Contents Volume 1 1978

Number 1, March 1978

Target Article

Kupfermann, I. & Weiss, K. The command neuron concept

Open Peer Commentary

Hoyle, G. Where did the notion of “command neurons” come from? 10
Andreae, J. H. Descriptive and prescriptive names 11
Balaban, P. “General” or “general assembly”? On command neuron systems 12
Bennett, M. V. L. Command neurons: know and say what you mean 13
Bullock, T. H. “Command” is heuristic until we know better 15
Burke, R. E. “Command” as functional concept rather than cellular label 15
Chapple, W. D. Do we need “command” neurons? 16
Davis, W. J. On the trail of the command neuron 17
Evoy, W. H. Functional descriptions of neurons that influence behavior 19
Fentress, J. C. On the sufficiency of command neurons 20
Fowler, C. A. & Turvey, M. T. The concept of “command neurons” in explanations of behavior 20
Fraser, C. A. Vector coding and command fibres 22
Grillner, S. Command neurons or central program controlling system? 23
Hermann, A. Command fibers: only strategic points in neuronal communication systems 24
Horridge, G. A. Nouns, neurons, and parallel pathways 25
Iles, J. F. The command neurone concept in mammalian neurophysiology 25
Kater, S. B. & Granzow, B. Is “command” at the top of the hierarchy? 26
Krasne, F. The crayfish giant fibers as decision and command neurons 28
Kristan, Jr., W. B. & Weeks, J. Difficulties in applying a functional definition of command neurons 28
Larimer, J. L. Command neuron, an evolving concept 29
Lewis, E. R. Causally oriented devices 30
Lleinas, R. & Bunge, M. Restricted applicability of the concept of command in neuroscience: dangers of metaphor 30
Lynch, J. C. The command function concept in studies of the primate nervous system 31
McCarthy, J. Command neurons and unitary behavior 32
Rosenbaum, D. A. Command neurons and effects of movement contexts 32
Stein, P. S. G. Defense of the Wiersma-Kennedy concept of the command neuron 33
Tsukada, Y. Ambiguity of the proposed definition 34
Wiersma, C. A. G. The original definition of command neuron 34
Wine, J. J. Triggering and organizing functions of command neurons in crayfish escape behavior 35
Zucker, R. S. Command neurons: a more precise definition reveals gaps in our evidence and limits to our models 35
Hoyle, G. Who believes in “command neurons”? 36

Authors' Response

Kupfermann, I. & Weiss, K. Quis imperat? a panorama of perspectives 37

Target Article

Bindra, D. How adaptive behavior is produced: a perceptual-motivational alternative to response reinforcement

Open Peer Commentary

Bitterman, M. E. Bindra’s S-S contiguity theory of instrumental learning 52
Black, A. H. Is Bindra’s theory of adaptive behavior radical enough? 53
Bolles, R. C. The more things change . . . 53
Booth, D. A. A long stride towards sense in psychology 54
Catania, A. C. What constitutes explanation in psychology 55
Dennett, D. C. Requisition for a pego 56
Epstein, R. Reinforcement, explanation, and B. F. Skinner 57
Fentress, J. C. Defining behavioral representations 58
Flynn, J. P. Sensory vs. motor effects of brain stimulation 58
Gallistel, C. R. The irrelevance of past pleasure 59
Gilbert, R. M. Misconceptions about the origins of behavior 60
Hilgard, E. R. With reinforcement in trouble, what about motivation?—Bindra’s alternative 61
Hulse, S. H. The problem of serial order in adaptive behavior: why not some formal cognitive structure 62
Irwin, F. W. Some comparisons of Bindra’s theory with a situation-act-outcome system 63
Jenkins, H. M. Signal learning and response learning 64
Kendler, H. H. Decision rules, decision rules 64
Killeen, P. R. Pego: a plausible construct in need of data 65
Bindra, D. A behavioristic, cognitive-motivational, neuropsychological approach to explaining behavior

Target Article

Pylyshyn, Z. Computational models and empirical constraints

Open Peer Commentary

Andreae, J. H. AI: another defense of the field

Arbib, M. A. The halting problem for computational cognitive psychology

Atherton, M. The artificiality of computer models

Cohen, L. J. Rational reconstruction of inferential processes—a task straddling the AI-CS boundaries

Cushing, S. & Hornstein, N. Software systems, language, and empirical constraints

Dennett, D. C. Why not the whole iguana?

