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Abstract

In dieser Arbeit wird ein von |Kiichenhoff u. a., 2015] entwickeltes Verfahren zur Schét-
zung des Change-Points bei Intensivpatienten vorgestellt. Dieser Zeitpunkt trennt die aku-
te kritische Phase eines Patienten nach Einlieferung auf eine Intensivstation, welche durch
eine anfianglich sehr hohe und im Laufe der Zeit abfallende Sterberate gepragt ist, vom
postakuten Stadium in welchem die Hazardrate als konstant angenommen wird. Dieses
nichtparametrische Schatzverfahren beruht auf p-Werten, welche sich aus der Durchfiih-
rung von Binomialtests fiir festgelegte Intervalle des Beobachtungszeitraumes ergeben.
Um die Giite der resultierenden Schatzung beurteilen zu kénnen, wird eine Simulations-
studie anhand mehrerer geeigneter Szenarien durchgefiithrt. Dabei zeigt sich, dass der
wahre Change-Point tendenziell unterschatzt wird, wobei der Bias insbesondere fiir Da-
tensédtze mit einer stetigen Hazardfunktion nicht zu vernachlassigen ist. Weiterhin wurde
ein Paket fiir die Statistik-Software R programmiert, welches eine auf dem Verfahren von
[Kiichenhoft u. a., [2015] aufbauende Funktion zur Change-Point-Schétzung implementiert.
Ein Kapitel widmet sich dem Aufbau und der Funktionsweise dieses Paketes. Abschlieend
werden Schéatzungen zur Dauer der akuten Phase fiir zwei Datensétze ermittelt, welche
die Uberlebenszeiten von Intensivpatienten des Klinikums der Universitat Miinchen ent-

halten, und im Bezug auf bereits veroffentlichte Studien zu diesen Daten diskutiert.
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1 Einleitung

Im Zusammenhang mit Intensivpatienten wird als Change-Point jener Zeitpunkt bezeich-
net, welcher die akute Phase nach Einlieferung auf eine Intensivstation, insbesondere nach
einem chirurgischen Eingriff, von der postakuten Phase trennt. Direkt nach einer OP befin-
det sich ein Patient meist in einem kritischen Stadium, weshalb die Sterberate anfénglich
am hochsten ist und mit der Zeit abfallt, bis sie schliefflich anndhernd konstant bleibt. Der
Change-Point kennzeichnet diese Anderung im Verlauf der Hazardrate, stellt also einen
Wendepunkt dar, an dem die Phase der konstanten Sterberate beginnt. In medizinischen
Studien ist es oft von Interesse, statistische Analysen nur fiir eine dieser beiden Stadien
vorzunehmen. So werden die langfristigen Auswirkungen auf die Sterberate haufig nur fiir
medizinische MaBnahmen wéhrend der akuten Phase durchgefiithrt (vgl. [Schiergens u. a.,
2015]). Andererseits konnen jedoch auch die Langzeit-Effekte bestimmter Therapien in
der postakuten Phase von vorrangigem Interesse sein (vgl. [Li u.a., 2013]).

Die postoperative Sterberate ergibt sich héufig aus der Anzahl der Todesfélle inner-
halb der ersten 30 Tage nach einer Operation oder wahrend des Krankenhausaufenthaltes
(30-Tage/“In-Hospital“ Mortalitédt). Nach [Schiergens u.a., 2015] ist diese Definition an-
hand eines festgelegten Zeitraumes in vielen Féllen zu allgemein, was die Schétzung der
tatsdchlichen Dauer der akuten postoperativen Phase anhand von beobachteten Uberle-
benszeiten bestimmter Patienten notwendig macht. Daraus konnen beispielsweise indivi-
duelle Risikofaktoren ermittelt werden, was einerseits eine bessere Selektion von Patienten
fiir eine Operation und andererseits einen effektiveren Einsatz von medizinischen Maf3-
nahmen ermoéglicht, um somit auf lange Sicht die postoperative Sterberate zu verringern
(vgl. [Schiergens u.a. 2015] & [Schneider u.a., [2010]). Die vorliegende Arbeit beschéaf-
tigt sich mit einem nichtparametrischen Verfahren von [Kichenhoff u.a. 2015], um den
Change-Point und damit die Dauer der akuten kritischen Phase nach einem medizinischen

Eingriff zu schétzen.

1.1 Hintergrund

In der Statistik gibt es viele Bereiche, in denen die Change-Point Analyse eine Rolle
spielt. So ist es nicht nur in medizinischen Studien von Interesse, einen Strukturbruch
in der Verteilung der erhobenen Daten zu untersuchen, sondern auch in vielen anderen
Fachgebieten, wie zum Beispiel der Produktionstechnik oder Klimaforschung, um nur zwei
weitere Anwendungsbereiche zu nennen. Wie auch in [Kiichenhoff u. a., 2015] anhand ei-
niger Literaturbeispiele angefiihrt, sind in den letzten Jahrzehnten bereits diverse wissen-
schaftliche Arbeiten entstanden, die sich mit dem Problem der Change-Point-Schiatzung
befassen.

In [Liu. a.;2013] wird beispielsweise ein Verfahren beschrieben, bei welchem im Zusam-

menhang mit klinischen Studien der Change-Point auf Basis der Maximum-Likelihood-
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Methode ermittelt wird. Neben den beobachteten Uberlebenszeiten werden dabei auBer-
dem Kovariablen-Effekte beriicksichtigt, um den Zeitpunkt zu finden, ab dem die Hazard-
rate konstant ist.

Ein nichtparametrisches Verfahren zur Change-Point-Schatzung wird in [Yang u.a.|
2012] vorgestellt. Dabei soll der Ubergang von einer anfinglich abfallenden zu einer kon-
stanten Ausfallrate mithilfe von Techniken aus der Bayes-Statistik identifiziert werden.

Eine weitere Moglichkeit, den Change-Point ohne eine Verteilungsannahme zu finden,
bietet eine nichtparametrische Schéitzung der Hazardfunktion, aus der anschliefend ein
Zeitpunkt bestimmt wird, ab dem diese Funktion einen bestimmten Schwellwert tber-
schreitet (vgl. [Kiichenhoff u. a., 2015]). Ein Kernel-basiertes Verfahren, um diese Hazard-
funktion zu schétzen, wird in [Muller u. Wang| [1994] beschrieben. Dieses findet u.a. im
R-Paket muhaz Anwendung, welches in spéateren Kapiteln fiir die grafische Darstellung
der Hazardrate verwendet wird. Einige weitere Literaturbeispiele, welche Verfahren zur

Change-Point-Schétzung beinhalten, sind in [Kichenhoff u.a., [2015] zu finden.

Das Thema der Change-Point-Schitzung bei Uberlebensdauern von Intensivpatienten
wurde unter anderem bereits in [Schneider u.a., 2010] aufgegriffen, bei dem fiir einen
Datensatz von [Hartl u. a., [2007] der Zeitpunkt geschétzt wurde, ab welchem die Hazard-
rate konstant ist. Grundlage bildet dabei ein Likelihood-Quotienten-Test, welcher in Ka-
pitel im Zusammenhang mit den Anwendungsbeispielen etwas ausfiihrlicher beschrie-
ben wird. Die Verteilungsannahme der Uberlebensdauern, welche fiir solche parametrische
Verfahren getroffen wird, ist jedoch oft problematisch. Deshalb ist das Finden eines nicht-
parametrischen Change-Point-Schétzers Gegenstand weiterer Forschungsarbeit, woraus
auch das in dieser Arbeit vorgestellte Verfahren von |[Kuchenhoft u.a., 2015 entstanden
ist. Dieses baut auf der Idee von [Mallik u. a., 2011] auf, den Wendepunkt in der Hazard-
rate durch eine Regression iiber die p-Werte eines statistischen Test zu ermitteln, wie im
Kapitel [2 ausfiihrlich beschrieben wird.

1.2 Problemstellung

Weil diese Arbeit auf den Ausfithrungen zur Change-Point-Schéatzung von [Kiichenhoff
u. a., 2015 aufbaut, wird die verwendete Notation und die im Folgenden getroffenen An-

nahmen grofitenteils daraus ibernommen.

Gegeben seien unabhéngige und identisch verteilte Uberlebensdauern t;, i = 1,...n,
mit Verteilungsfunktion F, d.h. ¢; ~ F. Da es in dieser Arbeit um das Sterberisiko von
Intensivpatienten geht, beschreiben die Beobachtungen t; die Dauer vom Beginn der Be-
obachtung, d.h. dem ersten Tag auf einer Intensivstation bis zum Todeszeitpunkt. Das
Szenario lésst sich jedoch auch auf andere Bereiche iibertragen, in denen die Lebensdauer-
analyse Anwendung findet, z.B. fiir Ausfallzeiten bei technischen Geréten.

Da nicht jeder Patient innerhalb der Beobachtungsdauer verstirbt, kann der tatsach-
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liche Todeszeitpunkt fiir einen Teil der Personen unter Risiko unbekannt sein. Fiir diese
sogenannten rechts-zensierten Daten wird eine Zufallsvariable C definiert, deren Auspra-
gungen ¢; unabhéngig von den Lebensdauern ¢; sind und die maximale Beobachtungsdauer
beschreiben. Unter Berticksichtigung dieser Zensierungszeiten ergeben sich fiir jedes Indi-
viduum i zwei Beobachtungen: ein Zeitraum T;, welcher als T; := min(c;,t;) definiert ist

und ein Indikator §; fiir den Zensierungsstatus. Es gilt

1, falls ¢; < t; (d.h. Beobachtung i ist zensiert)
0= ity = (1)

0 sonst

Bei einer rechts-zensierten Beobachtung liegt demnach das Ende des Beobachtungszeitraumes
vor dem Todeszeitpunkt.

Das Risiko fiir einen Intensivpatienten, zu einem bestimmten Zeitpunkt t zu sterben,
wenn er bis dahin iiberlebt hat, wird durch die Hazardrate h(t) beschrieben, welche nach
[Kiichenhoft u. a., 2015] wie folgt definiert sei:

' 1 fallszc A
h(t) = hi(t) * Liy<ry () + Ak Ly (2) mit Ipeay(z) = (2)
0 sonst

Mit 7 wird dabei der Change-Point bezeichnet, d.h. fiir alle ¢t > 7 ist die Hazardrate
konstant mit Wert A. Uber hy(t) werden keine weiteren Annahmen getroffen. Fiir die
Verteilungsfunktion muss ebenfalls zwischen den Zeitpunkten vor und nach dem Change-

Point unterschieden werden, womit sich fiir F' folgende Form ergibt:
F(If) = Fl (t) * [{th}(t) + Fl (7') * (1 — exp(—)\(t — T))) * [{t>7'} (t)

mit Fy(t) = 1—exp(—/0th(s)ds)

Ziel ist es nun, aus den gegebenen Daten einen Schétzer fiir 7 zu finden.

Das Verfahren der nichtparametrischen Change-Point-Schatzung mittels p-Werten nach
[Ktchenhoff u. a. [2015] wird zunéchst im Kapitel [2detailliert beschrieben. Ein Ziel dieser
Ausarbeitung ist es, die Giite des daraus resultierenden Schétzers zu untersuchen. Die
Ergebnisse der dafiir durchgefiihrten Simulationsstudie werden in Kapitel [3| diskutiert.
Weiterhin wurde eine erste Version des R-Paketes “CPest® erstellt, welches eine Funktion
zur Change-Point-Schatzung nach der Methode von [Kuchenhoff u.a., 2015 implemen-
tiert, wobei durch Anwendung eines nichparametrischen Bootstrap-Verfahrens zusétzlich
die Schétzung der Varianz moglich ist. Details zum Aufbau und Ausschnitte aus dem
Programmcode sind im vierten Kapitel zu finden. Als Anwendungsbeispiele dienen ab-
schliefend zwei Datensitze mit Uberlebenszeiten von Intensivpatienten des Klinikums
der Universitdt Miinchen. Bereits veroffentlichte Studien zu diesen Daten enthalten un-
ter anderem eine geschatzte Dauer der akuten postoperativen Phase, welche im letzten

Kapitel mit den Ergebnissen aus dem hier vorgestellten Verfahren verglichen werden.
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2 Verfahren zur Change-Point-Schatzung

Ein Verfahren, bei dem der Change-Point mittels p-Werten bestimmt wird, ist in [Mallik
u. a., 2011] anhand von verschiedenen Szenarien beschrieben. Dabei ist das Ziel, jeweils
seinen Schwellenwert zu finden, ab dem eine Regressionsfunktion von ihrem Basiswert
abweicht“, welcher im Folgenden mit 7 bezeichnet ist. Formal wird dabei fiir ein mogliches
,Dose-Response-Setting® ein Regressionsmodell Y = 1(X) + € angenommen, bei dem p(x)
eine Funktion auf [0,1] ist. Die Zufallsvariable X beschreibt dabei die verabreichte Dosis
und Y die zugehorige Response. Diese ist fir x < 7 konstant mit p(z) = c¢g und steigt
fir Werte x > 7 an, d.h. p(x) > ¢ fiir x > 7, wobei 7 € (0,1) gelte. Zu beachten ist,
dass die Notation im Hinblick auf das Verfahren nach |[Kiichenhoff u. a., [2015] von der in
[Mallik u. a., 2011] urspriinglich verwendeten abweicht. Um den Change-Point 7 zu finden,
wird zundchst ein geeigneter Schéatzer ¢y fiir die Response bestimmt und anschliefflend
ein einseitiger Gauss-Test mit Hy : u(z) = éy und Hjy : p(x) > é& fur die Dosen X; =z
durchgefiihrt.

Unter den Annahmen E(e | X =) =0 und 0?(x) = var(e | X = z) > 0 fiir alle z € [0, 1]
ergeben sich die p-Werte nach [Mallik u. a. 2011] fiir jeweils m Beobachtungen zu den n

untersuchten Kovariablen durch

i Y, -+
pm,n(Xi7Tm,n) =1-9 <\/E &(Xz)> )

wobei Y; durch Y; = Yir1Yii/m definiert ist und & den Schétzer fiir die Standard-
abweichung bezeichnet.

Fir alle X; <7 ist die Nullhypothese erfiillt und weil die zugehorigen p-Werte auf [0, 1]
gleichverteilt sind, nehmen diese im Mittel den Wert 1/2 an. Fiir x-Werte oberhalb von 7,
fiir welche die Alternative Hp gilt, konvergieren die p-Werte gegen 0. Daraus ergibt sich
eine stiickweise konstante Funktion, deren Sprungstelle 7 durch eine einfache Regression
geschéitzt werden kann.

Nach [Mallik u.a., 2011] kann dieses Vorgehen leicht auf andere Situationen tibertra-
gen werden, bei denen beispielsweise die Response ab dem Change-Point 7 abfallt und es
sich somit bei ¢y um ein globales Maximum statt eines Minimums handelt. Ebenso ist es
moglich, dass pu(x) fir o <7 ansteigt bzw. abfillt und erst danach einen konstanten Wert
annimmt. Genau dieses Szenario ist fiir unseren Fall der Intensivpatienten von Interes-
se. Im Unterschied zu [Mallik u.a., [2011] gibt es hier jedoch keine Regressionsfunktion,
sondern es wird die Hazardrate h in Abhéngigkeit von der Zeit t betrachtet. Wie bereits
in definiert, fallt diese zu Beginn des Beobachtungszeitraumes ab und ist ab einem
bestimmten Zeitpunkt 7 konstant. Aus h(t) lasst sich die Wahrscheinlichkeit fir ein Ereig-
nis, d.h. fiir den Tod eines Patienten, innerhalb eines bestimmten Zeitraumes berechnen,
welche nach [Kiichenhoff u. a., 2015] als Grundlage fiir einen Binomialtest dienen soll. Ein
weiterer Unterschied zu dem Verfahren der Change-Point-Schitzung nach [Mallik u.a.|

2011] besteht also darin, dass hier kein Gauss-Test durchgefiihrt, sondern ein einseitiger
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exakter Binomialtest, unter Verwendung der aus der Hazardrate ermittelten Wahrschein-
lichkeit und der beobachteten Ereignisse innerhalb eines Zeitraumes. Im Folgenden wird
die Methode nach [Kiichenhoff u. a.| 2015] ausfiihrlicher beschrieben, wobei sich viele der
getroffenen Annahmen auf den Fall der Intensivpatienten beziehen, jedoch ohne weiteres
auf andere geeignete Anwendungsgebiete tibertragen werden kénnen, bei denen die Er-

mittlung eines Change-Points von Interesse ist.

Es sei T eine nichtnegative, stetige Zufallsvariable, welche die Uberlebensdauer eines
Individuums bezeichnet. Gegeben sind also unabhingige und identisch verteilte Uberle-
benszeiten t;, i = 1,...,n, mit Dichte f(t) und Verteilungsfunktion F(t).

Weil die Hazardrate h(t) nach Gleichung fiir Zeitpunkte nach dem Change-Point
als konstant angenommen wird, gilt {t; —7 | t; > 7} ~ Exp(\). Fir die Zeitpunkte
vor dem Change-Point wird keine Verteilungsannahme getroffen. Fiir das Beispiel der
Intensivpatienten bedeutet dies, dass das Risiko, im nachsten Moment zu sterben, nach
Einlieferung auf die Intensivstation am grofiten ist und immer weiter abféllt, bis es ab
dem Zeitpunkt 7 konstant bleibt.

Oft beinhalten die in diesem Zusammenhang untersuchten Datenséitze rechts-zensierte
Beobachtungen, welche durch das Schatzverfahren beriicksichtigt werden sollen. Fiir den
Zensierungsstatus wird im Folgenden wieder die im Kapitel unter eingefiihrte
Notation verwendet. D.h. § bezeichnet den Indikator fiir zensierte Beobachtungen mit
0; = Ic;<t;), wobel ¢; die Zensierungszeit fur Individuum i darstellt. Die beobachteten
Zeiten T; wurden mit T; = min(c;, ;) definiert, bezeichnen demnach entweder die Uberle-
bensdauer oder die Beobachtungsdauer bis zum Zensierungszeitpunkt.

