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1 Einleitung

Diese Bachelorarbeit vergleicht verschiedene Verfahren für die Schätzung von Ver-

teilungsfunktion und Quantilen mit besonderem Augenmerk auf PPS-Stichproben.

Im Rahmen dieser Arbeit wurde eine Simulation erstellt, in der fünf verschiedene

Schätzverfahren an zwei Datensätzen verglichen werden. Im ersten Abschnitt werden
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die theoretischen Grundlagen der verwendeten Methoden zusammengefasst. Darauf

folgt eine Beschreibung des Aufbaus der Simulation und schließlich die Präsentation

der Ergebnisse. Ein Fazit fasst nochmal alles zusammen und gibt Anstöße für zukünftige

Aufgabenstellungen.

2 Theorie

2.1 Der Horwitz - Tompson Schätzer

Im Folgenden soll πi die Auswahlwahrscheinlichkeit des i-ten Individuums darstellen

in die Stichprobe aufgenommen zu werden. Dabei muss für festen Stichprobenumfang

n und Größe der Grundgesamtheit N gelten:
∑N

i=1 πi = n. Des Weiteren sollen die

Auswahlwahrscheinlichkeiten zweiter Ordnung durch πi,j angegeben werden. Sie be-

zeichnen die Wahrscheinlichkeit, dass die beiden Elemente i und j gleichzeitig in die

Stichprobe aufgenommen werden. Allgemein gilt ein Stichprobendesign als effektiver

als ein anderes, wenn die Varianz der Schätzung mit dem ersten Design kleiner ist

als die des zweiten, vorausgesetzt der zu betreibende Aufwand ist für beide gleich.

Nun kann die Stichprobenvarianz durch geeignete Wahl der Auswahlwahrscheinlich-

keiten verkleinert und die Stichprobe dadurch effektiver gemacht werden. Um dies

berücksichtigen zu können, schlagen Horvitz und Thompson den inzwischen nach

ihnen benannten Horvitz-Thompson-Schätzer vor: (Horvitz and Thompson, 1952)

Ŷ HT =
1

N

n∑
k=1

yk
πk

Dieser Schätzer ist erwartungstreu und für alle Stichprobendesigns anwendbar,

bei denen ohne Zurücklegen gezogen wird. Seine Grundidee ist, dass durch die Ge-

wichtung mit der inversen Auswahlwahrscheinlichkeit eine Verzerrung des Schätzers

vermieden wird. Wählt man ein Stichprobendesign, in dem alle Elemente die gleiche

Auswahlwahrscheinlichkeit πi = n/N besitzen, so ergibt sich als Schätzer das einfache

arithmetische Mittel. Um die Varianz zu minimieren, wählt man nun die Auswahl-

wahrscheinlichkeiten perfekt proportional zu den Werten der interessierenden Größe
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Y :

πi =
n

N

Yi

Y

Dann ergibt sich:

Ŷ HT =
1

N

n∑
k=1

yk
πk

=
1

nN

n∑
k=1

yk
yk
NY = Y

Man erhält also durch den Schätzer unabhängig von der Stichprobe das arith-

metische Mittel. Die Varianz ist folglich 0. Diese Idee versucht sich das sogenann-

te PPS-Stichprobenverfahren (größenproportinales Stichprobenverfahren) zunutze zu

machen. (Kauermann and Küchenhoff, 2011). (siehe Abschnitt 2.2)

Allgemein lässt sich die Varianz des Horvitz-Thompson Schätzers wie folgt be-

schreiben:

V ar(Ŷ HT ) =
1

N2

[
N∑
i=1

πi(1− πi)
π2
i

Y 2
i +

N∑
i=1

N∑
j=1

πi,j − πiπj
πiπj

YiYj

]
und ihr Schätzer lautet:

̂
V ar(Ŷ HT ) =

1

N2

[
n∑
k=1

πi(1− πi)
π2
i

y2k +
n∑
k=1

n∑
l=1

πk,l − πkπl
πkπl

ykyl

]
Dieser Schätzer ist zwar erwartungstreu, allerdings garantiert er keine positiven

Ergebnisse (Kauermann and Küchenhoff, 2011). Deshalb schlagen Yates and Grundy

(1953) folgende Umformung vor:

V arY G(Ŷ HT ) =
1

N2
· 1

2

N∑
i=1

N∑
j=1,i 6=j

(πiπj − πi,j)(
Yi
πi
− Yj
πj

)2

Wie man an dieser Formel gut sehen kann, wird V arY G(Ŷ HT ) = 0, falls π pro-

portional zu Y gewählt wird, da sich dann Yi
πi
− Yj

πj
= 0 ergibt.