Domotor, Z. AI: model-theoretic aspects

Dreyfus, H. L. Empirical evidence for a pessimistic prognosis for cognitive science

Goodluck, H. Levels of evolution and psycholinguistic evidence

Harmon, L. D. Introspection, black boxes, and machine equivalence

Haugeland, J. The problem of generality

Hayes, P. J. Doing AI but saying CS

Johnson-Laird, P. N. The correspondence and coherence theories of cognitive truth

Leibovic, K. N. The problem of validation

Lenat, D. B. On astrophysics and superhuman performance

Longuet-Higgins, C. On describing cognitive processes

McDermott, J. On AI as psychology: now and then

Newell, A. State-of-the-art constraints

Ortony, A. Cognitive psychology, artificial intelligence, and cognitive simulation

Pascual-Leone, J. Computational models for metasubjective processes

Pribram, K. H. On behalf of the neurosciences

Rodger, R. S. Computer-specific methods

Schank, R. C. AI vs. CS: a methodological distinction

Simon, T. W. The AI/CS distinction and theory evaluation

Sloman, A. Artificial intelligence and empirical psychology

Sutherland, N. S. Task constraints and process models

Treasman, M. On the relation between AI and CS: the heart of the problem

Ullman, S. A.I. systems and human cognition: the missing link

Weimer, W. B. A.I. and the methodology of scientific research: some cautions and limitations

Wilks, Y. Artificial intelligence and real constraints
Author's Response
Pylyshyn, Z. The A.I. debate: generality, goals, and methodological parochialism 121

Target Article
Roland, P. E. Sensory feedback to the cerebral cortex during voluntary movement in man 129

Open Peer Commentary
Chapple, W. D. Consciousness and the limitations of psychophysical approaches 148
Dickinson, J. The function of sensory feedback 148
Duyens, J. & Loeb, G. Precortical processing of somatosensory information 149
Dyhr-Poulsen, P. Possible sources of discriminative kinaesthetic information 150
Freund, H.-J. The role of extrapyramidal structures 150
Goodwin, G. M. The neural mechanisms subserving kinesthesia 151
Granit, R. Breaking down open doors 152
Grigg, P. On the attribution of a functional role to joint afferent neurons 152
Iannone, A. M. What constitutes "proof" in the study of neural control of movement? 153
Kelso, J. A. S. Changing views of feedforward and feedback in voluntary movement 153
Levitt, M. On the role of mental set in voluntary movement 154
Libet, B. What is conscious sensory experience, operationally? 156
McCloskey, D. I. Sense of effort and sense of muscular tension 156
Millar, J. Lab strategy vs. life strategy 157
Mpitsos, G. J. Musculotendinous receptors in conscious human behavior: experimental factors 157
Pribram, K. H. Movements and acts: distinguishing their neurophysiology 158
Pubols, L. M. On intellectual compensation and deafferentation 159
Roberts, T. D. M. The transmission of parameters by neural messages 159
Shebilske, W. L. Sensory feedback during eye movements reconsidered 160
Somjen, G. G. What muscle spindles and Golgi tendon organs could and could not signal to the brain 161
Sontag, K.-H. Conscious and unconscious motor decisions 162
Stein, J. The interaction of motor and sensory signals in proprioception 162
Stevens, J. K. The corollary discharge: is it a sense of position or a sense of space? 163
Trevarthen, C. Cortical collaboration and consciousness 165
Walsh, E. G. Sensing springiness 166
Wells, M. J. Invertebrate stretch receptors and consciousness 166
Wiesendanger, M. Toward contextual instead of either/or thinking 167

Author's Response
Roland, P. E. The cerebral cortex and conscious kinaesthetic and tensional information 167

Number 2, June 1978

Target Article
Brainerd, C. J. The stage question in cognitive-developmental theory 173