Die Idee des p-Wert-Verfahrens nach |[Kiichenhoff u. a., 2015] ist nun, dass der Beob-
achtungszeitraum in Intervalle einer vordefinierten Lénge aufgeteilt wird und fiir jedes
Intervall ein Binomialtest mit den beobachteten Ereignissen innerhalb eines Intervalls
durchgefithrt wird. Unter der Nullhypothese ist die Wahrscheinlichkeit p fiir ein Ereignis
innerhalb eines Intervalls gleich jener, die sich aus der konstanten Hazardrate A ergibt.
Fir Intervalle, die nach dem Change-Point liegen, sollte Hy somit erfiillt sein, das heifit
die p-Werte sind fiir groBe Beobachtungszahlen auf [0,1] gleichverteilt und nehmen im
Mittel den Wert 1/2 an. Fiir 7; < 7 ist die Nullhypothese wegen hj(t) > A nicht erfullt
und die p-Werte der zugehorigen Intervalle konvergieren fiir grofie n gegen 0. Abschlie-
Bend wird, wie in Kapitel ausfithrlich beschrieben, eine Regression iiber die ermittelten
p-Werte durchgefithrt und 7 ergibt sich als KQ-Schéatzer durch Anpassen der Funktion
f(T;) = 0.5% ;7,5 (T;) an die Daten.

Zuerst benotigen wir also die konstante Hazardrate fiir T' > 7. Nachfolgend wird kurz

hergeleitet, wie sich diese aus den gegebenen Daten ermitteln lasst.
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2.1 Schitzung der konstanten Hazardrate

Fiir eine exponentialverteilte Zufallsvariable T mit Parameter A > 0 gelten im Allgemeinen

folgende Zusammenhange:
e h(t) =\ (mit A >0), d.h. die Hazardrate ist fiir alle Zeitpunke ¢; konstant
e Dichte: f(t) =\ exp(—At)
e Survivalfunktion: S(t) =1— F(t) = exp(—At)

Unter der Annahme, dass 7 vorerst gegeben sei, werden die Zeitpunkte nach dem Change-
Point definiert als 77 := {T} — [T} > 7} mit Tj = min(c;,¢;) und j = 1,...,n". Dann gilt
T; ~ Exp(\) mit der konstanten Hazardrate A\, welche aus den gegebenen Daten geschétzt

werden soll.

In Anlehnung an die Herleitung eines ML-Schétzers fiir zensierte, exponentialverteilte
Daten nach [Keppler u. Miller, 2013, S.20] lasst sich die Likelihoodfunktion wie folgt

definieren und umformen:

3*

L(\T}) o f(T;)l_(s.iS(T;‘)(sj

<.
I
_

[
— >

F@ 0581y =0 (T 0 S (T77) %

<.
I
—

1-5
) S(r)

|

(f(T}‘)

S(T7)

1 J

J

A% exp(=AT;)

<
I
_

Il
s,

Daraus ergibt sich die log-Likelihood
TL n
IAT]) =logL(\T5) = Z i) log(\) =AY T
j=1 j=1

Durch Ableiten und Nullsetzen erhalt man einen Schatzer fur \:

AN(A,TF) i " |
87 Z 1— Z =
« 1-46;
o Xk — ( ) o nunzens
Z 1T* Z 1T*

Die Formel muss nun noch dahingehend angepasst werden, dass A nicht nur aus den
T7, sondern aus allen Beobachtungen 7; (i = 1,...,n) mit zugehorigem Zensierungsstatus

geschatzt werden kann. Da jedoch der Zeitpunkt 7, ab dem die Hazardrate als konstant
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angenommen wird, nicht gegeben ist, wird ein Zeitpunkt 7,,4, vorgegeben, welcher ein
oberes Limit fiir den Change-Point darstellt. Das heifit wir nehmen an, dass die Hazardrate
fir alle T; > Tyqe konstant ist und der wahre Change-Point 7 darunter liegt. Aus den

beobachteten Uberlebenszeiten T; lisst sich der Schétzer fiir A dann wie folgt berechnen:

i1 (1= 6i) % Iy7y 5,y (T0)
Z’?Zl (7—1& - Tmam) * I{Ti>7maz} (E)

A= (3)

2.2 Ermittlung der p-Werte und Regression
Methode 1

Die nachfolgend beschriebene Methode zur Ermittlung eines Schétzers 7 aus den p-Werten
entspricht den Ausfithrungen zum Schétzverfahren in |[Kiichenhoff u.a., 2015]. Unter der
Annahme, dass der wahre Change-Point 7 kleiner oder gleich dem definierten Maximum
ist, d.h. 0 <7 < 7w, wird ein Gitter 0 < ag < a1 < ... < ag = Tmae definiert, welches
den Beobachtungszeitraum bis 7,,4, in disjunkte Intervalle unterteilt. Die Anzahl der
Ereignisse innerhalb eines Intervalls (ag_1;ax] wird mit Xy bezeichnet. Weiterhin ist mit
Ny = 301 Ii1y>a;, 1 (Ti) die Zahl der Personen definiert, welche zu Beginn des k-ten
Intervalls , d.h. zu ¢ = aj_; unter Beobachtung und damit unter Risiko standen.

Fiir Intervalle nach dem Change-Point (d.h fir a;_; > 7) sind die X}, binomialverteilt
mit den Parametern Ny und pry, wobei pr; der Wahrscheinlichkeit fiir ein Ereignis inner-
halb eines Intervalls £ entspricht. Diese ergibt sich aus der konstanten Hazardrate A\ zu
prr = 1 —exp(—A(ag —ag_1)). Fir den Fall, dass nur Intervalle der selben Lange betrach-
tet werden, ist diese Wahrscheinlichkeit fiir jedes Intervall gleich und es gilt pr = pry. fir
beliebiges k=1,..., K.

Daraus lésst sich ein (einseitiger) exakter Binomialtest mit den Hypothesen Hy : p = pry
gegen Hy : p > pry. durchfithren. Unter der Nullhypothese gilt also X; Dp (N, pr). Die zu-

gehorigen p-Werte ergeben sich dann aus der Verteilungsfunktion der Binomialverteilung:

pugp =1 — Fpin(Xg, Nk, pri)

Diese folgen bei einer grofien Beobachtungszahl n fiir Intervalle nach dem Change-
Point einer (0,1)-Gleichverteilung mit Erwartungswert E(pv) = 0.5, da fir T; > 7 die
Nullhypothese erfiillt ist. Fir Intervalle vor dem Change-Point konvergieren die p-Werte
fir grofie n gegen 0.

Um nun einen Schéatzer 7 zu finden, kann mittels der KQ-Methode eine Funktion der

Form f(T;)=0.5%1 (Ty>7) (T3) an die ermittelten p-Werte angepasst werden:

n
T = arngin Z (pv, —0.5% I{Tﬁak—l})Q
k=1

Analog zum Vorgehen in |[Mallik u.a., 2011} wird die zu minimierende Summe noch

wie folgt vereinfacht:
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n

S(T) = Z(ka—0-5*1{rgak,1})2

k=1
= Y pvi + > (puy, —0.5)?

klak—1<7 klag—1>7
n
= > pv + > (—puk+0.25)
k=1 klag—1>7

Da der erste Summand nicht von 7 abhéngig ist, kann S(7) durch maximieren von

S ()= Y (pop—025) (4)

klag_1>7

minimiert werden. Der Schitzer fur 7 hat sich demnach vereinfacht zu

7 =arg max > (pur—0.25). (5)

klag_1>T

Ein Nachteil der Schatzung mittels disjunkter Intervalle ist die Tatsache, dass sich fiir

7 nur die definierten Intervallgrenzen ay,...,ax ergeben koénnen.

Methode 2

Eine alternative Moglichkeit besteht darin, fortlaufende Intervalle der selben Lange zu
definieren. Dazu bezeichnen 0 < l; < ... < [g = Tjnae die unteren Intervallgrenzen. Aus
ug =l +wd mit wd als festgelegte Intervallbreite ergeben sich die oberen Grenzen zu
Uy < ... <Ug = (Tmaz +wd).

Die Wahrscheinlichkeit pr fiir ein Ereignis innerhalb eines Intervalls k ist in diesem
Fall definiert als pr =1 — exp(—A wd) und ist somit fiir alle £ = 1,..., K gleich. Damit
lassen sich die p-Werte durch pvg = 1 — Fpn (X, Ni,pr) ermitteln. Da sich die Intervalle
nun tberlappen, ergeben sich je nach definierter Breite und Intervallgrenzen entsprechend
mehr p-Werte als nach Methode 1. Analog zur Berechnung von 7 fiir disjunkte Intervalle
nach ergibt sich der Schéatzer fiir den Change-Point fiir fortlaufende Intervalle zu:

=argmax »_ (py,—0.25)
T k>

Somit ist es nun moglich, die Intervalle so festzulegen, dass alle Zeitpunkte zwischen
0 und Tynqe als Schéitzer fiir den Change-Point in Frage kommen. Dazu miissen die un-
teren Intervallgrenzen als Sequenz {0, 1,..., Ty } definiert werden, womit sich die oberen
Grenzen zu {(0+ wd), (1 +wd),...,(Tmaez +wd)} ergeben. Anders ausgedriickt bedeutet
dies, dass die Intervalle (Ix,uy] der Lange wd immer um einen Zeitpunkt nach rechts

verschoben werden.
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Zu beachten ist bei diesem Schéatzverfahren, dass die p-Werte durch die sich tiber-
lappenden Intervalle nicht unabhangig sind. Durch die Verletzung der Unabhéngigkeits-
annahme ist der Schétzer unter Umstdnden nicht effizient und die Anwendung dieser
Methode problematisch.

Methode 3

Nachfolgend mochte ich eine weitere Moglichkeit der Change-Point-Schétzung vorstellen,
wobei die Idee der fortlaufenden Intervalle aufgegriffen, jedoch das Problem der Abhéngig-
keit der p-Werte umgangen wird.

Dazu sei ag,,ag,,...,ap, eine Sequenz von “Startpunkten®, sodass sich fiir jeden Zeit-
19 29 ) q p ) J

!
punkt ap; ein Gitter ap; < aj, <..<a Kk; ergibt, welches den Beobachtungszeitraum in
disjunkte Intervalle der vorgegebenen Breite wd unterteilt. Es gilt also wd := ay; — Ak-1),
fir alle j =1,...,1. Dabei soll die Anzahl der definierten Gitter [ der Intervallbreite wd
entsprechen, d.h. es gelte | = wd. Beispielsweise wiirden sich bei einer festgelegten Breite
von wd = 10 und agp, = 0 die Intervallgrenzen {0,10,20,...} fir j =1 bis {9,19,29,...} fir
j =10 ergeben.

Fir jedes dieser Gitter werden nun entsprechend dem Vorgehen in Methode 1 die
p-Werte puy, fiir k=1, ..., K berechnet. Daraus ergibt sich analog zu (4) fiir jedes j =1,....1

die zu maximierende Summe

Si(r)= > (pvr; —0.25)

k|a(k,1)j 27’

und damit jeweils ein Schatzer 7;.
Durch Optimieren iiber diese endliche und vergleichsweise geringe Anzahl an Summen

S7(7) wird jenes 7; bestimmt, fiir welches die Anpassung der Funktion

(1) = 05% [7y(T:)

an die zugehorigen p-Werte am besten ist. Dazu ermittelt man das Maximum iiber alle

S*(7j) und der Change-Point-Schétzer 7 ergibt sich zu

7 = arg max S*(75).
J
Im Gegensatz zu Methode 2 werden bei diesem Verfahren [ separate Regressionsmodelle
mit diskreten Intervallen aufgestellt, sodass die p-Werte fiir jedes 7 =1,...,1 voneinander
unabhéngig sind. Problematisch an dieser Methode ist jedoch, dass dadurch iiber mehrere

Modelle hinweg optimiert wird.
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2.3 Korrektur um zensierte Beobachtungen

Fiir den Fall, dass sich innerhalb eines Intervalls (ay_1;ag] zensierte Beobachtungen be-
finden, ist die tatsdchliche Anzahl der Ereignisse moglicherweise hoher als beobachtet,
wodurch sich aus dem Binomialtest ein geringerer p-Wert ergeben wiirde.

Eine Moglichkeit, die zensierten Beobachtungen innerhalb des k-ten Intervalls zu be-
riicksichtigen, besteht darin, die Wahrscheinlichkeit fiir ein Ereignis innerhalb des “Rest-
intervalls“ (¢;,ag] zu berechnen und die Anzahl der beobachteten Ereignisse X}, entspre-
chend zu erhohen. Problematisch ist dabei, dass sich fiir einen relativ geringen Anteil an
zensierten Beobachtungen der Wert fiir X nur unwesentlich &ndern wiirde. Da fiir einen
Binomialtest die Parameter ganzzahlig sein miissen, hatte die Korrektur somit keinen
Effekt.

Stattdessen kann jedoch auch die Anzahl der Personen unter Risiko N, welche im
Allgemeinen deutlich grofer ist als Xj, nach unten korrigiert werden. Ein solches Vorge-
hen ist in [Hamerle u. Tutz, 1989, S.23] vorgeschlagen. Dabei wird Ng “willkiirlich“ um
die Hélfte der Anzahl an Zensierungen im k-ten Intervall verringert. Fiir das hier vor-
gestellte Verfahren soll diese Idee erweitert werden, sodass eine prazisere Korrektur der
Risikomenge N} stattfindet.

Dazu wird Ny, fiir jede zensierte Beobachtung ¢ innerhalb des k-ten Intervalls um den
Anteil der Zeitpunkte reduziert, an denen Person ¢ nicht mehr unter Beobachtung stand.

Das korrigierte Ny ergibt sich demnach zu

Ni=Ne— % (;"’_TZ> %6, (6)

. —an_
i |Tye(ap_;a5) Nk k-1

2.4 Diskussion

Bei diesem nichtparametrischen Verfahren wird der Change-Point-Schéatzer in allen drei
vorgestellten Methoden durch Optimieren iiber eine kleine endliche Menge bestimmt, was
mathematisch einfach zu berechnen ist. Somit ist auch die praktische Anwendung, bei-
spielsweise in Form einer in die Statistik-Software R implementierten Funktion, mit ver-
gleichsweise wenig Aufwand verbunden. Eine mogliche Umsetzung einer solchen Funktion
wird in Kapitel [4] ausfithrlich beschrieben, bei dem es um die Erstellung eines zugehorigen
R-Paketes geht. Da fiir die Zeitpunkte {¢ | ¢ < T } keine parametrischen Verteilungsan-
nahmen getroffen werden, wird die Standardabweichung mittels eines nichtparametrischen
Bootstrap-Verfahrens geschétzt, womit sich auch die zugehorigen Konfidenzintervalle be-
rechnen lassen. Darauf wird ebenfalls im Kapitel [4] detaillierter eingegangen.

Ein Nachteil dieses Verfahrens ist die Abhéngigkeit von der Intervallbreite, welche an-
gemessen gewéahlt werden muss. Bei zu kleinen Intervallen besteht die Gefahr, dass sich
innerhalb eines Intervalls nur sehr wenige oder gar keine Beobachtungen befinden, wo-
mit die p-Werte des Binomialtests gegen 1 konvergieren wiirden. Wird die Intervallbreite

dagegen zu grofl gewahlt, kommen bei Methode 1 zu wenige Zeitpunkte als Schatzung
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fiir 7 in Frage, da sich bei Verwendung von diskreten Intervallen nur die Intervallgren-
zen ao,...,ax als Change-Point-Schétzer ergeben konnen. Durch das Verwenden von fort-
laufenden Intervallen (Methode 2), oder das Ermitteln des “besten Fits“ aus mehreren
Modellen mit jeweils um den Wert 1 verschobenen Intervallen (Methode 3), ist jeder Zeit-
punkt ¢ = 1,..., e als Schétzer fiir 7 moglich. Allerdings sind diese Methoden durch
die Abhéngigkeit der p-Werte bzw. die Optimierung iiber mehrere Regressionsmodelle
nicht ganz unproblematisch. Um Aussagen tiber die Giite des Schatzverfahrens treffen zu
konnen, vor allem im Hinblick auf den Vergleich dieser drei Methoden, wurde eine Simu-
lationsstudie durchgefiihrt, in der die drei Verfahren mit verschiedenen Intervallbreiten
auf diverse Szenarien angewandt werden. Die Ergebnisse der Simulationen und weitere
Details sind im Kapitel [3] zu finden.

Als weitere Besonderheit dieses Verfahrens ist zu beachten, dass im Vorhinein ein
Wert fir 7,,4, festgelegt werden muss, und zwar derart, dass noch ausreichend viele Be-
obachtungen mit 7T; > 7,4, vorhanden sind, um einen moglichst genauen Schétzwert fiir
A zu finden. Gleichzeitig soll fiir 7,4, jedoch ein hinreichend grofler Wert gewahlt werden,
sodass das wahre 7 mit hoher Wahrscheinlichkeit darunter liegt. Dazu kann es sinnvoll
sein, den Datensatz im Vorfeld mithilfe geeigneter deskriptiver Methoden zu untersuchen,
beispielsweise durch eine nichtparametrische Schatzung der Hazardrate.

