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Mathematical Notation

Fonts and Operations

a : A scalar value

a : A column vector of scalar values

A : A matrix of scalar values

AT : The transposed matrix A

A−1 : The inverse of matrix A

â : An estimator for the scalar a

Globally Defined Variables

y : The response vector of a regression model

X : The matrix of covariables for the fixed effects

Z : The matrix of covariables for the random effects

β : A fixed effect

b : A random effect

ε : The residual

η : The linear predictor

Σ : The variance covariance matrix of the residuals

D : The variance covariance matrix of the random effects

D : A data set comprising covariables and response

M : The missingness matrix

Globally Defined Indices

m : The number of individuals

ni : The number of observations for individual i

N : The overall number of observations =
∑

i ni



p : The number of fixed effects

q : The number of random effects

M : The number of imputations

Distributions

N (µ, σ2) : Normal distribution

Nq(µ,Σ) : q-dimensional multivariate Normal distribution

B(π) : Bernoulli distribution

B(n, π) : Binomial distribution

Be(a, b) : Beta distribution

Special Characters and Abbreviations

1n : A column vector of length n containing ones

In : The identity matrix of dimension n× n

∼ : ”is distributed”
ind∼ : ”is independently distributed”
iid∼ : ”is identically and independently distributed”

∇ : The gradient

E : The expected value

Var : The variance

Cov : The covariance

Functions

p(·) : The density function

N (x|µ, σ2) : An alternative notation for the density p(x), having x ∼ N (µ, σ2)

L(·) : The likelihood function

`(·) : The log-likelihood function

g(·) : The link function

h(·) : The response function

Swp(·) : The sweep operator



1. Introduction

A multitude of studies in the fields of medicine or public health are driven by longi-

tudinal data. If repeated measurements of one individual are obtained over time, the

data situation is often referred to as ”time-series cross-sectional data” (TSCS). An ap-

propriate modeling approach for this structure of observations is the (generalized) linear

mixed model (GLMM). It addresses dependencies between measurements of the same

individual by extending the linear predictor.

The computation of these models - or regression models in general - requires a rect-

angular data set without missing values. In many instances of data collection though,

incomplete observations are an inevitable issue.

A frequently used method to address the missingness problem is listwise deletion. It

excludes incomplete data rows from the analysis and hence reduces the data set to fully

observed ones. This approach however not only discards valuable information, it may

also induce an estimation bias, if the missingness of a data point is dependent on ob-

served variables.

The contrary method to deleting missing data rows is to impute incomplete fragments,

i.e. to estimate the values utilizing available information. A corresponding approach,

which gained a lot of recognition, is the multiple imputation of ”Amelia II: A program

for missing data” (Honaker et al. 2011). The general idea of multiple imputation is to

impute missing values M > 1 times. Thereby, the additional uncertainty of the impu-

tation process can be taken into account. Statistical procedures are afterwards applied
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to all completed data sets. Combining their outcomes by a simple procedure yields the

final result.

The aim of this thesis was to analyze the multiple imputation of Amelia II in gener-

alized linear mixed models. Special notice was given to the combination method of

the model parameters. Whereas theoretical approaches for combining fixed effects and

their corresponding variance estimates already exist, methods for the combination of

the random effects parameters were not thoroughly analyzed up to this point. Different

strategies were applied in a simulation study to evaluate the performance.

The thesis begins with an introduction on linear mixed regression models in chapter 2.

Particularly linear mixed models and generalized linear mixed models including the re-

spective estimation process and practical applications in R are described.

Chapter 3 concerns the multiple imputation of missing data with Amelia II in the con-

text of TSCS data. Again, applications of the theory in R are introduced at the end.

Chapter 4 presents the implementation and analysis of the simulation studies. After

the generation and preparation of artificial test data, GLMM estimations were reviewed

having

• a full data set (Simulation I).

• a complete case data set obtained by applying listwise deletion (Simulation II).

• an imputed data set using Amelia II (Simulation III).

In the final section of this chapter, the obtained results are compared and evaluated.

Concluding remarks on the researched framework are given in chapter 5.

2



2. Linear Mixed Models

Mixed models are convenient in situations, where the data is naturally divided into

clusters. This can e.g. be the case, if multiple measurements of each individual subject

are obtained over a period of time.

In linear and generalized linear regression models, the predictor ηi of an individual i is

defined as xTi β comprising the covariable vector xi alongside its associated fixed effects

β. The idea of a mixed model approach is to extend the predictor by so called random

effects. These effects model cluster-specific influences on the response. For clus- ters

i = 1, . . . ,m and measurements j = 1, . . . , ni the linear predictor can be written as

ηij = xTijβ + zTijbi

Here zij often represents a partial vector of xij. bi denotes the vector of random effects.

Compared to estimating models with fixed effects for each cluster, the mixed model

approach has several advantages. Depending on the number of clusters, a substantially

smaller amount of parameters needs to be estimated. These parameters are also less

affected by small sample sizes within the clusters. Finally, mixed models are able to

account correlations of the repeated measurements.

This chapter starts by presenting the linear mixed model (LMM). The second section

firstly introduces the generalized linear model by broadening the spectrum of possi-

ble response distributions of the linear model. To make this model applicable on data

situations with repeated measurements, the generalized linear model is extended by in-

troducing random effects. This leads to the generalized linear mixed model (GLMM).

The chapter ends with a description on how to bootstrap in these TSCS data situations.

3



4 2.1. THE LINEAR MIXED MODEL (LMM)

2.1. The Linear Mixed Model (LMM)

The classical linear model (LM) for observations yi (i = 1, . . . ,m) and covariables xi can

be specified in a variety of ways. An often used definition is the representation

yi = xTi β + εi (2.1)

with

εi ∼ N (0, σ2) (2.2)

Assumption 2.2 is not necessarily required1 for the LM, but is often used to enable

further methods like maximum likelihood estimation.

Suppose a given data situation, where ni observations for each of the m individuals are

measured. Its structure can be illustrated by two indices.

(yij,xij) , i = 1, . . . ,m , j = 1, . . . , ni (2.3)

This type of data can be modeled by extending the model equation of the LM.

2.1.1. General Definition of the LMM

A common notation for the model equation of the LMM is

yij = xTijβ + zTijbi + εij (2.4)

The response of 2.4 depends partly on the fixed effects β with their associated covari-

ables xij, and partly on random effects bi for each statistical unit i with covariables zij.

For a compact notation, one can use vectors and matrices to summarize response, de-

pendent and error variables. This leads to the ”individual notation”

yi = Xiβ + Zibi + εi (2.5)

where

yi =

 y1
...

yni


i

, Xi =

 xT1
...

xTni


i

, Zi =

 zT1
...

zTni


i

, εi =

 ε1
...

εni


i

(2.6)

1Alternatively: E(εi) = 0 ; Var(εi) = σ

4



5 2.1. THE LINEAR MIXED MODEL (LMM)

The following distribution assumptions are made on this model:

bi
iid∼ N (0,D) (2.7)

εi
ind∼ N (0,Σi) (2.8)

To assure 2.7, it is usually necessary, that all covariables of Zi are also included in Xi.

The only theoretical exception would be, if the associated fixed effects are exactly 0.

The (q × q) covariance matrix of the normal distributed bi is D. Assumptions on the

structure of this matrix are sometimes used to simplify the model complexity. A diagonal

matrix D would e.g. assume all random effects to be independent of each other. This is

called a variance component model.

For the error covariance Σi, it is also conceivable to use a diagonal matrix σ2
i Ini (or

σ2Ini), if measurements of the same cluster are assumed to be uncorrelated. This can

e.g. be the case in time-series data, if the time gap between two points is very large.

Another approach, which is often used for longitudinal data is to partition the error

vector.

εi = ε
(1)
i + ε

(2)
i (2.9)

ε
(2)
i represents the serial correlation. It typically decreases with the distance of two

measurements. ε
(1)
i is an additional error term, which is independent of ε

(2)
i . The

distributions of those errors are

ε
(1)
i ∼ N (0,σ2Ini) (2.10)

ε
(2)
i ∼ N (0, τ 2Hi) (2.11)

The (j, k)-element hijk of the ni × ni correlation matrix Hi is usually modeled as a

function of the distance between two data points.

hijk = g(|tij − tik|) (2.12)

where tij is the time of measurement j for person i and g is a decreasing function with

g(0) = 1. Examples for g would be the exponential serial correlation g(u) = exp(−Φu),

or the gaussian serial correlation g(u) = exp(−Φu2) with parameter Φ > 0.

5



6 2.1. THE LINEAR MIXED MODEL (LMM)

Note that in any of these serial correlation cases Σi only depends on i over the number

of observations ni.

Individuals from the notation of 2.5 can be summarized to get a more compact notation

for the LMM.

y =

 y1
...

ym

 , ε =

 ε1
...

εm

 , b =

 b1

...

bm

 , X =

 X1

...

Xm

 ,

Z =

 Z1 0 0

0
. . . 0

0 0 Zm

 , Σ =

 Σ1 0 0

0
. . . 0

0 0 Σm

 , D =

 D1 0 0

0
. . . 0

0 0 Dm


(2.13)

where Di ≡ D.

Altogether the LMM can be defined by

y = Xβ + Zb + ε (2.14)

with (
b

ε

)
∼ N

((
0

0

)
,

(
D 0

0 Σ

))
(2.15)

Like stated earlier for the LM, the normal distribution assumption is not necessarily

needed for every inferential statement. Yet, it is standardly used for (restricted) maxi-

mum likelihood estimations of the unknown parameters in Σ and D (see section 2.1.4).

2.1.2. Common Special Cases of LMMs

This section concerns two special cases of LMMs in the context of longitudinal data.

The first one is the random intercept model, which is the most simple type of linear

mixed model. In the subsequent part, it is extended by a random time effect, which

leads to the random slope model. Both models are very commonly used in practical

applications and are good starting points to understand the concept of LMMs.
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7 2.1. THE LINEAR MIXED MODEL (LMM)

The Random Intercept Model

As the name indicates, the Random Intercept Model (RIM) is characterized by including

an individual intercept as sole random effect.

Therefore, the matrix Zi of equation 2.5 reduces to a vector of ones and the vector bi

reduces to a scalar.

The model equation of the RIM in individual notation reads as follows:

yi = Xiβ + 1nibi + εi (2.16)

bi
iid∼ N (0, d2) ; εi

ind∼ N (0,Σi) (2.17)

Written in general matrix notation, 2.16 equals


y1

y2
...

yni


i

=


1 x11 x12 . . . x1(p−1)

1 x21 x22 . . . x2(p−1)
...

...
...

. . .
...

1 xni1 xni2 . . . xni(p−1)


i


β0

β1
...

βp−1

+


b

b
...

b


i

+


ε1

ε2
...

εni


i

(2.18)

In this case, the distribution of the random effect is a one-dimensional normal distri-

bution with variance d2. To illustrate an application of the RIM, the fictional data of

figure 2.1 is used.

This data set comprises of 4 individuals with 10 measurements each. It represents a

special kind of TSCS data, which is called ”balanced data”. Measurements for all indi-

viduals are taken at fixed (here also equidistant) points in time without missing values.

In practice, most data sets may not be as simple structured as in this example, but for

ease of exposition a small amount of persons without intersecting sequences was chosen.

The model equation of a RIM for this example could read

yi = β0 + xi,timeβtime + bi + εi (2.19)

7



8 2.1. THE LINEAR MIXED MODEL (LMM)

Figure 2.1.: Illustration of a simple time series cross section data set.

The model of 2.19 is visualized in figure 2.2.

Figure 2.2.: Illustration of the RIM. The straight black line corresponds to the fixed

effects (i.e. marginal estimation). The added normal distributed random

effect is visualized by the superimposed density functions.
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9 2.1. THE LINEAR MIXED MODEL (LMM)

The Random Slope Model

Another commonly used LMM is the Random Slope Model (RSM). It extends the RIM

by adding a random time effect.

A RSM can be appropriate, if the individual trends tend to differ in slope. In example 2.1,

this seemed not to be the case and a RIM would be satisfactory. However, if a data

situation as shown in figure 2.3 is given, adding a random time effect may be plausible.

Figure 2.3.: Exemplary data situation, where the random slope model appears to be

suited.

A model equation, which includes an individual slope could read

yi = β0 + xtime,iβ1 + b0,i + xtime,ib1,i + εi (2.20)

In this situation, the random effects bi are assumed to be two-dimensionally normal

distributed.

(
b0

b1

)
∼ N

((
0

0

)
,

(
d11 d12

d12 d22

))
(2.21)

9



10 2.1. THE LINEAR MIXED MODEL (LMM)

2.1.3. Marginal and conditional perspective

The LMM can be perceived and interpreted from two perspectives.

If the main interest is to interpret the cluster influences on the response variable, the

conditional perspective is used.

y|b ∼ N (Xβ + Zb,Σ) (2.22)

with

b ∼ N (0,D)

This hierarchical notation models the expected value of y as a function of population

effects alongside random effects, which are interpreted as individual effects here.

The alternative point of view is the marginal perspective. Here, the random effects

induce a correlation structure to enable a statistically valid analysis of the correlated

data situation. The expected value of yi is averaged over the population and modeled

as function of fixed effects only.

y ∼ N (Xβ,V) (2.23)

with

V = ZDZT + Σ

The marginal perspective follows directly from the conditional one by integrating over the

random effects. However, the conditional perspective does not follow from the marginal

one, because the latter does not assume random effects to represent heterogeneity.

The interpretation of the fixed effects is equivalent in both perspectives.

Consequently, the estimation process, which is presented in the next section differs

between fixed and random effects. The fixed effects are estimated on the marginal dis-

tribution of y, whereas the prediction of b needs to be conducted using the hierarchical

notation y|b.

10



11 2.1. THE LINEAR MIXED MODEL (LMM)

2.1.4. Estimation of the LMM

This section first elaborates the estimation of the LMM using maximum likelihood (ML)

and moves then on to the more regularly used restricted maximum likelihood estimation

(REML). In the following, the parameters of interest (β,D,Σ) are summarized as θ.

Maximum Likelihood Estimation

ML estimation for θ is performed on the marginal distribution p(y|θ). Using the distri-

bution assumptions of 2.15 and the model equation 2.14, one can obtain the distribution

of y for known random effects as a shift of the normal distributed ε by Xβ + Zb.

p(y|b,θ) ∼ N (Xβ + Zb,Σ) (2.24)

By applying the sum and product rule of probability2, the marginal distribution of y

can be written as

p(y|θ) =

∫
Rq
p(y|b,θ)p(b|D) db (2.25)

Both elements in the integral are known normal distributions. If a conditional normal

distribution is multiplied with its condition, which is also normal, the resulting joint

distribution is again a normal distribution.

p(y|θ) =

∫
Rq
p

((
y

b

)
|θ
)

db =

∫
Rq
N
((

Xβ

0

)
,

(
V ZD

DZT D

))
db (2.26)

where V = ZDZT + Σ

The marginal distribution of this partitioned Gaussian can be easily obtained.3

p(y|θ) = N (Xβ,V) (2.27)

Based on the marginal model, a suitable estimator for the fixed effects is given by the

ML- or generalized least squares estimator

β̂ = (XTV−1X)−1XTV−1y (2.28)

2cf. Bishop 2006 page 14, eq. 1.10 and 1.11
3cf. Bishop 2006 page 90, eq. 2.98

11



12 2.1. THE LINEAR MIXED MODEL (LMM)

To estimate the components of the covariance matrices Σ and D (in the following sum-

marized as ϑ), a profile likelihood approach is used.

The log-likelihood of θ excluding additive constants is

`(θ) = −1

2
{log |V|+ (y −Xβ)TV−1(y −Xβ)} (2.29)

By inserting the estimator β̂ of 2.28 into this log-likelihood, the profile log-likelihood is

obtained.

`P (ϑ) = −1

2
{log |V|+ (y −Xβ̂)TV−1(y −Xβ̂)} (2.30)

Maximizing `P (ϑ) with respect to ϑ gives the ML estimator ϑ̂ML. Numerical approaches

to realize this optimization are e.g. the Newton-Raphson or Fisher-Scoring algorithm.