Open Peer Commentary
Baldwin, J. D. & J. I. Stages resulting from continuous underlying variables 182
Berndt, T. J. Stages as descriptions, explanations, and testable constraints 183
Ennis, R. H. Description, explanation, and circularity 184
Epstein, H. T. Some additional data relevant to considerations about the existence of cognitive-developmental stages 185
Fischer, K. W. Structural explanation of developmental change 186
Flavell, J. H. Developmental stage: explanans or explanandum? 187
Gibson, K. R. Cortical maturation: an antecedent of Piaget's behavioral stages 188
Karmiloff-Smith, A. On stage: the importance of being a nonconserver 188
Kendler, T. S. On falsifying descriptions 190
Kinsbourne, M. Maturational succession vs. cumulative learning 191
Klahr, D. Rages over stages 191
Kurtines, W. M. Measurability, description, and explanation: the explanatory adequacy of stage models 192
Lipsitt, L. P. "Stages" in developmental psychology 194
Markman, E. M. Problems of logic and evidence 194
Neimark, E. D. Improper questions cannot be properly answered 195
Nelson, K. Structural and developmental explanations: stages in theoretical development 196
Olson, D. R. A structuralist view of explanation: a critique of Brainerd 197
Pascual-Leone, J. Piaget's two main stage criteria: a selective reply to Brainerd 200
Rosenthal, T. L. Agnostic gauges and Genevan stages 201
Scandura, J. M. “Measurement sequences,” Piagetian structures, and high-order rules
Siegler, R. S. Is Piaget a Pied Piper?
Smedslund, J. Measurement sequences, logical necessity, and common sense
Uzgiris, I. C. Holistic aspects of the stage notion
Wetherick, N. E. In defense of circularity
White, S. H. Which comes first—describing or explaining?
Yonas, A. & Carleton, L. R. Conjoint construct validation

Author’s Response
Brainerd, C. J. Invariant sequences, explanation, and other stage criteria: reflections and replies

Target Article
Haugeland, J. The nature and plausibility of Cognitivism

Open Peer Commentary
Andreae, J. H. On inference from input/output
Arbib, M. A. On making distinctions that are not maintained
Atherton, M. The scope of cognitivism
Baron, R. J. On explanation, holograms, moods, and skills
Charniak, E. How to register dissatisfaction with A.I.
Cummins, R. Systems and cognitive capacities
Dennett, D. C. Co-opting holograms
Domotor, Z. Cognitive problems and problems of cognitivism
Dreyfus, H. L. Cognitivism vs. hermeneutics
Economos, J. Mind that last step; I think it’s loose
Greeno, J. G. Systems and explanations
Harré, R. Half-way to realism: some sympathetic comments on Haugeland’s defence of cognitivism
Hayes, P. J. Cognitivism as a paradigm
Matthews, R. J. Two remarks on the characterization of IBBs
Maxwell, G. Cognitivism, psychology, and physics
McCarthy, J. Competence cognitivism vs. performance cognitivism
Monk, R. Cognitivism and cognitive psychology
Natsoulas, T. Haugeland’s first hurdle
Otto, H. R. A program is not an explanation
Pinker, S. Mind and brain revisited: forestalling the doom of cognitivism
Pribram, K. H. Image, information, and fast Fourier transforms
Puccetti, R. Are right hemisphere activities cognitivistic?
Rey, G. Worries about Haugeland’s worries
Rorty, R. A middle ground between neurons and holograms
Schwartz, R. Some limits and problems of cognitivism
Simon, T. W. On Cognitivism’s explanations and limitations
Taylor, C. Indissoluble performances, implicit grasp, and the problem of meaningfulness
Tweney, R. D. Is making reasonable sense reasonable?
von Glasersfeld, E. Some problems of intentionality
Wilson, C. Cognitivism’s contributions: some questions
Yevick, M. L. The two modes of identifying objects: descriptive and holistic for concrete objects; recursive and ostensive for abstract objects

Author’s Response
Haugeland, J. The critical assessment of Cognitivism: a closer look

Target Articles
Corballis, M. C. & Morgan, M. J. On the biological basis of human laterality: I. Evidence for a maturational left-right gradient
Morgan, M. J. & Corballis, M. C. On the biological basis of human laterality: II. The mechanisms of inheritance

