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2.4.3 Rényi entropy of a discrete distribution . . . . . . . . . 20

2.4.4 Tsallis entropy of a discrete distribution . . . . . . . . 22

2.5 Entropy of a continuous distribution . . . . . . . . . . . . . . 23

2.5.1 Shannon entropy of a continuous distribution . . . . . 23
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Abstract

The concept of Shannon entropy as a measure of disorder is in-

troduced and the generalisations of the Rényi and Tsallis entropy are

motivated and defined. A number of different estimators for Shan-

non, Rényi and Tsallis entropy are defined in the theoretical part and

compared by simulation in the practical part. In this work the near-

est neighbour estimator presented in Leonenko and Pronzato (2010)

is compared to spacing based estimators presented in Beirlant et al.

(1997) and Song (2000) for the Shannon entropy of one-dimensional

distributions. For another special case of entropy, the quadratic en-

tropy, the estimator given in Källberg et al. (2014) is compared with

the nearest neighbour estimator for multidimensional densities. Com-

parisons focus on bias and variance for a given sample size and are

executed with simulation studies. Based on the simulations, sugges-

tions for which estimator to use under given conditions are derived.

Depending on the conditions different estimators perform better than

others; one estimator was not found to be universally superior.
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1 Introduction

The concept of entropy is one of the most basic and important in natural

sciences and information theory. It all started with Claude E. Shannon’s

fundamental paper, ”A Mathematical Theory of Communication”, on in-

formation theory, see Shannon (1948), where the concepts of entropy and

information are mathematically defined. It remains a commonly used mea-

sure of uncertainty and has found its way into many other more or less

related areas of science. Examples from very different areas of application

include the Boltzmann entropy in thermodynamics, Shannon entropy in cod-

ing theory, entropy as a measure of disorder in brain activity as measured

by neuroimaging, see Carhart-Harris et al. (2014), entropy as a measure of

heart rate variability in order to detect cardiac abnormalities, see Cornforth

et al. (2014), entropy as a descriptive measure in linguistics, see Borgwaldt

et al. (2005), and entropy based tests for normality, see Vasicek (1976).

This work introduces a reader, familiar with the fundamentals of math-

ematical statistics, to the concept of entropy and its estimation. Many

sources are compactly summarised in order to give a brief but comprehensive

overview of the topic. The goal of this work is to compare the asymptotic

properties of different estimators for entropy. This will be done using sim-

ulations, giving new insights into how conditions affect the performance of

the nearest neighbour estimator compared to other estimators. Additionally,

code for the software package R, R Core Team (2013b), is in the appendix,
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that can be used easily for future research and simulating more parameter

and distribution combinations of interest to the reader.

In the literature, consistency and asymptotic unbiasedness were shown for

a number of estimators including the nearest neighbour estimator, which are

important theoretical results. (Källberg et al.; 2014; Leonenko and Pronzato;

2010; Wang et al.; 2006) Results for the rate of convergence of the bias of the

estimators are hard to gain by calculus. There are some results for the nearest

neighbour estimator without clear preconditions under which they are valid

and no results for the other estimators. In this thesis the convergence of the

bias is investigated and checked by means of simulation. For the variance

of the estimators there are only asymptotic results in literature that are not

valid for small sample sizes. The simulations conducted in this work enlighten

the relationship of the sample size and the variance of the estimator for a

number of important distributions. The estimators are compared in order to

see under which conditions which estimator performs best.

The reminder of the thesis is as follows; In Section 2 a brief introduction to

information theory is given and the concepts of information and entropy are

established. This work focuses exclusively on the Shannon, Rényi and Tsallis

entropy which are the most important in application. The one- and multidi-

mensional entropies are defined for the discrete (Section 2.4) and continuous

(Section 2.5) cases. The discrete Boltzmann entropy is introduced due to its

importance in natural sciences and its close relation to the Shannon entropy.

In Section 3, the maximum entropy principle is presented. The concept of
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maximum entropy will be applied for the Shannon, Rényi and Tsallis entropy

and maximising distributions will be given for discrete and continuous multi-

variate random variables with different supports and restraints. The Section

4 presents approaches to estimate entropy. It gives theoretical motivation

for the estimators and brief ideas of the derivations. Concrete formulae are

given on how to estimate the Shannon, Rényi and Tsallis entropy from a

multidimensional sample. Section 5 provides an introduction to simulation

studies in general and their use in this thesis. Linear and non-linear models

are introduced as they will be used to quantify the results of the simulation.

This section also summarises the results of the simulation studies, showing

the strengths and weaknesses of the different theoretical estimators by means

of simulation. The thesis concludes with the discussion (Section 6), giving an

overall review. Appendix A gives a brief introduction to the software-package

R and Appendix B shows concepts of using it for efficient programming.
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2 Concepts of entropies

This section gives a brief introduction to information theory with its most

basic concepts, information and entropy. In Section 2.1 the mathematical

concept of information is introduced and in Section 2.2 the idea of entropy is

introduced based on the previously defined concept of information. Section

2.3 motivates the use of different generalisations of the Shannon entropy and

gives examples for their field of application. The Shannon, Boltzmann, Rényi

and Tsallis entropies are mathematically defined in the following section for

the discrete (2.4) and the continuous (2.5) case.

2.1 Information and entropy

Information theory started with Claude E. Shannon’s fundamental paper ”A

Mathematical Theory of Communication” in July and October 1948 (Shan-

non; 1948). In information theory the information of a certain message is a

measure of the amount of knowledge gained by knowing this specific message

has been received. The idea is that the less likely a message or event is, the

more information it provides when it occurs. This idea can be quantified

with the concept of information, by considering a message as an outcome of

a random experiment.

Let A be a set of outcomes of random experiments with probability P (A).
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The information of A is denoted by

I(A) = − log2 P (A) (1)

and is expressed in bits.

Example 2.1. Let H, T denote the two possible outcomes of flipping a coin,

heads and tails. For a fair coin P (H) = P (T ) = 1
2

the information gained by

seeing a head or a tail is equal

I(H) = I(T ) = − log2(
1

2
) = 1.

Consider the case of an unfair coin with P (H) = 1
8

and P (T ) = 7
8
. The

information of the less likely event, heads, is greater than the information

gained from the more likely event, tails, precisely

I(H) = 3 > 1.933 = I(T ).

Properties of the information I(A):

1. log2(1) = 0, which means the observation of a certain event does not

contain any information.

2. I(A) increases as P (A) decreases⇒ events with lower probability have

higher information, as the logarithm log(x) is strictly monotonic in-

creasing with x.
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Example 2.2. This idea is quite intuitive, when the sun rises in the

morning our world view does not change at all. However, in the very

unlikely event of the sun failing to rise, our model of physics would

require significant changes (Johnson; 2004).

3. (Additivity) For A, B independent outcomes of random experiments

I(A,B) = I(A) + I(B)

2.2 Entropy of a source

The entropy of a source is the expected amount of information contained

in each message received from the source. In other words, entropy is the

average amount of information generated by this source. A source can be

considered a random experiment generating a set of messages. This set of

outcomes is the alphabet of the source. Entropy gives a numerical measure

of how far from deterministic a random variable is. It quantifies the diversity,

uncertainty or randomness of a system. An entropy of zero means that the

random variable is deterministic, an increasing value means that it is more

and more unpredictable (Johnson; 2004).

Let S be a source with a finite alphabet A = {x1, x2, . . . , xm} generating

an infinite sequence of random variables X = {X1, X2, . . . , }. The entropy of
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the source H(S) is defined as

H(S) = lim
n→∞

1

n
Gn (2)

where Gn is defined as

−
m∑
i1=1

, . . . ,
m∑

in=1

P (X1 = xi1 , . . . , Xn = xin) log2 P (X1 = xi1 , . . . , Xn = xin).

For the special case that all Xi ∈ X = {X1, X2, . . . , } are independent

and identically distributed (i.i.d.), Equation (2) simplifies to

Gn = −n
m∑
i1=1

P (X1 = xi1) log2 P (Xi = xi1)

and thus

H(S) = −
m∑
i1=1

P (X1 = xi1) log2 P (Xi = xi1)

is the first order entropy of the source S, which equates to the expected value

of the information of S (Johnson; 2004).

Example 2.3. It is common to speak of the entropy, or rate, of a language.

The entropy of a source of information is related to its redundancy in charac-

ters. In Shamilov and Yolacan (2006) the entropy of a number of languages

is given in Table 1.

It can be seen that the entropies of Russian and Turkish are higher than

those of western European languages like English, German and Spanish. A
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Table 1: Shannon entropy of a selection of languages

Language Shannon entropy

Turkish 4.3299
English 4.1489
French 4.0193

German 4.0796
Spanish 4.0142
Russian 4.3452

higher entropy means that the occurrence of the letters in a text written in

the given language is more random, meaning the letters occur more evenly.

2.3 Motivation for different entropies

In information theory, the Shannon entropy is used to describe the average

amount of information contained in each message received. Known as the

Shannon-Wiener Index, it was originally used to quantify the uncertainty of

strings in a text (Shannon; 1948).

In thermodynamics, the entropy is standardised with the Boltzmann con-

stant kB = R/NA, with gas constant R and the Avogadro constant NA, and

referred to as the Gibbs-Boltzmann entropy. (Johnson; 2004)

For a given set of macroscopic variables including temperature, volume

and pressure, the entropy measures the degree to which the probability of the

system is spread out over different possible microstates. The internal entropy

of a molecule depends on random fluctuations in its internal coordinates. The

extent of these fluctuations determines the thermodynamic functions and
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shapes of the molecule. Therefore the estimation of entropy is an important

problem in the fields of molecular biology, chemistry and physics Misra et al.

(2010).

The Rényi entropy is a generalisation of the Shannon entropy and im-

portant in ecology and statistics as an index of diversity. It still satisfies the

property of additivity and reaches its maximum for a uniformly distributed

random variable (Conrad; 2013).

The parameter q of the Rényi entropy H∗q changes the way the average

information is calculated. It designates the norm being used to measure the

distance of the probability mass function (p.m.f.) to the origin and is used

to make the entropy more or less sensitive to the shape of the probability

distributions. For q → 1 the Rényi entropy tends to the Shannon entropy.

The Tsallis entropy is another generalisation of the standard Boltzmann-

Gibbs or Shannon entropy that is especially useful in cases where there are

strong correlations between the different microstates in a system. The pa-

rameter q of the Tsallis entropy Hq can be seen as a measure of how strong

the correlations are. In a system with weak correlations q tends to one and

the Tsallis entropy reduces to the Shannon entropy. But if the correlations

in a system are strong, q becomes more distinct from one, meaning more

ore less than one, in order to bias the probabilities of certain microstates

occurring (Cartwright; 2014).

In the following section, the entropies mentioned above are mathemat-

ically defined for discrete and continuous random variables. Due to their
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importance for the following section and the remainder of the thesis, let us

introduce the discrete and continuous probability distributions.

Definition 2.1. Discrete probability distribution. A discrete probability dis-

tribution is characterised by a probability mass function. Thus, the distri-

bution of a random variable X is discrete, and X is then called a discrete

random variable, if ∑
x

P (X = x) = 1

as x runs through the set of all possible values of X.

It follows that such a random variable can assume only a finite or count-

ably infinite number of values. For the number of potential values to be

countably infinite even though their probabilities sum to 1 requires that the

probabilities decline to zero fast enough. An example of this is the Poisson

distribution, which can be used to express the probability of a given number

of events occurring in a fixed time interval if these events occur with fixed

rate and independently of each other. Theoretically, an infinite amount of

events could happen, but the probability of that goes to zero (Fahrmeir et al.;

1997).

Definition 2.2. Continuous probability distribution. A continuous probabil-

ity distribution is a probability distribution that has a probability density

function. Such a distribution is called absolutely continuous, since its cu-

mulative distribution function is absolutely continuous with respect to the

Lebesgue measure λ. If the distribution of X is continuous, then X is called a
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continuous random variable. Well-known examples of continuous probability

distributions are the normal, uniform and chi-squared distributions. Contin-

uous random variables can take a continuous range of values, thus infinitely

many (Fahrmeir et al.; 1997).

2.4 Entropy of a discrete distribution

Discrete entropies H(X) are used if the random variable X is discrete,

meaning it only takes a set of finite or countably infinite number of val-

ues {x1, x2, . . . , xn}. This is the case for a die having the numbers {1, . . . , 6},

a coin with two sides, heads and tails, or a language with the letters of its

alphabet. In this section the discrete Shannon, Rényi and Tsallis entropy

are defined.

2.4.1 Shannon entropy of a discrete distribution

Let X be a discrete random variable taking values in the set {x1, x2, . . . , xn}

with probabilities {p1, p2, . . . , pn}. The Shannon entropy H of X is defined

as the expected amount of information we gain upon learning the value of X

H(X) = H1(X) = E[I(X = xi)] = −
n∑
i=1

pi log2 pi. (3)

Considerations of continuity lead to the adoption of the convention, 0 log 0 =

0, see Figure 1.
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Figure 1: Graph of x against x log x. The function converges to 0 for x→ 0.

Some of the most important properties of the Shannon entropy, Equa-

tion (2), of a discrete random variable X are (Conrad; 2013; Johnson; 2004;

Sabuncu; 2006):

1. H(X) is greater or equal to zero with equality if and only if X is

deterministic, meaning p(xi) = 1 for some i.

2. For X taking n values, the entropy is maximised by the discrete uniform

distribution with pi ≡ 1/n, so that 0 ≤ H(X) ≤ log n. More details

are discussed in Section 3.1.1, where the maximum entropy principle

will be presented.
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3. For two random variables X and Y the joint entropy is defined as

H(X, Y ) = −
∑
x,y

P ((X, Y ) = (x, y)) log{P ((X, Y ) = (x, y))}.

Then

H(X, Y ) ≤ H(X) +H(Y )

with equality for independent X and Y .

Proof.

H(X, Y ) = −
∑
x,y

P ((X, Y ) = (x, y)) log{P ((X, Y ) = (x, y))}

= −
∑
x,y

P ((X|Y ) = x)P (Y = y) log{P ((X|Y ) = x)P (Y = y)}

≤ −
∑
x,y

P (X = x)P (Y = y) log{P (X = x)P (Y = y)}

= −
∑
x

P (X = x) log{P (X = x)}

−
∑
y

P (Y = y) log{P (Y = y)}

= H(X) +H(Y )

With equality for independent X, Y . This important special case shall

be kept in mind for comparison with Rényi and Tsallis entropy.

4. H(X) is independent of the values xi, i = 1, . . . , n, but solely depends

on its distribution p(xi). For any bijective mapping f : ΩX → ΩX , note
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that the domain is the codomain, the following holds:

H(f(x)) = H(X)

The probability distribution of a random variable is not affected by

such a transformation. Thus entropy is shift and scale invariant.

5. H(X) is a concave function of the probability distribution, p. For

example,

H(βp1 + (1− β)p2) ≥ βH(p1) + (1− β)H(p2), ∀β ∈ [0, 1].

Example 2.4. Consider a random variable X to be the outcome of throwing

a fair six-sided die. It has six possible outcomes {1, 2, 3, 4, 5, 6} that are all

equally likely, thus pi = 1
6
, i = 1, . . . , 6. The Shannon entropy of this random

experiment is

H1(X) = −
n∑
i=1

pi log2 pi = −6
1

6
log2

1

6
= log2 6 ≈ 2.58.

2.4.2 Boltzmann entropy of a discrete distribution

Suppose there are n microstates xi, i = 1, . . . , n, occurring with probability

pi corresponding to one macrostate. The Boltzmann entropy HB of a system

X is defined as

HB(X) = −kB
n∑
i=1

pi loge pi, (4)
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which is, up to the constant kB and a different base of the logarithm, the

definition of the Shannon entropy (Section 2.4.1) that is used in informa-

tion theory. The Boltzmann entropy is a strictly monotonic function in the

Shannon entropy H1. We do not particularly worry about the constant, as

it passes simply through the analysis. The Boltzmann entropy satisfies all

properties of the Shannon entropy stated at the end of Section 2.4.1. Other

than the entropies used in information theory, the Boltzmann entropy HB

has the dimension of energy divided by temperature. It is measured in the

unit joules per kelvin J
K

(Johnson; 2004).

If the occupation of any microstate is assumed to be equally probable

(i.e. pi ≡ 1/n, where n is the number of microstates), the entropy simplifies

to its maximum (Johnson; 2004)

HB = kB loge n.

This assumption, referred to as the fundamental postulate of statistical ther-

modynamics, is usually justified for an isolated system in equilibrium.

2.4.3 Rényi entropy of a discrete distribution

The Rényi entropy of order q, q ≥ 0 and q 6= 1, of a discrete random variable

X taking n values with probabilities p1, . . . , pn, is defined as, (Leonenko and
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Pronzato; 2010)

H∗q (X) =
1

1− q
log

(
n∑
i=1

pqi

)
=

1

1− q
log ‖p‖qq, (5)

using the p-norm of order q of x ∈ Rn which is defined as

‖x‖q =

(
n∑
i=1

|xi|q
)1/q

, for q ≥ 1 ∈ R.

The most important special cases are the Manhattan norm q = 1 being used

in the Shannon entropy, and the Euclidean norm q = 2 being used in the

so called quadratic entropy. This means that the parameter q changes the

way the average information is being calculated by designating the norm

being used. It makes the entropy more or less sensitive to the shape of the

probability distributions.

The discrete Rényi entropy satisfies the following properties:

1. Non-negativity. This means that H∗q (X) ≥ 0 ∀ X.

2. The Rényi entropy is concave for q > 0.

3. Additivity. As for the Shannon entropy, the property of additivity for

independent random variables holds. LetX and Y independent discrete

random variables with joint probability distribution fX,Y , then,

H∗q (X, Y ) = H∗q (X) +H∗q (Y ).
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The special case of the quadratic entropy is discussed in the appendix of

Källberg et al. (2014). In this case, the Rényi entropy simplifies to

H∗q (X) = − log

(
n∑
i=1

p2
i

)
. (6)

Lemma 2.1. The Rényi entropy H∗q (X) of a random variable X can be

written as,

H∗q (X) =
1

1− q
log(Iq(X)),

which leads to the following expression for the information Iq,

Iq(X) = exp((1− q)H∗q (X)).