Restricted Maximum Likelihood Estimation

A main disadvantage of the maximum likelihood estimation is the induced bias of

variance parameters, which arises from inserting fixed effects estimations into the log-

likelihood. One way of solving this problem, is to optimize the restricted log-likelihood

instead of the profile log-likelihood. It is obtained by integrating the likelihood with

respect to β.

`R(ϑ) = log

(∫
L(θ) dβ

)
(2.31)

The resulting `R(ϑ) differs from the profile-log-likelihood only by an additive term.

`R(ϑ) = `P (ϑ)− 1

2
log |XTV−1X| (2.32)

Analogous to the ML estimator, ϑ̂REML is computed iteratively.

Due to the unbiased estimation of the variance components, REML is the commonly

used method to estimate ϑ. However, despite eliminating the bias of the estimator, it

can not generally be ensured, that the mean squared error is reduced by performing

REML estimation.

12



13 2.2. THE GENERALIZED LINEAR MIXED MODEL (GLMM)

2.2. The Generalized Linear Mixed Model (GLMM)

2.2.1. Introduction

The Generalized Linear Model (GLM)

Section 2.1, which presented the LMM, opened with the classical linear model. Analo-

gously, to introduce the GLMM a short revision of the generalized linear model will be

made here.

The GLM is based on two main assumptions. The first one is the structural assump-

tion:

E(yi|xi) = µi = h(ηi) = h(xTi β)

g(µi) = ηi

(2.33)

The expected value of the response is connected to the linear predictor ηi over the

response function h(ηi) = µi (respectively over the link function g(µi) = ηi, having

g(·) = h−1(·)). This link function could e.g. be g(µi) = log(µi) for count data, or

g(µi) = log( µi
1−µi ) for binary data.

The second elementary assumption is the distribution assumption. It states, that

the distribution of the response is a member of the exponential family.

p(yi|θ) = exp

(
yiθ(µi)− b(θ(µi))

φi
− c(yi, φi)

)
giving E(yi|xi) = b′(θ(µi)) and Var(yi|xi) = φib

′′(θ(µi))

(2.34)

Here, θ(·) is called the canonical function and φ denotes the scale parameter of the

distribution. b(·) and c(·) are functions of the respective parameters.

Some examples of exponential family distributions are

• the Binomial distribution (θ(µ) = log( µ
1−µ), φ = 1)

• the Poisson distribution (θ(µ) = log(µ), φ = 1)

• the Normal distribution (θ(µ) = µ, φ = σ2)

13



14 2.2. THE GENERALIZED LINEAR MIXED MODEL (GLMM)

The Generalized Linear Mixed Model

To enable an analogical modeling approach in the context of longitudinal or cluster data,

it is necessary to extend the GLM. This particular data structure can be addressed, by

adapting the linear predictor of the model using a regulating component - the random

effects term.

ηij = xTijβ + zTijbi (2.35)

Altogether the GLMM can now be defined by introducing a third assumption.

E(yij|ηij) = h(xTijβ + zTijbi)

yij|ηij
ind∼ [exponential family] ; bi

iid∼ N (0,D)
(2.36)

This model can be understood as a combination of the GLM and the LMM. It is a

flexible tool to model cross-sectional data and to additionally enable a broad spectrum

of distributions for the dependent variable.

2.2.2. Example of a GLMM with Binary Response

In this thesis, artificial time-series cross-sectional data sets were analyzed. The response

variable throughout this analyses was binary. Therefore, the concept of the GLMM is

exemplified on an analogous data situation in this section.

To specify a GLMM, three assumptions have to be made: The distribution assumption

for the response, the structural assumption and the distribution assumption for the ran-

dom effects.

The distribution assumption for y|η having a binary response is

yij|ηij
ind∼ B(πij) (2.37)

The Bernoulli distribution B(π) is a commonly known member of the exponential family.

It’s density can be rearranged to

p(y|π) = πy(1− π)1−y = exp

(
y · log

(
π

1−π

)
− log

(
1 + exp

(
log
(

π
1−π

)))
1

+ 0

)
(2.38)

14



15 2.2. THE GENERALIZED LINEAR MIXED MODEL (GLMM)

This way of formulating the density illustrates the components of formula 2.34.

θ(µ) = log
(

π
1−π

)
b(θ(µ)) = log(1 + exp(θ(µ)))

φ = 1

c(y, φ) = 0

E(y) = b′(θ(µ)) = π

Var(y) = φb′′(θ(µ)) = π(1− π)

(2.39)

The choice of the structural assumption depends on the type of response variable. A

variety of different options exist for every member of the exponential family. A popular

and universal choice is the canonical/natural link function. It is given by the exponential

family as

g(µij) = θ(µij) (2.40)

The canonical link function of the Bernoulli distribution is the logistic function.

g(µij) = log

(
πij

1− πij

)
(2.41)

Other common options for a binary response variable would be:

• Probit link

g(µij) = Φ−1(µij)

with Φ denoting the distribution function of the normal distribution

• Complementary log-log link

g(µij) = log(− log(1− µij))

Nevertheless, a practical advantage of using the natural link function here is, that the

regression coefficients are interpretable as an effect on the log-odds for yij = 1.

15



16 2.2. THE GENERALIZED LINEAR MIXED MODEL (GLMM)

The distribution assumption for the random effects is the final assumption to

be made. A typical choice here is the (multivariate) normal distribution. Yet, other

options could be considered as well, like e.g. a (multivariate) t-distribution to create

a more robust estimation. For this thesis however, the random effects bi were simply

assumed to be normal distributed.

A summary of the logistic GLMM defined in this section is given in 2.42.

yij|ηij
ind∼ B(πij) ; g(µij) = log

(
πij

1− πij

)
; bi

iid∼ Nq(0,D) (2.42)

As mentioned earlier, the fixed effects of this GLMM can be interpreted, if the natural

link function of 2.41 is used. A rearranged model equation, which illustrates the relation

of the odds for yij = 1 and the covariables is shown in 2.43.

πij
1− πij

= exp(xTijβ) · exp(zTijbi) (2.43)

This rearrangement can be used to interpret the fixed effects of the model as an exponen-

tial factor influencing the odds
πij

1−πij . It is important to note, that all interpretations of β

are only valid given the random effects (e.g. ”. . . for an average person (bi = 0) . . . ”).

Contrary to the LMM, E(yij) = E(E(yij|bi)) does not hold for GLMMs in general.

Marginal estimations of β are less or equal to the conditional ones, which are computed

in the model. Hence, estimations of the fixed effects obtained from the GLMM can not

be interpreted as parameters of the whole population, like in LMs, LMMs or GLMs, but

should be treated as cluster-individual parameters.

If one is interested in a population based interpretation, the marginal parameters need

to be computed separately.

The interpretation of both, the model parameters and the marginal parameters is valid,

but addresses different issues. A parameter of the GLMM quantifies the expected change

of the odds for a given individual, if a covariable is altered for this person, whereas the

marginal parameter quantifies the expected change in the population, if the covariable

16



17 2.2. THE GENERALIZED LINEAR MIXED MODEL (GLMM)

is altered for everyone.

The first case would e.g. be of interest for a doctor treating a given person, while the

second case would rather apply to an epidemiologist studying the benefit of a treatment

in the general population.

Probability curves of an exemplary GLMM with one covariable x are shown in figure

2.4. Comparing the curve of an average individual (red) with the curve of the population

average (blue) illustrates the so called ”shrinkage effect” on the marginal fixed effects.

Figure 2.4.: Comparison of the individual probability curves, the overall population av-

erage probability curve and the probability curve for the average individual

(bi = 0) over a single continuous covariable x.

Note: No general formula exists to convert marginal to conditional parameters for most

GLMMs. The special case of a probit link random intercept GLMM is one excep-

tion to this. Here, it is possible to explicitly formulate the shrinkage effect.

βmarg. =
βcond.√
τ 2 + 1

(2.44)

with τ 2 denoting the variance of the random intercept’s normal distribution.

17



18 2.2. THE GENERALIZED LINEAR MIXED MODEL (GLMM)

2.2.3. Estimation of the GLMM

Broadening the spectrum of distributions for the response variable results in additional

difficulties for the estimation process. The main problem is, that contrary to the LMM,

a closed form solution of the marginal likelihood cannot be obtained analytically in

general.

Likelihood

Recapitulating formula 2.25, the marginal distribution of yi is given by

p(yi|θ) =

∫
Rq

ni∏
j=1

p(yij|bi,θ)p(bi|D) dbi (2.45)

The marginal likelihood for all individuals therefore results as

L(θ) =
m∏
i=1

∫
Rq

ni∏
j=1

p(yij|bi,θ)p(bi|D) dbi (2.46)

For the LMM estimation of section 2.1.4, both densities in the integral arose from normal

distributions, resulting in an analytical solution for the likelihood.

Here however, the distribution assumptions are

yij|bi,θ
ind∼ [exponential family] ; bi|D

iid∼ N (0,D) (2.47)

which gives no closed form solution for the likelihood in general.

Maximizing the product of m q-dimensional integrals over the random effects is dif-

ficult to perform and approximate solutions are still an area of active research.

Three main ideas can be considered to solve this problem:

• approximate the data (Penalized Quasi Likelihood approach)

• approximate the integrand (Laplace approximation)

• approximate the integral (Gaussian quadrature)

18



19 2.2. THE GENERALIZED LINEAR MIXED MODEL (GLMM)

All three approaches are highly time-consuming. Nevertheless, the Laplace approxima-

tion is the computationally fastest of these algorithms. For the simulation experiments

of chapter 4, a high number of models needed to be computed in a reasonable amount of

time. Because of that, the Laplace approximation was chosen to perform the multitude

of GLMM estimations in this thesis. It will be introduced in the following paragraph.

Theory on the other approaches can be found e.g. in (Greven 2015) or (Greven and

Cederbaum 2015).

The Laplace Approximation

Laplace’s method is able to approximate the likelihood of 2.25 using a Taylor expansion.

The general concept of this approach is described in the following.

Suppose one wants to approximate an expression of the form∫
f(x) dx (2.48)

First, a maximum value x0 of f(x) needs to be computed. I.e. a value x0, for which

f ′(x0) = 0. This value is employed as the centering point for a quadratic Taylor expan-

sion of the logarithm of f(x).

log(f(x))
Taylor
≈ log(f(x0))−

s

2
(x− x0)2 (2.49)

with

s = − d2

dx2
log f(x)

∣∣∣∣
x=x0

Note that the first-order term of the Taylor expansion vanishes, because f ′(x0) = 0 and

therefore d
dx

log f(x)
∣∣
x=x0

= 0.

Taking the exponential of both sides of 2.49 results in

f(x) ≈ f(x0) exp

{
−(x− x0)2

2s−1

}
(2.50)

The rear part of this equation represents the core of a normal distribution with mean

x0 and variance 1
s
. By adding the inverse normalization factor one obtains

f(x) ≈ f(x0) ·
√

2πs−1 · N (x|x0, s−1) (2.51)

19



20 2.2. THE GENERALIZED LINEAR MIXED MODEL (GLMM)

N (x|x0, s−1) is called the Laplace approximation of the density given by a normalized

f(x). An example using a gamma density function is illustrated in figure 2.5.

Figure 2.5.: Laplace approximation (red) of the gamma density with shape parameter 2

and scale parameter 1 (cyan). The illustrated gamma density is very skewed,

which makes the Laplace approximation rather crude here.

The big advantage of approximating the function by means of Laplace’s method is, that

integration of f(x) over x simplifies greatly. If 2.51 is plugged in 2.48 one obtains∫
f(x) dx

Laplace
≈ f(x0)

√
2πs−1

∫
N (x|x0, s−1) dx = f(x0)

√
2πs−1 (2.52)

The only part of the approximated f(x) depending on x is the normal density, which

simply integrates to 1.

The concept of the Laplace approximation can be extended to a function over a q-

dimensional space. x0 now represents a stationary point of the multi-dimensional func-

tion f(x), for which the gradient will consequently vanish.

∇f(x)|x=x0
= 0 (2.53)

20



21 2.2. THE GENERALIZED LINEAR MIXED MODEL (GLMM)

Performing a quadratic Taylor expansion of the logarithm of f(x) around this point

gives

log(f(x)) ≈ log(f(x0))−
1

2
(x− x0)

TS(x− x0) (2.54)

with a q × q Hessian matrix S defined by

S = − ∇∇ log f(x)|x=x0

Taking the exponential of 2.54 results in

f(x) ≈ f(x0) exp

{
−1

2
(x− x0)

TS(x− x0)

}
(2.55)

which represents the core of a q-dimensional normal distribution. It can thus be obtained

by multiplying the inverse normalization constant.

f(x) ≈ f(x0)

√
(2π)q

|S|
Nq(x|x0,S

−1) (2.56)

where |S| denotes the determinant of S.

Analogous to the univariate case, the approximation makes the integration of the func-

tion over x simple. ∫
Rq
f(x) dx ≈ f(x0)

√
(2π)q

|S|
(2.57)

Returning to the estimation of the GLMM, the components for using the Laplace method

can be identified easily.

Li(θ) =

∫
Rq
p(yi|bi,θ)p(bi|D) dbi :=

∫
Rq
f(bi) dbi (2.58)

Applying the steps described in this section, the likelihood can be approximated to

Li(θ) = Li(θ, b̃i)

√
(2π)q

|S|
(2.59)

where b̃i denotes the maximum of the likelihood for bi.

S = − ∂2

∂bi∂bTi
log(Li(θ))

∣∣∣∣
bi=b̃i

= − ∂

∂bTi
sc(bi)

∣∣∣∣
bi=b̃i

= −F(b̃i) (2.60)

with sc(·) denoting the score function and F(·) denoting the observed Fisher information.

However, to approximate the likelihood with Laplace’s method here, one first has to

estimate the maximum value b̃i. This can e.g. be done using the P-IRLS Algorithm.
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22 2.2. THE GENERALIZED LINEAR MIXED MODEL (GLMM)

The P-IRLS Algorithm

The optimization of the likelihood with respect to b can be performed using a Penalized

Iteratively Re-weighted Least Squares algorithm (P-IRLS). The P-IRLS approach is

described in this section.

Analogous to the numerical optimization algorithm of the GLM, the system of score

equations for b is approximated by a linear Taylor expansion around b0.

sc(b)
Taylor
≈ sc(b0)−F(b0)(b− b0)

!
= 0 (2.61)

Using the expected Fisher information matrix I(b0) (”Fisher-Scoring”) instead of the

observed Information matrix F(b0) and rearranging the rear equation of 2.61 gives

I(b0)b = I(b0)b0 + sc(b0) (2.62)

This is the main equation for the P-IRLS algorithm. Exemplified on a GLMM with

canonical link function, the score function and expected Fisher information can be writ-

ten as

sc(b) =
∂

∂b
`(θ) =

1

φ
ZT (y − µ)−D−1b

I(b) = −E
(

∂2

∂b∂bT
`(θ)

)
= ZTWZ +D−1

(2.63)

with W = 1
φ
diag

(
∂2

∂b∂bT
b(θ)

)
, where b(·) referring to the function given in the definition

of the exponential family (see equation 2.34)

Plugging these solutions in 2.62 gives

I(b0)b = (ZTWZ +D−1)b0 +
1

φ
ZT (y − µ)−D−1b0 ⇔

I(b0)b = ZTWZb0 +
1

φ
ZT (y − µ) ⇔

I(b0)b = ZTW(Zb0 +
1

φ
W−1(y − µ)) ⇔

I(b0)b = ZTWỹ

(2.64)

with a ”working response” ỹ defined as ỹ = Zb0 + 1
φ
W−1(y − µ).
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23 2.2. THE GENERALIZED LINEAR MIXED MODEL (GLMM)

An estimation algorithm can now be formulated as follows.

Algorithm 1: P-IRLS for GLMMs

Set starting values b̃
[0]

.