Open Peer Commentary
Abler, W. L. Asymmetry and evolution
Annett, M. Throwing loaded and unloaded dice
Bakan, P. Why left-handedness?
Beaumont, J. G. On testing the maturational left-right gradient hypothesis
Berlucchi, G. Does bigger equal better; functionally?
Berelson, P. Interpreting developmental studies of human hemispheric specialization
Boklage, C. E. On cellular mechanisms for heritably transmitting structural information
Bradshaw, J. L. Handedness and human cerebral asymmetry: some unanswered questions
Bryden, M. P. Handedness, heritability, and perceptual laterality studies
Bureš, J. A fictitious gradient
Černáček, J. & Podivinský, F. Environmental influence on lateralization
Churchland, P. M. & P. S. The virtuosity of the sensory cortex and the perils of common sense 350
Booth, D. A. Mind-brain puzzle versus mind-physical world identity 348
Bridgeman, B. The similarity of the sensory cortices: problem or solution? 349
Bunge, M. Cytoarchitectonic similarity does not entail functional identity 350
Churchland, P. M. & P. S. The virtuosity of the sensory cortex and the perils of common sense 350
Dennett, D. C. What's the difference: some riddles 351
Dismukes, K. What mind-brain problem? 351
Economos, J. What is it like, Mr. Puccetti? 352
Freemon, F. R. Visualizing visual cortex in the mind's eye 353
Gedye, J. L. On accounting for one kind of difference in terms of another kind of difference 353
Gibson, K. R. Asking the right questions: other approaches to the mind-brain problem 354
Globus, G. G. What is the sound of one hand clapping, the touch of a still wind, the sight of a
Globeus, G. G. What is the sound of one hand clapping, the touch of a still wind, the sight of a
Armstrong, D. M. On passing the buck 346
Block, N. Strano materialism 347
Beioff, J. The inevitability of dualism 347
Dennett, D. C. What's the difference: some riddles 351
Gedye, J. L. On accounting for one kind of difference in terms of another kind of difference 353
Gibson, K. R. Asking the right questions: other approaches to the mind-brain problem 354
Dismukes, K. What mind-brain problem? 351
Economos, J. What is it like, Mr. Puccetti? 352
Freemon, F. R. Visualizing visual cortex in the mind's eye 353
Gedye, J. L. On accounting for one kind of difference in terms of another kind of difference 353
Gibson, K. R. Asking the right questions: other approaches to the mind-brain problem 354
Dismukes, K. What mind-brain problem? 351
Economos, J. What is it like, Mr. Puccetti? 352
Freemon, F. R. Visualizing visual cortex in the mind's eye 353
Gedye, J. L. On accounting for one kind of difference in terms of another kind of difference 353
Gibson, K. R. Asking the right questions: other approaches to the mind-brain problem 354
Globus, G. G. What is the sound of one hand clapping, the touch of a still wind, the sight of a

Authors' Response
Puccetti, R. & Dykes, R. W. Localizationism and dualism: a second look at the paradox 369
Target Article
Rosenthal, R. & Rubin, D. B. Interpersonal expectancy effects: the first 345 studies 377
Open Peer Commentary
Adair, J. G. The combined probabilities of 345 studies: only half the story? 386
Babad, E. Y. On the biases of psychologists 387
Barber, T. X. Expecting expectancy effects: biased data analyses and failure to exclude alternative
interpretations in experimenter expectancy research 388
Carlier, M. & Gottesdiener, H. On the misuse of statistics 390
Chubin, D. E. Inattention to expectancy: resistance to a knowledge claim 390
Collins, H. M. Replication of experiments: a sociological comment 391
Elashoff, J. D. Box scores are for baseball 392
Ellsworth, P. C. When does an experimenter bias? 392
Fiske, D. W. The several kinds of generalization 393
Gadlin, H. Great expectations . . . bad disappointment 394
Glass, G. V. In defense of generalization 394
Hilgard, E. R. Expectancy effects: valuable or frightening? 395
Johnson, R. F. Q. Experimenter expectancy effects: alternative explanations 396
Jonson, R. W. Interpersonal expectancy effects exist: what do we know beyond that? 396
Jung, J. Self-negating functions of self-fulfilling prophecies 397
Krippner, S. The importance of Rosenthal's research for parapsychology 398
Kruglanski, A. W. Quantifying the interpersonal expectancy effect: on the place of statistical
significance in a program of research 399
Mayo, R. J. Statistical considerations in analyzing the results of a collection of experiments 400
Miller, A. G. And in this corner, from Cambridge, Massachusetts 401
Nosanchuk, T. A. Experimenter expectancy and the effects of academic debates 402
Page, S. Toward evaluating the "reality" of interpersonal expectancy effects 403
Rao, K. R. Expectancy effects, ESP effects, and replicability 403
Silverman, I. Expectancy effects revisited 404
Singer, J. E. Once you've seen a decade of studies, you've seen them all 405
Authors' Response