Note the convention that I1 = 1. (Leonenko and Pronzato; 2010)

2.4.4 Tsallis entropy of a discrete distribution

The Tsallis entropy of order q, q ≥ 0 and q 6= 1, of a discrete random variable

X taking n values with probabilities p1, . . . , pn, is defined as (Leonenko and

Pronzato; 2010)

Hq(x) =
1

1− q

(
1−

n∑
i=1

pqi

)
. (7)

The parameter q changes the way the average information is being calculated

analogously to the Rényi entropy.

Properties of Tsallis entropy:
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1. Unlike the Rényi entropy it does not keep the property of additivity.

Instead it has to be corrected as follows:

Hq(X, Y ) = Hq(X) +Hq(Y ) + (1− q)Hq(X)Hq(Y )

for two independent random variables X and Y .

2. The Tsallis entropy is a monotonic conversion of the Rényi entropy.

2.5 Entropy of a continuous distribution

If the random variable X is continuous, with probability density function

f , then H(X) denotes the continuous entropy. Well known examples for

continuous distributions are the Gaussian and the exponential distribution,

see Definitions 2.3 and 2.4. In this section the continuous Shannon, Rényi

and Tsallis entropy are defined for the m-dimensional case. This contains

the one-dimensional case for m = 1.

2.5.1 Shannon entropy of a continuous distribution

The differential Shannon entropy of a continuous random variable X ∈ Rm

with density f is

H1(X) = −
∫
Rm

f(x) log f(x)dx (8)

with 0 log 0 := 0 and H(X) =∞ if X does not have a continuous distribution

function.
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Properties of the continuous Shannon entropy (Zografos and Nadarajah;

2005):

1. The continuous Shannon entropy is a concave function in f .

2. It satisfies the same additivity property as the discrete Shannon en-

tropy, H(X, Y ) = H(X)+H(Y ) for two independent random variables

X and Y .

3. It should be noted that, unlike in the discrete case, the Shannon entropy

of a continuous random variable does not satisfy the property of non-

negativity for arbitrary densities f .

Some of the continuous densities that will be considered throughout this

work will be introduced subsequently.

Definition 2.3. Gaussian Distribution. The Gaussian distribution or nor-

mal distribution is one of the most important distributions. One of the

reasons for its special significance is based on of the central limit theorem,

according to which averages based on a great number of samples from an

arbitrary distribution are approximately Gaussian distributed. A multivari-

ate Gaussian distributed m-dimensional random vector X = [X1, . . . , Xm]>

is denoted by

X ∼ N(µ,Σ)

with mean µ = [E(X1), E(X2), . . . , E(Xm)]> ∈ Rm and covariance matrix

Σ = Cov[Xi, Xj], i, j = 1, 2, . . . ,m;∈ Rm×m. The p.d.f of the m-dimensional
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Gaussian is given by

1√
(2π)m|Σ|

exp

(
−1

2
(x− µ)>Σ−1(x− µ)

)
.

For a one-dimensional Gaussian (m = 1) with mean µ and variance σ2 the

p.d.f. simplifies to

f(x) =
1

σ
√

2π
exp

(
−1

2

(
x− µ
σ

)2
)
.

The standard normal distribution is the commonly used special case, where µ

is an all-zero vector of length m and Σ a unit-matrix of dimension m×m. The

uni-variate standard normal distribution has parameters µ = 0 and σ2 = 1

(Conrad; 2013; Cramér; 1999).

Definition 2.4. Exponential Distribution. In probability theory and statis-

tics, the exponential distribution is used to describe the waiting time between

Poisson distributed events, which means the events occur continuously and

independently at a constant rate 1/λ. It is used to model the length of

random time intervals. Examples include the modelling of life expectancy

of radioactive atoms and technical equipment but is also used in insurance

mathematics.

The p.d.f is given by

f(x) = λ exp(−λx)I[0,∞](x).
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The expected value of an exponentially distributed random variable is 1/λ

and its variance is 1/λ2 (Conrad; 2013). The Shannon entropy of an expo-

nentially distributed random variable is given in 2.6.

Example 2.5. Let X a one-dimensional Gaussian distributed random vari-

able with expected value µ and variance σ2, see Definition 2.3. The Shannon

entropy of X can be calculated to be

H1(X) = −
∫

1√
2πσ2

exp

(
−1

2
((x− µ)/σ)2

)
log

{
1√

2πσ2
exp

(
−1

2
((x− µ)/σ)2

)}
dx

= −
∫

1√
2πσ2

exp

(
−1

2
((x− µ)/σ)2

)
{
− log{

√
2πσ2} − 1

2
((x− µ)/σ)2

}
dx

=
1

2
log{2πσ2}

∫
1√

2πσ2
exp

(
−1

2
((x− µ)/σ)2

)
︸ ︷︷ ︸

=1

dx

+
1

2σ2

∫
(x− µ)2 1√

2πσ2
exp

(
−1

2
((x− µ)/σ)2

)
︸ ︷︷ ︸

=E[(x−µ)2]=σ2

dx

=
1

2
log{2πσ2}+

1

2

=
1

2
log{2πσ2}+

1

2
log{e}

=
1

2
log{2πσ2e}.

Note that the mean µ is not in the final formula. This makes sense, as the

entropy is shift-invariant. For small variances σ (σ <
√

1/(2πe)) the entropy
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takes negative values. This is not a problem, it simply means that the p.d.f.

has values greater than one in a comparatively big interval. In this sections

it is more concentrated than a uniformely distributed random variable on

[0, 1]. Thus, the entropy is less than zero, see Figure 2.

0

1

2

3

4

−1 0 1
x

f(
x)

Mean
−0.5
0
1

Figure 2: One-dimensional Gaussian with different mean µ but same variance
σ2 = 0.01 and, thus, same entropy H1(X) ≈ −0.884. The p.d.f f(x) is greater
than one close to the mean of the distribution.

Example 2.6. Let X be an exponentially distributed random variable with

expected value λ, thus rate 1/λ, see definition 2.4. The Shannon entropy is

H1(X) =

∫ ∞
0

1

λ
exp(−x

λ
) log

{
1

λ
exp(−x

λ
)

}
dx

= 1 + log(λ).

This means that the smaller the rate 1/λ, the greater the entropy of the

exponential distribution. In other words, the longer the expected waiting
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period, the greater is the uncertainty of the waiting time. For small λthe

entropy takes negative values.

Lemma 2.2. For random variables from an exponential family the Shannon

entropy

H1(f(X; θ)) = F (θ)− 〈θ,∇F (θ)〉,

where θ denotes the natural parameter of the exponential family, 〈x, y〉 the

inner product x>y and∇ the Gâteaux-differential, is a closed-form expression

of the Shannon entropy (Nielsen and Nock; 2011).

Theorem 2.1. For the m-dimensional normal distribution

H1(X) =
1

2
log{(2π exp)m}|Σ| (9)

is a closed form of the Shanon entropy (Nielsen and Nock; 2011).

2.5.2 Rényi entropy of a continuous distribution

The Rényi entropy of a random variable X ∈ Rm with probability measure

µ which has density f is defined as

H∗q =
1

1− q
log

∫
Rm

f q(x)dx, q 6= 1 . (10)

The parameter q changes the way the average information is being calculated.

For q → 1 the Rényi entropy tends to the Shannon entropy (Nielsen and

Nock; 2011).
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The Rényi entropy of a continuous random variable satisfies the following

properties (Zografos and Nadarajah; 2005):

1. The Rényi entropy is concave for q > 0 and convex for q < 0.

2. As for the Shannon entropy, the property of additivity for independent

random variables holds. Let X and Y independent discrete random

variables with joint probability distribution fX,Y , then

H∗q (X, Y ) = H∗q (X) +H∗q (Y ).

For the special case of the quadratic entropy, q = 2, the Rényi entropy

simplifies to

H∗q (X) = − log

(∫
Rm

p2
i dx

)
. (11)

For the estimation of the quadratic entropy there are several estimators pro-

posed in literature. The consistent estimator that satisfies normality condi-

tions developed in Källberg et al. (2014) will be presented in Section 4.3.

Definition 2.5. Exponential Families. A random variable X belongs to an

exponential family if and only if its p.d.f. f(x) can be written in such a form

that

f(x; θ) = exp (〈t(x), θ〉F (θ) + k(x)) , (12)

where 〈t(x), θ〉 = x>θ denotes the inner product of x and θ, t(x) the sufficient

statistics, θ the natural parameters, F (θ) a C∞ differentiable real-valued

29



convex function and k(x) a support measure. (Nielsen and Nock; 2011)

Some well known examples of exponential families with support measure

k(x) = 0 are the normal distribution (see Definition 2.3), the exponential

distribution (see Definition 2.4), the gammma distribution, and the Bernoulli

distribution. It is useful to speak of them as exponential families as that gives

a more general approach to those distributions and their common properties.

Example 2.7. In order to illustrate this Definition 12 consider the decom-

position of the univariate Gaussian distribution as introduced in Definition

2.3.

f(x, µ, σ2) =
1√

2πσ2
exp

(
−(x− µ)2

2σ2

)
= exp

(
−1

2
log 2πσ2

)
exp

(
−x

2 − 2xµ+ µ2

2σ2

)
= exp

(
x
µ

σ2
− x2 1

2σ2
− µ

2σ2
− 1

2
log 2πσ2

)

= exp

〈(x, x2)︸ ︷︷ ︸
t(x)

, (
µ

σ2
,− 1

σ2
)︸ ︷︷ ︸

θ=(θ1,θ2)

〉− µ2

2σ2
+

1

2
log 2πσ2︸ ︷︷ ︸

F (θ)=−
θ21
4θ2

+ 1
2

log 2π
−θ2

+ 0︸︷︷︸
k(x)

 ,

where θ1 = µ and θ2 = σ2. This decompositions proofs that the univariate

Gaussian is a distribution of the exponential family, and thus satisfies all

properties of an exponential family.
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Lemma 2.3. For random variables from the exponential family with base

support measure k(x) = 0,

H∗q (f(X; θ)) =
1

1− q
[F (qθ)− qF (θ)] ,

with θ the natural parameter of the exponential family, is a closed-form

expression of the Rényi entropy.

Proof. Let us recall the definition of the Rényi entropy in Equation (10),

H∗q =
1

1− q
log

∫
Rm

f q(x)dx , q 6= 1 ,

which can be written as

H∗q =
1

1− q
log Iq(f) , q 6= 1,

where Iq(f) =
∫
Rm f

q(x)dx.

31



Iq(f) =

∫
Rm

f q(x)dx

=

∫
Rm

exp{q(〈t(x), θ〉 − F (θ) + k(x))}dx

=

∫
Rm

exp{〈t(x), qθ〉 − qF (θ) + qk(x) +

(1− q)k(x)− (1− q)k(x)︸ ︷︷ ︸
=0

+F (qθ)− F (qθ)︸ ︷︷ ︸
=0

}dx

=

∫
Rm

exp{F (qθ)− qF (θ)}f(x; qθ) exp{(q − 1)k(x)}dx

= exp{F (qθ)− qF (θ)}
∫
Rm

exp{(q − 1)k(x)}f(x; qθ)dx

= exp{F (qθ)− qF (θ)}E[exp (q − 1)k(x)]

For base support measure k(x) = 0 this simplifies to

Iq(f) = exp{F (qθ)− qF (θ)}. (13)

This means that the Rényi entropy

H∗q =
1

1− q
log Iq(f)

=
1

1− q
log exp{F (qθ)− qF (θ)}

=
1

1− q
{F (qθ)− qF (θ)},

as stated in Lemma 2.3 (Nielsen and Nock; 2011).
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Theorem 2.2. For the m-dimensional normal distribution the Reńyi entropy

is

H∗q (X) =
m

2
log 2π +

1

2
log |Σ|+ m log q

2(q − 1)
. (14)

This is a closed form of the Rényi entropy that is implemented in the R-Code

Nielsen and Nock (2011).

Example 2.8. The normal distribution can be seen as a special case of the

Student distribution, see Definition 3.1, where the degrees of freedom ν tend

to infinity. The Rényi entropy H∗q (f) of an m-variate Student distributed

random variable with density

f(x) =
1

(νπ)
m
2

Γ(m+ν
2

)

Γ(ν
2
)

1

|Σ| 12 [1 + (x− µ)>[νΣ]−1(x− µ)]
m+ν

2

is given by

1

1− q
log

B
(
q(m+ν)

2
− m

2
, m

2

)
Bq(ν

2
, m

2
)

+ log[(πν)m|Σ|]− log Γ
(m

2

)
, for q >

m

m+ ν
.

Consistently this entropy converges to the Rényi entropy of the normal dis-

tribution, denoted in this equation by g, when the degrees of freedom ν of f
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tend to ∞,

lim
ν→∞

H∗q (f) = lim
ν→∞

1

1− q
log

B
(
q(m+ν)

2
− m

2
, m

2

)
Bq(ν

2
, m

2
)

+ log[(πν)m|Σ|]− log Γ
(m

2

)
= log[(2π)

m
2 |Σ|

1
2 ]− m

2(1− q)
log q

= H∗q (g)

= H1(g)− m

2

(
1 +

log q

1− q

)

If additionally q tends to zero, this converges to the Shannon entropy of the

normal distribution,

lim
q→∞

H∗q = log[(2π exp)
m
2 |Σ|

1
2 ] = H1(g)

according to the property of the Rényi entropy, that if converges to the the

Shannon entropy for q → 1 (Leonenko and Pronzato; 2010).

Theorem 2.3. With Theorem 2.2 and Lemma 2.1 the information Iq of an
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m-dimensionally Gaussian distributed variable X is given as

Iq(X) = exp((1− q)H∗q (X))

= exp

(
(1− q)

[
m

2
log(2π) +

1

2
log |Σ|+ m

2(q − 1)
log(q)

])
= exp

(
(1− q)m

2
log(2π) + (1− q)1

2
log |Σ| − m

2
log(q)

)
=

(2π)
(1−q)m

2 |Σ|
(1−q)

2

(q)
m
2

=

√
(2π)(1−q)m|Σ|(1−q)

(q)m

and I1 = 1. If X is the standard normal distributed, thus the covariance

matrix Σ is the identity matrix, this simplifies to

Iq(X) =

√
(2π)(1−q)m

(q)m

as the determinant of the covariance matrix |Σ| equals one.

Definition 2.6. The beta distribution is a family of continuous probability

distributions defined on [0, 1] with shape parameters α, β ∈ R+. It is defined

to be

fα,β(x) =
1

B(α, β)
xα−1(x− 1)β−1

where Beta(α, β) denotes the Betafunction Beta(α, β) =
∫ 1

0
tx−1(1− t)y−1dt.

A beta distributed variable X has mean E[X] = α/α + β and variance

αβ/(α + β)2(α + β + 1)
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Definition 2.7. The one-dimensional uniform distribution with support

[a, b] has the p.d.f.

f(x) =
1

b− a
· I[a,b](x)

. The case that a = 0 and b = 1, thus f has support [0, 1] can be seen

as a special case of the beta distribution where α = β = 1. A uniformly

distributed variable X on [a, b] has mean E[X] = (a+ b)/2 and variance

(b− a)2/12.

Theorem 2.4. The Rényi entropy H∗q (f) of a one-dimensional beta dis-

tributed variable X with p.d.f. (see Definition 2.6)

f(X) =
1

B(α, β)
xα−1(x− 1)β−1

is given in Nadarajah and Zografos (2003) as

1

1− q
log

(
Beta(qα− q + 1, qβ − q + 1)

Betaq(α, β)

)

where Beta(α, β) denotes the beta-function Beta(α, β) =
∫ 1

0
tx−1(1− t)y−1dt.

Theorem 2.5. The uniform distribution with support [0, 1] with p.d.f. (see

Definition 2.7)

f(x) = 1 · I[0,1](x)

can be seen as the special case of the beta distribution where α = β = 1.
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For the entropy it follows that

H∗q =
1

1− q
log

(
Beta(qα− q + 1, qβ − q + 1)

Betaq(α, β)

)
=

1

1− q
log

(
Beta(q − q + 1, q − q + 1)

Betaq(1, 1)

)
=

1

1− q
log(1)

= 0,

which is the maximum entropy of a beta distribution with support [0, 1].

2.5.3 Tsallis entropy of a continuous distribution

The Tsallis entropy of a continuos random variable is defined as

Hq =
1

1− q
(

∫
Rm

f q(x)dx− 1), q 6= 1. (15)

The parameter q changes the way the average information is being calculated.

For q → 1 the Tsallis entropy tends to the Shannon entropy.

Unlike the Shannon and Rényi entropy it does not keep the property of

additivity, but instead

Hq(X, Y ) = Hq(X) +Hq(Y ) + (1− q)Hq(X)Hq(Y )

for two independent random variables X and Y .
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Lemma 2.4. The Tsallis entropy Hq(X) of a random variable X can be

written as

Hq(X) =
1

1− q
(Iq(X)− 1),

which leads to the following expression for the information Iq,

Iq(X) = (1− q)Hq(X) + 1.

Note that I1 = 1.

Theorem 2.6. The Rényi and Tsallis entropy are continuous monotonic

conversions of one another. This relationship can be concluded from Lemma

2.1 and Lemma 2.4 to be

exp((1− q)H∗q (X)) = (1− q)Hq(X) + 1

. Algebraic transformations leads to the following equations:

H∗q (X) =
1

1− q
log((1− q)Hq(X) + 1)

Hq(X) =
1

1− q
(exp((1− q)H∗q (X))− 1)

Lemma 2.5. For random variables from the exponential family

Hq(f(X; θ)) =
1

1− q
{expF (qθ)− qF (θ)− 1}
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with θ the natural parameter of the exponential family, is a closed-form

expression of the Tsallis entropy (Nielsen and Nock; 2011).

Proof. Recall the Tsallis entropy as stated in Equation (15)

Hq =
1

1− q

(∫
Rm

f q(x)dx− 1

)
, q 6= 1

which can be written as

Hq =
1

1− q
(Iα(q)− 1),

with Iα(q) =
∫
Rm f

q(x)dx as in Proof 2.5.2. With Equation (13) the Tsallis

entropy for an exponential family with base support measure k(x) = 0 is

given by

Hq =
1

1− q
(Iα(q)− 1)

=
1

1− q
(exp{F (αθ)− αF (θ)} − 1),

completing the proof (Nielsen and Nock; 2011).