Der Schätzer für diese Varianzformel lautet:
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̂
V arY G(Ŷ HT ) =

1

N2
· 1

2

n∑
k=1

n∑
l=1,l 6=k

πkπl − πk,l
πk,l

(
yk
πk
− yl
πl

)2

Für Herleitungen und Genaueres verweise ich auf Kauermann and Küchenhoff

(2011), die erklären, dass mehrere Simulationsstudien die Überlegenheit der Varianz-

Formel von Yates und Grundy gegenüber der von Horvitz und Thompson belegen.

2.2 Die PPS-Stichprobe

Eine spezielle Art Stichproben zu ziehen ist die sogenannte PPS-Stichprobe. Die

Abkürzung
”
PPS“ steht für Probability Proportional to Size. Anders als bei einer

einfachen Stichprobe haben hier nicht alle Elemente der Grundgesamtheit die glei-

che Wahrscheinlichkeit in die Stichprobe zu gelangen. Wie der Name vermuten lässt,

werden die Auswahlwahrscheinlichkeiten der Elemente so festgelegt, dass sie propor-

tional zur Größe ihres interessierenden Merkmals sind. Je größer also die Ausprägung

des interessierenden Merkmals, desto größer ist die Auswahlwahrscheinlichkeit des

dazugehörigen Elements der Grundgesamtheit.

Wie in Abschnitt 2.1 gezeigt, lässt sich die Varianz des Horvitz-Thompson Schätzers

durch dieses Verfahren auf 0 reduzieren. In der Realität ist aber das interessierende

Merkmal natürlich nicht im Voraus bekannt. Dennoch lernen wir, dass die Varianz des

Schätzers durch proportionale Wahl der Wahrscheinlichkeiten minimiert wird. In der

Regel verwendet man eine bekannte Hilfsgröße, die möglichst proportional zur inter-

essierenden Größe vermutet wird (z.B.: frühere Messungen des gleichen Merkmals),

um die Auswahlwahrscheinlichkeiten zu bestimmen. Dieses Hilfsmerkmal nennen wir

im Folgenden Z. Nun ergeben sich die zu Z proportionalen Auswahlwahrscheinlich-

keiten als

πi = n
Zi∑N
j=1 Zj

.

Die Mittelwertschätzung erfolgt durch:

Ŷ PPS = Ŷ HT =
1

N

n∑
k=1

yk
πk

=

∑N
j=1 Zj

N

1

n

n∑
k=1

yk
zk

= Z
1

n

n∑
k=1

yk
zk
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Der Mittelwertschätzer der einfachen Stichprobe lautet Ŷ ES = 1
n

∑n
k=1 yk. Ent-

scheidend für die Streuung des Schätzers ist jeweils der Wert in der Summe. Die

Varianz des Schätzers der PPS-Stichprobe ist also kleiner als die der einfachen Stich-

probe, falls die Streuung von Yi größer ist als die von Yi
Zi

. Für diesen Fall ist dann die

PPS-Stichprobe der einfachen Stichprobe vorzuziehen. Die Schätzung der Varianz

des Mittelwertschätzers Ŷ PPS erfolgt durch Yates und Grundy wie in Abschnitt 2.1

beschrieben.

2.3 Schätzung der kommulativen Verteilungsfunktion

Jede Funktion F , die die folgenden drei Eigenschaften erfüllt, ist eine Verteilungs-

funktion:

1. F ist monoton wachsend.

2. F ist rechtsseitig stetig

3. lim
x→−∞

F (x) = 0,

Sei F die Verteilungsfunktion von Y . Dann bezeichnet F (x) den Anteil der Ele-

mente in der Grundgesamtheit, deren Wert des interessierenden Merkmals kleiner

oder gleich x ist (Fahrmeir et al., 2007). Bei einer einfachen Stichprobe lässt sich die

Verteilungsfunktion schätzen durch:

F̂ (x) =
1

n

n∑
i=1

I{yi≤x}

I{A} ist hierbei die Indikatorfunktion für das Ereignis A.

