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Abstract
Die vorliegende Arbeit zeigt verschiedene Ansätze zur Modellierung der Spielstärke von
Bundesligisten mit Hilfe von ordinalen Paarvergleichsmodellen auf. Die Ansätze beruhen
hauptsächlich auf den Arbeiten von Tutz und Schauberger (2015) und Cattelan et al. (2013).
Zunächst wird ein allgemeines Paarvergleichsmodell vorgestellt, welches anschließend
für ordinalen Response und einen globalen, bzw. teamspezifischen Heimeffekt erweitert
wird. Es zeigt sich, dass sich die Modelle mit globalem und teamspzifischem Heimeffekt
nicht signifikant voneinander unterscheiden.
Regularisierungstechniken werden angewandt, um Cluster für die einzelnen Koeffizien-
tenschätzer der Mannschaften herauszufinden. Die stärksten Mannschaften bilden meist
einzelne Cluster, wohingegen die restlichen Mannschaften sich nur auf wenige Cluster
aufteilen. Anschließend wird das Modell so erweitert, dass teamspezifisch-erklärende
Variablen mit aufgenommen werden können. Es wird festgestellt, dass die ausgewählten
Variablen einen nicht unerheblichen Teil der ermittelten Spielstärken begründen.
Um eine dynamische Struktur der Spielstärken zu erhalten werden zwei weitere Ansätze
betrachtet. Beim ersten Ansatz wird die Spielstärke durch einen exponential-gewichteten
moving-average Prozess ermittelt. Der zweite Ansatz berechnet für jeden Spieltag das
bereits bekannte erweiterte allgemeine Paarvergleichsmodell mit zusätzlicher Gewichtung
der Likelihoods. Der rank probability score (rps) bietet eine Möglichkeit, die verschiedenen
Modelle miteinander zu vergleichen. Das Modell mit den gewichteten Likelihoods liefert
hierbei die besten Ergebnisse.
Abschließend werden die prädiktiven Fähigkeiten der Modelle überprüft. Der rps der
verschiedenen Modelle unterscheidet sich dabei kaum. Bei der Prognose von Spielaus-
gängen prognostiziert das beste Modell bei einer Simulationsstudie im Schnitt 42.3% der
Ergebnisse richtig. Bei Tipp auf das wahrscheinlichste Ergebnis liegt die beste Trefferquote
bei über 50%. Werden zusätzlich die Wettquoten für die einzelnen Spiele berücksichtigt,
lässt sich feststellen, dass sich durch die Simulationsstudien keine rentablen Gewinne
erzielen lassen. Tipps auf das wahrscheinlichste Ergebnis liefern teilweise gute Renditen.
Unter Berücksichtigung der Rentabilität eines Tipps können diese noch weiter gesteigert
werden. Die höchste Rendite mit 28.9% wird bei Berücksichtigung der Rentabilität und
ausschließlichen Tipps auf Heimerfolge erreicht.
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1 Einleitung