Rosenthal, R. & Rubin, D. B. Issues in summarizing the first 345 studies of interpersonal expectancy effects 410

Target Article

Rajecki, D. W., Lamb, M. E., & Obmascher, P. Toward a general theory of infantile attachment: a comparative review of aspects of the social bond 417

Open Peer Commentary

Ainsworth, M. D. S. The Bowlby-Ainsworth attachment theory 436
Bischof, N. On the necessity of “appropriate behavior” on the part of the caregiver 438
Blanchard, D. C. Is there adaptive significance in the persistence of infantile attachment to maltreating attachment figures? 439
Brown, R. T. Three scientists in search of a theorist (apologies to Pirandello) 440
Cairns, R. B. Beyond attachment? 441
Chalmers, N. R. Ethological theory and infantile attachment 441
Dienke, H. The parental bond and the game of theorizing 442
Dolhinow, P. Langur monkey mother loss and adoption 443
Eble, B. A. Attachment: the two sides of one coin 444
Eiserer, L. A. Maltreatment effects and learning processes in infantile attachment 445
Gibson, K. R. Sociobiology, brain maturation, and infantile filial attachment 446
Gottlieb, G. The epigenetic character of development 446
Gunnar, M. R. How can we test attachment theories if our subjects aren’t attached? 447
Hess, E. H. The road to general attachment theory: little headway 448
Hoffman, H. S. On the matter of interpretation and judgement in the evaluation of theory 448
Immelmann, K. Imprinting and infantile attachment 449
Kaufman, I. C. Evolution, interaction, and object relationship 450
Kovach, J. K. Infantile attachment: a general theory or a set of loosely-knit paradigms? 451
Masters, J. C. Implicit assumptions regarding the singularity of attachment: a note on the validity and heuristic value of a mega-construct 452
Passman, R. H. & Adams, R. E. Learning theory and infantile attachment: a re-evaluation 454
Rutter, M. Attachment: its meaning and consequences 455
Salzen, E. A. Orientation and affect in infantile attachment 456
Scott, J. P. The systems theoretic approach to social behavior 457
Sluckin, W. Infantile attachment and exposure learning 458
Solomon, R. L. Further implications of opponent-process theory 459
Suomi, S. J. Is a general theory of attachment feasible? 459
Wolff, P. H. Detaching from attachment 460

Authors' Response

Rajecki, D. W. & Lamb, M. E. Interpretations, reinterpretations, and alleged misinterpretations of theory and data concerning attachment 461

Target Article

Steriade, M. Cortical long-axoned cells and putative interneurons during the sleep-waking cycle 465

Open Peer Commentary

Ben-Ari, Y. & Naquett, R. Acetylcholine: synaptic transmitter of the arousal system? 485
Berlucchi, G. Sleep and waking and two populations of neurons 486
Borbély, A. A. Active wakefulness and paradoxical sleep: common mechanisms? 487
Corazza, R. Electrophysiological differentiation between output cells and interneurons: an alternate methodological proposal 487
Dewan, E. M. Physiological measurements and the “programming” hypothesis for the function of REM sleep 488
Fishbein, W. Cortical interneuron activation, D sleep and memory 489
Freemon, F. R. A time for inhibitory neurons to rest 489
Glenn, L. L. & Guilleminault, C. Neuronal identification and classification strategies 490
Greenberg, R. The cortex finds its place in REM sleep 490
Henriksen, S. J. The cellular substrates of state 491
Humphrey, D. R. On the proportions of identified output cells and putative interneurons in the precentral arm area of the monkey’s motor cortex 492
Iwama, K. & Fukuda, Y. Sleep-waking studies on the lateral geniculate nucleus and visual cortex 494
A Special Issue on Cognition and Consciousness in Nonhuman Species

Target Articles

Premack, D. & Woodruff, G. Does the chimpanzee have a theory of mind? 515
Griffin, D. R. Prospects for a cognitive ethology 527
Savage-Rumbaugh, E. S., Rumbaugh, D. R., & Boysen, S. Linguistically-mediated tool use and exchange by chimpanzees (Pan Troglodytes) 539