Dieser Schätzer ist bei Stichproben mit unterschiedlichen Auswahlwahrscheinlich-

keiten aber nicht anwendbar. Ein verbreiteter Schätzer für die Verteilungsfunktion

bei unterschiedlichen Auswahlwahrscheinlichkeiten lautet:

F̂HT (x) =
1

N

n∑
i=1

I{yi≤x}
πi
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Allerdings hat dieser Schätzer einen entscheidenden Nachteil: Wenn
∑n

i=1
1
πi
6= N

gilt, ergibt sich keine Wahrscheinlichkeitsfunktion, da lim
x→∞

F (x) 6= 1. Dies ist aber

zwingend erforderlich, wenn man mit Hilfe der Verteilungsfunktion später ein Quantil

errechnen will (siehe Abschnitt 2.4). Deshalb skalieren wir den Schätzer mit seinem

größten Wert und gehen somit sicher, dass der gesamte Wertebereich von 0 bis 1

abgedeckt wird:

F̂S(x) =
1

N

n∑
i=1

I{yi≤x}
πi

/

n∑
i=1

πi

F̂S(x) ist auf jeden Fall eine Verteilungsfunktion und soll uns deswegen im Fol-

genden zur Quantil-Schätzung dienen (Kuk, 1988).

2.4 Schätzung der Quantilen

”
Jeder Wert xp mit 0 < p < 1, für den mindestens ein Anteil p der Daten klei-

ner/gleich xp und mindestens ein Anteil 1−p größer/gleich xp ist, heißt p-Quantil.“(Fahrmeir

et al., 2007) Formalisiert dargestellt kann man nach Fahrmeir et al. (2007) schreiben:

Anzahl (x-Werte ≤ xp)

n
≥ p und

Anzahl (x-Werte ≥ xp)

n
≤ p

Das Quantil beatwortet also im Vergleich zur Verteilungsfunktion die umgekehrte

Fragestellung. Hier interessiert nicht, welcher Anteil der Daten unter einem bestimm-

ten Wert liegt, sondern unter welchem Wert ein bestimmter Anteil der Daten liegt.

Für uns bedeutet das, dass wir die Quantilsfunktion durch die invertierte Vertei-

lungsfunktion schätzen können. F̂−1(p) liefert das gesuchte p-Quantil.

3 Aufbau der Simulation

Ziel der Simulation ist es anhand von fiktiven Daten zu veranschaulichen, welche

Schätzmethoden für die Verteilungsfunktion und Quantilen bei einer PPS-Stichprobe

am besten geeignet ist. Dafür wird eine Grundgesamtheit zufällig simuliert und an-
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schließend durch fünf verschiedene Vorgehensweisen die interessierenden Werte er-

mittelt. Die entsprechenden Programme sind im elektronischen Anhang zu finden.

3.1 Die Grundgesamtheit

Als Grundgesamtheit dienen log-Normalverteilte Zufallswerte Y . Das bedeutet, dass

log(Y ) einer Normalverteilung folgt. Diese Grundgesamtheit wird als fest angesehen

und im Folgenden für alle Szenarien und Simulationsdurchläufe verwendet.

3.2 Einfache Stichprobe

Im ersten Schätzverfahren wird eine einfache Stichprobe gezogen. Verteilung und

Quantile der Stichprobe lassen sich hierbei als Schätzungen für die entsprechenden

Größen der Grundgesamtheit verwenden. Dieses Verfahren dient als Vergleichsobjekt

zu den folgenden Verfahren mit PPS-Stichprobe.

3.3 PPS-Stichprobe ohne Horwitz-Thompson-Schätzer

Aus der Grundgesamheit wird eine PPS-Stichprobe gezogen. Die Quantile der Stich-

probe werden als Schätzer für die wahren Werte der Grundgesamtheit verwendet. Es

ist zu erwarten, dass dieses Verfahren das wahre Quantil systematisch überschätzt,

da große Werte der Grundgesamtheit eine höhere Wahrscheinlichkeit besitzen in die

Stichprobe zu gelangen. Dieses Vorgehen kürzen wir im Folgenden mit
”
PPS QUANT“

ab.