Example 2.9. For the m-dimensional normal distribution it follows that

Hq(X) =
1

1− q
((2π)(1−q)m

2 · |Σ|
1−q
2 · q

m
2 − 1) (16)

is a closed form of the Tsallis entropy that is implemented in the R-Code.

This follows from the closed form of H∗q in Nielsen and Nock (2011) and the
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relation H∗q = log(1− (q − 1)Hq)/(1− q) in Leonenko and Pronzato (2010).

Proof.

H∗q = log(1− (q − 1)Hq)/(1− q)

⇒ Hq =
1

q − 1
(exp{(1− q)H∗q } − 1)

=
1

q − 1
(exp{(1− q)[m

2
log 2π +

1

2
log |Σ|+ m log q

2(q − 1)
]} − 1)

=
1

q − 1
(exp{(1− q)m

2
log 2π +

1− q
2

log |Σ| − m log q

2
} − 1)

=
1

q − 1
(exp

(1−q)m
2

log 2π · exp
1−q
2

log |Σ| · exp−
m log q

2 −1)

=
1

1− q
((2π)(1−q)m

2 · |Σ|
1−q
2 · q

m
2 − 1)

2.6 Kullback-Leibler divergence

In information theory the Kullback-Leibler divergence DKL, also known as in-

formation divergence, information gain or relative entropy, quantifies the dif-

ference between two probability distributions P and Q on Rm. The Kullback-

Leibler divergence of Q from P is a measure of the information lost when

Q is used to approximate P . The idea is to use the expected value of the

logarithmic difference of the probabilities P and Q, where the expectation

is taken using the probabilities P , to measure the discrepancy between two

distributions. Note that DKL ≥ 0 for all P and Q. The Kullback-Leibler di-
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vergence is defined for discrete (Section 2.6.1) and continuous (Section 2.6.2)

random variables (Wang et al.; 2006).

2.6.1 Discrete Kullback-Leibler divergence

Let Q,P discrete probability distributions on Rm and P absolutely contin-

uous with respect to Q, meaning Q(x) = 0 ⇒ P (x) = 0 ∀x ∈ Rm. Let

0 log 0
0
≡ 0, then the Kullback-Leibler divergence is defined as (Wang et al.;

2006)

DKL(P ||Q) =
∑
x∈Rm

P (x) log
P (x)

Q(x)
.

2.6.2 Continuous Kullback-Leibler divergence

Let Q,P continuous probability distributions on Rm and P absolutely con-

tinuous with respect to Q. Denote the densities of Q and P with respect

to the Lebesgue measure by p(x) and q(x). As P is absolutely continuous

with respect to Q, p(x) = 0 for almost every x such that q(x) = 0 and

0 log 0
0
≡ 0. Under this condition the Kullback-Leibler divergence is defined

in Wang et al. (2006) as:

DKL(P ||Q) = DKL(p(x)||q(x)) =

∫
x∈Rm

p(x) log
p(x)

q(x)
dx. (17)

Note that for both the continuous and the discrete case the Kullback-

Leibler divergence DKL(Q||P ) is greater or equal than zero with equality

if and only if p(x) = q(x). In general, the Kullback-Leibler divergence is
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not symmetric, meaning DKL(Q||P ) 6= DKL(P ||Q) and does not satisfy the

triangle inequality. Thus it is not a proper distance metric. Nonetheless it is

very useful for a number of applications (Sabuncu; 2006).

2.7 Bregman divergence

Let f be real-valued strictly convex function defined on the convex set S =

dom(f) ∈ R, the domain of f, such that f is differentiable on int(S), the

interior of S. The Bregman divergence or Bregman distance of two points

z1, z2 is defined as

Dq(z1||z2) = f(z1)− f(z2)− 〈z1 − z2;∇(z2)〉,

where ∇ is the gradient of f (Banerjee et al.; 2004). Note that the Bregman

divergence is non-negative, thus DF (z1, z2) ≥ 0 for all z1, z2, as f is a convex

function.
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3 Maximum entropy principle

In thermodynamics Lagrangian methods are used to show that the entropy

S is maximised subject to an energy constraint by the Gibbs states. The

maximum of

−
∑
r

pr log pr

subject to
∑

r pr = 1 and
∑

r prEr = E is reached for pi = exp(−βEi)/Zβ, for

some β determined by the total energy E and where the partition function

Zβ =
∑

i exp(−βEi). The parameter β can be found with knowledge of Zβ,

since

− d

dβ
logZβ = −

Z ′β
Zβ

=

∑
iEi exp(−βEi)∑
i exp(−βEi)

=
∑
i

Eipi = E

According to the second law of thermodynamics S converges to its maximum,

the Gibbs state. The total energy E in the systems remains always constant

due to energy conservation, that is why it is known from start which Gibbs

state will be the limit. In our case this is not of further interest, but it shall

be mentioned here that the second law of thermodynamics is still debated

controversially, even though it is such a long established principle in natural

science (Johnson; 2004).

Analogously, the Central Limit Theorem states that the information-

theoretic entropy H1 increases to its limit as we take convolutions, implying

convergence to the Gaussian. As the variance remains constant during con-

volutions we can tell from start which Gaussian will be the limit. This
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similarity between those two of the most basic principles in statistics and

physics is quite striking (Johnson; 2004).

The principle of maximum entropy states that, subject to certain con-

straints as a given mean or variance, the probability density function which

best represents the current state of knowledge is the one with largest entropy

(Conrad; 2013). In other words, the principle of maximum entropy expresses

a claim of epistemic modesty. The distribution selected is the one that makes

the least claim to being informed beyond the stated prior data. One admits

to the most ignorance beyond the stated prior data. Any probability func-

tion satisfying the constraints that has a smaller entropy will contain less

uncertainty, therefore more information and thus says something stronger

than what we are assuming.

3.1 Shannon entropy maximisation

The Shannon entropy, contained as a special case in the Rényi and Tsallis

entropy, is the most basic concept of entropy. The maximisation of the

Shannon entropy is a well known problem and can, amongst other things,

be used as a way of justifying a set of exponential families. In this section

the maximising distributions for a discrete random variable (Section 3.1.1),

a positive random variable with known mean (Section 3.1.2) and a rational

random variable with known variance (Section 3.1.3) are deduced.
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3.1.1 Discrete Shannon entropy maximisation

For a discrete probability function p on a finite set x1, . . . , xn ∈ Rm the

Shannon entropy is maximised by the uniform distribution. Therefore

H1(p) = −
n∑
i=1

p(xi) log p(xi) ≤ log n (18)

with equality if and only if p(xi) = 1/n, i = 1, . . . , n (Conrad; 2013).

In order to prove this, a number of lemmas will be introduced. The actual

proof will be given on page 48.

Lemma 3.1. For arbitrary x > 0, y ≥ 0 ∈ Rm with 0 log 0 = 0 being

adopted, see Figure 1,

y log y ≤ x− log x

Proof. For y = 0 the proof is trivial, as the left side equals zero and x > 0.

For y > 0 the inequality can be transformed as

y log y ≤ x− log x

y − x ≤ −y log x+ y log x

1− x

y
≤ log

y

x

log
x

y
≤ x

y

The proof will be completed graphically in Figure 3 in order to visualise the

inequality. For an easier acces substitue x
y

by t, t > 0 as x, y > 0 (Conrad;
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2013).
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Figure 3: The inequality stated in the proof to Lemma 3.1 is vizualised. It
can be seen that log t is smaller than t−1 with equality for t = 1 in f(t) = 0.

Lemma 3.2. For any continuous p.d.f.s p(x) and q(x) on an interval I with

q > 0 on I the following holds

−
∫
I

p(x) log p(x)dx ≤ −
∫
I

p(x) log q(x)dx

with equality if and only if p(x) = q(x) for all x ∈ I. Analogously for two

discrete p.m.f.s p(x) and q(x) on a set {x1, x2, . . . , }, with q(xi) ≥ 0 for all i,

−
∑
i

p(xi) log p(xi)dx ≤ −
∑
i

p(xi) log q(xi)dx
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if both sums converge. As in the continuous case there is equality if and only

if p(xi) = q(xi) for all xi. Note that the left side matches the definition of

the Shannon entropy, thus an upper-bound is given for it (Conrad; 2013).

Proof. By Lemma 3.1 for any x ∈ I and continuous p(x), q(x)

p(x)− p(x) log p(x) ≤ q(x)− p(x) log q(x). (19)

By integrating over both sides of equation (19) one gets

∫
I

p(x)dx︸ ︷︷ ︸
1

−
∫
I

p(x) log p(x)dx ≤
∫
I

q(x)dx︸ ︷︷ ︸
1

−
∫
I

p(x) log q(x)dx

−
∫
I

p(x) log p(x)dx ≤ −
∫
I

p(x) log q(x)dx

For the case of equality of theses integrals, the continuous function

q(x)− p(x) log q(x)− {p(x)− p(x) log p(x)}

has integral zero over I. With its property of nonnegativity follows, that this

function equals zero. Thus Equation (19) is an equality for all x ∈ I if and

only if p(x) = q(x) for all x ∈ I, by Lemma 3.1. The proof for the discrete

case is the same with integrals replaced by sums and is thus not written out

again (Conrad; 2013).

Theorem 3.1. Consider p(x), q(x) continuous probability density functions
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(p.d.f.) with finite entropy H1 on an interval I and q(x) > 0 for x ∈ I. From

−
∫
I

p(x) log q(x)dx = H1(q)

follows that H1(p) ≤ H1(q) with equality if and only if p(x) = q(x) on I.

For the discrete case let p(xi), q(xi) discrete p.m.f.s on the discrete set

{x1, x2, . . . , } and q(xi) > 0 for all i. Further assume that the Shannon

entropy H1 of p and q is finite. Then

−
∑
i

p(xi) log q(xi)dx = H1(q)

implies H1(p) ≤ H1(q) with equality if and only if p(xi) = q(xi) for all i.

Proof. By Lemma 3.2 the Shannon entropy H1(p) is bounded from above by

−
∫
I
p(x) log q(x)dx for continuous p(x), q(x)respectively −

∑
i p(xi) log q(xi)

in the discrete case. This bound is assumed to equal H1(q). If it is the case

that H1(p) = H(q), then H1(p) equals the bound, thus by Lemma 3.2 p(x)

is q(x).

Finally we have all the means necessary to proof Equation (18) in Section

3.1.1.

Proof. This is the proof for the discrete entropy maximisation in Section

3.1.1 on page 45. Let p(xi) a p.m.f. on {x1, x2, . . . , xn}. Let q(xi) = 1
n

for all
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i a uniform distribution, then

H1(p) = −
n∑
i=1

pi log pi

≤ −
n∑
i=1

pi log qi

=
n∑
i=1

pi log n

= log n

=
n∑
i=1

qi log n

= H1(q),

with equality if and only if p(xi) = q(xi) for all xi, by Lemma 3.2. This means

that the Shannon entropy of an arbitrary p.m.f. can only equal the entropy

of the uniform distribution, if it is uniformly distributed as well, completing

the proof that the uniform distribution maximises the Shannon entropy in

the discrete case.

3.1.2 Continuous Shannon entropy maximisation on R+

For a continuous probability function f on R+ with given mean λ the Shannon

entropy is maximised by the exponential distribution with mean λ. Therefore

H1(f) ≤ 1 + log λ, (20)
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with equality for

f(x) =
1

λ
exp

(
−x
λ

)
(21)

the exponential distribution with mean λ, respectively rate 1
λ
, see Definition

2.4 (Conrad; 2013). This is an important case to be considered, as in appli-

cation many random variables are restricted to be greater than zero. One

can think of many examples as time, height, length and weight. None of

these can take values smaller than zero. If this is not the case, meaning the

random variable can take values in all R, Section 3.1.3 derives the normal

distribution to be of maximum entropy.

Proof. Consider an arbitrary continuous p.d.f. p on R+ with known mean λ.

Let q be the exponential distribution with mean λ. Similarly to the proof of

the discrete maximum entropy distribution above it holds that

H1(p) = −
∫ ∞

0

p(x) log p(x)dx

≤ −
∫ ∞

0

p(x) log q(x)dx

= −
∫ ∞

0

p(x) log

(
1

λ
exp

(
−x
λ

))
dx

=

∫ ∞
0

p(x)
(

log λ+
x

λ

)
dx

= log λ

∫ ∞
0

p(x)dx︸ ︷︷ ︸
1

+
1

λ

∫ ∞
0

xp(x)dx︸ ︷︷ ︸
λ

= log λ+ 1

= H1(q).
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3.1.3 Continuous Shannon entropy maximisation on R

For a continuous probability density function f on R with known variance

σ2 ∈ R+ the Shannon entropy is

H1(f) ≤ 1

2
(1 + log(2πσ2)), (22)

with equality if f is Gaussian with variance σ2 and some mean µ, see Defi-

nition 2.3, therefore

f(x) =
1√
2πσ

exp

(
− 1

2σ2
(x− µ)2

)
.

This is the most general case of an unrestricted random variable. Ex-

amples are time differences, economic growth, acceleration and many log-

transformed random variables. An interesting application is an entropy based

test of normality of a random variable, see Vasicek (1976). It is based on

the quality of the normal distribution that its entropy exceeds that of any

other distribution with the same variance, giving a non-parametric test for

normality of great power. In Conrad (2013) some other probability density

functions with different constraints are characterised with maximum entropy.

Proof. Consider an arbitrary continuous p.d.f. p on R with known variance

σ2 and mean µ. Let q be the normal distribution with variance σ2 and mean

51



µ. Similarly to the proof of the discrete maximum entropy distribution on

page 48 it holds that

H1(p) = −
∫
R
p(x) log p(x)dx

≤ −
∫
R
p(x) log q(x)dx

= −
∫
R
p(x) log

(
1√
2πσ

exp

(
− 1

2σ2
(x− µ)2

))
=

∫
R
p(x)

(
1

2
log(2πσ2) +

1

2σ2
(x− µ)2

)
dx

=
1

2
log(2πσ2)

∫
R
p(x)dx︸ ︷︷ ︸

1

+
1

2σ2

∫
R
(x− µ)2p(x)dx︸ ︷︷ ︸

σ2

=
1

2
log(2πσ2) +

1

2

= H1(q),

with equality if and only if p(x) = q(x) on all R, by Lemma 3.2. Said in

words, the Shannon entropy of an arbitrary p.d.f. p(x) is lesser or equal than

the entropy of the Gaussian distribution, with equality if and only if p(x) is

Gaussian distributed with the same variance σ2.

3.1.4 Continuous Shannon entropy maximisation on Rm

In this section a generalisation of Section 3.1.3 for multidimensional random

variables is given. Consider a continuous p.d.f. f on Rm with fixed covariance

matrix Σ, then

H1(f) ≤ 1

2
(m+ log((2π)m) det Σ) , (23)
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with equality if and only if f is m-dimensional Gaussian distributed with

covariance matrix Σ, therefore

f(x) =
1

(2π)m det Σ
exp(−1

2
(x− µ)Σ−1(x− µ)),

where µ ∈ Rn denotes the means (Conrad; 2013). Note that the covariance

matrix Σ is symmetric and positive-semidefinit. The variances of the m

components of the random variable are on the main diagonal of covariance

matrix.

In the following section dealing with Rényi entropy maximisiation the

Student distribution is needed as a generalisation of the normal distribution,

giving the limiting maximum entropy distribution.

Definition 3.1. Multivariate Student distribution. An m-dimensionally Stu-

dent distributed m-variate random variable X with mean µ ∈ Rm, correla-

tion matrix Σ ∈ Rm×m respectively covariance matrix C = νΣ/(ν − 2) and

ν degrees of freedom is denoted by

X ∼ T (ν,Σ, µ).

Its p.d.f. fν(x) is given by

fν(x) =
1

(νπ)
m
2

Γ(m+ν
2

)

Γ(ν
2
)

1

|Σ| 12 [1 + (x− µ)>[νΣ]−1(x− µ)]
m+ν

2

,

with the gammfunction Γ(t) =
∫∞

0
xt−1 exp(x)dx.
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Note that the limiting form for ν →∞ is the m-variate Gaussian N(µ,Σ)

as given in Definition 2.3. For ν = 1 the m-dimensional Student distribution

simplifies to the density of the m-dimensional Cauchy distribution

f(x;µ,Σ, k) =
Γ
(

1+m
2

)
Γ(1

2
)π

m
2 |Σ|

1
2 [1 + (x− µ)>Σ−1(x− µ)]

1+m
2

.

The multivariate Student distribution contains the one-dimensional Stu-

dent distribution as special case for m = 1. Due to its importance, the p.d.f.

of the one-dimensional Student distribution is written out:

f(t) =
Γ(ν+1

2
)

√
νπ Γ(ν

2
)

(
1 +

t2

ν

)− ν+1
2

3.2 Rényi entropy maximisation

In this section distributions that maximise the Rényi entropy under certain

constraints will be introduced. One shall be reminded, that the Rényi entropy

contains the Shannon entropy as the special case for q = 1. This means that

this section contains parts of the previous Section 3.1 on Shannon entropy

maximisation as special cases.

3.2.1 Continuous Rényi entropy maximisation on Rm

For a continuous probability density function f on Rm,m ≥ 1, and m
m+2

<

q < 1 the m-dimensional Student distribution maximises the entropy. The

distribution maximising the Rényi entropy is uniquely defined, as H∗q of a
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probability density function f is a concave function of q for q ≥ 0 and

convex for q ≤ 0. For the case that m
m+2

< q < 1 the entropy maximising

distribution under the variance constraint E[(X − µ)(X − µ)>] = C is the

Student distribution

T

(
ν,

(ν − 2)C

ν
, 0

)
,

with ν = 2
1−q −m > 2.

If q > 1 and the distribution is subject to the same variance constraint,

then the q-entropy maximising distribution fp(x) is


Γ( p2)

|C|
1
2 [π(p+2)C]

m
2 Γ( p−m2 +1)

[
1− (x− µ)>[(p+ 2)C]−1(x− µ)

] 1
q−1 , if x in Ωq,

0, otherwise

with finite support

Ωq = {x ∈ Rm : (x− µ)>[(p+ 2)C]−1(x− µ) ≤ 1}.

