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Abstract

In dieser Arbeit wird ein von [Küchenhoff u. a., 2015] entwickeltes Verfahren zur Schät-
zung des Change-Points bei Intensivpatienten vorgestellt. Dieser Zeitpunkt trennt die aku-
te kritische Phase eines Patienten nach Einlieferung auf eine Intensivstation, welche durch
eine anfänglich sehr hohe und im Laufe der Zeit abfallende Sterberate geprägt ist, vom
postakuten Stadium in welchem die Hazardrate als konstant angenommen wird. Dieses
nichtparametrische Schätzverfahren beruht auf p-Werten, welche sich aus der Durchfüh-
rung von Binomialtests für festgelegte Intervalle des Beobachtungszeitraumes ergeben.
Um die Güte der resultierenden Schätzung beurteilen zu können, wird eine Simulations-
studie anhand mehrerer geeigneter Szenarien durchgeführt. Dabei zeigt sich, dass der
wahre Change-Point tendenziell unterschätzt wird, wobei der Bias insbesondere für Da-
tensätze mit einer stetigen Hazardfunktion nicht zu vernachlässigen ist. Weiterhin wurde
ein Paket für die Statistik-Software R programmiert, welches eine auf dem Verfahren von
[Küchenhoff u. a., 2015] aufbauende Funktion zur Change-Point-Schätzung implementiert.
Ein Kapitel widmet sich dem Aufbau und der Funktionsweise dieses Paketes. Abschließend
werden Schätzungen zur Dauer der akuten Phase für zwei Datensätze ermittelt, welche
die Überlebenszeiten von Intensivpatienten des Klinikums der Universität München ent-
halten, und im Bezug auf bereits veröffentlichte Studien zu diesen Daten diskutiert.
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1 Einleitung

Im Zusammenhang mit Intensivpatienten wird als Change-Point jener Zeitpunkt bezeich-
net, welcher die akute Phase nach Einlieferung auf eine Intensivstation, insbesondere nach
einem chirurgischen Eingriff, von der postakuten Phase trennt. Direkt nach einer OP befin-
det sich ein Patient meist in einem kritischen Stadium, weshalb die Sterberate anfänglich
am höchsten ist und mit der Zeit abfällt, bis sie schließlich annähernd konstant bleibt. Der
Change-Point kennzeichnet diese Änderung im Verlauf der Hazardrate, stellt also einen
Wendepunkt dar, an dem die Phase der konstanten Sterberate beginnt. In medizinischen
Studien ist es oft von Interesse, statistische Analysen nur für eine dieser beiden Stadien
vorzunehmen. So werden die langfristigen Auswirkungen auf die Sterberate häufig nur für
medizinische Maßnahmen während der akuten Phase durchgeführt (vgl. [Schiergens u. a.,
2015]). Andererseits können jedoch auch die Langzeit-Effekte bestimmter Therapien in
der postakuten Phase von vorrangigem Interesse sein (vgl. [Li u. a., 2013]).

Die postoperative Sterberate ergibt sich häufig aus der Anzahl der Todesfälle inner-
halb der ersten 30 Tage nach einer Operation oder während des Krankenhausaufenthaltes
(30-Tage/“In-Hospital“ Mortalität). Nach [Schiergens u. a., 2015] ist diese Definition an-
hand eines festgelegten Zeitraumes in vielen Fällen zu allgemein, was die Schätzung der
tatsächlichen Dauer der akuten postoperativen Phase anhand von beobachteten Überle-
benszeiten bestimmter Patienten notwendig macht. Daraus können beispielsweise indivi-
duelle Risikofaktoren ermittelt werden, was einerseits eine bessere Selektion von Patienten
für eine Operation und andererseits einen effektiveren Einsatz von medizinischen Maß-
nahmen ermöglicht, um somit auf lange Sicht die postoperative Sterberate zu verringern
(vgl. [Schiergens u. a., 2015] & [Schneider u. a., 2010]). Die vorliegende Arbeit beschäf-
tigt sich mit einem nichtparametrischen Verfahren von [Küchenhoff u. a., 2015], um den
Change-Point und damit die Dauer der akuten kritischen Phase nach einem medizinischen
Eingriff zu schätzen.

1.1 Hintergrund

In der Statistik gibt es viele Bereiche, in denen die Change-Point Analyse eine Rolle
spielt. So ist es nicht nur in medizinischen Studien von Interesse, einen Strukturbruch
in der Verteilung der erhobenen Daten zu untersuchen, sondern auch in vielen anderen
Fachgebieten, wie zum Beispiel der Produktionstechnik oder Klimaforschung, um nur zwei
weitere Anwendungsbereiche zu nennen. Wie auch in [Küchenhoff u. a., 2015] anhand ei-
niger Literaturbeispiele angeführt, sind in den letzten Jahrzehnten bereits diverse wissen-
schaftliche Arbeiten entstanden, die sich mit dem Problem der Change-Point-Schätzung
befassen.

In [Li u. a., 2013] wird beispielsweise ein Verfahren beschrieben, bei welchem im Zusam-
menhang mit klinischen Studien der Change-Point auf Basis der Maximum-Likelihood-
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Methode ermittelt wird. Neben den beobachteten Überlebenszeiten werden dabei außer-
dem Kovariablen-Effekte berücksichtigt, um den Zeitpunkt zu finden, ab dem die Hazard-
rate konstant ist.

Ein nichtparametrisches Verfahren zur Change-Point-Schätzung wird in [Yang u. a.,
2012] vorgestellt. Dabei soll der Übergang von einer anfänglich abfallenden zu einer kon-
stanten Ausfallrate mithilfe von Techniken aus der Bayes-Statistik identifiziert werden.

Eine weitere Möglichkeit, den Change-Point ohne eine Verteilungsannahme zu finden,
bietet eine nichtparametrische Schätzung der Hazardfunktion, aus der anschließend ein
Zeitpunkt bestimmt wird, ab dem diese Funktion einen bestimmten Schwellwert über-
schreitet (vgl. [Küchenhoff u. a., 2015]). Ein Kernel-basiertes Verfahren, um diese Hazard-
funktion zu schätzen, wird in [Muller u. Wang, 1994] beschrieben. Dieses findet u.a. im
R-Paket muhaz Anwendung, welches in späteren Kapiteln für die grafische Darstellung
der Hazardrate verwendet wird. Einige weitere Literaturbeispiele, welche Verfahren zur
Change-Point-Schätzung beinhalten, sind in [Küchenhoff u. a., 2015] zu finden.

Das Thema der Change-Point-Schätzung bei Überlebensdauern von Intensivpatienten
wurde unter anderem bereits in [Schneider u. a., 2010] aufgegriffen, bei dem für einen
Datensatz von [Hartl u. a., 2007] der Zeitpunkt geschätzt wurde, ab welchem die Hazard-
rate konstant ist. Grundlage bildet dabei ein Likelihood-Quotienten-Test, welcher in Ka-
pitel 5.2 im Zusammenhang mit den Anwendungsbeispielen etwas ausführlicher beschrie-
ben wird. Die Verteilungsannahme der Überlebensdauern, welche für solche parametrische
Verfahren getroffen wird, ist jedoch oft problematisch. Deshalb ist das Finden eines nicht-
parametrischen Change-Point-Schätzers Gegenstand weiterer Forschungsarbeit, woraus
auch das in dieser Arbeit vorgestellte Verfahren von [Küchenhoff u. a., 2015] entstanden
ist. Dieses baut auf der Idee von [Mallik u. a., 2011] auf, den Wendepunkt in der Hazard-
rate durch eine Regression über die p-Werte eines statistischen Test zu ermitteln, wie im
Kapitel 2 ausführlich beschrieben wird.

1.2 Problemstellung

Weil diese Arbeit auf den Ausführungen zur Change-Point-Schätzung von [Küchenhoff
u. a., 2015] aufbaut, wird die verwendete Notation und die im Folgenden getroffenen An-
nahmen größtenteils daraus übernommen.

Gegeben seien unabhängige und identisch verteilte Überlebensdauern ti, i = 1, ...n,
mit Verteilungsfunktion F, d.h. ti ∼ F . Da es in dieser Arbeit um das Sterberisiko von
Intensivpatienten geht, beschreiben die Beobachtungen ti die Dauer vom Beginn der Be-
obachtung, d.h. dem ersten Tag auf einer Intensivstation bis zum Todeszeitpunkt. Das
Szenario lässt sich jedoch auch auf andere Bereiche übertragen, in denen die Lebensdauer-
analyse Anwendung findet, z.B. für Ausfallzeiten bei technischen Geräten.

Da nicht jeder Patient innerhalb der Beobachtungsdauer verstirbt, kann der tatsäch-
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liche Todeszeitpunkt für einen Teil der Personen unter Risiko unbekannt sein. Für diese
sogenannten rechts-zensierten Daten wird eine Zufallsvariable C definiert, deren Ausprä-
gungen ci unabhängig von den Lebensdauern ti sind und die maximale Beobachtungsdauer
beschreiben. Unter Berücksichtigung dieser Zensierungszeiten ergeben sich für jedes Indi-
viduum i zwei Beobachtungen: ein Zeitraum Ti, welcher als Ti := min(ci, ti) definiert ist
und ein Indikator δi für den Zensierungsstatus. Es gilt

δi = I{ci<ti} =

1, falls ci < ti (d.h. Beobachtung i ist zensiert)

0 sonst
(1)

Bei einer rechts-zensierten Beobachtung liegt demnach das Ende des Beobachtungszeitraumes
vor dem Todeszeitpunkt.

Das Risiko für einen Intensivpatienten, zu einem bestimmten Zeitpunkt t zu sterben,
wenn er bis dahin überlebt hat, wird durch die Hazardrate h(t) beschrieben, welche nach
[Küchenhoff u. a., 2015] wie folgt definiert sei:

h(t) = h1(t)∗ I{t≤τ}(t) +λ∗ I{t>τ}(t) mit I{x∈A}(x) =

1 falls x ∈ A

0 sonst
(2)

Mit τ wird dabei der Change-Point bezeichnet, d.h. für alle t > τ ist die Hazardrate
konstant mit Wert λ. Über h1(t) werden keine weiteren Annahmen getroffen. Für die
Verteilungsfunktion muss ebenfalls zwischen den Zeitpunkten vor und nach dem Change-
Point unterschieden werden, womit sich für F folgende Form ergibt:

F (t) = F1(t)∗ I{t≤τ}(t) + F1(τ)∗ (1− exp(−λ(t− τ)))∗ I{t>τ}(t)

mit F1(t) := 1− exp(−
∫ t

0
h(s)ds)

Ziel ist es nun, aus den gegebenen Daten einen Schätzer für τ zu finden.

Das Verfahren der nichtparametrischen Change-Point-Schätzung mittels p-Werten nach
[Küchenhoff u. a., 2015] wird zunächst im Kapitel 2 detailliert beschrieben. Ein Ziel dieser
Ausarbeitung ist es, die Güte des daraus resultierenden Schätzers zu untersuchen. Die
Ergebnisse der dafür durchgeführten Simulationsstudie werden in Kapitel 3 diskutiert.
Weiterhin wurde eine erste Version des R-Paketes “CPest“ erstellt, welches eine Funktion
zur Change-Point-Schätzung nach der Methode von [Küchenhoff u. a., 2015] implemen-
tiert, wobei durch Anwendung eines nichparametrischen Bootstrap-Verfahrens zusätzlich
die Schätzung der Varianz möglich ist. Details zum Aufbau und Ausschnitte aus dem
Programmcode sind im vierten Kapitel zu finden. Als Anwendungsbeispiele dienen ab-
schließend zwei Datensätze mit Überlebenszeiten von Intensivpatienten des Klinikums
der Universität München. Bereits veröffentlichte Studien zu diesen Daten enthalten un-
ter anderem eine geschätzte Dauer der akuten postoperativen Phase, welche im letzten
Kapitel mit den Ergebnissen aus dem hier vorgestellten Verfahren verglichen werden.
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2 Verfahren zur Change-Point-Schätzung

Ein Verfahren, bei dem der Change-Point mittels p-Werten bestimmt wird, ist in [Mallik
u. a., 2011] anhand von verschiedenen Szenarien beschrieben. Dabei ist das Ziel, jeweils
„einen Schwellenwert zu finden, ab dem eine Regressionsfunktion von ihrem Basiswert
abweicht“, welcher im Folgenden mit τ bezeichnet ist. Formal wird dabei für ein mögliches
„Dose-Response-Setting“ ein Regressionsmodell Y = µ(X)+ε angenommen, bei dem µ(x)
eine Funktion auf [0,1] ist. Die Zufallsvariable X beschreibt dabei die verabreichte Dosis
und Y die zugehörige Response. Diese ist für x ≤ τ konstant mit µ(x) = c0 und steigt
für Werte x > τ an, d.h. µ(x) > c0 für x > τ , wobei τ ∈ (0,1) gelte. Zu beachten ist,
dass die Notation im Hinblick auf das Verfahren nach [Küchenhoff u. a., 2015] von der in
[Mallik u. a., 2011] ursprünglich verwendeten abweicht. Um den Change-Point τ zu finden,
wird zunächst ein geeigneter Schätzer ĉ0 für die Response bestimmt und anschließend
ein einseitiger Gauss-Test mit H0 : µ(x) = ĉ0 und H1 : µ(x) > ĉ0 für die Dosen Xi = x

durchgeführt.
Unter den Annahmen E(ε | X = x) = 0 und σ2(x) = var(ε | X = x)> 0 für alle x∈ [0,1]

ergeben sich die p-Werte nach [Mallik u. a., 2011] für jeweils m Beobachtungen zu den n
untersuchten Kovariablen durch

pm,n(Xi, τ̂m,n) = 1−Φ
(
√
m

Ȳi− τ̂
σ̂(Xi)

)
,

wobei Ȳi durch Ȳi = ∑m
i=1Yij/m definiert ist und σ̂ den Schätzer für die Standard-

abweichung bezeichnet.
Für alle Xi ≤ τ ist die Nullhypothese erfüllt und weil die zugehörigen p-Werte auf [0,1]
gleichverteilt sind, nehmen diese im Mittel den Wert 1/2 an. Für x-Werte oberhalb von τ ,
für welche die Alternative H1 gilt, konvergieren die p-Werte gegen 0. Daraus ergibt sich
eine stückweise konstante Funktion, deren Sprungstelle τ durch eine einfache Regression
geschätzt werden kann.

Nach [Mallik u. a., 2011] kann dieses Vorgehen leicht auf andere Situationen übertra-
gen werden, bei denen beispielsweise die Response ab dem Change-Point τ abfällt und es
sich somit bei c0 um ein globales Maximum statt eines Minimums handelt. Ebenso ist es
möglich, dass µ(x) für x≤ τ ansteigt bzw. abfällt und erst danach einen konstanten Wert
annimmt. Genau dieses Szenario ist für unseren Fall der Intensivpatienten von Interes-
se. Im Unterschied zu [Mallik u. a., 2011] gibt es hier jedoch keine Regressionsfunktion,
sondern es wird die Hazardrate h in Abhängigkeit von der Zeit t betrachtet. Wie bereits
in (2) definiert, fällt diese zu Beginn des Beobachtungszeitraumes ab und ist ab einem
bestimmten Zeitpunkt τ konstant. Aus h(t) lässt sich die Wahrscheinlichkeit für ein Ereig-
nis, d.h. für den Tod eines Patienten, innerhalb eines bestimmten Zeitraumes berechnen,
welche nach [Küchenhoff u. a., 2015] als Grundlage für einen Binomialtest dienen soll. Ein
weiterer Unterschied zu dem Verfahren der Change-Point-Schätzung nach [Mallik u. a.,
2011] besteht also darin, dass hier kein Gauss-Test durchgeführt, sondern ein einseitiger
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exakter Binomialtest, unter Verwendung der aus der Hazardrate ermittelten Wahrschein-
lichkeit und der beobachteten Ereignisse innerhalb eines Zeitraumes. Im Folgenden wird
die Methode nach [Küchenhoff u. a., 2015] ausführlicher beschrieben, wobei sich viele der
getroffenen Annahmen auf den Fall der Intensivpatienten beziehen, jedoch ohne weiteres
auf andere geeignete Anwendungsgebiete übertragen werden können, bei denen die Er-
mittlung eines Change-Points von Interesse ist.

Es sei T eine nichtnegative, stetige Zufallsvariable, welche die Überlebensdauer eines
Individuums bezeichnet. Gegeben sind also unabhängige und identisch verteilte Überle-
benszeiten ti, i= 1, ...,n, mit Dichte f(t) und Verteilungsfunktion F(t).

Weil die Hazardrate h(t) nach Gleichung (2) für Zeitpunkte nach dem Change-Point
als konstant angenommen wird, gilt {ti − τ | ti > τ} ∼ Exp(λ). Für die Zeitpunkte
vor dem Change-Point wird keine Verteilungsannahme getroffen. Für das Beispiel der
Intensivpatienten bedeutet dies, dass das Risiko, im nächsten Moment zu sterben, nach
Einlieferung auf die Intensivstation am größten ist und immer weiter abfällt, bis es ab
dem Zeitpunkt τ konstant bleibt.

Oft beinhalten die in diesem Zusammenhang untersuchten Datensätze rechts-zensierte
Beobachtungen, welche durch das Schätzverfahren berücksichtigt werden sollen. Für den
Zensierungsstatus wird im Folgenden wieder die im Kapitel 1.2 unter (1) eingeführte
Notation verwendet. D.h. δ bezeichnet den Indikator für zensierte Beobachtungen mit
δi = I{ci<ti}, wobei ci die Zensierungszeit für Individuum i darstellt. Die beobachteten
Zeiten Ti wurden mit Ti = min(ci, ti) definiert, bezeichnen demnach entweder die Überle-
bensdauer oder die Beobachtungsdauer bis zum Zensierungszeitpunkt.