In Kapitel 3| werden anhand der Simulationsergebnisse noch einige Probleme beziiglich
der Anwendbarkeit des Verfahrens diskutiert.
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3 Simulationsstudie

Um die Giite des Schatzverfahrens nach |[Kiichenhoft u.a., 2015] zu beurteilen, wird in
diesem Kapitel anhand verschiedener Szenarien untersucht, ob es einerseits eine systema-
tische Abweichung des Schétzers 7 vom wahren Parameterwert gibt und andererseits, wie
grof die Streuung der geschatzten Werte ist. Dazu wurden die in Kapitel vorgestellten
Methoden zur Schétzung von 7 auf mit verschiedenen Parameterkombinationen erzeugte
Datensatze angewendet. Dabei geht es insbesondere um den Vergleich der drei Metho-
den, aber auch um die grundsétzliche Anwendbarkeit des Verfahrens auf realitdtsnahe
Datensatze. Nachfolgend wird zunéchst die Erzeugung der Datensétze sowie der Aufbau
der Simulationsstudie erklart. In Kapitel werden dann die Ergebnisse der Schatzun-
gen diskutiert. Fiir die Simulationen sowie die Umsetzung des Schétzverfahrens wurde die
Statistik-Software R (Version 3.1.0) verwendet.

3.1 Datenerzeugung

Vor dem Hintergrund, dass die Uberlebensdauern von Intensivpatienten untersucht wer-
den sollen, miissen die Daten derart generiert werden, dass die Sterberate zu Beginn
der Beobachtungsdauer am hochsten ist, bis zu einem vorgegebenen Zeitpunkt 7 abfallt
und ab diesem Change-Point konstant bleibt. Eine geeignete Verteilung, welche oft im
Zusammenhang mit Lebensdauern verwendet wird, ist die Weibullverteilung. Im Gegen-
satz zur Exponentialverteilung besitzt diese nicht die Eigenschaft der Gedachtnislosigkeit,
sodass es mithilfe der Weibullverteilung moglich ist, neben einer konstanten auch eine an-
steigende bzw. abfallende Sterberate zu modellieren. Die Dichte einer Weibull-verteilten
Zufallsvariablen T hat die Form

o= G) (5

mit Shape-Parameter n und Scale-Parameter . Daraus ergibt sich die Hazardrate zu:

w1 (;)1 m

Fiir den Fall v =1 ist T exponentialverteilt mit Parameter A = %, wobei die Hazardrate
konstant ist.

Fiir einen Datensatz mit n Beobachtungen werden zunéchst mithilfe der R-Funktion
rweibull, mit vorgegebenem Shape- und Scale-Parameter n Weibull-verteilte (Pseudo-)
Zufallszahlen t; erzeugt. Basis fiir die Generierung dieser Todeszeitpunkte bildet die
Inversionsmethode, welche mittels der inversen Weibullverteilung aus auf [0,1] gleich-
verteilten Zufallszahlen n Realisationen einer Weibull-verteilten Zufallsvariablen simuliert.

Um zu erreichen, dass sich zum Zeitpunkt 7 ein Change-Point befindet, ab welchem

h(t) konstant ist, werden alle generierten Zeiten {t; | ¢t; > 7} fiir vorgegebenes 7 durch
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exponentialverteilte Zufallszahlen ersetzt. Hierfiir ist zunéchst der Parameter A der Expo-
nentialverteilung zu bestimmen. Soll der Ubergang zwischen den Weibull- und exponen-
tialverteilten Zeiten bei t = 7 stetig sein, so lésst sich A nach aus der Hazardfunktion
h(t) berechnen:

A=h(r) =1 (;)V_l.

Mithilfe des Parameters A werden nun n.;, exponentialverteilte Zufallszahlen t; erzeugt,
d.h. t] ~ Exp(A), wobei sich die Anzahl ney), dieser Datenpunkte aus neqp = 321 Iy, >y ()
ergibt.

Die zuvor aus der Weibullverteilung generierten Zeiten t;, fiir welche ¢; > 7 gilt, werden
nun wie folgt durch die exponentialverteilten Daten ersetzt: {¢;|t; > 7} =t +7.

Fiir die Simulationsstudie werden sowohl Daten mit einem stetigen Ubergang als auch
mit einem Sprung bei ¢t = 7 erzeugt, was in den Ergebnissen durch jump=0 bzw. jump=1
gekennzeichnet ist. Fiir die Datensédtze mit Sprung in der Hazardrate wird der Parameter

der Exponentialverteilung durch ;i = % ersetzt.

Da in der Praxis ein Datensatz oft zensierte Beobachtungen beinhaltet, welche durch
das Schatzverfahren ebenfalls berticksichtigt werden konnen, soll auch ein Teil der simu-
lierten Daten so erzeugt werden, dass nicht zu jeder Beobachtung eine Uberlebenszeit
vorliegt, sondern ein bestimmter Anteil durch Zensierungszeiten ersetzt wird. Dafir wird
fiir jedes i = 1,...,n unabhéngig von den Uberlebenszeiten t; eine maximale Beobachtungs-
zeit ¢; generiert, wobei die ¢; ebenfalls exponentialverteilt sind mit ¢; ~ Exp(Agens). Der
Wert fir Acens kann dabei so gewéhlt werden, dass sich ein gewtlinschter Anteil an zensier-
ten Daten ergibt. Im Fall, dass die generierten Daten zensierte Beobachtungen enthalten,
sind die zugehorigen Ergebnisse mit cens=1 gekennzeichnet, andernfalls mit cens=0. Der
simulierte Datensatz enthélt letztendlich die Zeiten T;, welche sich fiir jedes i =1,...,n
aus T; = min(;, ¢;) ergeben. Zusétzlich wird eine binédre Variable fiir den Zensierungssta-
tus erzeugt. Zu beachten ist, dass fiir die Simulation gerundete Zeiten verwendet werden,
weil Uberlebensdauern im medizinischen Kontext in der Praxis meist in Tagen gemessen
werden.

Nachfolgend ist der R-Code der Funktion dargestellt, welche fiir die Datengenerierung
verwendet wurde. Dabei wird durch das Argument cens = TRUE/FALSE vorgegeben, ob
zensierte Daten erzeugt werden sollen, wobei lambda.cens dem vorher definierten Aceps
entspricht, mit dem der Anteil der zensierten Beobachtungen beeinflusst werden kann.
Durch jump = TRUE/FALSE wird bestimmt, ob Daten mit Sprung in der Hazardrate er-
zeugt werden sollen. Die Funktion gibt einen Datensatz zuriick, welcher die Vektoren time

fiir die generierten Zeiten T; und event fiir den zugehorigen Zensierungsstatus enthélt.

sim.survdata <- function(n, tau, shape, scale, cens, jump, lambda.cens){

lambda <- shape/scale * (tau/scale)” (shape-1)
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if (jump) lambda <- 0.5%lambda

t.weib <- ceiling(rweibull(n, shape=shape, scale=scale))
n.exp <- sum(t.weib>=tau)

t.exp <- ceiling(rexp(n.exp, lambda)) + tau

t <- t.weib

t[t.weib >= tau] <- t.exp

#censoring
if (cens){
t.cens <- ceiling(rexp(n, lambda.cens))
event <- as.numeric(t.cens > t)
t <- pmin(t, t.cens)
data <- data.frame(time=t, event)
}
else data <- data.frame(time=as.integer(t), event=rep(1l,length(t)))
return(data)

b

3.2 Szenarien

Fiir die Simulationsstudie werden verschiedene Settings betrachtet, welche sich aus einer
Kombination der Parameter fiir die Datengenerierung und jener fiir die Change-Point-
Schatzung ergeben. Untersucht werden drei Szenarien, welche sich beziiglich des fiir die
Datenerzeugung vorgegebenen Change-Points und des fiir die Schétzung relevanten Wer-
tes Tmar unterscheiden (7, = 360 in Szenarien 1 und 3; 7,4, = 200 in Szenario 2).

Weiterhin werden folgende variierende und feste Werte fiir die Simulationen verwendet:

e variierende Parameter fiir die Erzeugung der Datensétze:
« Anzahl der Beobachtungen: n = {1000; 5000}
« Zensierung: cens = {1; 0} (1 = Datensatz mit Zensierung)
« Sprung in der Hazardrate:  jump = {1; 0} (1 = Sprung in der Hazardrate)
+ Change-Point 7: - tau = {90; 100} fiir Szenario 1
- tau = {50; 55} fir Szenario 2
- tau = {360} fir Szenario 3

e variierende Parameter fiir die Schéatzung:
« Intervallbreite: wd = {10; 20}
 Schatzmethode: - dis.int (disjunkte Intervalle ohne Verschiebung)
- cont.int (fortlaufende Intervalle)

- shift.int (Intervallverschiebung)
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Insgesamt resultieren daraus in den ersten beiden Szenarien 16 und im dritten 8 Para-
meterkombinationen fiir die Datengenerierung mit jeweils 6 Féllen fiir die Schétzung. Eine
solche Kombination wird im Folgenden als “Setting® bezeichnet. Die fiir die Schitzungen
verwendete R-Funktion, welche die Grundlage fiir das erstellte Paket CPest darstellt, wird
in Kapitel [4 ausfithrlich erkléart.

Die Parameter der Weibullverteilung, welche fiir die Datengenerierung benotigt wer-
den, sind fiir alle Settings mit den Werten shape=0,2 und scale=100 vorbelegt. Die zu-
gehorige theoretische Hazardfunktion ist fiir zwei beispielhafte Settings mit 7 = 100 und
7 =50 in den Abbildungen [1] und [2| dargestellt, wobei jeweils die zwei Falle mit und ohne

Sprung in der Hazardrate betrachtet werden.

Hazardfunktion
o
p=] -
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Abbildung 1: Hazardfunktion fiir 7 = 100 mit und ohne Sprung;
fir die ¢; gilt: (¢;|t; < 100) ~ W B(n =100,v=0,2) und (¢;|t; > 100) ~ Exzp(\)
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Abbildung 2: Hazardfunktion fiir 7 = 50 mit und ohne Sprung;
fur die t; gilt: (¢;]t; < 50) ~ W B(n=100,v =0,2) und (¢;|t; > 50) ~ Exp(\)

Weiterhin wird der Parameter A.c,s fiir die Erzeugung der Zensierungszeiten so vor-
gegeben, dass sich ein Anteil an zensierten Daten von ca. 30% ergibt.

Die Simulationen werden fiir jedes Setting mit 500 Wiederholungen durchgefiihrt. D.h.
fiir jede Parameterkombination werden 500 Datenséitze erzeugt und jeweils 6 Schétzer fir
7 ermittelt. Die Simulationsergebnisse in Kapitel beinhalten fiir jeden dieser Félle den
Median sowie das arithmetische Mittel aus allen 500 Schatzungen. Als weitere Mafle fiir
die Gute der Schatzfunktion wird der RMSE (root mean square error) und der MAD

(mean absolute error) betrachtet, welche sich wie folgt berechnen lassen:

RMSE — J LS (h—rp

L)

1 T
MAD == > |7 — 7|
i

Dabei entspricht r der Anzahl an Wiederholungen, d.h. in diesem Fall r = 500.

Da die Funktion fiir die Change-Point-Schiatzung so konstruiert ist, dass sich fiir 7
maximal der Wert 7,4, ergeben kann, ist fiir die Simulationsergebnisse im Fall 7 = 360 der
Anteil der Schéitzungen mit 7 = 7,4, interessant, weil 7,,4, in diesem Szenario ebenfalls
mit 360 vorgegeben ist (siche Kapitel 4| fur Details zu der in R verwendeten Schétz-
Funktion). Die zugehorigen Ergebnisse in Tabelle [4] enthalten deshalb eine zusétzliche
Spalte “prop.taumax*“ fiir eben diesen Anteil, wobei der Ubersichtlichkeit wegen nur jene

Werte dargestellt sind, welche von 0 verschieden sind.
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3.3 Simulationsergebnisse

Ein Ziel der Simulationsstudie ist es, festzustellen wie nahe der geschétzte Change-Point
am tatsiachlichen Wert ist und ob sich die Genauigkeit des Schétzers fiir groffie Stichpro-
benumfinge verbessert. Deshalb werden fiir alle Settings jeweils die Beobachtungszahlen
n = 1000 und n = 5000 untersucht. Die Ergebnisse enthalten fiir jeden betrachteten Fall
den Median und das arithmetische Mittel aus den jeweils 500 Schatzungen. Da in der
Uberlebenszeitanalyse der Median wegen seiner Robustheit gegen Ausreifier eine grofe-
re Rolle spielt, wird dieser im Folgenden gegeniiber dem Mittelwert (“mean®) vorrangig
betrachtet. Weiterhin ist fiir jeden Fall der RMSE und der MAD angegeben, wobei auch
hier der MAD wegen seiner geringeren Ausreiflerempfindlichkeit von gréflerem Interesse

ist.

Zunéchst soll analysiert werden, wie gut das Schétzverfahren theoretisch funktioniert,
d.h. wie genau der Change-Point in einem Fall geschéitzt wird, bei dem der Ubergang zur
konstanten Hazardrate besonders eindeutig ist. Dafiir wurden die Settings mit jump=1
erstellt, welche bei t = 7 einen Sprung in der Hazardrate besitzen. Nachfolgend wird das
erste Szenario mit 7 =90/100 genauer untersucht, dessen Ergebnisse aus den Schatzungen
in Tabelle [1l zu finden sind.

Tabelle 1: Ergebnisse fur Szenario 1 mit 7 =90/ 100:

Simulation mit festen Weibull-Parametern shape=0.2 und scale=100; je 500 Wieder-
holungen fir jede Kombination der Parameter cens={1,0}, jump={1,0}, 7={90,100},
n={1000,5000}; pro Kombination 6 Schiatzungen fiir 7: mit disjunkten Intervallen ohne
und mit Verschiebung (dis.int, shift.int) und mit kontinuierlichen Intervallen (cont.int)
mit einer Breite von je 10 und 20 sowie Typqe = 360; fiir jedes Setting sind die Ergebnisse
fir Median, Mittelwert, RMSE und MAD mit der jeweils besten Giite unterstrichen

median mean RMSE MAD

cens=1; jump=1; 7=90; n=1000

dis.int10 90.00 88.34 13.81 8.50
dis.int20 100.00 102.20 36.43 20.84
cont.int10 83.00 83.88 15.30 11.10
cont.int20 82.00 90.68 31.59 17.25
shift.int10 87.00 86.48 13.30 8.60

shift.int20 92.00 97.96 30.61 15.51
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median mean RMSE MAD

cens=1; jump=1; tau=90; n=5000

dis.int10 90.00 95.26 12.74 5.54
dis.int20 100.00 114.92 43.92 25.88
cont.int10 87.00 90.70 11.03 6.82
cont.int20 87.00 101.62 40.07 18.95
shift.int10 89.00 93.37 10.96 2.66
shift.int20 96.00 106.54 36.97 17.80

cens=1; jump=1; tau=100; n=1000

dis.int10 100.00 96.52 17.99 11.04
dis.int20 100.00 108.00 30.09 13.76
cont.int10 92.00 91.66 17.90 13.12
cont.int20 92.00 97.96 26.17 16.72
shift.int10 97.00 94.51 15.60 10.84
shift.int20 99.00 104.69 26.34 14.32

cens=1; jump=1; tau=100; n=5000

dis.int10 100.00 104.58 11.77 4.66
dis.int20 100.00 112.80 31.92 12.80
cont.int10 97.00 99.78 9.93 6.49
cont.int20 96.00 107.84 34.71 15.88
shift.int10 99.00 103.22 11.17 5.64
shift.int20 99.00 111.57 31.13 13.81

cens=1; jump=0; tau=90; n=1000

dis.int10 60.00 64.60 35.22 29.96
dis.int20 80.00 80.60 43.22 29.72
cont.int10 57.00 59.78 38.23 33.60
cont.int20 62.50 72.36 47.27 36.10
shift.int10 59.00 62.72 36.10 30.96
shift.int20 70.50 77.80 40.44 29.18

cens=1; jump=0; tau=90; n=5000

dis.int10 80.00 78.30 26.23 18.90
dis.int20 80.00 91.56 44.23 24.12
cont.int10 71.00 72.79 25.15 21.56
cont.int20 70.00 80.05 40.26 28.16
shift.int10 76.00 77.13 21.45 17.25

shift.int20 78.00 86.92 36.69 21.93
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median mean RMSE MAD

cens=1; jump=0; tau=100; n=1000

dis.int10 70.00 69.32 37.82 34.08
dis.int20 80.00 89.24 49.08 35.96
cont.int10 64.00 65.51 40.18 36.91
cont.int20 67.00 81.38 51.59 41.20
shift.int10 66.00 68.36 37.76 34.34
shift.int20 77.00 86.28 42.63 32.86

cens=1; jump=0; tau=100; n=5000

dis.int10 80.00 85.78 23.46 19.34
dis.int20 80.00 102.04 44.21 26.84
cont.int10 80.00 82.08 25.91 22.48
cont.int20 80.00 92.35 42.81 30.23
shift.int10 84.00 85.47 23.39 19.27
shift.int20 91.00 99.24 39.42 23.58

cens=0; jump=1; tau=90; n=1000

dis.int10 90.00 88.92 10.94 6.72
dis.int20 100.00 99.24 23.68 16.36
cont.int10 84.00 83.71 12.26 9.24
cont.int20 83.00 87.96 19.85 12.75
shift.int10 88.00 87.54 10.32 7.22
shift.int20 92.00 96.42 19.88 11.59

cens=0; jump=1; tau=90; n=5000

dis.int10 90.00 93.86 10.11 3.98
dis.int20 100.00 107.96 28.64 18.52
cont.int10 87.00 89.51 9.44 5.62
cont.int20 87.00 93.08 20.21 9.98
shift.int10 89.00 92.62 9.82 4.89
shift.int20 94.00 99.90 22.77 11.16

cens=0; jump=1; tau=100; n=1000

dis.int10 100.00 98.60 12.00 7.08
dis.int20 100.00 105.12 17.20 6.96
cont.int10 93.00 93.32 12.39 9.64
cont.int20 92.00 95.94 17.28 12.12
shift.int10 98.00 96.45 12.38 8.22

