@ 006 O
00

A
\

™S~

Abbildung 9: Beispiel eines Entscheidungsbaums

Der Knoten u*, von dem ein Pfad zu einem anderen Knoten v* fiihrt, heiit Vorfahre von
v*. v* wird dann Nachkomme von u* genannt. Knoten unmittelbar vor anderen Knoten
werden Eltern, Knoten unmittelbar nach anderen Knoten werden Kinder genannt. Ein
Knoten, von dem kein Bogen wegfiihrt, der also keine Kinder hat, wird Blatt genannt. Ein
DAG ist ein gerichteter (directed), azyklischer Graph. Im Gegensatz zu einem gerichteten
Baum, enthélt ein DAG einen Zyklus, wenn man die Richtung der Kanten ignoriert. Ein
solcher DAG ist in Abbildung 10 dargestellt. DAGs oder Baumstrukturen findet gerade im

Design von effizienten Berechnungsalgorithmen Anwendung.

Manche Graphen erfiillen die Eigenschaft der Bipartitheit. Bipartitheit bedeutet, dass die
Menge der Knoten V' in zwei disjunkte Klassen V; und V5 zerfallt, sodass V; UV, =V gilt,
und nur Knoten verschiedener Klassen mit einer Kante verbunden werden kénnen. Man

konnte zum Beispiel die Vereine und Spieler in der Fufiball Bundesliga als ein Netzwerk
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Abbildung 10: Beispiel eines DAG

darstellen, bei dem eine Kante zwischen einem Spieler-Knoten und einem Vereins-Knoten
besteht, wenn der Spieler bereits fiir den Verein aktiv war. Fiir bipartite Graphen wird oft
ein induzierter Graph G; = (V, Ey) durch eine Knotenklasse V; definiert, wobei zwischen
zwei Knoten aus V) eine Kante besteht, wenn beide im urspriinglichen bipartiten Graphen
mindestens einen gemeinsamen Nachbarn in V5 hatten. Eine Skizze von einem bipartiten
Graphen und dem dazugehorigen durch die roten Knoten induzierten Graphen ist in Ab-
bildung 11 dargestellt.

Abbildung 11: Beispiel eines bipartiten Graphen (links) und der durch die roten Knoten
induzierte Graph (rechts)
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2.3 Matrixdarstellung eines Graphen

Gerade bei grofleren Graphen, die graphisch nur schwer darstellbar sind, macht es Sinn, die
Struktur und die Eigenschaften eines Graphen G mithilfe von Matrizen in komprimierter

Form darzustellen.

Die wichtigste Matrix, die die grundlegenden Verbindungen in einem ungerichteten Gra-
phen wiedergibt, ist die sogenannte Adjazenzmatrix A. Dabei handelt es sich um eine
symmetrische N, x N,-Matrix mit bindren Eintragen. Nummeriert man die Knoten eines
Graphen mit 1 bis N, durch, sind die Eintrédge der Matrix A definiert durch

L fir (i) € E
A ir {4, j}

)
0, sonst

wobei {i,7} fir die Kante zwischen zwei Knoten ¢ und j steht. Wenn also eine Kante
zwischen dem i-ten und j-ten Knoten besteht, so ist der Eintrag in der ¢-ten Zeile und
j-ten Spalte und der Eintrag der j-ten Zeile und i-ten Spalte der Adjazenzmatrix eine 1,
ansonsten 0. Einen Beispielgraphen und die daraus resultierende Adjazenzmatrix finden
sich in Abbildung 12.

SCoo-—=0O
N o R
Coo-—-0O
e Ne Rl o)
OO0

Abbildung 12: Beispiel eines Netzwerks und der dazugehorigen Adjazenzmatrix

Durch diese Struktur kann man iiber die Adjazenzatrix noch andere Informationen iiber

den zugrundeliegenden Graphen extrahieren. Bildet man die Zeilensumme in der i-ten Zeile
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A, = Ejy:“l A;;, so erhédlt man den Grad von Knoten i. Den Grad von Knoten ¢ wiirde
man aufgrund der Symmetrie der Matrix auch durch die Spaltensumme der ¢-ten Spalte
erhalten. Bildet man die r-te Potenz der Adjazenzmatrix A", so erhalt man in den Ein-
tragen A7, die Anzahl der Walks der Lénge r zwischen Knoten ¢ und j. Es gilt aulerdem,
dass G genau dann ein reguldrer Graph ist, wenn der grofite Grad des Graphen d,,,, ein

Eigenwert von A ist. Zur Eigenwertberechnung wird auf den Appendix verwiesen.

Fir Digraphen wird die Definition der Adjazenzmatrix insofern abgewandelt, dass die Ein-
trage A;; der Matrix nur dann 1 sind, wenn ein Bogen von ¢ nach j existiert. Da ein Bogen
von ¢ nach 7 nicht per se auch einen Bogen von j nach i impliziert, ist die Adjazenzmatrix
fiir Digraphen nur noch in Sonderféllen symmetrisch. Auch sind Spalten- und Zeilensum-
me nun entsprechend anders zu interpretieren. A;, entspricht dem Ausgangsgrad des i-ten

Knotens deg (i), und A; dem Eingangsgrad des j-ten Knotens deg(j).

Fiir gewichtete Graphen kann man die Adjazenzmatrix dahingehend abwandeln, dass die
Eintréage fiir die existierenden Kanten nicht 1 sind, sondern dem Gewicht entsprechen, wel-

ches der Kante zwischen ¢ und j zugeordnet wurde.

Eine Abwandlung der Adjazenzmatrix ist die Inzidenzmatrix B. Hierbei handelt es sich

um eine N, X N.-Matrix mit bindren Eintragen

B 1, wenn Knoten ¢ inzident zu Kante j ist
ij =
0, sonst

2.4 Datenstruktur und Algorithmen
2.4.1 Datenstruktur

Die Daten eines Netzwerkgraphen konnen iiblicherweise auf zwei grundlegende Arten re-
préasentiert werden. Die Adjazenzmatrix ist eine naheliegende Art, die Verbindungen des
Netzwerkes darzustellen, jedoch bringt sie gerade fiir grofle Netzwerke auch einige Proble-
me mit sich. Der Speicherbedarf einer solchen Matrix ist mit O(N?) quadratischer Natur,

was fur grofle Graphen einen hohen Speicherbedarf bedeutet. Insbesondere wenn die ein-
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zelnen Knoten eines solchen groflen Graphen nicht eng miteinander vernetzt sind, ist der
Speicheraufwand fiir eine solche Adjazenzmatrix grof}, obwohl die Adjazenzmatrix zum

Grofiteil nur Nulleintrage enthalt.

Daher bietet es sich fiir solche Graphen an, statt der Adjazenzmatrix eine Adjazenzliste
zu betrachten. Eine Adjazenzliste ist eine Liste, in der der i-te Eintrag die Knoten auffiihrt,
zu denen der i-te Knoten eine direkte Kante hat. Die Linge der Eintrage der Adjazenzliste
ist im einfachen Graphen 2N,, im Digraphen N,. Damit reduziert sich der Speicherauf-
wand zu O(N, + N,). Fiir den Fall, dass N, ~ N,, reduziert sich der Speicheraufwand also,
wihrend er fiir den Fall eines dichten Graphen, fiir den N, ~ N? gilt, dhnlich wie fiir die

Adjazenzmatrix ist.

Eine andere Variation der Adjazenzliste ist eine Liste der im Graphen vorkommenden Kan-
ten. Hier besteht jeder Eintrag aus einem Knotenpaar, das durch eine Kante miteinander

verbunden ist.

2.4.2 Algorithmen

Wiéhrend viele Eigenschaften eines Graphen direkt aus der Datenstruktur abgelesen werden
konnen, erfordern andere Fragestellungen komplexere Algorithmen. Solche Fragestellungen
werden in zwei Kategorien eingeteilt. Die 16sbaren Fragestellungen erfordern einen Re-
chenaufwand polynomer Ordnung O(n?). Manche Fragestellungen erfordern aber einen
exponentiellen Rechenaufwand der Ordnung O(a™). Gerade bei grolen Graphen ist ein Al-
gorithmus mit exponentiellem Rechenaufwand, oder auch schon mit polynomialen Rechen-

aufwand bei grolem p, gar nicht oder nur mit extrem grofien Zeitaufwand durchfithrbar.

Oft wird ein Graph mittels Algorithmen nach bestimmten Strukturen, zum Beispiel Zyklen
oder maximalen Komponenten, durchsucht. Dabei startet man bei einem Anfangsknoten
und bewegt sich dann systematisch von diesem Knoten aus zu allen von hier erreichbaren

Knoten. Man unterscheidet zwischen zwei grundlegenden Suchstrategien.

Beim breadth-first-search, kurz BFS, werden ausgehend von einem Ausgangsknoten zu-
erst direkt benachbarte Knoten erforscht, dann die Knoten, die zwei Kanten entfernt sind,

usw., bis alle erreichbaren Knoten durchlaufen wurden. Ein Schema dieser Suchmethode
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Abbildung 13: Suchschema eines breadth-first-Suchalgorithmus

wird in Abbildung 13 gezeigt. Die zugrundeliegende Struktur dieses Algorithmus ist ein
Baum, bei dem der Pfad vom Anfangsknoten zu einem anderen Knoten dem kiirzesten
Pfad entspricht.

Die andere Variante, einen Graphen zu durchsuchen, ist depth-first-search, kurz DFS.
Hierbei wird, wieder ausgehend von einem Anfangsknoten, zuerst tiber einen Nachbarkno-
ten so weit wie moglich durch den Graphen geschritten, bevor dann nach und nach die
Abzweigungen von diesem Pfad erforscht werden. Eine Skizze dieses Suchalgorithmus ist
in Abbildung 14 dargestellt.

Abbildung 14: Suchschema eines depth-first-Suchalgorithmus

Welcher von beiden Suchalgorithmen gegebenenfalls sinnvoller ist, hangt von der Frage-
stellung ab, nach der der Graph durchsucht wird. Der BFS-Algorithmus wird oft fiir die

Berechnung des kiirzesten Pfade zwischen zwei Knoten benutzt, siehe auch den Algorith-
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mus von Brandes im Appendix, wahrend der DFS sich z.B. als Teil eines komplexeren

Algorithmus zur Untersuchung, ob ein Graph azyklisch ist, bewahrt hat.