Verfolgt man verschiedene Sportveranstaltungen vor dem TV-Gerät, so fällt auf, dass hier-
bei der Zuschauer mit einer riesigen Anzahl an Statistiken überflutet wird. Mit Hilfe dieser
Einblendungen versuchen die Kommentatoren oftmals die Überlegenheit eines Sportlers
oder einer Mannschaft gegenüber ihren Gegnern zu belegen. Meist sind diese Statistiken
jedoch nichtssagend und haben für die betroffenen Personen keinerlei Aussagekraft. Die
statistische Modellierung hingegen nimmt im professionellen Sportbereich eine immer
wichtigere Rolle ein. Im Baseball wurden Mitte des 20. Jahrhunderts erstmals statistische
Daten verwendet, um die Stärke von Spielern zu ermitteln. Dieses entwickelte System wird
mit dem Begriff Sabermetrics bezeichnet. Es wurde von den meisten Experten sehr kritisch
gesehen und fand kaum Anwendung. Billy Beane, Manager des Baseballteams Oakland
Athletics, verwendete ab dem Jahr 2000 dieses System, um Spieler zu finden, welche ein
überdurchschnittliches Preis-/Leistungsverhältnis aufweisen. Das Team erreichte trotz
geringer finanzieller Mittel viermal in Folge die Playoffs.
Auch im Fußball wird mittlerweile mit statistischen Modellen gearbeitet. Matthew Ben-
ham erkannte das Potential von statistischen Modellen und wurde so zum Millionär. Er
gründete 2004 das Unternehmen Smartodds, welches professionell auf den Spielausgang
bei Fußballspielen wettet. Mittlerweile ist er Eigentümer des englischen Vereins FC Brent-
ford und des dänischen Vereins FC Midtjylland. Bei diesen Vereinen werden seitdem
ausschließlich Spieler verpflichtet, welche von ihrem eigens entwickelten statistischen
Modell als geeignet klassifiziert werden. Auch während des Spiels bekommen die Trainer
der Mannschaften Informationen vom System zugesandt, anhand welcher sie ihre Taktik
dem Spielverlauf anpassen. So kam das Modell beispielsweise zu der Erkenntnis, dass die
führende Mannschaft beim Fußball ihren Vorsprung am besten verteidigen kann, indem sie
weiterhin offensiv spielt und nicht versucht das Ergebnis zu verwalten. Das Modell scheint
Erfolg zu haben. Der FC Midtjylland wurde 2015 dänischer Meister, obwohl die beiden
größten Vereine des Landes, Brondby Kopenhagen und der FC Kopenhagen, einen dop-
pelt so hohen Etat zur Verfügung hatten. Auch die großen Fußballvereine Europas haben
mittlerweile das immense Potential von statistischen Modellen erkannt und vereinseigene
Statistikabteilungen gebildet. Der Einfluss statistischer Modelle im Profisportbereich wird
daher in den nächsten Jahren noch weiter zunehmen.
Diese Arbeit beschäftigt sich mit der Modellierung der Spielstärke von Fußballmannschaf-
ten mit ordinalen Paarvergleichsmodellen. Nach einer kurzen Vorstellung der verwendeten
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1 Einleitung

Daten in Kapitel 2 widmet sich Kapitel 3 mit dem klassischen Bradley-Terry Modell. Dieses