Iterate until convergence:

• Compute working responses

ỹ[u] = Zb̃
[u]

+
1

φ
W−1(y − µ)

• Update b̃ with

b̃
[u+1]

= I(b̃
[u]

)−1ZTWỹ[u]

Note: The dependencies of W and µ on b̃ were not highlighted in this algorithm for

ease of exposition.

The Estimation Algorithm for θ

The modes b̃i used in the Laplace approximation depend on the unknown parameters

in θ. Therefore, the numerical maximization of the likelihood has to iterate between

estimating b̃ using θ̂ and maximizing the likelihood after inserting b̃ to obtain updated

estimations for θ.

Algorithm 2: Estimation of θ using the Laplace Approximation

Set starting values θ̂
[0]

.

Iterate until convergence:

• Compute the maximizer b̂
[u]

with a P-IRLS approach (described in Algorithm 1)

using θ̂
[u]

• Use b̂
[u]

to optimize the likelihood approximated with the Laplace method to

compute θ̂
[u+1]
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24 2.2. THE GENERALIZED LINEAR MIXED MODEL (GLMM)

On the one hand, the estimation of GLMM parameters via the Laplace approximation

has the advantage of being computationally fast compared to the other common ap-

proaches. On the other hand, it is also more imprecise than the more CPU-intensive

methods. This especially applies for small cluster sizes and strong discreteness among

the clusters.

However, to practically enable the computation of the vast amount of models neces-

sary for the simulations of chapter 4, the lower precision associated with the Laplace

approximation needed to be accepted here.

2.2.4. GLMMs in R using the package lme4

This section gives a short introduction, on how to estimate GLMMs in R. The package

lme4 (Bates 2010) was used for this purpose throughout the thesis. It is one of the

standard packages for mixed model estimation in R.

The Function glmer()

Suppose, one is interested in fitting a GLMM for the data set shown in tabular 2.1,

having clusters i given by the variable subject.

subject y time age x

1 1 1 37 1

1 1 2 37 1

1 0 3 37 0

1 1 4 37 0

1 1 5 37 1

2 1 1 32 1

2 1 2 32 0

Table 2.1.: Excerpt from an exemplary TSCS data set.

An applicable model equation to this data set would e.g. be

E(yij|ηij) = h(β0 + timeijβ1 + ageiβ2 + xijβ3 + bi)

24



25 2.2. THE GENERALIZED LINEAR MIXED MODEL (GLMM)

The corresponding function call in R reads

1 glmer(formula = y ~ time + age + x + (1| subject),

2 family = binomial(link="logit"),

3 data = D)

The formula parameter denotes a formula statement, comparable to the one used in the

lm() or glm() functions. First, the response variable is indicated, followed by a tilde

operator and the fixed effects separated with ”+” operators. After another ”+” and

within round brackets, the random effects are specified analogously to the fixed effects

followed by a ”|” operator and the cluster variable. In this formula, the random effects

only consist of an intercept to create a RIM. If one wants to extend this model to a

RSM, the corresponding formula argument would need to be

y ∼ time + age + x + (time|subject)

Note, that the random intercept is included by default and does not need to be declared

explicitly as soon as one or more random effect variable is declared. If the intercept

should be removed, the expression ”-1” has to be added to the statement.

The second argument is named family. It specifies the distribution and structural as-

sumption of the GLMM. The first part declares the distribution of the response. Here,

y is binary, which leads to the Bernoulli, respectively the Binomial distribution. The

link function is specified as argument of the distribution expression. It can be defined

either by keywords like ”logit” or ”probit”, or explicitly as an R function.

The third argument determines the data set, which incorporates the used variables.

A variety of further optional parameters are available in the glmer function. They can

be found in Bates 2015. The described arguments however provide the basis for the

computation of the GLMMs in this thesis.
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26 2.2. THE GENERALIZED LINEAR MIXED MODEL (GLMM)

Output of the Estimation with glmer()

Calling the glmer() function with the arguments presented in the last section leads to

the following (shortened) output:

1 Generalized linear mixed model fit by maximum likelihood

2 (Laplace Approximation) [’glmerMod ’]

3

4 Family: binomial ( logit )

5 Formula: y ~ time + age + x + (1 | subject)

6 Data: D

7

8 Random effects:

9 Groups Name Std.Dev.

10 subject (Intercept) 0.9005

11

12 Fixed Effects:

13 (Intercept) time age x

14 -1.02054 0.09962 0.04344 -1.14988

The output starts with a caption naming the applied estimation algorithm, which is by

default the Laplace approximation. After recapitulating the specified arguments of the

function call, the estimation of the variance covariance matrix for the random effects is

displayed. In this case, it is a single value denoting the standard deviation of the random

intercept (d ≈ 0.9). The fixed effects estimations can be found below.

For a more detailed output (p-values, correlation matrix and variances of the fixed ef-

fects, ...), one can use the summary() function having the model object as its argument.

The CPU-time required to estimate this random intercept GLMM with the Laplace

approximation having a data set of 100 clusters with 5 measurements each lies in the

region of 0.6 seconds using an ”AMD-FX8320” CPU.
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27 2.3. BOOTSTRAPPING FROM MIXED MODEL DATA

2.3. Bootstrapping from Mixed Model Data

The simulation analyses of chapter 4 used a bootstrap approach to obtain empirical

densities for GLMM parameters. Bootstrapping is a computational resampling method.

For a data set comprising N observations, the method independently draws N times a

random data row, which in combination gives a sample data set of the same size as the

original one. Observations of the data can occur in the sample either one time, multiple

times, or not at all. In this way, B sample data sets are created. Next, a GLMM is fitted

on each of the bootstrap samples. Every model parameter is thus obtained B times,

resulting in an empirical density for it.

Data . . .

Data?1

Data?B

. . .

θ̂
?

1

θ̂
?

B

p̂(θ̂
?
)

Figure 2.6.: Schematic illustration of realizing an empirical bootstrap density of GLMM

estimators. The asterisk represents a sampled data set, θ denotes the pa-

rameters of a GLMM and p̂(·) refers to the empirical density of it’s argument.

Having obtained multiple estimates of θ and therefore the empirical bootstrap density,

one can also compute 95% bootstrap percentile intervals.

BPI =
[
θ̂
?

(0.025) ; θ̂
?

(0.975)

]
(2.65)

with θ̂
?

(α
2
) denoting the (B · α

2
)-st value4 of the ordered sequence of θ̂

?

1, . . . , θ̂
?

B.

4resp. if (B · α2 ) is a non-integer value, choose the (b(B + 1) · α2 c)-st and the (B + 1−b(B + 1) · α2 c)-st

values as borders of the BPI
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28 2.3. BOOTSTRAPPING FROM MIXED MODEL DATA

One essential prerequisite of the bootstrap is, that the units, which are drawn from

the data set to obtain a bootstrap sample are independent. However, having a cross

sectional data set, this does not account for the observations of one individual. The

bootstrap therefore has to be adapted to handle the data structure.

Measurements of one person may not be independent, yet, the persons themselves actu-

ally are. Hence, one solution to apply the bootstrap method on cross-sectional data is

to draw cluster-wise from the data set. One bootstrap sample can then contain all mea-

surements from one individual either once, multiple times, or not at all. This approach

preserves the structure of the dependent measurements and creates a proper bootstrap

sample of the data situation.

An implementation in R is given below. The parameters of the function are a bal-

anced, cross-sectional data set and the number of bootstrap samples to compute.

1 bootstrap <- function(data , B=200){

2 pers = unique(data$subject)

3 lapply( 1:B, function(y){

4 smp = do.call(rbind , lapply(sample(pers , replace=T),

5 function(x)data[data$subject ==x,]))

6 smp$subject = rep(pers , each=nrow(data)/length(pers))

7 return(smp)} )

8 }

First, the names of all cross-sections are stored in the variable pers. The call lapply

returns the resulting sampled data sets of it’s inner function as a list. One bootstrap

sample is created by repeatedly drawing all measurements of a random person. The

code do.call(rbind, lapply(...) stores all drawn persons to a list, which gets then

combined to a data set. Finally, before returning it, distinct names have to be given to

each drawn person to preserve a balanced structure.
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3. Imputation of Missing Data with

Amelia II

Missing values are a common issue in a lot of practical data situations. Participants

of studies drop out, devices fail to measure values (resp. measure highly unplausible

values), or questions of a survey are not answered; there are many reasons that lead

to incomplete data. Nevertheless, most common methods of statistical analysis require

rectangular data sets without missing observations.

One approach, which is widely used among researchers to handle this problem is listwise

deletion. It eliminates all data rows holding one or more missing values. However, beside

discarding a considerable amount of information, this method may also induce biased

parameter estimates, if the data contains information on the missingness.

An alternative strategy to omit the disadvantages of listwise deletion is to impute miss-

ing values. I.e.: Estimate a plausible value for the missing data point from the observed

measurements. However, if one is not able to replace the missing values with the true

ones, the analysis software falsely assumes, that the data has more observation, than

were actually measured. This leads to an overestimated confidence in the results, which

arises from biased standard errors, hence biased confidence intervals.

One way to address this problem is to impute multiple values for a single unobserved

one. Consequently the uncertainty of the imputation can be taken into account, by

including the discrepancy between the imputed values in the final estimation. The ex-

pected value, or ”best guess” of a missing observation would then be the mean of the
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imputations across the completed data sets.

In this thesis, multiple imputation via Amelia II was used to perform this task. The

package is named after a famous missing person (see 3.1). Compared to other com-

mon algorithms for multiple imputation, like the imputation-posterior approach, or the

expectation maximization importance sampling, Amelia II has the advantage of being

far less computational intensive. Furthermore, it includes adaptions to deal with TSCS

data, which altogether makes it well suited for the applications of this thesis.

The chapter starts with a description of the missingness assumptions typically made

for incomplete data. Section 3.2 introduces the basic concepts of multiple imputation.

Subsequently, the imputation model used by Amelia II is presented. Section 3.4 con-

cerns the EMB-Algorithm and practical computation of imputations. After that, the

adaptions to deal with TSCS data are presented in section 3.5. The last part of this

chapter describes the practical application of Amelia II in R.

Figure 3.1.: The R package Amelia was named after Amelia Earhart, who was an Amer-

ican aviation pioneer and author. During a flight in 1937, she disappeared

over the central Pacific Ocean.
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31 3.1. MISSINGNESS ASSUMPTIONS

3.1. Missingness Assumptions

The process, by which data becomes missing can be divided into three cases, which

are summarized by the following assumptions. The applicability of statistical methods

strongly depends upon them.

Let D be a matrix comprising all dependent and independent variables.

D = {Y,X} (3.1)

This data matrix can be divided into observed and missing portions.

D = {Dobs,Dmis} (3.2)

Let M be a matrix of the same dimension indicating, if an element of D is missing.

Mik = 1⇔ Dik ∈ Dmis (3.3)

The first possible assumption is, that missing values are ”Missing Completely At

Random” (MCAR). This means the probability of a cell being not observed does

not depend on the data. In other words, the data contains no information about the

missingness. MCAR is an important requirement for the application of listwise deletion,

to not induce biased estimators.

Formally, the assumption can be written as

p(M|D) = p(M) (3.4)

The second assumption is the less restrictive ”Missing At Random” (MAR). It

allows the missingness of a value to be dependent on observed, but not on unobserved

values. This assumption is e.g. made for the multiple imputation of Amelia II.

p(M|D) = p(M|Dobs) (3.5)
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The last assumption allows no simplification of p(M|D). The probability of a value

being missing can depend on observed, as well as on unobserved data. This assumption

is called ”Not Missing At Random” (NMAR). By definition, NMAR cannot be

proven from the observed data, which makes it impossible in practical data situation

to absolutely verify the validity of Amelia’s multiple imputation model. Nevertheless,

MCAR can often be empirically discarded in favor of MAR.

Altogether, these assumptions are crucial for the validity of any approach to treat in-

complete data and should be applied with careful thought.

3.2. Multiple Imputation

Contrary to imputing a missing data point once, the idea of multiple imputation is to

impute M values for each missing cell, therefore creating M completed data sets. The

multiple values of each unobserved cell reflect the uncertainty of the imputation. Ob-

served values stay the same for all data sets. The analyst can then apply any statistical

method individually on each imputed data set and subsequently combine the results

with a simple procedure. Figure 3.2 schematizes a multiple imputation analysis.

Figure 3.2.: Scheme of a multiple imputation analysis approach.
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Combination Methods

The quantity of interest Q is obtained from each imputed data set: Q1, . . . , QM .

Q can e.g be a predicted probability, a univariate mean, or like in this thesis a regression

coefficient of a generalized linear mixed model. The combined estimate for Q is most

typically the mean of all separate estimates Qj (j = 1, . . . ,M).

Q̄ =
1

M

M∑
j=1

Qj (3.6)

Multiple imputation enables to express the uncertainty of estimating missing values.

Obtained variances of Q have to be altered, to include this additional uncertainty (cf.

King et al. 2001). Let V̂ar(Qj) denote the estimated variance of Q from data set j. This

can be seen as the variance component, that lies ”within” each data set. In addition

to this exists the uncertainty of the imputation, which is projected ”between” the data

sets. It can be calculated by the sample variance across the M data sets multiplied by

M+1
M

to correct for bias.

The overall estimate for the variance of Q then follows as

V̂ar(Q) =
1

M

M∑
j=1

V̂ar(Qj)︸ ︷︷ ︸
”within”

+
M + 1

M(M − 1)

M∑
j=1

(Qj − Q̄)2︸ ︷︷ ︸
”between”

(3.7)

For multivariate Q, equation 3.7 reads

Ĉov(Q) =
1

M

M∑
j=1

Ĉov(Qj) +
M + 1

M(M − 1)

M∑
j=1

(Qj − Q̄)(Qj − Q̄)T (3.8)

Finally, if one is only interested in estimating the best guess for the missing values, the

imputed data sets can also be combined by calculating the mean.

D̄ =
1

M

M∑
j=1

Dj (3.9)

Of course, when averaging over the data sets, it’s only necessary to average the imputed

values and simply carry over observed data points.
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A popular mistake done by researchers is to use the averaged data set D̄ to calculate

the quantity of interest. The problem with this way of proceeding is, that the variance

of Q will be underestimated, due to ignoring the variance between the imputed data

sets, which represents the uncertainty of the imputation process. Imputed cells are seen

as observed values by analysis software and all information gained on the imputation

variance is discarded, which makes multiple imputation pointless. Moreover, in Amelia

II, unnecessary additional estimation uncertainty is added, because the original data is

bootstrapped internally.

Altogether, understanding the idea of multiple imputation and the correct way of an-

alyzing the obtained data situation is essential to exploit the advantages of imputing

more than one value for a missing data point.

3.3. The Imputation Model

To implement multiple imputation, a model, which estimates missing values is required.

The modeling approach of Amelia II will be introduced in this section.

Observed values oftentimes carry information about the unobserved ones. This makes

the distribution of the missing values predictable by existing data. A main assump-

tion, to enable an unbiased estimation in this context is MAR (see 3.5). The second

assumption made in Amelia II is, that the data variables are jointly multivariate normal

distributed. This obviously is an approximation, because only few data sets have e.g.

only continuous, or unbounded variables. Yet research has discovered, that this approx-

imation works as well as more complicated approaches, which were adapted specifically

for those data types. (Schafer 1997)

Let Di be the vector of values for observation i (i = 1, . . . , N). If Di was fully observed,

this vector is assumed to be multivariate Normal distributed with mean vector µ and a

non-diagonal covariance matrix Σ.

The likelihood function for the complete data then is

L(µ,Σ|D) ∝
N∏
i=1

N (Di|µ,Σ) (3.10)
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35 3.3. THE IMPUTATION MODEL

Now let Di,obs denote the observed elements for row i of the data D, with µi,obs and

Σi,obs being the corresponding subvector and submatrix of µ and Σ. The likelihood of

the observed data is obtained by integrating the full data likelihood over Di,mis.