2.5 Grundlegende Grapheigenschaften des Patentdatensatz

Bei dem zu untersuchenden Patentdatensatz handelt es sich um einen einfachen, ungerichte-
ten, ungewichteten und nicht-bipartiten Graphen mit N, = 10208 Knoten und N.=21976
Kanten. Der Graph ist nicht verbunden und zerfallt in mehrere Komponenten. Der Durch-
messer des Graphen betragt 30, wobei hier beachtet werden sollte, dass diese Zahl fiir einen
unverbundenen Graphen dem maximalen Durchmesser einer verbundenen Komponente im

Graphen entspricht.
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3 Eigenschaften von Knoten und Kanten

In diesem Kapitel sollen nun einige Charakteristiken der Elemente eines Netzwerkgraphen
préasentiert werden. Diese Charakteristiken lassen sich in zwei Kategorien unterteilen. In
Unterkapitel 3.1 werden die Eigenschaften erlautert, die auf dem Knotengrad basieren, und
in 3.2 werden verschiedene Konzepte zur Messung der Zentralitat bzw. der Wichtigkeit eines

Knotens sowie die Erweiterung auf die Wichtigkeit von Kanten vorgestellt.

3.1 Gradmalfle

In einem Netzwerkgraphen G = (V, E) ist der Grad d, eines Knotens v als Anzahl der in v
inzidenten Kanten des Graphen definiert. Aufgrund dieser Definition ist der Grad der Kno-
ten ein Maf} fiir die Vernetzung des Graphen. Hierfiir betrachtet man dann die Gradfolge
{deg(v)}vev = {deg(1),...,deg(N,)} und definiert auf dieser Grundlage verschiedene Ma-
Be. Fiir den Fall eines Digraphen wird anstelle des Grads jeweils der Eingangsgrad deg;, (v)
und der Ausgangsgrad deg,.(v), sowie die entsprechenden Gradfolgen {deg;,(v)}yer und
{degous(v) }vey betrachtet.

3.1.1 Gradverteilung

Fir den Grad der einzelnen Knoten eines Netzwerkgraphen kann man nun eine Dichte-
funktion f definieren. Dabei ist f; der Anteil an Knoten v € V' mit Grad deg(v) = d. Die
dazugehérige Verteilungsfunktion ist gegeben durch Fy = ¢_ fi .

Gerade fiir grofle Netzwerke ist die Gradverteilung eine einfache Moglichkeit die Konnekti-
vitdt des Graphen zusammenzufassen. Fiir den Patentdatensatz ist die Gradverteilung als
Histogramm in Abbildung 15 dargestellt. Der minimale Grad des Patentnetzwerks ist 1,
der maximale Grad 56. Der Knotengrad 2 kommt mit 2147-mal am haufigsten im Daten-
satz vor. Insgesamt ist die Verteilung stark rechtsschief. Der Durchschnittsgrad liegt etwa
bei 4.3, der Mediangrad bei 3.

Plottet man die Haufigkeit der verschiedenen Grade auf einer log-log-Skala, erhalt man fiir
den Patentdatensatz Abbildung 16. Das ist gerade bei solchen Verteilungen wie hier sinn-
voll, da zwar ein Grofiteil der Knoten einen geringen Grad hat, es aber auch viele einzelne

Knoten mit bedeutend groflerem Grad gibt. Oft liegt eine Power-Law Komponente in der
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Abbildung 15: Knotenverteilung des Patentdatensatzes

Verteilung vor, d.h.
faoxcd™®, aeR. (1)

Die Unbekannte in der Gleichung, die es zu schatzen gilt, ist also a. Hierzu gibt es ver-
schiedene mehr oder weniger vorteilhafte Ansétze. Logarithmiert man beide Seiten der
Gleichung (1), folgt

log(fa) ~ € — alog(d), (2)

wobei C' eine Konstante ist. Womoglich ist der intuitive Ansatz hierzu, mithilfe einer li-
nearen Regression von log(d) auf log(fy) einen Schétzer fir a zu erhalten. Ein Beispiel fiir
die resultierende Regressionsgerade ist 16 gegeben. Die lineare Regression liefert & = 2.544

und eine Anpassungsgiite von R? = 0.907.

In der Praxis kann dieser Ansatz jedoch problematisch sein, da es wegen der hohen Knoten-
grade mit geringer Haufigkeit zu grofler Ungenauigkeit der Schatzung kommen kann. Eine
Moglichkeit, dieses Problem zu umgehen, ist, statt der normalen Haufigkeit die kumulierte

Héufigkeit F'(d) zu benutzen. Die kumulierte Randhaufigkeit nimmt dann folgende Form
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Abbildung 16: Knotenverteilung des Patentdatensatzes in einer log-log-Skala mit linearer
Regressionsgerade

an

F(d)y=1—F(d) ~d @Y, (3)

Im Anschluss kann hier wieder ein regressionsbasierter Ansatz benutzt werden, um « zu

schatzen.

Eine weitere Variante ist die Schatzung von « iiber die Hill-Schatzer Ay

Gr =144, (4)
1k—1 d(N i)

mit 4 = = S lo () 5

A kgo g dov (5)

wobei d(1) < ... < d(,) die geordneten Knotengrade sind. k ist dabei ein Wert, der selbst
gewahlt werden muss. Die Wahl von k erfolgt, indem #; fiir verschiedene Werte von k
geplottet wird und einen Wert fiir k£ gewéhlt wird, bei dem die Werte 4, sich stabilisiert
haben. Ein solcher Hill-Plot fiir das Patentnetzwerk ist in Abbildung 17 gegeben, siehe
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auch Drees et al. (2000). Es wurde ein Wert bei einem Knotengrad von 9 ausgewéahlt. Der
Hill-Schétzer betragt 4, = 0.43. Damit ist der entsprechende Schéatzer & ~ 3.33 und es gilt
F(d)=1—F(d) ~ d=23,

Threshold
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Lo | : | | | | |
N — Hil
- ; - - 95%Cl
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©
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© |
© 1 T T
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Abbildung 17: Hillplot fiir den Patentdatensatz

Eine andere interessierende Eigenschaft eines Netzwerkes kann sein, welche Knoten mit wel-
chen Knoten verbunden sind. Dazu ist die Gradfolge alleine nicht ausreichend, da sie nicht
spezifiziert, wie die einzelnen Knoten miteinander verbunden sind. Zwei Netzwerkgraphen
konnen dieselbe Gradfolge haben, jedoch trotzdem strukturell komplett unterschiedlich

aufgebaut sein.
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3.1.2 Gradkorrelation

Um den Zusammenhang zwischen zwei Knoten in Abhangigkeit von deren Graden genau-
er zu beschreiben, fiithrt man ein 2-dimensionales Pendant zur Gradverteilung ein. Hierzu
betrachtet man die Haufigkeit, mit der zwei Knoten verbunden sind, von denen der eine
Knoten den Grad d; und der andere den Grad dy hat. Bei Digraphen ist das geordnete
Knotenpaar e = (v, v9), das eine Kante beschreibt, klar definiert, bei ungerichteten Gra-

phen muss man die Knoten jedoch nach einer bestimmten Logik ordnen.

Eine Moglichkeit besteht darin, die Kanten e = (v1,vy) € E derart zu sortieren, dass
d(vy) < d(vy). Fir jedes Paar d; < dy wird dann die Hélfte der relativen Haufigkeit zu
fay a4, zugeordnet und die andere Hélfte zu fy, 4,. Fir den Fall d; = dy wird fy, 4, die relative

Hiaufigkeit komplett zugeordnet. Damit ist die so definierte Verteilung { f4 +} symmetrisch.
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Abbildung 18: Gradkorrelation

Eine graphische Darstellung der Knoten, die miteinander verbunden sind, ist in Abbildung

18 dargestellt. Hier wurde jedem Knoten der durchschnittliche Knotengrad seiner Nachbarn
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zugeordnet. Wie hier zu sehen ist, sind Knoten mit niedrigem Grad sowohl mit anderen
Knoten mit niedrigem Grad als auch mit Knoten mit hoherem Grad verbunden. Knoten ho-

heren Grades sind jedoch tendenziell auch mit anderen Knoten hoheren Grades verbunden.

Aufbauend auf dieser Verteilung kann man auch die bedingte Verteilung fy4 betrachten.
Mit dieser bedingten Verteilung wird die Wahrscheinlichkeit beschrieben, dass ein Kno-
ten mit Grad d mit einem anderen Knoten mit Grad d verbunden ist. Abbildungen der

Mittelwerte dieser bedingten Verteilungen
d(d) =>"d foa (6)
dl

als von d abhéngige Funktion konnen die Art des Zusammenhangs zwischen Knoten mit

hohem und niedrigem Grad wiedergeben.

Eine andere, einfache Mafizahl fiir die Gradkorrelation ist die Korrelation, die durch die
gemeinsame Verteilung f; und ihren marginalen Verteilungen definiert ist. Trotz der
Definition der verschiedenen Maflzahlen fiir die Gradkorrelation ist es ratsam zu betrachten,

was inhaltlich fiir das entsprechende Netzwerk Sinn macht oder iberhaupt moglich ist.

3.2 Zentralitatsmafle

ZentralitatsmaBe zielen darauf ab, die “Wichtigkeit” eines Knotens in einem Netzwerk zu
quantifizieren. Es gibt verschiedene Auffassungen dariiber, was die Wichtigkeit und damit
die Zentralitat eines Knotens ist, und daher gibt es auch zahlreiche unterschiedliche Zentra-

litdtsmaBe. Im Folgenden werden die gingigsten Zentralitdtsmafle vorgestellt und erlautert.