wird zu einem ordinalen Modell erweitert. Zusätzlich werden verschiedene Annahmen
für dieses ordinale Modell, wie zum Beispiel ein globaler oder auch ein teamspezifischer
Heimspieleffekt, vorgestellt. Im Anwendungsteil dieses Kapitels finden sich dann die
Ergebnisse einer solchen Betrachtungsweise wieder.
Kapitel 4 erweitert das vorgestellte Modell mit Hilfe von Regularisierungstechniken. Hier-
bei wird angenommen, dass Mannschaften teilweise gleiche Spielstärken besitzen und
sich somit in verschiedene Cluster einteilen lassen. Diese Einteilung geschieht mittels
Erweiterung der Likelihood um einen Strafterm für alle paarweisen Spielstärkekoeffizi-
enten. Verschiedene Auswahlkriterien dienen zur Ermittlung eines Tuningparameters,
durch welchen die Koeffizienten bestimmt werden können. Im Anwendungsteil werden
wiederum die Ergebnisse dieses Modells betrachtet.
Im darauffolgenden Kapitel 5 wird das Modell nun um erklärende Variablen erweitert.
Zum einen soll somit die Modellgüte festgestellt werden und zum anderen wird sich
eine Verbesserung des Modells für spätere prädiktive Analysen erhofft. Zunächst wird
in diesem Kapitel das Modell so erweitert, dass die durchschnittlichen Marktwerte der
einzelnen Vereine als Variablen ins Modell aufgenommen werden. Durch Aufnahme die-
ser Variablen lassen sich die Spielstärken der Mannschaften bei Annahme von gleichen
Marktwerten aller Vereine ermitteln und somit auch Aussagen über die Modellgüte treffen.
Ein anderer Ansatz betrachtet die Marktwerte der einzelnen Startaufstellungen der Mann-
schaften. Da die Vereine oftmals ihre Startaufstellungen von Spiel zu Spiel ändern, ergibt
sich bei dieser Betrachtung eine dynamische Variable für jedes Spiel. Außerdem erhofft
man sich einen zusätzlichen Informationsgewinn für die prädiktiven Betrachtungen, weil
die Startaufstellungen bereits vor Spielbeginn veröffentlicht werden.
Kapitel 6 erweitert das Modell zu einem dynamischen Modell, bei welchem sich die Spiel-
stärken der Mannschaften für jedes Spiel verändern. Zunächst wird dabei ein von Cattelan
et al. (2013) vorgeschlagener Ansatz, welcher die Spielstärken durch einen exponential-
gewichteten moving-average Prozess modelliert, betrachtet. Bei diesem Ansatz gibt es eine
strikte Unterscheidung zwischen Heimspielstärke und Auswärtsspielstärke eines Teams.
Des Weiteren findet eine Unterscheidung zwischen teamspezifischen und gemeinsamen
Startwerten statt. Eine weitere Möglichkeit der dynamischen Modellierung bietet die
Betrachtung von gewichteten Likelihoods zur Ermittlung der Spielstärkekoeffizienten. Die
Annahme hierbei besteht darin, dass weiter zurückliegende Spiele weniger Einfluss auf
die aktuelle Spielstärke eines Teams haben als erst kürzlich gespielte Partien. Zusätzlich
wird in diesem Kapitel noch eine Möglichkeit der Modellvalidierung über rank probability
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1 Einleitung