L(µ,Σ|Dobs) ∝
∫
L(µ,Σ|D) dDi,mis ∝

N∏
i=1

N (Di,obs|µi,obs,Σi,obs) (3.11)

The difficulty of this likelihood is, that the observed values typically have a changing

compositions over i, thus contributing information to different portions of the parame-

ters. This makes optimization complex to implement. In other words, for p variables in

the vector Di, there are 2p possible missingness patterns, which may need to be com-

bined for the final parameter estimation.

Amelia II imputes missing values by means of a linear regression model.

Let D̂ik be the imputation estimation for a missing value of observation i and variable

k. Further, let Di,obs be the vector of all non missing values of observation i. µ and

Σ contain all available information on the data. They can be used to calculate the

regression coefficient β̂.

The imputation is then performed similar to

D̂ij = Di,obsβ̂ + ε̂i (3.12)

The expected imputation is therefore a linear function of the observed data, with added

uncertainty εi calculated from the covariance matrix Σ.

For the actual estimation algorithm in detail see section 3.4.

If a categorical variable is to be imputed, the continuous estimation D̂ij can be rounded

off to the nearest integer (as recommended by Schafer 1997). However, if the variable

is ordinal, one could also consider analyzing the data with non-integer imputations, to

get more precise conclusions. For a binary variable, a Bernoulli draw with probability

π being equal to D̂ij and truncated to [0, 1] is a possible solution. But again, if the

analysis allows it, using the continuous value D̂ij should be taken into consideration.
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3.4. The Estimation Algorithm

The multiple imputation of missing values is performed by a bootstrap in combination

with an EM algorithm. A detailed description of the practical estimation process will

be presented in this section. To fully understand the approach, the sweep operator and

the concept of sufficient statistics are introduced first.

3.4.1. The Sweep operator Swp(X, {s})

Sweeping is an operation performed on a quadratic matrix. This thesis uses the definition

of the sweep operator having two parameters. The first one is a matrix of dimension

r× r to perform the operation on. The second is a binary vector of length r, indicating

the row and column to be swept over.

Let the sweep operation for the r × r matrix A over the k-th row/column result in a

matrix B. I.e.

Swp(A, {k}) = B ,

where k denotes a vector of length r, with the k-th element being 1 and all other

elements being 0.

The resulting matrix B is then composed of

Bij = Aij −
AikAkj
Akk

; Bkk =
1

Akk

Bik =
Aik
Akk

; Bkj =
Akj
Akk

(3.13)

Though at first sight, the aim of the sweep operator may not be very obvious, it has

multiple fields of application. One of them is the ordinary least squares method of

(multivariate) regression problems, which will be introduced in the following.

Let D be a design matrix comprising a column of ones, covariables x2, x3, x5 and

responses x1 and x4:

D = { 1 x1 x2 x3 x4 x5 } (3.14)

36



37 3.4. THE ESTIMATION ALGORITHM

One is now interested in computing the parameters of the linear regression models

x1 = β
(1)
0 + x2β

(1)
2 + x3β

(1)
3 + x5β

(1)
5 + ε(1) (Model 1)

x4 = β
(2)
0 + x2β

(2)
2 + x3β

(2)
3 + x5β

(2)
5 + ε(2) (Model 2)

A computational efficient way to do this, without having to invert any matrices is feasible

with the sweep operator. The sufficient statistic T = DTD (see section 3.4.2) is swept

consecutively over all non-response columns c = (1, 0, 1, 1, 0, 1), giving

Swp(T, {c}) =

1

x1

x2

x3

x4

x5

1 x1 x2 x3 x4 x5

· β
(1)
0 · · β

(2)
0 ·

·
∑

i ε
2
(1) · · Cov(x1, x4) ·

· β
(1)
2 · · β

(2)
2 ·

· β
(1)
3 · · β

(2)
3 ·

· Cov(x1, x4) · ·
∑

i ε
2
(2) ·

· β
(1)
5 · · β

(2)
5 ·


(3.15)

Here, the dots represent portions of the matrix no longer of use for this example.

All parameters of interest for the regression problem can be extracted from this matrix.

3.4.2. Sufficient Statistics

A statistic T(X) is sufficient for the parameters θ of the distribution of X, if it contains

all information on θ available from X.

More formally:

fX|T (X|T(X) = T,θ) = fX|T (X|T(X) = T) (3.16)

Like mentioned in an earlier section, the data set, which is imputed by Amelia is assumed

to be multivariate normal distributed. Hence, the focus here lies on applications for this

distribution.
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38 3.4. THE ESTIMATION ALGORITHM

A sufficient statistic for D can be summarized as

T = DTD =


N

∑
i xi1 . . .

∑
i xi5∑

i xi1
∑

i x
2
i1 . . .

∑
i xi1xi5

...
. . .∑

i xi5 . . .
∑

i x
2
i5

 (3.17)

When transforming this matrix by means of the sweep operator, the parameter estimates

of the underlying distribution can be obtained. T is swept over the first row/column

resulting in

Swp(T, {1 0 0 0 0 0}) =

 N−1 µ̂T

µ̂ Σ̂

 (3.18)

This is the most common way to express the sufficient statistic of a multivariate normal

distribution, since all parameters of Di,−1 ∼ N5(µ,Σ) are found in this version of T.

(Here Di,−1 denotes a row of the data set without the first column)

3.4.3. The ML and Bayesian Estimation Approach

Two approaches exist within Amelia II to estimate imputations for incomplete data. If

expert knowledge on missing values exists, a Bayesian framework can be applied. Oth-

erwise, the likelihood is maximized solely based on the data set. Both approaches will

be described simultaneously in this section, as they pursue a similar concept.

The assumed distribution for an individual observation Dij is

D̂ij|T ∼ N
(
µij = E(Dij) , σ

2
ij = σ̂2

ij

)
(3.19)

Now let a potential prior for this value with Mij = 1 be defined as

p(Dij) = N (mij, λ
2
ij) (3.20)
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39 3.4. THE ESTIMATION ALGORITHM

The corresponding posterior distribution then results as

D̂ij|mij, λij,T ∼ N

(
µ∗ij =

mijλ
−2
ij + E(Dij)σ̂

−2
ij

λ−2ij + σ̂−2ij
, σ2∗

ij =
1

λ−2ij + σ̂−2ij

)
(3.21)

The Bayesian framework uses this posterior to draw imputations, whereas the ML ap-

proach maximizes the likelihood to obtain estimators for the parameters in 3.19.

Regardless of the estimation method however, the difficulty lies in obtaining the ML-

estimators for E(Dij) and σ̂2
ij. Like stated earlier, the data likelihood cannot be opti-

mized without further ado, because the missingness composition may vary among the

data rows. Yet, ML-estimates of a completed data set would be easily obtained, espe-

cially under the assumption of multivariate normality. A powerful tool applicable in this

kind of situations is the Expectation Maximization (EM) algorithm.

3.4.4. The EM algorithm

The main idea of the EM algorithm is to iterate between estimating the missing values

of the data from the ML parameters and updating these parameters by maximization of

the likelihood using the completed data set. The algorithm starts (step t = 0) by setting

initial values for the parameters. After that, the E- and M-step are executed alternately.

The E-step

In the E-step, missing values of the data set are imputed either, using the optimized µij

of the likelihood, or, when incorporating a prior, using the respective µ∗ij of the poste-

rior distribution. To calculate them, the expectations of Dij for all missing values are

computed. They are obtained from a linear regression model having the observed data

points as covariables. (Here, the expression D0
i denotes, that all NA values are replaced

with zeros)

E(Dij) = D0
i β̂ = D0

iSwp(T(t), {1−Mi})j (3.22)
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40 3.4. THE ESTIMATION ALGORITHM

The regression coefficients β̂ for the response variable j are obtained from the j-th

column of the matrix, which results from sweeping the current sufficient statistic T over

all observed variables (cf. section 3.4.1). With D0
i being 0 for all unobserved elements,

non-β values drop out of the regression term.

Next, the sum of squared errors σ̂2
ij is estimated. This value can analogously be calculated

by sweeping the sufficient statistic.

σ̂2
ij = Swp(T(t), {1−Mi})jj (3.23)

A completed data set is obtained, using the values of 3.22 (and 3.23) to compute the

(posterior) expectation.

D̂
(t+1)
ij = E(Dij) (ML)

D̂
(t+1)
ij = µ∗ij =

mijλ
−2
ij + E(Dij)σ̂

−2
ij

λ−2ij + σ̂−2ij
(Bayes)

(3.24)

The M-step

The M-step updates the sufficient statistic using the completed data set. Additionally

to the single values Dij, T also contains the products DijDik ∀i, j, k. Their expectation

is given by

E(DijDik) =


DijDik , if Mij = 0 ,Mik = 0

E(Dij)Dik︸ ︷︷ ︸
ML

or µ∗ijDik︸ ︷︷ ︸
Bayes

, if Mij = 1 ,Mik = 0

E(DijDik) , if Mij = 1 ,Mik = 1

(3.25)

The first and second case are simply computed from the data. The third one addition-

ally involves the estimated (posterior) covariance of both variables conditional on the

observed data for measurement i. This can be obtained as the jk-element of the swept

matrix.

E(DijDik) = E(Dij)E(Dik) + Swp(T(t), {1−Mi})jk (ML)

E(DijDik) = µ∗ijµ
∗
ik + Swp(T(t), {1−Mi})jk (Bayes)

(3.26)
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In the Bayesian case, a prior covariance of 0 is assumed, as it is computationally con-

venient. However, other options are possible as well and would involve an adaption of

equation 3.26. Contrary to the covariance, the prior variance of Dij is not assumed to

be 0, which results in a posterior expectation of the quadratic case (i.e. j = k) as

E(D2
ij) = µ∗2ij +

(
1

λ2ij
+

1

σ̂2
ij

)−1
(3.27)

For the ML method, equation 3.26 can be applied to this case without any adaption.

The final requirement to compute an updated sufficient statistic is the variance-covariance

matrix for the missing values within one observation. Let Σ̂i denote the portion of this

p × p matrix contributed by observation i. The variance of non-missing values in Σ̂i is

therefore 0. It can be obtained with

Σ̂i =MiMT
i ∗ Swp(T, {1−Mi}) (3.28)

where the asterisk denotes an element-wise product.

In a Bayesian framework, if multiple priors within one observation i shall be incor-

porated, a matrix notation is helpful to formally define the corresponding

posterior-equivalent to Σ̂i.

Assume a prior for the whole observation i of p(Di) = N (mi,Λi). mi denotes a vector

of prior means ifMij = 1 and 0s otherwise. Λi represents a diagonal matrix comprising

the individual prior variances λ2ij, resp. 0s for non-missing elements.

The posterior variance-covariance matrix is then given by

Σ̂
∗
i = (Σ̂

−1
i + Λ−1i )−1 (3.29)

Having computed all necessary elements, the M-step of the algorithm can be declared
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as

T(t+1) = (D̂(t+1))T D̂(t+1) +
N∑
i=1

(
Σ̂

(t+1)

i

)
(ML)

T(t+1) = (D̂(t+1))T D̂(t+1) +
N∑
i=1

(
Σ̂
∗(t+1)

i

)
(Bayes)

(3.30)

The presented E- and M-steps are iterated, until there is convergence in T.

3.4.5. Imputing Multiple Missing Values

To generate multiple imputation values, the incomplete data set is bootstrapped in the

beginning. The (Bayesian) EM approach is then performed on each bootstrap sample,

resulting in multiple estimated sets of parameters (resp. sufficient statistics T).

In the ML framework, the final imputations of observation i are drawn from the assumed

data distribution using the converged parameters in T.

D̂i|T(t),M∼ N
(
µ̃i , Σ̃i

)
µ̃i = E(Di) = D0

iSwp(T(t), {1−Mi}) ∗Mi + D0
i ; Σ̃i = Σ̂i

(3.31)

with D0
i denoting row i of the initial incomplete data set, having missing values replaced

by 0s, and Σ̂i being given at 3.28. The element wise product with Mi, combined with

adding D0
i sets µ̃ij = Dij for non missing values.

In a Bayesian approach, the imputations are drawn from the posterior distributions

of observation i.

D̂i|mi,Λi,T
(t),M∼ N

(
µ̃i , Σ̃i

)
µ̃i = µ∗i = Σ̂

∗
i (Σ̂

−1
i E(Di) + Λ−1i mi) + D0

i ; Σ̃i = Σ̂
∗
i

(3.32)

with Σ̂
∗
i given at 3.29.

For this thesis, no prior information on the missing values was incorporated. How-

ever, expert knowledge can often drastically improve the quality and numerical stability

of the imputation and is, if available, highly recommended to include in the algorithm.
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3.5. TSCS-Data Imputation

The standard imputation approach models missing values as a linear function of ob-

served ones. Yet, when dealing with time-series cross-sectional data, this model has to

be adapted to apply to the nature of the data.

Two modifications are made for that purpose. Both follow the concept of supplementing

the data set with additional variables prior to running the imputation algorithm. To in-

clude possible shifts between cross-sections, an additional categorical variable indicating

the cross-section is introduced (de facto: m− 1 dummy coded variables representing m

cross-section). With that, the imputation model now fits an individual effect for each

cross-section, resulting in a more flexible estimation.

To adapt the imputation model for trends in time, the data is extended by smooth

basis functions of the time variable. These can be created via LOESS, splines, wavelets

or simply using q-order polynomials. For this thesis, the latter approach was chosen. It

is economical on CPU resources, yet still satisfactory for many applications. The main

disadvantage of polynomials lies in the extrapolation of values. More complex methods

could be favorable in these situations.

Since time effects may vary between cross-sections, it is sometimes also convenient to

include interactions between the basis functions and the cluster units. However, for a

high number of cross-sections, this would lead to a multitude of variables in the impu-

tation model. E.g.: Having m cross-sections and using a polynomial of order q would

require adding qk+ k− 1 variables to the data frame. This approach is only feasible for

large cluster sizes and was therefore not included for the simulations of chapter 4.

Further extensions of the data matrix, including lags and leads, or incorporating ex-

pert knowledge (in addition to the priors of 3.4.3) are analogously possible. These ideas

are not discussed here, but can be found in King and Honaker 2008.
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3.6. Practical Use in R

The described multiple imputation of this chapter is implemented in the R-package

Amelia. It’s main function will be introduced in the following.

3.6.1. Calling the Function amelia()

The function amelia() is used to perform multiple imputation on an incomplete data

set. It’s main parameters are listed below along with a short description.

x =

The incomplete data set, on which the multiple imputation shall be performed.

m =

The number of imputed data sets to create. A typical value here is 5.

ts = , cs =

These parameters are used to identify the time-series and cross-section variable of the

data set. They can either be specified by the column number or the variable name.

polytime =

An integer value between 0 and 3, defining the power of a polynomial to model the

time-series.

intercs =

A logical value indicating, if the time effects should vary across the cross-sections.

prior =

A matrix, to declare the prior parameters for missing values. It’s rows have the

composition: c(NA.row, NA.column, prior.mean, prior.sd)

p2s =

Set the screen output during execution: 0 =̂ disabled; 1 =̂ normal; 2 =̂ detailed.
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Other parameters, that are not mentioned here, can be found in the R Documentation

for amelia() (see Honaker et al. 2015).

The multiple imputations of this thesis were performed using the following function

call:

1 amelia( x = Data ,

2 m = 5,

3 ts = "time",

4 cs = "subject",

5 polytime = 1,

6 p2s = 0 )

5 imputed data sets were created. Unless the rate of missingness is very high, this is a

conventional size.

To model the time-series variable, a linear time trend was chosen (polytime = 1). The

autoregressive model (see section 4.2.1) used to create the time effect for one of the

incomplete variables in the simulation may have an overall non-linear trend, however,

the strong dependency of consecutive measurements paired with the small count of

observations made the approximation of a linear trend satisfactory.

One problem shortly remarked in the previous section is, that interactions between the

time series and cross section variables were not properly implementable here, due to

the small number of measurements per cluster. Fitting individual polynomials (or even

splines) on every cluster would have produced a tremendous increase of imputation model

parameters, which would therefore have resulted in either a poor fit, or no possible fit

at all.