3.2.1 Gradzentralitat

Ein géngiges Mafl fiir die Zentralitat eines Knotens haben wurde bereits in Kapitel 3.1
vorgestellt: den Knotengrad. Die Gradzentralitit Cp(v) eines gegebenen Knotens v, fiir
einen Graphen G = (V,E) mit N, Knoten und N, Kanten ist definiert als der Grad
des Knotens deg(v). Fur Digraphen wird entsprechend zwischen Eingangsgradzentralitét
und Ausgangszentralitiat unterschieden. Im Gegensatz zu anderen Zentralitdtsmaflen ist

die Gradzentralitit ein lokales Maf. Zur Berechnung fiir einen bestimmten Knoten ist nur
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die Anzahl der direkten Nachbarn relevant, der Rest des Graphen hat keinen Einfluss.

Everett and Borgatti (1999) erweitern die Definition von Gradzentralitdt auf Gruppen von
Knoten. Die Gradzentralitéit einer Gruppe ist definiert als die Anzahl von Knoten, die mit
Knoten der Gruppe verbunden sind. Ist ein Knoten mit mehreren Knoten der Gruppe ver-

bunden, wird dies trotzdem nur einmal gezahlt.

3.2.2 Nahezentralitat

Die grundlegende Idee der Néahezentralitat ist, dass die Wichtigkeit eines Knotens dar-
tber definiert ist, wie nahe er zu anderen Knoten des Netzwerkes ist. Sei G = (V, E) ein

ungerichteter Graph. Die Nahezentralitdt eines Knotens v ist definiert als

1
Suey dist(v,u)’

car(v) = (7)
wobei dist(v,u) die geodétische Distanz zwischen den Knoten uw und v bezeichnet. Um
die Vergleichbarkeit der Nahezentralitat zwischen Graphen verschiedener Groflen zu erhal-
ten, wird das Maf} auf das Intervall [0, 1] normiert, indem man es mit dem Faktor N, — 1
multipliziert. Dabei bedeutet ein Wert von 1, dass alle Knoten v € V in der direkten
Nachbarschaft von v liegen. Fiir Knoten, die nicht miteinander verbunden sind, wird hier

meist die Anzahl der Knoten N, als Distanz genommen.

Fiir die Berechnung der geodétischen Distanz zwischen zwei Knoten muss der kiirzeste Weg
zwischen den Knoten gefunden werden. Um die Lange des kiirzesten Wegs zwischen zwei
Knoten zu berechnen, wird der Dijkstra-Algorithmus benutzt, der im Appendix genauer

erlautert wird.

Die Definition von Néahezentralitidt wird kompliziert, wenn der zu untersuchende Graph
nicht verbunden ist, da die geodétische Distanz dann fiir ein Knotenpaar, das nicht mitein-
ander verbunden ist, den Wert oo annimmt und ¢¢(v) damit 0 wird. Eine Méglichkeit, auch
fiir solche Graphen eine Aussage tiber die Nahezentralitat zu treffen, besteht darin, die Na-
hezentralitéit fiir verbundene Komponenten des Graphen separat zu berechnen. Wenn der
Graph aus einer giant component, also einer verbundenen Komponente, die einen Grofiteil

der Knoten in dem Graphen enthélt, besteht, so beschrankt man die Analyse haufig nur
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N, N, Mean Minimum Maximum
Komponente 1 | 969 3353 0.1851 0.1172 0.2715
Komponente 2 | 754 3101 0.1098 0.0659 0.1591
Komponente 3 | 386 1085 0.0934 0.0592 0.1322
Komponente 4 | 325 930 0.1913 0.1020 0.2962
Komponente 5 | 149 548 0.2795 0.1263 0.4077
Komponente 6 | 125 488 0.2717 0.1981 0.4052
Komponente 7 | 109 403 0.3087 0.1878 0.4887

Tabelle 1: Ubersicht iiber die Nahezentralitiat der groften Komponenten

auf diese giant component. Ist das nicht der Fall, so kann man die geodatische Distanz
fiir zwei unzusammenhéngende Knoten umdefinieren. Statt dem Wert oo kann der Distanz
zum Beispiel der Wert N, zugeordnet, werden. Die Wahl von N, ist damit zu begriinden,
dass die maximal mogliche geodatische Distanz von zwei Knoten in einem zusammenhén-

genden Graphen N, — 1 ist.

Fiir die Knoten im Patentdatensatz wird die normierte Nahezentralitdt betrachtet. Die
durchschnittliche Nihezentralitit betrigt hier 9.988 107°, der Knoten mit der kleinsten
Néhezentralitit hat einen Wert von 9.797 107°, der Knoten mit der hochsten Nahezentra-
litdt hat einen Wert von 1.082 10~*. Ingesamt sind die Werte sehr nahe an 0. Ein Grund
dafir ist, dass der Graph unverbunden ist und daher in einzelne Komponenten zerféllt. Fur
Knoten v, u aus verschiedenen Komponenten wird daher dist(v,u) = N, = 10208 gewéhlt.
Um das zu umgehen, wurden minimale, maximale und durchschnittliche Ndhezentralitét
in den Komponenten des Patentdatensatz mit mehr als 100 Knoten in Tabelle 1 darge-
stellt. Hier ist zu sehen, dass sich fiir die einzelnen Komponenten wesentlich grélere Werte

ergeben.

Wie schon zuvor die Gradzentralitat kann auch die Definition von Nahezentralitit auf

Gruppen von Knoten angewandt werden, wie von Everett and Borgatti (1999) vorgestellt.

3.2.3 Intermediationszentralitat

Intermediationszentralitdt beschreibt, inwiefern ein Knoten auf den einzelnen Pfaden ei-
nes Graphen liegt. Knoten, die auf vielen Pfaden liegen, werden hier als wichtiger bzw.

zentraler fir das Netzwerk bewertet als andere. Freeman (1977) definiert die Intermediati-
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N, N. Median in 107® Minimum Maximum
Komponente 1 | 969 3353 0.0000 0.0000 0.1817
Komponente 2 | 754 3101 0.0000 0.0000 0.5146
Komponente 3 | 386 1085 0.0000 0.0000 0.5152
Komponente 4 | 325 930 0.0000 0.0000 0.4795
Komponente 5 | 149 548 1.5300 0.0000 0.2151
Komponente 6 | 125 488 0.0164 0.0000 0.2516
Komponente 7 | 109 403 0.0000 0.0000 0.3827

Tabelle 2: Ubersicht iiber die Intermediationszentralitit der groften Komponenten

onszentralitat eines Knotens v als

o(s,t|v)
o(s,t)’

(8)

cp(v) =
s#tAvEV
wobei o(s,t|v) die Anzahl der kiirzesten Pfade zwischen s und ¢, die durch v fithren, ist
und (s, t) die Gesamtanzahl der kiirzesten Pfade zwischen s und ¢ ist. Wenn die kiirzesten
Pfade zwischen zwei Knoten in einem Graphen eindeutig sind, so misst cg(v) die Anzahl

an kiirzesten Pfade in GG, die durch v gehen. Eine Normierung kann auch hier durch die
Division mit dem Faktor (N, — 1)(N, — 2)/2 erfolgen.

Um die Intermediationszentralitit fiir alle Knoten v in G' zu berechnen, muss die Lange
aller kiirzesten Pfade zwischen allen Knotenpaaren bestimmt und fiir jeden Knoten auf-
summiert werden. Daher ist die Berechnung der Ordnung O(N?) gerade fiir groBe Netz-
werke sehr aufwindig. Eine Berechnungsalternative mit geringerem Aufwand ist mit dem
Brandes-Algorithmus gegeben, der die Rechenzeit auf O(N,N,) verkiirzt. Eine genauere
Beschreibung des Algorithmus ist im Appendix gegeben.

Fiir den Patentdatensatz wird wieder die normierte Intermediationszentralitit betrachtet.
Statt des Mittelwerts der Intermediationszentralitdt wird hier nun der Median betrachtet,
da extreme Werte vorliegen, die den Mittelwert verzerren wiirden. Die minimale Interme-
diationszentralitat sowie der Medianwert liegen bei 0, die maximale Intermediationszen-
tralitat bei 2.797 1073, In Tabelle 2 sind die entsprechenden Werte wieder fiir die sieben
grofften Komponenten gegeben. Das Minimum liegt jeweils immer bei 0, der Median bis

auf Komponenten 5 und 6 ebenfalls. Die Maxima variieren zwischen 0.18 und 0.52.
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N, N, Median in 102 Minimum in 1072 Maximum
Komponente 1 | 969 3353 0.00150 0.00000 1.00000
Komponente 2 | 754 3101 0.00003 0.00000 1.00000
Komponente 3 | 386 1085 0.00118 0.00000 1.00000
Komponente 4 | 325 930 2.15500 0.00001 1.00000
Komponente 5 | 149 548 10.17000 0.00002 1.00000
Komponente 6 | 125 488 8.59100 0.01728 1.00000
Komponente 7 | 109 403 8.22800 0.05720 1.00000

Tabelle 3: Ubersicht tiber die Eigenvektorzentralitiat der groften Komponenten

3.2.4 Eigenvektorzentralitat

Ein viertes Zentralitatsmafl misst die Wichtigkeit bzw. die Zentralitdt eines Knotens da-
nach, wie zentral die Nachbarn eines Knotens sind. Bonacich (1972), basierend auf Katz

(1953), definiert ein Eigenvektorzentralitédtsmafl

cei(v)=a > cmiu), 9)

{uv}er

wobei c¢p; = (cgi(1), ..., cmi(N,))T die Losung zum Eigenwertproblem Acg; = o~ 'cg; mit
der Adjazenzmatrix A ist. Eine Wiederholung der Berechnung von Eigenwerten und Ei-
genvektoren einer Matrix ist im Appendix gegeben. Nach Bonacich (1972) ist der grofte
Eigenwert von A die optimale Wahl von o~ !. Ist ein Graph G zusammenhingend und un-
gerichtet, so ist der grofite Eigenwert eindeutig und der dazugehorige Eigenvektor besteht

aus Eintragen ungleich null, die alle dasselbe Vorzeichen haben.

Fiir den Patentdatensatz liegt das Minimum sowie der Medianwert bei 0. Die maximale
Eigenvektorzentralitiat eines Knoten betrdagt 1. In Tabelle 3 sind die entsprechenden Werte
fiir die sieben grofiten Komponenten gegeben. Das Maximum liegt jeweils bei 1, das Mini-

mum reicht von 0 bis zu 5.72 10~4.