Open Peer Commentary

Griffin, D. Experimental cognitive ethology 555
Rumbaugh, E. S., Rumbaugh, D. R., & Boysen, S. Sarah's problems of comprehension 555
Beck, B. B. Talkers and doers 557
Bennett, J. Some remarks about concepts 557
Bernstein, I. S. Awareness, intention, expectancy and plausibility 560
Burge, T. Concept of mind in primates? 560
Burghardt, G. M. Closing the circle: the ethology of mind? 562
Candland, D. K. How the animals lost their minds 563
Churchland, P. S. & P. M. Internal states and cognitive theories 565
Davis, L. H. Intentions, awareness, and awareness thereof 566
Davis, R. T. Animal cognition without human consciousness 567
Dawkins, M. The second time around 568
Dennett, D. C. Beliefs about beliefs 568
Dingwall, W. O. Animals and the rest of us: Descartes versus Darwin 570
Farrell, B. A. Some considerations in the philosophy of mind 571
Gardner, H. A social synthesis 572
Gould, J. L. Behavioral programming in honey bees 572
Greenfield, P. M. Developmental processes in the language learning of child and chimp 573
Greene, M. Basic concepts for cognitive ethology 574
Groves, C. P. What does it mean to be conscious? 575
Harman, G. Studying the chimpanzee's theory of mind 576
Hebb, D. O. Behavioral evidence of thought and consciousness 577
Heffner, J. Perception and animal consciousness: the philosophical context 577
Jaynes, J. In a manner of speaking 578
Authors' Responses

Griffin, D. R. Helpful "talk" on what to "do"

Savage-Rumbaugh et al. Describing chimpanzee communication: a communication problem

Premack, D. & Woodruff, G. Chimpanzee theory of mind: causality, purpose, and the use of symbols
On the necessity of "appropriate behavior" on the part of the caregiver. In response to the article by Rajecki et al., I would like to limit myself to comment on an argument against the ethological theory of attachment. Ethologists assume that infantile motivation in an "expected environmental niche" leads to behavior that optimizes the child's chance of survival. "Expected niches" are those that are similar to the environment in which the species evolved. The authors state that under experimental conditions attachment forms not only to parents, but also to inanimate objects bearing no similarity to conspecifics, and even to objects that severely maltreat the child. According to the authors, this poses a serious problem to ethological theory, since one cannot possibly view these objects as constituting part of an ordinarily expectable environment.

This argument contains a fallacy. Suppose that the objects constituting the "expected environment" of an infant immediately after birth or hatching dif-
fer, among other characteristics, in two dimensions, a and b, where b is the probability with which the infant can expect prosocial behaviors (e.g., caregiving) on the part of the object, and a refers to the average intensity with which the object attracts the attention of the infant.

We may assume that the “expected” objects fall into two classes (see Figure 1): parents and their possible helpers (Class X), and other objects (Class Y). The infant can only expect prosocial behavior (b^+) from objects X; all other objects are at best unconcerned, but they are frequently even hostile and dangerous (b^-). At the same time it is the objects X which regularly come closer to the newborn than all others and interact with him more, and which thus score highest on the scale of conspicuousness (a^+).

In order to stay in proximity to prosocial objects, the infant ought to be able to detect them. The initial cues for this detection must be simple enough to be accessible without previous learning. In an “expected niche” in which neither unfamiliar conspecifics, nor other animals, nor inanimate objects are as conspicuous as the parents, a stimulus detector sensitive to high grades of a, as indicated in Figure 1, would be completely sufficient. It would cause the infant to attach to those objects in his early environment that are most efficient in attracting his attention.

Such a mechanism is of course expedient only in an early phase of ontogeny. Discriminating cues in other character dimensions (c, d, etc., not represented in Figure 1), concerning the individual physiognomies of the parents, should become associated with the unconditioned stimulus a^+ as soon as possible. The older the child, the greater the probability of his encountering unfamiliar objects (Y'), and then the simple detector system in Figure 1 no longer makes correct discriminations. The sensitive period of imprinting, therefore, should be limited to early ontogeny, and this is generally the case.

Precisely when primary detection of potential caregivers is achieved through a mechanism such as that in Figure 1, we find the infant in the laboratory attaching himself to any surrogate, as long as this surrogate fulfills the criterion of predominant conspicuousness. Rajecki et al.’s imputation that the ethological theorist is forced to conclude that non-specific objects belong to the “expected environment” of the species is positively incomprehensible. Exactly the opposite is the case: had styrofoam cubes, toy trains, flashing lights, or even potential predators been regularly present in the intimate environment of early childhood in the course of evolution, then natural selection would have presented a mechanism of the kind discussed from ever developing – the danger of a child’s following an object prone to neglect or kill him would have been too great.