The last parameter p2s controls the screen output. Having a high number of amelia()

function calls in the simulations, a cluttering up of the console can be prevented by

disabling this feature (p2s=0).
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3.6.2. Return Value of amelia()

After executing the function described in 3.6.1, a list object is returned. It contains the

imputed data set along with various imputation parameters (e.g. posterior means of

each imputation). In the simulations of chapter 4, only the completed data sets were

stored for later analysis. They can be obtained using

1 amelia( ... )$imputations

A summary of the other parameters given in the returned list, together with a short

description is presented below.

$ m , $ arguments

$arguments returns all arguments, that were set in the function call, except for the

number of imputations to be performed, which is returned by $m.

$ orig.vars , $ missMatrix

$orig.vars returns a vector containing the variable names of the data set.

$missMatrix returns the missingness matrix M of the data.

$ theta , $ mu , $ covMatrices

$theta returns the converged sufficient statistic of 3.18 for every EM chain. It’s

elements µ̂ and Σ̂ can also be returned individually with $mu and $covMatrices

$ code , $ message

These elements represent an internal exit-code and -message from the function.

$ iterHist , $ overvalues

Both are diagnostic elements of the imputation fit. $iterHist gives a history of the

EM chain convergence (see Honaker et al. 2012 section 4.10).

$overvalues can be used to create a cross validation study and consequently judge

the fit of the imputation model (see Honaker et al. 2012 section 4.7.2).
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4. Simulations

4.1. Design of the Simulations

The main goal of the simulation was to examine the quality of the GLMM estimation

in the presence of missing values. For this purpose, an artificial data set was created,

which incorporated associations between its variables via predefined ”true” parameters.

A model fitted on the data should detect these underlying parameters. To review a

correct detection, the empirical bootstrap distribution of the model parameters was an-

alyzed. 95% bootstrap percentile intervals were computed and tested for holding the

true values. When reiterating this procedure, the underlying parameters should be held

by the intervals in approximately 95% of the runs.

Three simulations were made in this thesis. The first one estimated parameters on

a full data set. With no missing values, the results could be seen as a reference for the

following analyses. The second simulation incorporated missing values into the data.

The problem of incomplete data was here addressed by applying listwise deletion. Be-

cause of it’s simplicity, this is a very common approach amongst many researchers. The

final simulation also incorporated missingness into the data, but addressed the problem

using multiple imputation. An important part in this context was to find an appropriate

combination method for all estimators, which was researched here as well.

This chapter starts with presenting the construction of test data and the implementation

of a function to generate missing values. After that, the function to obtain estimates
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for the true sd(β̂) is shown. The analysis of the three simulations is presented in the

following sections. Conclusively, all individual results are compared.

4.2. Generating Test Data

This section concerns the construction of test data. By properly creating a custom

data situation, it was possible to define the underlying ”true” parameters of a regression

model. This enabled the evaluation of parameter estimations from the associated model.

The aspired data had a balanced time-series cross-section design and comprised six

covariables plus a binary response.

4.2.1. Independent Variables

The aim of the independent variables was to cover a variety of variable types found

in practical data situations. Furthermore, dependencies among those variables were

implemented to achieve a more realistic design. This section continues, by describing

each created covariable in an individual paragraph.

The practical implementation of the data creation algorithm has soft coded variables for

the number of clusters and their sizes. Nevertheless, their explicit values were used in

the following code samples for ease of exposition.

Cross Section Variable (subject)

Like stated before, the aim was to construct a cross-sectional data design. Therefore, a

variable indicating the cluster was needed. Here, 100 individuals comprising 5 measure-

ments each were created. The cross section variable therefore simply followed as

xsubject = (1, 1, 1, 1, 1, 2, 2, . . . , 99, 100, 100, 100, 100, 100)T (4.1)

and was created in R with the code line

1 subject = rep (1:100 , each =5)
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Time Series Variable (time)

The second design-composing component was the time-series variable. A balanced design

with equidistant observations was chosen. It can be written as

xtime = (1, 2, 3, 4, 5, 1, 2, 3, 4, 5, . . . , 1, 2, 3, 4, 5)T (4.2)

Analogous to the cross-section variable, the time-series component could be created in

R using the rep() function.

1 time = rep (1:5 ,100)

Note:

Because of the simplicity of the time-series and cross-section variables, both can also be

created simultaneously by the R function: expand.grid(1:5,1:100)

Discrete Baseline Variable (age)

A common type of covariable is given by a discrete variable, which is constant over the

measurements of an individual. Common examples (if data points are measured in a

rather small time-span) are the age of a person, their height, or their weight. In this

thesis, a variable representing the age of a person was destined.

The first considered solution was to draw random observations from a binomial distri-

bution. To achieve realistic values for the age of a person, the draws also had to satisfy

upper and lower bounds. Here, the lowest age observable was defined to be 18. An age

of 60 was chosen to be the maximum value.

Potential realizations of a Binomial distribution B(n, p) are (0, 1, . . . , n). To transform

this range, one can add an integer value to the binomial draw. A possible solution for

the aspired boundaries is

f(x) = x+ 18 ; x ∼ B
(

42,
1

2

)
; ⇒ f(x) ∈ (18, 19, . . . , 60) (4.3)

The distribution is illustrated in figure 4.1 (left).
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Figure 4.1.: Comparison of the Binomial distribution of 4.3 and the discretized Beta

distribution of 4.4 for simulating the variable age.

The main problem of using the binomial distribution was the small variance of the

random draws. It can be calculated for xage ∼ B(n, π) by Var(xage) = nπ(1 − π). The

parameter n is fixed to ensure the bounds of xage and the function π(1−π) for π ∈ [0, 1]

has it’s maximum value at π = 1
2
. Therefore the solution of 4.3 has the maximum

variance possible here. Yet, observing values outside of the interval [31, 47] with less

than 1% probability seemed very limiting.

An alternative solution to draw xage was given by a discretized version of the very flexible

Beta distribution. Realizations of Be(a, b) are continuous and lie in the interval [0, 1].

It’s shape is governed by the two parameters a and b. A bell curve can be created

by setting both parameters to the same value greater than 1. This value is inversely

proportional to the variance of the realization. Here, the parameters were set to 3 to

obtain a rather flat density function. To discretize and adjust the range of the Beta

distribution to the interval [18, 60], a transformation was used.

The final function to obtain adequate random draws for xage was created as

f(x) = d43xe+ 17 ; x ∼ Be(3, 3) ; ⇒ f(x) ∈ (18, 19, . . . , 60) (4.4)

with d·e denoting the ceiling function.

The density of 4.4 is visualized in 4.1 (right).
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In R, the variable was implemented using

1 age = rep(ceiling (43*rbeta (100,3 ,3)) + 17, each =5)

100 draws for age were obtained and repeated for all 5 observations of a person. It is

reasonable, that the age of a person does not depend on one of the other covariables

here and hence was drawn independently.

An exemplary vector of the age variable is given below.

xage = (39, 39, 39, 39, 39, 42, 42, . . . , 25, 25, 33, 33, 33, 33, 33)T (4.5)

Continuous Baseline Variable (height)

The next covariable to be created was named height. It represented a baseline variable

similar to age, but had a continuous range of values.

Of course, real life data never is truly continuous, yet approximate examples for this

type of variable would be the duration of a process, the weight of a sampling unit, or

the height of a person. The latter one was simulated for this data set.

A linear model was used to compose the covariable and to induce a dependency onto

the age variable.

xheight,i = β0 + xage,iβ1 + εi (4.6)

with εi
iid∼ N (0, σ2)

The average height of German men obtained from physical examinations for the military

service1 is 1.82 meters. This was chosen to be the expected value for individuals of age

18. Typically, older persons tend to be smaller than younger ones (over 18). The value

of β1, which determined how the age influences the height therefore needed to have a

negative sign. By assuming, that a 60 year old person is on average 1.70 meters, one

1see online reference: Verteilung des Merkmals Körpergröße
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could formulate two equations

β0 + 18β1 = 1.82 ; β0 + 60β1 = 1.7 (4.7)

which lead to the following approximate solutions for the β coefficients.

β0 ≈ 1.871 ; β1 ≈ −0.003 (4.8)

The final component to be defined was the variance of εi. A reasonable value would be

σ2 = 0.005, which gave a standard deviation of approximately 7 centimeters.

Altogether, the full model to create the covariable height resulted as

xheight,i = 1.871− 0.003xage,i + εi (4.9)

with εi
iid∼ N (0, 0.005)

This model could be realized in R using

1 height = 1.871 - 0.003*age + rep(rnorm (100,0, sqrt (0.005)),

2 each =5)

The vector age already contained every measurement repeated 5 times. Therefore, only

the individual εi needed to be drawn and repeated, to create a cross-sectional baseline

design.

By simulating random draws of height, one could create an empirical density function

for this covariable. It is illustrated in figure 4.2.

The range of the variable had no theoretical upper and lower bounds. Yet, unrealistic

values were highly improbable. The shortest and tallest full-aged men on earth2 span

a range of [0.546m , 2.72m]. The probability of simulating a person to be less than

0.546m is approximately 2 · 10−55 3. Respectively for a person to be taller than 2.72m

2Guinness World Records 2015: Chandra Bahadur Dangi (0.546m) and Robert Wadlow (2.72m)
3
∑60
i=18 Φi(0.546) ≈ 2 · 10−55, where Φi(·) denotes the CDF of N (1.894− 0.004i, 0.005)
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Figure 4.2.: Empirical distribution of height created by drawing 107 observations of age

and subsequently computing height using 4.9.

it is 6 · 10−37 4. Because of that, no restriction to the range was made. Furthermore,

unrealistic values do not impair the imputation of missing values. Hence, the actual aim

of the project would either way not have been compromised.

Self Dependent Variable (blood)

Many medical variables (e.g. blood parameters) have the property, that consecutive

measurements tend to be correlated (often depending on the period of time, that lies

in between them). If e.g. one is to measure the blood pressure of a patient two times

in 3 minutes, the results will most likely be very similar. The simulation of a variable

with self dependent measurements was realized using an autoregressive model of order

1 (AR(1)).

An AR(1) model can be defined recursively with fixed starting value x0 as

xt = ρxt−1 + εt ; t = 1, . . . , n (4.10)

4
∑60
i=18(1− Φi(2.72)) ≈ 6 · 10−37, where Φi(·) denotes the CDF of N (1.894− 0.004i, 0.005)
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having

E(εt) = 0

Var(εt) = τ 2

Cov(εt, εs) = 0

−1 < ρ < 1

(4.11)

The t-th observation of a person is given by the (t-1)-th observation multiplied with a

known factor ρ and summed up with a random error εt.

By defining a vector εt and ρt of length (t+ 1) as

εt = ( x0 ε1 . . . εt )T

ρt = ( ρt ρt−1 . . . ρ0 )T
(4.12)

the prediction for the t-th value of this model can also be written without recursion as

xt =
t∑

k=0

ρt−kεk = εTt ρt (4.13)

One characteristic property of this model is, that the correlation between xt and a

delayed value xt−s decreases with the magnitude of s. This process can be illustrated

with the Autocorrelation function (ACF), which is given for the AR(1) as

ACF (s) =
Cov(xt, xt−s)

Var(xs)
= ρs (4.14)

Figure 4.3 shows the ACF for different values ρ. If ρ is positive, the correlation decreases

geometrically. For negative ρ , it additionally decreases with alternating sign. The larger

the absolute value of ρ is, the faster this decrease of the ACF happens.

The main intention of using the AR(1) model here was to create (strongly) dependent

observations. Therefore a large absolute value for ρ was chosen in this thesis (ρ = 0.9).

To practically implement a vector of n consecutive AR(1) draws in R, the recursive

definition of the model was used, since it is less computationally intensive than simulat-

ing each value individually using εTt ρt. The input parameters of the generated ar1()
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Figure 4.3.: The Autocorrelation function of the AR(1) for different values of ρ.

function were the number of values to be created n, the error standard deviation τ , the

starting value x0 and the correlation parameter ρ.

1 ar1 = function(n, x0, rho , tau){

2 eps = rnorm(n,0,tau)

3 x = vector(length = n)

4 x[1] = x0

5 for(t in 2:n) x[t] = rho*x[t-1] + eps[t-1]

6 return(x)

7 }

With the help of this ar1() function, the self depending variable blood was created by

the following code.

1 blood = as.vector( sapply(

2 unique(height),

3 function(x) ar1(5, x+rnorm (1 ,0,0.2), 0.9, 0.7)

4 ) )
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An additional dependency with the baseline variable height was induced, by utilizing

these observations (with added noise) as starting points of the ar1() series.

Figure 4.4 illustrates five exemplary ar1() sequences with different starting points.

Figure 4.4.: Five realizations of length 5 from the ar1() function with starting points

x0 = 1, . . . , 5. The strong dependency of values from the same individual is

conspicuous.

Binary Variable (pain)

The last covariable to be created was named pain. It is a binary variable with de-

pendencies on all other covariables created so far and could represent an indicator, if

a person is in pain or not. To model these dependencies, a GLMM was used. This

section presents the main components used for this model. A full explanation on how to
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technically compose a variable from a GLMM will be given in section 4.2.3, where the

response variable of the data set was created analogously.

The model used the following linear predictor for subject i and measurement j

ηij = β0 + xtime,ijβ1 + xage,iβ2 + xheight,iβ3 + xblood,ijβ4 + bi (4.15)

To implement a GLMM, the three main assumptions described in section 2.2.1 needed

to be specified.

• The distribution of the model response given the linear predictor:

xpain,ij|ηij
ind∼ B(πij)

• The link-/ response function:

ηij = g(µij) = log

(
πij

1− πij

)
; πij = h(ηij) =

1

1 + exp(−ηij)

• The distribution the random effects:

bi
iid∼ N (0, d2)

The linear predictor ηij can be calculated by specifying the true underlying values of β

and d. They were chosen to be

β = (0.5,−0.2,−0.02,−0.25, 0.5)T ; d = 0.5 (4.16)

The probability πij for the response to be 1 was computed by inserting ηij into the

response function. With this, xpain,ij could be realized as a random draw from a Bernoulli

distribution with parameter πij.

The R-Code drawing the variable pain as GLMM realizations of the described model

is shown below. It is a shortened representation of the analogously structured code to

create the response variable of the data set.
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1 pain = rbinom(n=500, size=1,prob=1/(1+ exp(-(

2 cbind(1,time ,age ,height ,blood) %*%

3 c(0.5 , -0.2 , -0.02 , -0.25 ,0.5) +

4 rep(rnorm(n=100, sd=0.5) , each =5)))))

Using the parameters of 4.16, an average of approximately 37% of all measurements were

simulated to have pain. The data excerpt shown in figure 4.5 illustrates the variable pain

for different subjects at the five points of measurement. It was used to examine, if the

arrangement of the pain measurements was well balanced over the subject and time

variable. This seemed to be the case here.

Figure 4.5.: Sample of the variable pain from 15 subjects over the five points of measure-

ment. Interpolations between the discrete points were added to illustrate

the progress over time.
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4.2.2. Summary of Covariable Dependencies

Dependencies between covariables are essential to enable multiple imputation with Amelia

II. Missing values are modeled by the observed ones. Therefore, the more information

these variables contain on each other, the more precise can the imputation algorithm

predict values from one another.

Figure 4.6 gives an overview over all induced dependencies between the covariables.

The variables are influenced in the following ways:

1 as starting value of the AR(1) model creating the variable

2 as covariable of the LM creating height

3 as covariable of the GLMM creating pain

4 as grouping variable of the GLMM creating pain

blood

height pain

age

subject

time

31

3

2 3

4

3

Figure 4.6.: Directed acyclic graph representing the dependencies of the covariables. The

numbers describe the respective way, that the covariables are influenced

(cf. notes above).
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4.2.3. Response Variable

The response variable of the data set was chosen to be binary. It could e.g. represent an

indicator, if a person is ill. The state of health should depend on all created covariables

of section 4.2.1. For this purpose, a GLMM with the following linear predictor for

measurement j and individual i was used.