scores vorgestellt. Der Anwendungsteil fasst wiederum die einzelnen Ergebnisse dieser
Modelle zusammen.
Nach Vorstellung der verschiedenen Modellansätze sollen in Kapitel 7 die Ergebnisse
der einzelnen Modelle miteinander verglichen werden. Es wird dabei hauptsächlich Au-
genmerk auf die prädiktive Aussagekraft der einzelnen Modelle gelegt. Mit Hilfe von
Simulationsstudien wird untersucht, welches Modell die meisten Spiele richtig vorhersagt
und zusätzlich wird überprüft, ob und wenn ja wie viel Geld sich mit diesen Ansätzen
hätte in der Saison 2014/2015 verdienen lassen.
Abschließend werden die Ergebnisse nochmals kurz zusammengefasst und diskutiert.
Ein Überblick über die verwendeten Pakete und Codes, sowie zusätzliche Grafiken und
Tabellen sind im Appendix dieser Arbeit beigefügt.
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2 Datenbeschreibung

Als Datengrundlage für die im Weiteren Verlauf dieser Arbeit vorgestellten Analysen die-
nen die Ergebnisse der 1. Fußballbundesliga in der Saison 2014/2015. Die Liga besteht aus
18 teilnehmenden Mannschaften, wobei die zwei schwächsten Teams in die 2. Bundesliga
absteigen und in der nächsten Saison durch die beiden punktbesten Teams aus dieser Liga
ersetzt werden. Zusätzlich muss der Tabellensechzehnte der abgelaufenen Saison gegen
den Tabellendritten der 2. Liga in zwei Entscheidungsspielen um den Verbleib in der Liga
spielen. Eine Saison besteht aus 34 Spieltagen mit jeweils neun Spielen. Insgesamt werden
daher 306 Spiele ausgetragen, in denen jede Mannschaft je einmal zu Hause und einmal
auswärts bei jeder anderen Mannschaft antreten muss. Die betrachtete Saison dauerte vom
22. August 2014 bis zum 23. Mai 2015. Insgesamt wurden dabei Spiele an 91 verschiedenen
Tagen ausgetragen. Für einen Sieg erhält eine Mannschaft drei Punkte. Das unterlegene
Team erhält keinen Punkt. Bei einem Unentschieden erhalten beide Mannschaften je einen
Punkt. Die Mannschaft mit den meisten Punkten nach 34 Spieltagen gewinnt die deutsche
Meisterschaft. In der betrachteten Saison war diese Mannschaft der FC Bayern München
mit 79 Punkten. Der SC Paderborn 07 und der SC Freiburg mussten mit den wenigsten
Punkten in die 2. Bundesliga absteigen. Der Hamburger SV konnte sich in den Relegati-
onsspielen gegen den Karlsruher SC durchsetzen und ist auch in der Saison 2015/2016
Mitglied der 1. Bundesliga. Tabelle 2.1 zeigt unter anderem die Endplatzierungen der
einzelnen Vereine nach Punkten sowie ihre Heim- und Auswärtspunkte. Die restlichen
Angaben dieser Tabelle werden in Abschnitt 3.5 erläutert.
Insgesamt wurden in der Saison 2014/2015 47.4% (145 Spiele) der Spiele von der Heim-
mannschaft gewonnen, 26.8% (82 Spiele) der Spiele endeten Unentschieden und 25.8%
(79 Spiele) der Spiele gewann die Gastmannschaft. Für die späteren Analysen ist nicht
nur interessant, welches Team ein Spiel gewonnen hat, sondern auch, mit wie vielen
Toren Unterschied der Sieg erzielt wurde. Hier ist 69 mal ein Heimsieg mit genau einem
Tor Unterschied zu verzeichnen. Die anderen 76 Heimsiege endeten mit zwei oder mehr
Toren Unterschied. Den höchsten Heimsieg erzielte dabei der FC Bayern München am
21. Spieltag mit einem 8:0 gegen den Hamburger SV. Bei den Auswärtssiegen betrug bei
42 Spielen der Unterschied genau ein Tor und bei 37 Spielen mindestens zwei Tore. Den
höchsten Auswärtssieg erzielte ebenfalls der FC Bayern München mit einem 6:0 Sieg über
den SC Paderborn 07 am 22. Spieltag.
Neben den Ergebnissen dieser Saison werden im Verlauf der Arbeit noch zusätzliche frei
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2 Datenbeschreibung

Mannschaft Punkte zu Hause auswärts Spielstärke QSE Rang
FC Bayern München 79 43 36 0.602 0.331 1
VfL Wolfsburg 69 43 26 0.000 0.311 2
Borussia Mönchengladbach 66 39 27 -0.164 0.307 3
Bayer 04 Leverkusen 61 36 25 -0.380 0.304 4
FC Augsburg 49 31 18 -1.037 0.299 6
FC Schalke 04 48 35 13 -1.087 0.299 7
Borussia Dortmund 46 30 16 -0.939 0.299 5
TSG 1899 Hoffenheim 44 30 14 -1.398 0.300 12
Eintracht Frankfurt 43 32 11 -1.304 0.300 10
SV Werder Bremen 43 28 15 -1.379 0.300 11
1.FSV Mainz 05 40 24 16 -1.199 0.299 8
1.FC Köln 40 21 19 -1.238 0.299 9
Hannover 96 37 22 15 -1.576 0.302 15
VfB Stuttgart 36 19 17 -1.616 0.302 16
Hertha BSC Berlin 35 22 13 -1.531 0.301 14
Hamburger SV 35 23 12 -1.692 0.303 17
SC Freiburg 34 21 13 -1.440 0.300 13
SC Paderborn 07 31 18 13 -1.888 0.306 18