shift.int20 99.00 103.05 14.75 9.01
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median mean RMSE MAD

cens=0; jump=1; tau=100; n=5000

dis.int10 100.00 104.50 10.85 4.62
dis.int20 100.00 109.84 22.87 9.84
cont.int10 97.00 99.91 9.37 0.83
cont.int20 97.00 103.58 19.40 10.44
shift.int10 99.00 103.04 10.76 5.07
shift.int20 99.00 108.85 20.04 10.67

cens=0; jump=0; tau=90; n=1000

dis.int10 60.00 64.04 29.95 27.16
dis.int20 80.00 75.88 34.26 24.32
cont.int10 58.00 59.32 33.77 31.24
cont.int20 62.00 66.40 39.06 32.18
shift.int10 62.00 62.76 30.51 27.66
shift.int20 71.00 73.53 32.85 24.27

cens=0; jump=0; tau=90; n=5000

dis.int10 80.00 77.40 17.75 15.52
dis.int20 80.00 86.72 27.90 17.00
cont.int10 73.00 73.18 20.11 18.46
cont.int20 70.00 75.78 28.47 22.35
shift.int10 77.00 77.78 17.88 15.15
shift.int20 79.00 84.43 25.43 16.65

cens=0; jump=0; tau=100; n=1000

dis.int10 70.00 69.24 34.01 31.20
dis.int20 80.00 82.28 32.61 26.52
cont.int10 64.00 65.20 37.75 35.08
cont.int20 68.00 71.92 36.12 32.80
shift.int10 68.00 68.87 34.22 31.35
shift.int20 78.00 80.49 29.15 24.69

cens=0; jump=0; tau=100; n=5000

dis.int10 90.00 85.16 21.31 17.88
dis.int20 80.00 96.56 31.92 20.96
cont.int10 80.00 80.53 24.26 21.56
cont.int20 80.00 86.40 31.47 25.55
shift.int10 85.00 84.85 21.32 17.57

shift.int20 90.00 94.86 28.71 18.82
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Im Allgemeinen enthalten die simulierten Daten in den Féllen mit cens=0; jump=1
und n=5000 die meiste Information beziiglich des Change-Points. Wir betrachten aus
Szenario 1 deshalb zundchst die zwei Settings {cens=0; jump=1; 7=90/100; n=5000}.
Aus den zugehorigen Ergebnissen in Tabelle[l]ist ersichtlich, dass fiir diese beiden Settings
sowohl der MAD als auch der RMSE die geringsten Werte im Vergleich zu allen anderen
Settings aus Szenario 1 annehmen. Weiterhin ist der Median fiir alle drei Schétzverfahren
nahe dem tatsiachlichen Change-Point, wobei trotz des hohen Stichprobenumfangs von
n=>5000 noch ein Bias (Verzerrung) vorhanden und der Schatzer somit nicht erwartungs-
treu ist. Es ist aufféllig, dass der Median fiir die Schitzmethoden cont.int und shift.int
meist unter dem wahren 7 liegt, was bereits an dieser Stelle darauf schlieflen lasst, dass
der Change-Point tendenziell unterschatzt wird. Im Mittel liegen die geschatzten Werte
zwar haufig iiber dem tatséchlichen 7, allerdings wird das arithmetische Mittel durch ein-
zelne hohe Schatzwerte nach oben verzerrt. Dass solche hohen Werte in der Simulation
tatsachlich vorkommen, ist z.B. aus den Boxplots fiir den Fall 7 =90 in Abb. [3|ersichtlich.

cens=0; jump=1; tau=90; n=5000
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Abbildung 3: Boxplots der Change-Point-Schéatzer fiir die drei Schatzverfahren mit Inter-
vallbreiten 10 und 20 im Setting {cens=0; jump=1; 7=90; n=5000}

Fir diese beiden Settings hat der Schétzwert, welcher ohne Intervallverschiebung be-
rechnet wurde (dis.int), jeweils den kleinsten MAD. Eine mogliche Begriindung konnte
darin liegen, dass fiir eine Intervallbreite von 10 bei dieser Schatzmethode mit diskreten
Intervallen die beiden tatséchlichen Werte von 7, also 90 und 100, exakt auf den Inter-

vallgrenzen liegen.

Um den Fall zu untersuchen, dass sich der wahre Change-Point an einem Zeitpunkt
befindet, welcher kein Vielfaches von 10 ist, betrachten wir nun das Setting {cens=0;
Jump=1; T=55; n=5000} des zweiten Szenarios, dessen Ergebnisse in Tabelle [2| aufgelis-
tet sind. Hierbei ist der MAD fiir die Verfahren mit kontinuierlichen Intervallen (cont.int)

und mit Intervallverschiebung (shift.int) geringer als fir die erste Schatzmethode, weil
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mittels diskreter Intervalle ohne Verschiebung nur Vielfache von 10 bzw. 20 fiir 7 moglich
sind, die geschétzten Werte also mindestens den Abstand 5 zum wahren 7 = 55 haben.
Auflerdem liegt der Median fiir shift.int10 mit 56 sehr nahe am tatsdchlichen Change-
Point.

Tabelle 2: Ergebnisse fir Szenario 2 mit 7 =50/ 55:

Simulation mit festen Weibull-Parametern shape=0.2 und scale=100; je 500 Wieder-
holungen fiir jede Kombination der Parameter cens={1,0}, jump={1,0}, 7={50,55},
n={1000,5000}; pro Kombination 6 Schiatzungen fiir 7: mit disjunkten Intervallen oh-
ne und mit Verschiebung (dis.int, shift.int) und mit kontinuierlichen Intervallen (cont.int)
mit einer Breite von je 10 und 20 sowie Ty,qe = 200; fiir jedes Setting sind die Ergebnisse
fiir Median, Mittelwert, RMSE und MAD mit der jeweils besten Giite unterstrichen

median mean RMSE MAD

cens=1; jump=1; T=50; n=1000

dis.int10 50.00 53.20 11.31 5.52
dis.int20 60.00 64.40 28.10 18.80
cont.int10 46.00 47.99 10.81 7.60
cont.int20 45.00 52.60 23.01 13.42
shift.int10 49.00 51.13 9.81 5.78
shift.int20 54.00 60.11 23.88 13.41

cens=1; jump=1; T=50; n=5000

dis.int10 50.00 56.16 16.60 6.16
dis.int20 60.00 72.60 35.16 22.76
cont.int10 47.00 51.87 14.21 6.97
cont.int20 47.00 58.17 28.44 13.93
shift.int10 49.00 54.19 14.21 6.03
shift.int20 55.00 64.31 30.03 15.31

cens=1; jump=1; T=55; n=1000

dis.int10 50.00 D7.76 13.12 8.50
dis.int20 60.00 69.64 27.69 16.26
cont.int10 50.00 53.08 12.29 7.83
cont.int20 50.00 57.65 22.78 13.47
shift.int10 54.00 56.72 11.07 6.51

shift.int20 57.00 64.15 22.64 11.93
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median mean RMSE MAD

cens=1; jump=1; T=55; n=5000

dis.int10 60.00 62.62 14.28 9.30
dis.int20 60.00 70.60 27.14 15.60
cont.int10 52.00 55.61 10.08 5.80
cont.int20 52.00 60.11 21.28 11.25
shift.int10 56.00 59.19 10.42 5.61
shift.int20 57.00 65.04 22.01 11.26

cens=1; jump=0; T=50; n=1000

dis.int10 40.00 42.40 19.90 14.68
dis.int20 40.00 54.52 32.39 20.32
cont.int10 35.00 38.14 21.60 17.84
cont.int20 34.00 44.36 31.94 23.82
shift.int10 39.00 41.40 17.59 14.14
shift.int20 39.00 51.42 29.08 19.20

cens=1; jump=0; T=50; n=5000

dis.int10 40.00 47.78 20.12 12.22
dis.int20 40.00 55.24 31.58 19.04
cont.int10 40.00 42.57 18.35 13.15
cont.int20 36.00 48.80 32.80 22.03
shift.int10 45.00 46.89 15.75 9.29
shift.int20 45.00 54.29 29.79 16.52

cens=1; jump=0; T=55; n=1000

dis.int10 40.00 45.22 19.70 15.90
dis.int20 40.00 55.00 29.25 20.04
cont.int10 38.00 39.93 22.18 19.38
cont.int20 36.00 44.74 28.99 23.46
shift.int10 41.00 43.55 19.49 15.96
shift.int20 45.00 52.36 25.88 17.54

cens=1; jump=0; T=55; n=5000

dis.int10 50.00 51.82 16.94 10.88
dis.int20 60.00 62.84 34.89 22.42
cont.int10 44.00 47.06 17.64 14.12
cont.int20 41.00 52.05 29.86 21.29
shift.int10 48.00 50.74 15.08 10.52

shift.int20 51.00 58.13 26.68 15.65
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median mean RMSE MAD

cens=0; jump=1; T=50; n=1000

dis.int10 50.00 52.68 8.56 4.20
dis.int20 60.00 64.80 27.03 18.24
cont.int10 46.00 47.56 8.90 6.36
cont.int20 45.00 51.16 20.17 11.70
shift.int10 49.00 51.37 8.90 5.04
shift.int20 55.00 59.23 20.47 11.97

cens=0; jump=1; T=50; n=5000

dis.int10 50.00 54.84 11.66 4.84
dis.int20 60.00 70.56 30.76 20.60
cont.int10 48.00 51.14 9.81 5.73
cont.int20 47.00 55.22 19.29 10.44
shift.int10 49.00 52.88 9.41 4.78
shift.int20 55.00 60.57 20.44 11.58

cens=0; jump=1; T=55; n=1000

dis.int10 60.00 58.06 12.35 8.32
dis.int20 60.00 68.76 24.82 14.72
cont.int10 51.00 52.32 9.23 6.95
cont.int20 50.00 56.09 19.57 11.80
shift.int10 54.00 56.34 9.73 6.23
shift.int20 57.00 62.67 19.88 10.54

cens=0; jump=1; T=55; n=5000

dis.int10 60.00 62.92 14.23 9.26
dis.int20 60.00 69.76 26.79 14.76
cont.int10 52.00 54.80 8.12 4.83
cont.int20 52.00 59.59 21.90 10.68
shift.int10 56.00 58.55 9.58 4.93
shift.int20 58.00 65.51 24.06 11.54

cens=0; jump=0; T=50; n=1000

dis.int10 40.00 42.42 17.33 13.66
dis.int20 40.00 52.88 26.46 17.28
cont.int10 35.00 36.93 18.05 16.18
cont.int20 33.00 41.90 27.05 21.35
shift.int10 39.00 40.45 14.98 12.55

shift.int20 40.00 49.23 23.52 15.99
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median mean RMSE MAD

cens=0; jump=0; T=50; n=5000

dis.int10 40.00 44.40 14.44 10.56
dis.int20 40.00 52.32 27.58 16.92
cont.int10 40.00 40.57 15.33 12.51
cont.int20 36.00 43.45 26.14 18.94
shift.int10 44.00 45.15 12.81 8.15
shift.int20 43.00 49.58 21.34 13.14

cens=0; jump=0; T=55; n=1000

dis.int10 40.00 43.42 16.51 13.90
dis.int20 40.00 52.64 25.00 17.86
cont.int10 37.00 38.34 19.96 17.98
cont.int20 36.00 42.35 25.91 21.70
shift.int10 40.50 42.26 16.54 14.43
shift.int20 43.00 49.05 20.94 15.43

cens=0; jump=0; T=55; n=5000

dis.int10 50.00 50.12 12.98 8.72
dis.int20 60.00 58.68 28.34 18.14
cont.int10 45.00 45.00 14.40 12.48
cont.int20 41.00 47.01 22.76 17.65
shift.int10 48.00 49.30 12.00 8.76
shift.int20 51.00 54.95 20.98 12.20

Insgesamt fallen in beiden Szenarien die Schatzergebnisse fiir cens=1, d.h. fiir jene
Settings in denen die Personen unter Risiko um die zensierten Beobachtungen korrigiert
wurden (vgl. Kap. , ahnlich zu denen mit cens=0 aus. Bereits aus diesen, im Be-
zug auf die Lage des Change-Points, eindeutigen Daten ist erkennbar, dass bei allen drei
Schatzmethoden im Allgemeinen eine Unterschitzung stattfindet. Wesentlich deutlicher
wird dies aus den Ergebnissen der Settings ohne Sprung in der Hazardrate (jump=0), was
eher der Realitét entspricht, da bei tatsichlich beobachteten Daten der Ubergang von der

anfdnglich abfallenden zu einer konstanten Sterberate im Allgemeinen stetig ist.

Als direkten Vergleich zu den bisher untersuchten Settings mit jump=1 betrachten wir
nun den Fall {cens=0; jump=0; 7=90; n=5000} ohne Sprung aus Szenario 1. Hier ist der
Bias deutlich groler und es findet eine noch starkere Unterschéitzung statt, insbesondere
weicht der Median tiber 10 Tage vom tatséchlichen 7 ab, fiir cont.int20 sogar um 20 Tage.
Auch der MAD ist hier wesentlich hoher als in den Settings mit Sprung. Fiir n=1000 ist
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die Differenz zwischen dem wahren und dem geschatzten Change-Point noch grofier, was
sowohl am Median als auch am arithmetischen Mittel der geschatzten Werte erkennbar
ist. In den tbrigen Settings ohne Sprung zum Zeitpunkt 7 sind die Abweichungen nach
unten ahnlich bzw. teilweise noch starker ausgepragt.

Im 2. Szenario ist der Bias fir jump=0 im Allgemeinen geringer als in Szenario 1,
jedoch wird der wahre Change-Point auch hier tendenziell unterschatzt. Beispielsweise ist
das arithmetische Mittel im Setting {cens=0; jump=0; T=55; n=5000} bei 54,95, d.h.
im Mittel wurde der wahre Change-Point fast exakt geschatzt. Allerdings ist auch hier zu
beachten, dass es viele Schatzungen mit grolen Werten gibt, welche den Mittelwert nach
oben verzerren (vgl. zugehorigen Boxplot im Anhang [A.2)).

Moglicherweise sind die Abweichungen zwischen den geschitzten Werten und dem
tatsdchlichen 7 geringer, weil sich der Change-Point mit 7 = 50 bzw. 7 = 55 an einer
Stelle befindet, an welcher die Hazardfunktion der Weibullverteilung relativ steil ist und
somit der Ubergang zur konstanten Hazardrate auch ohne Sprung eindeutiger ist als in
Szenario 1 (vgl. Abb. [2| zur theoretischen Hazardfunktion).

Um zu untersuchen, welche Schétzungen sich im Fall 7 = 7,4, ergeben, d.h. wenn der
wahre Change-Point dem maximal in Frage kommenden 7 entspricht, wurde ein weiteres
Szenario mit 7 = 360 erstellt. Die entsprechenden Simulationsergebnisse sind in Tabelle @
zu finden, welche analog zu denen der ersten beiden Szenarien dargestellt sind. Zusatzlich
gibt es nun jedoch eine Spalte “prop.taumax* fiir den Anteil der Schatzungen mit 7 = 7,44

Besonders auffillig ist in den Ergebnissen der Fall { cens=0; jump=1; 7=360; n=5000},
welcher die Schéatzung mit dem geringsten MAD (=1.04) aus allen Settings der drei be-
trachteten Szenarien enthélt. Dabei ist jedoch zu beachten, dass der Anteil fiir 7 = 742
fiir eben dieses Ergebnis, also den Fall dis.int20, 95% entspricht, wobei nicht bekannt ist,
wie oft dabei eine Uberschiatzung des wahren Change-Points stattgefunden hat. Da die
Schatzungen ausschliellich nach unten vom tatséchlichen Wert fiir 7 abweichen kénnen,
ist der MAD in diesem Setting entsprechend gering. Im Fall des kleineren Stichproben-
umfangs von n=1000 weichen die Schatzungen generell sehr weit nach unten ab, sodass

der Anteil fiir 7 = 74, dann kaum mehr eine Rolle spielt.
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Tabelle 3: Ergebnisse fiir Szenario 3 mit 7 = 360:

Simulation mit festen Weibull-Parametern shape=0.2 und scale=100; je 500 Wie-
derholungen fiir jede Kombination der Parameter cens={1,0}, jump={1,0}, 7={360},
n={1000,5000}; pro Kombination 6 Schatzungen fiir 7: mit disjunkten Intervallen ohne
und mit Verschiebung (dis.int, shift.int) und mit kontinuierlichen Intervallen (cont.int)
mit einer Breite von je 10 und 20 sowie Tynqe = 360; fir jedes Setting sind die Ergebnis-
se fiir Median, Mittelwert, RMSE und MAD mit der jeweils besten Giite unterstrichen;
“prop.taumax* gibt den Anteil der Schatzungen mit 7 = Ty, an

median mean RMSE MAD prop.taumax

cens=1; jump=1; T=360; n=1000

dis.int10 200.00 205.56 160.61 154.44
dis.int20 260.00 269.96 105.73 90.04 0.11
cont.int10 197.00 200.13 165.60 159.87
cont.int20 258.00 262.78 111.20 97.22 0.01
shift.int10 189.00 194.22 171.29 165.78
shift.int20 255.00 255.85 117.29 104.15 0.02

cens=1; jump=1; T=360; n=5000

dis.int10 340.00 332.00 41.12 28.00 0.31
dis.int20 360.00 350.00 21.61 10.00 0.72
cont.int10 336.00 328.44 43.26 31.56 0.04
cont.int20 348.00 343.13 24.95 16.87 0.11
shift.int10 333.50 325.95 46.27 34.05 0.07
shift.int20 356.00 345.41 26.04 14.59 0.22

cens=1; jump=0; T=360; n=1000

dis.int10 140.00 148.84 214.73 211.16
dis.int20 180.00 190.60 177.23 169.40
cont.int10 143.00 146.02 217.24 213.98
cont.int20 177.50 182.80 184.34 177.20
shift.int10 139.00 145.00 218.24 215.00
shift.int20 178.00 184.37 182.64 175.63

cens=1; jump=0; T=360; n=5000

dis.int10 230.00 231.18 134.17 128.82
dis.int20 260.00 263.68 106.01 96.32 0.03
cont.int10 222.00 226.12 138.73 133.88
cont.int20 253.00 255.90 112.22 104.10 0.01
shift.int10 221.50 224.78 140.14 135.22

shift.int20 258.00 260.15 108.67 99.85 0.01
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median mean RMSE MAD prop.taumax

cens=0; jump=1; T=360; n=1000

dis.int10 260.00 259.74 113.22 100.26 0.03
dis.int20 320.00 320.48 55.61 39.52 0.32
cont.int10 259.00 257.66 113.40 102.34

cont.int20 323.00 313.72 59.72 46.28 0.03
shift.int10 249.00 249.19 122.02 110.81 0.01
shift.int20 315.50 309.00 66.23 51.00 0.07

cens=0; jump=1; T=360; n=5000

dis.int10 360.00 355.04 12.00 4.96 0.72
dis.int20 360.00 358.96 4.56 1.04 0.95
cont.int10 353.00 351.13 13.04 8.87 0.09
cont.int20 353.00 351.83 10.65 8.17 0.12
shift.int10 358.00 353.27 12.42 6.73 0.19
shift.int20 359.00 356.78 6.62 3.22 0.33

cens=0; jump=0; T=360; n=1000

dis.int10 160.00 167.70 195.65 192.30
dis.int20 200.00 210.76 156.57 149.24 0.01
cont.int10 162.00 164.36 198.78 195.64
cont.int20 201.50 202.97 163.70 157.03
shift.int10 159.00 161.64 201.42 198.36
shift.int20 199.00 203.90 162.38 156.10

cens=0; jump=0; T=360; n=5000

dis.int10 260.00 256.28 109.64 103.72
dis.int20 280.00 286.96 81.13 73.04 0.03
cont.int10 252.50 252.13 113.22 107.87
cont.int20 278.00 277.22 89.71 82.78 0.01
shift.int10 249.00 251.10 114.31 108.90
shift.int20 279.00 280.46 87.16 79.54 0.01

Somit geht auch aus den Ergebnissen dieses dritten Szenarios hervor, dass der wahre
Change-Point tendenziell unterschatzt wird. Allerdings ist fir 7 = 360 der Unterschied
zwischen den Schétzungen mit jump=1 und jump=0 bzgl. der Abweichung vom tatséch-
lichen 7 noch extremer als in den beiden zuvor betrachteten Szenarien. Dabei sollte jedoch
beachtet werden, dass die Aussagekraft der Ergebnisse mit jump=0 in diesem Szenario
aufgrund der sehr hohen Werte des RMSE und des MAD eher gering ist. Auch aus den
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Boxplots, wie beispielhaft fiir das Setting {cens=0; jump=0; T=360; n=5000} in Abb.
dargestellt, ist erkennbar, dass fiir 7 = 360 sowohl der Interquartilsabstand als auch der
Abstand zwischen den geschatzten Minima und Maxima deutlich grofler ist, als in den
Settings der beiden anderen Szenarien. FEine mogliche Begriindung liegt darin, dass die
Hazardrate der Weibullverteilung fiir die in den Simulationen gewahlten Parameter zum
Zeitpunkt t = 360 bereits vergleichsweise flach ist, sodass sich aus der Change-Point-

Schatzung in vielen Fallen ein deutlich geringerer Wert ergibt (vgl. Plot der theoretischen
Hazardfunktion in Abb[13]im Anhang).

cens=0; jump=0; tau=360; n=5000
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Abbildung 4: Boxplots der Change-Point-Schéatzer fiir die drei Schatzverfahren mit Inter-
vallbreiten 10 und 20 im Setting cens=0; jump=0; T=360; n=5000

Die Boxplots fiir alle tibrigen Settings der beiden Szenarien sind im Anhang zu
finden.

Um einen Uberblick zu erhalten, fiir welche der drei Methoden die Schéitzungen die
grofite Genauigkeit haben, sind in jedem Setting jeweils fiir RMSE und MAD die Er-
gebnisse mit dem geringsten Wert unterstrichen, und fir Median und Mittelwert jene,
welche am nédchsten am vorgegebenen 7 liegen. Zum einen ist insgesamt auffillig, dass
die Schéatzungen, welche mit einer Intervallbreite von 10 Tagen durchgefiihrt wurden, in
der Mehrheit der Falle eine hohere Giite aufweisen. Beziiglich des MAD trifft dies im
zweiten Szenario mit 7 = 50/55 sogar auf alle untersuchten Settings zu. Auffallig ist, dass
meist dann die Schatzung mit Intervallbreite 20 die besseren Ergebnisse liefert, wenn 7
ein Vielfaches von 20 ist, insbesondere ist die Giite dieser Schatzungen in allen Settings
mit 7 = 360 hoher.

Weiterhin ist der RMSE fiir cont.int nur in 7 der 40 Settings am geringsten, der zuge-
horige MAD sogar nur in einem Fall, ndmlich fiir { cens=0; jump=1; 7=55; n=5000}. Aus
diesem Grund und weil bei Verwendung dieser Schatzmethode das Problem der Abhéan-
gigkeit zwischen den p-Werten verschiedener Intervalle besteht (vgl. Kap. , sollten die
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beiden Verfahren mit diskreten Intervallen gegentiber jenem mit fortlaufenden Intervallen
bevorzugt werden. Deshalb wird die Funktion fiir die Schatzung mittels kontinuierlicher
Intervalle auch bei der Implementierung des R-Paketes nicht mit beriicksichtigt. Aus den
Ergebnissen fiir dis.int und shift.int ist jedoch nicht eindeutig feststellbar, welche Metho-
de eine hohere Genauigkeit aufweist, wobei zum Teil trotzdem eine gewisse Systematik
erkennbar ist. Beispielsweise liefert in Szenario 1 fiir fast alle Settings mit Sprung die
Methode dis.int einen geringeren MAD und fiir die Settings ohne Sprung die Methode
shift.int. Man konnte an dieser Stelle vermuten, dass das Verfahren mit Intervallverschie-
bung fiir Daten mit einem stetigen Ubergang zur konstanten Hazardrate besser geeignet
ist, allerdings wird dies im zweiten Szenario nicht bestatigt, da die Ergebnisse dort nicht

diese Systematik aufweisen. Hierfiir sind gegebenenfalls noch weitere Tests sinnvoll.

3.4 Weiterfihrende Simulationen
3.4.1 Schitzungen mit tatsdchlichem )\

Um zu untersuchen, ob die grolen Abweichungen vom wahren Change-Point in den Set-
tings ohne Sprung ihre Ursache in der Schatzung der konstanten Hazardrate A haben,
wurde eine zusétzliche Simulation durchgefiihrt. Hierbei wurde der Change-Point fiir ei-
nen simulierten Datensatz jeweils einmal wie bisher mit \ und zusétzlich mit dem wahren

A geschéatzt, welches sich aus der Weibull-Hazardfunktion berechnen lasst. Die verwendete
konstante Hazardrate ergibt sich nach aus Kapitel Zu A= % (%)771 ~ 0,002. Be-
trachtet werden nur die Settings mit cens=1/0, jump=0 und n=5000, da im ersten und
zweiten Szenario in den Féllen ohne Sprung zum Zeitpunkt ¢ = 7 die Abweichung vom
wahren Change-Point wesentlich grofler war als mit Sprung in der Hazardrate. Beispiel-
haft soll nur der Fall 7 =90 betrachtet werden, wobei 7 jeweils mit A und mit wahren A
geschatzt wurde.

Aus den Ergebnissen in Tabelle [ ist ersichtlich, dass im Fall cens=1 sich der Medi-
an flir die Schitzungen mit wahrem A\ und jene mit A nur wenig unterscheidet. Sowohl
der RMSE und der MAD sind zwar mit tatsidchlichem X\ im Allgemeinen geringer, da es
anscheinend weniger Ausreifler in den Schatzungen gibt, was auch aus den Mittelwerten
ersichtlich ist, jedoch wird der Change-Point nach wie vor deutlich unterschéatzt. Noch
geringer sind die Unterschiede, wenn in der Schatzung keine Korrektur um zensierte Be-
obachtungen stattfindet. Hier weichen simtliche Ergebnisse fiir die Schétzung mit A noch
weniger von denen mit wahrem A ab. Die Ursache fiir die tendenzielle Unterschatzung des
wahren Change-Points scheint somit nicht an der Schatzung der konstanten Hazardrate

zu liegen.
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Tabelle 4: Vergleich der Schatzungen mit geschétzter Hazardrate A und wahrem \:
Simulation mit festen Weibull-Parametern shape=0.2 und scale=100; je 500 Wiederho-
lungen fir jede Kombination der Parameter cens={1,0}, jump=0, 7=90, n=5000; pro
Kombination 6 Schatzungen fiir 7: mit disjunkten Intervallen ohne und mit Verschiebung
(dis.int, shift.int) und mit kontinuierlichen Intervallen (cont.int) mit einer Breite von je
10 und 20 sowie Tynae = 360

median mean RMSE MAD

cens=1; jump=0; T=90; n=5000; mit A

dis.int10 70.00 76.20 21.17 17.60
dis.int20 80.00 97.40 54.59 29.60
cont.int10 73.50 74.28 23.90 20.52
cont.int20 70.50 89.69 54.16 34.01
shift.int10 76.00 76.50 21.58 17.46
shift.int20 79.00 93.59 46.63 26.03

cens=1; jump=0; T=90; n=5000; mit wahrem A\

dis.int10 80.00 76.00 18.60 16.20
dis.int20 80.00 83.20 17.55 14.80
cont.int10 73.00 73.14 20.22 18.60
cont.int20 70.00 73.93 22.90 21.19
shift.int10 76.00 75.39 18.46 15.85
shift.int20 79.00 82.90 17.04 14.04

cens=0; jump=0; T=90; n=5000; mit A

dis.int10 70.00 74.60 18.33 16.20
dis.int20 80.00 85.20 26.91 16.80
cont.int10 69.00 70.56 21.16 19.58
cont.int20 70.00 74.12 28.12 23.68
shift.int10 74.50 74.93 17.51 15.39
shift.int20 79.00 82.39 21.33 14.69

cens=0; jump=0; T=90; n=5000; mit wahrem A\

dis.int10 70.00 74.50 18.14 16.10
dis.int20 80.00 81.40 16.85 14.20
cont.int10 70.00 70.60 21.13 19.52
cont.int20 70.00 71.19 22.35 21.01
shift.int10 75.00 74.74 17.71 15.58

shift.int20 79.00 79.98 15.13 12.82
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3.4.2 Untersuchung der Giite der Konfidenzintervalle

Fiir die ersten beiden Schéatzmethoden, d.h. mit diskreten und kontinuierlichen Intervallen,
wurde fiir die Falle {cens=1; jump=0/1; 7=90; n=1000/5000} zusétzlich eine Simulation
mit Bootstrapping durchgefiihrt. Im Gegensatz zu den bisherigen Simulationen wurden
die vier Schatzungen hierbei nicht fiir ein und denselben Datensatz eines Settings berech-
net, sondern fiir jedes der Verfahren dis.int und cont.int mit Intervallbreiten 10 und 20
jeweils 500 Datensétze erzeugt und die Change-Point-Schatzungen ermittelt. Der Grund
liegt in der hohen Rechenzeit bei Verwendung des Bootstrap-Verfahrens. Die daraus resul-
tierenden Ergebnisse fir Median, Mittelwert, RMSE und MAD sind in bekannter Form in
Tabelle [5| aufgelistet. Zu beachten ist dabei, dass die Ergebnisse aufgrund des gleichen Si-
mulationsaufbaus mit denen aus Szenario 1 qualitativ iibereinstimmen, die genauen Werte
jedoch leicht abweichen, was auf die Streuung der mit Zufallszahlen erzeugten Daten zu-
riickzufithren ist.

Zusatzlich wurden nun fir jeden dieser 500 Datensatze 1000 Bootstrap-Samplings
mit zugehoriger Change-Point-Schatzung durchgefiihrt und die zugehorigen Bootstrap-
Perzentil-Intervalle zum Niveau a=>5% berechnet. Details zu diesen Konfidenzintervallen,
welche nicht wie tiblich auf einer Normal-Approximation beruhen, sondern die tatséch-
lich beobachtete Verteilung der 7 verwenden, sind in Kapitel zu finden. Aus den
resultierenden Intervallen wurde berechnet, wie hoch der Anteil jener Schétzungen ist,
fir die der wahre Change-Point 7 = 90 vom zugehorigen Intervall iiberdeckt wird. Diese
Uberdeckungsrate ist in Tabelle [5|in der Spalte “cover” zu finden.

Vergleicht man fiir jedes Ergebnis die Félle jump=1 und jump=0, so ist die Uber-
deckungsrate fiir die Daten mit Sprung fast immer hoher, wobei der wahre Change-Point
dabei auch deutlich weniger unterschéatzt wird, wie sich auch bereits aus den Simulationen
in Kapitel ergeben hat. Im Setting {jump=1; 7=90; n=5000}, in welchem die Daten
wieder die meiste Information beziiglich des Change-Points enthalten, iiberdecken die
Konfidenzintervalle fiir die Schatzung dis.int10 den Zeitpunkt 7 sogar zu 100%. Insgesamt
liegt die Uberdeckungsrate jedoch in den meisten der betrachteten Falle unter 90%, fiir
Jjump=0 sogar oft deutlich darunter.

Allerdings wurden in dieser Simulation zu wenige Szenarien betrachtet, um aus den
Ergebnissen allgemeine Aussagen treffen zu konnen. Ein Grund, weshalb nur diese vier
Settings untersucht wurden, liegt in der hohen Rechenzeit. Inshesondere dauert die Durch-
fithrung der Simulation fiir eines dieser 16 betrachteten Félle mit den hier verwendeten
Parametern bis zu 10 Tage. Deshalb ist die Simulation mit Bootstrapping Gegenstand
weiterer Untersuchungen auflerhalb dieser Arbeit, wofiir die in R geschriebene Funktion

zur Change-Point-Schétzung zunachst hinsichtlich der Laufzeit optimiert werden sollte.
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Tabelle 5: Simulation mit Bootstrap-Samplings:

je 500 Wiederholungen fiir jede Kombination der Parameter cens=1, jump={1,0}, 7=90,
n={1000,5000}; pro Kombination 4 Schitzungen fiir 7: mit disjunkten Intervallen ohne
Verschiebung (dis.int) und fortlaufenden Intervallen (cont.int) einer Breite von je 10 und
20 sowie Timaz = 360; 'cover’ bezeichnet die Uberdeckungsrate der Perzentil-Intervalle

median mean RMSE MAD cover
Jump=1; 7=90; n=1000
dis.int10 90.00 87.02 13.45 8.34 0.96
dis.int20 100.00 98.44 28.24 17.72 0.97
cont.int10 84.00 83.19 13.68 10.08 0.73
cont.int20 83.00 89.35 25.27 15.03 0.89
Jump=1; 7=90; n=5000
dis.int10 90.00 95.30 16.63 5.62 1.00
dis.int20 100.00 108.84 34.58 20.12 0.70
cont.int10 87.00 90.83 14.79 6.99 0.87
cont.int20 87.00 98.95 35.07 16.21 0.95
Jump=0; T=90; n=1000
dis.int10 60.00 63.88 33.40 29.32 0.64
dis.int20 80.00 82.56 41.98 29.20 0.85
cont.int10 57.00 60.14 36.37 33.01 0.46
cont.int20 62.00 73.29 47.89 37.16 0.76
Jump=0; T=90; n=5000
dis.int10 80.00 79.30 23.46 18.38 0.84
dis.int20 80.00 97.20 51.20 27.88 0.91
cont.int10 72.00 74.35 28.00 21.58 0.64
cont.int20 70.00 84.21 47.77 31.04 0.83

3.5 Fazit zu den Simulationsergebnissen

Zusammenfassend lasst sich aus den Simulationsergebnissen feststellen, dass der wahre
Change-Point bei Schatzung mithilfe des Verfahrens nach [Kiichenhoff u. a., 2015] tenden-
ziell unterschitzt wird. Besonders stark sind die Abweichungen des geschiatzten Wertes 7
vom wahren 7 im Fall eines stetigen Ubergangs in der Hazardrate zum Zeitpunkt ¢ = 7.
Dies wirkt sich auch auf die Uberdeckungsrate der Konfidenzintervalle aus, welche in den
Ergebnissen aus Kapitel fir die meisten Falle nicht zufriedenstellend ist, was weitere

Tests erforderlich macht.
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Bei Verwendung der Schéatz-Methoden mit Intervallverschiebung oder fortlaufenden
Intervallen ergeben sich zum Teil noch etwas groffere Abweichungen nach unten als fir
das Verfahren ohne Intervallverschiebung, was jedoch auch daran liegt, dass fir letzte-
res ausschliefllich die Intervallgrenzen als Schétzergebnis in Frage kommen konnen. Aus
diesem Grund liefert das Verfahren mit Intervallverschiebung in den Féllen, bei denen
der Change-Point nicht als Vielfaches von 10 definiert wurde (d.h. fir 7=55), sowohl
im Bezug auf den Median als auch auf den MAD bessere Ergebnisse. Weiterhin ist aus
den Ergebnissen ersichtlich, dass der MAD fiir die Methode mit fortlaufenden Intervallen
(cont.int) in fast allen untersuchten Fallen am grofiten ist. Fur die tibrigen zwei Methoden
ist jedoch keine eindeutige Tendenz zu erkennen. Deshalb wird fiir das R-Paket auf die
Implementierung der Funktion fiir fortlaufende Intervalle verzichtet und nur die Methoden
mit diskreten Intervallen (mit und ohne Verschiebung) berticksichtigt.