ηij = β0 + xtime,ijβ1 + xage,iβ2 + xheight,iβ3 + xblood,ijβ4 + bi (4.17)

The model was defined by the three assumptions of 4.18.

Distribution of yij|ηij Link function Distribution of bi

yij|ηij
ind∼ B(πij) g(µij) = logit(πij) bi

iid∼ N (0, d2)
(4.18)

The Regression Coefficients β

An important part of creating a response variable is the determination of the regression

coefficients. Careful thought should be given to this, since the values of β highly affect

the predictability of a model. If one coefficient is chosen too small, the effect of this

variable may be unidentifiable. On the other hand if chosen too large, the probability

of yij = 1 reaches extreme values, which could result in masking other effects.

To visualize these borders of β, the following procedure was used:

1. Set every β = 0, except the one to analyze.

2. Map a plausible interval for the analyzed β by a sequence of 200 values, and

perform the following steps for each of the 200 β candidates:

• Create a data set using the current regression coefficients

• Estimate the probability of y = 1 from this data set by

π̂ =
1

2500

500∑
i=1

5∑
j=1

yij

3. Plot the obtained probabilities against the corresponding β values
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The plots of all fixed effects are illustrated in figure 4.7

Figure 4.7.: Estimations for P(yij = 1) over a sequence of 200 values for each fixed effect

c.p. . The red vertical line illustrates the chosen value for the variable.

Note, that the limits of the β5-curve were not found to be [0, 1], but approximately

[0.35, 0.65]. This resulted from the dichotomy of the variable pain, having ≈ 37% ones.

High parameter values only influenced the observations, where xpain = 1, hence making

these values (nearly) guaranteed ones or zeros. Yet, the other 63% of the values, where

xpain = 0 had a linear predictor of 0 regardless of the chosen effect, which resulted in a

probability of 0.5 for the response to be 1. That is why P(yij = 1) was not bounded at

[0, 1] for an effect of a binary variable , but depended on the probability of this variable

to be 1.

To avoid the problems described earlier, the respective β-curves of plot 4.7 were an-

alyzed. The following guidelines were considered to chose the β values from the plot.

• The chosen β should not induce extreme values for P(yij = 1)

• Extremely small β values (i.e. P(yij = 1) ≈ 0.5) were avoided to create a notable
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effect of the covariable.

• The effects should have opposing signs to avoid extreme overall values for P(yij = 1)

Altogether, the chosen regression coefficients to create the response variable were

β = (−1.3, 0.3,−0.03, 0.8,−1, 3)T (4.19)

The variance of the random intercept was defined to be d2 = 0.52.

These parameters resulted in an average probability for yij = 1 of approx. 42%.

Implementation in R

The first step to draw a response variable of a GLMM was to compute the linear predictor

of all individuals η = (ηT1 , . . . ,η
T
100)

T .

Having a random intercept model, it was given by

η =


1 x1,time x1,age x1,height x1,blood x1,pain

...
...

...
...

...
...

1 x100,time x100,age x100,height x100,blood x100,pain




β0
...

β5

+


b1

...

b100


(4.20)

The design matrix X was obtained by binding all created covariables and a vector of ones

column-wise.

1 X = cbind(1,time ,age ,height ,blood ,pain)

Repeating 100 draws from the N(0, 0.52)-distribution 5 times constructed the vector of

random intercepts.

1 b = rep( rnorm (100 ,0 ,0.5) , each=5 )
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With the fixed effects vector beta being set to the value of 4.19, the linear predictor

could be computed by

1 eta = X %*% beta + b

The next step was to obtain the expected value pi of the response by applying the

response function to the linear predictor. The natural link function of the Bernoulli

distribution is the logit-link. The corresponding response function is

h(ηij) =
1

1 + exp(−ηij)
(4.21)

1 pi = 1/(1+ exp(-eta))

The vector pi contained the probability of the response being 1 for each observation.

To realize actual binary values, the last step was to draw the response yij from the

Bernoulli distribution with parameter πij.

This could be performed in R using

1 y = rbinom (500, 1, pi)

An excerpt of the response variable created with the presented code is shown in figure 4.8.

The final data set was constructed, by binding the covariables and the response into

a data-frame object.

The first 7 rows of an exemplary data set are illustrated in table 4.1
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Figure 4.8.: Sample of the response variable y for 15 subjects over the five points of

measurement. Interpolations between the discrete points were added to

illustrate the progress over time.

subject time y age height blood pain

1 1 1 0 43 1.7413 1.7464 1

2 1 2 1 43 1.7413 2.2221 0

3 1 3 0 43 1.7413 2.3840 1

4 1 4 1 43 1.7413 1.6517 1

5 1 5 1 43 1.7413 1.3506 0

6 2 1 0 53 1.6049 1.5802 1

7 2 2 0 53 1.6049 0.7719 1

Table 4.1.: Excerpt of a data set, created by the methods of section 4.2.1 and 4.2.3.
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4.3. Generating Missing Values

Simulation II and III required the presence of missing observations in the analyzed data.

This section concerns the construction of an artificial incomplete data situation, by delet-

ing observed values from a full data set.

In real-life data, the missingness of a value often depends on influencing factors. If those

influences are available in the form of observed variables, the missing values are assumed

to be ”Missing At Random” (see section 3.1).

To simulate such a situation, a GLM was used. LetMk be a missingness vector indicat-

ing, if a value of covariable k is missing. This vector shall be the response of the GLM.

The model assumptions were

Distribution of Mijk|ηij Link function

Mijk|ηijk
ind∼ B(πijk) g(E(Mijk)) = logit(πijk)

(4.22)

For the analyses of this thesis, the linear predictor ηijk was specified to consist of one

other observed covariable with a regression coefficient of 1 and an intercept.

ηijk = γk + xijl (4.23)

Choosing this kind of predictor enables an explicit solution for the intercept γk, if a

certain percentage of missing observations is aspired. After applying the response func-

tion, the mean of all expected values for the observations to be missing, i.e. the average

percentage of missing values to be created is given by

π̄k =
1

500

∑
i,j

πijk =
1

500

∑
i,j

(
1

1 + exp(−γk − xijl)

)
(4.24)

For a given π̄k, one obtains an equation with one unknown variable. Yet, an analytical

solution for gamma is not feasible, which is why numerical optimization methods are

required. In R, the function uniroot() can be used to solve univariate equations of the

form f(x) = 0. A suitable value for γk to create an average percentage of π̃k missing
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values could therefore be obtained by solving

1

500

∑
i,j

(
1

1 + exp(−γk − xijl)

)
− π̃k = 0 (4.25)

for γk.

The code to compute the solution of this equation is given below.

1 uniroot(function(g)sum(1/(1+ exp(-(g+data[,dep]))))/500-pi,

2 interval=c(-100 ,10) )

data[,dep] selected the column of the dependent variable (xijl) from the data set. The

searching interval was chosen to be comparatively large5, to ensure finding a solution.

This could easily be done, because of the small amount of CPU-time used for the func-

tion.

In this thesis, missing values were incorporated for two covariables. An overview over

the explicit parameters chosen is given in tabular 4.2.

Target variable Dependent variable Missing values

pain blood 30%

blood age 40%

Table 4.2.: Overview of the missingness structure.

How to draw realizations from a custom model was already described in detail in section

4.2.3. A short summary is given in the following.

After computing an approximate value for γ, the linear predictor can be obtained.

Applying the response function to η gives the expected probability of a value being

5the average values of γk for the dependent variables and missingness percentages used in the simulation

studies are approximately -2.4 (sd=0.06) and -41.3 (sd=1.09)
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unobserved. This probability is used to draw the values of the missingness vector from

a Bernoulli distribution. Finally, values indicated by M are replaced with NA.

The R code implementing these steps is shown below.

1 eta_miss = gamma + data[,dep]

2 is.miss = rbinom(n = length(data [,1]), size = 1,

3 prob = 1/(1+ exp(-eta_miss)))

4 data[,tar] = ifelse(is.miss , NA, data[,tar])

The overall function to incorporate missing values to a data set was named

create.miss( data, pi, tar, dep )

It used four parameters.

• data: The data frame to be used.

• pi: The percentage of missing values to be created. ( ∈ [0, 1] )

• tar: The column of data holding the variable to induce missing values to.

• dep: The column of data holding the dependent variable.

To create missing values in more than one variable, create.miss() needs to be called

multiple times passing the same data set. When repeating the function on incomplete

data, these variables cannot be chosen as a dependent covariable any more.
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4.4. Estimating the Theoretical Standard Error of β̂

The true values of the fixed effects and the standard deviation of the random intercept

were known, as they have been defined in the construction of the data set. However,

the theoretical value of the standard errors for the fixed effects depended on the circum-

stances of the estimation (e.g. the number of observations). To obtain a reference value

for the analyses of the simulation, a numerical procedure was applied.

The regression coefficients β̂ were estimated on repeatedly new generated data. Hence,

the theoretical standard error could be obtained, by computing the sample variance of

these fixed effects and taking the square root.

Implementation

The function implementing the presented approach was called theosd. It’s parameters

were the number of iterations to perform, and an integer indicating the data situation to

simulate. The return value was a matrix containing all estimations of the fixed effects. A

main advantage of returning all estimations was the extensibility. The function could e.g.

be executed parallel, with individual results being combined subsequently. Altogether,

1000 runs were performed.

The full R-code and description of the function theosd can be found in appendix A.1.

Results

The obtained estimations of sd(β̂) for each simulation are given in table 4.3.

sd(β̂0) sd(β̂1) sd(β̂2) sd(β̂3) sd(β̂4) sd(β̂5)

Full Data 3.589 0.088 0.018 1.858 0.149 0.315

Complete Case 5.675 0.149 0.041 2.879 0.267 0.485

Multiple Imputation 4.056 0.102 0.022 2.105 0.249 0.462

Table 4.3.: Theoretical standard errors of the fixed effects for the three simulations.
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4.5. Simulation I: No Missing Values

The first simulation was performed on a complete data set. It serves the purpose of pro-

viding a reference to more complex situations, where strategies on similar, yet incomplete

data sets are analyzed.

4.5.1. Overview

The main goal of this simulation was to examine the quality of the GLMM estimation.

Therefore, the empirical bootstrap distribution of the model parameters was reviewed,

considering the theoretical values used for creating the data.

One simulation run comprised the following steps:

1 Construct a data set using specified estimators θ.

2 Create bootstrap samples from this data according to the method described in

section 2.3.

3 Compute GLMMs on each bootstrap sample and extract the estimators of interest.

4 Generate 95% bootstrap percentile intervals of the estimations from the models.

5 Examine, if the true value of every estimator is held by the respective interval.

After repeating this simulation run 1000 times, the count of intervals holding their re-

spective true value was obtained.

The setup of one simulation run is illustrated in figure 4.9.
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Figure 4.9.: Schematic illustration of one run of Simulation I. Descriptions on the circled

numbers can be found in the text.

4.5.2. Implementation

To realize 1000 simulation runs, parallel computing by the R package snow was used.

A short introduction to this package is given in appendix A.2. The main parts of the

simulation code, apart from the parallelized framework are presented in the following.

One simulation run was implemented with the function step(). It starts with set-

ting up a matrix, where all computed parameters will be written to in the end. After

that, a data set is created and B Bootstrap samples are drawn from it.
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1 step = function(B){

2 Pm = matrix( nrow = B, ncol = 13 )

3 DB = bootstrap( create.D(), B )

4 ...

A for() loop is used to loop through all bootstrap samples. For every entry of the list,

a GLMM is fitted and all estimators of interest are stored in a row of the parameter

matrix. Those estimators are the fixed effects of the covariables, the standard deviation

of the random intercept and the estimated standard errors of the fixed effects.

1 ...

2 for(i in 1:B){

3 glmmi = glmer( y~time+age+height+blood+pain +(1| subject),

4 data = DB[[i]], family = binomial () )

5 Pm[i, 1:6] = fixef(glmmi)

6 Pm[i, 7] = sqrt(as.numeric(VarCorr(glmmi)$subject))

7 Pm[i, 8:13] = summary(glmmi)$coefficients [,2]

8 }

9 ...

The final step is to return the completed parameter matrix Pm.

1 ...

2 return(Pm)

3 }

Note, that no simulation run computes bootstrap percentile intervals, or checks if the

true parameters were reproduced. Instead, the full matrix of parameters is returned.

The idea behind this was to store every information obtained, which enabled further

analysis of the estimated parameters. The theoretical simulation steps 4 and 5 were
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72 4.5. SIMULATION I: NO MISSING VALUES

performed afterwards, using the function bpi() (see appendix A.3).

To implement the full simulation, the step() function was repeated by a for() loop.

The results were stored in a list object.

1 FD = list()

2 for(i in 1:1000) FD[[i]] <- step (200)

Using parallel computing, the CPU-time of this function was approximately 5 hours.

(20 processor cores, 1000 iterations, 200 bootstrap samples and 500 data observations)

4.5.3. Results

Additionally to the bootstrap percentile intervals, the overall bootstrap distribution of

the obtained parameters was analyzed. Figure 4.10 illustrates density estimations for

one fixed effect (β̂1), its estimated standard error (ŝd(β̂1)), and the standard deviation

of the random intercept .

The distribution of the random intercept standard deviation and the standard error

of β̂1 were both skewed. The latter was a mixture distribution, having a point mass at

0. The fixed effects followed a normal distribution with mean β1.

All specified true values seemed to be covered very well by the empirical densities. Yet,

to clarify the performance of the estimation, it was necessary, to evaluate the number of

95% bootstrap percentile intervals, that held the respective true value.

The function implementing this was called bpi(). It is described in appendix A.3.

Tabular 4.4 shows the percentage of the respective intervals holding the true value for

each parameter.
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73 4.5. SIMULATION I: NO MISSING VALUES

Figure 4.10.: Full Data Simulation: Empirical distribution of β̂1, ŝd(β̂1) and d̂ using the

parameter estimations of all 1000 simulation runs.

(Intercept) time age height blood pain (subject)

β̂0 β̂1 β̂2 β̂3 β̂4 β̂5 d̂

θ ∈ [-θ̂-] 93.0 93.5 93.2 93.4 93.7 94.0 89.7

(Intercept) time age height blood pain

ŝd(β̂0) ŝd(β̂1) ŝd(β̂2) ŝd(β̂3) ŝd(β̂4) ŝd(β̂5)

θ ∈ [-θ̂-] 95.0 96.6 94.7 95.3 96.7 96.6

Table 4.4.: Simulation I: Percentage of 95% bootstrap percentile intervals holding the

respective true value.

A Wald confidence interval for the expected number of holds after 1000 runs can be
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74 4.5. SIMULATION I: NO MISSING VALUES

computed by

1000 · 0.95± Φ(0.975)
√

1000 · 0.95 · 0.05 ≈ [ 936.5 , 963.5 ] (4.26)

with Φ(·) denoting the distribution function of N (0, 1).

It could be observed, that the percentages of holds were lower than the expected 95%

for all fixed effects. The smallest value was found at the standard deviation of the

random intercept with 89.7%. These small percentages are a typical side-effect of the

bootstrap percentile method. Therefore, they could also be expected to occur in the

more complex simulations later. The intervals for the standard errors of the fixed effects

on the other hand tended to hold the true value more often than expected here. Never-

theless, most of these percentages did not differ widely from the calculated Wald interval.

To further analyze the bootstrap percentile intervals, they were plotted with the re-

spective true values. An illustration for the first 100 simulation runs is shown in figure

4.11. The full plot of all 1000 runs is given in appendix B.3. It can be used to find

structural errors, or to examine the confidence interval sizes.