Die vorgestellten vier Zentralitdtsmafle haben unterschiedliche Auffassungen von Wichtig-
keit von Knoten, daher konnen die Zentralitdtsbewertungen fiir einzelne Knoten vonein-
ander abweichen. In Abbildung 19 sind vier Targetplots der Komponente 7 fiir die eben
vorgestellten Zentralitdtsmafle gegeben. Der rote Knoten mit dem hochsten Wert ist in je-
dem Fall derselbe Knoten, er bekommt also von allen vier Maflen die hochste Zentralitéts-

bewertung. Dieses Ergebnis lasst sich jedoch nicht auf den gesamten Graphen ausdehnen.
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Abbildung 19: Target-Plot fiir die vier Zentralitdtsmafle.

3.2.5 Erweiterung auf Kantenzentralitit

Alle bisher vorgestellten Mafle haben gemeinsam, dass sie die Zentralitdt von Knoten be-
trachtet. Es gibt jedoch auch Zentralitdtsmafle, die statt auf Knoten auf Kanten angewandt
werden konnen, wie zum Beispiel die Intermediationszentralitit. Statt den Anteilen der
kiirzesten Pfade, die durch einen Knoten v gehen, werden hier die Anteile der kiirzesten

Pfade, die durch eine Kante e = (u,v),u,v/inV gehen, betrachtet, siehe Girvan and New-

man (Girvan and Newman).

Andere Zentralitatsmafle sind nicht direkt auf Kanten iibertragbar. Um solche Mafle trotz-
dem anwenden zu kénnen, wird der duale Graph G” = (V" E”) eines Graphen G = (V| E)
verwendet. Bei einem dualen Graphen werden Kanten und Knoten gewissermafien ver-
tauscht. Das heifit, dass die Knoten v” € V" die Kanten e € E darstellen. Die Kanten

e’ € E" stehen dafiir, dass die beiden dazugehorigen Kanten im urspriinglichen Graphen
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G inzident in einem gemeinsamen Knoten sind, sieche Brandes and Erlebach (2005). Ein

Beispiel fiir einen Graphen und den dazugehoérigen dualen Graphen ist in Abbildung 20

gegeben.

Abbildung 20: links: Beispielgraph mit Kanten a, b, ¢, d, e, f; rechts: dazugehoriger dualer
Graph
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4 Netzwerkkohasion

Wahrend in Kapitel 3 Netzwerkcharakteristika basierend auf den Knoten présentiert wur-
den, soll nun der Zusammenhang des Netzwerks genauer untersucht werden. Wieder gibt
es verschiedene Mafle fiir den Zusammenhalt eines Netzwerkes, die auf unterschiedliche
Fragestellungen eine Antwort geben sollen. Wie schon bei den Zentralitatsmaflen gibt es

auch hier lokale und globale Herangehensweisen.

4.1 Lokale Dichte

Oft ist es von Interesse, ob eine Teilmenge der Knoten lokal dicht beieinander liegt. Das
klassische Beispiel fiir solche eng-vernetzten Knoten ist die Clique, also eine Teilmenge von
Knoten, bei der jeder Knoten ein direkter Nachbar des anderen ist. Je grofier eine Clique
ist, desto seltener kommt sie in der Praxis vor, da das Netzwerk dazu sehr dicht vernetzt
sein muss. Turdn (1941) hat gezeigt, dass es fiir die Existenz einer n-Clique in einem Gra-
phen hinreichend ist, wenn N, > (N2/2)[(n —2)/(n — 1)] gilt. Jedoch ist diese Bedingung
in der Praxis gerade fiir groflere n selten erfiillt, da N, und N, oft von dhnlicher Ordnung
sind. Fur den Patentdatensatz ist diese Bedingung bereits fiir Cliquen der Ordnung n = 3
nicht erfillt. Dabei ist darauf hinzuweisen, dass trotzdem Cliquen der Ordnung n = 3
oder hoher im Patentdatensatz bestehen konnen. Die Cliquenzahl w(G) gibt die Anzahl
der Knoten in der maximalen Clique von G an. Fiir den Patentdatensatz ergibt sich eine
Cliquenzahl von w(G) = 16.

Abbildung 21: links: Beispiel eines 3-Cores; rechts: Beispiel eines 3-Plex

Eine andere, weniger restriktive Art als Cliquen, Netzwerkkohésion zu messen, sind Plexe.

Ein n-Plex ist ein Subgraph, der aus m Knoten besteht, wobei m > n gilt, und in dem
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kein Knoten einen geringeren Grad als m — n hat. Wenn kein Knoten einen geringeren
Grad als m —n hat, darf jeder Knoten mit maximal n — 1 anderen Knoten nicht verbunden

sein. Da in einer Clique jeder Knoten den Grad m — 1 hat, ist jede Clique auch ein 1-Plex.

In der Praxis hat es sich jedoch als sehr aufwiandig erwiesen, maximale Cliquen oder Plexe
zu finden. Eine weitere Lockerung der Anforderungen an eine lokale Struktur fiihrt zu
Cores. Ein k-Core ist ein Subgraph, in dem jeder Knoten mindestens den Grad k hat, und
von dem es keine Obermenge mit dieser Eigenschaft gibt, der diesen Subgraphen enthalt.
In Abbildung 21 ist ein Beispiel fiir einen 3-Core und einen 3-Plex gegeben. Fin maximaler
Core kann in O(N,,+ N, ) berechnet werden, verglichen mit O(N237) fiir maximale Cliquen.
Ein Targetplot der Cores in Komponente 7 ist in Abbildung 22 gegeben. Die schwarzen
Kreise am &uflersten Rand stehen fiir 1-Cores, die roten Kreise fiir 2-Cores, usw.. Die
maximalen Cores sind 8-Cores, von denen es 9 in der Komponente gibt und die durch die

grauen Kreise in der Mitte des Targetplots dargestellt werden.

Abbildung 22: Targetplot der Cores in Komponente 7
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Die Mafe, die wir bis jetzt kennengelernt haben, basieren alle darauf, dass man im Graphen
nach vordefinierten Strukturen sucht. Alternativ kann man Mafle fiir die lokale Dichte eines
Graphen definieren, indem man die Anzahl der Kanten mit der Anzahl der moglichen
Kanten vergleicht. So folgt fiir die Dichte eines Subgraphen H = (Vy, Ey)

| Byl

dentH) = [l Val — 172

(10)

Die Dichte ist auf das Intervall [0, 1] normiert und sagt aus, wie sehr der Subgraph einer
Clique ahnelt. Ist die Dichte 1, so existieren in dem Subgraph alle moglichen Kanten und es
liegt eine Clique vor. Wahlt man H = G, so erhélt man ein Ma#f fiir die Dichte des gesamten
Graphen. Fiir den Patentdatensatz ergibt sich hier eine Dichte von den(G) = 4.2183 10~%.

Eine andere Herangehensweise, den gesamten Graphen zu beschreiben, wurde von Watts
and Strogatz (1998) beschrieben und liegt in der Berechnung der Dichte fiir die Nach-
barschaft N(v) eines jeden Knotens v. Bildet man dann das arithmetische Mittel tiber
den(N(v)) fiir alle Knoten v € Vp, so kann man das Ergebnis als einen Clusterkoeffizien-

ten fiir den gesamten Graphen G betrachten.

Abbildung 23: Links: 2-Star, Rechts: Triangle

Eine weitere Moglichkeit, den Grad der Clusterbildung in dem Graphen zu beschreiben ist,
wie héufig 2-Stars, also drei Knoten, die durch zwei Edges verbunden sind, zu Triangles,
also einer 3er-Clique, werden, wie in Abbildung 23 dargestellt. Sei dazu 74(v) die Anzahl
der Triangles, zu denen ein Knoten v gehort, und 73(v) die Anzahl an 2-Stars, zu denen

v gehort. m3(v) lasst sich als (Z) berechnen. Der Clusterkoeffizient nach Watz Strogatz
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den(H,) lasst sich damit fiir Knoten v mit 74(v) > 0 umschreiben zu

den(H,) = cl(v) = : (11)

d(G)=— cl(v), (12)

wobei V' C V die Menge an Knoten beschreibt, fir die d, > 2 gilt.

Da der Clusterkoeffizient in Gleichung (12) jedoch ein Mittelwert iiber die Mittelwerte

cl(v) ist, kann es informativer sein, stattdessen das gewichtete Mittel

> vev’ T3 (U)Cl (U)

13
ZveV’ T3 (U) ( )
zu betrachten. Das kann umgeschrieben werden zu
3TA (G)
Ir(G) = 14
clr(G) = T (14)

wobei A (G) = 1/3 3 ,cv Ta(v) der Anzahl von Triangles im Graphen und 73(G) = 3¢y 73(v)
der Anzahl von 2-Stars entspricht. Die Kennzahl clr(G) in Gleichung (14) wird auch Tran-
sitivitat eines Graphen genannt. Sie beschreibt, in welchem Anteil von Féllen die Knoten

der 2-Stars auch ein Triangle bilden.

Da sich die beiden Clusterkoeffizienten ¢l und clr zwar oft d&hnlich verhalten, es aber Ex-
tremfélle gibt, in denen beide stark voneinander abweichen, ist es wichtig, immer genau

anzugeben, welcher von beiden Koeffizienten benutzt wird.