Die Idee des p-Wert-Verfahrens nach [Küchenhoff u. a., 2015] ist nun, dass der Beob-
achtungszeitraum in Intervalle einer vordefinierten Länge aufgeteilt wird und für jedes
Intervall ein Binomialtest mit den beobachteten Ereignissen innerhalb eines Intervalls
durchgeführt wird. Unter der Nullhypothese ist die Wahrscheinlichkeit p für ein Ereignis
innerhalb eines Intervalls gleich jener, die sich aus der konstanten Hazardrate λ ergibt.
Für Intervalle, die nach dem Change-Point liegen, sollte H0 somit erfüllt sein, das heißt
die p-Werte sind für große Beobachtungszahlen auf [0,1] gleichverteilt und nehmen im
Mittel den Wert 1/2 an. Für Ti ≤ τ ist die Nullhypothese wegen h1(t) > λ nicht erfüllt
und die p-Werte der zugehörigen Intervalle konvergieren für große n gegen 0. Abschlie-
ßend wird, wie in Kapitel 2.2 ausführlich beschrieben, eine Regression über die ermittelten
p-Werte durchgeführt und τ̂ ergibt sich als KQ-Schätzer durch Anpassen der Funktion
f(Ti) = 0.5∗ I{Ti>τ}(Ti) an die Daten.

Zuerst benötigen wir also die konstante Hazardrate für T > τ . Nachfolgend wird kurz
hergeleitet, wie sich diese aus den gegebenen Daten ermitteln lässt.
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2.1 Schätzung der konstanten Hazardrate

Für eine exponentialverteilte Zufallsvariable T mit Parameter λ> 0 gelten im Allgemeinen
folgende Zusammenhänge:

• h(t) = λ (mit λ > 0), d.h. die Hazardrate ist für alle Zeitpunke ti konstant

• Dichte: f(t) = λ exp(−λt)

• Survivalfunktion: S(t) = 1−F (t) = exp(−λt)

Unter der Annahme, dass τ vorerst gegeben sei, werden die Zeitpunkte nach dem Change-
Point definiert als T ∗j := {Tj − τ |Tj > τ} mit Tj = min(cj , tj) und j = 1, ...,n∗. Dann gilt
T ∗j ∼Exp(λ) mit der konstanten Hazardrate λ, welche aus den gegebenen Daten geschätzt
werden soll.

In Anlehnung an die Herleitung eines ML-Schätzers für zensierte, exponentialverteilte
Daten nach [Keppler u. Müller, 2013, S.20] lässt sich die Likelihoodfunktion wie folgt
definieren und umformen:

L(λ,T ∗j )∝
n∗∏
j=1

f(T ∗j )1−δjS(T ∗j )δj

=
n∗∏
j=1

f(T ∗j )1−δjS(T ∗j )−(1−δj)S(T ∗j )1−δjS(T ∗j )δj

=
n∗∏
j=1

(
f(T ∗j )
S(T ∗j )

)1−δj

S(T ∗j )

=
n∗∏
j=1

λ1−δj exp(−λT ∗j )

Daraus ergibt sich die log-Likelihood

l(λ,T ∗j ) = logL(λ,T ∗j ) =
n∗∑
j=1

(1− δj) log(λ)−λ
n∗∑
j=1

T ∗j

Durch Ableiten und Nullsetzen erhält man einen Schätzer für λ:

∂l(λ,T ∗j )
∂λ

= 1
λ

n∗∑
j=1

(1− δj)−
n∗∑
j=1

T ∗j
!= 0

⇔ λ̂∗ =
∑n∗
j=1(1− δj)∑n∗
j=1T

∗
j

= n∗unzens.∑n∗
j=1T

∗
j

Die Formel muss nun noch dahingehend angepasst werden, dass λ nicht nur aus den
T ∗j , sondern aus allen Beobachtungen Ti (i = 1, ...,n) mit zugehörigem Zensierungsstatus
geschätzt werden kann. Da jedoch der Zeitpunkt τ , ab dem die Hazardrate als konstant
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angenommen wird, nicht gegeben ist, wird ein Zeitpunkt τmax vorgegeben, welcher ein
oberes Limit für den Change-Point darstellt. Das heißt wir nehmen an, dass die Hazardrate
für alle Ti > τmax konstant ist und der wahre Change-Point τ darunter liegt. Aus den
beobachteten Überlebenszeiten Ti lässt sich der Schätzer für λ dann wie folgt berechnen:

λ̂=
∑n
i=1(1− δi)∗ I{Ti>τmax}(Ti)∑n

i=1(Ti− τmax)∗ I{Ti>τmax}(Ti)
(3)

2.2 Ermittlung der p-Werte und Regression

Methode 1

Die nachfolgend beschriebene Methode zur Ermittlung eines Schätzers τ̂ aus den p-Werten
entspricht den Ausführungen zum Schätzverfahren in [Küchenhoff u. a., 2015]. Unter der
Annahme, dass der wahre Change-Point τ kleiner oder gleich dem definierten Maximum
ist, d.h. 0 ≤ τ ≤ τmax, wird ein Gitter 0 ≤ a0 < a1 < ... < aK = τmax definiert, welches
den Beobachtungszeitraum bis τmax in disjunkte Intervalle unterteilt. Die Anzahl der
Ereignisse innerhalb eines Intervalls (ak−1;ak] wird mit Xk bezeichnet. Weiterhin ist mit
Nk = ∑n

i=1 I{Ti>ak−1}(Ti) die Zahl der Personen definiert, welche zu Beginn des k-ten
Intervalls , d.h. zu t= ak−1 unter Beobachtung und damit unter Risiko standen.

Für Intervalle nach dem Change-Point (d.h für ak−1 > τ) sind die Xk binomialverteilt
mit den Parametern Nk und prk, wobei prk der Wahrscheinlichkeit für ein Ereignis inner-
halb eines Intervalls k entspricht. Diese ergibt sich aus der konstanten Hazardrate λ zu
prk = 1−exp(−λ(ak−ak−1)). Für den Fall, dass nur Intervalle der selben Länge betrach-
tet werden, ist diese Wahrscheinlichkeit für jedes Intervall gleich und es gilt pr = prk für
beliebiges k = 1, ...,K.

Daraus lässt sich ein (einseitiger) exakter Binomialtest mit den HypothesenH0 : p= prk

gegenH1 : p> prk durchführen. Unter der Nullhypothese gilt alsoXi
H0∼ B(Nk,prk). Die zu-

gehörigen p-Werte ergeben sich dann aus der Verteilungsfunktion der Binomialverteilung:

pvk = 1−FBin(Xk,Nk,prk)

Diese folgen bei einer großen Beobachtungszahl n für Intervalle nach dem Change-
Point einer (0,1)-Gleichverteilung mit Erwartungswert E(pv) = 0.5, da für Ti > τ die
Nullhypothese erfüllt ist. Für Intervalle vor dem Change-Point konvergieren die p-Werte
für große n gegen 0.

Um nun einen Schätzer τ̂ zu finden, kann mittels der KQ-Methode eine Funktion der
Form f(Ti) = 0.5∗ I{Ti>τ}(Ti) an die ermittelten p-Werte angepasst werden:

τ̂ = arg min
τ

n∑
k=1

(pvk−0.5∗ I{τ≤ak−1})
2

Analog zum Vorgehen in [Mallik u. a., 2011] wird die zu minimierende Summe noch
wie folgt vereinfacht:
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S(τ) =
n∑
k=1

(pvk−0.5∗ I{τ≤ak−1})
2

=
∑

k|ak−1<τ

pv2
k +

∑
k|ak−1≥τ

(pvk−0.5)2

=
n∑
k=1

pv2
k +

∑
k|ak−1≥τ

(−pvk + 0.25)

Da der erste Summand nicht von τ abhängig ist, kann S(τ) durch maximieren von

S∗(τ) =
∑

k|ak−1≥τ
(pvk−0.25) (4)

minimiert werden. Der Schätzer für τ hat sich demnach vereinfacht zu

τ̂ = arg max
τ

∑
k|ak−1≥τ

(pvk−0.25). (5)

Ein Nachteil der Schätzung mittels disjunkter Intervalle ist die Tatsache, dass sich für
τ̂ nur die definierten Intervallgrenzen a0, ...,aK ergeben können.

Methode 2

Eine alternative Möglichkeit besteht darin, fortlaufende Intervalle der selben Länge zu
definieren. Dazu bezeichnen 0 ≤ l1 < ... < lK = τmax die unteren Intervallgrenzen. Aus
uk := lk +wd mit wd als festgelegte Intervallbreite ergeben sich die oberen Grenzen zu
u1 < ... < uK = (τmax+wd).

Die Wahrscheinlichkeit pr für ein Ereignis innerhalb eines Intervalls k ist in diesem
Fall definiert als pr = 1− exp(−λ wd) und ist somit für alle k = 1, ...,K gleich. Damit
lassen sich die p-Werte durch pvk = 1−FBin(Xk,Nk,pr) ermitteln. Da sich die Intervalle
nun überlappen, ergeben sich je nach definierter Breite und Intervallgrenzen entsprechend
mehr p-Werte als nach Methode 1. Analog zur Berechnung von τ̂ für disjunkte Intervalle
nach (5) ergibt sich der Schätzer für den Change-Point für fortlaufende Intervalle zu:

τ̂ = arg max
τ

∑
k|lk≥τ

(pvk−0.25)

Somit ist es nun möglich, die Intervalle so festzulegen, dass alle Zeitpunkte zwischen
0 und τmax als Schätzer für den Change-Point in Frage kommen. Dazu müssen die un-
teren Intervallgrenzen als Sequenz {0,1, ..., τmax} definiert werden, womit sich die oberen
Grenzen zu {(0 +wd),(1 +wd), ...,(τmax +wd)} ergeben. Anders ausgedrückt bedeutet
dies, dass die Intervalle (lk,uk] der Länge wd immer um einen Zeitpunkt nach rechts
verschoben werden.
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Zu beachten ist bei diesem Schätzverfahren, dass die p-Werte durch die sich über-
lappenden Intervalle nicht unabhängig sind. Durch die Verletzung der Unabhängigkeits-
annahme ist der Schätzer unter Umständen nicht effizient und die Anwendung dieser
Methode problematisch.

Methode 3

Nachfolgend möchte ich eine weitere Möglichkeit der Change-Point-Schätzung vorstellen,
wobei die Idee der fortlaufenden Intervalle aufgegriffen, jedoch das Problem der Abhängig-
keit der p-Werte umgangen wird.

Dazu sei a01 ,a02 , ...,a0l
eine Sequenz von “Startpunkten“, sodass sich für jeden Zeit-

punkt a0j ein Gitter a0j < a1j < ... < aKj
ergibt, welches den Beobachtungszeitraum in

disjunkte Intervalle der vorgegebenen Breite wd unterteilt. Es gilt also wd := akj
−a(k−1)j

für alle j = 1, ..., l. Dabei soll die Anzahl der definierten Gitter l der Intervallbreite wd
entsprechen, d.h. es gelte l = wd. Beispielsweise würden sich bei einer festgelegten Breite
von wd = 10 und a01 = 0 die Intervallgrenzen {0,10,20,...} für j = 1 bis {9,19,29,...} für
j = 10 ergeben.

Für jedes dieser Gitter werden nun entsprechend dem Vorgehen in Methode 1 die
p-Werte pvkj

für k= 1, ...,K berechnet. Daraus ergibt sich analog zu (4) für jedes j = 1, ..., l
die zu maximierende Summe

S∗j (τ) =
∑

k|a(k−1)j
≥τ

(pvkj
−0.25)

und damit jeweils ein Schätzer τ̂j .
Durch Optimieren über diese endliche und vergleichsweise geringe Anzahl an Summen

S∗j (τ) wird jenes τ̂j bestimmt, für welches die Anpassung der Funktion

f(Ti) = 0.5∗ I{Ti>τ̂j}(Ti)

an die zugehörigen p-Werte am besten ist. Dazu ermittelt man das Maximum über alle
S∗(τ̂j) und der Change-Point-Schätzer τ̂ ergibt sich zu

τ̂ = arg max
j

S∗(τ̂j).

Im Gegensatz zu Methode 2 werden bei diesem Verfahren l separate Regressionsmodelle
mit diskreten Intervallen aufgestellt, sodass die p-Werte für jedes j = 1, ..., l voneinander
unabhängig sind. Problematisch an dieser Methode ist jedoch, dass dadurch über mehrere
Modelle hinweg optimiert wird.
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2.3 Korrektur um zensierte Beobachtungen

Für den Fall, dass sich innerhalb eines Intervalls (ak−1;ak] zensierte Beobachtungen be-
finden, ist die tatsächliche Anzahl der Ereignisse möglicherweise höher als beobachtet,
wodurch sich aus dem Binomialtest ein geringerer p-Wert ergeben würde.

Eine Möglichkeit, die zensierten Beobachtungen innerhalb des k-ten Intervalls zu be-
rücksichtigen, besteht darin, die Wahrscheinlichkeit für ein Ereignis innerhalb des “Rest-
intervalls“ (ci,ak] zu berechnen und die Anzahl der beobachteten Ereignisse Xk entspre-
chend zu erhöhen. Problematisch ist dabei, dass sich für einen relativ geringen Anteil an
zensierten Beobachtungen der Wert für Xk nur unwesentlich ändern würde. Da für einen
Binomialtest die Parameter ganzzahlig sein müssen, hätte die Korrektur somit keinen
Effekt.

Stattdessen kann jedoch auch die Anzahl der Personen unter Risiko Nk, welche im
Allgemeinen deutlich größer ist als Xk, nach unten korrigiert werden. Ein solches Vorge-
hen ist in [Hamerle u. Tutz, 1989, S.23] vorgeschlagen. Dabei wird NK “willkürlich“ um
die Hälfte der Anzahl an Zensierungen im k-ten Intervall verringert. Für das hier vor-
gestellte Verfahren soll diese Idee erweitert werden, sodass eine präzisere Korrektur der
Risikomenge Nk stattfindet.

Dazu wird Nk für jede zensierte Beobachtung i innerhalb des k-ten Intervalls um den
Anteil der Zeitpunkte reduziert, an denen Person i nicht mehr unter Beobachtung stand.
Das korrigierte Nk ergibt sich demnach zu

N∗k =Nk−
∑

i |Ti∈(ak−1;ak]

(
ak−Ti
ak−ak−1

)
∗ δi (6)

2.4 Diskussion

Bei diesem nichtparametrischen Verfahren wird der Change-Point-Schätzer in allen drei
vorgestellten Methoden durch Optimieren über eine kleine endliche Menge bestimmt, was
mathematisch einfach zu berechnen ist. Somit ist auch die praktische Anwendung, bei-
spielsweise in Form einer in die Statistik-Software R implementierten Funktion, mit ver-
gleichsweise wenig Aufwand verbunden. Eine mögliche Umsetzung einer solchen Funktion
wird in Kapitel 4 ausführlich beschrieben, bei dem es um die Erstellung eines zugehörigen
R-Paketes geht. Da für die Zeitpunkte {t | t < τmax} keine parametrischen Verteilungsan-
nahmen getroffen werden, wird die Standardabweichung mittels eines nichtparametrischen
Bootstrap-Verfahrens geschätzt, womit sich auch die zugehörigen Konfidenzintervalle be-
rechnen lassen. Darauf wird ebenfalls im Kapitel 4 detaillierter eingegangen.

Ein Nachteil dieses Verfahrens ist die Abhängigkeit von der Intervallbreite, welche an-
gemessen gewählt werden muss. Bei zu kleinen Intervallen besteht die Gefahr, dass sich
innerhalb eines Intervalls nur sehr wenige oder gar keine Beobachtungen befinden, wo-
mit die p-Werte des Binomialtests gegen 1 konvergieren würden. Wird die Intervallbreite
dagegen zu groß gewählt, kommen bei Methode 1 zu wenige Zeitpunkte als Schätzung
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für τ in Frage, da sich bei Verwendung von diskreten Intervallen nur die Intervallgren-
zen a0, ...,aK als Change-Point-Schätzer ergeben können. Durch das Verwenden von fort-
laufenden Intervallen (Methode 2), oder das Ermitteln des “besten Fits“ aus mehreren
Modellen mit jeweils um den Wert 1 verschobenen Intervallen (Methode 3), ist jeder Zeit-
punkt t = 1, ..., τmax als Schätzer für τ möglich. Allerdings sind diese Methoden durch
die Abhängigkeit der p-Werte bzw. die Optimierung über mehrere Regressionsmodelle
nicht ganz unproblematisch. Um Aussagen über die Güte des Schätzverfahrens treffen zu
können, vor allem im Hinblick auf den Vergleich dieser drei Methoden, wurde eine Simu-
lationsstudie durchgeführt, in der die drei Verfahren mit verschiedenen Intervallbreiten
auf diverse Szenarien angewandt werden. Die Ergebnisse der Simulationen und weitere
Details sind im Kapitel 3 zu finden.

Als weitere Besonderheit dieses Verfahrens ist zu beachten, dass im Vorhinein ein
Wert für τmax festgelegt werden muss, und zwar derart, dass noch ausreichend viele Be-
obachtungen mit Ti > τmax vorhanden sind, um einen möglichst genauen Schätzwert für
λ zu finden. Gleichzeitig soll für τmax jedoch ein hinreichend großer Wert gewählt werden,
sodass das wahre τ mit hoher Wahrscheinlichkeit darunter liegt. Dazu kann es sinnvoll
sein, den Datensatz im Vorfeld mithilfe geeigneter deskriptiver Methoden zu untersuchen,
beispielsweise durch eine nichtparametrische Schätzung der Hazardrate.