What about abusive objects? If they belong to class Y (e.g., predators), we cannot expect the imprinting mechanism to be able to react to them in an adequate way. If such objects do manage to approach the child so as to activate the detectors of the attachment system, the child is done for anyway. Whatever measures natural selection has produced to counteract infant predation, they must prevent predators from lingering in the lower-right quadrant (Y') of Figure 1. That is, predators must be chased or lured away, or the infants must be concealed. Since this is what the attachment system can be expected to presuppose, anecdotal reports of occasional imprinting to predators in captivity do not pose any theoretical problem.

If abusive objects are pathological parents (X'), this again would have hardly been able to force the evolution of the detector system in another direction. Parental maltreatment no doubt reduces the child’s chances for survival, but the child normally has no alternative; there is no one to whom he can run and be better cared for. In extraordinary cases the helpful she-wolf might turn up to nurse Romulus and Remus, but extraordinary cases have no effect on evolution. It is therefore always best to stay with one’s own parents, who are generally at least somewhat care-oriented and not quite as uninhibited in inflicting harm as strangers.

Thus, Lamb’s theory, that infantile attachment presupposes “appropriate behavior” of the parents, may be based on sensible arguments elsewhere, but it is not implied in the context of ethological theorizing. If this assumption appears to be invalidated by empirical results, Lamb should certainly not attribute the error to his ethological position.
BBS Associateship Genealogy

 Associates are listed alphabetically and numbered sequentially. Numerals to the right of an associate’s entry designate his or her nominator(s).

Explanation of letter codes:
E: First generation, invited by Editor
A: Article accepted for publication in BBS
R: Referred for BBS
C: Commentary accepted for publication
O: Ex officio

Note: (i) The coded entries are not meant to be an exhaustive list of all capacities in which an associate has served in 1978, but merely to indicate the source of his associateship. (ii) This list only corresponds to the associateship as of June 30, 1978. Since then there have been two hundred new associates. New associates’ names will appear in an updated list appearing annually.