A proof is given in Leonenko and Pronzato (2010).

3.3 Tsallis entropy maximisation

In this section Tsallis distributions will be introduced that maximise the

Tsallis entropy under certain constraints. As the Tsallis entropy contains

the Shannon entropy as the special case q = 1, this section contains generali-

sations of parts of the foregone Section 3.1 on Shannon entropy maximisation.
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3.3.1 Continuous Tsallis entropy maximisation on Rm

The problem of maximisation of the Tsallis entropy under energy (covariance)

constraint is solved by the so called Tsallis distribution. Without loss of

generality, we consider only the centred case µ = 0. Then the m-variate

Tsallis distribution with covariance matrix K = E[(x−µ)(x−µ)>] is defined

for m
m+2

< q as

fq(x) = Aq
(
1− (q − 1)βx>K−1x

) 1
q−1

+
, (24)

where x+ = max(0;x) and β = 1
2
q− n(1− q). The problem of maximisation

of the Tsallis entropy under energy (covariance) constraint is solved by fq.

The energy constraint can be interpreted as a covariance constraint, leading

to the following expression: (Vignat et al.; 2004)

fq(x) = argf : E[xx>] = K
max

Hq(f)

Proof. Define a Bregman divergence Dq of two continuous distributions f

and g as

Dq(f ||g) = sign(q − 1)

∫
f q

q
+
q − 1

q
gq − fgq−1.

The positivity of Dq(f ||g) with equality to zero if and only if f = g

pointwise is a consequence of the convexity of function x 7→ sign(q − 1)x
q

q
.

Consider the case q > 1 : the fact that distribution f has the same covariance
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K as fq a Tsallis distribution defined in Equation (24) can be expressed by

∫
f qq =

∫
f q−1
q f

so that

0 ≤ Dq(f ||fq)

= sign(q − 1)

∫
f q

q
+
q − 1

q
f qq − ff q−1

q

=

∫
f q

q
+
q − 1

q
f qq − f qq

=
1

q

∫
f q + (q − 1)f qq − qf qq

=
1

q

∫
f q − f qq

=
1

q
{(1− (q − 1)Hq(f))− (1− (q − 1)Hq(fq))}

=
q − 1

q
(Hq(fq)−Hq(f))

This implies that Hq(fq) ≥ Hq(f), thus the Tsallis distribution has higher

Tsallis entropy than any other distribution with the same covariance matrix

K. The proof for the case q < 1 follows accordingly (Vignat et al.; 2004).

Tsallis distributions have the following properties (Vignat et al.; 2004):

1. Stochastic representation. If X is Tsallis distributed with parameter
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q < 1 and covariance matrix K then

X
d
=
CN

A
,

where A is a chi random variable with df = −m + 2
1−q degrees of

freedom, independent of the Gaussian vector N , with E[NN>] = I,

and C = (m − 2)K. If Y is Tsallis distributed with parameter q > 1,

then

Y
d
=

CN√
A+ ||N ||22

,

where A is a chi random variable with 2
q−1

+2 degrees of freedom. Note

that the denominator is again a chi random variable, but that contrary

to the case q < 1, it is now dependent on the numerator.

2. Orthogonal invariance. This follows as a direct consequence of the in-

variance under orthogonal transformation of the covariance constraint.

Thus Tsallis distributions can be written as

fq(x) = φq(x
>K−1x).

3. Duality. There is a natural bijection between the cases q < 1 and q > 1.

Let X Tsallis distributed with parameter q < 1, df = −m + 2
1−q and

C = (df − 2)K. Then the random variable Y which is defined to be

Y =
X√

1−X>C−1X
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is Tsallis distributed with covariance matrix
df−2

df+2
K and parameter q′ >

1 such that 1
q′−1

= 1
1−q −

m
2
− 1.

After giving the entropy maximising distributions, theoretical estimators

for entropy of a given sample are derived in the following section. Note that

the estimated entropy can not exceed the entropy of the respective maximum

entropy distribution.
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4 Theoretical estimators of entropy

There is a variety of different approaches of estimating entropy in literature.

The focus of this thesis is on the nearest neighbour approach of entropy

estimation that will be presented in Section 4.1, but other estimators will

be discussed as well. In Section 4.2 two estimators based on an m-spacing

density estimate will be presented. Section 4.3 presents an estimator for

quadratic entropy.

In order to define nearest neighbouring observations in a sample a notion

of distance has to be introduced. The nearest neighbour estimator presented

in Leonenko and Pronzato (2010) uses the Euclidean distance.

Definition 4.1. Euclidean distance. The Euclidean distance is the most

commonly used distance metric. Denote with p = (p1, p2, . . . , pm)> and q =

(q1, q2, . . . , qm)> vectors in Rm. The Euclidean distance ρ of p and q is defined

as

ρ(p, q) = ρ(q, p)

=
√

(q1 − p1)2 + (q2 − p2)2+, . . . ,+(qm − pm)2

=

√√√√ m∑
i=1

(qi − pi)2.

In two and three dimensional space this can be interpreted as the length of

a line with end points p and q.
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With this definition of distance the nearest neighbour estimator is derived

in the following section.

4.1 Nearest neighbour estimator

This section introduces the nearest neighbour approach to estimation of en-

tropies given in Leonenko and Pronzato (2010). The nearest neighbour esti-

mator for information is defined in Section 4.1.1. Properties of this estimator

are summarised in Section 4.1.2 for densities with bounded support and in

Section 4.1.3 for densities with unbounded support. In Section 4.1.4 theoret-

ical results concerning the convergence of the bias are presented. Finally, the

theoretical estimators for the Shannon, Rényi and Tsallis entropy are given

in Section 4.1.5.

4.1.1 Estimation of information

This section introduces the nearest neighbour estimator for information. As

the Shannon, Rényi and Tsallis entropies are only different transformations

of information, this is the essential part of the approach. Let ρ(p, q) denote

the Euclidean distance, see Definition 4.1, between two points p, q ∈ Rm. Let

X1, . . . , XN be a sample of size N of a random variable X. For any Xi in

the sample compute the N − 1 distances ρ(Xi, Xj), j = 1, . . . , N , j 6= i, to

every other random variable in the sample. From these N − 1 distances we

form the order statistics ρ
(i)
1 ≤ ρ

(i)
2 ≤, . . . ,≤ ρ

(i)
N−1. This includes that ρ

(i)
1 is

the nearest neighbour distance from Xi to any other Xj, j 6= i, in the sample
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and ρ
(i)
k is the kth nearest neighbour distance from Xi to any other Xj, j 6= i,

in the sample.

The information Iq, q 6= 1, can be estimated by (Leonenko and Pronzato;

2010)

ÎN,k,q =
1

N

N∑
i=1

(ζN,i,k)
1−q , (25)

with

ζN,i,k = (N − 1)CkVm

(
ρ

(i)
k

)m
, (26)

where Vm = πm/2

Γ(m/2+1)
is the volume of the unit ball B(0, 1) in Rm and

Ck =

[
Γ(k)

Γ(k + 1− q)

] 1
1−q

.

The following lemma gives outlines the general idea of the derivation of

the nearest neighbour estimator for the information.

Lemma 4.1. A Monte Carlo estimator for a known function f based on the

sample X1, . . . , XN is

f̂ =
1

N

N∑
i=1

f(Xi).

The estimator for Iq is a plug-in estimator into the Monte Carlo estimator

of the form

ÎN,k,q =
N∑
i=1

[
f̂N,k(Xi)

]q−1

,

with

f̂N,k(x) = 1/ {(N − 1)CkVm[ρk+1(x)]m}
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the function to be estimated. This function can be deduced via nearest

neighbour estimation.

4.1.2 Densities with bounded support

For densities with bounded support the following theorems can be derived.

Theorem 4.1. Asymptotical unbiasedness of ÎN,k,q for q > 1. The estimator

ÎN,k,q satisfies

E[ÎN,k,q]→ IN,k,q for N →∞

for any q ∈]1, k + 1[ for bounded densities f , see Leonenko and Pronzato

(2010).

Theorem 4.2. Asymptotical unbiasedness of ÎN,k,q for q < 1. Let f a con-

tinuous function on X and f(x) = 0 for x /∈ X , where X is a compact subset

of Rm. Additionally let the following assumption on the geometry of X hold

vol
[
B(x, θ

1
m )
⋂
X
]
> α vol

[
B(x, θ

1
m )
]

= αVmθ

for all x ∈ X , for all θ ∈ [0, Bx] and for some α > 0. Then the bias of

ÎN,k,q tends to zero for N → ∞ if f is bounded from below, see Leonenko

and Pronzato (2010). If f is not bounded from below ÎN,k,q is asymptotically

unbiased for any q ∈ (−1, 1) and any k when f is continuously differentiable

on X and p < 1. For larger values of p an upper bound for admissible values

is given by (1 + qp2)p(p− 1).
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Take q = 1
2

as an example. Then k = 2 can be used for p <
√

10+2
3
≈ 1.72

to gain an asymptotically unbiased estimator. If p is any larger than that,

k = 1 is necessary.

Theorem 4.3. Consistency of ÎN,k,q. The estimator ÎN,k,q satisfies

ÎN,k,q
L2→ Iq for N →∞

and thus

ÎN,k,q
p→ Iq for N →∞

for any q ∈
]
1, k+1

2

[
for bounded f when k ≥ 2, or k = 1 for q ∈

]
1, 3

2

[
(Leonenko and Pronzato; 2010).

In order to prove Theorem 4.1 and Theorem 4.3 the following lemmas are

needed.

Lemma 4.2. The following properties of Iq are shown in Leonenko and

Pronzato (2010)

1. Iq <∞ for q > 1 and bounded f .

2. Iq <∞ for some q < 1 implies Iq′ <∞ for any q′ ∈]q, 1[.

3. Iq <∞ for any q ∈ [0, 1[ if f is of finite support.
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Lemma 4.3. Let g ∈ L1(Rm). For any sequence of open balls B(x,Rk) with

radius Rk → 0 as k →∞ and for µ-almost any x ∈ Rm,

lim
k→∞

1

VmRm
k

∫
B(x,Rk)

g(t)dt = g(x)

Lemma 4.4. For any β > 0,

∫ ∞
0

xβF (dx) = β

∫ ∞
0

xβ−1[1− F (x)]dx

and∫ ∞
0

x−βF (dx) = β

∫ ∞
0

x−β−1F (x)dx,

in the sense that if one side converges so does the other.

Proof. Proof of Theorem 4.1. As all Xi, i = 1, . . . , N are i.i.d.,

E
[
ÎN,k,q

]
= E

[
ζ1−q
N,i,k

]
= E

[
E
[
ζ1−q
N,i,k|Xi = x

]]
,

with ζN,i,k defined as in Equation (26). The corresponding distribution func-

tion conditional to Xi = x is

Fn,x,k(u) = P (ζN,i,k < u|Xi = x) = P
(
ρ

(i)
k < RN(u)|Xi = x

)
,

where RN(u) =
(

u
(N−1)VmCk

) 1
m

and Vm and Ck defined as for Equation (26).
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Let B(x, r) be the open ball with center x and radius r. Then

FN,x,k(u) = P {k elements or more in B(x,RN(u))}

=
N−1∑
j=k

(
N − 1

j

)
pjN,u(1− pN,u)

N−1−j

= 1−
k−1∑
j=0

(
N − 1

j

)
pjN,u(1− pN,u)

N−1−j,

where pN,u =
∫
B(x,RN (u))

f(t)dt. From the Poisson approximation of the bi-

nomial distribution, Lemma 4.3 gives

Fn,x,k(u)→ Fx,k(u) = 1− exp(λu)
k−1∑
j=0

(λu)j

j!
, as N →∞

for µ-almost any x, with λ = f(x)
Ck

. This means that Fn,x,k(u) tend to the

Erlang-distribution Fx,k(u) with p.d.f.

fx,k =
λkuk−1 exp(−λu)

Γ(k)
.

With straightforward calculation it can be shown that for the case that q < 1

(Leonenko and Pronzato; 2010)

∫ ∞
0

u1−qfx,k(u)du =
Γ(k + 1− q)
λ1−qΓ(k)

= f q−1(x)

for any q < k + 1.
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For the case 1 < q < k + 1 recall that due to Lemma 4.2.1 Iq <∞. Let

JN =

∫ ∞
0

u(1−q)(1+δ)FN,x,k(du).

With Theorem 2.5.1 of Bierens (1996), page 34,

zN,k(x) =

∫ ∞
0

u1−qFN,x,k(du)

converges to zk(x) =

∫ ∞
0

u1−qFx,k(du) = f q−1, as N →∞ (27)

for µ-almost any x in Rm.

Define β = (1 − q)(1 + δ) so that β < 0 and take δ < k+1−q
q−1

so that

β + k > 0. With Lemma 4.4 one can deduce that

JN = −β
∫ ∞

0

uβ−1FN,x,k(u)du

= −β
∫ 1

0

uβ−1FN,x,k(u)du− β
∫ ∞

1

uβ−1FN,x,k(u)du

≤ −β
∫ 1

0

uβ−1FN,x,k(u)du− β
∫ ∞

1

uβ−1du

= 1− β
∫ 1

0

uβ−1FN,x,k(u)du. (28)

Let f̄(x) (or shortened f̄) be a boundary of f(x), then ∀x ∈ Rm,∀u ∈

R,∀N,

f̄(x)VmRN(u)m =
f̄(x)u

(N − 1)Ck
,
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implying

FN,x,k(u)

uk
≤

N−1∑
j=k

(
N − 1

j

)
f̄ juj−k

Cj
k(N − 1)j

≤
N−1∑
j=k

f̄ juj−k

Cj
kj!

=
f̄k

Ck
kk!

+
N−1∑
j=k+1

f̄ juj−k

Cj
kj!

≤ f̄k

Ck
kk!

+
f̄k

Ck
k

N−k−1∑
j=1

f̄ juj

Cj
kj!

≤ f̄k

Ck
kk!

+
f̄k

Ck
k

∞∑
j=1

f̄ juj

Cj
kj!

=
f̄k

Ck
kk!

+
f̄k

Ck
k

{
exp

(
f̄u

Ck

)
− 1

}

and for u < 1

FN,x,k(u)

uk
< Uk =

f̄k

Ck
kk!

+
f̄k

Ck
k

{
exp

(
f̄u

Ck

)
− 1

}
.

Using Equation (28), it follows that

JN ≤ 1− βUk
∫ 1

0

uk+β−1du = 1− βUk
k + β

,

implying Equation (27). The convergence of

∫
Rm

zN,k(x)f(x)dx→
∫
Rm

zk(x)f(x)dx = Iq, as N →∞
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follows from Lebegues’s bounded convergence theorem, because zN,k(x) is

bounded, take δ = 0 in JN , completing the proof of Theorem 4.1.

4.1.3 Densities with unbounded support

The case of f being of unbounded support is an important case to consider

for q < 1. Define

rc(f) = sup

{∫
Rm
|x|rf(x)dx <∞

}

so that E[|Xi|r] < ∞ for r < rc(f) and E[|Xi|r] = ∞ for r > rc(f). Using

this notation one can obtain the following statements concerning asymptotic

unbiasedness.

Theorem 4.4. If 0 < q < 1

1. If Iq <∞ and rc(f) > m1−q
1

, then

E[ÎN,k,q]→ Iq, as N →∞

2. If Iq <∞, q > 1
2

and rc(f) > 2m 1−q
2q−1

, then

E[ÎN,k,q − Iq]2 → 0, as N →∞
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4.1.4 Theoretical approximations of the bias

This section summarises the results concerning the convergence of the bias

of the nearest neighbour estimator given in Leonenko and Pronzato (2010).

Lemma 4.5. With the assumption of f being three times continuously dif-

ferentiable µL-almost everywhere, the following equation can be shown,

1

VmRm

∫
B(x,R)

f(z)dz = f(x) +
R2

2(m+ 2)

m∑
i=1

∂2f(x)

∂x2
i

+ o(R2), R→ 0,

which can be used for approximating FN,x,k(u) − Fx,k(u) in the proof of

Theorem 4.1.

Theorem 4.5. In Leonenko and Pronzato (2010) some approximations of

the bias

B̂N,k,q = E
[
ÎN,k,q

]
− Iq

= E
[
ζ1−q
N,k,q

]
− Iq

are given under the conditions of Lemma 4.5 as:

B̂N,k,q =


(q−1)(2−q)Iq

2N
+ O

(
1
N2

)
, for m = 1,

(q−1)
N

[
(k+1−q)Jq−2

8π
+ (2−q)Iq

2

]
+ O

(
1

N
3
2

)
, for m = 2,

(q−1)

N
2
m

Γ(k+1+ 2
m
−q)

DmΓ(k+1−q) Jq−1−2/m + O
(

1

N
3
m

)
, for m ≥ 3,
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where

Jβ = fβ(x)
m∑
i=1

∂f(x)

∂x2
i

dx and

Dm = 2(m+ 2)V
2
m
m

Lemma 4.6. Some of the most important properties of Iq are (Leonenko

and Pronzato; 2010)

1. Iq <∞ for q > 1 if f is bounded.

2. Iq′ <∞ for any q′ ∈]q, 1[ if Iq <∞ for some q < 1.

3. Iq <∞ for any q ∈ [0, 1[ if f is of finite support.

4.1.5 Estimation of entropy

With the nearest neighbour estimator for the information given in Equation

(25) the following theorems can be derived.

Theorem 4.6. Nearest neighbour estimator of Rényi entropy. Under the

conditions of Theorem 4.3

Ĥ∗N,k,q = log(ÎN,k,q)/(1− q)
L2−→ H∗q (29)

is an estimator for the Rényi entropy using the estimator of the information

Iq proposed in equation (25).
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Theorem 4.7. Nearest neighbour estimator of Tsallis entropy. Similarly to

the Rényi entropy the estimator for the Tsallis entropy

ĤN,k,q = (1− ÎN,k,q)/(q − 1)
L2−→ Hq (30)

is another straight-forward transformation of the nearest neighbour estimator

of Iq in equation (25) under the conditions of Theorem 4.3 (Leonenko and

Pronzato; 2010).