Im Patentdatensatz liegen 30 055 Triangles und 157 398 2-Stars vor. Damit ergibt sich fiir
den Clusterkoeffizienten clr(G) = 0.5728. Wéhrend die beiden vorgestellten Clusterkoeffi-
zienten auf der Basis von Triangles, also 3-Cycles, berechnet werden, kénnen solche Clus-

terkoeffizienten auch fir Cycles mit hoherem k berechnet werden, siehe Newman (2010)
oder Fronczak et al. (2002).
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Knotenanzahl | 2 3 4 5 6 7 8 9 10 11 12 13 14
Haufigkeit 722 433 236 104 60 33 30 33 17 18 11 6 4
Knotenanzahl | 15 16 17 18 19 20 21 22 24 26 27 28 29
Haufigkeit 6 3 6 2 3 2 2 1 2 1 1 1 2
Knotenanzahl | 30 31 32 33 34 45 49 55 60 78 80 82 95
Haufigkeit 1 1 1 1 1 2 2 1 1 1 1 1 1
Knotenanzahl | 109 125 149 325 386 754 969

Haufigkeit 1 1 1 1 1 1 1

Tabelle 4: Ubersicht iiber die Komponenten des Patentdatensatz

4.2 Konnektivitat

Wiéhrend im vorhergehenden Unterkapitel in erster Linie nach zusammenhédngenden Un-
terstrukturen geringer Grofle gesucht wurde, soll nun untersucht werden, wie der Graph
vernetzt ist, und, falls es sich um ein unverbundenes Netzwerk handelt, wie der Graph in

verbundene Komponenten zerfallt.

4.2.1 Verbundene Komponenten und “Small Worlds”

Eine verbundene Komponente eines Graphen ist ein moglichst grofler verbundener Sub-
graph. Ein Graph, der nicht verbunden ist, ldsst sich in einzelne verbundene Komponenten
unterteilen. Ob ein Graph verbunden ist, oder nicht, sowie seine Unterteilung in verbun-
dene Komponenten lésst sich mit BFS oder DFS-Algorithmen in O(N, + N.) Rechenzeit

herausfinden.

Bei nicht-verbundenen Graphen gibt es haufig eine giant component. Eine giant compo-
nent ist ein verbundener Subgraph, der den Grofiteil der Knoten des Graphen enthélt. In

solchen Fallen werden dann die weiteren Analysen nur auf die giant component angewandt.

Fiir den Patentdatensatz ist in Tabelle 4 eine Ubersicht der einzelnen maximalen Kompo-
nenten gegeben. Da die grofite Komponente mit 969 Knoten nicht einmal 10% der Knoten
umfasst, kann hier nicht von einer giant component gesprochen werden. Besonders die hohe
Anzahl an kleinen Komponenten ist auffillig. Uber 40% der Knoten entfallen auf Kompo-

nenten mit 5 oder weniger Knoten.

Zusammenhangende Graphen oder giant components weisen zudem manchmal die “small-
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world”-Eigenschaft auf. Die erste Idee dazu kam von Milgram (1967), der behauptet hat,
dass jeder Mensch durchschnittlich tiber nur sechs Bekannte mit jedem anderen Men-
schen auf der Erde verbunden ist. Generell beschreibt das “small-world”-Phanomen die
Eigenschaft von grofien Netzwerken, bei denen die durchschnittliche Distanz zwischen zwei
Knoten im Vergleich zu ihrer Grofle relativ klein ist. Formal ausgedriickt gilt, dass ein

Netzwerkgraph diese Eigenschaft erfiillt, wenn

_ 1
l=————— > dist(u,v) (15)
N“(NU + 1)/2 uF#veV
kleiner gleich O(log N,,) ist. Watts and Strogatz (1998) haben beobachtet, dass eine geringe
durchschnittliche Distanz in dem Graphen mit einem hohen Clusterkoeffizienten einher-
geht.

Eine andere interessante Fragestellung hinsichtlich Konnektivitét ist, wieviel Einfluss ein-
zelne Knoten oder Kanten eines Netzwerkes auf die Konnektivitit eines Netzwerkgraphen
haben. In Abbildung 24 ist ein Spezialfall zu sehen, bei dem der rote Knoten die einzige
Verbindung zwischen dem linken und dem rechten Teil des Graphen ist. Wiirde man diesen

Knoten entfernen, ware der Graph nicht mehr verbunden.

Abbildung 24: Beispiel eines 1-Knoten verbundenen Graphen

Ein Graph ist k-Knoten-verbunden, wenn die zwei folgenden Bedingungen erfiillt sind:
1. N, >k

2. Wenn man weniger als k¥ Knoten des Graphen entfernt, ist der tiberbleibende Graph
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verbunden.

Dieselbe Definition lasst sich auch auf Kanten eines Graphen beziehen. Ein Graph ist dem-
nach k-Kanten-verbunden, wenn der Graph mindestens N, = 2 Kanten hat und das

Entfernen von weniger als k£ < N, Kanten den Graphen verbunden lasst.

Basierend auf dieser Definition ist die Knoten/Kanten-Konnektivitat durch den grof-
ten ganzzahligen Wert k gegeben, fiir den der Graph k-Knoten/Kanten-verbunden ist. Die
Knoten-Konnektivitat ist nach oben durch die Kanten-Konnektivitat beschrankt, wahrend
die Kanten-Konnektivitat wiederum durch den geringsten Knotengrad min deg(v) im Gra-

phen nach oben beschrankt ist.

Die sieben grofiten Komponenten des Patentdatensatz haben alle eine Knoten- und Kanten-
Konnektivitdat von 1. Das heifit, schon das Entfernen von einem bestimmten Knoten oder
einer bestimmten Kanten wiirde die Komponenten in mehrere Subkomponenten zerfallen

lassen.

Ein direktes Kriterium, wann ein Graph k-Knoten /Kanten-verbunden ist, liefert das Theo-
rem von Menger. Es besagt, dass ein nichttrivialer Graph genau dann k-Knoten/Kanten-
verbunden ist, wenn alle nicht-adjazenten Knoten u,v € V,u # v iiber einen Pfad mit k

unterschiedlichen Knoten/Kanten erreicht werden konnen.

Eine Menge von Knoten oder Kanten, ohne die der Graph unverbunden ist, nennt man
Knoten/Kanten-Cut. Meist ist man daran interessiert, herauszufinden, was der kleinst-
moglichste Knoten/Kanten-Cut ist. Muss nur ein wohlgewahlter Knoten aus dem Graphen
entfernt werden, um ihn in Subkomponenten zerfallen zu lassen, nennt man einen solchen
Knoten Cut-Knoten. Solche Cuts lassen sich genauer beschreiben. So ist ein u-v-Cut eine
Partition der Knoten in zwei unverbundene, nichtleere Knotenmengen S, S C V, bei der
Knoten v € S und Knoten v € S. Liegen an den Kanten zusétzlich Gewichte w, vor, so
nennt man einen solchen u-v-Cut minimal, wenn die Summe der Gewichte an Kanten, die
Knoten in S mit Knoten in S verkniipfen, minimal ist. Sind alle Kanten mit w, = 1 gewich-
tet, so ist es dquivalent, den minimalen u-v-Cut oder den Kanten-Cut mit der geringsten
Anzahl an Kanten zu finden, der den Graphen in zwei Komponenten teilt, wobei u ein
Teil der ersten und v ein Teil der zweiten Komponente ist. Wenn die geringste Machtigkeit

solcher minimaler Kanten-Cut Mengen fir Knoten u,v € V,u # v gleich k ist, so ist die
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N, Anzahl an Cut-Knoten relativer Anteil an Cut-Knoten
Komponente 1 | 969 87 0.0898
Komponente 2 | 754 76 0.1008
Komponente 3 | 386 63 0.1633
Komponente 4 | 325 39 0.1200
Komponente 5 | 149 13 0.0872
Komponente 6 | 125 11 0.0880
Komponente 7 | 109 10 0.0917

Tabelle 5: Ubersicht iiber Anzahl und Anteil der Knoten, die durch ihr Entfernen die
Komponente in Subkomponenten zerfallen lassen in den grofiten Komponenten

Kanten-Konnektivitat des Graphen k — 1.

Betrachtet man einen Digraphen statt eines ungerichteten Graphen lassen sich die zu-
vor prasentierten Konzepte anpassen. Da man bei der Verbundenheit von Digraphen zwi-
schen schwach und stark verbunden unterscheidet, wird auch bei der Definition von k-
Knoten- und k-Kanten-verbunden zwischen schwach und stark unterschieden. Ein Digraph
ist schwach k-Knoten/Kanten-verbunden, wenn die Bedingungen fiir einfache Graphen fiir
das zugrundeliegende Netzwerk ohne Richtung erfillt ist. Sind die Bedingungen sogar er-
fullt, wenn man die Richtungen der Kanten berticksichtigt, so ist er stark k-Knoten/Kanten-
verbunden. Die Definition fiir Cuts bleibt unverdndert, bis auf dass man nun die Richtung
der Kanten beriicksichtigt. Daher wird nun bei einem cut (5, S) eine der Mengen, z.B. S
als Source und S als Sink bezeichnet, um die Richtung der Bewegung von S zu S wie-

derzugeben.

Da fiir die sieben grofiten Komponenten des Patentdatensatz schon das Entfernen von ei-
nem ausgewahlten Knoten zum Zerfallen fiihrt, wurde nun zudem in Tabelle 5 betrachtet,
wieviele Knoten diese Eigenschaft besitzen. Komponente 3 scheint am instabilsten zu sein.
Der Anteil an Cut-Knoten ist hier mit ca. 16% fast doppelt so hoch wie in Komponenten
1, 5 oder 6.

4.3 Graphenpartitionierung

Oft macht es Sinn, einen Graphen zu partitionieren. Eine Partition einer Menge S ist

ganz allgemein eine Unterteilung der Menge in disjunkte, nichtleere Untermengen C =
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(Cy,...,Ck) von S, sodass gilt Uszle = S. Bei Netzwerkgraphen wird eine Partition
vorgenommen, um zusammenhédngende Cluster von Knoten im Netzwerk zu finden. Das
Ziel einer Partitionierung ist also, die Knoten zu Untermengen zusammenzufassen, die in
sich eine besonders hohe Kohésion aufweisen. Dabei wird eine Untermenge als besonders
kohéasiv angesehen, wenn die enthaltenen Knoten unter sich stark vernetzt und gleichzeitig

von den anderen Knoten des Netzwerks relativ gut getrennt sind.

Die Menge der Kanten, die die Knoten aus zwei beliebigen Mengen Cy,C; € C, k # 1
verbinden, sei E(Cy, C)). E(C}) sei analog die Menge der Kanten, die Knoten innerhalb
der Menge C miteinander verbinden. Formal ausgedriickt sucht man fiir gegebenen Gra-
phen G = (V, E) nach einer Partition C = (C,...,Ck) der Menge der Knoten V', sodass
E(Cy, C}) im Vergleich zu E(Cy) und E(C)) klein ist. Zwei Methoden der Graphenparti-

tionierung werden im Folgenden genauer vorgestellt.