In Kapitel 3 werden anhand der Simulationsergebnisse noch einige Probleme bezüglich
der Anwendbarkeit des Verfahrens diskutiert.
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3 Simulationsstudie

Um die Güte des Schätzverfahrens nach [Küchenhoff u. a., 2015] zu beurteilen, wird in
diesem Kapitel anhand verschiedener Szenarien untersucht, ob es einerseits eine systema-
tische Abweichung des Schätzers τ̂ vom wahren Parameterwert gibt und andererseits, wie
groß die Streuung der geschätzten Werte ist. Dazu wurden die in Kapitel 2.2 vorgestellten
Methoden zur Schätzung von τ auf mit verschiedenen Parameterkombinationen erzeugte
Datensätze angewendet. Dabei geht es insbesondere um den Vergleich der drei Metho-
den, aber auch um die grundsätzliche Anwendbarkeit des Verfahrens auf realitätsnahe
Datensätze. Nachfolgend wird zunächst die Erzeugung der Datensätze sowie der Aufbau
der Simulationsstudie erklärt. In Kapitel 3.3 werden dann die Ergebnisse der Schätzun-
gen diskutiert. Für die Simulationen sowie die Umsetzung des Schätzverfahrens wurde die
Statistik-Software R (Version 3.1.0) verwendet.

3.1 Datenerzeugung

Vor dem Hintergrund, dass die Überlebensdauern von Intensivpatienten untersucht wer-
den sollen, müssen die Daten derart generiert werden, dass die Sterberate zu Beginn
der Beobachtungsdauer am höchsten ist, bis zu einem vorgegebenen Zeitpunkt τ abfällt
und ab diesem Change-Point konstant bleibt. Eine geeignete Verteilung, welche oft im
Zusammenhang mit Lebensdauern verwendet wird, ist die Weibullverteilung. Im Gegen-
satz zur Exponentialverteilung besitzt diese nicht die Eigenschaft der Gedächtnislosigkeit,
sodass es mithilfe der Weibullverteilung möglich ist, neben einer konstanten auch eine an-
steigende bzw. abfallende Sterberate zu modellieren. Die Dichte einer Weibull-verteilten
Zufallsvariablen T hat die Form

f(t) = γ

η

(
t

η

)γ−1
exp(−

(
t

η

)γ
)

mit Shape-Parameter η und Scale-Parameter γ. Daraus ergibt sich die Hazardrate zu:

h(t) = γ

η

(
t

η

)γ−1
. (7)

Für den Fall γ = 1 ist T exponentialverteilt mit Parameter λ = 1
η , wobei die Hazardrate

konstant ist.
Für einen Datensatz mit n Beobachtungen werden zunächst mithilfe der R-Funktion

rweibull, mit vorgegebenem Shape- und Scale-Parameter n Weibull-verteilte (Pseudo-)
Zufallszahlen ti erzeugt. Basis für die Generierung dieser Todeszeitpunkte bildet die
Inversionsmethode, welche mittels der inversen Weibullverteilung aus auf [0,1] gleich-
verteilten Zufallszahlen n Realisationen einer Weibull-verteilten Zufallsvariablen simuliert.

Um zu erreichen, dass sich zum Zeitpunkt τ ein Change-Point befindet, ab welchem
h(t) konstant ist, werden alle generierten Zeiten {ti | ti ≥ τ} für vorgegebenes τ durch
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exponentialverteilte Zufallszahlen ersetzt. Hierfür ist zunächst der Parameter λ der Expo-
nentialverteilung zu bestimmen. Soll der Übergang zwischen den Weibull- und exponen-
tialverteilten Zeiten bei t= τ stetig sein, so lässt sich λ nach (7) aus der Hazardfunktion
h(t) berechnen:

λ= h(τ) = γ

η

(
τ

η

)γ−1
.

Mithilfe des Parameters λ werden nun nexp exponentialverteilte Zufallszahlen t∗i erzeugt,
d.h. t∗i ∼Exp(λ), wobei sich die Anzahl nexp dieser Datenpunkte aus nexp =∑n

i=1 I{ti≥τ}(ti)
ergibt.

Die zuvor aus der Weibullverteilung generierten Zeiten ti, für welche ti≥ τ gilt, werden
nun wie folgt durch die exponentialverteilten Daten ersetzt: {ti|ti ≥ τ}= t∗i + τ .

Für die Simulationsstudie werden sowohl Daten mit einem stetigen Übergang als auch
mit einem Sprung bei t= τ erzeugt, was in den Ergebnissen durch jump=0 bzw. jump=1
gekennzeichnet ist. Für die Datensätze mit Sprung in der Hazardrate wird der Parameter
der Exponentialverteilung durch λjump := λ

2 ersetzt.

Da in der Praxis ein Datensatz oft zensierte Beobachtungen beinhaltet, welche durch
das Schätzverfahren ebenfalls berücksichtigt werden können, soll auch ein Teil der simu-
lierten Daten so erzeugt werden, dass nicht zu jeder Beobachtung eine Überlebenszeit
vorliegt, sondern ein bestimmter Anteil durch Zensierungszeiten ersetzt wird. Dafür wird
für jedes i= 1, ...,n unabhängig von den Überlebenszeiten ti eine maximale Beobachtungs-
zeit ci generiert, wobei die ci ebenfalls exponentialverteilt sind mit ci ∼ Exp(λcens). Der
Wert für λcens kann dabei so gewählt werden, dass sich ein gewünschter Anteil an zensier-
ten Daten ergibt. Im Fall, dass die generierten Daten zensierte Beobachtungen enthalten,
sind die zugehörigen Ergebnisse mit cens=1 gekennzeichnet, andernfalls mit cens=0. Der
simulierte Datensatz enthält letztendlich die Zeiten Ti, welche sich für jedes i = 1, ...,n
aus Ti = min(ti, ci) ergeben. Zusätzlich wird eine binäre Variable für den Zensierungssta-
tus erzeugt. Zu beachten ist, dass für die Simulation gerundete Zeiten verwendet werden,
weil Überlebensdauern im medizinischen Kontext in der Praxis meist in Tagen gemessen
werden.

Nachfolgend ist der R-Code der Funktion dargestellt, welche für die Datengenerierung
verwendet wurde. Dabei wird durch das Argument cens = TRUE/FALSE vorgegeben, ob
zensierte Daten erzeugt werden sollen, wobei lambda.cens dem vorher definierten λcens
entspricht, mit dem der Anteil der zensierten Beobachtungen beeinflusst werden kann.
Durch jump = TRUE/FALSE wird bestimmt, ob Daten mit Sprung in der Hazardrate er-
zeugt werden sollen. Die Funktion gibt einen Datensatz zurück, welcher die Vektoren time
für die generierten Zeiten Ti und event für den zugehörigen Zensierungsstatus enthält.

sim.survdata <- function(n, tau, shape, scale, cens, jump, lambda.cens){
lambda <- shape/scale * (tau/scale)^(shape-1)
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if(jump) lambda <- 0.5*lambda

t.weib <- ceiling(rweibull(n, shape=shape, scale=scale))
n.exp <- sum(t.weib>=tau)
t.exp <- ceiling(rexp(n.exp, lambda)) + tau
t <- t.weib
t[t.weib >= tau] <- t.exp

#censoring
if(cens){

t.cens <- ceiling(rexp(n, lambda.cens))
event <- as.numeric(t.cens > t)
t <- pmin(t, t.cens)
data <- data.frame(time=t, event)

}
else data <- data.frame(time=as.integer(t), event=rep(1,length(t)))
return(data)

}

3.2 Szenarien

Für die Simulationsstudie werden verschiedene Settings betrachtet, welche sich aus einer
Kombination der Parameter für die Datengenerierung und jener für die Change-Point-
Schätzung ergeben. Untersucht werden drei Szenarien, welche sich bezüglich des für die
Datenerzeugung vorgegebenen Change-Points und des für die Schätzung relevanten Wer-
tes τmax unterscheiden (τmax = 360 in Szenarien 1 und 3; τmax = 200 in Szenario 2).
Weiterhin werden folgende variierende und feste Werte für die Simulationen verwendet:

• variierende Parameter für die Erzeugung der Datensätze:r Anzahl der Beobachtungen: n = {1000; 5000}r Zensierung: cens = {1; 0} (1 =̂ Datensatz mit Zensierung)r Sprung in der Hazardrate: jump = {1; 0} (1 =̂ Sprung in der Hazardrate)r Change-Point τ : - tau = {90; 100} für Szenario 1
- tau = {50; 55} für Szenario 2
- tau = {360} für Szenario 3

• variierende Parameter für die Schätzung:r Intervallbreite: wd = {10; 20}r Schätzmethode: - dis.int (disjunkte Intervalle ohne Verschiebung)
- cont.int (fortlaufende Intervalle)
- shift.int (Intervallverschiebung)
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Insgesamt resultieren daraus in den ersten beiden Szenarien 16 und im dritten 8 Para-
meterkombinationen für die Datengenerierung mit jeweils 6 Fällen für die Schätzung. Eine
solche Kombination wird im Folgenden als “Setting“ bezeichnet. Die für die Schätzungen
verwendete R-Funktion, welche die Grundlage für das erstellte Paket CPest darstellt, wird
in Kapitel 4 ausführlich erklärt.

Die Parameter der Weibullverteilung, welche für die Datengenerierung benötigt wer-
den, sind für alle Settings mit den Werten shape=0,2 und scale=100 vorbelegt. Die zu-
gehörige theoretische Hazardfunktion ist für zwei beispielhafte Settings mit τ = 100 und
τ = 50 in den Abbildungen 1 und 2 dargestellt, wobei jeweils die zwei Fälle mit und ohne
Sprung in der Hazardrate betrachtet werden.
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Abbildung 1: Hazardfunktion für τ = 100 mit und ohne Sprung;
für die ti gilt: (ti|ti < 100)∼WB(η = 100,γ = 0,2) und (ti|ti ≥ 100)∼ Exp(λ)
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Abbildung 2: Hazardfunktion für τ = 50 mit und ohne Sprung;
für die ti gilt: (ti|ti < 50)∼WB(η = 100,γ = 0,2) und (ti|ti ≥ 50)∼ Exp(λ)

Weiterhin wird der Parameter λcens für die Erzeugung der Zensierungszeiten so vor-
gegeben, dass sich ein Anteil an zensierten Daten von ca. 30% ergibt.

Die Simulationen werden für jedes Setting mit 500 Wiederholungen durchgeführt. D.h.
für jede Parameterkombination werden 500 Datensätze erzeugt und jeweils 6 Schätzer für
τ ermittelt. Die Simulationsergebnisse in Kapitel 3.3 beinhalten für jeden dieser Fälle den
Median sowie das arithmetische Mittel aus allen 500 Schätzungen. Als weitere Maße für
die Güte der Schätzfunktion wird der RMSE (root mean square error) und der MAD
(mean absolute error) betrachtet, welche sich wie folgt berechnen lassen:

RMSE =
√√√√1
r

r∑
i=1

(τ̂i− τ)2

MAD = 1
r

r∑
i=1
|τ̂i− τ |

Dabei entspricht r der Anzahl an Wiederholungen, d.h. in diesem Fall r = 500.
Da die Funktion für die Change-Point-Schätzung so konstruiert ist, dass sich für τ̂

maximal der Wert τmax ergeben kann, ist für die Simulationsergebnisse im Fall τ = 360 der
Anteil der Schätzungen mit τ̂ = τmax interessant, weil τmax in diesem Szenario ebenfalls
mit 360 vorgegeben ist (siehe Kapitel 4 für Details zu der in R verwendeten Schätz-
Funktion). Die zugehörigen Ergebnisse in Tabelle 4 enthalten deshalb eine zusätzliche
Spalte “prop.taumax“ für eben diesen Anteil, wobei der Übersichtlichkeit wegen nur jene
Werte dargestellt sind, welche von 0 verschieden sind.
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3.3 Simulationsergebnisse

Ein Ziel der Simulationsstudie ist es, festzustellen wie nahe der geschätzte Change-Point
am tatsächlichen Wert ist und ob sich die Genauigkeit des Schätzers für große Stichpro-
benumfänge verbessert. Deshalb werden für alle Settings jeweils die Beobachtungszahlen
n = 1000 und n = 5000 untersucht. Die Ergebnisse enthalten für jeden betrachteten Fall
den Median und das arithmetische Mittel aus den jeweils 500 Schätzungen. Da in der
Überlebenszeitanalyse der Median wegen seiner Robustheit gegen Ausreißer eine größe-
re Rolle spielt, wird dieser im Folgenden gegenüber dem Mittelwert (“mean“) vorrangig
betrachtet. Weiterhin ist für jeden Fall der RMSE und der MAD angegeben, wobei auch
hier der MAD wegen seiner geringeren Ausreißerempfindlichkeit von größerem Interesse
ist.

Zunächst soll analysiert werden, wie gut das Schätzverfahren theoretisch funktioniert,
d.h. wie genau der Change-Point in einem Fall geschätzt wird, bei dem der Übergang zur
konstanten Hazardrate besonders eindeutig ist. Dafür wurden die Settings mit jump=1
erstellt, welche bei t = τ einen Sprung in der Hazardrate besitzen. Nachfolgend wird das
erste Szenario mit τ = 90/100 genauer untersucht, dessen Ergebnisse aus den Schätzungen
in Tabelle 1 zu finden sind.

Tabelle 1: Ergebnisse für Szenario 1 mit τ = 90 / 100:
Simulation mit festen Weibull-Parametern shape=0.2 und scale=100; je 500 Wieder-
holungen für jede Kombination der Parameter cens={1,0}, jump={1,0}, τ={90,100},
n={1000,5000}; pro Kombination 6 Schätzungen für τ : mit disjunkten Intervallen ohne
und mit Verschiebung (dis.int, shift.int) und mit kontinuierlichen Intervallen (cont.int)
mit einer Breite von je 10 und 20 sowie τmax = 360; für jedes Setting sind die Ergebnisse
für Median, Mittelwert, RMSE und MAD mit der jeweils besten Güte unterstrichen

median mean RMSE MAD

cens=1; jump=1; τ=90; n=1000
dis.int10 90.00 88.34 13.81 8.50
dis.int20 100.00 102.20 36.43 20.84
cont.int10 83.00 83.88 15.30 11.10
cont.int20 82.00 90.68 31.59 17.25
shift.int10 87.00 86.48 13.30 8.60
shift.int20 92.00 97.96 30.61 15.51
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median mean RMSE MAD

cens=1; jump=1; tau=90; n=5000
dis.int10 90.00 95.26 12.74 5.54
dis.int20 100.00 114.92 43.92 25.88
cont.int10 87.00 90.70 11.03 6.82
cont.int20 87.00 101.62 40.07 18.95
shift.int10 89.00 93.37 10.96 5.66
shift.int20 96.00 106.54 36.57 17.80

cens=1; jump=1; tau=100; n=1000
dis.int10 100.00 96.52 17.99 11.04
dis.int20 100.00 108.00 30.09 13.76
cont.int10 92.00 91.66 17.90 13.12
cont.int20 92.00 97.96 26.17 16.72
shift.int10 97.00 94.51 15.60 10.84
shift.int20 99.00 104.69 26.34 14.32

cens=1; jump=1; tau=100; n=5000
dis.int10 100.00 104.58 11.77 4.66
dis.int20 100.00 112.80 31.92 12.80
cont.int10 97.00 99.78 9.93 6.49
cont.int20 96.00 107.84 34.71 15.88
shift.int10 99.00 103.22 11.17 5.64
shift.int20 99.00 111.57 31.13 13.81

cens=1; jump=0; tau=90; n=1000
dis.int10 60.00 64.60 35.22 29.96
dis.int20 80.00 80.60 43.22 29.72
cont.int10 57.00 59.78 38.23 33.60
cont.int20 62.50 72.36 47.27 36.10
shift.int10 59.00 62.72 36.10 30.96
shift.int20 70.50 77.80 40.44 29.18

cens=1; jump=0; tau=90; n=5000
dis.int10 80.00 78.30 26.23 18.90
dis.int20 80.00 91.56 44.23 24.12
cont.int10 71.00 72.79 25.15 21.56
cont.int20 70.00 80.05 40.26 28.16
shift.int10 76.00 77.13 21.45 17.25
shift.int20 78.00 86.92 36.69 21.93
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median mean RMSE MAD

cens=1; jump=0; tau=100; n=1000
dis.int10 70.00 69.32 37.82 34.08
dis.int20 80.00 89.24 49.08 35.96
cont.int10 64.00 65.51 40.18 36.91
cont.int20 67.00 81.38 51.59 41.20
shift.int10 66.00 68.36 37.76 34.34
shift.int20 77.00 86.28 42.63 32.86

cens=1; jump=0; tau=100; n=5000
dis.int10 80.00 85.78 23.46 19.34
dis.int20 80.00 102.04 44.21 26.84
cont.int10 80.00 82.08 25.91 22.48
cont.int20 80.00 92.35 42.81 30.23
shift.int10 84.00 85.47 23.39 19.27
shift.int20 91.00 99.24 39.42 23.58

cens=0; jump=1; tau=90; n=1000
dis.int10 90.00 88.92 10.94 6.72
dis.int20 100.00 99.24 23.68 16.36
cont.int10 84.00 83.71 12.26 9.24
cont.int20 83.00 87.96 19.85 12.75
shift.int10 88.00 87.54 10.32 7.22
shift.int20 92.00 96.42 19.88 11.59

cens=0; jump=1; tau=90; n=5000
dis.int10 90.00 93.86 10.11 3.98
dis.int20 100.00 107.96 28.64 18.52
cont.int10 87.00 89.51 9.44 5.62
cont.int20 87.00 93.08 20.21 9.98
shift.int10 89.00 92.62 9.82 4.89
shift.int20 94.00 99.90 22.77 11.16