Theorem 4.8. Nearest neighbour estimator of Shannon entropy. For the

estimation of H1, we take the limit of the Rényi entropy Ĥ∗N,k,q as q → 1

which gives

ĤN,k,1 =
1

N

N∑
i=1

log ξN,i,k, (31)

with

ξN,i,k = (N − 1) exp [−Ψ(k)]Vm

(
ρ

(i)
k,N−1

)m
,

where Ψ(z) = Γ′(z)/Γ(z) is the digamma function, Ψ(1) = −µ with µ =

0.5772 the Euler-Mascheroni constant and for k ∈ N , Ψ(k) = −µ + Ak−1

with A0 = 0 and Aj =
∑j

i=1 1/j (Leonenko and Pronzato; 2010).

Another way of estimating the Shannon entropy for one-dimensional ran-

dom variables using m-spacings is presented in the following section.
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4.2 Spacing estimators

These estimators are based on a density estimate using sample-spacings. As

sample spacings are only defined for the one-dimensional case, spacing esti-

mators only work for one-dimensional random variables. The estimators for

the Shannon entropy presented in Beirlant et al. (1997) and Song (2000) will

be presented in Section 4.2.1 and 4.2.2 respectively. For the Rényi entropy

biased estimators exist in literature, see e.g. Hegde et al. (2005), but we will

focus on the estimation of the most important special case, the Shannon

entropy.

Let {X1, . . . , XN} an i.i.d. sample of a real valued random variable X.

The corresponding order statistics is denoted by {X(1), . . . , X(N)}. An m-

spacing is defined as [X(i+m) − X(i)], for (1 ≤ i < i + m ≤ N). The corre-

sponding density estimate is

fn(x) =
m

N

1

X(im) −X(im−m)

if x ∈ [X(im−m), X(im)] . A consistent density estimator can be achieved if m

is chosen dependent on the sample size N with the properties mN →∞ and

mN
N
→ 0 as N →∞.

An estimator for Shannon entropy based on this spacing density estimator

can be constructed as a plug-in estimator. The following m-spacing based

estimate presented in this section is constructed from an inconsistent spacing

density estimator, but is nonetheless consistent (Beirlant et al.; 1997).
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4.2.1 m-spacing estimator

Let us consider the m-spacing estimator for a fixed m: (Beirlant et al.; 1997)

Hm,N =
1

N

N−m∑
i=1

log
( n
m

(X(i+m) −X(i))
)
−Ψ(m) + log(m),

where Ψ(x) = d−(log(Γ(x))
dx

is the digamma function. This implies that the

corresponding density estimate is inconsistent. Consequential, an additional

term correcting the asymptotic bias is included in the formula for Hm,N . In

Cressie (1976) root-n consistency of the form of asymptotic normality,

lim
n→∞

√
n(Hm,N −H(f))

D→ N(0, σ2),

is proven for bounded distributions f under the tail condition inff(x)>0 f(x) >

0. The asymptotic variance is given as

σ2 = (2m2 − 2m+ 1)Ψ′(m)− 2m+ 1 + V [log(f(x))].

For the special case m = 1 this simplifies to

σ2 =
π2

6
− 1 + V [log(f(x))].
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4.2.2 mn-spacing estimator

An improved estimator based on sample spacings can be gained by choosing

the the difference between two sample quantiles 2m dependent of the sample

size n. Such an estimator is given in Song (2000) as

Hmn :=
1

n

n∑
i=1

log
( n

2m
(X(i+m) −X(i−m))

)
.

Let us introduce several notations that will be used throughout this section.

Let Rm :=
∑m

j=1
1
j

and γ := limn→∞(Rn − log n) be the Euler-Mascheroni

constant. Let φ(F ) := sup{x : F (x) = 0} define the lower end point of F

and ψ(F ) := inf{x : F (x) = 0} define the upper end point of F.

Let us define the following assumptions:

(I) E[log2 f(X) <∞]

(II) sup
φ(F )<x<ψ(F )

F (x)(1− F (x)) |f
′(x)|

f2(x)
<∞,

where f ′(x) denotes the first derivative with respect to x.

(III)

m

log(n)
→ ∞

m log(n)

n
→ 0 as n→∞
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(IV)

m

log(n)
→ ∞

m(log(n)2/3

n1/3
→ 0 as n→∞

Note that choosing m = n1/4 satisfies properties (III) and (IV). This will be

used for the simulation in Section 5.6. This will be used to implement the

estimator in R.

Let us now summarise the most important properties in the following

theorems.

Theorem 4.9. Under the assumptions (I), (II), and (IV) the following limit

theorem can be shown,

√
(n)(Hmn −H(F ) + log(2m) + γ −R2m1)

D→ N(0, σ2(F ),

where σ2(F ) = V [log(f(x))], see Song (2000).

This central limit theorem is of great importance, as it makes it possible

not only to estimate the Shannon entropy nonparametrically, but also to

construct confidence intervals. This allows hypothesis testing as well.

Theorem 4.10. Under the slightly different set of assumptions (II) and

(III) and E[log− f(X) <∞] the convergence in probability is shown in Song
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(2000),

Hmn
P→ H(F ).

A special case of the Rényi and Tsallis entropy being discussed in lit-

erature is the quadratic entropy. Consistent estimators can be found using

another approach which is presented in the following section.

4.3 Estimation of quadratic entropy

For the estimation of quadratic entropy a variety of asymptotic properties

can be obtained. In Leonenko and Seleznjev (2010) and Källberg et al. (2014)

a U-statistic estimator is presented that is based on the number of ε-close

vectors. It is used to estimate the entropy of the marginal distribution of a

stationary d-dependent series, which is a weaker assumption than interdepen-

dency of the series. The following notations will be used. The dimension is

denoted by d, in order to not be confused with m-dependency. The Lebesgue

space or Lp-space of real valued functions in Rd is denoted by La(Rd), a ≥ 1.

Let P the distribution of a random variable X with density p(·) ∈ L2(Rd)

and quadratic Rényi entropy H∗2 (X). For x, y ∈ Rd let d(x, y) = ||x− y|| the

Euclidean distance in Rm, see Definition 4.1 . Using this, two vectors x and

y are ε-close if d(x, y) ≤ ε. Denote the ε-ball with center x with

Bε(x) := {y : d(x, y) ≤ ε}.

77



Its volume bε(m) is given as bε(m) = εmb1(m) where b1(m) denotes the vol-

ume of the m-dimensional unit ball b1(m) = 2πm/2

(mΓ(d/2))
. The ε-coincidence

probability of independent X and Y with common distribution P is defined

as

q2,ε := P (d(X, Y ) < ε) = E [pX,ε(Y )]

with the ε-ball probability pX,ε := P (X ∈ Bε(x)), x ∈ Rm.

The following assumptions are made about the distribution of the random

vector {Xi}, i = 1, . . . ,∞:

1. Finite-dimensionality. The distribution of all Xi is d-dimensional with

d <∞.

2. Stationary sequence. The {Xi} are a random sequence whose joint

probability distribution is invariant over time.

3. m-dependency. In a series of random vectors X1, X2, . . . , that is taken

from the random variable, the vectors Xi and Xj are independent if

|i− j| > m.

This set of assumptions on the distribution of the Xi, i = 1, . . . ,∞ are valid

throughout the entire Section 4.3.

The following assumptions will be referred to as A1 in this section:

1. Let the marginal distribution p(·) fulfil p(·) ∈ L3(Rd).

2. Each four-tuple of positive and unique integers t = (t1, t2, t3, t4), the

random vector (Xt1 , Xt2 , Xt3 , Xt4) has distribution P with density
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pt(x1, x2, x3, x4) satisfying

gt(x1, x2) =

(∫
R2m

pt(x1, x2, x3, x4)2dx3dx4

) 1
2

.

for gt(·, ·) ∈ L1(R2m).

Let ε = ε(n) → 0 as n → ∞ and |C| denote the cardinality of the finite

set C. Introduce the random variable Nn counting the ε-close observations

in the sample X1, . . . , Xn be defined as

Nn = Nn,ε =

(
n

2

)
Qn

:= |{d(Xi, Xj) ≤ ε, i, j = 1, . . . , n, (i < j)}|

=
∑
i<j

I(d(Xi, Xj) ≤ ε),

where I(D) is an indicator for an event D. Here Qn is a U -statistic of

Hoeffding with varying kernel. Write Un = Op(1) as n → ∞ for a sequence

of random variables Un, n ∈ N if for any δ > 0 and large enough n ≥ 1,

there exists C > 0 such that P (|Un| > C) ≤ δ). For a numerical sequence

νn, n ≥ 1, let Un = Op(νn) as n→∞.

Some asymptotic properties for estimation of the quadratic Rényi en-

tropy under m-dependence and the distributional assumptions A1, are now

presented.

Let us look into the asymptotic distribution of the number of small inter-

point distances Nn. This is random variable with expectation value µn =
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µn,ε := E[Nn] and variance σ2
n = σ2

n,ε := V [Nn]. For h = 0, 1, . . . , we

introduce the characteristic σ2
1,h,ε := Cov [pX,ε(X1), pX,ε(X1+h)]. Define

ζ1,m = lim
n→∞

1

n
V

[
n∑
i=1

p(Xi)

]
= V [p(X1)] + 2

m∑
h=1

Cov [p(X1), p(X1+h)] . (32)

Lemma 4.7. Under the set of assumptions A1 the following holds:

1. The expectation value µn and variance σ2
n of Nn fulfill

µn =

(
n

2

)
q2,ε + o(nεd/2)

σ2
n =

n2

2
q2,εn

3

(
σ2

1,0,ε + 2
m∑
h=1

σ2
1,h,ε

)
+ o(nεd/2) + o(n2εd) as n→∞

2. For n2ε2 → a, 0 < a ≤ ∞, and ζ1,m > 0 when supn≥1{nεd} =∞, then

µn ∼
1

2
b1(d)q2n

2εd,

σ2
n ∼

1

2
b1(d)q2n

2εd + b1(d)2ζ1,mn
3ε2d as n→∞.

Theorem 4.11. Under A1 the following holds:

1. If n2εd → 0, then Nn
D−→ 0 as n→∞.

2. If n2εd → a, 0 < a ≤ ∞, then µ = limn→∞ µn and

Nn
D−→ Po(µ) as n→∞.
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3. If n2εd →∞ and nεd → a, 0 < a ≤ ∞, and ζ1,m > 0 when a =∞, then

Nn − µn
σn

D−→ N(0, 1) as n→∞.

Let us now design an estimator of the quadratic Rényi entropy based

on Nn. To begin with, we estimate the quadratic functional q2 = q2(P ) :=∫
Rd p(x)2dx with

Q̃n = Q̃n,ε =

(
n
2

)−1
Nn

bε(d)
.

The corresponding plug-in estimator of the quadratic Rényi entropy H∗2 is

H̃∗n = min

{
− log

(
Q̃n

)
,− log

(
1

n

)}
= − log

(
max

{
Q̃n,

1

n

})
,

with varying asymptotic behaviour depending on the rate of decreasing of

ε(n). Two examples for different rates of decreasing of ε(n) are given here.

1. Let A1 hold and n2εd →∞, then

Q̃n
m.s−−→ q2 and

H̃∗n
P−→ H∗2 as n→∞.
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2. Let p(·) ∈ L3(Rd) and Xi 6= Xj∀i 6= j. For nεd → a, 0 < a ≤ ∞, then

Q̃n
m.s−−→ q2 and

H̃∗n
P−→ H∗2 as n→∞.

Theorem 4.12. Define q̃2,ε = q2,ε/bε(d) and H̃∗2 = − log q̃2,ε+ log(bε(d)). Let

ν = 2q2/b1(d) and ζ1,m as in Equation (32). Let A1 hold and n2εd →∞.

1. For nεd → a, 0 < a ≤ ∞, and ζ1,m > 0 when a =∞, then

√
n(Q̃n − q̃2,n)

D−→ N(0,
ν

a
+ 4ζ1,m) and

√
nQ̃n(H̃n − H̃2,ε)

D−→ N(0,
ν

a
+ 4ζ1,m) as n→∞.

2. If nεd → 0, then

nε
d
2 (Q̃n − q̃2,ε)

D−→ N(0, ν) and

nε
d
2 Q̃n(H̃n − H̃2,ε)

D−→ N(0, ν) as n→∞.

Define

Uh,n = Uh,n,ε0

:= M−1
h,nbε0(d)−2

∑
(i,j,k)∈Ξh,n

I(d(Xi, Xj) ≤ ε0, d(Xi+h, Xk ≤ ε0), ε0 > 0
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where Ξh,n := (i, j, k) : 1 ≤ i ≤ n− (h+ 1), j, k 6= i, i+ h, j 6= k and

the number of summands Mh,n := |Ξh,n| = (n− (h = 1))(n− 2)(n− 3). Let

ε = ε0(n) → 0 as n → ∞, then z1,r,n denotes a consistent plug-in estimator

for ζ1,r,n where

z1,r,n := U0,n − Q̃2
n + 2

r∑
h+1

(
Uh,n − Q̃2

n

)
,

under the assumption that the sequence ε0 = ε0(n) satisfies nε3d0 → c, 0 <

c ≤ ∞.

Theorem 4.13. Define a consistent estimator w2
r,n for ν/a+4ζ1,m for nεd →

a, 0 ≤ ∞ as

w2
r,n :=

2Q̃n

nbε(d)
= 4 max

(
z1,r,n,

1

n

)
.

Denote with H
(α)
2 (K), 0 < α ≤ 1, K > 0 a space of functions in Rd satisfying

an α Hölder condition in L2-norm with constant K, which is a smoothness

condition.

Suppose A1 holds and p(·) ∈ H(α)
2 (K), α > d

4
, and r ≥ m. If ε ∼ L(n)n−

1
d

and nεd → a, 0 < a ≤ ∞, and ζ1,m > 0 when a =∞, then

√
n(Q̃n − q2)

wr,n

D−→ N(0, 1) and

√
nQ̃n(H̃n − H̃2,ε)

wr,n

D−→ N(0, 1)

is a consistent estimator estimator of ν
a

+ 4ζ1,m when nεd → a, 0 < a ≤ ∞.
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Theorem 4.14. Under the set of assumptions A1 and the assumption p ∈

H
(α)
2 (K) and n2εd →∞:

1. If α > (d/4)Cβ for some 0 < β < 1 and ε ∼ cn−(2−β)/d, c > 0, then

nβ/2cd/2(Q̃n − q2)

un

D→ N(0, 1) and

nβ/2cd/2Q̃n(H̃n −H∗2 )

un

D→ N(0, 1) as n→∞

2. If ε ∼ L(n)2/dn−2/d, then

L(n)(Q̂n − q2)

un

D→ N(0, 1) and

L(n)Q̂n(Ĥn −H∗2 )

un

D→ N(0, 1) as n→∞

Note that the practical applicability strongly depends on the choice of ε

for a given sample size n. An optimal choice of this parameter has not been

found yet.

4.4 Overview of the theoretical estimators

In Table 2 a summary of the type of entropy (Shannon, Rényi and Tsallis

entropy) that can be estimated with the estimators presented above is given.

Note that m ∈ N and the Rényi and Tsallis entropy simplify to the

Shannon entropy for q = 1. For q = 2 one speaks of the quadratic Rényi or

Tsallis entropy.
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Table 2: Overview of the applicability of the estimators

Distribution Shannon Rényi Tsallis

Nearest neighbour m-dim
m-dim

for q ∈ R+

m-dim
for q ∈ R+

Spacing estimator one-dim
one-dim
for q = 1

one-dim
for q = 1

U-statistic estimator –
m-dim

for q = 2
m-dim

for q = 2
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5 Simulation study

In this thesis simulation studies are utilised to affirm and expand theoreti-

cal results and findings presented earlier in this thesis. The most important

qualities concerning expectation value, bias and variance are verified. Addi-

tionally new insights can be gained by simulation that could not be proven

theoretically so far, for example the rate of convergence of the bias.

In statistics a simulation study usually implies a Monte Carlo simulation.

These are a broad class of computational algorithms based on repeated ran-

dom sampling in order to gain numerical results. They are often used in

physical and mathematical problems and are most useful when it is difficult

or impossible to use calculus or other analytical methods. A typical Monte

Carlo simulation as done in this thesis is composed of the following steps

(Davidian; 2005):

1. Generate N independent data sets from a distribution of choice with a

set of fixed parameters.

2. Compute the numerical value of the estimator T (data) for each set of

samples T1, . . . , TN .

3. For large N , summary statistics of T1, . . . , TN are good approximations

of the true sampling properties of the estimator for the distribution of

choice with given parameters.
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Example 5.1. Let us estimate the expected value of the estimator T . Let

Ti the value of T from the ith data set, i = 1, . . . , N . The sample mean over

all N data sets is an estimate of the true mean of the sampling distribution

of the estimator,

Ê[T ] =
1

N

N∑
i=1

Ti.

An estimator for the variance and approximate confidence intervals for the

estimator can be gained analogously.

Due to the vast number of calculations and the generation of (pseudo)

random samples that have to be conducted in order to get accurate results,

Monte Carlo simulation studies are sensibly only executed by computers.

Here the software package R is used, see Appendix A. The summary statistics

of the random experiments are described using linear models (Section 5.1)

or non-linear models (Section 5.2). The Sections 5.5 and 5.4 explain how

the bias and the variance of an estimator are modelled from the results of a

simulation. These methods will be used in Section 5.6 in order to compare

the nearest neighbour estimator with the estimator defined in Section 4.2

for the one-dimensional Shannon entropy as well as in Section 5.7 where

the nearest neighbour estimator is compared with the estimator presented in

Section 4.3 for the quadratic entropy. In Section 5.8 the theoretical findings

concerning the bias of the nearest neighbour estimator are surveyed.
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5.1 Linear model

The linear model is a tool that will be used to describe the convergence of

the estimators. Suppose we are given a variable of primary interest y and we

aim to model the relationship between this response variable y and a set of

explanatory variables x = x1, . . . , xp . In general, we model the relationship

between y and x1, . . . , xp with a function f(x1, . . . , xp, β). This relationship

is not exact, as it is affected by random noise ε that is usually assumed to

be additive errors. Thus the model is

yi = f(xi, β) + εi, i = 1, . . . , N.