Aus den Ergebnissen fiir die Settings mit Sprung in der Hazardrate wird deutlich, dass
die Schitzung mithilfe der aus einem Binomialtest ermittelten p-Werte nach [Kichenhott
u. a., 2015] theoretisch funktioniert. D.h. in einem Fall mit eindeutigem Ubergang zwischen
abfallender und konstanter Sterberate ist der Bias fiir grofle Stichprobenumféange relativ
gering. Gegebenenfalls sind weitere Nachforschungen notwendig, um die Ursache fiir die
vergleichsweise groflen Abweichungen vom wahren Change-Point im Fall mit stetigem

Ubergang in der Hazardrate zu finden.
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4 R-Paket CPest

Im Zuge dieser Arbeit wurde eine erste Version des R-Paketes C'Pest geschrieben, welches
eine Funktion zur Change-Point-Schéitzung auf Grundlage des Verfahrens von |Kiichen-
hoff u.a.l [2015] beinhaltet. Zusétzlich ist eine Varianz-Schéatzung mittels eines nichtpa-
rametrischen Bootstrap-Verfahrens moglich, wobei auch zwei Konfidenzintervalle fiir ein
gewiinschtes a-Niveau ausgegeben werden. Fiir die grafische Darstellung der Schatzungen

ist auflerdem eine plot-Funktion eingearbeitet.

4.1 Aufbau und Funktionsweise

Das Paket enthélt die zentrale Funktion CPest fiir die Schitzung von 7, welche durch
den Benutzer aufgerufen werden kann. Nachfolgende Aufzihlung gibt eine Ubersicht iiber
die Argumente, welche der Funktion iibergeben werden und zum Teil bereits mit default-

Werten vorbelegt sind.

e time: Vektor mit beobachteten Uberlebens-/Zensierungszeiten T;

e event: Vektor mit zugehorigem Status fiir jede Beobachtung

(0O=zensiert/ 1=unzensiert)

e intwd: gewiinschte Intervallbreite

e taumax: maximal fiir 7 angenommener Wert (7,,qz)

e taumin = O: optionales Minimum fiir den Change-Point-Schéatzer
e shift = TRUE: Indikator fiir die Schatzung mit (default) oder

ohne Intervallverschiebung

e cens = TRUE: Beriicksichtigung der zensierten Daten

e boot = FALSE: Erzeugung von Bootstrap-Samples

e alpha = 0.05: Konfidenzniveau

e B = 1000: Anzahl der Wiederholungen beim Bootstrapping

Um die Anwendung der Funktion moglichst einfach zu halten, sind vom Benutzer nur die
ersten vier Argumente zu iibergeben. Da die Generierung von Bootstrap-Stichproben mit
zugehorigen Change-Point-Schatzungen bei einer grofen Wiederholungszahl B eine nicht
unerhebliche Rechenzeit in Anspruch nimmt, wird der Bootstrap-Algorithmus standard-
méaBig nicht ausgefithrt und das Argument boot muss vom Benutzer explizit auf TRUE

gesetzt werden.
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4.1.1 Funktion tau.est

Durch die Funktion tau.est wird der Change-Point mittels der Methode mit diskreten
Intervallen geschétzt. tau.est bildet damit die Basis, auf welche andere Funktionen in-
nerhalb des Paketes zugreifen. Der nachfolgende Code beinhaltet die flir die Schatzung

notwendigen Teile des Funktionsrumpfes.

tau.est <- function(time, event, intwd, taumax, taumin, cens, move=0,...){

lambda.est <- sum(event[time>taumax]==1) / sum(time[time>taumax] - taumax)
pr = pexp(intwd, lambda.est) #probability for event within an interval
if (cens==TRUE) tcens <- time[which(event == 0)] #times of censored data
lim <- seq(taumint+move, (taumax+intwd+move), by=intwd) #interval limits

pv <- vector("numeric", length=length(lim)-1)  #vector for p-values

for(k in 1:length(pv)){
x <- sum(event[time > lim[k] & time <= lim[k+1]])

n <- sum(time > lim[k])

if (cens==TRUE) {

#n is corrected by time of right-censored data within interval k

n <- n - round(sum( (lim[k+1]

- tcens[tcens > lim[k] & tcens <= lim[k+1]] ) / (Lim[k+1] - 1im[k])))
+

pvlk] <- binom.test(x, n, pr, alternative='"greater")$p.value

S <- c(rev(cumsum(rev(pv-0.25))), 0)

tau <- lim[which.max(8)] #estimatet tau
if (tau > taumax) tau <- taumax
list(CP.est=tau, ...)

}

Im oberen Teil wird aus den Beobachtungen mit time>taumax zunéchst der Parame-
ter der Exponentialverteilung A (lambda.est) nach Formel aus Kapitel geschatzt,
wobei angenommen wird, dass fiir diese Beobachtungen die Hazardrate konstant ist. Dar-
aus ergibt sich mithilfe der Funktion pexp() die Wahrscheinlichkeit pr fiir ein Ereignis
innerhalb eines Intervalls der Breite intwd. Weiterhin wird eine Variable fiir die Zensie-
rungszeiten (tcens) sowie ein Vektor mit den Intervallgrenzen (1im) definiert. Der Befehl
fir die Erzeugung dieser Sequenz enthélt einen Parameter move, welcher einen Wert fiir

die Intervallverschiebung angibt. Da dies nur im Fall shift=TRUE, d.h. bei der Schatzme-
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thode mit verschobenen Intervallen, eine Rolle spielt, ist move per default mit 0 vorbelegt
und kann vom Anwender nicht verdndert werden. Fur die p-Werte wird ein “leerer Vek-
tor pv definiert, dessen Lange der Anzahl der aus den Funktionsargumenten ermittelten
Intervalle entspricht.

Innerhalb der for-Schleife werden nun fiir jedes Intervall zunéchst die Anzahl der darin
vorkommenden FEreignisse x sowie die Zahl der Personen unter Risiko zu Beginn des
Intervalls n bestimmt. Fiir den Fall cens=TRUE wird die Variable n, entsprechend Formel
@ aus Kapitel , nach unten korrigiert. Aus diesen Werten wird fiir jedes Intervall
mittels dem Befehl binom.test () ein exakter Binomialtest durchgefithrt und der daraus
resultierende p-Wert an der entsprechenden Stelle des Vektors pv gespeichert.

Wie in Kapitel beschrieben, entspricht der Change-Point 7 jenem Wert, welcher
die Summe aus , also S*(7) = Ypjay_, >+ (Pvr —0.25), maximiert. S* ldsst sich in R mit-
tels des Ausdrucks rev(cumsum(rev(pv-0.25))) darstellen, woraus im letzten Teil der
Funktion der Schétzer tau ermittelt wird.

Die if-Anweisung am Ende soll sicherstellen, dass die Funktion maximal das vorgege-

bene taumax als Schétzer zuriickgibt, was der Annahme 7 < 7,4, entspricht.

4.1.2 Funktion int.shift

Diese Funktion dient der Schatzung des Change-Points im Falle shift=TRUE, also fiir die
Methode mit Intervallverschiebung. Wie in Kapitel erlautert, lasst sich dieses Verfah-
ren so vorstellen, dass die Intervalle in jedem Iterationsschritt um t=1 verschoben und
jeweils ein Schétzer fiir 7 ermittelt wird. Wie im nachfolgenden Auszug aus dem zuge-
horigen R-Code ersichtlich, besteht die Funktion im Kern aus einer for-Schleife, welche
in jedem Durchlauf auf die Schatzfunktion tau.est zugreift. Die daraus resultierenden
Change-Point-Schéatzer und das Maximum der zugehoérigen Summe S werden in einer Er-
gebnismatrix res gespeichert. Diejenige Spalte der Matrix, fiir welche der Eintrag max . sum
maximal ist, enthalt den Schéatzer 7, welcher letztendlich durch die Funktion zurtickgege-

ben wird.

int.shift <- function(time, event, intwd, taumax, taumin, cens){
res <- matrix(NA, intwd, 2) #results

colnames(res) <- c("CPest", "max.sum")

for(s in 0:(intwd-1)){
est <- tau.est(time, event, intwd, taumax, taumin, cens, move=s)
res[s+1,1] <- est$CP.est

res[s+1,2] <- est$max.sum
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bestfit <- which.max(res[,"max.sum"]) #row with best fit
tau <- res|[bestfit, "CPest"]

list(CP.est=tau, ...)

+

Innerhalb des R-Paketes wurde CPest als generische Funktion fiir S3-Klassen erstellt,
fiir welche noch geeignete Methoden angelegt werden miissen. Da das Paket nur eine
einzige Klasse CP fiir das Ergebnis der Change-Point-Schatzung enthélt, ist eine default-
Methode ausreichend, auf die beim Aufruf der Funktion CPest zugegriffen wird. Weiterhin
soll fiir die Klasse CP eine eigene plot-Methode, sowie eine print- und eine summary-
Methode fiir die Ausgabe der Ergebnisse definiert werden. Nachfolgend werden die ein-

zelnen Funktionen mit Beispiel-Outputs genauer betrachtet.

4.1.3 Methode CPest.default

Abhéangig davon, welche Methode fiir die Schitzung verwendet werden soll, wird inner-
halb von CPest.default zunachst die Funktion tau.est im Fall diskreter Intervalle oder
int.shift bei Intervallverschiebung aufgerufen. In beiden Féllen wird eine Liste zuriick-
gegeben, welche den geschétzten Change-Point, die zugehorigen p-Werte und die Inter-
vallgrenzen enthélt und als Variable tau gespeichert wird.

Im Fall boot=TRUE wird ein Bootstrap-Sampling mit B Wiederholungen durchgefiihrt.
D.h. aus den iibergebenen Vektoren time und event wird ein Datensatz erzeugt, aus
welchem B -n mal mit Zurticklegen gezogen wird, woraus wiederum B neue Datensétze

der Lange n entstehen. Die Bootstrap-Samples werden durch folgenden Code generiert:

data <- data.frame(time,event)

idx <- sample(x=1:nrow(data), size=B * nrow(data), replace=T)
bdata <- datalidx,]

bdata$sample <- rep(1:B, each=nrow(data))

Anschlieflend wird fiir jeden dieser Datenséatze der Change-Point geschétzt, wobei wie-
derum die vom Benutzer gewiinschte Schatz-Methode verwendet wird. Die sich daraus
ergebenden Schatzer fiir 7 werden im Vektor b.tau gespeichert, wie aus nachfolgendem
R-Code ersichtlich ist.

b.tau <- vector("numeric", length=B)
if (shift){
for(b in 1:B){
b.taulb] <- int.shift(bdata[bdatal["sample"]==b,"time"],
bdata[bdata["sample"]==b,"event"],

intwd, taumax, taumin, cens)$CP.est
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else{
for(b in 1:B){
b.tau[b] <- tau.est(bdata[bdata["sample"]==b,"time"],
bdata[bdata["sample"]==b,"event"],
intwd, taumax, taumin, cens)$CP.est
}
}

Aus den Ergebnissen des Bootstrappings wird mittels sd () ein Schétzer se fiir die Standard-
abweichung berechnet.
Weiterhin sollen zwei Konfidenzintervalle (KI) ausgegeben werden. Zum einen das

iibliche KI mit Normal-Approximation, was durch

[T =225 ; T4 21_a/2 S€] =205 [7—1.96-Se ; 7+1.96- se]
definiert ist. Zum anderen wird ein Bootstrap-Perzentil-Intervall ermittelt. Dazu wer-
den die unter b.tau gespeicherten Werte der Grofle nach geordnet, womit man eine
“Bootstrap-Verteilung® erhilt, welche mit Fi(7) bezeichnet sei. Das Perzentil-Intervall

ergibt sich aus den geschétzten Werten an den Positionen B-§ und B-(1—§) zu
[F5'(a/2); Fg'(1-a/2)]

was den 2,5%- und 97,5%-Quantilen dieser Verteilung entspricht (vgl. [Holling u. Gediga,
2013| S.277f]). Fiir die Intervalle kann der Funktion mit alpha ein gewtinschtes a-Niveau
iibergeben werden.

Abschlieend wird dem Objekt tau, d.h. der Liste mit sdmtlichen Ergebnissen aus der
Schétzung, noch die Klasse CP zugewiesen, sodass fiir Objekte, welche mit CPest erzeugt

wurden, auch eine plot- und eine summary-Funktion bereitgestellt werden kann.

4.1.4 Methode plot.CP

Fur die grafische Darstellung stehen drei mogliche Plots zur Verfligung, deren Ausga-
be vom Benutzer durch entsprechende Argumente in der plot-Funktion gesteuert werden
kann. Der erste Plot, welcher standardméfig beim Aufruf von plot(CP-0Objekt) aus-
gegeben wird, stellt die aus den Daten geschitzte Hazardrate dar. Dafiir wird mithilfe
der Funktion muhaz() aus dem Paket von |[Hess u. Gentleman, [2010] eine geglittete Ha-
zardfunktion geschatzt und diese mittels der zugehorigen plot-Funktion grafisch darge-
stellt. Zusatzlich wird in dem durch plot (muhaz(times, delta)) erstellten Plot der mit
CPest geschatzte Change-Point, der Schétzer A fiir die konstante Hazardrate sowie das

Bootstrap-Perzentil-Intervall erganzt.

Um die Darstellung der Plots beim Anwenden von plot () auf ein CP-Objekt demons-

trieren zu konnen, wurde mithilfe der Funktion zur Datensimulation sim.survdata aus
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Kapitel |3] ein Beispieldatensatz simdat erzeugt und auf diesen die Funktion CPest mit
Intervallverschiebung angewendet. Der R-Code fiir die Simulation sowie der Aufruf der

plot-Funktion fiir das resultierende Objekt der Klasse CP ist nachfolgend dargestellt.

simdat <- sim.survdata(n=1000,tau=100,shape=0.2,scale=100,cens=T, jump=T)

cp_shift <- CPest(simdat$time, simdat$event, taumax=360, intwd=10,
shift=T, boot=T, B=1000)

plot(cp_shift, plot.pval=T, plot.boot=T)

Die Abbildungen [5| bis [7] zeigen die zugehorigen Grafiken, welche bei Aufruf des Pro-

grammcodes ausgegeben wurden.
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Abbildung 5: Fir einen simulierten Datensatz mittels plot.CP erstellter Plot der geglét-
teten Hazardfunktion, welche mithilfe der muhaz-Funktion geschétzt wurde. Die Grafik
enthélt zuséatzlich die Schatzungen des Change-Points und der konstanten Hazardrate
sowie das aus den Bootstrap-Samples ermittelte Perzentil-Intervall.
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Abbildung 6: Mit plot.CP erstellter Plot der p-Werte aus einer Schétzung mit diskreten

Intervallen der Lange 10 (mit Intervallverschiebung) fir einen mit 7 = 100 simulierten
Datensatz mit Sprung in der Hazardrate, welcher zensierte Beobachtungen enthélt.
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Abbildung 7: Mit plot.CP erstellter Boxplot der geschéatzten Werte fiir 7 aus einem Boots-
trapping mit 1000 Wiederholungen fiir einen simulierten Datensatz mit 7 = 100.
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4.1.5 print- und summary-Methoden

Weil diese Methoden nur dazu dienen, die Ergebnisse der Schétzung in einer ansprechen-

den Form auszugeben, soll an dieser Stelle auf Details zum zugehorigen R-Code verzichtet

werden. Auf die print-Methode wird bei Aufruf eines Objektes der Klasse CP zugegriffen,

wobei unabhéngig davon, ob eine Varianzschétzung per Bootstrap-Verfahren durchgefiihrt

wurde, nur der geschitzte Change-Point ausgegeben wird. Durch Aufruf der summary-

Funktion fiir ein CP-Objekt, enthélt der Output hingegen zusétzlich die geschétzte Vari-
anz, sowie die beiden Konfidenzintervalle (vgl. Kap. 4.1.3)), sofern diese berechnet wurden.
Nachfolgend sind die Outputs der print- und summary-Methoden fiir den in Kapitel

erstellten Beispieldatensatz dargestellt.
cp_shift

#it
## Call:

## CPest.default(time = simdat$time, event = simdat$event, intwd = 10,

## taumax = 360, shift = T, boot = T, B = 1000)
##

##

## estimated change point: 99

summary (cp_shift)

##

## Call:

## CPest.default(time = simdat$time, event = simdat$event, intwd = 10,
## taumax = 360, shift = T, boot = T, B = 1000)

##

## change point:

## Estimate Std.Error

#i# 99 18.975

##

## confidence intervals (alpha=0.05):

##  percentile interval: [33, 109]

## normal approximation: [61.809, 136.191]
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5 Anwendungsbeispiele

In diesem Kapitel soll das in R geschriebene Paket und somit das Verfahren zur Change-
Point-Schétzung nach [Kiichenhoff u.a., [2015] auf zwei Datensitze angewandt werden,
welche empirisch erhobene Uberlebenszeiten von Intensivpatienten enthalten. Die Daten
stammen in beiden Féllen aus Studien, welche in Zusammenarbeit mit dem Klinikum
der Universitdt Miinchen durchgefiihrt wurden. Ein gemeinsames Ziel beider Forschungs-
arbeiten war das Finden eines Wendepunkts, ab welchem die Sterberate in Bezug auf
einen chirurgischen Eingriff (Datensatz 1) bzw. nach Einlieferung auf eine Intensivstati-
on (Datensatz 2) konstant bleibt. Wie in |[Kiichenhoff u. a., [2015] beschrieben, lésst sich
der Beobachtungszeitraum dabei in verschiedene Phasen einteilen, welche sich hinsichtlich
des Sterberisikos unterscheiden. Demnach befinden sich die Patienten anfanglich in einer
akuten Phase, mit sehr hohem Sterberisiko, welches in der darauffolgenden post-akuten
Phase allmahlich sinkt. Der sogenannte Change-Point trennt nun diese zwei Zeitraume
von der Langzeitmortalitéit, in der die Sterberate als konstant angenommen wird. Durch
eine genaue Definition dieses Wendepunkts anhand von empirisch erhobenen Daten soll
eine bessere Analyse der Risikofaktoren, getrennt nach den genannten Phasen, moglich
sein und damit sowohl die Sterberate fiir die akute Phase als auch die Langzeitmortalitit
gesenkt werden. Im Folgenden werden die aus diesen Studien resultierenden Ergebnis-
se mit denen verglichen, welche sich aus dem in dieser Arbeit vorgestellten Verfahren

ergeben.