After reviewing this plot, there seemed to be no abnormalities in the structure. In-

tervals, that did not hold the true value evenly distributed below and above of it. For

the fixed effects, intervals were mostly of similar size throughout the simulation, whereas

intervals for the standard errors tended to differ more widely in size over the runs.
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75 4.5. SIMULATION I: NO MISSING VALUES

Figure 4.11.: Full Data Simulation: 95% bootstrap percentile intervals of all parameters

of interest for the first 100 simulation runs. Intervals are colored blue if

they hold the true value (black line), and red if they don’t.
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4.6. Simulation II: Complete Case Analysis

The second simulation exacerbated the estimation process, by incorporating missing

values into the data. One strategy often applied in such data situations is the complete

case analysis. Listwise deletion is performed, removing every row, that contains a missing

value. Analyses are then performed on the resulting subset of fully observed individuals.

4.6.1. Overview

The idea of this simulation, similarly to the full data case, was to analyze the empirical

bootstrap distribution of the model parameters to assess the quality of the estimation

after listwise deletion.

One simulation run can be summarized as follows.

1 Construct the data set using the true parameters θ.

2 Induce Missing values to the data according to section 4.2.

3 Perform a bootstrap on the incomplete data set .

4 Apply listwise deletion on every bootstrap sample to address the problem of in-

complete data.

5 Compute GLMMs on each data subset and extract the estimators of interest.

6 Create 95% bootstrap percentile intervals of the extracted estimators.

7 Examine, if the true value for every estimator is held by the respective interval.

After 1000 runs, the number of intervals holding the true parameters could be analyzed.

The setup of a simulation run is illustrated in figure 4.12.
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77 4.6. SIMULATION II: COMPLETE CASE ANALYSIS

Figure 4.12.: Schematic illustration of one run of Simulation II. Descriptions on the

circled numbers can be found in the text.
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78 4.6. SIMULATION II: COMPLETE CASE ANALYSIS

4.6.2. Implementation

This section presents the main elements of the R-code implementing the complete case

simulation.

One run was performed by a function named step(). It starts with initializing a matrix,

where all parameters to be extracted from the models will be stored in. After that, a

data set is created and missing values are incorporated to variable 7 (pain) and variable

6 (blood). The constructed incomplete data set is then bootstrapped, resulting in a list

of bootstrap samples.

1 step = function(B){

2 Pm = matrix(nrow = B, ncol = 13 )

3 Dat = create.miss(create.D() ,0.3,7,6)

4 Dat = create.miss(Dat ,0.4,6 ,4)

5 DB = bootstrap(Dat ,B)

6 ...

A for() loop is used to iterate through all elements of DB.

Each row of the current bootstrap sample is checked for containment of NAs and as the

case may be deleted (listwise deletion). Practically, when applying the function is.na()

to a data set, a boolean matrix was returned indicating, if a value was not observed.

Adding up the rows of this matrix resulted in a vector containing 0s (for fully observed

rows) and values > 0 (for rows, that contained NAs). Finally, appending the logical

comparison ”==0” to this expression returned a boolean vector, indicating rows without

missing values. The data was then reduced to these completely observed rows.

1 for(i in 1:B){

2 CC = DB[[i]][ apply(is.na(DB[[i]]) ,1,sum)==0,]

3 ...
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79 4.6. SIMULATION II: COMPLETE CASE ANALYSIS

The following steps are similar to the previous simulation.

GLMMs are fitted on the data and parameters are extracted and stored in the parameter

matrix. A simulation run ends by returning the completed matrix Pm.

1 ...

2 glmmi = glmer(y~time+age+height+blood+pain +(1| subject),

3 data = CC, family = binomial ())

4 Pm[i, 1:6] = fixef(glmmi)

5 Pm[i, 7] = sqrt(as.numeric(VarCorr(glmmi)$subject))

6 Pm[i, 8:13] = summary(glmmi)$coefficients [,2]

7 }

8 return(Pm)

9 }

6

The overall simulation was implemented, by repeating the step() function 1000 times

and storing the results in a list object.

1 CC = list()

2 for(i in 1:1000) CC[[i]] = step (200)

To ensure convergence, an extension of the glmerControl option was necessary 6. This

lead to a notable increase of the CPU-time compared to the first simulation.

The duration of executing the complete case simulation was approximately 13 hours.

4.6.3. Results

The first part of the analysis concerns the overall bootstrap distribution of the param-

eters. It is illustrated on the same parameters as in the previous simulation (β̂1, ŝd(β̂1)

6Excluded in this code sample for ease of exposition: The severe reduction of observations required an

additional adjustment of the glmer parameters to ensure convergence:

control=glmerControl(optimizer="bobyqa", optCtrl = list(maxfun = 100000))
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80 4.6. SIMULATION II: COMPLETE CASE ANALYSIS

and d̂) in figure 4.13. The respective true values for the full data situation are given as

vertical red lines. The plot for the standard error of β̂1 also includes the true value for

the complete case situation as a vertical blue line.

Figure 4.13.: Complete Case Simulation: Empirical distribution of β̂1, ŝd(β̂1) and d̂ using

the parameter estimations of all 1000 simulation runs.

Similarly to the first simulation, the density of β̂1 still seemed to be centered around

the true value. Yet, an increase of the standard error became apparent, when inspect-

ing the second plot. The distribution of ŝd(β̂1) was located mostly above the full data

value. This resulted from reducing the size of the data set by performing listwise dele-

tion. Models were fitted on fewer observations, which increased the uncertainty of the

parameter estimations. The same applied to the estimators for d.

For the second part of the analysis, the number of 95% bootstrap percentile intervals,

that hold the respective true value were examined. (Standard error intervals were tested

for holding the true value for the complete case analysis.)

The results are given in table 4.5.
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(Intercept) time age height blood pain (subject)

β̂0 β̂1 β̂2 β̂3 β̂4 β̂5 d̂

θ ∈ [-θ̂-] 92.1 92.9 91.9 92.2 92.2 89.8 87.6

(Intercept) time age height blood pain

ŝd(β̂0) ŝd(β̂1) ŝd(β̂2) ŝd(β̂3) ŝd(β̂4) ŝd(β̂5)

θ ∈ [-θ̂-] 98.6 98.6 95.7 98.7 98.3 98.6

Table 4.5.: Simulation II: Percentage of 95% bootstrap percentile intervals holding the

respective true value.

Similar to the results for the full data situation, the observed percentages of holds were

lower than 95% for all fixed effects. Here, this effect seemed to be even stronger, which

may result from the severe data reduction by performing listwise deletion. The smallest

number of fixed effects holds was observed at the binary variable pain. Overall, the low-

est percentage was spotted on the standard deviation estimate for the random intercept.

Contrary, all intervals for the standard error estimates of the fixed effects were holding

the computed true value more often than 95%. These tendencies were also observed in

the previous simulation.

Altogether, no severe irregularities of the complete case results could be detected here.

An illustration of the individual bootstrap percentile intervals for 100 simulation runs

is given in figure 4.14. It could be used to discover potential abnormalities or structural

errors.

Substantially, most plots looked similar to the corresponding ones from simulation I.

Yet, intervals were generally larger than before. Inspecting the plot of all 1000 runs

(Figure B.4) revealed, that the incomplete variable blood underestimated it’s true effect

more often, while the other incomplete variable pain compromisingly overestimated it.

Therefore, the incorporated missingness, which followed the MAR assumption, seemed

to have induced structural errors for the estimation process.
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82 4.6. SIMULATION II: COMPLETE CASE ANALYSIS

Figure 4.14.: Complete Case Simulation: 95% bootstrap percentile intervals of all pa-

rameters of interest for 100 simulation runs. Intervals are colored blue if

they hold the true value (black line), and red if they don’t.
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4.7. Simulation III: Multiple Imputation (Amelia II)

The initial situation of the third simulation was again an incomplete data set. This time

however, multiple imputation by Amelia II was performed, to approach the problem of

missing values. The main goal was to examine the quality of GLMM estimations in this

framework, with additional regard to the combination method of the random intercept

standard deviation in the multiple imputation.

4.7.1. Overview

Analogously to the previous simulations, the empirical bootstrap distribution for the

parameters of interest were analyzed. However, the computational complexity increased

immensely here, due to the fact, that GLMMs needed to be fitted on every imputed

data set.

An overview on the structure of one simulation run is given by the following steps:

1 Build a data set using the true parameters θ.

2 Induce missing values to this data set according to section 4.2.

3 Create 200 bootstrap samples of the incomplete data set.

4 Perform multiple imputation on every bootstrap sample to obtain 5 completed

data sets each.

5 Fit a GLMM on every imputed data set and extract the estimators of interest

6 Combine the estimators of a bootstrap sample by a suitable procedure

7 Use the combined estimators to create 95% bootstrap percentile intervals

8 Examine, if the true value of the estimators is held by the respective interval

A schematic illustration of one simulation run is given by figure 4.15
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Figure 4.15.: Schematic illustration of one run of Simulation III. Descriptions on the

circled numbers can be found in the text.
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4.7.2. Implementation

The code to implement one multiple imputation run was subdivided, by outsourcing the

model estimation to a function called ameliaglmm().

It computes GLMMs for a list of completed datasets and extracts the parameters of

interest. These are then stored in a matrix named Imp. The function ends by returning

the parameter matrix.

1 ameliaglmm = function(ImpList){

2 Imp = matrix(nrow=length(Imp), ncol =13 )

3 for(m in 1: length(Imp)){

4 glmm = glmer(y~time+age+height+blood+pain +(1| subject),

5 data = ImpList [[m]], family = binomial ())

6 Imp[m,] = c( fixef(glmm),

7 sqrt(as.numeric(VarCorr(glmm)$subject)),

8 summary(glmm)$coefficients [,2] )

9 }

10 return(Imp)

11 }

The main simulation function step() is widely similar to the previously described ones.

Yet, the return value has to differ here. In simulations I and II, one GLMM was fitted

for a bootstrap sample, resulting in a vector of estimations. Now, after the multiple

imputation procedure, 5 models are calculated per bootstrap. Their estimations are

stored in a matrix. Because of that, the return object of the step() function was chosen

to be a parameter list, containing all matrices returned by the ameliaglmm() function.

1 step = function(B){

2 Pl = list(length=B)

3 ...
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The step() function proceeds by creating a data set and incorporating missing values.

Variable 7 (pain), with dependency on variable 6 (blood) and variable 6, with depen-

dency on variable 4 (age) were set to be the targets for the function create.miss().

1 ...

2 Dat = create.miss( create.D(), 0.3, 7, 6 )

3 Dat = create.miss( Dat , 0.4, 6, 4 )

4 ...

The incomplete data set is now bootstrapped. The samples are stored in the list DB.

1 ...

2 DB = bootstrap( Dat , B )

3 ...

Multiple imputation is performed on every element of DB, by invoking amelia() inside

an lapply() call. Parameters of amelia() are described in detail in section 3.6. The

imputed datasets for each bootstrap sample are stored in a list named AM.

1 ...

2 AM = lapply( DB, function(x)

3 amelia(x, m=5, ts="time", cs="subject",

4 p2s=0, polytime =1)$imputations

5 )

6 ...

The final step is to fit GLMMs on every data set and extract their parameter estimations.

This was realized with the function ameliaglmm(), surrounded by a for() loop, which

iterates through the bootstrap samples. All results are stored in the parameter list Pl,
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87 4.7. SIMULATION III: MULTIPLE IMPUTATION (AMELIA II)

which is returned after the completion of the loop.

1 ...

2 for(i in 1:B) Pl[[i]] = ameliaglmm(AM[[i]])

3 return(Pl)

4 }

The full simulation was performed, by iterating the step() function. Results of every

run were saved to the list MI.

1 MI = list()

2 for(j in 1:1000) MI[[j]] = step (200)

The deeply nested composition makes the output value MI complex to oversee at first

sight. Because of that, the structure of the returned list is illustrated in figure 4.16.

MI
(list)

Pl1
(list)

...

Pl1000
(list)

Imp1
(matrix)

...

Imp200
(matrix)

θ1
(vector)

...

θ5
(vector)

...

1000
Simulation

Runs

...

200
Bootstrap
Samples

...

5
Imputations

Figure 4.16.: Structure of the list MI returned by simulation III. The vector θi contains

estimations for β, d and sd(β).

The CPU-time of this simulation was approximately 26 hours.
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4.7.3. Results

The first result to be analyzed was the empirical distribution of the estimated param-

eters. For the fixed effect β1 and the corresponding standard error estimate, they are

illustrated in figure 4.17.

Figure 4.17.: Multiple Imputation Simulation: Empirical distribution of β̂1 and ŝd(β̂1)

using the parameter estimations of all 1000 simulation runs.

The density of the fixed effect seemed to be centered around the true value. This might

also apply to the standard error density of β̂1, when comparing it to the computed the-

oretical value of the multiple imputation framework (blue line). The true value of the

full data situation (red line) was approximately 0.014 smaller and lay clearly under the

mean of the density in visual inspection. Nevertheless, to make sound statements on

the quality of the estimation, the number of bootstrap percentile intervals holding the

respective true value needed to be examined.

In this simulation, the estimator for the standard deviation of the random intercept

was of special interest. Whereas combining methods for fixed effects and their variances

exist as described in section 3.2, the rules on how to properly combine random effects

88



89 4.7. SIMULATION III: MULTIPLE IMPUTATION (AMELIA II)

variance estimates after multiple imputation have not been thoroughly researched up to

this point. Here, the main methods to be compared were the mean and median of the

estimators. Other options, that were analyzed in this context can be found in appendix

A.4.

The empirical densities of both methods are illustrated in figure 4.18.

Figure 4.18.: Multiple Imputation Simulation: Comparison of the empirical densities for

¯̂
d using the mean and median to combine the estimators of the imputations.

Both densities looked very similar for values > 0.3. Yet, the density of smaller values

differed widely between the methods. When using the mean, these estimations appeared

notably more often, while values of 07occurred only half as frequent.

The misrepresentation of small values arises from not taking the underlying mixture

distribution of d into account. Estimators can either be zero, or originate from a χ2-

distribution. Taking the mean of this mixture resulted in shifting proportions of the

probability mass for zero onto the χ2-distribution. Typically, this would distort the

whole χ2-distribution closer to zero. But due to the fact, that the estimators to be av-

eraged over were obtained from very similar data sets, small effects were far more likely

7The y-axis of 4.18 was truncated to illustrate the structure of the density. Actual density values of 0

reached up to approx 70 here.
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to occur alongside zero estimations. Consequently, they got affected more often by this

issue. This problem seemed to resolve when using the median. The density was now

able to resemble the true underlying mixture of a χ2-distribution and a point mass at 0

much better.

To verify the validity of the combined model estimations after multiple imputation,

the number of bootstrap percentile intervals holding the respective true values were ex-

amined. Table 4.6 shows the percentage of holds for the fixed effects, their standard

errors and the standard deviation of the random intercept for the analyzed combination

methods after 1000 simulation runs.

(Intercept) time age height blood pain (subject)

¯̂
β0

¯̂
β1

¯̂
β2

¯̂
β3

¯̂
β4

¯̂
β5

¯̂
dmean

θ ∈ [-θ̂-] 95.4 93.1 93.6 95.7 93.3 88.4 92.4

(Intercept) time age height blood pain (subject)

¯̂
sd(β̂0)

¯̂
sd(β̂1)

¯̂
sd(β̂2)

¯̂
sd(β̂3)

¯̂
sd(β̂4)

¯̂
sd(β̂5)

¯̂
dmedian

θ ∈ [-θ̂-] 96.8 99.3 98.6 96.7 99.8 98.8 93.4

Table 4.6.: Simulation III: Percentage of 95% bootstrap percentile intervals holding the

respective true value.

The number of holds after multiple imputation was similar to the previous simulations.

The fixed effects typically tended to have a percentage lower than 95%, whereas the val-

ues for the variances were higher. Comparing the covariables, again the binary variable

pain had the lowest hold count.

Looking at the estimates for the standard deviation of the random intercept, the per-

centage of holds for the median was 1% higher than for the mean. Yet, both methods

yielded good results and did not indicate errors in the combination process.
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To further analyze the structure of the estimated intervals, the first 100 were plot-

ted with the respective true value in figure 4.19.