4.3.1 Hierarchisches Clustering

Hierarchisches Clustering ist ein generelles Konzept, aus dem viele andere Partitionierungs-
techniken abgeleitet wurden, die sich hinsichtlich ihrer Clusterkriterien und zugrundeliegen-
den Optimierungsalgorithmen unterscheiden. Man unterscheidet zwischen agglomerativen
und divisiven Verfahren. Agglomerative Verfahren gehen zunéchst von jedem Knoten
einzeln aus, um eng verbundene Knoten nach und nach in Cluster zusammenzufassen,
wahrend divisive Verfahren von der Gesamtmenge der Knoten V ausgehen, um diese

nach und nach in moglichst weit entfernte Cluster zu unterteilen.

Beide Arten von Verfahren gibt es mit verschiedenen Feinheiten der Endpartition, von
dem Extremfall, in dem jeder Knoten fiir sich alleine einen Cluster bildet, also die Parti-
tion C = {{v1},...,{vn,}}, bis hin zu dem anderen Extrem, in dem das Netzwerk nicht
unterteilt ist. Um die Cluster auf den verschiedenen Ebenen graphisch darzustellen, wird

im Allgemeinen auf ein Dendrogramm zuriickgegriffen, wie in Abbildung 25 dargestellt.

Sowohl fiir agglomerative als auch fiir divisive Verfahren muss man vorher Kohésion quanti-
fizieren. Dafiir gibt es verschiedene Mafle, die zumeist darauf basieren, die (Un-) Ahnlichkeit
x;; zwischen zwei Knoten v;,v; € V oder auch zwischen zwei Knotenmengen C; und Cj
mit i # j zu beschreiben. Zwei iibliche Ansétze, um die Ahnlichkeit von Knotenmengen

zu beschreiben, sind das single-linkage und das complete-linkage Verfahren. Das single-
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Abbildung 25: Beispiel eines Dendogramms

linkage Verfahren definiert die Undhnlichkeit bzw. den Abstand Dy gic—iinkage(C1, C2) fir
zwei Knotenmengen C und Cs als das Minimum tber alle z;;, fir die v; € Cy und v; € Cy
ist, also

Dygingie—tinkage(C1,C2) =  min ;. (16)

’UiGCl,’UjECQ
Das complete-linkage Verfahren hingegen definiert die Unéhnlichkeit zwischen Mengen
Cq und Csy als

Dcomplete—linkage(oly 02) - max  Tij. (17)
v;€C,v;€07

Auch fir die Unahnlichkeit z;; zwischen zwei Knoten selbst gibt es verschiedene Mafe. Die

"Euklidische Distanz” Unéhnlichkeit beispielsweise ist definiert als

Tij = Z (Aik - Ajk:)Qu (18)
k4,5

woebei A die Adjazenzmatrix des Graphen ist. Diese Unéahnlichkeit misst die euklidische

Distanz zwischen den Zeilen ¢ und j.

Jedoch benutzen nicht alle hierarchischen Clustermethoden ein Unéahnlichkeitsmafl fir

Knoten. So optimiert Newman (2010) stattdessen die sogenannte Modularitét einer Parti-
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tion. Die Modularitdat mod (C) einer Partition C = (C1, ..., Ck) ist gegeben durch

K

mod (C) = kzl[fkk(c) — fi(O), (19)
wobei fi(C) der Anteil der Kanten E ist, der Knoten aus C} miteinander verbindet, und
frp der erwarteten Anteil der Kanten ist, die bei einer zufilligen Kantenzuweisung Knoten
aus C}, miteinander verbinden wiirden. Haufig wird f};, als fi4 f1r definiert, also als Pro-
dukt der k-ten Zeilen- und Spaltensumme der Matrix K = (f;;). GroBle Modularitatswerte
deuten darauf hin, dass die Vernetzung innerhalb der einzelnen Mengen aus der Partition C

iiber die zuféllige Vernetzung hinausgehen, und weisen damit auf eine Gruppenstruktur hin.

Der Vorteil an dieser Herangehensweise ist, dass ein einziges Qualitatsmafl auf alle mog-
lichen Partitionen angewandt und damit nicht nur eine Hierarchie erstellt wird, sondern

direkt auch die optimale Partition in dieser Hierarchie ausgewahlt wird.

Fir Komponente 7 des Patentdatensatzes ist in Abbildung 26 eine Partitionierung durch
hierarchisches agglomeratives Clustering mithilfe der Optimierung der Modularitéit darge-
stellt. Das dazugehorige Dendogramm wird aus Griinden der Ubersichtlichkeit nicht abge-
bildet.

4.3.2 Spektralpartitionierung

Eine andere Herangehensweise zur Partitionierung von Netzwerkgraphen ist die Spektral-
partitionierung. Sie benutzt die Eigenwertanalyse von Graphmatrizen, um Riickschliisse
auf die Konnektivitiat des Graphen zu ziehen. Die zwei gangigsten Methoden basieren auf

der Adjazenz- und der Laplace-Matrix eines Graphen G.

Fir die erste Methode wird zunéachst eine Spektralanalyse der Adjazenzmatrix durchge-
fithrt. Hierbei werden die (maximal) N, Eigenwerte sowie die dazugehorigen Eigenvektoren
bestimmt. Fiir die genaue Berechnung wird auf den Appendix verwiesen. Die resultieren-
den, nach der Gréfle geordneten Eigenwerte A; < --- < Ay, sowie die dazugehorigen

Eigenvektoren z1,...,zy, erfillen dann die Gleichung
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Abbildung 26: Partitionierung von Komponente 7 durch hierarchisches agglomeratives
Clustering mithilfe der Optimierung der Modularitét

Dann wird zuerst der betragsméflig grofite Eigenwert betrachtet und dessen Eigenvektor-
Eintréage ebenfalls der Grofle nach geordnet. Die Knoten mit besonders groflen negativen
oder positiven Eintrdgen in diesem Eigenvektor, sowie ihre direkte Nachbarschaft, wird
dann zu einem Cluster zusammengefasst. In der Praxis werden so normalerweise nur die

K grofiten Eigenwert-Eigenvektorpaare untersucht, wobei K ~ log N,,.

Die Idee hinter dieser Herangehensweise ist folgende: Wenn ein Graph eigentlich aus zwei
d-regularen Graphen besteht, die nur durch wenige Knoten miteinander verbunden sind,
so werden die zwei grofiten Eigenwerte der Matrix dhnlich groff wie d sein und die an-
deren Eigenwerte der Adjazenzmatrix werden deutlich geringer sein. Es wird also einen
deutlichen Unterschied zwischen dem zweit- und dem drittgrofiten Eigenwert geben. Die
dazugehorigen beiden Figenvektoren werden zudem fiir Knoten des einen Clusters stark

positive Werte und fiir die Knoten des anderen Clusters stark negative Werte aufweisen.

Das Problem dieser Methode liegt in der Idee selbst. Oft sind die Cluster, in die ein Graph

unterteilt werden soll, deutlich nicht regulér, sondern es liegt in dem Graphen eine starke
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Streuung der Knotengrade vor. Als Resultat wird die resultierende Partition eine Trennung
nach Knotengrad sein, die die zugrundeliegende Gruppenstruktur oft nicht erfasst. Eine
Losung, die Gkantsidis et al. (2003) vorgeschlagen haben, umfasst eine Umformung der

Adjazenzmatrix, sodass die Zeilensummen alle 1 sind.

Eine andere Methode basiert auf der Spektralanalyse der Laplace-Matrix
L=D-A, (21)

wobei A die Adjazenzmatrix ist und D = diag[(d,)]. Laut Kolaczyk (2009) besteht ein

Graph G genau dann aus K verbundenen Komponenten wenn gilt
MIL)=...=Xg(L)=0 (22)

und

A (L) > 0. (23)

Der kleinste Eigenwert der Laplace-Matrix L ist immer gleich 0 und hat den dazugehori-
gen Eigenvektor x; = (1,...,1)?. Wenn also vermutet wird, dass der Graph G annihern

aus K = 2 Komponenten besteht, wiirde man nach obiger Aussage erwarten, dass auch

Da eine Bisektion, also eine Partition des Graphen in zwei Teile, oft von Interesse ist,
wird in diesen Fallen der isoperimetrische Wert eines Graphen betrachtet. ¢(.S, S ) =
|E(S,S)|/]S| ist der Anteil des Cuts (S, S). Um eine moglichst gute Bisektion des Graphen
zu erreichen, muss man eine derartige Menge S finden, wo der Anteil der Kanten, die
Knoten aus S und S verbinden, moglichst klein ist. Der isoperimetrische Wert ist daher

definiert als

o(G) = min _ ¢(S, S). (24)

SCV:‘S‘SNU/Q

Die Minimierung der Anteile ist rechnerisch sehr aufwéndig, jedoch kann man untere und

obere Schranken fiir den isoperimetrischen Wert angeben:
~ S (b(G) S )\2(2dmax - )\2>7 (25)

wobei dy.x den hochsten Grad in G und Ay der zweitgrofite Eigenwert der Laplace-Matrix
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ist. Nimmt A\, also kleine Werte an, so wird auch ¢(G) klein.

Nach Fiedler (1973) wird eine Bisektion nun vorgenommen, indem man den zu Ay gehérigen
Eigenvektor x5 betrachtet. Die Knoten, fiir die der Eigenvektor positive Eintrége hat,

werden der einen Knotenmenge zugeordnet:
S={veV:xy(v) >0} (26)
Die Knoten, fiir die der Eigenvektor negative Eintrége hat, werden S zugeordnet:
S={veV: xv) <0} (27)

Der Eigenwert A\ wird auch Fiedler-Wert und der dazugehorige Eigenvektor x, Fiedler-
Vektor gennant. Eine solche Spektralbisektion wird daher als Approximation genutzt, um
den besten Cut fiir ¢(G) zu erhalten.