5.1 Datensatz 1 - Uberlebenszeiten nach Leberresektion
Details zur Studie

Dieser Datensatz ist in Zusammenarbeit zwischen dem Klinikum der Universitat Miin-
chen und dem Institut fiir Statistik der Ludwig-Maximilians-Universitéit entstanden und
war Gegenstand einer Studie, welche die Dauer der postoperativen Phase nach partieller
Hepatektomie (Leberresektion) untersucht (vgl. [Schiergens u.a., 2015]). Die Forschungs-
arbeit fand vor dem Hintergrund statt, dass die Sterberate nach einem solchen operativen
Eingriff in den letzten Jahrzehnten signifikant gestiegen ist. Als Ursache werden Fort-
schritte in der Diagnose, verbesserte Operationstechniken und eine bessere perioperative
Betreuung angefiihrt, was zur Folge hat, dass immer mehr Patienten fiir eine Resektion
von Tumoren und Metastasen in Frage kommen. Somit erhoht sich auch die Rate der
durch einen solchen chirurgischen Eingriff verursachten Todesfélle. Ein Ziel der Studie
ist es, durch bessere Schéitzung der Pradiktoren, die Patienten in Risikogruppen einzu-
teilen und somit eine bessere Selektion zu ermoglichen, was wiederum die postoperative
Sterberate verringern soll.

Hierfiir wurden innerhalb einer prospektiven Datenerhebung zwischen 2003 und 2013
Patienten erfasst, bei denen eine Resektion von bosartigem Lebergewebe durchgefithrt

wurde. Nach Bereinigung um Patienten mit unvollstandigem Erhebungsbogen ergab sich
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daraus ein Datensatz mit 784 Beobachtungen.

Ein Problem, welches in dieser Studie untersucht wurde, ist nach [Schiergens u.a.|
2015] die Definition der postoperativen Mortalitdt. Demnach werden dieser Sterberate
fiir gewohnlich nur diejenigen Tode zugerechnet, welche innerhalb von 30 Tagen nach ei-
ner Operation bzw. wihrend des Krankenhausaufenthalts stattfinden (30-Tage und “in
Hospital“ Mortalitét). Durch medizinische Fortschritte konne der durch Komplikationen
nach einer Operation verursachte Todeszeitpunkt inzwischen jedoch solange hinausgezo-
gert werden, dass dieser erst mehr als 30 Tage nach dem Eingriff bzw. nach Verlassen des
Krankenhauses eintritt. Somit werden diese Falle der Langzeitiiberlebensrate zugerechnet
und die postoperative Mortalitat im Allgemeinen unterschitzt. Um die Risikofaktoren
richtig analysieren und somit die Sterberate nach einem chirurgischen Eingriff verringern
zu konnen, ist es nach [Schiergens u.a., [2015] allerdings wichtig, die akute postoperative
Phase (auch APP oder “acute postoperative period“) anhand der erhobenen Daten ge-
nau zu definieren. Das vorrangige Ziel der Studie von [Schiergens u. a., 2015] ist deshalb
das Schéitzen der APP nach dem operativen Entfernen von bosartigen Leber-Tumoren.
Dafiir soll ein Zeitpunkt 7 gefunden werden, welcher die akute von der postakuten Phase
nach einem chirurgischen Eingriff trennt, wobei fiir letztere eine konstante Hazardrate
angenommen wird. Durch die individuelle Schitzung der APP fiir Patienten mit Leberre-
sektion soll es nach [Schiergens u.a., [2015] moglich sein, Risikofaktoren zu identifizieren,
wodurch eine bessere Selektion der Patienten und damit eine Verringerung der postope-

rativen Sterberate ermoglicht wiirde.

Die Ergebnisse dieser Studie sind in [Schiergens u. a., 2015 ausfiihrlich dargelegt, ins-
besondere die ermittelte Dauer der APP und die sich aus der darauf aufbauenden Regres-
sion ergebenden Risikofaktoren fiir postoperative Mortalitat. Fiir diese Arbeit ist jedoch
hauptséchlich die Schiatzung des Change-Points von Interesse, welcher in [Schiergens u. a.|
2015] mit “transition point t* bezeichnet ist. Der Zeitpunkt, welcher die akute von der
postakuten Phase nach einer Operation trennt, wird dabei dhnlich dem Vorgehen nach
[Kiichenhoff u. a., 2015] bestimmt, welches im Kapitel [2 beschrieben ist. Dabei wurde die
Sterberate ab einem Jahr nach einem chirurgischen Eingriff als konstant angenommen
und aus den entsprechenden Beobachtungen des vorliegenden Datensatzes die konstante
Hazardrate hy geschatzt. Der Zeitraum zwischen 20 und 360 Tagen nach einer OP wurde
in Intervalle einer Lange von 20 Tagen eingeteilt und mittels der sich aus h; ergebenden
Wahrscheinlichkeit, innerhalb von 20 Tagen zu sterben, ein Binomialtest durchgefiihrt.
Unter der Annahme, dass die Hazardrate innerhalb der akuten Phase signifikant héher
als hy ist und sich nach dem Change-Point nicht signifikant von h; unterscheidet, wurde
aus den resultierenden p-Werten eine Regression durchgefiihrt. Daraus ergab sich letzt-
endlich, dass die APP nach einer Resektion 80 Tage lang andauert und erst danach die

postakute Phase eintritt. Inwiefern dies von den Ergebnissen abweicht, welche aus dem
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in dieser Arbeit vorgestellten Verfahren nach |[Kiichenhoff u. a., 2015] resultieren, wird im

Folgenden diskutiert.

Ergebnisse

Um aus den vorliegenden Daten die Dauer der akuten postoperativen Phase nach Le-
berresektion, d.h. insbesondere den zugehorigen Change-Point schétzen zu kénnen, wird
aus den erhobenen Daten ausschliellich die jeweilige Beobachtungsdauer eines Patienten
sowie der zugehorige Indikator fiir das Eintreten des Todes benétigt. Die entsprechenden
Variablen wurden aus dem Datensatz extrahiert und die nach dem Verfahren von [Kiu-
chenhoff u.a., 2015] in R programmierte Funktion darauf angewandt. Fiir die Schatzung
der in Tabelle [l prasentierten Ergebnisse wurden die drei in Kapitel vorgestellten
Methoden mit einer Intervallbreite von jeweils 10 und 20 Tagen verwendet. Dabei wur-
de angenommen, dass sich der Change-Point innerhalb des ersten Jahres nach Resektion
befindet, d.h. dass die Sterberate ab Tag 360 nach dem Eingriff als konstant angenom-
men wird. Diese konstante Hazardrate wurde gemafl Formel in Kapitel aus der
Anzahl der Patienten geschétzt, bei denen der Todeszeitpunkt erst nach mehr als einem
Jahr nach der OP beobachtet wurde. Fiir jedes der sechs Ergebnisse wurde zusatzlich
ein nicht-parametrisches Bootstrapping mit 1000 Wiederholungen durchgefiihrt, woraus
jeweils eine Schiatzung fiir den Standardfehler sowie ein Perzentil-Intervall mit o = 5%

ermittelt wurde, welche ebenfalls in Tabelle [6] zu finden sind.

Tabelle 6: Change-Point-Schétzung fiir den in [Schiergens u. a., [2015] verwendeten Daten-
satz mittels der in Kapitel vorgestellten Verfahren mit jeweiliger Intervallbreite von 10
und 20. Der Wert fir 7,4, wurde mit 360 vorgegeben. Die Standardfehler und Perzentil-
Intervalle ergeben sich aus einem nichtparametrischen Bootstrapping. dis.int und shift.int
bezeichnen die Ergebnisse fiir diskrete Intervalle ohne und mit Verschiebung, die Zeilen
fiir cont.int beinhalten die Schitzungen fiir fortlaufende Intervalle.

estimate std.Error percentile interval
dis.int10 30 12.055 [20; 70]
dis.int20 60 32.317 [20; 80]
cont.int10 28 14.594 [12; 67]
cont.int20 60 31.900 [13; 71]
shift.int10 35 15.766 [14; 74]
shift.int20 63 23.599 [20; 79]

Bei Betrachtung der Ergebnisse ist auffillig, dass sich die Bereiche, in denen die
Change-Point-Schatzungen liegen, fiir die gewéhlten Intervallbreiten stark unterscheiden.

So dauert die akute Phase bei einer Intervallbreite von 20 Tagen zwischen 60 und 63 Ta-
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ge an, bei einer Einteilung in 10-Tages-Intervalle jedoch hochstens bis Tag 35 nach dem
operativen Eingriff. Anhand der sich aus dem Binomialtest ergebenden p-Werte, welche
in Abbildung [§ fiir die zwei vorgegebenen Intervallbreiten grafisch dargestellt sind, 1asst
sich nachvollziehen, wie es zu diesen Unterschieden in der Schéitzung kommt. Bei einer
Intervallbreite von 10 Tagen sind die p-Werte bereits fiir die Intervalle (30;40] und (40;50]
nicht mehr signifikant, d.h. innerhalb dieser Zeitrdume wurden so wenige Ereignisse be-
obachtet, dass die Abweichung der Sterberate von der unter Hy geltenden konstanten
Hazardrate nicht signifikant ist. Wird der gleiche Zeitraum jedoch in Intervalle von je 20
Tagen eingeteilt, ist die Anzahl der Ereignisse und damit die Sterberate erst im Intervall
(60;80] so gering, dass die Nullhypothese des Binomialtests erfiillt ist (vgl. Kapitel flr
Details zum Schéatzverfahren). Die Plots der p-Werte fiir saimtliche Schatzungen aus Ta-
belle [] sind im Anhang zu finden, welcher zusitzlich fiir jedes Ergebnis einen Boxplot

der zugehorigen Bootstrap-Schatzungen enthalt.
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Abbildung 8: Aus der Schétzung mit diskreten Intervallen ohne Verschiebung ermittelte
p-Werte. 7p,q; wurde mit 360 Tagen vorgegeben.
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Erganzend zur Darstellung der p-Werte soll die Verteilung der Todesfélle innerhalb
der Intervalle mithilfe des Histogramms in Abbildung [9] veranschaulicht werden. Daraus
ist ersichtlich, dass im Zeitraum zwischen 30 und 40 Tagen nur drei Ereignisse stattge-
funden haben, wodurch sich aus dem Binomialtest fiir dieses Intervall ein entsprechend
hoher p-Wert ergibt. Vor dem Hintergrund, dass der zugehorige Datensatz insgesamt 784
Beobachtungen enthélt, ist aus dieser Darstellung der absoluten Haufigkeiten aulerdem
zu erkennen, dass die Sterberate selbst in den ersten 30 Tagen relativ gering ist, was
auch aus den bereits verdffentlichten Ergebnissen in [Schiergens u.a., 2015] hervorgeht.
Dies hat den Nachteil, dass die Intervalle mit einer Breite von 10 Tagen im Allgemeinen
nur wenige Ereignisse enthalten, wodurch die Schéitzung des Change-Points bereits von
einzelnen Beobachtungen beeinflusst wird. Deshalb werden im Folgenden nur noch die

Ergebnisse fiir eine Intervallbreite von 20 Tagen betrachtet.
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Abbildung 9: Verteilung der absoluten Héufigkeiten der beobachteten Todesfdlle nach
Leberresektion fir den Datensatz von [Schiergens u. a., [2015]

Aus den Ergebnissen in Tabelle [6] ergibt sich der geschiatzte Change-Point also zu 60
bzw. 63, was davon abhéingig ist, welches Verfahren angewandt wurde. Bei der Auswer-
tung der Simulationsergebnisse in Kapitel |3| und dem dabei angestellten Vergleich der
drei Methoden zur Schatzung hinsichtlich ihrer Giite ging hervor, dass das Schatzverfah-
ren mit diskreten Intervallen (mit oder ohne Intervallverschiebung) gegeniiber der Me-
thode mit fortlaufenden Intervallen (cont.int) zu bevorzugen ist. Weil hier der geschétzte
Change-Point fiir dis.int und cont.int gleich ist, spielt dies jedoch fiir die Ergebnisse zu
diesem Datensatz nur beziiglich der zugehorigen Standardabweichung bzw. des Perzentil-
Intervalls eine Rolle. Da im Allgemeinen nicht davon ausgegangen werden kann, dass
der Change-Point auf einer der Intervallgrenzen {20, 40, 60,...} liegt, ist es sinnvoll, die
Schétzung fir shift.int20, d.h. fir das Verfahren mit Intervallverschiebung, als endgiiltiges
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Ergebnis zu betrachten. Nach dem in dieser Arbeit vorgestellten Verfahren nach |[Kiichen-
hoff u. a., [2015] betrdgt die geschitzte Dauer der akuten postoperativen Phase nach einer
Leberresektion also 63 Tage.

Dieses Ergebnis deckt sich jedoch nicht mit der in [Schiergens u. a., [2015] angegebenen
Schétzung des Change-Points. Fiir diese bereits veroffentlichte Studie wurde die Dauer
der akuten Phase nach einem chirurgischen Eingriff auf 80 Tage geschéatzt. Die Ursache fiir
diese Abweichung liegt in diversen Simulationsstudien, welche im Zuge dieser Forschungs-
arbeit bereits durchgefiihrt wurden. Dabei wurden nur Datenséitze mit stetigem Ubergang
in der Hazardrate zwischen der akuten und der postakuten Phase untersucht, wobei sich,
ahnlich zu den im Kapitel 3] vorgestellten Simulationsergebnissen, eine Unterschiatzung
des tatsédchlichen Change-Points um ca. 20 Tage ergab. Daraufhin wurde der Schétzer als
Obergrenze desjenigen Intervalls definiert, welches nach Regression iiber die p-Werte den
Change-Point enthéalt. Nach dem Verfahren, worauf diese Arbeit aufbaut, entspricht der
Schéatzer jedoch der Untergrenze dieses Intervalls. Dies ist aus theoretischer Sicht richtig
und wurde auch durch die Simulationsergebnisse fiir die mit Sprung in der Hazardrate
generierten Daten bestétigt. Ist der Ubergang zur konstanten Sterberate jedoch stetig, wie
auch im vorliegenden Datensatz mit den Uberlebenszeiten nach Leberresektion, hat sich
aus den Simulationsergebnissen eine Abweichung zum tatsdchlichen Change-Point nach
unten ergeben. Auch aus der Darstellung der geschatzten glatten Hazardfunktion in Ab-
bildung [10] welche mithilfe der Funktion muhaz aus dem Paket von [Hess u. Gentleman,
2010] erstellt wurde, ist erkennbar, dass eine Dauer der akuten Phase von 63 Tagen nicht
zu den beobachteten Daten passt. In der Grafik ist zu sehen, dass die Sterberate auch
oberhalb von 63 Tagen nach einer OP noch weiter abfillt und es erst nach etwa 80 Tagen

einen Wendepunkt gibt, ab welchem die Hazardfunktion annédhernd konstant verlauft.
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Abbildung 10: Geschatzte Hazardrate pro Tag (geglattet) fiir die ersten 360 Tage nach
Durchfithrung einer Leberresektion. Der dargestellte Change-Point bei Tag 63 wurde nach
dem Verfahren von |Kiichenhoff u.a. 2015] mit diskreten Intervallen einer Breite von
20 und Intervallverschiebung sowie 7,4, = 360 geschatzt. Das Perzentil-Intervall wurde
mittels Bootstrapping erstellt. Zugrunde liegt der unbereinigte Datensatz aus [Schiergens
u. a., 2015].

5.2 Datensatz 2 - Langzeitiiberleben von Intensivpatienten nach
chirurgischem Eingriff
Details zur Studie

Die Hintergriinde zur Studie, Details zu den statistischen Methoden sowie die daraus re-
sultierenden Ergebnisse sind in [Schneider u.a., 2010] ausfiihrlich beschrieben. Demnach
war ein Ziel dieser Forschungsarbeit, zu untersuchen, wie Fortschritte in der Akutversor-
gung nach einem chirurgischem Eingriff die Sterberate auf lange Sicht beeinflussen, ins-
besondere wie die Auswirkungen auf bestimmte Gruppen von Patienten sind, welche sich
nach einer Operation in einem kritischen Zustand befinden. Neben dem Uberstehen dieser
akuten postoperativen Phase sei es aulerdem wichtig, erneute Fehlfunktionen oder gar
Ausfille der Organe zu verhindern. Dafiir seien spezielle Organ-Unterstiitzungs-Therapien
(z.B. invasive Beatmung oder Nierenersatztherapie) notwendig, deren dauerhafter Einsatz
zum einen sehr kostspielig ist und aulerdem regelméflige lebenserhaltende Mafinahmen
erfordert. Deshalb wiirde oft diskutiert, ob dies auf lange Sicht einem effizienten Ein-
satz der verfiigharen Ressourcen eines Krankenhauses gerecht wird. Nach [Schneider u. a.,
2010] gibt es bisher keine ausreichend informativen Studien tiber Langzeit-Effekte solcher

spezieller Therapien. Fiir diese Forschungsarbeit sollten deshalb nur diejenigen Patienten
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untersucht werden, welche die akute Phase nach einem chirurgischen Eingriff iberstanden
haben, um daraus Einflussfaktoren auf das Langzeitiiberlegen ermitteln zu kénnen.