Tabelle 2.1: Abschlusstabelle der Bundesligasaison 2014/2015 mit Angabe der Ge-
samtpunktzahl, der gewonnenen Punkte bei Heim- und Auswärtsspielen sowie der
modellierten Spielstärke, der dazugehörigen quasi-Standardabweichungen und der
daraus folgenden theoretischen Endplatzierungen
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2 Datenbeschreibung

zugängliche Daten verwendet. In Kapitel 5 werden die durchschnittlichen Marktwerte der
einzelnen Bundesligavereine sowie die Marktwerte ihrer Startaufstellungen für jedes Spiel
benötigt. Die genaue Datenherkunft und ihre Auflistung finden sich im dazugehörigen
Abschnitt. Eine kurze Datenbeschreibung soll jedoch bereits hier gegeben werden.
Der FC Bayern München besitzt mit deutlichem Abstand den größten Lizenzspieleretat
aller 18 Bundesligisten mit einem Etat von 160 Millionen Euro. Dieser ist mehr als doppelt
so hoch wie der zweitgrößte Lizenzspieleretat von 78 Millionen Euro. Dieser gehört zum
FC Schalke 04. Auch der VfL Wolfsburg und Borussia Dortmund haben ähnlich hohe
Etats wie Schalke zur Verfügung. Der SC Paderborn 07 startete mit dem geringsten Etat
in Höhe von 17 Millionen Euro in die Saison 2014/2015. Die Höhe der zur Verfügung
stehenden Gelder macht sich auch bei den Marktwerten der einzelnen Vereine bemerkbar.
Zu Saisonbeginn lag der Marktwert aller Spieler des FC Bayern München bei über 564
Millionen Euro. Bei einer Spieleranzahl von 27 Spielern im Kader entspricht dies einem
durchschnittlichen Marktwert von 20.9 Millionen Euro pro Spieler. Auch hier liegt der
FC Bayern München weit vor allen anderen Mannschaften. Borussia Dortmund nimmt
den zweiten Platz ein bei einem Gesamtmarktwert von gut 344 Millionen Euro und einer
Kadergröße von 30 Spielern. Den geringsten Gesamtmarktwert besitzt der Kader des SC
Paderborn 07 mit einem Wert von 22.35 Millionen Euro bei 28 Spielern im Kader. Bei den
Mannschaftswerten der Startaufstellungen ergibt sich wiederum das gleiche Bild. Der FC
Bayern München schickt an jedem Spieltag die wertvollste Mannschaft aller Bundesligisten
auf den Platz. Am 23. Spieltag stellten sie die wertvollste Mannschaft der ganzen Saison
mit einem durchschnittlichen Marktwert von 33.8 Millionen Euro pro Spieler. Der SC
Paderborn 07 ist die Mannschaft mit dem geringsten Wert. Am 25. Spieltag erreichte die
Startaufstellung der Mannschaft nur einen durchschnittlichen Marktwert von 895000 Euro
pro Spieler.
Zusätzlich zu diesen Daten werden in Kapitel 7 noch die Wettquoten für jedes einzelne
Spiel benötigt. Eine genaue Beschreibung wie sich diese Quoten ergeben und wie sie zu in-
terpretieren sind, findet sich im dazugehörigen Abschnitt 7.3.
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3 Statisches Bradley-Terry Modell

Im folgenden Kapitel soll das allgemeine statische Bradley-Terry Modell und seine An-
passungen an die zugrundeliegenden Daten vorgestellt werden. Das allgemeine Modell
wurde von Bradley und Terry (1952) entwickelt. Teilweise wird es auch als Bradley-Terry-
Luce Modell bezeichnet, da es einen engen Zusammenhang zu den Entscheidungsaxiomen
von Luce (1959) aufweist. In Bezug auf Sportwettbewerbe lassen sich mit Hilfe dieses Mo-
dells nur binäre Ausgänge, sprich Sieg oder Niederlage, modellieren. Das Modell wurde
unter anderem von Davidson (1970) und Rao und Kupper (1967) weiterentwickelt, so
dass Unentschieden modelliert werden können. In dieser Arbeit spielt es später nicht nur
eine Rolle, wer der Sieger ist, sondern auch, mit welcher Tordifferenz ein Spiel gewonnen
wurde. Hierzu wird der Response um weitere Kategorien erweitert. Agresti (1992) und
Tutz (1986) erweiterten das Modell so, dass ein geordneter ordinaler Response mit beliebig
vielen Kategorien möglich ist. Weitere Erweiterungen des zuletzt genannten Modells wie
das Hinzufügen eines globalen sowie eines teamspezifischen Heimvorteils finden sich in
Tutz und Schauberger (2015). Die folgenden Notationen und der Aufbau des Kapitels sind
größtenteils aus Tutz und Schauberger (2015) übernommen.