Oftmals soll ein Graph in mehr als zwei Partitionen unterteilt werden. Eine Herangehens-
weise ist hier, die oben vorgestellte Bisektion als iteratives Verfahren an den erhaltenen
Partitionen nochmals durchzufiihren. Eine Verbesserung dieses Verfahren schlédgt Newman
(2006) vor. Hierbei wird statt der Laplacematrix die Modularitdtsmatrix B mit den Ein-

tragen
o degi)deg())

B ij N

(28)

ij

optimiert.

Das Resultat einer solchen Spektralpartition von Komponente 7 ist in Abbildung 27 ab-
gebildet. Dabei werden Knoten zwar verglichen mit der hierarchischen Partitionierung in
Abbildung 26 oft in &hnliche Gruppen zusammengefasst, jedoch bildet die Spektralpartitio-

nierung nur 6 Gruppen, wihrend die hierarchische Partitionierung in 8 Clustern resultiert.

Das Problem bei den vorgestellten Methoden zur Spektralpartition ist, dass eine Eigen-
wertzerlegung fiir grole Graphen relativ aufwandig ist. Der Rechenaufwand verringert sich
jedoch fiir Graphen mit wenigen Kanten und auch bei einer Bisektion, wenn der Abstand

zwischen zweitgroffitem und drittgrofftem Eigenwert grof3 ist.
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Abbildung 27: Partitionierung von Komponente 7 durch Spektralpartitionierung mithilfe
der Optimierung der Modularitét

4.4 Assortativity & Mixing

Im vorangegangen Kapitel wurde nach einer Clusterstruktur von ahnlichen Knoten im
Netzwerkgraphen gesucht. Oft haben &hnliche Knoten auch &hnliche Eigenschaften oder
Attribute, die jedoch latent sind. Graphenpartitionen sind in solchen Féllen daher sehr

nitzlich, um die Knoten trotzdem Clustern zuordnen zu kénnen.

Sind diese Knoteneigenschaften nicht latent, sondern bekannt, kann man mit einigen Kenn-
zahlen quantifizieren, inwiefern eine Eigenschaft auf die Partition einen Einfluss hat. Haben
diese Eigenschaften einen Einfluss auf die Vernetzung zwischen den Knoten, so spricht man
von assortativem Mixing. Um nun den Einfluss dieser Eigenschaften zu quantifizieren,
kann man diverse Assortativitits-Koeffizienten berechnen. Einige dieser Mafizahlen, die im

Grunde auf dem Konzept der Korrelation basieren, sollen nun vorgestellt werden.

Das Knoten-Merkmal, das fiir die Assortativitat betrachtet wird, kann sowohl kategorial,

ordinal als auch metrisch sein. Angenommen, das betrachtete Merkmal sei kategorial und
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hat M verschiedene Kategorien. Fiir jeden Knoten im Graphen sei die Merkmalsauspré-
gung, also die Kategorie, bekannt. Sei F eine Matrix, deren Eintrage f;; der relative Anteil
an Kanten im Graphen ist, die Knoten der i-ten Kategorie mit Knoten der j-ten Kategorie
verbinden. f;; sei dann die i-te Zeilensumme und f;; die j-te Spaltensumme. Dann ist der

Assortativititats-Koeffizient r, definiert als

o= Ez fzz - Zz fi+f+i
¢ 1_Zifi+f+i .

(29)

Wenn der Anteil der Verbindungen innerhalb einer Kategorie sich nicht von dem erwarteten
Wert der Verbindungen bei zufalliger Kantenanordnung unterscheidet, so ist der Zéhler und
damit r, Null. Analog ist der Koeffizient gleich 1, wenn nur Knoten derselben Kategorie
miteinander verbunden sind, da dann }, f;; = 1 gilt. Wenn die Kantenanordnung perfekt
disassortativ ist, also nur Kanten zwischen Knoten unterschiedlicher Kategorie bestehen
und Y, fi; = 0 ist, erreicht der Koeffizient seinen minimalen Wert von

pmin — i firS+i . (30)

L =35 fir fri

Der Wertebereich des Koeffizienten ist also das Intervall (—1, 1], wobei darauf hingewiesen
wird, dass man die untere Grenze von —1 selbst bei perfekten dissortativem Verhalten der

Kanten nicht erreicht.

Liegt statt eines kategorialen ein ordinales oder metrisches Merkmal vor, wird ein anderer
Assortativititats-Koeffizient benutzt. Seien (z.,y.) die Merkmalsausprigungen der Kno-
ten, die durch eine Kante e € F verbunden sind. Um die Assortativitidt im Graphen zu
beschreiben, wird nun der Pearson-Korrelationskoeffizient des Paares (z., v.)
x Ty — JzT
r— Zz,y y(fy f+f+y) (31)

0,0y

benutzt. Die Summe wird tiber alle beobachteten Merkmalsauspriagungskombinationen
(z,y) gebildet und f,y, for, f+y sind analog wie im kategorialen Fall definiert. o, und

o, entsprechen den Standardabweichungen der Verteilungen der Héufigkeiten {f,;} und

{fy+ )

Diese Methoden lassen sich nur auf Netzwerke anwenden, bei denen weitere Informationen

zu Eigenschaften und Attributen der Akteure in dem Netzwerk vorliegen. Im Patentnetz-
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werk ist das nicht der Fall. Wiirden weitere Informationen jedoch vorliegen, wére es auch
hier von Interesse, die Clusterstruktur vor dem Hintergrund der Fachdisziplin, der Natio-

nalitéit, des Alters oder Geschlechts zu analysieren.
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5 Zusammenfassung

Die vorgestellten Methoden zur deskriptiven Analyse von Netzwerken fokussieren sich auf
die Eigenschaften der Kanten und Knoten eines Netzwerks und die Beschreibung des Zu-
sammenhangs eines Netzwerks. Dabei sind nicht immer alle Methoden fiir jedes Netzwerk
sinnvoll oder anwendbar. Ergebnisse sollten daher immer vor dem Hintergrund interpretiert
werden, was das Netzwerk tiberhaupt darstellt. Insbesondere fiir groe Netzwerkgraphen

spielt zudem die Effizienz von Algorithmen und damit deren Rechenzeit eine grofle Rolle.

Fiir den Patentdatensatz bewerten in den sieben grofiten Komponenten alle vier vorgestell-
ten Zentralitdtsmafle denselben Knoten im Netzwerk als am “wichtigsten” fiir den Graphen,
fir den gesamten Graphen ist das jedoch nicht der Fall. Insgesamt ist der Grad der Ko-
hasion des Netzwerks eher gering, was auch daran liegt, dass das Netzwerk unverbunden
ist und aus mehreren Komponenten besteht. Insbesondere entfallen sehr viele Knoten auf
sehr kleine Subkomponenten mit weniger als 5 Knoten und es liegt keine giant component

vor, auf die sich eine weitere Analyse und die Modellerstellung konzentrieren kénnte.
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A Appendix

A.1 Eigenwerttheorie

Fiir den Kontext dieser Arbeit ist nur die Eigenwerttheorie fiir endliche Vektorraume re-
levant. Zudem werden Eigenwerte nur in R betrachtet. Gegeben sei also ein Vektorraum
V mit dim(V) = n € N. Dann lésst sich jeder Endomorphismus f : V' — V durch ei-
ne n X n-Matrix darstellen. Gilt fiir ein A € R und einen Nicht-Nullvektor x € R" die
Gleichung

Az = Az, (32)

so nennt man A einen reellen Eigenwert der Matrix A. Der Vektor z # 0 ist dann der

dazugehorige Eigenvektor.

Zur Berechnung der Eigenwerte und Eigenvektoren wird die Gleichung (32) zu
Az — \Ez =0 (33)

umgeschrieben, wobei E die n-dimensionale Einheitsmatrix ist. Ein Ausklammern des Vek-
tors x liefert

(A — \E)z = 0. (34)

Wegen z # 0, ist dieses Gleichungssystem genau dann lésbar, wenn
det(A — AE) = 0. (35)

Diese Determinante ist ein Polynom n-ten Grades in A und wird auch charakteristisches

Polynom genannt. Dessen Nullstellen
Ny A a Ao =0 (36)

in R sind die reellen Eigenwerte der Matrix. Die dazugehorigen Eigenvektoren x berechnet
man dann durch Einsetzen der Eigenwerte in Gleichung (34) und Losen des homogenen
linearen Gleichungssystems. Eigenwerte sind nicht immer einfach, sondern es konnen auch
mehrfache Nullstellen im charakteristischen Polynom vorkommen. Die Héufigkeit eines
Eigenwerts wird als algebraische Vielfachheit bezeichnet. Die Anzahl der linear un-

abhangigen Eigenvektoren zu einem Eigenwert wird als geometrische Vielfachheit des
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Eigenwertes bezeichnet.
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A.2 Algorithmen
A.2.1 Dijkstra

Der Dijkstra-Algorithmus wurde 1959 vom niederléndischen Informatiker Edsger Dijkstra
veroffentlicht, siehe Dijkstra (1959). Es handelt sich hierbei um einen Algorithmus zum
Finden des kiirzesten Pfades von einem gegebenen Startknoten zu allen anderen Knoten
eines Netzwerks oder aber zu einem einzelnen vorher spezifizierten Knoten. Die Rechen-
zeit ist mit O(n?) quadratisch. Ein prominentes Anwendungsbeispiel fiir den Algorithmus
sind Routenplaner, deren Ziel es ist, einen moglichst kurzen Weg von einem Ort zu einem

anderen zu finden.

Dabei geht der Algorithmus fiir einen vorgegebenen Startknoten s und Zielknoten z wie

folgt vor:

1. Zunéachst wird jedem Knoten ein provisorischer Distanzwert zugewiesen. Dem Start-
knoten wird dabei der Wert Null und jedem anderen Knoten der Distanzwert oo

zugewiesen.

2. Der Startknoten s wird nun als der momentan betrachtete Knoten u gesehen und
alle anderen Knoten werden zu der Menge U der Knoten, die noch nicht tiberprift

wurden, zusammengefasst.