cens=0; jump=1; tau=100; n=1000
dis.int10 100.00 98.60 12.00 7.08
dis.int20 100.00 105.12 17.20 6.96
cont.int10 93.00 93.32 12.39 9.64
cont.int20 92.00 95.94 17.28 12.12
shift.int10 98.00 96.45 12.38 8.22
shift.int20 99.00 103.05 14.75 9.01
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median mean RMSE MAD

cens=0; jump=1; tau=100; n=5000
dis.int10 100.00 104.50 10.85 4.62
dis.int20 100.00 109.84 22.87 9.84
cont.int10 97.00 99.91 9.37 5.83
cont.int20 97.00 103.58 19.40 10.44
shift.int10 99.00 103.04 10.76 5.07
shift.int20 99.00 108.85 20.04 10.67

cens=0; jump=0; tau=90; n=1000
dis.int10 60.00 64.04 29.95 27.16
dis.int20 80.00 75.88 34.26 24.32
cont.int10 58.00 59.32 33.77 31.24
cont.int20 62.00 66.40 39.06 32.18
shift.int10 62.00 62.76 30.51 27.66
shift.int20 71.00 73.53 32.85 24.27

cens=0; jump=0; tau=90; n=5000
dis.int10 80.00 77.40 17.75 15.52
dis.int20 80.00 86.72 27.90 17.00
cont.int10 73.00 73.18 20.11 18.46
cont.int20 70.00 75.78 28.47 22.35
shift.int10 77.00 77.78 17.88 15.15
shift.int20 79.00 84.43 25.43 16.65

cens=0; jump=0; tau=100; n=1000
dis.int10 70.00 69.24 34.01 31.20
dis.int20 80.00 82.28 32.61 26.52
cont.int10 64.00 65.20 37.75 35.08
cont.int20 68.00 71.92 36.12 32.80
shift.int10 68.00 68.87 34.22 31.35
shift.int20 78.00 80.49 29.15 24.69

cens=0; jump=0; tau=100; n=5000
dis.int10 90.00 85.16 21.31 17.88
dis.int20 80.00 96.56 31.92 20.96
cont.int10 80.00 80.53 24.26 21.56
cont.int20 80.00 86.40 31.47 25.55
shift.int10 85.00 84.85 21.32 17.57
shift.int20 90.00 94.86 28.71 18.82
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Im Allgemeinen enthalten die simulierten Daten in den Fällen mit cens=0; jump=1
und n=5000 die meiste Information bezüglich des Change-Points. Wir betrachten aus
Szenario 1 deshalb zunächst die zwei Settings {cens=0; jump=1; τ=90/100; n=5000}.
Aus den zugehörigen Ergebnissen in Tabelle 1 ist ersichtlich, dass für diese beiden Settings
sowohl der MAD als auch der RMSE die geringsten Werte im Vergleich zu allen anderen
Settings aus Szenario 1 annehmen. Weiterhin ist der Median für alle drei Schätzverfahren
nahe dem tatsächlichen Change-Point, wobei trotz des hohen Stichprobenumfangs von
n=5000 noch ein Bias (Verzerrung) vorhanden und der Schätzer somit nicht erwartungs-
treu ist. Es ist auffällig, dass der Median für die Schätzmethoden cont.int und shift.int
meist unter dem wahren τ liegt, was bereits an dieser Stelle darauf schließen lässt, dass
der Change-Point tendenziell unterschätzt wird. Im Mittel liegen die geschätzten Werte
zwar häufig über dem tatsächlichen τ , allerdings wird das arithmetische Mittel durch ein-
zelne hohe Schätzwerte nach oben verzerrt. Dass solche hohen Werte in der Simulation
tatsächlich vorkommen, ist z.B. aus den Boxplots für den Fall τ = 90 in Abb. 3 ersichtlich.

●●

●

●

●

●

●●

●

●●●

●

●●

●●●●●●●●●●●

●

●●

●

●

●

●

●

●

●

●●●●●●●●●

●

●

●

●●●

●

●●

●

●●●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●●

●

●●●●●

●

●●●●●●●●●●

●

●

●●●

●●●

●●●●●●

●

0
50

10
0

15
0

20
0

25
0

30
0

35
0

dis.int10

●

●●

●

●●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●●●

●

●

●

●

●●●

●

●

●●●●●

●

●●

●

●

●

●●●

●

●●●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●●●●●●●●

●

●

●●●●

●

●

●

●

●

●

●●●

●

●

●●

●

●●

●

●

●

●

●●●●●●●

●●●●

●●●

●

●●●

●

●

●

●

●

●

0
50

10
0

15
0

20
0

25
0

30
0

35
0

dis.int20

●
●
●
●●●●

●

●
●
●
●
●●●
●

●

●

●

●
●●●●
●
●
●●

●

●●
●
●●●

●

●

●●

●●

●

●
●

●

●

●
●●

●

●●

●

●●●

●

●

●
●
●●

●●●●
●●
●

0
50

10
0

15
0

20
0

25
0

30
0

35
0

cont.int10

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●●

●

●

●
●

●

●

●
●●●
●

●

●●●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

0
50

10
0

15
0

20
0

25
0

30
0

35
0

cont.int20

●●●●
●
●
●●●
●

●

●

●
●
●

●

●
●

●

●●●

●

●

●

●●
●

●

●

●

●

●

●

●●
●

●●
●

●●
●

0
50

10
0

15
0

20
0

25
0

30
0

35
0

shift.int10

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●
●

●

●
●
●
●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●●

●

●

●
●●

●

●●

●

●

●

●
●

●

0
50

10
0

15
0

20
0

25
0

30
0

35
0

shift.int20

cens=0; jump=1; tau=90; n=5000

Abbildung 3: Boxplots der Change-Point-Schätzer für die drei Schätzverfahren mit Inter-
vallbreiten 10 und 20 im Setting {cens=0; jump=1; τ=90; n=5000}

Für diese beiden Settings hat der Schätzwert, welcher ohne Intervallverschiebung be-
rechnet wurde (dis.int), jeweils den kleinsten MAD. Eine mögliche Begründung könnte
darin liegen, dass für eine Intervallbreite von 10 bei dieser Schätzmethode mit diskreten
Intervallen die beiden tatsächlichen Werte von τ , also 90 und 100, exakt auf den Inter-
vallgrenzen liegen.

Um den Fall zu untersuchen, dass sich der wahre Change-Point an einem Zeitpunkt
befindet, welcher kein Vielfaches von 10 ist, betrachten wir nun das Setting {cens=0;
jump=1; τ=55; n=5000} des zweiten Szenarios, dessen Ergebnisse in Tabelle 2 aufgelis-
tet sind. Hierbei ist der MAD für die Verfahren mit kontinuierlichen Intervallen (cont.int)
und mit Intervallverschiebung (shift.int) geringer als für die erste Schätzmethode, weil
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mittels diskreter Intervalle ohne Verschiebung nur Vielfache von 10 bzw. 20 für τ̂ möglich
sind, die geschätzten Werte also mindestens den Abstand 5 zum wahren τ = 55 haben.
Außerdem liegt der Median für shift.int10 mit 56 sehr nahe am tatsächlichen Change-
Point.

Tabelle 2: Ergebnisse für Szenario 2 mit τ = 50 / 55:
Simulation mit festen Weibull-Parametern shape=0.2 und scale=100; je 500 Wieder-
holungen für jede Kombination der Parameter cens={1,0}, jump={1,0}, τ={50,55},
n={1000,5000}; pro Kombination 6 Schätzungen für τ : mit disjunkten Intervallen oh-
ne und mit Verschiebung (dis.int, shift.int) und mit kontinuierlichen Intervallen (cont.int)
mit einer Breite von je 10 und 20 sowie τmax = 200; für jedes Setting sind die Ergebnisse
für Median, Mittelwert, RMSE und MAD mit der jeweils besten Güte unterstrichen

median mean RMSE MAD

cens=1; jump=1; τ=50; n=1000
dis.int10 50.00 53.20 11.31 5.52
dis.int20 60.00 64.40 28.10 18.80
cont.int10 46.00 47.99 10.81 7.60
cont.int20 45.00 52.60 23.01 13.42
shift.int10 49.00 51.13 9.81 5.78
shift.int20 54.00 60.11 23.88 13.41

cens=1; jump=1; τ=50; n=5000
dis.int10 50.00 56.16 16.60 6.16
dis.int20 60.00 72.60 35.16 22.76
cont.int10 47.00 51.87 14.21 6.97
cont.int20 47.00 58.17 28.44 13.93
shift.int10 49.00 54.19 14.21 6.03
shift.int20 55.00 64.31 30.03 15.31

cens=1; jump=1; τ=55; n=1000
dis.int10 50.00 57.76 13.12 8.50
dis.int20 60.00 69.64 27.69 16.26
cont.int10 50.00 53.08 12.29 7.83
cont.int20 50.00 57.65 22.78 13.47
shift.int10 54.00 56.72 11.07 6.51
shift.int20 57.00 64.15 22.64 11.93
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median mean RMSE MAD

cens=1; jump=1; τ=55; n=5000
dis.int10 60.00 62.62 14.28 9.30
dis.int20 60.00 70.60 27.14 15.60
cont.int10 52.00 55.61 10.08 5.80
cont.int20 52.00 60.11 21.28 11.25
shift.int10 56.00 59.19 10.42 5.61
shift.int20 57.00 65.04 22.01 11.26

cens=1; jump=0; τ=50; n=1000
dis.int10 40.00 42.40 19.90 14.68
dis.int20 40.00 54.52 32.39 20.32
cont.int10 35.00 38.14 21.60 17.84
cont.int20 34.00 44.36 31.94 23.82
shift.int10 39.00 41.40 17.59 14.14
shift.int20 39.00 51.42 29.08 19.20

cens=1; jump=0; τ=50; n=5000
dis.int10 40.00 47.78 20.12 12.22
dis.int20 40.00 55.24 31.58 19.04
cont.int10 40.00 42.57 18.35 13.15
cont.int20 36.00 48.80 32.80 22.03
shift.int10 45.00 46.89 15.75 9.29
shift.int20 45.00 54.29 29.79 16.52

cens=1; jump=0; τ=55; n=1000
dis.int10 40.00 45.22 19.70 15.90
dis.int20 40.00 55.00 29.25 20.04
cont.int10 38.00 39.93 22.18 19.38
cont.int20 36.00 44.74 28.99 23.46
shift.int10 41.00 43.55 19.49 15.96
shift.int20 45.00 52.36 25.88 17.54

cens=1; jump=0; τ=55; n=5000
dis.int10 50.00 51.82 16.94 10.88
dis.int20 60.00 62.84 34.89 22.42
cont.int10 44.00 47.06 17.64 14.12
cont.int20 41.00 52.05 29.86 21.29
shift.int10 48.00 50.74 15.08 10.52
shift.int20 51.00 58.13 26.68 15.65
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median mean RMSE MAD

cens=0; jump=1; τ=50; n=1000
dis.int10 50.00 52.68 8.56 4.20
dis.int20 60.00 64.80 27.03 18.24
cont.int10 46.00 47.56 8.90 6.36
cont.int20 45.00 51.16 20.17 11.70
shift.int10 49.00 51.37 8.90 5.04
shift.int20 55.00 59.23 20.47 11.97

cens=0; jump=1; τ=50; n=5000
dis.int10 50.00 54.84 11.66 4.84
dis.int20 60.00 70.56 30.76 20.60
cont.int10 48.00 51.14 9.81 5.73
cont.int20 47.00 55.22 19.29 10.44
shift.int10 49.00 52.88 9.41 4.78
shift.int20 55.00 60.57 20.44 11.58

cens=0; jump=1; τ=55; n=1000
dis.int10 60.00 58.06 12.35 8.32
dis.int20 60.00 68.76 24.82 14.72
cont.int10 51.00 52.32 9.23 6.95
cont.int20 50.00 56.09 19.57 11.80
shift.int10 54.00 56.34 9.73 6.23
shift.int20 57.00 62.67 19.88 10.54

cens=0; jump=1; τ=55; n=5000
dis.int10 60.00 62.92 14.23 9.26
dis.int20 60.00 69.76 26.79 14.76
cont.int10 52.00 54.80 8.12 4.83
cont.int20 52.00 59.59 21.90 10.68
shift.int10 56.00 58.55 9.58 4.93
shift.int20 58.00 65.51 24.06 11.54

cens=0; jump=0; τ=50; n=1000
dis.int10 40.00 42.42 17.33 13.66
dis.int20 40.00 52.88 26.46 17.28
cont.int10 35.00 36.93 18.05 16.18
cont.int20 33.00 41.90 27.05 21.35
shift.int10 39.00 40.45 14.98 12.55
shift.int20 40.00 49.23 23.52 15.99
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median mean RMSE MAD

cens=0; jump=0; τ=50; n=5000
dis.int10 40.00 44.40 14.44 10.56
dis.int20 40.00 52.32 27.58 16.92
cont.int10 40.00 40.57 15.33 12.51
cont.int20 36.00 43.45 26.14 18.94
shift.int10 44.00 45.15 12.81 8.15
shift.int20 43.00 49.58 21.34 13.14

cens=0; jump=0; τ=55; n=1000
dis.int10 40.00 43.42 16.51 13.90
dis.int20 40.00 52.64 25.00 17.86
cont.int10 37.00 38.34 19.96 17.98
cont.int20 36.00 42.35 25.91 21.70
shift.int10 40.50 42.26 16.54 14.43
shift.int20 43.00 49.05 20.94 15.43

cens=0; jump=0; τ=55; n=5000
dis.int10 50.00 50.12 12.98 8.72
dis.int20 60.00 58.68 28.34 18.14
cont.int10 45.00 45.00 14.40 12.48
cont.int20 41.00 47.01 22.76 17.65
shift.int10 48.00 49.30 12.00 8.76
shift.int20 51.00 54.95 20.98 12.20

Insgesamt fallen in beiden Szenarien die Schätzergebnisse für cens=1, d.h. für jene
Settings in denen die Personen unter Risiko um die zensierten Beobachtungen korrigiert
wurden (vgl. Kap. 2.3), ähnlich zu denen mit cens=0 aus. Bereits aus diesen, im Be-
zug auf die Lage des Change-Points, eindeutigen Daten ist erkennbar, dass bei allen drei
Schätzmethoden im Allgemeinen eine Unterschätzung stattfindet. Wesentlich deutlicher
wird dies aus den Ergebnissen der Settings ohne Sprung in der Hazardrate (jump=0 ), was
eher der Realität entspricht, da bei tatsächlich beobachteten Daten der Übergang von der
anfänglich abfallenden zu einer konstanten Sterberate im Allgemeinen stetig ist.

Als direkten Vergleich zu den bisher untersuchten Settings mit jump=1 betrachten wir
nun den Fall {cens=0; jump=0; τ=90; n=5000} ohne Sprung aus Szenario 1. Hier ist der
Bias deutlich größer und es findet eine noch stärkere Unterschätzung statt, insbesondere
weicht der Median über 10 Tage vom tatsächlichen τ ab, für cont.int20 sogar um 20 Tage.
Auch der MAD ist hier wesentlich höher als in den Settings mit Sprung. Für n=1000 ist
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die Differenz zwischen dem wahren und dem geschätzten Change-Point noch größer, was
sowohl am Median als auch am arithmetischen Mittel der geschätzten Werte erkennbar
ist. In den übrigen Settings ohne Sprung zum Zeitpunkt τ sind die Abweichungen nach
unten ähnlich bzw. teilweise noch stärker ausgeprägt.

Im 2. Szenario ist der Bias für jump=0 im Allgemeinen geringer als in Szenario 1,
jedoch wird der wahre Change-Point auch hier tendenziell unterschätzt. Beispielsweise ist
das arithmetische Mittel im Setting {cens=0; jump=0; τ=55; n=5000} bei 54,95, d.h.
im Mittel wurde der wahre Change-Point fast exakt geschätzt. Allerdings ist auch hier zu
beachten, dass es viele Schätzungen mit großen Werten gibt, welche den Mittelwert nach
oben verzerren (vgl. zugehörigen Boxplot im Anhang A.2).

Möglicherweise sind die Abweichungen zwischen den geschätzten Werten und dem
tatsächlichen τ geringer, weil sich der Change-Point mit τ = 50 bzw. τ = 55 an einer
Stelle befindet, an welcher die Hazardfunktion der Weibullverteilung relativ steil ist und
somit der Übergang zur konstanten Hazardrate auch ohne Sprung eindeutiger ist als in
Szenario 1 (vgl. Abb. 2 zur theoretischen Hazardfunktion).

Um zu untersuchen, welche Schätzungen sich im Fall τ = τmax ergeben, d.h. wenn der
wahre Change-Point dem maximal in Frage kommenden τ̂ entspricht, wurde ein weiteres
Szenario mit τ = 360 erstellt. Die entsprechenden Simulationsergebnisse sind in Tabelle 4
zu finden, welche analog zu denen der ersten beiden Szenarien dargestellt sind. Zusätzlich
gibt es nun jedoch eine Spalte “prop.taumax“ für den Anteil der Schätzungen mit τ̂ = τmax.