3.1 Das binäre Bradley-Terry Modell

Das Bradley-Terry Modell besitzt eine große Ähnlichkeit zum logistischen Regressions-
modell. Seien {a1, ..., am} die einzelnen Teams, welche gegeneinander antreten können. Im
binären Bradley-Terry Modell wird nur zwischen Sieg und Niederlage unterschieden.
Yrs = 1 bedeutet im Folgenden, dass Mannschaft r gegen Mannschaft s gewinnt. Yrs = 0
bedeutet folglich eine Niederlage von Team r. Mit der Formel

P(Yrs = 1) =
exp(γr − γs)

1 + exp(γr − γs))
(3.1)

lässt sich nun die Wahrscheinlichkeit eines Sieges von Team r über Team s beschreiben.
Die Parameter γr, r = 1, ..., m können dabei als die Spielstärke oder auch Fähigkeiten der
einzelnen Mannschaften angesehen werden. Aus dieser Formel ist ersichtlich, dass die
Wahrscheinlichkeit eines Sieges bei gleicher Spielstärke bei 50% liegt. Besitzt Mannschaft
r eine höhere Spielstärke als Mannschaft s, so steigt auch die Gewinnwahrscheinlichkeit
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von Team r.
Wird das Modell zu

log
P(Yrs = 1)
P(Yrs = 0)

= γr − γs

umgeformt, so ist schnell erkennbar, dass es an eine Bedingung geknüpft werden muss.
Würden den einzelnen Parametern γr Konstanten c hinzugefügt werden, so würde das
Modell trotzdem die gleichen Gewinnwahrscheinlichkeiten ermitteln und damit wäre
es nicht eindeutig identifizierbar. Die Identifizierbarkeit kann entweder durch die Wahl
eines festen Parameters oder durch die Nullsummenbedingung ∑m

i=1 γi = 0 gewährleistet
werden. Im Weiteren Verlauf wird zumeist erstere Bedingung eingesetzt und die Spiel-
stärke des VfL Wolfsburg als Fixparameter gleich Null gesetzt [vgl. Tutz und Schauberger
(2015)].

3.2 Erweiterung zum ordinalen Modell

Wie bereits in der Einführung zu diesem Kapitel erwähnt, gilt das Interesse dieser Arbeit
nicht nur dem Ereignis, welches Team das Spiel gewonnen hat, sondern der Response
soll auch die Dominanz einer Mannschaft widerspiegeln. Hierfür wird der Ausgang Yrs

eines Spiels zwischen zwei Mannschaften r und s mit einer geordneten ordinalen Skala
mit Wertebereich Yrs ∈ {1, ..., k} dargestellt. Wählt man k = 3, so lässt sich der Ausgang
„Unentschieden “ ins Modell mit aufnehmen. k = 1 würde in diesem Fall einen Sieg von
Team r bedeuten, k = 2 „Unentschieden“ und k = 3 „Sieg für Team s“.Wird die Anzahl der
Responsemöglichkeiten auf k = 5 erhöht, so können die einzelnen Responses als „starke
Dominanz von Team r “, „schwache Dominanz von Team r“, „Unentschieden “, „schwache
Dominanz von Team s“ und „starke Dominanz von Team s “ interpretiert werden. Im
weiteren Verlauf werden die Analysen hauptsächlich für den Fall k = 5 durchgeführt.
Als „starke Dominanz eines Teams“ wird definiert, dass dieses Ereignis gleichbedeutend
mit einem Sieg einer Mannschaft mit mindestens 2 Toren Differenz ist. Folglich wird ein
Sieg mit genau einem Tor Unterschied als „schwache Dominanz eines Teams“ festgelegt.
Um diesen geordneten ordinalen Response anwenden zu können, wird ein kumulatives
Modell verwendet. Die Wahrscheinlichkeit eines Ereignisses lässt sich hier als kumulative
Wahrscheinlichkeit folgendermaßen modellieren:
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P(Yrs ≤ j) = F(ηrsj) (3.2)