3.4 PPS-Stichprobe und Horwitz-Thompson-Schätzer

Hier wird aus der gegebenen Grundgesamtheit eine PPS-Stichprobe gezogen. Die

Auswahlwahrscheinlichkeiten werden hierbei proportional zu den Y -Werten festge-

legt. Verteilungsfunktion und Quantile werden, wie in den Kapiteln 2.3 und 2.4 be-

schrieben, mit Hilfe von Horwitz-Thompson geschätzt. Dieses Vorgehen kürzen wir

im Folgenden mit
”
PPS HT“ ab.
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3.5 PPS-Stichprobe und Horwitz-Thompson-Schätzer mit un-

scharfer Grundgesamtheit

Wie bereits erwähnt ist es in der Realität nicht möglich, die Auswahlwahrscheinlich-

keiten der PPS-Stichprobe proportional zur unbekannten interessierenden Größe Y

festzulegen, da diese vor der Ziehung natürlich nicht bekannt ist. Zudem unterliegen

alle Messungen in der Realität einem Messfehler. Um dies nachzustellen, belegen wir

die Y Werte mit einem normalverteilten Fehlerterm ε. Somit erhalten wir eine Hilfs-

größe Z, die gut proportional zur Grundgesamtheit Y ist. Die Auswahlwahrschein-

lichkeiten werden dann proportional zur Hilfsgröße Z gewählt (siehe Abschnitt 2.2).

Das restliche Vorgehen funktioniert analog zu 3.4. Dieses Vorgehen kürzen wir im

Folgendem mit
”
PPS HT EPSILOIN“ ab.

3.6 Alternative Strategie

Man ordnet die Grundgesamtheit der Größe nach und zieht die n/5 größten Werte

mit einer Wahrscheinlichkeit von 1. Die noch fehlenden n − n/5 Einheiten werden

durch eine einfache Stichprobe mit gleicher Wahrscheinlichkeit aus der restlichen

Grundgesamtheit gezogen. Die Schätzung der interessierenden Werte erfolgt auch

hier wie in Kapiteln 2.3 und 2.4. Zur Vereinfachung nennen wir dieses Verfahren im

Folgenden
”
GROßE WERTE“

4 Ergebnisse der Simulation

In diesem Teil der Arbeit werden die Ergebnisse der Simulation vorgestellt. Zuerst

werde ich auf die geschätzte Verteilungsfunktion eingehen, um dann auf die Auswir-

kungen auf die Schätzung der Quantile zu sprechen zu kommen.

Als Grundgesamtheit verwenden wir eine logarithmierte Normalverteilung. Die

Grundgesamtheit wird als fest angesehen. Allerdings wurden verschiedene Parameter

der Grundgesamtheit getestet.

• Besonders interessant sind die Ergebnisse für den log-Mittelwert −7.8 und der
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Abbildung 1: Maximum der Verteilungsfunktion, Grundgesamtheit 1

log-Standartabweichung 2.7, da diese aus einem realen Datenbeispiel meines

Betreuers Herr Prof. Dr. Kauermann stammen. Diese nennen wir im Folgendem

Grundgesamtheit 2.

• Als Vergleich wird ein log-Mittelwert von 0 und eine log-Standartabweichung

von 0.3 betrachtet. Diese nennen wir im Folgendem Grundgesamtheit 1.

4.1 Schätzung der Verteilungsfunktion bei einer

PPS-Stichprobe

Als ersten Versuch wählen wir Grundgesamtheit 1 mit der Größe N = 50. Wie in

Abschnitt 2.3 ausführlich erklärt, wollen wir den Schätzer F̂S(x) statt F̂HT (x) verwen-
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Abbildung 2: Maximum der Verteilungsfunktion, Grundgesamtheit 2

den, um sicherzugehen, dass der Wertebereich der geschätzten Verteilungsfunktion

das später gesuchtes Quantil überhaupt überdeckt. Um das Problem zu veranschauli-

chen, sieht man in Abbildung 1 den Wert 1
N

∑
1
π
, der dem Maximum der geschätzten

Verteilungsfunktion F̂HT (x) entspricht. Aus der festen Grundgesamtheit 1 wurde

20000 mal eine PPS-Stichprobe der Größe 10 gezogen und der interessierende Wert

errechnet. Die Ergebnisse sind in einem Boxplot dargestellt. Das als roter Strich dar-

gestellte arithmetische Mittel liegt bei 1, das heißt der Schätzer ist erwartungstreu.