Our goal is to estimate the unknown function f , that means to separate the

systematic component f from random noise. Within the framework of linear

models, the following specific assumptions regarding the unknown function

f and the noise are made (Fahrmeir et al.; 2007):

1. The systematic component f is a linear combination of covariates. The

unknown function f(x1, . . . , xp) is modelled as a linear combination of

covariates, i.e.,

f(x1, . . . , xp, β) = β0 + β1x1+, . . . ,+βpxp

The parameters β = β0, . . . , βp are unknown and need to be estimated.

The parameter β0 represents the intercept. In the linear model β is
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chosen so that the squared sum of the residuals in minimised, thus

N∑
i=1

(yi − f(xi, β))→ min
β
.

For a one-dimensional example see Figure 4.
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Figure 4: Linear regression model with 95 % confidence interval in grey.

The assumption of a linear relation between y and x1, . . . , xp, appears

to be very restrictive, but nonlinear relationships can also be modelled

within the framework of linear models (Fahrmeir et al.; 2007).

Example 5.2. Consider two random variables X and Y with a rela-

tionship of the form

Y =
C

Xa
ε
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Figure 5: Visualisation of Example 5.2, in the right hand figure the x− and
y−axes are log-scaled in order to see the linear relation of log x and log y.

with constants C, a ∈ R and multiplicative error ε ∼ logN(0, σ2),

see Figure 5. In our case log ε ∼ N(0, σ2), E[ε] = exp(σ
2

2
), V [ε] =

exp(σ2) exp(σ2− 1). After a log-transformation of the equation we get

the following form

log Y = logC − a logX + log ε,

where the parameters C and a can be estimated with a normal linear

model (Fahrmeir et al.; 1997, p. 301).

2. Assumptions on the Errors. Another basic assumption of the linear

model is additivity of errors, which implies

yi = β0 + β1x1,i+, . . . ,+βkxk,i + εi, i = 1, . . . , N.
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Even though this appears to be very restrictive, this assumption is

reasonable for many practical applications. Moreover, problems, which

at first do not show additive error structure, can be specified by models

with additive errors after a transformation of the response variable y

(Fahrmeir et al.; 2007). The errors are assumed to have expectation

zero, E[εi = 0], i = 1, . . . , N and we assume a constant error variance

V [εi] = σ2, i = 1, . . . , N to exist across observations. In addition

to homoscedastic variances, we assume that errors are uncorrelated,

meaning Cov[εi, εj] = 0, for i 6= j. Additionally, errors and stochastic

covariates are assumed to be independent, which can be a problem in

real data settings (Fahrmeir et al.; 2007).

3. Gaussian errors. To construct confidence intervals and hypothesis tests

for the regression coefficients, in the classical normal regression case we

assume a normal distribution for the errors (at least approximately).

Together with assumptions 1 and 2, we obtain εi ∼ N(0, σ2) i =

1, . . . , N (Fahrmeir et al.; 2007). In order to verify the normal dis-

tribution of the errors a common tool are Q-Q plots (”Q” stands for

quantile). They are a graphical method for comparing two probability

distributions by plotting their quantiles against each other. In the case

of linear regression, the quantiles of the residuals are plotted against the

quantiles of a Gaussian distribution (Definition 2.3). This shows if the

residuals follow approximately a normal distribution. Let x(1), . . . , x(N)

be an ordered sample. For i = 1, . . . , N let zi the (i−0.5)/N - quantiles
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of the standard normal distribution. The points (z1, x(1)), . . . , (zN , x(N))

form the Q-Q plot (Fahrmeir et al.; 1997). The Q-Q plot for the re-

gression model seen in Figure 4 is shown in Figure 6.
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Figure 6: Example for Q-Q plot of normally distributed errors as stated in
assumption 3 of the linear model in Section 5.1.

Confidence intervals for the regression parameters β can be constructed,

due to the assumption of normally distributed errors. This is a precondi-

tion for the construction of exact tests and confidence intervals, that can in

application be replaced by a large sample size.

As the model parameters β̂ are normally distributed with expectation

value β and covariance matrix σ2(X>X)−1 we obtain the following confidence
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intervals for our model parameters β with level 1− α:

[
β̂j − tN−p

(
1− α

2

)
sej, β̂j − tN−p

(
1− α

2

)
sej

]
,

where tN−p(1−α/2) denotes the (1−α/2) quantile of the Student distribution

with N − p degrees of freedom (Definition 3.1)

sej =
ˆ√

V ar[βj] =
σ̂2

(1−R2
j )
∑N

i=1(xij − x̄j)

denotes the estimated standard deviation of β̂j. We define Rj as the coef-

ficient of determination for the regression between xj as response variable

and all other explanatory variables xl, l 6= j. In general the coefficient of

determination R for a regression with response y and predicted response ŷ is

defined by R =
∑N

i=1(ŷi − ȳ)/
∑N

i=1(yi − ȳ).

5.2 Nonlinear model

In some cases where the linear model is not applicable, a more general non-

linear regression model is used, where the function f relating the response

to the predictors is not necessarily linear:

yi = f(x1,i, . . . , xp,i, β) + εi, i = 1, . . . , N

As in the linear model, β is a vector of parameters and xi = x1,i, . . . , xp,i is

a vector of predictors, and εi ∼ N(0, σ2), i = 1, . . . , N .
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The likelihood for the nonlinear regression model is

L(β, σ) =
1

(2πσ2)N/2
exp

{
−
∑N

i=1[yi − f(xi, β)]2

2σ2

}

This likelihood is maximised when the sum of squared residuals, which is

proportional to the negative log-likelihood l(β),

−l(β) = − logL(β) ∝
N∑
i=1

[yi − f(xi, β)]2

is minimised. This is done by differentiating the negative log-likelihood re-

sulting in the so-called score function s(β),

s(β) = −
∂l(β)

∂β

= −2
N∑
i=1

[yi − f(β, xi)]
∂f(β, xi)

∂β

and setting the partial derivatives to zero, producing estimating equations for

the regression coefficients β. Because these equations are in general nonlinear,

they require solution by numerical optimisation. As in a linear model, it is

usual to estimate the error variance by dividing the residual sum of squares

for the model by the number of observations less the number of parameters.

Coefficient variances may be estimated from a linearised version of the model.
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Let the Fisher information F be defined as the matrix F = [Fij] with

Fij =
∂f(xi, β)

∂βiβj
.

Then the estimated asymptotic covariance matrix of the estimated regression

coefficients is

V (β̂) = σ2(F>F )−1

where σ2 is the error variance, estimated by σ̂2 = 1
N−p

∑N
i=1[yi − f(β, xi)]

with p the dimension of the parameter vector β. For large sample sizes the

parameters β is approximately multivariate normal distributed. Thus, like in

linear regression, standard error and confidence intervals can be constructed,

or confidence ellipses if several variables are considered at once (Fox; 2002;

Gallant; 1975).

Example 5.3. A model for population growth towards an asymptote is the

logistic model

yi =
β1

1 + exp(β2 + β3xi)
+ εi

where yi is the population size at time xi, β1 is the asymptote towards which

the population grows, β2 reflects the size of the population at time x =

0 (relative to its asymptotic size) and β3 controls the growth rate of the

population (Fox; 2002).
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5.3 Setup of the simulation

The setup to simulate the bias and variance of an estimator under given

conditions is the following:

1. Define a series of sample sizes Nk, e.g. Nk ∈ {10, 20, . . . , 1000}.

2. Draw r random samples of size Nk of m-dimensional random variables

of a chosen distribution of interest.

3. Compute the estimated entropy for all r of the Nk-sized random sam-

ples with the estimator to be investigated.

4. Summary statistics like the variance or bias based on the r estimated

entropies can be computed for every sample size Nk.

5. Based on those summary statistics, models can be fitted given a rela-

tionship between the sample size Nk, the chosen distribution and the

entropy estimator being used.

Example 5.4. For every sample size Nk one can compute the mean and

the variance of the nearest neighbour estimators for the Shannon, Reńyi and

Tsallis entropy. As to be expected from theory, the estimators are basically

the same for all three entropies as q → 1. This can be seen in Figure 7, as

all estimators plot at the same spot. This is based on the property of the

Rényi and Tsallis entropy to converge to the Shannon entropy for q → 1. For

N →∞ the estiamted entropy and thus the mean of the estimated entropy
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converges to the theoretical entropy, see Figure 7 while their variance tends

to zero, see Figure 8. Again, for a given sample size the variance of the

nearest neighbour estimators for the different entropy types is almost the

same, as q → 1. For N →∞ the variance converges obviously to zero for all

estimators, see Figure 8.
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Figure 7: Mean of estimated entropy of 200 repetitions against sample size
n , n = {10, 20, ..., 1000}.

The number of repetitions r for every sample size influences the precision

of the results. The greater r is chosen, the smaller the variance of the sum-

mary statistics and the models based on them. This is obviously a favoured

quality, but on the other hand, a large number of repetitions for each sample

size results in longer computation time. Trying to reduce the computation

time for a given number of repetitions r, which corresponds to a given accu-

racy in estimation, can be achieved by writing more efficient code. Ways of

achieving this in R are discussed in the following section.
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Figure 8: Variance of estimated entropy of 200 repetitions against sample
size n = {10, 20, ..., 1000}.

5.4 Estimation of convergence of variance

In order to estimate the rate of convergence of the variance of the estimated

entropy Ĥ a linear model is used. The assumption is that

V [Ĥ] = C/Naε

where C is a constant and a is the power of convergence of N and ε is a

log-normally distributed multiplicative error. The constant C may depend

on q, m and the distribution of the random samples, but not on N . In

order to be able to estimate the unknown parameters one uses a logarithmic

transformation on the equation, analogously to Example 5.2, yielding

log V [Ĥ] = logC − a logN + log ε,
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which can be estimated in a simple linear model as presented in Section 5.1.

The output of the linear model corresponding to the simulated data used

in Figure 7 and Figure 8 suggests that a = 1, see Table 3. This induces a

conversion rate proportional to 1
N

.

Table 3: Estimated coefficients of the linear model log V [Ĥ] = logC −
a logN+log ε with intercept C and slope −a, giving lower and upper bounds
for 95% confidence intervals.

lower.bound estimated upper.bound

Ĉ 0.704 0.842 0.980
â 1.003 0.980 0.957

The model fits the sampled data very well, see Figure 9. The line repre-

senting the model fits the simulated data throughout all sample sizes. For

details of the composition of the parameter C and the effect of different val-

ues of the parameters m and k on the power of N further investigation is

necessary.

5.5 Estimation of convergence of bias

To estimate the bias of the estimated entropy Ĥ, the residuals of the estima-

tion are being used. The function to be estimated,

Bias[Ĥ] = C/Na + ε,
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Figure 9: Variance of estimated entropy of 200 repetitions against sample
size n = {10, 20, ..., 1000}. The same sample as in Figure 8 is used. The
grey line represents the log-transformed linear model with parameters seen
in Table 3.

looks similar to the case of the variance at first glance. Theoretically the

same log-transformation would be helpful here as well. As the estimated

values converge from below to the theoretical entropy, the transformation

log(−Bias[Ĥ]) = logC − a logN

would be an obvious choice. But unlike the variance that is restricted to be

strictly positive, the bias does change its sign when calculated from a sample

of a random variable, leading to undefined values for log(x) for negative x

that can not be handled by the linear model. Therefore the more general

normal nonlinear regression model is used as proposed in Section 5.2.

The estimated parameters for the bias of the simulation seen in Figure

7 are shown in Table 4. For q = 1 all estimators give the same result,
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therefore the estimated parameters are all the same. It can be seen that the

rate of convergence of the bias is very close to 1 with the confidence interval

overlapping it. Thus it can be assumed that the true rate of convergence of

the bias is 1/N .

Table 4: Estimated model coefficients for the bias of the NearestNeighbour -
estimator of the Shannon entropy for a one-dimensional standard normal
distribution with 95% confidence interval.

lower.bound estimated upper.bound

β1 -2.565 -1.215 -0.648
β2 0.841 1.076 1.376
β3 -0.004 -0.001 0.002

The visual fit of the model is very good, see Figure 10, where the model

is represented by the grey line.
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n = {10, 20, ..., 1000}. The same sample as in Figure 7 is used. The grey line
represents the log-transformed linear model with parameters seen in Table 4.
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5.6 Comparison of one-dimensional Shannon entropy

estimators

In this section the two different estimators based on sample spacings that

were presented in Section 4.2, the m spacing-estimator presented in Beirlant

et al. (1997), see Section 4.2, and the mn spacing-estimator presented in

Song (2000), see Section 4.2.2, will be compared to the nearest neighbour

estimator presented in Leonenko and Pronzato (2010), see Section 4.1. All

three estimators can be used to obtain asymptotically unbiased estimators

of the Shannon entropy for one-dimensional samples. This is the historically

oldest definition of entropy and still the most commonly used special case

in application. A good estimator is an important real world task of great

interest. In applied literature the term entropy is often used equivalently to

Shannon entropy. In this section the alias m spacing will be used for the

estimator presented in Beirlant et al. (1997), mn spacing for the estimator

presented in Song (2000) and for the nearest neighbour estimator presented

in Leonenko and Pronzato (2010) we will use the alias NearestNeighbour.

As the spacing estimators are only capable of estimating the entropy for a

one-dimensional random variable, this section exclusively focuses on that.

The essential part of the NearestNeighbour -estimator is the estimation of

the integral over the quadratic function, whereas the spacing estimators are

based on a density estimate. A comparison of these completely different

approaches is an interesting task, that will be executed by a simulation study.
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Estimating the Shannon entropy of a random sample of various conditions,

the estimators will be compared in their bias (Section 5.6.1) and variance

(Section 5.6.2) for the one-dimensional standard normal distribution.

A selection of other distributions is given in Section 5.6.3, where the

estimation of entropy for bounded distributions will be compared for the

NearestNeighbour -estimator and the m spacing-estimator. The section ends

in a brief discussion (Section 5.6.4) of the comparison of the two estimators.

We will see that the m spacing-estimator is superior to the NearestNeighbour -

estimator under some conditions.

5.6.1 Comparison of bias

In this section the NearestNeighbour -, m spacing- and mn spacing estima-

tors will be compared concerning their biasedness. The biasedness of the

respective estimator will be estimated using the method presented in Section

5.5. All three estimators are asymptotically unbiased. For growing sample

sizes n→∞ the estimators converge to the real Shannon entropy of the un-

derlying distribution from which the samples were drawn. This asymptotic

unbiasedness is an important theoretical property for any estimator, but in

application it is usually not possible to draw an infinite number of samples

from the source. The rate of convergence is thus an important criterion for

a good estimator. For n → ∞ the bias converges to zero for all estimators,

see Figure 11, but the bias of the NearestNeighbour -estimator is smaller than

the bias of the spacing-estimators for small sample sizes. For large sample
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sizes N the picture is less clear, as the bias of mn spacing-estimator seems to

converge faster to zero. As all of the estimators are asymptotically unbiased,

the difference for large sample sizes is marginal.
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Figure 11: Bias of estimated entropy of 200 repetitions against sample size
n = {10, 20, ..., 1000}.

These statements can be confirmed and quantified with a nonlinear re-

gression model (see Section 5.2). It is employed in order to describe the

connection of the bias and the sample size, analogously to Section 5.5. The

assumed relationship of bias and sample size n is of the form

Bias[Ĥ] = β1n
−β2 + β3 + ε.

The estimated model coefficients shown in Tables 5, 6 and 7 are estimated

from the samples shown in Figure 11. The estimated parameters for the Near-

estNeighbour -estimator are shown in Table 5. For the m spacing-estimator

the estimated model parameters are shown in Table 6 and the mn spacing-
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estimator in Table 7. The mn spacing-estimator has the largest bias for small

sample sizes, but it converges faster to zero than the other estimators.

Table 5: Estimated model coefficients for the bias of the NearestNeighbour -
estimator for a one-dimensional standard normal distribution.

lower.bound estimated upper.bound

β1 -1.007 -0.587 -0.361
β2 0.661 0.842 1.051
β3 -0.003 -0.0003 0.003

Table 6: Estimated model coefficients for the for the bias of the m spacing-
estimator for a one-dimensional standard normal distribution.

lower.bound estimated upper.bound

β1 -1.310 -1.137 -0.989
β2 0.660 0.713 0.766
β3 -0.001 0.002 0.005

Table 7: Estimated model coefficients for the for the bias of the mn spacing-
estimator for a one-dimensional standard normal distribution.

lower.bound estimated upper.bound

β1 -3.912 -3.650 -3.409
β2 0.931 0.957 0.983
β3 -0.001 0.0002 0.002
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5.6.2 Comparison of variance

As all of the estimators that are being investigated, that is the the Near-

estNeighbour -, the m spacing- and the mn spacing-estimator, are asymptot-

ically unbiased, their variance is an important second criterion to be consid-

ered. All three estimators, are consistent, that means that for sample sizes

n → ∞ the variance of the estimators converges to 0. A small variance for

small sample sizes is an important quality of a good estimator, because this

ensures good results even for small sample sizes. For n → ∞ the variance

converges to zero for all estimators, see Figure 12. Just by looking at Fig-

ure 12 it seems that the variance of the mn spacing-estimator is somewhat

smaller than of the m spacing-estimator and NearestNeighbour -estimator.
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Figure 12: Variance of estimated entropy of 200 repetitions against sample
size n = {10, 20, ..., 1000}.

As there might me a small difference in the variance of the estimators,

a log-transformed linear regression model (see Section 5.1, Example 5.2) is
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used to describe the relationship of the variance and the sample size. With

this tool the rate of convergence of the variance to zero can be estimated for

both estimators. The modelled relation of the variance of the estimator and

the sample size n is of the form

V [Ĥ] = β0n
β1ε,

that can be estimated after a log-transform in a linear model of the form

log(V [Ĥ]) = log(β0) + β1 log(n) + ε,

analogously to Section 5.4.

The estimated model coefficients based on the samples shown in Figure 12

for the NearestNeighbour -estimator are shown in Table 8, for the m spacing-

estimator in Table 10 and for the m spacing-estimator in Table 9 respectively.