3. Die Distanz zu allen Nachbarknoten v des momentan betrachteten Knotens wu, die
noch nicht durchschritten wurden, wird berechnet. Sie wird zu der Distanz von u
zu s dazuaddiert. Hat der Nachbarknoten v zuvor einen Wert grofler als den nun
berechneten (also zuvor z.B. co) gehabt, wird dieser zuvorige Wert durch den neuen
Wert ersetzt.

4. Nachdem Schritt 3 fiir alle Nachbarknoten von u durchgefithrt wurde, wird der mo-

mentan betrachtete Knoten v aus U entfernt.

5. Liegt der Zielknoten z nun nicht mehr in der Menge der uniiberpriiften Knoten U, so
ist der Algorithmus beendet. Ist die kleinste Distanz der uniiberpriiften Knoten oo,
so ist der Algorithmus auch beendet, da dann die uniiberpriiften Knoten nicht von

dem Startknoten s aus erreichbar sind.
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6. Trifft keine der beiden Bedingungen in Schritt 5 zu, so wird nun der Knoten mit der

geringsten Distanz zum Startwert s ausgewéahlt und mit Schritt 3 weitergemacht.

A.2.2 Brandes

Um die Intermediatéitszentralitait der Knoten eines Netzwerks zu berechnen, wird meist
der 2001 von Ulrik Brandes entwickelte Brandes-Algorithmus verwendet, siche Brandes
(2001). Wie in 3.2 beschrieben, ist die Intermediationszentralitit eines der géangigsten Zen-
tralitdtsmafle. Zur Berechnung fiir einen Knoten v € V' wird fiir alle Knotenpaare s,t € V'
der Anteil der kiirzesten Pfade zwischen s und ¢ berechnet, die durch u gehen. Die Summe
dieser Anteile iiber alle Knoten in dem Graphen wird dann als Intermediationszentralitat

cp(u) bezeichnet.

Fiir ungewichtete Graphen benotigt der Algorithmus eine Rechenzeit von O(N, N, ) und fir
gewichtete Graphen O(N,N.+NZ2logN, ), verglichen mit O(N?) Rechenzeit fiir ungewichte-
te Graphen bei einer direkten Berechnung. Im Folgenden soll das Prinzip fiir ungewichtete

Digraphen dargestellt werden, wie es auch in der Veroffentlichung von 2001 der Fall war.

Fir den Algorithmus miissen zunéchst einige weitere Kennzahlen definiert werden. Sei
G = (V, E) ein Graph und s,t € V ein fixes Knotenpaar. o(s, t) sei die Anzahl an kiirzesten
Pfaden zwischen s und ¢. o (s, t|v) ist dann die Anzahl an kiirzesten Pfaden, die durch v € V'

gehen. Als Dependency eines Startknoten s auf einen Knoten v wird dann

b.(v) = Z o(s,t|v)

2 (s 0) (37)

definiert. Hierfiir werden fiir alle Knoten ¢ € V' die Anteile der kiirzesten Pfade von s nach
t, die durch v gehen, aufsummiert. Die Intermediationszentralitidt von v kann dann als die

Summe iiber die Dependencies aller Knoten s € V, s # v dargestellt werden:

cg(v) = > b(v). (38)

s#veV

Die essentielle Umformung, auf der der Algorithmus basiert, ist dann, dass man die De-
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pendency (37) eines Startknoten s auf einen Knoten v auch darstellen kann als

= Y 2&Y (1+55(w)>, (39)

wweP(s,w) U(S’ ’U))

wobei P(s,w) die Menge aller Vorfahren von w auf dem kiirzesten Weg von s zu w sind.

Der Algorithmus von Brandes funktioniert dann wie folgt:

1. Fiir jeden Knoten s € V werden die kiirzeste Pfade berechnet. Bei einem ungewich-

teten Graphen ist das dquivalent zu einer BFS.

2. Bei der Berechnung in Schritt 1 werden auch die Menge der Vorfahren P(s,v) und

die Anzahl der kiirzesten Pfade o (s, v) bestimmt.

3. Fiir jeden moglichen Startknoten werden mithilfe der Menge der Vorfahren und der
Anzahl der kiirzesten Pfade die Dependencies fiir alle anderen Knoten v € V' berech-

net.

4. Um nun die Intermediationszentralitat eines Knotens v € V' zu berechnen, werden

alle Dependencies fiir alle Startknoten s aufsummiert.



ABBILDUNGSVERZEICHNIS 57
Abbildungsverzeichnis
1 Beispiel eines Netzwerkgraphen . . . . . .. .. ... ... ... 6
2 Durch V' ={a,b,c,d, e} induzierter Subgraph von Abbildung 1 . . . . .. 7
3 Beispiel eines Multigraphen . . . . . .. .. ..o 8
4 Beispiel eines Digraphen . . . . . . . . . ... oL 8
5 Beispiele fiir einen Weg, einen Pfad und einen Trail, der zugleich auch ein
Kreisist . . . . . . . . 9
6  Beispiele fiir einen verbundenen Graphen (links), sowie einen unverbundenen
Graphen mit zwei Komponenten (rechts) . . . . . ... ... ... ... .. 11
Beispiel eines kompletten Graphen . . . . . . .. ... ... ... 12
Beispiel eines 3-regulédren Graphen . . . . . . ... ... L. 12
Beispiel eines Entscheidungsbaums . . . . . .. ... ... ... 13
10 Beispiel eines DAG . . . . . . .. 14
11  Beispiel eines bipartiten Graphen (links) und der durch die roten Knoten
induzierte Graph (rechts) . . . . . . . . .. ... 14
12 Beispiel eines Netzwerks und der dazugehorigen Adjazenzmatrix . . . . . . 15
13 Suchschema eines breadth-first-Suchalgorithmus . . . . . . ... .. .. .. 18
14 Suchschema eines depth-first-Suchalgorithmus . . . . . . . ... ... ... 18
15 Knotenverteilung des Patentdatensatzes . . . . . . . .. .. ... .. ... 21
16  Knotenverteilung des Patentdatensatzes in einer log-log-Skala mit linearer
Regressionsgerade . . . . . . . . ... Lo 22
17 Hillplot fiir den Patentdatensatz . . . . . . . ... ... ... ... ..... 23
18  Gradkorrelation . . . . . . ... 24
19  Target-Plot fiir die vier Zentralitatsmafle. . . . . . . . . . .. .. ... ... 30
20  links: Beispielgraph mit Kanten a, b, ¢, d, e, f; rechts: dazugehoriger dualer
Graph . . . . . 31
21  links: Beispiel eines 3-Cores; rechts: Beispiel eines 3-Plex . . . . . . . . .. 32
22 Targetplot der Cores in Komponente 7 . . . . . . . . ... ... ... ... 33
23 Links: 2-Star, Rechts: Triangle . . . . . . . . . . . ... ... . ... 34
24  Beispiel eines 1-Knoten verbundenen Graphen . . . . . .. .. ... .. .. 37
25 DBeispiel eines Dendogramms . . . . . . .. ... L0000 41
26  Partitionierung von Komponente 7 durch hierarchisches agglomeratives Clus-
tering mithilfe der Optimierung der Modularitat . . . . . . . ... ... .. 43



ABBILDUNGSVERZEICHNIS 58
27  Partitionierung von Komponente 7 durch Spektralpartitionierung mithilfe
der Optimierung der Modularitdat . . . . . . . ... .. .. ... ... ... 46



TABELLENVERZEICHNIS 59

Tabellenverzeichnis

[ B O N

Ubersicht iiber die Nihezentralitit der grofften Komponenten . . . . . . . 27
Ubersicht iiber die Intermediationszentralitit der groten Komponenten . . 28
Ubersicht iiber die Eigenvektorzentralitit der groten Komponenten . . . . 29
Ubersicht iiber die Komponenten des Patentdatensatz . . . . . . . .. ... 36

Ubersicht iiber Anzahl und Anteil der Knoten, die durch ihr Entfernen die

Komponente in Subkomponenten zerfallen lassen in den grofiten Komponenten 39



TABELLENVERZEICHNIS 60

Inhalt der CD
Die beigelegte CD-ROM enthélt folgende Dateien:

e Die Bachelorarbeit als PDF-Datei

e Den Ordner Grafiken, in dem alle in der Bachelorarbeit enthaltenen Grafiken im
PDF-Format enthalten sind

e Den Patentdatensatz inventornet.dta
e Die folgenden R-Skripte:

1. Datenerstellung.R liest den Patentdatensatz ein
2. Gradverteilung.R enthélt alle Analysen zu 3.1
3. Zentralitaet.R enthélt alle Analysen zu 3.2

4. Kohaesion.R enthélt alle Analysen zu 4



TABELLENVERZEICHNIS 61

Selbststandigkeitserklarung

Hiermit erklédre ich, dass ich die vorliegende Arbeit selbststindig angefertigt und keine
anderen als die angegebenen Hilfsmittel verwendet habe. Sdmtliche wissentlich verwendete
Textausschnitte, Zitate oder Inhalte anderer Verfasser wurden ausdriicklich als solche ge-

kennzeichnet.

Miinchen, den 29.03.2016

Elisabeth Kriatzschmar



	Einleitung
	Patentdatensatz

	Einführung in die Netzwerkanalyse
	Grundbegriffe
	Formen von Graphen
	Matrixdarstellung eines Graphen
	Datenstruktur und Algorithmen
	Datenstruktur
	Algorithmen

	Grundlegende Grapheigenschaften des Patentdatensatz

	Eigenschaften von Knoten und Kanten
	Gradmaße
	Gradverteilung
	Gradkorrelation

	Zentralitätsmaße
	Gradzentralität
	Nähezentralität
	Intermediationszentralität
	Eigenvektorzentralität
	Erweiterung auf Kantenzentralität


	Netzwerkkohäsion
	Lokale Dichte
	Konnektivität
	Verbundene Komponenten und ``Small Worlds''

	Graphenpartitionierung
	Hierarchisches Clustering
	Spektralpartitionierung

	Assortativity & Mixing

	Zusammenfassung
	Appendix
	Eigenwerttheorie
	Algorithmen
	Dijkstra
	Brandes