Zunéchst wurde dafiir am Klinikum der Universitdt Miinchen in GroBlhadern eine
prospektive Datenerhebung durchgefiithrt. Dafiir wurden zwischen den Jahren 1993 und
2005 Patienten mit einem Aufenthalt auf der Intensivstation (ICU) von mehr als 4 Ta-
gen beobachtet und sdmtliche Informationen, welche fiir die statistischen Analysen der
untersuchten Therapien notwendig sind, erfasst. Nach Ausschluss einiger Patientengrup-
pen, u.a. jener ohne einen chirurgischen Eingriff, ergab sich ein Datensatz mit insgesamt
1462 Beobachtungen. Der Beobachtungszeitraum wurde auf 2 Jahre beschrankt, weil sich
die daraus ergebenden Einflussfaktoren fiir die Langzeit-Sterberate nicht signifikant von
denen unterscheiden, welche aus einer lingeren Beobachtungszeit resultieren wiirden. Ge-
genstand der statistischen Auswertungen waren letztendlich nur jene Patienten, welche
die akute kritische Phase nach einer Operation tiberlebt haben und somit erst fiir die
Untersuchung der Langzeiteffekte einer bestimmten Therapie in Frage kamen.

Um diese Personen identifizieren zu konnen, war zunéchst die Schatzung des Zeitpunk-
tes notwendig, bis zu welchem die akute postoperative Phase anhalt. Dieser Change-Point
trennt also das akute vom postakuten Stadium nach einem chirurgischen Eingriff. Wie
in [Schneider u.a., 2010] im Abschnitt “Statistical Analysis“ beschrieben, basiert dessen
Schéatzung auf einem Likelihood-Quotienten-Test (LQ-Test). Fiir die Durchfithrung wurde
fiir jeden Tag t zwischen 0 und 730 ein Weibull-Modell an jene Daten mit einer Uberlebens-
dauer grofer als t angepasst. Unter der Nullhypothese des LQ-Tests ist die Hazardrate und
folglich der Shape-Parameter der Weibull-Verteilung konstant mit Hy: v = 1. Als Change-
Point wurde der kleinste Zeitpunkt ¢ definiert, fiir den die Nullhypothese bei einem Niveau
von o = 0.05 abgelehnt wurde, d.h. fiir den der Test keine signifikante Abweichung von der
Annahme einer konstanten Hazardrate ergab. Daraus ergab sich in der Studie eine Dauer
der akuten Phase von 196 Tagen ab dem Zeitpunkt der Einlieferung auf die Intensivsta-
tion. Darauf aufbauend wurden fiir die Intensivpatienten mit einer Uberlebenszeit von
mehr als 196 Tagen weitere statistische Analysen durchgefiihrt, um die Langzeit-Wirkung
von bestimmten medizinischen Mafinahmen zu untersuchen. Da fiir diese Arbeit jedoch
die Change-Point-Schatzung anhand der vorliegenden Daten von vorrangigem Interesse
ist, wird auf die iibrigen Ergebnisse der Forschungsarbeit, welche ebenfalls in [Schneider

u. a., 2010] ausfithrlich diskutiert werden, nicht mehr explizit eingegangen.

Ergebnisse

Fiir die Ermittlung der akuten postoperativen Phase fiir Intensivpatienten nach dem Ver-
fahren von [Kiichenhoff u.a., 2015 wurden die Uberlebenszeiten mit zugehérigem Zen-
sierungsstatus aus dem unbereinigten Datensatz verwendet, welcher auch der Studie von
[Schneider u. a), [2010] zugrunde lag. Die Schitzung wurde fiir die drei in Kapitel [2.2] vorge-
stellten Schétzmethoden mit disjunkten Intervallen (mit und ohne Intervallverschiebung)

sowie mit fortlaufenden Intervallen durchgefiihrt. Fiir die Tage t > 540 wurde eine kon-
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stante Hazardrate angenommen, welche aus den beobachteten Uberlebenszeiten groBer als
540 geschétzt wurde. Die Einteilung des Zeitraumes zwischen 0 und 540 Tagen erfolgte in
Intervalle der Breite 10 und 20, fiir welche geméfi dem in Kapitel [2| erlauterten Verfahren
ein exakter Binomialtest durchgefiihrt und aus den resultierenden p-Werten jeweils ein
Change-Point geschétzt wurde.

Die Ergebnisse der Schétzung fiir jedes der drei Methoden mit jeweils zwei Intervall-
breiten sind in Tabelle [7] aufgefiihrt. Zusatzlich sind fiir jeden geschétzten Change-Point
die zugehorige Standardabweichung sowie das Perzentil-Intervall mit o = 5% angegeben,
welche aus der Durchfiithrung eines nichtparametrischen Bootstrap-Verfahrens mit je 1000
Wiederholungen resultieren. Die zugehorigen Plots der p-Werte sowie die Boxplots der
Schatzungen aus den Bootstrap-Samplings sind im Anhang zu finden.

Weil sich aus den Simulationsergebnissen in Kapitel |3 fiir eine Intervallbreite von 10
Tagen im Allgemeinen eine hohere Giite der Schatzung beziiglich des MAD ergibt, sollen
die Ergebnisse fiir diese Falle vorrangig betrachtet werden. Dabei spielt das fiir den ersten
Datensatz (vgl. Kapitel auftretende Problem, dass sich innerhalb eines Zeitraumes
von 10 Tagen oft nur sehr wenige Ereignisse befinden, aufgrund der hohen Beobachtungs-
zahl und der insgesamt wesentlich hoheren Anzahl an Todesfillen in diesem Datensatz
keine Rolle. Weiterhin resultiert aus den Simulationen, dass die beiden Methoden mit
diskreten Intervallen in den meisten Féllen zu einem geringeren MAD fiihren, als das
Verfahren mit fortlaufenden Intervallen (cont.int). Wird fiir die Schatzung mit diskreten
Intervallen zusatzlich eine Intervallverschiebung durchgefiihrt, konnen sich als Wert fiir
den Change-Point nicht nur Vielfache von 10, sondern jeder Tag zwischen 0 und 540 erge-
ben. Deshalb soll der geschitzte Change-Point fiir shift.int10 in Tabelle [[ als endgiiltiges
Ergebnis betrachtet werden. D.h. nach dem Verfahren von [Kiichenhoff u.a., [2015], auf
welchem diese Arbeit basiert, ergibt sich fir die untersuchten Intensivpatienten nach ei-

nem chirurgischen Eingriff eine akute Phase von 348 Tagen.

Tabelle 7: Change-Point-Schatzung fiir den in [Schneider u. a., 2010] verwendeten Daten-
satz mittels der in Kapitel vorgestellten Verfahren mit jeweiliger Intervallbreite von 10
und 20. Der Wert fir 7,4, wurde mit 540 vorgegeben. Die Standardfehler und Perzentil-
Intervalle ergeben sich aus einem nichtparametrischen Bootstrapping. dis.int und shift.int
bezeichnen die Ergebnisse fiir diskrete Intervalle ohne und mit Verschiebung, die Zeilen
fiir cont.int beinhalten die Schatzungen fiir fortlaufende Intervalle.

estimate std.Error percentile interval
dis.int10 350 62.611 [180; 380]
dis.int20 380 56.463 [240; 460
cont.int10 348 64.061 [177; 351]
cont.int20 343 49.568 [222; 452]
shift.int10 348 61.524 [177 358]
[ }

shift.int20 386 53.292
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Eine grafische Darstellung der (gegliatteten) geschétzten Hazardrate fiur die ersten
zwei Jahre nach ICU-Einlieferung ist in Abbildung [L1] zu finden. Der Plot wurde mit der
R-Funktion muhaz (aus dem Paket von [Hess u. Gentleman, 2010]) erstellt und enthalt
zusétzlich den geschitzten Change-Point fir shift.int10 aus Tabelle[7|mit dem zugehorigen

Percentil-Intervall fiir a = 5%.

—— Change-Point

8 Perzentil-Intervall
S -

o

[eo]

o

3

o

Hazardrate
0.004 0.006

0.002
1

0.000
1

0 200 400 600
Tage nach ICU-Einlieferung

Abbildung 11: Geschitzte Hazardrate pro Tag (geglattet) fiir die ersten 730 Tage nach
Einlieferung auf die Intensivstation. Der dargestellte Change-Point bei Tag 348 wurde
nach dem Verfahren von [Kiichenhoff u. a.,[2015] mit diskreten Intervallen einer Breite von
10 und Intervallverschiebung sowie 7,4, = 540 geschéatzt. Das Perzentil-Intervall wurde
mittels Bootstrapping erstellt. Zugrunde liegt der unbereinigte Datensatz aus [Hartl u. a.|

2007].

Es ist zu beachten, dass der wahre Change-Point in den Simulationsergebnissen bei
einer stetigen Hazardrate, d.h. ohne Sprung zum Zeitpunkt des Ubergangs zur konstan-
ten Sterberate, tendenziell unterschétzt wird. Weiterhin scheint in den Simulationen die
Abweichung des Schétzers vom wahren Wert davon abzuhédngen, an welchem Zeitpunkt
t sich der vorgegebene tatsichliche Change-Point 7 befindet, insbesondere scheint die-
se Differenz grofler zu werden, je spéater die Phase mit konstanter Hazardrate beginnt.
Fiir das Ergebnis zum vorliegenden Datensatz bedeutet dies, dass die akute Phase nach
ICU-Einlieferung tatséichlich noch lénger als die geschéatzten 348 Tage andauern wiirde.

Aus Abbildung [11] lasst sich erahnen, dass sich die geschatzte Hazardfunktion in drei
Bereiche einteilen lasst, namlich zu Beginn eine Phase mit stark abfallender Hazardrate,
dann ein Zeitraum mit einem leicht abfallenden Verlauf, bis sie schliefilich anndhernd
konstant bleibt. Um dies zu verdeutlichen, ist in Abbildung[12]ein vergrofierter Ausschnitt
dieser Hazardfunktion dargestellt, wobei deutlich wird, dass erst im Bereich zwischen 450

und 500 Tagen ein Wendepunkt in der Hazardrate zu erkennen ist. Dies deckt sich auch
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mit der Annahme, dass der geschétzte Change-Point bei 348 Tagen vom tatséchlichen
Wert abweicht und die postakute Phase tatsachlich erst spater beginnt.

Um eine prézisere Aussage iiber die geschétzte Dauer des akuten Stadiums nach ICU-
Einlieferung anhand des betrachteten Datensatzes nach dem Verfahren von [Kichenhoff
u. a., [2015] treffen zu konnen, sind noch weitere Untersuchungen bzgl. der beobachte-
ten systematischen Unterschatzung des wahren Change-Points, ggf. mit weiterfithrenden

Simulationen, notwendig.

Hazardrate
0.0010 0.0015 0.0020
| | |

0.0005
!

0.0000
!

100 200 300 400 500 600 700
Tage nach ICU-Einlieferung

Abbildung 12: Vergroerte Darstellung der geschétzten Hazardfunktion aus Abbildung
zwischen 50 und 730 Tagen mit Begrenzung der y-Achse auf 0.002. Der abfallende
Verlauf der Hazardrate bis zu dem markierten Bereich zwischen 450 und 500 Tagen ist
hier deutlicher zu erkennen.
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6 Zusammenfassung und Ausblick

Ziel dieser Studie war es, das von |Kiichenhoff u. a., [2015] entwickelte nichtparametrische
Schétzverfahren hinsichtlich der Giite des daraus resultierenden Change-Point-Schéatzers
zu untersuchen. Die Ergebnisse der zu diesem Zweck durchgefithrten Simulationsstudie
haben gezeigt, dass der fiir die Datenerzeugung vorgegebene Change-Point tendenziell
unterschatzt wird. Besonders deutlich sind die Abweichungen des Schatzers vom tatséchli-
chen Wert bei realistisch simulierten Daten mit einer stetigen Hazardfunktion. Wesentlich
kleiner ist der beobachtete Bias dagegen fiir jene Daten, bei denen die zugrundeliegende
theoretische Hazardfunktion einen Sprung aufweist, sodass der Ubergang zur konstanten
Sterberate besonders eindeutig ist. Weiterhin scheint aus den Simulationen hervorzuge-
hen, dass die Verzerrung davon abhéngig ist, an welchem Zeitpunkt sich der Change-Point
befindet, insbesondere war die Abweichungen in den Schétzergebnissen grofler, je spater
die Phase mit konstanter Hazardrate beginnt. Auch die Uberdeckungsrate der in Kapitel
untersuchten Konfidenzintervalle war, insbesondere fiir die Szenarien ohne Sprung
in der Hazardrate, teilweise sehr gering und damit nicht zufriedenstellend.

Aus dem Vergleich der drei in Kapitel vorgestellten Methoden war ersichtlich,
dass die Schatzungen mit diskreten Intervallen - mit und ohne Intervallverschiebung -
gegeniiber dem Verfahren mit fortlaufenden Intervallen bessere Ergebnisse hinsichtlich
des MAD liefern, sodass nur die Funktionen zu diesen beiden Methoden fiir das im Zuge
dieser Arbeit erstellte R-Paket CPest verwendet wurden.

Die Anwendung des Schitzverfahrens auf die beiden Datensitze mit Uberlebenszeiten
von Intensivpatienten hat ergeben, dass sich die Ergebnisse deutlich von denen aus den
bereits veroffentlichten Studien zu diesen Datensétzen unterscheiden. Jedoch war bei der
grafischen Auswertung der geschétzten Hazardfunktion dieser Daten ersichtlich, dass die
Schéatzergebnisse nach dem hier vorgestellten Verfahren nicht plausibel sind, was wiederum
mit der systematischen Abweichung des geschétzten vom tatsichlichen Change-Point zu
begriinden ist.

Mit dem Ziel, dass das Schétzverfahren auch fiir empirisch erhobene Daten zufrieden-
stellende Ergebnisse liefert, sind weitere Untersuchungen, ggf. mit zusatzlichen Simula-
tionen, notwendig. Auch hinsichtlich des erstellten Programmpaketes sind noch Verbes-
serungen moglich, insbesondere beziiglich der Laufzeit der implementierten Funktionen,
was auch fiir die Durchfiihrung weiterer Simulationen von Vorteil wére.

Abschliefend kann festgehalten werden, dass das untersuchte Schiatzverfahren theore-
tisch, d.h. fiir einen hinsichtlich des Change-Points eindeutigen Datensatz, funktioniert,
jedoch in einem praxisnahen Fall mit stetigem Ubergang zur konstanten Hazardrate noch
keine ausreichend zufriedenstellenden Ergebnisse liefert, weshalb dieses Verfahren Inhalt

weiterer Forschungsarbeit ist.



A PLOTS ZUR SIMULATIONSSTUDIE

95

Anhang

A Plots zur Simulationsstudie

A.1 Theoretische Hazardfunktion
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Abbildung 13: theoretische Hazardfunktion fiir 7 = 360;

fur die ¢; gilt: (¢;|t; < 360) ~ W B(n =100,v=0,2) und (¢;|t; > 360) ~ Exzp(\)

A.2 Boxplots zu simulierten Szenarien

T
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Boxplots der Schéitzungen fiir Szenario 1 mit 7= {90,100}, cens={1,0}, jump={1,0},

n={1000,5000} und 7,4, = 360:
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Boxplots fiir Szenario 2 mit 7 = {50,55} und 7,4, = 200:
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cens=1; jump=1; tau=55; n=5000
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200:

Boxplots fiir Szenario 3 mit 7 = 360 und 7,4z
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B Plots zu den Datensatzen

B.1 Datensatz mit Uberlebensdauern nach Leberresektion

Nachfolgend sind die Plots der p-Werte zu den Ergebnissen aus Kapitel fir die Da-
ten nach [Schiergens u. a., 2015] mit zugehorigen Boxplots aus den Bootstrap-Samplings
dargestellt. Die Schitzungen wurden fiir die drei vorgestellten Methoden mit einer Inter-
vallbreite (“intwd*) von jeweils 10 und 20 Tagen durchgefiihrt. Die Bezeichnung “disjunct
intervals® steht dabei fiir disjunkte Intervalle ohne Verschiebung, “continuous intervals®
fiir fortlaufende Intervalle und “shifted intervals® fiir die Schatzung mit Intervallverschie-

bung. Der Wert fiir 7,4, wurde jeweils mit 360 vorgegeben.
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continuous intervals; intwd=20
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shifted intervals; intwd=20
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B.2 Hartl-Datensatz

Nachfolgend sind die Plots der p-Werte zu den Ergebnissen aus Kapitel fiir die Daten

100 150 200 250 300 350

50

Bootstrap—Samplings

nach [Hartl u.a., 2007] mit zugehorigen Boxplots aus den Bootstrap-Samplings darge-

stellt. Die Schatzungen wurden fir die drei vorgestellten Methoden mit einer Intervall-

breite (“intwd“) von jeweils 10 und 20 Tagen durchgefiihrt. Die Bezeichnung “disjunct

intervals® steht dabei fiir disjunkte Intervalle ohne Verschiebung, “continuous intervals“

fiir fortlaufende Intervalle und “shifted intervals® fiir die Schatzung mit Intervallverschie-

bung. Der Wert fiir 7,4, wurde jeweils mit 540 vorgegeben.
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disjunct intervals; intwd=10 _
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