Besonders auffällig ist in den Ergebnissen der Fall {cens=0; jump=1; τ=360; n=5000},
welcher die Schätzung mit dem geringsten MAD (=1.04) aus allen Settings der drei be-
trachteten Szenarien enthält. Dabei ist jedoch zu beachten, dass der Anteil für τ̂ = τmax

für eben dieses Ergebnis, also den Fall dis.int20, 95% entspricht, wobei nicht bekannt ist,
wie oft dabei eine Überschätzung des wahren Change-Points stattgefunden hat. Da die
Schätzungen ausschließlich nach unten vom tatsächlichen Wert für τ abweichen können,
ist der MAD in diesem Setting entsprechend gering. Im Fall des kleineren Stichproben-
umfangs von n=1000 weichen die Schätzungen generell sehr weit nach unten ab, sodass
der Anteil für τ̂ = τmax dann kaum mehr eine Rolle spielt.
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Tabelle 3: Ergebnisse für Szenario 3 mit τ = 360:
Simulation mit festen Weibull-Parametern shape=0.2 und scale=100; je 500 Wie-
derholungen für jede Kombination der Parameter cens={1,0}, jump={1,0}, τ={360},
n={1000,5000}; pro Kombination 6 Schätzungen für τ : mit disjunkten Intervallen ohne
und mit Verschiebung (dis.int, shift.int) und mit kontinuierlichen Intervallen (cont.int)
mit einer Breite von je 10 und 20 sowie τmax = 360; für jedes Setting sind die Ergebnis-
se für Median, Mittelwert, RMSE und MAD mit der jeweils besten Güte unterstrichen;
“prop.taumax“ gibt den Anteil der Schätzungen mit τ̂ = τmax an

median mean RMSE MAD prop.taumax

cens=1; jump=1; τ=360; n=1000
dis.int10 200.00 205.56 160.61 154.44
dis.int20 260.00 269.96 105.73 90.04 0.11
cont.int10 197.00 200.13 165.60 159.87
cont.int20 258.00 262.78 111.20 97.22 0.01
shift.int10 189.00 194.22 171.29 165.78
shift.int20 255.00 255.85 117.29 104.15 0.02

cens=1; jump=1; τ=360; n=5000
dis.int10 340.00 332.00 41.12 28.00 0.31
dis.int20 360.00 350.00 21.61 10.00 0.72
cont.int10 336.00 328.44 43.26 31.56 0.04
cont.int20 348.00 343.13 24.95 16.87 0.11
shift.int10 333.50 325.95 46.27 34.05 0.07
shift.int20 356.00 345.41 26.04 14.59 0.22

cens=1; jump=0; τ=360; n=1000
dis.int10 140.00 148.84 214.73 211.16
dis.int20 180.00 190.60 177.23 169.40
cont.int10 143.00 146.02 217.24 213.98
cont.int20 177.50 182.80 184.34 177.20
shift.int10 139.00 145.00 218.24 215.00
shift.int20 178.00 184.37 182.64 175.63

cens=1; jump=0; τ=360; n=5000
dis.int10 230.00 231.18 134.17 128.82
dis.int20 260.00 263.68 106.01 96.32 0.03
cont.int10 222.00 226.12 138.73 133.88
cont.int20 253.00 255.90 112.22 104.10 0.01
shift.int10 221.50 224.78 140.14 135.22
shift.int20 258.00 260.15 108.67 99.85 0.01
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median mean RMSE MAD prop.taumax

cens=0; jump=1; τ=360; n=1000
dis.int10 260.00 259.74 113.22 100.26 0.03
dis.int20 320.00 320.48 55.61 39.52 0.32
cont.int10 259.00 257.66 113.40 102.34
cont.int20 323.00 313.72 59.72 46.28 0.03
shift.int10 249.00 249.19 122.02 110.81 0.01
shift.int20 315.50 309.00 66.23 51.00 0.07

cens=0; jump=1; τ=360; n=5000
dis.int10 360.00 355.04 12.00 4.96 0.72
dis.int20 360.00 358.96 4.56 1.04 0.95
cont.int10 353.00 351.13 13.04 8.87 0.09
cont.int20 353.00 351.83 10.65 8.17 0.12
shift.int10 358.00 353.27 12.42 6.73 0.19
shift.int20 359.00 356.78 6.62 3.22 0.33

cens=0; jump=0; τ=360; n=1000
dis.int10 160.00 167.70 195.65 192.30
dis.int20 200.00 210.76 156.57 149.24 0.01
cont.int10 162.00 164.36 198.78 195.64
cont.int20 201.50 202.97 163.70 157.03
shift.int10 159.00 161.64 201.42 198.36
shift.int20 199.00 203.90 162.38 156.10

cens=0; jump=0; τ=360; n=5000
dis.int10 260.00 256.28 109.64 103.72
dis.int20 280.00 286.96 81.13 73.04 0.03
cont.int10 252.50 252.13 113.22 107.87
cont.int20 278.00 277.22 89.71 82.78 0.01
shift.int10 249.00 251.10 114.31 108.90
shift.int20 279.00 280.46 87.16 79.54 0.01

Somit geht auch aus den Ergebnissen dieses dritten Szenarios hervor, dass der wahre
Change-Point tendenziell unterschätzt wird. Allerdings ist für τ = 360 der Unterschied
zwischen den Schätzungen mit jump=1 und jump=0 bzgl. der Abweichung vom tatsäch-
lichen τ noch extremer als in den beiden zuvor betrachteten Szenarien. Dabei sollte jedoch
beachtet werden, dass die Aussagekraft der Ergebnisse mit jump=0 in diesem Szenario
aufgrund der sehr hohen Werte des RMSE und des MAD eher gering ist. Auch aus den
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Boxplots, wie beispielhaft für das Setting {cens=0; jump=0; τ=360; n=5000} in Abb. 4
dargestellt, ist erkennbar, dass für τ = 360 sowohl der Interquartilsabstand als auch der
Abstand zwischen den geschätzten Minima und Maxima deutlich größer ist, als in den
Settings der beiden anderen Szenarien. Eine mögliche Begründung liegt darin, dass die
Hazardrate der Weibullverteilung für die in den Simulationen gewählten Parameter zum
Zeitpunkt t = 360 bereits vergleichsweise flach ist, sodass sich aus der Change-Point-
Schätzung in vielen Fällen ein deutlich geringerer Wert ergibt (vgl. Plot der theoretischen
Hazardfunktion in Abb.13 im Anhang).
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Abbildung 4: Boxplots der Change-Point-Schätzer für die drei Schätzverfahren mit Inter-
vallbreiten 10 und 20 im Setting cens=0; jump=0; τ=360; n=5000

Die Boxplots für alle übrigen Settings der beiden Szenarien sind im Anhang A.2 zu
finden.

Um einen Überblick zu erhalten, für welche der drei Methoden die Schätzungen die
größte Genauigkeit haben, sind in jedem Setting jeweils für RMSE und MAD die Er-
gebnisse mit dem geringsten Wert unterstrichen, und für Median und Mittelwert jene,
welche am nächsten am vorgegebenen τ liegen. Zum einen ist insgesamt auffällig, dass
die Schätzungen, welche mit einer Intervallbreite von 10 Tagen durchgeführt wurden, in
der Mehrheit der Fälle eine höhere Güte aufweisen. Bezüglich des MAD trifft dies im
zweiten Szenario mit τ = 50/55 sogar auf alle untersuchten Settings zu. Auffällig ist, dass
meist dann die Schätzung mit Intervallbreite 20 die besseren Ergebnisse liefert, wenn τ

ein Vielfaches von 20 ist, insbesondere ist die Güte dieser Schätzungen in allen Settings
mit τ = 360 höher.

Weiterhin ist der RMSE für cont.int nur in 7 der 40 Settings am geringsten, der zuge-
hörige MAD sogar nur in einem Fall, nämlich für {cens=0; jump=1; τ=55; n=5000}. Aus
diesem Grund und weil bei Verwendung dieser Schätzmethode das Problem der Abhän-
gigkeit zwischen den p-Werten verschiedener Intervalle besteht (vgl. Kap. 2.2), sollten die
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beiden Verfahren mit diskreten Intervallen gegenüber jenem mit fortlaufenden Intervallen
bevorzugt werden. Deshalb wird die Funktion für die Schätzung mittels kontinuierlicher
Intervalle auch bei der Implementierung des R-Paketes nicht mit berücksichtigt. Aus den
Ergebnissen für dis.int und shift.int ist jedoch nicht eindeutig feststellbar, welche Metho-
de eine höhere Genauigkeit aufweist, wobei zum Teil trotzdem eine gewisse Systematik
erkennbar ist. Beispielsweise liefert in Szenario 1 für fast alle Settings mit Sprung die
Methode dis.int einen geringeren MAD und für die Settings ohne Sprung die Methode
shift.int. Man könnte an dieser Stelle vermuten, dass das Verfahren mit Intervallverschie-
bung für Daten mit einem stetigen Übergang zur konstanten Hazardrate besser geeignet
ist, allerdings wird dies im zweiten Szenario nicht bestätigt, da die Ergebnisse dort nicht
diese Systematik aufweisen. Hierfür sind gegebenenfalls noch weitere Tests sinnvoll.

3.4 Weiterführende Simulationen

3.4.1 Schätzungen mit tatsächlichem λ

Um zu untersuchen, ob die großen Abweichungen vom wahren Change-Point in den Set-
tings ohne Sprung ihre Ursache in der Schätzung der konstanten Hazardrate λ haben,
wurde eine zusätzliche Simulation durchgeführt. Hierbei wurde der Change-Point für ei-
nen simulierten Datensatz jeweils einmal wie bisher mit λ̂ und zusätzlich mit dem wahren
λ geschätzt, welches sich aus der Weibull-Hazardfunktion berechnen lässt. Die verwendete
konstante Hazardrate ergibt sich nach (7) aus Kapitel 3.1 zu λ = γ

η

(
τ
η

)γ−1
≈ 0,002. Be-

trachtet werden nur die Settings mit cens=1/0, jump=0 und n=5000, da im ersten und
zweiten Szenario in den Fällen ohne Sprung zum Zeitpunkt t = τ die Abweichung vom
wahren Change-Point wesentlich größer war als mit Sprung in der Hazardrate. Beispiel-
haft soll nur der Fall τ = 90 betrachtet werden, wobei τ̂ jeweils mit λ̂ und mit wahren λ
geschätzt wurde.

Aus den Ergebnissen in Tabelle 4 ist ersichtlich, dass im Fall cens=1 sich der Medi-
an für die Schätzungen mit wahrem λ und jene mit λ̂ nur wenig unterscheidet. Sowohl
der RMSE und der MAD sind zwar mit tatsächlichem λ im Allgemeinen geringer, da es
anscheinend weniger Ausreißer in den Schätzungen gibt, was auch aus den Mittelwerten
ersichtlich ist, jedoch wird der Change-Point nach wie vor deutlich unterschätzt. Noch
geringer sind die Unterschiede, wenn in der Schätzung keine Korrektur um zensierte Be-
obachtungen stattfindet. Hier weichen sämtliche Ergebnisse für die Schätzung mit λ̂ noch
weniger von denen mit wahrem λ ab. Die Ursache für die tendenzielle Unterschätzung des
wahren Change-Points scheint somit nicht an der Schätzung der konstanten Hazardrate
zu liegen.
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Tabelle 4: Vergleich der Schätzungen mit geschätzter Hazardrate λ̂ und wahrem λ:
Simulation mit festen Weibull-Parametern shape=0.2 und scale=100; je 500 Wiederho-
lungen für jede Kombination der Parameter cens={1,0}, jump=0, τ=90, n=5000; pro
Kombination 6 Schätzungen für τ : mit disjunkten Intervallen ohne und mit Verschiebung
(dis.int, shift.int) und mit kontinuierlichen Intervallen (cont.int) mit einer Breite von je
10 und 20 sowie τmax = 360

median mean RMSE MAD

cens=1; jump=0; τ=90; n=5000; mit λ̂
dis.int10 70.00 76.20 21.17 17.60
dis.int20 80.00 97.40 54.59 29.60
cont.int10 73.50 74.28 23.90 20.52
cont.int20 70.50 89.69 54.16 34.01
shift.int10 76.00 76.50 21.58 17.46
shift.int20 79.00 93.59 46.63 26.03

cens=1; jump=0; τ=90; n=5000; mit wahrem λ

dis.int10 80.00 76.00 18.60 16.20
dis.int20 80.00 83.20 17.55 14.80
cont.int10 73.00 73.14 20.22 18.60
cont.int20 70.00 73.93 22.90 21.19
shift.int10 76.00 75.39 18.46 15.85
shift.int20 79.00 82.90 17.04 14.04

cens=0; jump=0; τ=90; n=5000; mit λ̂
dis.int10 70.00 74.60 18.33 16.20
dis.int20 80.00 85.20 26.91 16.80
cont.int10 69.00 70.56 21.16 19.58
cont.int20 70.00 74.12 28.12 23.68
shift.int10 74.50 74.93 17.51 15.39
shift.int20 79.00 82.39 21.33 14.69

cens=0; jump=0; τ=90; n=5000; mit wahrem λ

dis.int10 70.00 74.50 18.14 16.10
dis.int20 80.00 81.40 16.85 14.20
cont.int10 70.00 70.60 21.13 19.52
cont.int20 70.00 71.19 22.35 21.01
shift.int10 75.00 74.74 17.71 15.58
shift.int20 79.00 79.98 15.13 12.82
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3.4.2 Untersuchung der Güte der Konfidenzintervalle

Für die ersten beiden Schätzmethoden, d.h. mit diskreten und kontinuierlichen Intervallen,
wurde für die Fälle {cens=1; jump=0/1; τ=90; n=1000/5000} zusätzlich eine Simulation
mit Bootstrapping durchgeführt. Im Gegensatz zu den bisherigen Simulationen wurden
die vier Schätzungen hierbei nicht für ein und denselben Datensatz eines Settings berech-
net, sondern für jedes der Verfahren dis.int und cont.int mit Intervallbreiten 10 und 20
jeweils 500 Datensätze erzeugt und die Change-Point-Schätzungen ermittelt. Der Grund
liegt in der hohen Rechenzeit bei Verwendung des Bootstrap-Verfahrens. Die daraus resul-
tierenden Ergebnisse für Median, Mittelwert, RMSE und MAD sind in bekannter Form in
Tabelle 5 aufgelistet. Zu beachten ist dabei, dass die Ergebnisse aufgrund des gleichen Si-
mulationsaufbaus mit denen aus Szenario 1 qualitativ übereinstimmen, die genauen Werte
jedoch leicht abweichen, was auf die Streuung der mit Zufallszahlen erzeugten Daten zu-
rückzuführen ist.

Zusätzlich wurden nun für jeden dieser 500 Datensätze 1000 Bootstrap-Samplings
mit zugehöriger Change-Point-Schätzung durchgeführt und die zugehörigen Bootstrap-
Perzentil-Intervalle zum Niveau α=5% berechnet. Details zu diesen Konfidenzintervallen,
welche nicht wie üblich auf einer Normal-Approximation beruhen, sondern die tatsäch-
lich beobachtete Verteilung der τ̂ verwenden, sind in Kapitel 4.1.3 zu finden. Aus den
resultierenden Intervallen wurde berechnet, wie hoch der Anteil jener Schätzungen ist,
für die der wahre Change-Point τ = 90 vom zugehörigen Intervall überdeckt wird. Diese
Überdeckungsrate ist in Tabelle 5 in der Spalte “cover“ zu finden.

Vergleicht man für jedes Ergebnis die Fälle jump=1 und jump=0, so ist die Über-
deckungsrate für die Daten mit Sprung fast immer höher, wobei der wahre Change-Point
dabei auch deutlich weniger unterschätzt wird, wie sich auch bereits aus den Simulationen
in Kapitel 3.3 ergeben hat. Im Setting {jump=1; τ=90; n=5000}, in welchem die Daten
wieder die meiste Information bezüglich des Change-Points enthalten, überdecken die
Konfidenzintervalle für die Schätzung dis.int10 den Zeitpunkt τ sogar zu 100%. Insgesamt
liegt die Überdeckungsrate jedoch in den meisten der betrachteten Fälle unter 90%, für
jump=0 sogar oft deutlich darunter.

Allerdings wurden in dieser Simulation zu wenige Szenarien betrachtet, um aus den
Ergebnissen allgemeine Aussagen treffen zu können. Ein Grund, weshalb nur diese vier
Settings untersucht wurden, liegt in der hohen Rechenzeit. Insbesondere dauert die Durch-
führung der Simulation für eines dieser 16 betrachteten Fälle mit den hier verwendeten
Parametern bis zu 10 Tage. Deshalb ist die Simulation mit Bootstrapping Gegenstand
weiterer Untersuchungen außerhalb dieser Arbeit, wofür die in R geschriebene Funktion
zur Change-Point-Schätzung zunächst hinsichtlich der Laufzeit optimiert werden sollte.
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Tabelle 5: Simulation mit Bootstrap-Samplings:
je 500 Wiederholungen für jede Kombination der Parameter cens=1, jump={1,0}, τ=90,
n={1000,5000}; pro Kombination 4 Schätzungen für τ : mit disjunkten Intervallen ohne
Verschiebung (dis.int) und fortlaufenden Intervallen (cont.int) einer Breite von je 10 und
20 sowie τmax = 360; ’cover’ bezeichnet die Überdeckungsrate der Perzentil-Intervalle

median mean RMSE MAD cover

jump=1; τ=90; n=1000
dis.int10 90.00 87.02 13.45 8.34 0.96
dis.int20 100.00 98.44 28.24 17.72 0.97
cont.int10 84.00 83.19 13.68 10.08 0.73
cont.int20 83.00 89.35 25.27 15.03 0.89

jump=1; τ=90; n=5000
dis.int10 90.00 95.30 16.63 5.62 1.00
dis.int20 100.00 108.84 34.58 20.12 0.70
cont.int10 87.00 90.83 14.79 6.99 0.87
cont.int20 87.00 98.95 35.07 16.21 0.95

jump=0; τ=90; n=1000
dis.int10 60.00 63.88 33.40 29.32 0.64
dis.int20 80.00 82.56 41.98 29.20 0.85
cont.int10 57.00 60.14 36.37 33.01 0.46
cont.int20 62.00 73.29 47.89 37.16 0.76

jump=0; τ=90; n=5000
dis.int10 80.00 79.30 23.46 18.38 0.84
dis.int20 80.00 97.20 51.20 27.88 0.91
cont.int10 72.00 74.35 28.00 21.58 0.64
cont.int20 70.00 84.21 47.77 31.04 0.83

3.5 Fazit zu den Simulationsergebnissen

Zusammenfassend lässt sich aus den Simulationsergebnissen feststellen, dass der wahre
Change-Point bei Schätzung mithilfe des Verfahrens nach [Küchenhoff u. a., 2015] tenden-
ziell unterschätzt wird. Besonders stark sind die Abweichungen des geschätzten Wertes τ̂
vom wahren τ im Fall eines stetigen Übergangs in der Hazardrate zum Zeitpunkt t = τ .
Dies wirkt sich auch auf die Überdeckungsrate der Konfidenzintervalle aus, welche in den
Ergebnissen aus Kapitel 3.4.2 für die meisten Fälle nicht zufriedenstellend ist, was weitere
Tests erforderlich macht.