Table 8: Estimated model coefficients for the variance of the NearestNeigh-
bour -estimator for a one-dimensional standard normal distribution.

lower.bound estimated upper.bound

log(β0) 0.029 0.159 0.288
β1 -0.990 -0.969 -0.947

It can be seen that the mn spacing-estimator has the smallest variance

for all sample sizes and it converges faster to zero than the other estimators.

This is an important quality. When it comes to comparing the entropy of

107



Table 9: Estimated model coefficients for the variance of the m spacing-
estimator for a one-dimensional standard normal distribution.

lower.bound estimated upper.bound

log(β0) -0.210 -0.080 0.050
β1 -0.991 -0.969 -0.948

Table 10: Estimated model coefficients for the variance of the mn spacing-
estimator for a one-dimensional standard normal distribution.

lower.bound estimated upper.bound

log(β0) -0.584 -0.458 -0.332
β1 -1.046 -1.025 -1.004

random samples of the same sample size the variance is a way more important

measure of performance for an estimator than its bias, because the bias for

a given sample size is the same in all samples of this size. In application

the biasedness of an estimator might not be of great interest as usually same

sized samples will be compared. In this case the mn spacing-estimator is

superior to the other estimators investigated.

5.6.3 Bounded distributions

In this section the NearestNeighbour - and the m spacing-estimator for the

Shannon entropy of a one-dimensional random variable will be compared

for bounded distributions. We will have a look at the uniform distribution,

see Definition 2.7, and its generalisation the beta distribution, see Definition
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2.6. Their theoretical Rényi entropy is given in Theorem 2.4 and Theorem 2.5

respectively.

Both the NearestNeighbour - and the m spacing-estimator are found to

be asymptotically unbiased for the uniform distribution on [0, 1], see Fig-

ure 13a, as well as for the beta distribution with parameters α = β = 2, see

Figure 13b, that has the same bounded support.

The observation of asymptotic unbiasedness of the estimators can be veri-

fied using the non-linear model approach for estimating the bias presented in

Section 5.5. The NearestNeighbour -estimator can be assumed to be asymp-

totically unbiased as the confidence interval of the parameter β3 includes

zero, see Table 11 for the uniform distribution and Table 13 for the beta(2,2)

distribution. The same argument holds for the m spacing-estimator, see Ta-

bles 12 and 14. Surprisingly the bias of the NearestNeighbour -estimator is

smaller for the beta(2,2) distribution, but bigger for the uniform distribu-

tion. This difference is striking as the uniform distribution can be seen as a

beta(1,1) distribution. It would be an interesting topic for future research to

find the subsets of the paramater space where one estimator has a smaller

bias than the the other.

Technical remark: For the uniform distribution a larger number of repe-

titions of smaller sample sizes had to be drawn in order to estimate the bias

of the m spacing-estimator for a given sample size. For the usual number of

repetitions of 200 estimations per given sample size n the algorithm of the

estimation of the non-linear model ran into numerical problems. After an in-
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(a) Average bias for sample sizes n of the estimation of the Shannon entropy for a
one-dimensional uniform distribution on [0, 1].
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(b) Average bias for sample sizes n of the estimation of the Shannon entropy for
a one-dimensional beta(2,2) distribution with finite support [0, 1].

Figure 13: Average bias for a sample sizes n of the m spacing and Nearest-
Neighbour -estimator for the Shannon entropy.
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Table 11: Estimated model coefficients for the bias of the NearestNeighbour -
estimator for a uniform distribution on [0, 1].

lower.bound estimated upper.bound

β1 -0.568 0.474 1.515
β2 0.321 1.258 2.195
β3 -0.004 0.001 0.006

Table 12: Estimated model coefficients for the bias of the m spacing-
estimator for a uniform distribution on [0, 1].

lower.bound estimated upper.bound

β1 -3.178 0.740 4.658
β2 -0.372 1.821 4.014
β3 -0.002 0.001 0.003

Table 13: Estimated model coefficients for the bias of the NearestNeighbour -
estimator for a beta distribution with parameters α = β = 2.

lower.bound estimated upper.bound

β1 -1.450 -0.770 -0.444
β2 0.822 1.028 1.279
β3 -0.002 -0.0001 0.002

Table 14: Estimated model coefficients for the bias of the Ustatistic-estimator
for a beta distribution with parameters α = β = 2.

lower.bound estimated upper.bound

β1 -0.227 -0.160 -0.119
β2 0.281 0.426 0.571
β3 0.001 0.007 0.017
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creased number of repetitions per sample size in order to get more precision

and a shorter sequence of sample size n to keep the computation time within

a reasonable limit, the results presented in this section were gained.

Now the variance of the NearestNeighbour -estimator and the m spacing-

estimator will be compared under the same conditions. In Figure 14, depict-

ing the variance of the estimators shown in Figure 13, it can be seen that

the m spacing-estimator has a smaller variance than the NearestNeighbour -

estimator. This can be quantified with a log-transformed linear regression

model (see Section 5.1, example 5.2). In an analogous manner to Section 5.4

the model is used to describe the rate of convergence of the variance to zero.

For a uniform distribution on [0, 1] the estimated model coefficients based

on the samples shown in Figure 14a for the NearestNeighbour -estimator are

shown in Table 15 and for the m spacing-estimator in Table 16 respectively.

The estimated model coefficients for a beta(2,2) distribution of the Nearest-

Neighbour -estimator are shown in Table 15 and for the m spacing-estimator

in Table 16 respectively. The variance shown in Figure 14b is modeled.

Table 15: Estimated model coefficients for the variance of the NearestNeigh-
bour -estimator for a one-dimensional uniform distribution on [0,1].

lower.bound estimated upper.bound

Ĉ -0.0001 0.106 0.212
â -1.060 -1.033 -1.006
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(a) Variance of the estimators of the Shannon entropy for a one-dimensional uni-
form distribution on [0, 1] for a sample sizes n.
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(b) Variance of the estimators of the Shannon entropy for a one-dimensional
beta(2,2) distribution with finite support [0, 1] for a sample sizes n.

Figure 14: Variance of the m spacing and NearestNeighbour -estimator for
the Shannon entropy for a sample sizes n. The same samples are used as in
Figure 13.
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Table 16: Estimated model coefficients for the variance of the m spacing-
estimator for a one-dimensional uniform distribution on [0,1].

lower.bound estimated upper.bound

Ĉ -0.300 -0.194 -0.088
â -1.085 -1.058 -1.030

Table 17: Estimated model coefficients for the variance of the NearestNeigh-
bour -estimator for a one-dimensional beta(2,2) distribution.

lower.bound estimated upper.bound

Ĉ -0.049 0.110 0.269
â -1.033 -1.007 -0.980

Table 18: Estimated model coefficients for the variance of the m spacing-
estimator for a one-dimensional beta(2,2) distribution.

lower.bound estimated upper.bound

Ĉ -0.318 -0.193 -0.069
â -1.026 -1.006 -0.985
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5.6.4 Discussion of the comparison

For the case of a normally distributed random variable, the mn spacing-

estimator is superior to the m spacing-estimator and the NearestNeighbour -

estimator. It has a smaller variance for any given sample size and a smaller

bias for large sample sizes. Note that for small sample sizes the NearestNeigh-

bour -estimator has a smaller bias. For bounded distributions the results are

not as clear. The m spacing-estimator has a smaller bias than the Near-

estNeighbour -estimator for the uniform distribution, but vice versa for the

beta(2,2)-distribution. This is especially striking as the beta distribution is a

generalisation of the uniform distribution. Further investigation is promising

for future research. The key information is summarised in Table 19.

Table 19: Overview of the best performing estimators for the one-dimensional
Shannon entropy under the aspects of variance and unbiasedness.

Bias Variance

Normal Distribution NearestNeighbour mn spacing
Uniform distribution mn spacing mn spacing
Beta(2,2) distribution NearestNeighbour NearestNeighbour

5.7 Comparison of quadratic entropy estimators

In this section the estimator presented in Källberg et al. (2014), see Sec-

tion 4.3, will be compared to the nearest neighbour estimator presented in

Leonenko and Pronzato (2010), see Section 4.1. Both of them give asymp-
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totically unbiased estimators of the quadratic entropy. The alias Ustatistic

will be used for the estimator given in Källberg et al. (2014) and the alias

NearestNeighbour for the nearest neighbour estimator given in Leonenko and

Pronzato (2010). This section deals exclusively with the estimation of the

quadratic Rényi entropy, as the quadratic Tsallis entropy is just a one-to-one

transformation of it, see Theorem 2.6. The crucial part is the estimation of

the integral over the quadratic function, which is estimated differently by the

NearestNeighbour -estimator and the Ustatistic-estimator. Transforming the

quadratic function to get the entropy is exactly the same for both estimators.

An investigation of the comparison of the estimators for the quadratic Tsallis

entropy might be interesting for future research, but similar results are to

be expected. The two approaches to estimate the quadratic Rényi entropy

will be compared in their bias (Section 5.7.1), variance (Section 5.7.2) and

computation time (Section 5.7.3) for the one-dimensional standard normal

distribution. A prospect of higher dimensional distributions is given in Sec-

tion 5.7.4. Especially for higher dimensional data small sample sizes effect

the bias of the estimators differently. This will be illuminated in Section

5.7.5. A prospect of other distributions is given in Section 5.7.6, where the

estimation of entropy for bounded distributions will be investigated. The

section ends in a short discussion (Section 5.7.7) of the comparison of the

two estimators. We will see that the Ustatistic-estimator is superior to the

NearestNeighbour -estimator depending on the conditions.
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5.7.1 Comparison of bias

The Ustatistic- and the NearestNeighbour -estimator are asymptotically un-

biased, that means that for sample sizes n → ∞ the estimators converge to

the theoretical quadratic Rényi entropy. But often in application only finite

samples are at hand, for which a small bias for a small sample size is of great

importance. For n → ∞ the bias converges to zero for both estimators,

see Figure 15, but the bias of the Ustatistic-estimator is consistantly smaller

than the NearestNeighbour -estimator. Thus, it is a better estimator when in

comes to unbiasedness.
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Figure 15: Bias of estimated entropy of 200 repetitions against sample size
n = {10, 20, ..., 1000}.

In order to quantify that difference, a nonlinear regression model (see

Section 5.2) is used to describe the relationship of the bias and the sample

size, analogously to Section 5.5. The assumed relation between bias and
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sample size is

Bias[Ĥ∗2 ] = β1n
−β2 + β3 + ε.

The estimated coefficients based on the samples shown in Figure 15 for the

NearestNeighbour -estimator are shown in Table 20 and for the Ustatistic-

estimator in Table 21 respectively. The rate of convergence is a lot higher

for the Ustatistic-estimator.

Table 20: Estimated model coefficients for the expectation value of the Near-
estNeighbour -estimator for a one-dimensional standard normal distribution.

lower.bound estimated upper.bound

β1 0.394 0.596 0.930
β2 0.414 0.578 0.749
β3 -0.018 -0.003 0.006

Table 21: Estimated model coefficients for the for the expectation value of
the Ustatistic-estimator for a one-dimensional standard normal distribution.

lower.bound estimated upper.bound

β1 1.005 1.579 2.606
β2 0.978 1.150 1.351
β3 -0.002 -0.0004 0.001

5.7.2 Comparison of variance

Both the Ustatistic-estimator and the NearestNeighbour -estimator are con-

sistent, that means that for sample sizes n → ∞ the variance of the esti-

mators converges to zero. As both estimators are asymptotically unbiased,
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their variance is an important second criterion to be considered. A small

variance for small sample sizes is an important quality criterion of an esti-

mator, as this ensures good estimation results even for small sample sizes.

For n→∞ the variance converges to zero for both estimators, see Figure 16,

but the variance of the Ustatistic-estimator is consistently smaller than the

NearestNeighbour -estimator for a fixed sample size. This makes it superior,

especially in the case of small sample sizes.
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Figure 16: Variance of estimated entropy of 200 repetitions against sample
size n = {10, 20, ..., 1000}.

In order to quantify that difference, a log-transformed linear regression

model (see Section 5.1, Example 5.2) is used to describe the relationship

of the variance and the sample size, as done in Section 5.4. The modelled

relation of the variance of the estimator and the sample size n is of the form

V [Ĥ∗2 ] = β0n
β1ε,
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which can be estimated after a log-transformation in a linear model as

log(V [Ĥ∗2 ]) = log(β0) + β1 log(n) + ε.

The estimated coefficients based on the samples shown in Figure 16 for the

NearestNeighbour -estimator are shown in Table 22 and for the Ustatistic-

estimator in Table 23 respectively.

Table 22: Estimated model coefficients for the variance of the NearestNeigh-
bour -estimator for a one-dimensional standard normal distribution

lower.bound estimated upper.bound

log(β0) 0.512 0.793 1.075
β1 -0.791 -0.744 -0.697

Table 23: Estimated model coefficients for the variance of the Ustatistic-
estimator for a one-dimensional standard normal distribution

lower.bound estimated upper.bound

log(β0) 1.042 1.223 1.404
β1 -1.285 -1.255 -1.225

5.7.3 Comparison of computation time

From a mathematical point of view the computation time of the simulation is

a secondary problem, but in real life applications this is an important issue.

When it comes to large data sets a more run-time efficient estimator might
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be preferable even if it is not superior in other properties. A shorter run-

time can be achieved by writing more efficient code it computation power

is limited. Appendix B discusses efficient programming using the software

package R .
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Figure 17: The computing time for both estimators for a given sample size
n.

The Ustatistic-estimator performs a lot faster than the NearestNeigh-

bour -estimator, see Figure 17. Further investigation shows, that the ratio

of the compution times converges to 2, see Figure 18, which means that the

Ustatistic-estimator performs about twice as fast as the NearestNeighbour -

estimator. A look in the code, see Appendix, gives the clue to this property,

in both approaches the distances of all sampled vectors have to be computed.

In the NearestNeighbour -estimator the k − th nearest neighbour has to be

computed which is a rather extensive operation involving finding the min-

imum of the distances for every sample. For the Ustatistic-estimator the
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Figure 18: Ratio computing time for both estimators, the Ustatistic-
estimator performs around twice as fast

distances only have to be compared to one fixed threshold ε, which means

that a lot less computations have to be done.

5.7.4 Comparison for multidimensional densities

In the simulation study samples of a two- and a three-dimensional standard

normal random variable have been drawn and evaluated in the same manner

as above in this section. On a big scale the resulting plots for the variance

and the residuals look very similar to the one-dimensional case. For small

sample sizes N the Ustatistic-estimator behaves oddly, see Figure 20, which

will be discussed in the following section. The results of the model for two-

dimensional standard normal distribution with trimmed sample size N are
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given in this section. In order to avoid the problematic small sample sizes,

the models tabulated here were only fitted on the data sets for which N ≥ 40,

see Figure 19. Both of the estimators are asymptotically unbiased and their

variance tends to zero. The Ustatistic-estimator is converging faster and has

a smaller variance for a given sample size. The estimated parameters for

the non-linear model for the residuals of the NearestNeighbour -estimator are

given in Table 24 and for the Ustatistic-estimator in Table 25. The residuals

for a given sample size are smaller for the Ustatistic-estimator than for the

NearestNeighbour -estimator. Based on the simulation it can be concluded

that the bias of the Ustatistic-estimator is smaller.
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Figure 19: Averaged residuals of Ustatistic-estimator for a sample size n
for a two-dimensional standard normal distribution. The vertical black line
represents the minimal threshold for sample sizes that were being used for
calculating the bias and variance models. The blue line is the estimated bias
from the model described in Table 24.

The estimated parameters for the log-transformed linear model for the

variance of the NearestNeighbour -estimator are given in Table 26 and for the
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Table 24: Estimated model coefficients for the for the bias of the Nearest-
Neighbour -estimator for a twodimensional standard normal distribution.

lower.bound estimated upper.bound

β1 1.421 1.825 2.363
β2 0.656 0.749 0.847
β3 -0.010 -0.002 0.005

Table 25: Estimated model coefficients for the for the bias of the Ustatistic-
estimator for a two-dimensional standard normal distribution.

lower.bound estimated upper.bound

β1 35.010 85.348 225.652
β2 1.419 1.646 1.897
β3 -0.002 0.001 0.004

Ustatistic-estimator in Table 27. The variance of the Ustatistic-estimator is

smaller than the variance of the NearestNeighbour -estimator, given the same

sample size. The rate in which the variance of the Ustatistic-estimator tends

to zero is greater than the rate of the NearestNeighbour -estimator.

Table 26: Estimated model coefficients for the variance of the NearestNeigh-
bour -estimator for a two-dimensional standard normal distribution.

lower.bound estimated upper.bound

Ĉ 0.226 0.518 0.811
â -0.731 -0.682 -0.633
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Table 27: Estimated model coefficients for the variance of the Ustatistic-
estimator for a two-dimensional standard normal distribution.

lower.bound estimated upper.bound

Ĉ 4.064 4.400 4.736
â -1.581 -1.525 -1.469

5.7.5 Biasedness for small sample sizes

Both estimators are biased for small sample sizes N , they are only asymp-

totically unbiased, that means for N → ∞ the bias tends to zero. The

NearestNeighbour -estimator tends to overestimate the quadratic entropy for

small N , whereas the Ustatistic-estimator runs into a numerical problem for

small sample sizes. The number of ε-close observations Nn in the sample is

a random number in the finite set of natural numbers
{

1, . . . , n(n−1)
2

}
, see

Equation (32) in Section 4.3. This results in a discreteness of the possible

results of the estimator, which is not really a problem in a simulation study

with many repetitions. There is a problem with the choice of ε, as for too

small ε the probability of having any ε-close vectors is very low for small

sample sizes, which can result in an additional bias for small repetition sizes.

More of a problem is an anomaly in the Ustatistic-estimator for small sample

sizes caused by trimming the estimator for the quadratic Rényi entropy H∗2 ,

see equation (11),

H̃∗N = − log

(
max

{
Q̃N ,

1

N

})
.
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For small sample sizes all estimated QN are smaller than 1
N

, resulting in

the estimated entropy defaulting to − log( 1
N

), which underestimates the real

entropy for small sample sizes, see Figure 20. A suitable choice of ε is crucial

for small sample sizes, but not trivial to be found as there are no theoretical

results in literature. A data based choice of ε might be a topic of future

investigation that can help minimising the bias for small sample sizes. This

cause of bias seems to be more of a problem for higher dimensional data, as

the Ustatistic-estimator of the one-dimensional standard normal distribution

seems to be almost unaffected by trimmimg to the limit − log
(

1
N

)
, see Figure

20a.