The plots for
¯̂
β0 to

¯̂
β3 showed no irregularities or structural errors. However, the esti-

mators of the variable blood seemed to underestimate the true value, while the variable

pain got overestimated in a similar amount of times. For both variables, dependent

missing values (MAR) were incorporated. The imputation algorithm thus could not

thoroughly enable an unbiased estimation. Nevertheless, the number of bootstrap per-

centile intervals holding the true value did not indicate a severe estimation error here.

Furthermore, having a binary variable, which is intrinsically holding very few informa-

tion, additionally contaminated with missing values exacerbated a precise estimation

even more. Small biases of the model parameters are thus not uncommon. They sub-

sequently cause other variables to compensate the error, by inducing an opposing bias.

This seemed to have occurred for β4 and β5.

Analyzing the plots for the standard errors of the fixed effects, no general irregularities

could be found. However, compared to the previous simulations, the intervals differed

in their structure. The variation in size between different runs had reduced drastically

and the intervals did not include estimations close to 0 anymore. This mainly resulted

from the combination method. By generating the final estimate from multiple values,

the robustness against extreme values was higher. This applied to both, the size of the

interval and the occurrence of near 0 values.

The last part of the illustration shows
¯̂
d for using the mean and median. The plots

of both methods look nearly identical. Yet, when applying the median, slightly more

intervals held the true value. Also, the averaged size of the median intervals was larger

(0.787) compared to the mean (0.774). Overall, both methods underestimated the true

d more often. This incident however occurred in both of the previous simulations as

well.
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Figure 4.19.: Multiple Imputation Simulation: 95% bootstrap percentile intervals of all

parameters of interest for 100 simulation runs. Intervals are colored blue

if they hold the true value (black line), and red if they don’t.
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4.8. Results of Simulation I, II and III in comparison

The last section of this chapter compares the results of simulation I, II and III. Similar

to the previous sections, the first part analyzes the empirical densities of the parameters.

Figure 4.20 illustrates the obtained curves for β̂1 of all three simulations.

Figure 4.20.: Comparison of the empirical densities for β̂1 obtained from simulations I,

II and III together with the true value β1 = 0.3.

Comparative density plots for the other covariables are given at appendix B.

Like remarked in the individual analyses, all densities seemed to be centered around the

true parameters. Yet, multiple differences could be spotted comparing the curves. To

further illustrate these, table 4.21 presents basic measures of the densities for β̂1 along-

side the individual boxplots.

The means of the empirical densities lay slightly over the true value of 0.3 for all simula-

tions. Here, the highest deviation occurred in the complete case simulation with 0.0349.

However, more considerable differences could be found in the measures of statistical

dispersion. The interquartile range of the complete case simulation had increased by
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Mean IQR Range

FD 0.3095 0.1711 1.2201

CC 0.3349 0.2918 14.456

MI 0.3172 0.1998 1.422

Figure 4.21.: Mean, interquartile range and range alongside the boxplots for the empir-

ical densities of β̂1 from the simulations of this thesis.

70% compared to the full data, whereas the multiple imputation only generated a small

increment of 17%. Even more discrepancy could be identified, when examining the range

of the densities. Here, the value of the complete case analysis stood out. It was more

than 12 times higher, than the respective value of the full data situation. The multiple

imputation on the other hand only increased the range by 20%.

This analysis showed one of the main advantages of (multiple) imputation. Instead

of dropping known information, missing values are imputed, which overall enables pa-

rameters to be estimated on more observations. This results in a higher amount of

certainty compared to the complete case procedure.
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The next part of the analysis compared the estimations for the standard deviations

of the random intercepts and additionally went into the influence of the combination

method being applied in the multiple imputation case. Figure 4.22 shows all corre-

sponding empirical densities of the simulations.

Figure 4.22.: Comparison of the empirical densities for d obtained from simulations I,

II and both combination methods of simulation III together with the true

value d = 0.5.

The negative impact on the precision of the estimation when performing a complete

case analysis could be observed in a similar fashion for the parameter d. Furthermore,

differences occurred between the combination methods of the multiple imputation. The

empirical density of the mean did not match the one obtained from analyzing the full

data set. Small values appeared notably more often here. This misrepresentation could

be prevented, by using the median to combine the imputed estimators. The correspond-

ing density seemed to match the full data curve in an adequate manner for this method.
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The final comparative analysis examined the sizes of the computed bootstrap percentile

intervals. For the estimations of β1, a corresponding histogram is given in figure 4.23.

Figure 4.23.: Comparison of the densities for the bootstrap percentile interval sizes in

simulations I, II and III for the parameter β̂1.

The bootstrap percentile interval sizes correlated with the variances of the respective

estimators. While the multiple imputation produced on average only slightly bigger in-

tervals than the full data, the averaged sizes for the complete case analysis were nearly

doubled.

In conclusion: With the number of holds being in an acceptable range for all simula-

tions, each method seemed suitable to address the missingness in a GLMM framework.

However, due to the fact, that estimators of the multiple imputation were obtained with

a much lower variance, this approach could be perceived as superior, compared to the

complete case estimation.
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5. Summary

The aim of this thesis was to analyze the estimation quality of generalized linear mixed

models after multiple imputation. Special notice was given to the combination of the

mixed model parameters. Here, various methods were compared and evaluated.

To thoroughly analyze the multiple imputation framework, three simulations on arti-

ficial data sets were realized. The first one examined a complete data situation. It

served the purpose of obtaining reference values for all measures of the GLMM estima-

tion. The second simulation was performed on incomplete data. Here, the missingness

problem was eliminated by using listwise deletion (complete case analysis). The final

simulation addressed the incomplete data situation by applying multiple imputation. To

combine the random effects parameters of the GLMM, the mean and median method

were compared.

None of the three simulations showed structural errors or biased estimations of fixed

effects. Consequently, all examined methods are valid approaches to deal with the miss-

ingness problem. However, remarkable differences were found for the obtained variance

estimates. As expected, the smallest variances occurred at the full data simulation.

Only a slightly higher spread (≈ 1.3-fold) of the effects estimates was observed at the

multiple imputation simulation. The highest variance of the estimators was found at

the complete case analysis (≈ 2-fold). Therefore, the multiple imputation approach has

revealed to be superior to the complete case analysis in terms of estimation precision.
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The final part of the analysis was to compare the combination methods for the random

effect estimates. Here, the mean has failed to resemble the true distribution obtained

from the full data analysis. An adequate alternative was given by the median, which im-

plicitly took the underlying mixture distribution of the parameter into account. With no

structural errors, or biased estimations, the median has shown to be a suitable method

to combine a random effects variance parameter in GLMMs.
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A. R Code and Further Descriptions

Appendix A introduces R implementations, which were not explained thoroughly in the

main thesis. In addition, further methods and used R packages are described.

A.1. Theoretical variance of β: theosd()

The R code of the function to estimate the true variance of β, which was introduced in

section 4.4 will be described in the following.

The function was named theosd(). It’s parameters are the number of runs to be per-

formed and an integer from 1 to 3 indicating, which data situation to use (Simulation

1, 2 or 3).

First, a parameter matrix is initialized to store the obtained estimations for β in.

1 theosd = function(Runs ,simu){

2 Pm <- matrix(nrow = Runs , ncol = 6 )

3 ...

The next part differs, according to which data situation is analyzed. However, each of

the code fragments starts with creating a for()-loop to iterate the procedure as many

times, as specified by the Runs parameter.

For the full data analysis, the function estimates a GLMM on a newly created data set,

and stores the obtained β-estimators is the parameter matrix.
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1 ...

2 if(simu ==1) # Full Data

3 for(i in 1:Runs){

4 glmmi = glmer(y~time+age+height+blood+pain +(1| subject),

5 create.D(), binomial ())

6 Pm[i, 1:6] <- fixef(glmmi)

7 }

8 ...

If the complete case data situation is chosen, the function creates missing values in the

data, similar to the second simulation. After that, listwise deletion is applied and a

GLMM is fitted. The estimated parameters are then stored in the parameter matrix.

1 ...

2 else if(simu ==2) # Complete Case

3 for(i in 1:Runs){

4 Dat = create.miss(create.D(), 0.3, 7, 6)

5 Dat = create.miss(Dat , 0.4, 6, 4)

6 CC = Dat[apply(is.na(Dat), 1, sum)==0,]

7 glmmi = glmer(y~time+age+height+blood+pain +(1| subject),

8 CC, binomial (), control=glmerControl(

9 optimizer="bobyqa",

10 optCtrl=list(maxfun = 100000)))

11 Pm[i, 1:6] <- fixef(glmmi)

12 }

13 ...

The multiple imputation simulation starts by creating missing values. They are af-

terwards imputed multiple times and combined using the mean function. The final
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estimators are stored in the matrix Pm.

1 ...

2 else # Multiple Imputation

3 for(i in 1:Runs){

4 Dat = create.miss(create.D() ,0.3,7,6)

5 Dat = create.miss(Dat ,0.4,6 ,4)

6 AM = amelia(Dat , p2s=0, m=5 ,ts="time", cs="subject",

7 polytime = 1)$imputations

8 imp= matrix(nrow=5,ncol =6)

9 for(k in 1:5){

10 glmmi = glmer(y~time+age+height+blood+pain+

11 (1| subject), AM[[k]], binomial ())

12 imp[k,] = fixef(glmmi)

13 }

14 Pm[i,] = apply(imp ,2,mean)

15 }

16 return(Pm)

17 }

The function ends with returning the filled parameter matrix.

For the analyses of this thesis, 1000 runs of each simulation were performed.

To obtain estimations of the standard errors from the returned β-matrix of truesd()

(here named betamatrix), the function sd() needs to be applied for all individual fixed

effects estimates.

1 apply(betamatrix , 2, sd)
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A.2. Parallel computing using the package snow

In this section, a short introduction to the function clusterCall() of the R package snow

is given. The basic structure of the parallel computing approach was similar throughout

all applications of this thesis.

After loading the package, a cluster object is created, which initializes slave R processes.

The parallel computing was performed on the servers of the Department of Statistics of

the LMU Munich. 10 cores were available on one server, which is why 10 slave processes

were initialized.

1 cl = makeCluster (10, type="SOCK")

To apply a generated function on multiple cores, the call clusterCall() is used. Its

parameters are the previously created cluster object cl and a function to be applied on

all defined cores. The essential steps of the inner function are outlined in green.

1 X <- clusterCall(cl, function (){

2 # 1. Load all packages and functions

3 # 2. Perform the desired task

4 # 3. Return the results

5 } )

clusterCall() returns a list, which contains the return values of each slave process.

This list can then be combined into one result for further analyses.

After completing the parallel operation, the function stopCluster() is called to shut

down cluster processes and clean up remaining connections.

1 stopCluster(cl)
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A.3. Bootstrap Percentil Interval bpi()

The simulation functions themselves did not compute bootstrap percentile intervals, but

returned the obtained estimations to maintain all information of the estimation process.

The evaluation of these estimators was performed afterwards using the function bpi().

The R implementation of bpi() can be found in the digital supplement. Bootstrap

percentile intervals are computed for the estimators of each bootstrap sample. They are

consecutively tested for holding the respective true value. In addition to the number of

holds, the function returns an estimated interval of expected holds (see equation 4.26)

and the average size of the computed bootstrap percentile intervals.

An exemplary output of bpi() for the full data simulation results is shown below.

All findings on bootstrap percentile interval holds of chapter 4 can be reconstructed,

by applying the bpi() function on the simulation results. The prerequisites for this can

be found on the digital supplement CD.
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A.4. Other discussed combination methods for d̂

The main combination methods for the standard deviation parameter of the random

effects, that were analyzed in this thesis are the mean and the median. In addition to

them, a two-stage design and a probability weighting approach were examined.

A.4.1. Two-Stage Design

To address the underlying mixture distribution of the parameter, the first stage of the

combination was to decide, which distribution the final value should belong to. This

was realized, by prefixing a query, which returns 0 if more than 50% of the values were

0 (i.e. originate from the point-mass population). Else, all observations greater than 0

(χ2-population) were combined using the mean.

A code sample for 5 values in the vector d would be

1 ifelse( sum(d>0) >2 , mean(d[d>0]) , 0 )

The resulting density of the combined estimators is shown in figure A.1.

One can see, that compared to the mean, the drastic overestimation of small values

got reduced. The curve of the two-stage design was able to better resemble the real

density. However, the probabilities for small values were still estimated too high. This

approach of combining the estimates hence did not provide a fully satisfying result.
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Figure A.1.: Empirical densities of d̂ for the two-stage combination method alongside

with the previous results.

A.4.2. Probability Weighting Approach

Another approach to imply the mixture distribution, was to add a preliminary stage,

which decides the combined value’s affiliation to a population by a binary random draw.

The probability of this draw is chosen according to the share of the population in the

vector, which is averaged over. If e.g. 2 out of 5 values were 0, the probability for the

combined value to originate from the population of 0 should be 40%. In 60% of the cases,

the combination would be obtained as the mean of the values > 0 (χ2-population). To

implement this procedure in R, the following code snippet was used.

1 ifelse( rbinom(1,1,mean(d!=0)) >0 , mean(d[d>0]) , 0 )

The density estimation for the GLMM parameter d̂ using the probability weighting ap-

proach is illustrated is figure A.2.
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Figure A.2.: Empirical densities of d̂ for the weighted probability combination method

alongside with the previous results.

This approach again resembled the true density better compared to the combination

method using the mean. Especially for small values, the curve was clearly closer to the

theoretical probability of d̂. The path of the curve was similar to the two-stage method.

Yet, it was slightly closer to the full data density, which would make this approach the

preferable one of the two supplementary methods. However, none of these additionally

analyzed combination strategies could match up to the median, which was able to nearly

perfectly resemble the theoretical density.
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B. Additional Plots

B.1. Densities of the Fixed Effects Estimators
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Figure B.1.: Empirical densities for all β̂ of Simulation I, II and III.
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Figure B.2.: Empirical densities for all ŝd(β̂) of Simulation I, II and III.

B.2. Bootstrap Percentile Intervals for 1000 Runs
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Figure B.3.: Full Data Simulation: 95% bootstrap percentile intervals of all parameters

of interest for 1000 simulation runs. Intervals are colored blue if they hold

the true value (black line), and red if they don’t.
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Figure B.4.: Complete Case Simulation: 95% bootstrap percentile intervals of all pa-

rameters of interest for 1000 simulation runs. Intervals are colored blue if

they hold the true value (black line), and red if they don’t.
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Figure B.5.: Multiple Imputation Simulation: 95% bootstrap percentile intervals of all

parameters of interest for 1000 simulation runs. Intervals are colored blue

if they hold the true value (black line), and red if they don’t.
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C. Digital Supplement on CD

Attached to this thesis is a supplementary CD containing the R-code and results obtained

from the simulations. An overview of it’s folder structure is given in figure C.1.

Digital Supplement

Thesis.pdf

Figures

Analysis Plots.R

Figure 2 1.png

... [51 more]

Figure C 1.png

Functions

bootstrap.R

bpi.R

create D.R

create miss.R

mi combination.R

theosd.R

theosd Results.RData

Simulations

Simulation 1.R

Simulation 2.R

Simulation 3.R

MIall.rda

Simulation Results.RData

Figure C.1.: Folder Structure of the digital supplement on CD.
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The CD comprises of the thesis in digital form and three folders.

The folder Figures contains all graphics, that were used in thesis. They are named

by their caption number. Asides from that, an R script named ”Analysis Plots.R”

can be found. With this file, all analysis plots of section 4 can be recreated.

The folder Functions contains all functions, which are required to perform the sim-

ulations and analyze the results. In addition, the file ”theosd Results.RData” is en-

closed. It includes the results from the function ”theosd.R” for all simulation situations.

The last folder is named Simulations. It contains the runnable R codes for all three

simulations, which were executed on the servers of the Department of Statistics (LMU

Munich). The obtained results (combined for simulation III) are enclosed in the file

”Simulation results.RData”. Lastly, the uncombined estimations of simulation III

are given by the file ”MIall.rda”.
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