3 SIMULATIONSSTUDIE 34

Bei Verwendung der Schätz-Methoden mit Intervallverschiebung oder fortlaufenden
Intervallen ergeben sich zum Teil noch etwas größere Abweichungen nach unten als für
das Verfahren ohne Intervallverschiebung, was jedoch auch daran liegt, dass für letzte-
res ausschließlich die Intervallgrenzen als Schätzergebnis in Frage kommen können. Aus
diesem Grund liefert das Verfahren mit Intervallverschiebung in den Fällen, bei denen
der Change-Point nicht als Vielfaches von 10 definiert wurde (d.h. für τ=55), sowohl
im Bezug auf den Median als auch auf den MAD bessere Ergebnisse. Weiterhin ist aus
den Ergebnissen ersichtlich, dass der MAD für die Methode mit fortlaufenden Intervallen
(cont.int) in fast allen untersuchten Fällen am größten ist. Für die übrigen zwei Methoden
ist jedoch keine eindeutige Tendenz zu erkennen. Deshalb wird für das R-Paket auf die
Implementierung der Funktion für fortlaufende Intervalle verzichtet und nur die Methoden
mit diskreten Intervallen (mit und ohne Verschiebung) berücksichtigt.

Aus den Ergebnissen für die Settings mit Sprung in der Hazardrate wird deutlich, dass
die Schätzung mithilfe der aus einem Binomialtest ermittelten p-Werte nach [Küchenhoff
u. a., 2015] theoretisch funktioniert. D.h. in einem Fall mit eindeutigem Übergang zwischen
abfallender und konstanter Sterberate ist der Bias für große Stichprobenumfänge relativ
gering. Gegebenenfalls sind weitere Nachforschungen notwendig, um die Ursache für die
vergleichsweise großen Abweichungen vom wahren Change-Point im Fall mit stetigem
Übergang in der Hazardrate zu finden.



4 R-PAKET CPEST 35

4 R-Paket CPest

Im Zuge dieser Arbeit wurde eine erste Version des R-Paketes CPest geschrieben, welches
eine Funktion zur Change-Point-Schätzung auf Grundlage des Verfahrens von [Küchen-
hoff u. a., 2015] beinhaltet. Zusätzlich ist eine Varianz-Schätzung mittels eines nichtpa-
rametrischen Bootstrap-Verfahrens möglich, wobei auch zwei Konfidenzintervalle für ein
gewünschtes α-Niveau ausgegeben werden. Für die grafische Darstellung der Schätzungen
ist außerdem eine plot-Funktion eingearbeitet.

4.1 Aufbau und Funktionsweise

Das Paket enthält die zentrale Funktion CPest für die Schätzung von τ , welche durch
den Benutzer aufgerufen werden kann. Nachfolgende Aufzählung gibt eine Übersicht über
die Argumente, welche der Funktion übergeben werden und zum Teil bereits mit default-
Werten vorbelegt sind.

• time: Vektor mit beobachteten Überlebens-/Zensierungszeiten Ti

• event: Vektor mit zugehörigem Status für jede Beobachtung
(0=zensiert/ 1=unzensiert)

• intwd: gewünschte Intervallbreite

• taumax: maximal für τ angenommener Wert (τmax)

• taumin = 0: optionales Minimum für den Change-Point-Schätzer

• shift = TRUE: Indikator für die Schätzung mit (default) oder
ohne Intervallverschiebung

• cens = TRUE: Berücksichtigung der zensierten Daten

• boot = FALSE: Erzeugung von Bootstrap-Samples

• alpha = 0.05: Konfidenzniveau

• B = 1000: Anzahl der Wiederholungen beim Bootstrapping

Um die Anwendung der Funktion möglichst einfach zu halten, sind vom Benutzer nur die
ersten vier Argumente zu übergeben. Da die Generierung von Bootstrap-Stichproben mit
zugehörigen Change-Point-Schätzungen bei einer großen Wiederholungszahl B eine nicht
unerhebliche Rechenzeit in Anspruch nimmt, wird der Bootstrap-Algorithmus standard-
mäßig nicht ausgeführt und das Argument boot muss vom Benutzer explizit auf TRUE
gesetzt werden.
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4.1.1 Funktion tau.est

Durch die Funktion tau.est wird der Change-Point mittels der Methode mit diskreten
Intervallen geschätzt. tau.est bildet damit die Basis, auf welche andere Funktionen in-
nerhalb des Paketes zugreifen. Der nachfolgende Code beinhaltet die für die Schätzung
notwendigen Teile des Funktionsrumpfes.

tau.est <- function(time, event, intwd, taumax, taumin, cens, move=0,...){
...
lambda.est <- sum(event[time>taumax]==1) / sum(time[time>taumax] - taumax)
pr = pexp(intwd, lambda.est) #probability for event within an interval
if(cens==TRUE) tcens <- time[which(event == 0)] #times of censored data
lim <- seq(taumin+move, (taumax+intwd+move), by=intwd) #interval limits
pv <- vector("numeric", length=length(lim)-1) #vector for p-values

for(k in 1:length(pv)){
x <- sum(event[time > lim[k] & time <= lim[k+1]])
n <- sum(time > lim[k])

if(cens==TRUE){
#n is corrected by time of right-censored data within interval k
n <- n - round(sum( (lim[k+1]
- tcens[tcens > lim[k] & tcens <= lim[k+1]] ) / (lim[k+1] - lim[k])))

}

pv[k] <- binom.test(x, n, pr, alternative="greater")$p.value
}

S <- c(rev(cumsum(rev(pv-0.25))), 0)
tau <- lim[which.max(S)] #estimatet tau
if(tau > taumax) tau <- taumax
list(CP.est=tau, ...)
}

Im oberen Teil wird aus den Beobachtungen mit time>taumax zunächst der Parame-
ter der Exponentialverteilung λ̂ (lambda.est) nach Formel (3) aus Kapitel 2.1 geschätzt,
wobei angenommen wird, dass für diese Beobachtungen die Hazardrate konstant ist. Dar-
aus ergibt sich mithilfe der Funktion pexp() die Wahrscheinlichkeit pr für ein Ereignis
innerhalb eines Intervalls der Breite intwd. Weiterhin wird eine Variable für die Zensie-
rungszeiten (tcens) sowie ein Vektor mit den Intervallgrenzen (lim) definiert. Der Befehl
für die Erzeugung dieser Sequenz enthält einen Parameter move, welcher einen Wert für
die Intervallverschiebung angibt. Da dies nur im Fall shift=TRUE, d.h. bei der Schätzme-
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thode mit verschobenen Intervallen, eine Rolle spielt, ist move per default mit 0 vorbelegt
und kann vom Anwender nicht verändert werden. Für die p-Werte wird ein “leerer“ Vek-
tor pv definiert, dessen Länge der Anzahl der aus den Funktionsargumenten ermittelten
Intervalle entspricht.

Innerhalb der for-Schleife werden nun für jedes Intervall zunächst die Anzahl der darin
vorkommenden Ereignisse x sowie die Zahl der Personen unter Risiko zu Beginn des
Intervalls n bestimmt. Für den Fall cens=TRUE wird die Variable n, entsprechend Formel
(6) aus Kapitel 2.3, nach unten korrigiert. Aus diesen Werten wird für jedes Intervall
mittels dem Befehl binom.test() ein exakter Binomialtest durchgeführt und der daraus
resultierende p-Wert an der entsprechenden Stelle des Vektors pv gespeichert.

Wie in Kapitel 2.2 beschrieben, entspricht der Change-Point τ jenem Wert, welcher
die Summe aus (4), also S∗(τ) =∑

k|ak−1≥τ (pvk−0.25), maximiert. S∗ lässt sich in R mit-
tels des Ausdrucks rev(cumsum(rev(pv-0.25))) darstellen, woraus im letzten Teil der
Funktion der Schätzer tau ermittelt wird.

Die if-Anweisung am Ende soll sicherstellen, dass die Funktion maximal das vorgege-
bene taumax als Schätzer zurückgibt, was der Annahme τ ≤ τmax entspricht.

4.1.2 Funktion int.shift

Diese Funktion dient der Schätzung des Change-Points im Falle shift=TRUE, also für die
Methode mit Intervallverschiebung. Wie in Kapitel 2.2 erläutert, lässt sich dieses Verfah-
ren so vorstellen, dass die Intervalle in jedem Iterationsschritt um t=1 verschoben und
jeweils ein Schätzer für τ ermittelt wird. Wie im nachfolgenden Auszug aus dem zuge-
hörigen R-Code ersichtlich, besteht die Funktion im Kern aus einer for-Schleife, welche
in jedem Durchlauf auf die Schätzfunktion tau.est zugreift. Die daraus resultierenden
Change-Point-Schätzer und das Maximum der zugehörigen Summe S werden in einer Er-
gebnismatrix res gespeichert. Diejenige Spalte der Matrix, für welche der Eintrag max.sum
maximal ist, enthält den Schätzer τ̂ , welcher letztendlich durch die Funktion zurückgege-
ben wird.

int.shift <- function(time, event, intwd, taumax, taumin, cens){
res <- matrix(NA, intwd, 2) #results
colnames(res) <- c("CPest", "max.sum")
...
for(s in 0:(intwd-1)){

est <- tau.est(time, event, intwd, taumax, taumin, cens, move=s)
res[s+1,1] <- est$CP.est
res[s+1,2] <- est$max.sum
...

}
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bestfit <- which.max(res[,"max.sum"]) #row with best fit
tau <- res[bestfit, "CPest"]
list(CP.est=tau, ...)
}

Innerhalb des R-Paketes wurde CPest als generische Funktion für S3-Klassen erstellt,
für welche noch geeignete Methoden angelegt werden müssen. Da das Paket nur eine
einzige Klasse CP für das Ergebnis der Change-Point-Schätzung enthält, ist eine default-
Methode ausreichend, auf die beim Aufruf der Funktion CPest zugegriffen wird. Weiterhin
soll für die Klasse CP eine eigene plot-Methode, sowie eine print- und eine summary-
Methode für die Ausgabe der Ergebnisse definiert werden. Nachfolgend werden die ein-
zelnen Funktionen mit Beispiel-Outputs genauer betrachtet.

4.1.3 Methode CPest.default

Abhängig davon, welche Methode für die Schätzung verwendet werden soll, wird inner-
halb von CPest.default zunächst die Funktion tau.est im Fall diskreter Intervalle oder
int.shift bei Intervallverschiebung aufgerufen. In beiden Fällen wird eine Liste zurück-
gegeben, welche den geschätzten Change-Point, die zugehörigen p-Werte und die Inter-
vallgrenzen enthält und als Variable tau gespeichert wird.

Im Fall boot=TRUE wird ein Bootstrap-Sampling mit B Wiederholungen durchgeführt.
D.h. aus den übergebenen Vektoren time und event wird ein Datensatz erzeugt, aus
welchem B ·n mal mit Zurücklegen gezogen wird, woraus wiederum B neue Datensätze
der Länge n entstehen. Die Bootstrap-Samples werden durch folgenden Code generiert:

data <- data.frame(time,event)
idx <- sample(x=1:nrow(data), size=B * nrow(data), replace=T)
bdata <- data[idx,]
bdata$sample <- rep(1:B, each=nrow(data))

Anschließend wird für jeden dieser Datensätze der Change-Point geschätzt, wobei wie-
derum die vom Benutzer gewünschte Schätz-Methode verwendet wird. Die sich daraus
ergebenden Schätzer für τ werden im Vektor b.tau gespeichert, wie aus nachfolgendem
R-Code ersichtlich ist.

b.tau <- vector("numeric", length=B)
if(shift){

for(b in 1:B){
b.tau[b] <- int.shift(bdata[bdata["sample"]==b,"time"],

bdata[bdata["sample"]==b,"event"],
intwd, taumax, taumin, cens)$CP.est

}
}
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else{
for(b in 1:B){
b.tau[b] <- tau.est(bdata[bdata["sample"]==b,"time"],

bdata[bdata["sample"]==b,"event"],
intwd, taumax, taumin, cens)$CP.est

}
}

Aus den Ergebnissen des Bootstrappings wird mittels sd() ein Schätzer ŝe für die Standard-
abweichung berechnet.

Weiterhin sollen zwei Konfidenzintervalle (KI) ausgegeben werden. Zum einen das
übliche KI mit Normal-Approximation, was durch

[τ̂ − zα/2 · ŝe ; τ̂ + z1−α/2 · ŝe]
α=0.05= [τ̂ −1.96 · ŝe ; τ̂ + 1.96 · ŝe]

definiert ist. Zum anderen wird ein Bootstrap-Perzentil-Intervall ermittelt. Dazu wer-
den die unter b.tau gespeicherten Werte der Größe nach geordnet, womit man eine
“Bootstrap-Verteilung“ erhält, welche mit F̂B(τ) bezeichnet sei. Das Perzentil-Intervall
ergibt sich aus den geschätzten Werten an den Positionen B · α2 und B · (1− α

2 ) zu

[F̂−1
B (α/2) ; F̂−1

B (1−α/2)]

was den 2,5%- und 97,5%-Quantilen dieser Verteilung entspricht (vgl. [Holling u. Gediga,
2013, S.277f]). Für die Intervalle kann der Funktion mit alpha ein gewünschtes α-Niveau
übergeben werden.

Abschließend wird dem Objekt tau, d.h. der Liste mit sämtlichen Ergebnissen aus der
Schätzung, noch die Klasse CP zugewiesen, sodass für Objekte, welche mit CPest erzeugt
wurden, auch eine plot- und eine summary-Funktion bereitgestellt werden kann.

4.1.4 Methode plot.CP

Für die grafische Darstellung stehen drei mögliche Plots zur Verfügung, deren Ausga-
be vom Benutzer durch entsprechende Argumente in der plot-Funktion gesteuert werden
kann. Der erste Plot, welcher standardmäßig beim Aufruf von plot(CP-Objekt ) aus-
gegeben wird, stellt die aus den Daten geschätzte Hazardrate dar. Dafür wird mithilfe
der Funktion muhaz() aus dem Paket von [Hess u. Gentleman, 2010] eine geglättete Ha-
zardfunktion geschätzt und diese mittels der zugehörigen plot-Funktion grafisch darge-
stellt. Zusätzlich wird in dem durch plot(muhaz(times, delta)) erstellten Plot der mit
CPest geschätzte Change-Point, der Schätzer λ̂ für die konstante Hazardrate sowie das
Bootstrap-Perzentil-Intervall ergänzt.

Um die Darstellung der Plots beim Anwenden von plot() auf ein CP-Objekt demons-
trieren zu können, wurde mithilfe der Funktion zur Datensimulation sim.survdata aus
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Kapitel 3 ein Beispieldatensatz simdat erzeugt und auf diesen die Funktion CPest mit
Intervallverschiebung angewendet. Der R-Code für die Simulation sowie der Aufruf der
plot-Funktion für das resultierende Objekt der Klasse CP ist nachfolgend dargestellt.

simdat <- sim.survdata(n=1000,tau=100,shape=0.2,scale=100,cens=T,jump=T)

cp_shift <- CPest(simdat$time, simdat$event, taumax=360, intwd=10,
shift=T, boot=T, B=1000)

plot(cp_shift, plot.pval=T, plot.boot=T)

Die Abbildungen 5 bis 7 zeigen die zugehörigen Grafiken, welche bei Aufruf des Pro-
grammcodes ausgegeben wurden.
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Abbildung 5: Für einen simulierten Datensatz mittels plot.CP erstellter Plot der geglät-
teten Hazardfunktion, welche mithilfe der muhaz-Funktion geschätzt wurde. Die Grafik
enthält zusätzlich die Schätzungen des Change-Points und der konstanten Hazardrate
sowie das aus den Bootstrap-Samples ermittelte Perzentil-Intervall.
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Abbildung 6: Mit plot.CP erstellter Plot der p-Werte aus einer Schätzung mit diskreten
Intervallen der Länge 10 (mit Intervallverschiebung) für einen mit τ = 100 simulierten
Datensatz mit Sprung in der Hazardrate, welcher zensierte Beobachtungen enthält.
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Abbildung 7: Mit plot.CP erstellter Boxplot der geschätzten Werte für τ aus einem Boots-
trapping mit 1000 Wiederholungen für einen simulierten Datensatz mit τ = 100.
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4.1.5 print- und summary-Methoden

Weil diese Methoden nur dazu dienen, die Ergebnisse der Schätzung in einer ansprechen-
den Form auszugeben, soll an dieser Stelle auf Details zum zugehörigen R-Code verzichtet
werden. Auf die print-Methode wird bei Aufruf eines Objektes der Klasse CP zugegriffen,
wobei unabhängig davon, ob eine Varianzschätzung per Bootstrap-Verfahren durchgeführt
wurde, nur der geschätzte Change-Point ausgegeben wird. Durch Aufruf der summary-
Funktion für ein CP-Objekt, enthält der Output hingegen zusätzlich die geschätzte Vari-
anz, sowie die beiden Konfidenzintervalle (vgl. Kap. 4.1.3), sofern diese berechnet wurden.