For two-dimensional data (Figure 20b) the effect starts to be noticable for

small N and for three-dimensional data a relatively big sample size is required

in order to make up for that effect, see Figure 20c. Also the discreteness of

the possible outcomes of the Ustatistic-estimator is more visible in the higher-

dimensional cases. One can see that for higher-dimensional data the sample

size needs to be greater for the Ustatistic-estimator not to be unbiased.
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(a) Estimation of the quadratic entropy for small sample sizes N for a one-
dimensional standard normal distribution.
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(b) Quadratic entropy for a two-dimensional standard normal distribution.
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(c) Quadratic entropy for a three-dimensional standard normal distribution. Note
the bigger scale of the x-axis.

Figure 20: Quadratic entropy for small sample sizes N for a one- two- and
three-dimensional standard normal distribution. The grey line is the theo-
retical maximum, − log

(
1
N

)
, of the Ustatistic-estimator based on the sample

size. The horizontal black line is the theoretical entropy of the distribution
from which the samples were drawn. In order to reduce the effects of over-
plotting, the points have been plotted transparently. A more intense colour
represents more points in that spot.
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5.7.6 Bounded distributions

In this section the two estimators for quadratic entropy considered in this

thesis, the Ustatistic-estimator and the NearestNeighbour -estimator, will be

compared for bounded distributions. We will compare the two estimators

for the beta distribution, see Definition 2.6 with its Rényi entropy given in

Theorem 2.4, and its special case the uniform distribution, see Definition 2.7

with its Rényi entropy given in Theorem 2.5. Comparing the entropy estima-

tors for bounded distributions is an important case to consider, as stronger

convergence of the estimators could be proven theoretically. Surprisingly the

Ustatistic-estimator is found to be biased for the Uniform distribution on

[0, 1], see Figure 21a, as well as for the beta distribution with parameters

α = β = 2, see Figure 21b, that has the same bounded support.

The observation of biasedness of the Ustatistic-estimator can be verified

by using the non-linear model for the bias presented in Section 5.5. The

NearestNeighbour -estimator, see Tables 28 and 30, can be assumed to be

asymptotically unbiased, as the confidence interval of the parameter β3 in-

cludes zero. The Ustatistic-estimator, see Tables 29 and 31, can be assumed

to be asymptotically biased, as the confidence interval for the parameter β3,

which represents the bias for N →∞ does not include zero. On a 95% con-

fidence level this estimator is biased for a beta distribution with parameters

α = β = 2.
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(a) Average bias for a sample sizes N of the estimation of the quadratic entropy
for a one-dimensional uniform distribution on [0, 1]
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(b) Average bias for a sample sizes N of the estimation of the quadratic entropy
for a one-dimensional beta(2,2) distribution with finite support [0, 1]

Figure 21: Average bias for a sample sizes N of the Ustatistic and Nearest-
Neighbour -estimator for the quadratic entropy.
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Table 28: Estimated model coefficients for the bias of the NearestNeighbour -
estimator for a uniform distribution on [0, 1].

lower.bound estimated upper.bound

β1 0.807 1.152 1.679
β2 0.596 0.729 0.872
β3 -0.009 -0.0003 0.006

Table 29: Estimated model coefficients for the bias of the Ustatistic-estimator
for a uniform distribution on [0, 1].

lower.bound estimated upper.bound

β1 2.135 5.455 35.375
β2 1.622 2.085 2.890
β3 0.051 0.051 0.052

Table 30: Estimated model coefficients for the bias of the NearestNeighbour -
estimator for a beta distribution with parameters α = β = 2.

lower.bound estimated upper.bound

β1 0.387 0.568 0.858
β2 0.397 0.552 0.711
β3 -0.021 -0.005 0.004

Table 31: Estimated model coefficients for the bias of the Ustatistic-estimator
for a beta distribution with parameters α = β = 2.

lower.bound estimated upper.bound

β1 0.193 0.514 2.517
β2 0.866 1.282 1.949
β3 0.014 0.016 0.016
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5.7.7 Discussion of the comparison

Comparing the Ustatistic-estimator and the NearestNeighbour -estimator gets

to ambivalent results. For the case of a one-dimensional normally distributed

random variable the Ustatistic-estimator is superior to the NearestNeighbour -

estimator concerning the bias as well as the variance. The bias converges

faster to zero for growing sample sizes and the variance is smaller for a given

sample size, which make the Ustatistic-estimator superior in this case. For

higher-dimensional normal distributions this has to be put into perspective

by the observation that the Ustatistic-estimator only has a discrete number

of possible outcomes, which can make it impossible to discriminate between

the entropy of similar samples for small sample sizes. In practical application

this is a great weakness. Additionally, the Ustatistic-estimatoris heavily for

small sample sizes of high dimensional distributions. Unless the sample size is

big enough to outweigh this effect, the NearestNeighbour -estimator is a better

choice to estimate the quadratic entropy of higher-dimensional samples.

Different again is the case of bounded distributions. On the basis of

uniformly distributed and beta distributed samples the NearestNeighbour -

estimator is asymptotically unbiased, but an asymptotical bias was observed

for the Ustatistic-estimator. This is usually a disqualifying property for an

estimator, but as the bias converges to a fixed value it can still be used to

compare the entropy of samples of different sizes from the same distribu-

tion, given they have a minimum sample size where the bias can be assumed

to be constant. Using the Ustatistic-estimator is still attractive, as it has a
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smaller variance than the NearestNeighbour -estimator. That being said, for a

general estimation of the entropy of a bounded distribution the NearestNeigh-

bour -estimator is recommended. In Table 32 this information is summarised

compactly.

Table 32: Overview of the best performing estimator for the quadratic Rényi
entropy under the aspects of variance and unbiasedness. With * labelling the
cases where the Ustatistic-estimator performs better for large sample sizes.

Distribution Bias Variance

Normal Distribution (one-dim) Ustatistic Ustatistic
Normal Distribution (two-dim) NearestNeighbour* NearestNeighbour*
Normal Distribution (three-dim) NearestNeighbour* NearestNeighbour*
Uniform distribution NearestNeighbour Ustatistic
Beta(2,2) distribution NearestNeighbour Ustatistic

Note that in this simulation the parameter ε of the Ustatistic-estimator

and the parameter k of the NearestNeighbour -estimator are chosen based

on values recommendations in literature without further investigating. A

suitable choice obviously affects the bias and the variance for a given sample

size and distribution. This is left for further investigation. One shall be

reminded that the Ustatistic-estimator can exclusively be used for estimating

the Rényi entropy in the special case of q = 2, the quadratic Rényi entropy,

whereas the NearestNeighbour -estimator can be used to estimate the general

case for all q, including the special case of q = 2.
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5.8 Investigation of biasedness of the nearest neigh-

bour estimator

In this section the theoretical results concerning the bias of the Nearest-

Neighbour -estimator given in Theorem 4.5 of Section 4.1 are investigated by

simulation. The theoretical information of a normally distributed variable X

is given in Theorem 2.3 as

Iq(X) =

√
(2π)(1−q)m|Σ|(1−q)

(q)m
,

and I1 = 1. This relationship between the Information Iq, its order q and

the dimension m is shown in Figure 22.
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Figure 22: Theoretical Rényi information Iq of an m-dimensional standard
normal distribution. Note the log-transformed y-axis.

In order to investigate the behaviour of the bias of the nearest neighbour

estimator, the entropy was estimated for a range of parameters. In accor-
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dance with the simulation study executed in Leonenko and Pronzato (2010),

the bias of the estimated information grows for small and big values of q.

Interestingly the nearest neighbour estimator for information is unbiased for

any dimension m and sample size N of the standard normal distributed sam-

ple. Additionally, the bias is smaller for growing sample sizes N , which can

be seen from Figures 23a, 23b and 23c.

The dimensionality m of the samples does not influence the general trend

of the bias. The parameter k for the kth nearest neighbour is set to two.

Changing it would only change the picture quantitatively but not qualita-

tively. The general trend of the bias would stay the same.

Using non-linear models (Section 5.2) the convergence bias proposed in

Theorem 4.5 can be checked for the normal distribution. Due to the limited

time of this project, this could not be investigated further.
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Figure 23: Estimated Rényi information Iq of an one- two- and three-
dimensional standard normal distribution. The black line is the theoretical
Rényi entropy, the blue points the average of the estimated information for
a given sample size. Note the log-transformed y-axis.
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6 Discussion

After introducing the concept of Shannon entropy, and its generalisations

the Rényi and Tsallis entropy, as measures of disorder, a number of differ-

ent estimators for Shannon, Rényi and Tsallis entropy are compared the-

oretically and by simulation. There is a number of entropy estimators for

which, under varying conditions, a number of important theoretical results

have been proven in literature, including asymptotic unbiasedness and con-

sistency. Theoretical results on the bias for a given sample size and other

performance criteria are hard to quantify theoretically and illuminated in the

simulation study. Comparing the nearest neighbour estimator presented in

Leonenko and Pronzato (2010) to the other estimators like the spacing based

estimators of entropy presented in Beirlant et al. (1997) and Song (2000)

for one-dimensional distributions and the estimator for quadratic entropy by

Källberg et al. (2014) shows its usefulness. In estimating the Shannon en-

tropy the nearest neighbour estimator performed well, see Table 19, but in

some cases not as good as spacing estimators given in Beirlant et al. (1997)

and Song (2000). For estimating the quadratic entropy, the estimator pre-

sented in Källberg et al. (2014) is superior only for a one-dimensional normal

distribution, but for high dimensional distribution it has some severe prob-

lems that make the nearest neighbour estimator a better choice. For bounded

distributions the estimator given in Källberg et al. (2014) has a smaller vari-

ance, but is biased, see Table 32. A major advantage of the nearest neighbour
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estimator is that it is applicable for all cases, it can estimate the Shannon,

Reńyi and Tsallis entropy of arbitrary order for one- and multidimensional

distributions, see Table 2. This is a very useful property as it allows a broad

spectrum of appliance. There are some special cases where other estimators

perform better, but generally the nearest neighbour estimator performs well.

This makes it a useful workhorse for real life applications.
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A Introduction to R

For all the simulations and plots R version 3.0.0 is used (R Core Team; 2013b).

R is a free software environment for statistical computing and graphics that

provides a wide variety of statistical (linear and nonlinear modelling, clas-

sical statistical tests, time-series analysis, classification, clustering, ...) and

graphical techniques and is highly extensible. It is often the vehicle of choice

for research in statistical methodology, and R provides an open source route

to participation in that activity. One of R’s strengths is the ease with which

well-designed publication-quality plots can be produced, including mathe-

matical symbols and formulae where needed. R can be extended via pack-

ages. There are some basic packages supplied with the R distribution and

numerous are available through the CRAN family of Internet sites covering

a very wide range of modern statistics. R is available as Free Software under

the terms of the Free Software Foundation’s GNU General Public License in

source code form. It compiles and runs on a wide variety of UNIX platforms

and similar systems (including FreeBSD and Linux), Windows and MacOS

(R Core Team; 2013b).

A number of packages is used in addition to the base package. These are

the packages ggplot2 for the graphical output (Wickham; 2009), reshape2 for

manipulating data frames (Wickham; 2007), and stargazer for the presenta-

tion of model outputs in tables (Hlavac; 2014).
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B Efficient simulating in R

Efficient programming is an important issue for all programming, as efficient

code tends to be shorter, simpler, safer and obviously faster. With growing

computing power nowadays it may seem less of a pressing subject, but in

fact it is even more so, as bigger and bigger data sets are available to be

analysed. For a simulation study like in this project, efficient coding pays

back directly in more precise results for the same computation time. As R is a

high level language, it is not an obvious first choice for a simulation program,

but it is designed to connect to high-performance programming languages

like Fortran, C and C++. Thus it combines the convenience of a high level

language, for example automated memory and data type allocation, with

the computational speed of a low level language. In Section B.1 the topic

of vectorisation will be introduced and motivated. Section B.2 introduces

the concept of parallel computing and how it can be used to achieve more

efficiency.

B.1 Vectorisation

Vectorisation in R is a way to achieve better performance. Most of the basic

functions in R are actually written in a low-level language and only have a

wrapper passing the data on to a low level language where the operation will

be executed. But the input of the function still has to be interpreted before

passing it on to the compiled code, which can be time consuming.
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Example B.1. This is a rather technical example, where efficient program-

ming will be explained on an example from the code used for this project.

Efficient code writing will be demonstrated by means of the implementation

of the mn spacing-estimator. Consider a sample of size N with the ordered

observations {X(1), . . . , X(N)}. First, the indices i+m, i−m, of the spacing

X(i+m), . . . , X(i−m) have to be computed and afterwards bounded to [1, N ].

The code necessary to do this is timed with the system.time() function, re-

turning the run time in seconds. The following is the output of the console

from running a chunk of code from the Appendix.

> vec = get sample (N = 10000000 , m = 1 ,

+ d i s t r i b u t i o n = ”Normal” ,

+ parameters = c ( 0 , 1 ) )

>

> # Fast v e c t o r i s e d Version

> system . time ({

+ N <− length ( vec )

+

+ # mn i s f u n c t i o n o f n

+ mn <− ( 1 :N)ˆ(1/3)

+

+ # X { i+m}

+ upper <− 1 :N + mn

+
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+ # X [ i−m]

+ lower <− 1 :N − mn

+

+ # Limit to bound [ 1 , N]

+ upper [ upper > N] <− N

+ lower [ lower < 1 ] <− 1

+ }

+ )

user system e lapsed

1 .78 0 .16 1 .94

>

> # Slow v e r s i o n us ing l o o p s

> system . time ({

+ N <− length ( vec )

+

+ # mn i s f u n c t i o n o f n

+ mn <− Nˆ(1/3)

+

+ temp = 0

+

+ for ( i in 1 :N){

+

+ # X { i+m}
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+ upper <− i + mn

+

+ # X [ i−m]

+ lower <− i − mn

+

+ # Limit to bound [ 1 , N]

+ i f ( i + mn > N){

+ upper <− N

+ }

+ i f ( i − mn < 1){

+ lower <− 1

+ }

+ }

+ }

+ )

user system e lapsed

111 .30 0 .10 111 .54

It can be seen that for this example just by vectorising the code, it runs

about 111.54s/1.94s = 57.49 times faster than using loops. This is due to a

number of causes.

Vectorising the bounding of the vector to [1, N ] makes the code run faster.

After being handed down to a low level language the command
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# Limit to bound [ 1 , N]

upper [ upper > N] <− N

will still be executed using loops, but loop runs are a lot faster in a low level

language than in R. How much of a difference this makes can be seen in

Figure 24. The regression lines drawn represent a linear model of the form

E[computation time] = β0 + β1N.

The estimated model parameters are shown in Table 33.
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Figure 24: Average computation time of 5 repetitions against sample size n,
n = {100, 150, 200, ..., 1000}. The lines represent linear models fit for the two
approaches, see Table 33.

Of special interest is the estimated slope β̂1. It can be interpreted as the

expected time the computation takes longer if the sample size is increased by

one. Obviously this number is very small for both the vectorised code and
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Table 33: Estimated model parameters of a linear regression of
computation time ∼ N .

β̂0 β̂1

-7.474 · 10−4 6.526 · 10−6

(a) Vectorised Code

β̂0 β̂1

-1.680 · 10−2 3.886 · 10−4

(b) Code using loops

using loops. More insightful is the ratio of these parameters, the vectorised

code runs about 60 times (6.526·10−6

3.886·10−4 ≈ 59.54) faster than the version using

loops. For large sample sizes and a large number of repetitions this makes a

huge difference.

B.2 Parallelisation

Speeding up the run time by vectorisation is limited. Another way of writ-

ing more time efficient code is parallelisation. Parallel computing allows

carrying out many calculations simultaneously, by splitting up the problem

into smaller problems that can be solved independently. These smaller tasks

are split among the (multiple) processors of the computer. The result for the

problem is gained by putting the results of the small problems back together.

This means, that the computations are done simultaneously by the different

processor cores at the same time. This does not change the number of cal-

culations to be done nor the speed at which the calculations are executed,

but it can reduce the run time by doing the computations at the same time.

The downside of parallelisation is that there is a lot of frame work needed to
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be set up. The problem has to be divided and the results put back together.

Also it involves more lines of code and is harder to read. For small prob-

lems there is no point in parallelising, as the extra time the computer need

to set up the parallelisation exceeds the time saved by solving the problem

faster. This problem is shown Figure 25. The run time is plotted against the

number of executions of the same function. It can be seen that for a small

number of repetitions the vectorised version is faster, but for larger prob-

lems the parallelised code runs faster. The additional time it takes to set up

the parallelisation is only made up for when the problem is large. From a
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Figure 25: The run time is plotted against the number of times the function
is executed.

more practical point of view, problems have to be really large in order for

the additional time spent programming being made up for by achieving a

shorter run time. In R the progress of the simulation can be monitored using

a progress bar from the package utils (R Core Team; 2013c). Unfortunately
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this handy tool is incompatible with parallelisation so far. There is a number

of R packages that allow parallelisation. For this project the packages parallel

(R Core Team; 2013a), doSNOW (Revolution Analytics and Weston; 2014a),

and foreach (Revolution Analytics and Weston; 2014b) were used.
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Wang, Q., Kulkarni, S. R. and Verdú, S. (2006). A nearest-neighbor approach

to estimating divergence between continuous random vectors, 2006 IEEE

Int. Symp. Information Theory, Seattle, WA, USA.

Wickham, H. (2007). Reshaping data with the reshape package, Journal of

Statistical Software 21(12): 1–20.

URL: http://www.jstatsoft.org/v21/i12/

Wickham, H. (2009). ggplot2: Elegant graphics for data analysis, Springer

New York.

URL: http://had.co.nz/ggplot2/book

152



Zografos, K. and Nadarajah, S. (2005). Expressions for Rényi and Shan-
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