Auch liegt ein Großteil der Werte nahe um 1. Einige Ausreißer nach oben und unten

sind zu sehen, die bei der Schätzung der Quantile Probleme bereiten könnten.

Als nächstes wollen wir versuchen, das Ganze auf ein reales Datenbeispiel anzu-

wenden. Hierzu wählen wir Grundgesamtheit 2 und führen den gleichen Vorgang
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Abbildung 3: Verteilungsfunktion, Grundgesamtheit 1

noch einmal durch. Wir erhalten Abbildung 2. Auch hier liegt das als roter Strich

dargestellte arithmetische Mittel bei 1. Allerdings liegt ein Großteil der Werte zwi-

schen 0.45 und 0.8, womit die spätere Schätzung eines hohen Quantils nicht möglich

wäre.

Im Folgenden verwenden wir stets eine Grundgesamtheit der Größe 1000 und eine

Stichprobe der Größe 100 was ungefähr dem realen Datenbeispiel entspricht.

In Abbildung 3 ist die empirische Verteilungsfunktion F (x) der Grundgesamtheit

1 zu sehen. Die blaue Kurve bildet die geschätzte Verteilungsfunktion F̂HT (x) ab,

während die rote Kurve F̂S(x) darstellt. Die Funktion verläuft recht gleichmäßig.

Die meisten Ausprägungen liegen im mittleren Bereich der deswegen etwas steiler

ist. Alle drei abgebildeten Kurven liegen nah beieinander. Die Schätzung würde also

mit beiden Schätzmethoden gut gelingen.
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Abbildung 4: logarithmierte Verteilungsfunktion, Grundgesamtheit 1

Um die geschätzten Quantile besser erkennen zu können, entzerren wir die x-

Achse, indem wir sie logarithmieren. Zieht man eine horizentale Linie auf der Höhe

q, so ergibt der x-Wert des Schnittpunkts mit den Kurven das jeweilige q-Quantil der

Verteilung. Exemplarisch ist dies hier in Abbildung 4 für das 0.9 Quantil geschehen.

Die beiden durch die vertikalen Linien dargestellten Quantilswerte liegen trotz der

Logarithmierung nahe beieinander. Das deutet darauf hin, dass auch die Schätzung

der Quantile gut funktioniert.

Ein anderes Bild ergibt sich für Grundgesamtheit 2. Die empirische Verteilungs-

funktion in Abbildung 5 ist sehr steil. Das bedeutet, dass es sehr viele relativ klei-

ne Werte gibt und wenige mittlere oder große. Wieder bildet die blaue Kurve die

geschätzte Verteilungsfunktion F̂HT (x) ab, während die rote Kurve F̂S(x) darstellt.
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Abbildung 5: Verteilungsfunktion, Grundgesamtheit 2

Auf den ersten Blick fällt auf, dass F̂HT (x) den Wert 1 nicht erreicht. Ihr höchster

Wert beträgt gerade 0.43. F̂S(x) hingegen füllt den Wertebereich von [0, 1] aus, ist

aber etwas flacher als die wahre Verteilung F (x).

Deutlicher wird das Problem, wenn man wie in Abbildung 6 das Ganze etwas ent-

zerrt, indem man die x-Werte logarithmiert. Die gleichen Linien wie bei Grundgesamtheit

1 werden gezogen. Wegen der flacheren Kurve von F̂S(x) ergibt sich ein höherer

geschätzter Wert des Quantils (−2.8), als er in Wirklichkeit ist (−4.3). Da wie in
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Abbildung 6: logarithmierte Verteilungsfunktion, Grundgesamtheit 2

Abbildung 2 gesehen, die meisten F̂HT (x) deutlich unter eins bleiben, kann man die

Vermutung aufstellen, dass dies zu einer systematischen Überschätzung der Quantile

führen kann.

Die Schätzung des Quantils mit Hilfe von F̂HT (x) ist nicht möglich, da hier kein

Schnittpunkt existiert.
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Abbildung 7: 0.9-Quantilsschätzer, Grundgesamtheit 1

4.2 Schätzung der Quantilen

Nach den Erfahrungen in Abschnitt 4.1 verwenden wir nun nur noch die geschätzte

Verteilungsfunktion F̂S(x) zur Schätzung der Quantile.