1. Ablew, W.L. (Ill. Inst. Technol.) Cognition 258
3. Anderson, R.M. (Bennetts Pol. Inst.) philosophy of mind 313
6. Andrews, R.B. (U. Sussex) animal behavior E
8. Atherton, M. (U. Maryland) philosophy 35
9. Avila, R. (Col. de Mexico) linguistics 229
11. Bakan, P. (Simon Fraser U.) C
12. Bakker, D.J. (Paedol. Inst., Amsterdam) neuropsychology 34
15. Baron, B.J. (U. Iowa) artificial intelligence E
16. Bart, W. M. (U. Minn.) cognitive development C
21. Bernt, T.J. (Yale) developmental psychology C
22. Bertelot, P. (U. Libre, Bruxelles) cognition 12
23. Bever, T.G. (Columbia) psycholinguistics 316, 338
24. Bierwisch, M. (DDR Akad. Wissenschaften) developmental psychology C
25. Biskis, E. (M.I.T.) neuropsychology 316
27. Black, A.H. (McMaster) psychology C
30. Black, R. (U. Chicago) philosophy 96
34. Blank, M. (Rutgers Med. Sch.) developmental psychology E
35. Block, N. (M.I.T.) philosophy of psychology 89
36. Bloom, L. (Columbia) developmental psychology C
37. Bough, D.S. (Brown) animal psychophysics 411
38. Bolen, M.A. (U. Sussex) cognition 316
40. Bolles, R.C. (U. Wash.) animal learning 26
41. Booth, D.A. (U. Birmingham, UK) physiological psychology 316
42. Borbely, A.A. (U. Zurich) psychopharmacology 369
43. Bornstein, M.H. (Princeton) cognition 138
44. Bowsher, D. (U. Liverpool) neurobiology 221
45. Boynton, R. (UC, San Diego) vision 290
46. Brainerter, J. (U.W. Ontario) developmental psychology 316
47. Bridgerman, B. (U.C. Santa Cruz) psychobiology 411
49. Brown, R.T. (UNC, Wilmington) developmental biopsychology 6, 111
50. Bryden, M.P. (U. Waterloo) perception C
54. Buser, P. (U. Curie, Paris) neurobiology 98
55. Caldwell, R.L. (U.C. Berkeley) behavioral biology 14
56. Campbell, D. (Northwestern) social psychology E
57. Campbell, J.A. (Esteret U.) artificial intelligence 323
58. Capitan, D. (Brighton, Mass.) neurolinguistics 229
59. Capparica, R.R. (Cornell) neurobiology 98
60. Carlson, P. (Rutgers Med. Sch.) psychobiology E
61. Castania, A.C. (U. Maryland) animal behavior 389
62. Chapple, W.D. (U. Conn.) neurobiology E
63. Charuik, E. (Yale) artificial intelligence 166, 350, 419
64. Chiarelli, B.B. (ed. J. HUMAN EVOLUTION) O
65. Chomsky, N. (M.I.T.) linguistics 316
67. Clohesy, M. (U. Sussex) cognition 166, 316
68. Codeeira, A. (ed. NEUROBIOLOGIA) O
70. Collins, R.L. (Jackson Lab., Bar Harbor) behavioral genetics E
71. Cooper, W.E. (M.I.T.) psycholinguistics 358
72. Corballis, M.C. (U. Auckland, N.Z.) psychobiology E
73. Cosenza, D.V. (Clarke Inst. Psychiatr., Toronto) behavioral neurochemistry 174
74. Cowan, M.R. (U. Sao Paulo) neurobiology 98
75. Cromer, R. (MRC, London) developmental psycholinguistics 410
76. Creutzfeld, O. (M.P.-I., Goettingen) neurobiology 98
77. Crow, T.J. (MRC, Harrow) psychiatry 169
78. Cusling, S. (Higher Order Software) semantics C
79. Daltzman, R.J. (VC, Berkeley) comparative neuropsychology 341
80. Danks, J.H. (Kent State) psycholinguistics E
81. Davidson, D.C. (U. Chicago) philosophy 96
82. Davidson, R.J. (SUNY, Purchase) psychophysiology C
83. Davis, W.J. (UC, Santa Cruz) neurobiology 411
85. del Cerro, M. (U. Rochester) neuroanatomy 98
86. Delgado, M. (Centro Ramon y Cajal, Madrid) neurophysiology 225
87. Deussen, D.C. (Tufs) philosophy 316
88. Desmedt, J.E. (ed. PROC. CLIN. NEUROLOGY) neurobiology O
89. Dev. P. (Boston U.) 369
90. Diamond, M.C. (U.C. Berkeley) neuroanatomy E
91. Dimond, S.J. (U. Coll., Cardiff) psychophysiology E
92. Dingwall, W.O. (U. Maryland) neurolinguistics 416, 329
94. Donch, D. (U. Penn.) artificial intelligence E
95. Donchin, E. (Un. Illinois) cognitive psychophysiology 306, 324, 369
96. Doty, R.W. (UC. Rochester) neuropsychology E
97. Drachman, D. (U. Salzburg) linguistics 258
98. Dreyfus, H.L. (UC. Berkeley) philosophy 96
99. Eccles, J.C. (Cal a la C) neurobiology E
100. Economo, J. (Renaissance Stuido) philosophy E
102. Eisenberg, J.F. (Smithsonian Inst.) behavioral biology 381, 314
103. Ellis, H. (U. Aberdeen) 93
105. Evans, J. (Plymouth Polytech.) cognition 410
106. Eysenck, H.J. (Inst. of Psychiatry) 340
107. Fava, A.R. (U. Missouri) cultural psychiatry E
108. Fentress, J.C. (Delhousie University) parapsychology 98
109. Filmore, C.J. (UC, Berkeley) linguistics E
110. Finlay, G.E. (ed., INTERAMER. J. PSYCHOL.) cross-cultural psychology O
423. Winograd, T. (Stanford) artificial intelligence 228
424. Witelson, S.F. (McMaster) neuropsychology E
427. Woody, C.D. (UCLA) neurobiology 98
429. Yeni-Komshian, G. (U. Maryland) psychobiology 94
431. Zernicki, B. (Nencki Inst., Warsaw) higher CNS function 98
432. Zielinski, K. (Nencki Inst., Warsaw) neurobiology 98
433. Zackerman, C.B. (CUNY, Brooklyn) neuropsychology 353