Nachfolgend sind die Outputs der print- und summary-Methoden für den in Kapitel
4.1.4 erstellten Beispieldatensatz dargestellt.

cp_shift

##
## Call:
## CPest.default(time = simdat$time, event = simdat$event, intwd = 10,
## taumax = 360, shift = T, boot = T, B = 1000)
##
##
## estimated change point: 99

summary(cp_shift)

##
## Call:
## CPest.default(time = simdat$time, event = simdat$event, intwd = 10,
## taumax = 360, shift = T, boot = T, B = 1000)
##
## change point:
## Estimate Std.Error
## 99 18.975
##
## confidence intervals (alpha=0.05):
## percentile interval: [33, 109]
## normal approximation: [61.809, 136.191]
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5 Anwendungsbeispiele

In diesem Kapitel soll das in R geschriebene Paket und somit das Verfahren zur Change-
Point-Schätzung nach [Küchenhoff u. a., 2015] auf zwei Datensätze angewandt werden,
welche empirisch erhobene Überlebenszeiten von Intensivpatienten enthalten. Die Daten
stammen in beiden Fällen aus Studien, welche in Zusammenarbeit mit dem Klinikum
der Universität München durchgeführt wurden. Ein gemeinsames Ziel beider Forschungs-
arbeiten war das Finden eines Wendepunkts, ab welchem die Sterberate in Bezug auf
einen chirurgischen Eingriff (Datensatz 1) bzw. nach Einlieferung auf eine Intensivstati-
on (Datensatz 2) konstant bleibt. Wie in [Küchenhoff u. a., 2015] beschrieben, lässt sich
der Beobachtungszeitraum dabei in verschiedene Phasen einteilen, welche sich hinsichtlich
des Sterberisikos unterscheiden. Demnach befinden sich die Patienten anfänglich in einer
akuten Phase, mit sehr hohem Sterberisiko, welches in der darauffolgenden post-akuten
Phase allmählich sinkt. Der sogenannte Change-Point trennt nun diese zwei Zeiträume
von der Langzeitmortalität, in der die Sterberate als konstant angenommen wird. Durch
eine genaue Definition dieses Wendepunkts anhand von empirisch erhobenen Daten soll
eine bessere Analyse der Risikofaktoren, getrennt nach den genannten Phasen, möglich
sein und damit sowohl die Sterberate für die akute Phase als auch die Langzeitmortalität
gesenkt werden. Im Folgenden werden die aus diesen Studien resultierenden Ergebnis-
se mit denen verglichen, welche sich aus dem in dieser Arbeit vorgestellten Verfahren
ergeben.

5.1 Datensatz 1 - Überlebenszeiten nach Leberresektion

Details zur Studie

Dieser Datensatz ist in Zusammenarbeit zwischen dem Klinikum der Universität Mün-
chen und dem Institut für Statistik der Ludwig-Maximilians-Universität entstanden und
war Gegenstand einer Studie, welche die Dauer der postoperativen Phase nach partieller
Hepatektomie (Leberresektion) untersucht (vgl. [Schiergens u. a., 2015]). Die Forschungs-
arbeit fand vor dem Hintergrund statt, dass die Sterberate nach einem solchen operativen
Eingriff in den letzten Jahrzehnten signifikant gestiegen ist. Als Ursache werden Fort-
schritte in der Diagnose, verbesserte Operationstechniken und eine bessere perioperative
Betreuung angeführt, was zur Folge hat, dass immer mehr Patienten für eine Resektion
von Tumoren und Metastasen in Frage kommen. Somit erhöht sich auch die Rate der
durch einen solchen chirurgischen Eingriff verursachten Todesfälle. Ein Ziel der Studie
ist es, durch bessere Schätzung der Prädiktoren, die Patienten in Risikogruppen einzu-
teilen und somit eine bessere Selektion zu ermöglichen, was wiederum die postoperative
Sterberate verringern soll.

Hierfür wurden innerhalb einer prospektiven Datenerhebung zwischen 2003 und 2013
Patienten erfasst, bei denen eine Resektion von bösartigem Lebergewebe durchgeführt
wurde. Nach Bereinigung um Patienten mit unvollständigem Erhebungsbogen ergab sich
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daraus ein Datensatz mit 784 Beobachtungen.

Ein Problem, welches in dieser Studie untersucht wurde, ist nach [Schiergens u. a.,
2015] die Definition der postoperativen Mortalität. Demnach werden dieser Sterberate
für gewöhnlich nur diejenigen Tode zugerechnet, welche innerhalb von 30 Tagen nach ei-
ner Operation bzw. während des Krankenhausaufenthalts stattfinden (30-Tage und “in
Hospital“ Mortalität). Durch medizinische Fortschritte könne der durch Komplikationen
nach einer Operation verursachte Todeszeitpunkt inzwischen jedoch solange hinausgezö-
gert werden, dass dieser erst mehr als 30 Tage nach dem Eingriff bzw. nach Verlassen des
Krankenhauses eintritt. Somit werden diese Fälle der Langzeitüberlebensrate zugerechnet
und die postoperative Mortalität im Allgemeinen unterschätzt. Um die Risikofaktoren
richtig analysieren und somit die Sterberate nach einem chirurgischen Eingriff verringern
zu können, ist es nach [Schiergens u. a., 2015] allerdings wichtig, die akute postoperative
Phase (auch APP oder “acute postoperative period“) anhand der erhobenen Daten ge-
nau zu definieren. Das vorrangige Ziel der Studie von [Schiergens u. a., 2015] ist deshalb
das Schätzen der APP nach dem operativen Entfernen von bösartigen Leber-Tumoren.
Dafür soll ein Zeitpunkt τ gefunden werden, welcher die akute von der postakuten Phase
nach einem chirurgischen Eingriff trennt, wobei für letztere eine konstante Hazardrate
angenommen wird. Durch die individuelle Schätzung der APP für Patienten mit Leberre-
sektion soll es nach [Schiergens u. a., 2015] möglich sein, Risikofaktoren zu identifizieren,
wodurch eine bessere Selektion der Patienten und damit eine Verringerung der postope-
rativen Sterberate ermöglicht würde.

Die Ergebnisse dieser Studie sind in [Schiergens u. a., 2015] ausführlich dargelegt, ins-
besondere die ermittelte Dauer der APP und die sich aus der darauf aufbauenden Regres-
sion ergebenden Risikofaktoren für postoperative Mortalität. Für diese Arbeit ist jedoch
hauptsächlich die Schätzung des Change-Points von Interesse, welcher in [Schiergens u. a.,
2015] mit “transition point t“ bezeichnet ist. Der Zeitpunkt, welcher die akute von der
postakuten Phase nach einer Operation trennt, wird dabei ähnlich dem Vorgehen nach
[Küchenhoff u. a., 2015] bestimmt, welches im Kapitel 2 beschrieben ist. Dabei wurde die
Sterberate ab einem Jahr nach einem chirurgischen Eingriff als konstant angenommen
und aus den entsprechenden Beobachtungen des vorliegenden Datensatzes die konstante
Hazardrate h1 geschätzt. Der Zeitraum zwischen 20 und 360 Tagen nach einer OP wurde
in Intervalle einer Länge von 20 Tagen eingeteilt und mittels der sich aus h1 ergebenden
Wahrscheinlichkeit, innerhalb von 20 Tagen zu sterben, ein Binomialtest durchgeführt.
Unter der Annahme, dass die Hazardrate innerhalb der akuten Phase signifikant höher
als h1 ist und sich nach dem Change-Point nicht signifikant von h1 unterscheidet, wurde
aus den resultierenden p-Werten eine Regression durchgeführt. Daraus ergab sich letzt-
endlich, dass die APP nach einer Resektion 80 Tage lang andauert und erst danach die
postakute Phase eintritt. Inwiefern dies von den Ergebnissen abweicht, welche aus dem
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in dieser Arbeit vorgestellten Verfahren nach [Küchenhoff u. a., 2015] resultieren, wird im
Folgenden diskutiert.

Ergebnisse

Um aus den vorliegenden Daten die Dauer der akuten postoperativen Phase nach Le-
berresektion, d.h. insbesondere den zugehörigen Change-Point schätzen zu können, wird
aus den erhobenen Daten ausschließlich die jeweilige Beobachtungsdauer eines Patienten
sowie der zugehörige Indikator für das Eintreten des Todes benötigt. Die entsprechenden
Variablen wurden aus dem Datensatz extrahiert und die nach dem Verfahren von [Kü-
chenhoff u. a., 2015] in R programmierte Funktion darauf angewandt. Für die Schätzung
der in Tabelle 6 präsentierten Ergebnisse wurden die drei in Kapitel 2.2 vorgestellten
Methoden mit einer Intervallbreite von jeweils 10 und 20 Tagen verwendet. Dabei wur-
de angenommen, dass sich der Change-Point innerhalb des ersten Jahres nach Resektion
befindet, d.h. dass die Sterberate ab Tag 360 nach dem Eingriff als konstant angenom-
men wird. Diese konstante Hazardrate wurde gemäß Formel (2) in Kapitel 1.2 aus der
Anzahl der Patienten geschätzt, bei denen der Todeszeitpunkt erst nach mehr als einem
Jahr nach der OP beobachtet wurde. Für jedes der sechs Ergebnisse wurde zusätzlich
ein nicht-parametrisches Bootstrapping mit 1000 Wiederholungen durchgeführt, woraus
jeweils eine Schätzung für den Standardfehler sowie ein Perzentil-Intervall mit α = 5%
ermittelt wurde, welche ebenfalls in Tabelle 6 zu finden sind.

Tabelle 6: Change-Point-Schätzung für den in [Schiergens u. a., 2015] verwendeten Daten-
satz mittels der in Kapitel 2.2 vorgestellten Verfahren mit jeweiliger Intervallbreite von 10
und 20. Der Wert für τmax wurde mit 360 vorgegeben. Die Standardfehler und Perzentil-
Intervalle ergeben sich aus einem nichtparametrischen Bootstrapping. dis.int und shift.int
bezeichnen die Ergebnisse für diskrete Intervalle ohne und mit Verschiebung, die Zeilen
für cont.int beinhalten die Schätzungen für fortlaufende Intervalle.

estimate std.Error percentile interval

dis.int10 30 12.055 [20; 70]
dis.int20 60 32.317 [20; 80]
cont.int10 28 14.594 [12; 67]
cont.int20 60 31.900 [13; 71]
shift.int10 35 15.766 [14; 74]
shift.int20 63 23.599 [20; 79]

Bei Betrachtung der Ergebnisse ist auffällig, dass sich die Bereiche, in denen die
Change-Point-Schätzungen liegen, für die gewählten Intervallbreiten stark unterscheiden.
So dauert die akute Phase bei einer Intervallbreite von 20 Tagen zwischen 60 und 63 Ta-
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ge an, bei einer Einteilung in 10-Tages-Intervalle jedoch höchstens bis Tag 35 nach dem
operativen Eingriff. Anhand der sich aus dem Binomialtest ergebenden p-Werte, welche
in Abbildung 8 für die zwei vorgegebenen Intervallbreiten grafisch dargestellt sind, lässt
sich nachvollziehen, wie es zu diesen Unterschieden in der Schätzung kommt. Bei einer
Intervallbreite von 10 Tagen sind die p-Werte bereits für die Intervalle (30;40] und (40;50]
nicht mehr signifikant, d.h. innerhalb dieser Zeiträume wurden so wenige Ereignisse be-
obachtet, dass die Abweichung der Sterberate von der unter H0 geltenden konstanten
Hazardrate nicht signifikant ist. Wird der gleiche Zeitraum jedoch in Intervalle von je 20
Tagen eingeteilt, ist die Anzahl der Ereignisse und damit die Sterberate erst im Intervall
(60;80] so gering, dass die Nullhypothese des Binomialtests erfüllt ist (vgl. Kapitel 2.2 für
Details zum Schätzverfahren). Die Plots der p-Werte für sämtliche Schätzungen aus Ta-
belle 6 sind im Anhang B.1 zu finden, welcher zusätzlich für jedes Ergebnis einen Boxplot
der zugehörigen Bootstrap-Schätzungen enthält.

(a) Schätzung mit einer Intervallbreite von 10 Tagen

(b) Schätzung mit einer Intervallbreite von 20 Tagen

Abbildung 8: Aus der Schätzung mit diskreten Intervallen ohne Verschiebung ermittelte
p-Werte. τmax wurde mit 360 Tagen vorgegeben.
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Ergänzend zur Darstellung der p-Werte soll die Verteilung der Todesfälle innerhalb
der Intervalle mithilfe des Histogramms in Abbildung 9 veranschaulicht werden. Daraus
ist ersichtlich, dass im Zeitraum zwischen 30 und 40 Tagen nur drei Ereignisse stattge-
funden haben, wodurch sich aus dem Binomialtest für dieses Intervall ein entsprechend
hoher p-Wert ergibt. Vor dem Hintergrund, dass der zugehörige Datensatz insgesamt 784
Beobachtungen enthält, ist aus dieser Darstellung der absoluten Häufigkeiten außerdem
zu erkennen, dass die Sterberate selbst in den ersten 30 Tagen relativ gering ist, was
auch aus den bereits veröffentlichten Ergebnissen in [Schiergens u. a., 2015] hervorgeht.
Dies hat den Nachteil, dass die Intervalle mit einer Breite von 10 Tagen im Allgemeinen
nur wenige Ereignisse enthalten, wodurch die Schätzung des Change-Points bereits von
einzelnen Beobachtungen beeinflusst wird. Deshalb werden im Folgenden nur noch die
Ergebnisse für eine Intervallbreite von 20 Tagen betrachtet.
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Abbildung 9: Verteilung der absoluten Häufigkeiten der beobachteten Todesfälle nach
Leberresektion für den Datensatz von [Schiergens u. a., 2015]

Aus den Ergebnissen in Tabelle 6 ergibt sich der geschätzte Change-Point also zu 60
bzw. 63, was davon abhängig ist, welches Verfahren angewandt wurde. Bei der Auswer-
tung der Simulationsergebnisse in Kapitel 3 und dem dabei angestellten Vergleich der
drei Methoden zur Schätzung hinsichtlich ihrer Güte ging hervor, dass das Schätzverfah-
ren mit diskreten Intervallen (mit oder ohne Intervallverschiebung) gegenüber der Me-
thode mit fortlaufenden Intervallen (cont.int) zu bevorzugen ist. Weil hier der geschätzte
Change-Point für dis.int und cont.int gleich ist, spielt dies jedoch für die Ergebnisse zu
diesem Datensatz nur bezüglich der zugehörigen Standardabweichung bzw. des Perzentil-
Intervalls eine Rolle. Da im Allgemeinen nicht davon ausgegangen werden kann, dass
der Change-Point auf einer der Intervallgrenzen {20, 40, 60,...} liegt, ist es sinnvoll, die
Schätzung für shift.int20, d.h. für das Verfahren mit Intervallverschiebung, als endgültiges
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Ergebnis zu betrachten. Nach dem in dieser Arbeit vorgestellten Verfahren nach [Küchen-
hoff u. a., 2015] beträgt die geschätzte Dauer der akuten postoperativen Phase nach einer
Leberresektion also 63 Tage.

Dieses Ergebnis deckt sich jedoch nicht mit der in [Schiergens u. a., 2015] angegebenen
Schätzung des Change-Points. Für diese bereits veröffentlichte Studie wurde die Dauer
der akuten Phase nach einem chirurgischen Eingriff auf 80 Tage geschätzt. Die Ursache für
diese Abweichung liegt in diversen Simulationsstudien, welche im Zuge dieser Forschungs-
arbeit bereits durchgeführt wurden. Dabei wurden nur Datensätze mit stetigem Übergang
in der Hazardrate zwischen der akuten und der postakuten Phase untersucht, wobei sich,
ähnlich zu den im Kapitel 3 vorgestellten Simulationsergebnissen, eine Unterschätzung
des tatsächlichen Change-Points um ca. 20 Tage ergab. Daraufhin wurde der Schätzer als
Obergrenze desjenigen Intervalls definiert, welches nach Regression über die p-Werte den
Change-Point enthält. Nach dem Verfahren, worauf diese Arbeit aufbaut, entspricht der
Schätzer jedoch der Untergrenze dieses Intervalls. Dies ist aus theoretischer Sicht richtig
und wurde auch durch die Simulationsergebnisse für die mit Sprung in der Hazardrate
generierten Daten bestätigt. Ist der Übergang zur konstanten Sterberate jedoch stetig, wie
auch im vorliegenden Datensatz mit den Überlebenszeiten nach Leberresektion, hat sich
aus den Simulationsergebnissen eine Abweichung zum tatsächlichen Change-Point nach
unten ergeben. Auch aus der Darstellung der geschätzten glatten Hazardfunktion in Ab-
bildung 10, welche mithilfe der Funktion muhaz aus dem Paket von [Hess u. Gentleman,
2010] erstellt wurde, ist erkennbar, dass eine Dauer der akuten Phase von 63 Tagen nicht
zu den beobachteten Daten passt. In der Grafik ist zu sehen, dass die Sterberate auch
oberhalb von 63 Tagen nach einer OP noch weiter abfällt und es erst nach etwa 80 Tagen
einen Wendepunkt gibt, ab welchem die Hazardfunktion annähernd konstant verläuft.
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Abbildung 10: Geschätzte Hazardrate pro Tag (geglättet) für die ersten 360 Tage nach
Durchführung einer Leberresektion. Der dargestellte Change-Point bei Tag 63 wurde nach
dem Verfahren von [Küchenhoff u. a., 2015] mit diskreten Intervallen einer Breite von
20 und Intervallverschiebung sowie τmax = 360 geschätzt. Das Perzentil-Intervall wurde
mittels Bootstrapping erstellt. Zugrunde liegt der unbereinigte Datensatz aus [Schiergens
u. a., 2015].