Für einen ersten Eindruck starten wir wieder mit Grundgesamtheit 1 und dem
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0.9-Quantil. In Abbildung 7 sind fünf Boxplots. Jeder repräsentiert 50 Schätzungen

mit den in Abschnitt 3 beschriebenen Schätzverfahren. Die roten horizontalen Linien

symbolisieren das wahre Quantil, während die blauen horizontalen Linien das arith-

metische Mittel der 50 Schätzungen darstellen. Im Idealfall sollte das arithmetische

Mittel der Schätzungen und das wahre Quantil möglichst nahe beieinander (Erwar-

tungstreue) und die Box möglichst eng darum herum liegen(Streuung). Wie erwartet

wird bei PPS QUANT das Quantil stark überschätzt. Dieses Verfahren wird im Fol-

gendem nicht weiter betrachten. Die anderen Schätzungen sind wesentlich besser.

Das arithmetische Mittel liegt bei der EINFACHEN STICHPROBE am weitesten

vom wahren Wert entfernt, während die Box bei PPS HT am kleinsten ist. Bei den

GROßEN WERTEN liegen arithmetisches Mittel und wahres Quantil nahe beinan-

der, jedoch ist die Box recht groß. PPS HT EPSILON hat eine größere Streuung als

PPS HT. Das Ergebnis entspricht den vorangegangenen theoretischen Überlegungen.

Nun wieder der Blick auf die Grundgesamtheit 2 in Abbildung 8: Diesmal ist

PPS QUANT weggelassen. Wie nach Abbildung 6 vermutet, liegt das arithmeti-

sche Mittel der Schätzer PPS HT und PPS HT Epsilon deutlich über dem wahren

Quantil. Der Eindruck scheint sich zu bestätigen, dass die Verwendung von F̂S(x)

zumindest bei einer steilen Verteilung zur Überschätzung der Quantile führt. Hinzu

kommt, dass die Boxen der PPS-Methoden deutlich größer sind als die der EINFA-

CHEN STICHPROBE. Anders als bei Grundgesamtheit 1 haben die PPS Verfahren

also keine geringere Streuung als die Schätzung durch eine EINFACHE STICHPRO-

BE, wie man es aus der Theorie erwarten würde (Abschnitt 2.2). Die Methode der

GROßEN WERTE hat ein ähnliches Ergebnis wie das der EINFACHEN STICHPRO-

BE. Auch hier liegen wahres Quantil und arithmetisches Mittel der Schätzungen nahe

beieinander, und die Box hat eine ähnliche Größe. In den Abbildungen 9 und 10 wur-

de die Simulation für die Quantile 0.8 und 0.9 wiederholt. Das Ergebnis unterscheidet

sich kaum von dem der 0.9 Quantilschätzer.
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Abbildung 8: 0.9-Quantilsschätzer, Grundgesamtheit 2

5 Fazit

Im theoretischem Teil der Arbeit wurde erarbeitet, dass die PPS-Stichprobe im Ver-

gleich zur einfachen Stichprobe effizientere Schätzer mit geringerer Varianz ermöglicht.

Im praktischem Teil hat sich dies aber nur zum Teil bestätigt. Bei einer aus der Rea-

lität nachempfundenen Grundgesamtheit, deren Verteilung sehr steil war, wurden die

Quantile durch eine einfache Stichprobe genauer geschätzt. Hinzu kam eine deutliche

systematische Überschätzung der Quantile bei PPS-Stichproben. Der Grund dafür

ist in der zu flachen Schätzung der Verteilungsfunktion durch F̂S(x) zu finden. Die

alternative Schätzmethode, die gewissermaßen einfache und PPS Stichprobe mischt,

zeigte sich als ähnlich effizient wie die Schätzung mit der einfachen Stichprobe. Al-

17



Abbildung 9: 0.8-Quantilsschätzer, Grundgesamtheit 2

lerdings ist sie in der Praxis wohl schwieriger zu realisieren.

Bei einer
”
einfacheren“ fiktiven Grundgesamtheit hingegen konnten die theoreti-

schen Überlegungen bestätigt werden. Zukünftige Arbeiten könnten sich damit be-

fassen, wie man diese theoretischen Vorteile der PPS-Stichprobe auch auf alle Grund-

gesamtheiten aus der Praxis übertragen kann.
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Abbildung 10: 0.7-Quantilsschätzer, Grundgesamtheit 2
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