5.2 Datensatz 2 - Langzeitüberleben von Intensivpatienten nach
chirurgischem Eingriff

Details zur Studie

Die Hintergründe zur Studie, Details zu den statistischen Methoden sowie die daraus re-
sultierenden Ergebnisse sind in [Schneider u. a., 2010] ausführlich beschrieben. Demnach
war ein Ziel dieser Forschungsarbeit, zu untersuchen, wie Fortschritte in der Akutversor-
gung nach einem chirurgischem Eingriff die Sterberate auf lange Sicht beeinflussen, ins-
besondere wie die Auswirkungen auf bestimmte Gruppen von Patienten sind, welche sich
nach einer Operation in einem kritischen Zustand befinden. Neben dem Überstehen dieser
akuten postoperativen Phase sei es außerdem wichtig, erneute Fehlfunktionen oder gar
Ausfälle der Organe zu verhindern. Dafür seien spezielle Organ-Unterstützungs-Therapien
(z.B. invasive Beatmung oder Nierenersatztherapie) notwendig, deren dauerhafter Einsatz
zum einen sehr kostspielig ist und außerdem regelmäßige lebenserhaltende Maßnahmen
erfordert. Deshalb würde oft diskutiert, ob dies auf lange Sicht einem effizienten Ein-
satz der verfügbaren Ressourcen eines Krankenhauses gerecht wird. Nach [Schneider u. a.,
2010] gibt es bisher keine ausreichend informativen Studien über Langzeit-Effekte solcher
spezieller Therapien. Für diese Forschungsarbeit sollten deshalb nur diejenigen Patienten
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untersucht werden, welche die akute Phase nach einem chirurgischen Eingriff überstanden
haben, um daraus Einflussfaktoren auf das Langzeitüberlegen ermitteln zu können.

Zunächst wurde dafür am Klinikum der Universität München in Großhadern eine
prospektive Datenerhebung durchgeführt. Dafür wurden zwischen den Jahren 1993 und
2005 Patienten mit einem Aufenthalt auf der Intensivstation (ICU) von mehr als 4 Ta-
gen beobachtet und sämtliche Informationen, welche für die statistischen Analysen der
untersuchten Therapien notwendig sind, erfasst. Nach Ausschluss einiger Patientengrup-
pen, u.a. jener ohne einen chirurgischen Eingriff, ergab sich ein Datensatz mit insgesamt
1462 Beobachtungen. Der Beobachtungszeitraum wurde auf 2 Jahre beschränkt, weil sich
die daraus ergebenden Einflussfaktoren für die Langzeit-Sterberate nicht signifikant von
denen unterscheiden, welche aus einer längeren Beobachtungszeit resultieren würden. Ge-
genstand der statistischen Auswertungen waren letztendlich nur jene Patienten, welche
die akute kritische Phase nach einer Operation überlebt haben und somit erst für die
Untersuchung der Langzeiteffekte einer bestimmten Therapie in Frage kamen.

Um diese Personen identifizieren zu können, war zunächst die Schätzung des Zeitpunk-
tes notwendig, bis zu welchem die akute postoperative Phase anhält. Dieser Change-Point
trennt also das akute vom postakuten Stadium nach einem chirurgischen Eingriff. Wie
in [Schneider u. a., 2010] im Abschnitt “Statistical Analysis“ beschrieben, basiert dessen
Schätzung auf einem Likelihood-Quotienten-Test (LQ-Test). Für die Durchführung wurde
für jeden Tag t zwischen 0 und 730 ein Weibull-Modell an jene Daten mit einer Überlebens-
dauer größer als t angepasst. Unter der Nullhypothese des LQ-Tests ist die Hazardrate und
folglich der Shape-Parameter der Weibull-Verteilung konstant mitH0 : γ = 1. Als Change-
Point wurde der kleinste Zeitpunkt t definiert, für den die Nullhypothese bei einem Niveau
von α= 0.05 abgelehnt wurde, d.h. für den der Test keine signifikante Abweichung von der
Annahme einer konstanten Hazardrate ergab. Daraus ergab sich in der Studie eine Dauer
der akuten Phase von 196 Tagen ab dem Zeitpunkt der Einlieferung auf die Intensivsta-
tion. Darauf aufbauend wurden für die Intensivpatienten mit einer Überlebenszeit von
mehr als 196 Tagen weitere statistische Analysen durchgeführt, um die Langzeit-Wirkung
von bestimmten medizinischen Maßnahmen zu untersuchen. Da für diese Arbeit jedoch
die Change-Point-Schätzung anhand der vorliegenden Daten von vorrangigem Interesse
ist, wird auf die übrigen Ergebnisse der Forschungsarbeit, welche ebenfalls in [Schneider
u. a., 2010] ausführlich diskutiert werden, nicht mehr explizit eingegangen.

Ergebnisse

Für die Ermittlung der akuten postoperativen Phase für Intensivpatienten nach dem Ver-
fahren von [Küchenhoff u. a., 2015] wurden die Überlebenszeiten mit zugehörigem Zen-
sierungsstatus aus dem unbereinigten Datensatz verwendet, welcher auch der Studie von
[Schneider u. a., 2010] zugrunde lag. Die Schätzung wurde für die drei in Kapitel 2.2 vorge-
stellten Schätzmethoden mit disjunkten Intervallen (mit und ohne Intervallverschiebung)
sowie mit fortlaufenden Intervallen durchgeführt. Für die Tage t > 540 wurde eine kon-
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stante Hazardrate angenommen, welche aus den beobachteten Überlebenszeiten größer als
540 geschätzt wurde. Die Einteilung des Zeitraumes zwischen 0 und 540 Tagen erfolgte in
Intervalle der Breite 10 und 20, für welche gemäß dem in Kapitel 2 erläuterten Verfahren
ein exakter Binomialtest durchgeführt und aus den resultierenden p-Werten jeweils ein
Change-Point geschätzt wurde.

Die Ergebnisse der Schätzung für jedes der drei Methoden mit jeweils zwei Intervall-
breiten sind in Tabelle 7 aufgeführt. Zusätzlich sind für jeden geschätzten Change-Point
die zugehörige Standardabweichung sowie das Perzentil-Intervall mit α = 5% angegeben,
welche aus der Durchführung eines nichtparametrischen Bootstrap-Verfahrens mit je 1000
Wiederholungen resultieren. Die zugehörigen Plots der p-Werte sowie die Boxplots der
Schätzungen aus den Bootstrap-Samplings sind im Anhang B.1 zu finden.

Weil sich aus den Simulationsergebnissen in Kapitel 3 für eine Intervallbreite von 10
Tagen im Allgemeinen eine höhere Güte der Schätzung bezüglich des MAD ergibt, sollen
die Ergebnisse für diese Fälle vorrangig betrachtet werden. Dabei spielt das für den ersten
Datensatz (vgl. Kapitel 5.1) auftretende Problem, dass sich innerhalb eines Zeitraumes
von 10 Tagen oft nur sehr wenige Ereignisse befinden, aufgrund der hohen Beobachtungs-
zahl und der insgesamt wesentlich höheren Anzahl an Todesfällen in diesem Datensatz
keine Rolle. Weiterhin resultiert aus den Simulationen, dass die beiden Methoden mit
diskreten Intervallen in den meisten Fällen zu einem geringeren MAD führen, als das
Verfahren mit fortlaufenden Intervallen (cont.int). Wird für die Schätzung mit diskreten
Intervallen zusätzlich eine Intervallverschiebung durchgeführt, können sich als Wert für
den Change-Point nicht nur Vielfache von 10, sondern jeder Tag zwischen 0 und 540 erge-
ben. Deshalb soll der geschätzte Change-Point für shift.int10 in Tabelle 7 als endgültiges
Ergebnis betrachtet werden. D.h. nach dem Verfahren von [Küchenhoff u. a., 2015], auf
welchem diese Arbeit basiert, ergibt sich für die untersuchten Intensivpatienten nach ei-
nem chirurgischen Eingriff eine akute Phase von 348 Tagen.

Tabelle 7: Change-Point-Schätzung für den in [Schneider u. a., 2010] verwendeten Daten-
satz mittels der in Kapitel 2.2 vorgestellten Verfahren mit jeweiliger Intervallbreite von 10
und 20. Der Wert für τmax wurde mit 540 vorgegeben. Die Standardfehler und Perzentil-
Intervalle ergeben sich aus einem nichtparametrischen Bootstrapping. dis.int und shift.int
bezeichnen die Ergebnisse für diskrete Intervalle ohne und mit Verschiebung, die Zeilen
für cont.int beinhalten die Schätzungen für fortlaufende Intervalle.

estimate std.Error percentile interval

dis.int10 350 62.611 [180; 380]
dis.int20 380 56.463 [240; 460]
cont.int10 348 64.061 [177; 351]
cont.int20 343 49.568 [222; 452]
shift.int10 348 61.524 [177; 358]
shift.int20 386 53.292 [226; 452]
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Eine grafische Darstellung der (geglätteten) geschätzten Hazardrate für die ersten
zwei Jahre nach ICU-Einlieferung ist in Abbildung 11 zu finden. Der Plot wurde mit der
R-Funktion muhaz (aus dem Paket von [Hess u. Gentleman, 2010]) erstellt und enthält
zusätzlich den geschätzten Change-Point für shift.int10 aus Tabelle 7 mit dem zugehörigen
Percentil-Intervall für α = 5%.
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Abbildung 11: Geschätzte Hazardrate pro Tag (geglättet) für die ersten 730 Tage nach
Einlieferung auf die Intensivstation. Der dargestellte Change-Point bei Tag 348 wurde
nach dem Verfahren von [Küchenhoff u. a., 2015] mit diskreten Intervallen einer Breite von
10 und Intervallverschiebung sowie τmax = 540 geschätzt. Das Perzentil-Intervall wurde
mittels Bootstrapping erstellt. Zugrunde liegt der unbereinigte Datensatz aus [Hartl u. a.,
2007].

Es ist zu beachten, dass der wahre Change-Point in den Simulationsergebnissen bei
einer stetigen Hazardrate, d.h. ohne Sprung zum Zeitpunkt des Übergangs zur konstan-
ten Sterberate, tendenziell unterschätzt wird. Weiterhin scheint in den Simulationen die
Abweichung des Schätzers vom wahren Wert davon abzuhängen, an welchem Zeitpunkt
t sich der vorgegebene tatsächliche Change-Point τ befindet, insbesondere scheint die-
se Differenz größer zu werden, je später die Phase mit konstanter Hazardrate beginnt.
Für das Ergebnis zum vorliegenden Datensatz bedeutet dies, dass die akute Phase nach
ICU-Einlieferung tatsächlich noch länger als die geschätzten 348 Tage andauern würde.

Aus Abbildung 11 lässt sich erahnen, dass sich die geschätzte Hazardfunktion in drei
Bereiche einteilen lässt, nämlich zu Beginn eine Phase mit stark abfallender Hazardrate,
dann ein Zeitraum mit einem leicht abfallenden Verlauf, bis sie schließlich annähernd
konstant bleibt. Um dies zu verdeutlichen, ist in Abbildung 12 ein vergrößerter Ausschnitt
dieser Hazardfunktion dargestellt, wobei deutlich wird, dass erst im Bereich zwischen 450
und 500 Tagen ein Wendepunkt in der Hazardrate zu erkennen ist. Dies deckt sich auch
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mit der Annahme, dass der geschätzte Change-Point bei 348 Tagen vom tatsächlichen
Wert abweicht und die postakute Phase tatsächlich erst später beginnt.

Um eine präzisere Aussage über die geschätzte Dauer des akuten Stadiums nach ICU-
Einlieferung anhand des betrachteten Datensatzes nach dem Verfahren von [Küchenhoff
u. a., 2015] treffen zu können, sind noch weitere Untersuchungen bzgl. der beobachte-
ten systematischen Unterschätzung des wahren Change-Points, ggf. mit weiterführenden
Simulationen, notwendig.
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Abbildung 12: Vergrößerte Darstellung der geschätzten Hazardfunktion aus Abbildung
11 zwischen 50 und 730 Tagen mit Begrenzung der y-Achse auf 0.002. Der abfallende
Verlauf der Hazardrate bis zu dem markierten Bereich zwischen 450 und 500 Tagen ist
hier deutlicher zu erkennen.
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6 Zusammenfassung und Ausblick

Ziel dieser Studie war es, das von [Küchenhoff u. a., 2015] entwickelte nichtparametrische
Schätzverfahren hinsichtlich der Güte des daraus resultierenden Change-Point-Schätzers
zu untersuchen. Die Ergebnisse der zu diesem Zweck durchgeführten Simulationsstudie
haben gezeigt, dass der für die Datenerzeugung vorgegebene Change-Point tendenziell
unterschätzt wird. Besonders deutlich sind die Abweichungen des Schätzers vom tatsächli-
chen Wert bei realistisch simulierten Daten mit einer stetigen Hazardfunktion. Wesentlich
kleiner ist der beobachtete Bias dagegen für jene Daten, bei denen die zugrundeliegende
theoretische Hazardfunktion einen Sprung aufweist, sodass der Übergang zur konstanten
Sterberate besonders eindeutig ist. Weiterhin scheint aus den Simulationen hervorzuge-
hen, dass die Verzerrung davon abhängig ist, an welchem Zeitpunkt sich der Change-Point
befindet, insbesondere war die Abweichungen in den Schätzergebnissen größer, je später
die Phase mit konstanter Hazardrate beginnt. Auch die Überdeckungsrate der in Kapitel
3.4.2 untersuchten Konfidenzintervalle war, insbesondere für die Szenarien ohne Sprung
in der Hazardrate, teilweise sehr gering und damit nicht zufriedenstellend.

Aus dem Vergleich der drei in Kapitel 2.2 vorgestellten Methoden war ersichtlich,
dass die Schätzungen mit diskreten Intervallen - mit und ohne Intervallverschiebung -
gegenüber dem Verfahren mit fortlaufenden Intervallen bessere Ergebnisse hinsichtlich
des MAD liefern, sodass nur die Funktionen zu diesen beiden Methoden für das im Zuge
dieser Arbeit erstellte R-Paket CPest verwendet wurden.

Die Anwendung des Schätzverfahrens auf die beiden Datensätze mit Überlebenszeiten
von Intensivpatienten hat ergeben, dass sich die Ergebnisse deutlich von denen aus den
bereits veröffentlichten Studien zu diesen Datensätzen unterscheiden. Jedoch war bei der
grafischen Auswertung der geschätzten Hazardfunktion dieser Daten ersichtlich, dass die
Schätzergebnisse nach dem hier vorgestellten Verfahren nicht plausibel sind, was wiederum
mit der systematischen Abweichung des geschätzten vom tatsächlichen Change-Point zu
begründen ist.

Mit dem Ziel, dass das Schätzverfahren auch für empirisch erhobene Daten zufrieden-
stellende Ergebnisse liefert, sind weitere Untersuchungen, ggf. mit zusätzlichen Simula-
tionen, notwendig. Auch hinsichtlich des erstellten Programmpaketes sind noch Verbes-
serungen möglich, insbesondere bezüglich der Laufzeit der implementierten Funktionen,
was auch für die Durchführung weiterer Simulationen von Vorteil wäre.

Abschließend kann festgehalten werden, dass das untersuchte Schätzverfahren theore-
tisch, d.h. für einen hinsichtlich des Change-Points eindeutigen Datensatz, funktioniert,
jedoch in einem praxisnahen Fall mit stetigem Übergang zur konstanten Hazardrate noch
keine ausreichend zufriedenstellenden Ergebnisse liefert, weshalb dieses Verfahren Inhalt
weiterer Forschungsarbeit ist.



A PLOTS ZUR SIMULATIONSSTUDIE 55

Anhang

A Plots zur Simulationsstudie

A.1 Theoretische Hazardfunktion
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Abbildung 13: theoretische Hazardfunktion für τ = 360;
für die ti gilt: (ti|ti < 360)∼WB(η = 100,γ = 0,2) und (ti|ti ≥ 360)∼ Exp(λ)

A.2 Boxplots zu simulierten Szenarien

Boxplots der Schätzungen für Szenario 1 mit τ = {90,100}, cens={1,0}, jump={1,0},
n={1000,5000} und τmax = 360:
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Boxplots für Szenario 2 mit τ = {50,55} und τmax = 200:
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Boxplots für Szenario 3 mit τ = 360 und τmax = 200:
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B Plots zu den Datensätzen

B.1 Datensatz mit Überlebensdauern nach Leberresektion

Nachfolgend sind die Plots der p-Werte zu den Ergebnissen aus Kapitel 5.1 für die Da-
ten nach [Schiergens u. a., 2015] mit zugehörigen Boxplots aus den Bootstrap-Samplings
dargestellt. Die Schätzungen wurden für die drei vorgestellten Methoden mit einer Inter-
vallbreite (“intwd“) von jeweils 10 und 20 Tagen durchgeführt. Die Bezeichnung “disjunct
intervals“ steht dabei für disjunkte Intervalle ohne Verschiebung, “continuous intervals“
für fortlaufende Intervalle und “shifted intervals“ für die Schätzung mit Intervallverschie-
bung. Der Wert für τmax wurde jeweils mit 360 vorgegeben.
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B.2 Hartl-Datensatz

Nachfolgend sind die Plots der p-Werte zu den Ergebnissen aus Kapitel 5.2 für die Daten
nach [Hartl u. a., 2007] mit zugehörigen Boxplots aus den Bootstrap-Samplings darge-
stellt. Die Schätzungen wurden für die drei vorgestellten Methoden mit einer Intervall-
breite (“intwd“) von jeweils 10 und 20 Tagen durchgeführt. Die Bezeichnung “disjunct
intervals“ steht dabei für disjunkte Intervalle ohne Verschiebung, “continuous intervals“
für fortlaufende Intervalle und “shifted intervals“ für die Schätzung mit Intervallverschie-
bung. Der Wert für τmax wurde jeweils mit 540 vorgegeben.
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