F(·) ist hier eine symmetrische Verteilungsfunktion, welcher das Bradley-Terry Modell
als logistische Verteilungsfunktion zugrunde liegt. Der lineare Prädiktor ηrsj ergibt sich
als

ηrsj = θj + γr − γs,

d.h. er setzt sich aus der Differenz γr − γs der Spielstärken der einzelnen Mannschaften
und einem Schwellenparameter θj zusammen. Erst dieser Schwellenparameter ermöglicht
die Darstellung als ordinalskaliertes Modell. Da es sich bei F(·) um eine symmetrische
Verteilungsfunktion handelt, folgt daraus, dass der Schwellenparameter θθθ die Einschrän-
kung θj = −θk−j für t = 1, ..., [k/2] besitzt. In der Praxis bedeutet dies, dass bei gleichen
Spielstärken γr = γs die Wahrscheinlichkeiten das gegnerische Team schwach bzw. stark
zu dominieren für beide Teams identisch sind, sprich P(Yrs = j) = P(Yrs = k + 1− j).
Der Beweis für diese Äquivalenz in den Wahrscheinlichkeiten findet sich in Tutz (1986),
Seite 308. Für den Fall k = 5 folgt dadurch bei gleicher Spielstärke zweier Mannschaften
P(Yrs = 1) = P(Yrs = 5) und P(Yrs = 2) = P(Yrs = 4) [vgl. Tutz und Schauberger
(2015)].

3.3 Heimspieleffekt

In Kapitel 2 wurde bereits erwähnt, dass in der Saison 2014/2015 47,4% aller Spiele von
der gastgebenden Mannschaft gewonnen wurden und nur 25,8% der Spiele durch den
Gast. Daher liegt die Vermutung nahe, dass eine Mannschaft einen Vorteil daraus zieht,
auf eigenem Platz anzutreten. Um dies zu untersuchen, werden zwei unterschiedliche
Ansätze betrachtet, zum einen die Annahme eines globalen Heimeffektes und zum an-
deren die eines teamspezifischen Heimeffektes. Beide Ansätze seien im Weiteren kurz
beschrieben.

3.3.1 Globaler Heimeffekt

Soll ein globaler Effekt in das Modell mit aufgenommen werden, so muss der lineare
Prädiktor zu der Form
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ηrsj = α + θj + γr − γs

erweitert werden. α repräsentiert dann den globalen Heimeffekt. Da von einem Heim-
vorteil ausgegangen wird, sollte α positiv sein und dadurch sollten sich die Wahrschein-
lichkeiten für einen kleinen Response, also einen Heimsieg, erhöhen. Dieser Parameter
kann unter bestimmten Umständen folgendermaßen interpretiert werden: Er stellt für den
Fall k = 3 und identische Spielstärken die anteiligen Gewinnchancen für einen Sieg von
Mannschaft r bzw. Mannschaft s dar [vgl. Tutz und Schauberger (2015)].
Formell ausgedrückt:

α =
1
2

log
P(Yrs = 1)/(1− P(Yrs = 1))(∗)
P(Yrs = 3)/(1− P(Yrs = 3))(#)

. (3.3)

Nachfolgend sei kurz gezeigt, dass der rechte Teil der Gleichung wirklich den Parameter α

liefert.
P(Yrs = 1) = exp(α+θ1+γr−γs)

1+exp(α+θ1+γr−γs)

P(Yrs = 3) = 1− P(Yrs ≤ 2) = 1− exp(α+θ2+γr−γs)
1+exp(α+θ2+γr−γs)

= 1
1+exp(α+θ2+γr−γs)

γr − γs = 0
θ1 = −θ2

In (*) eingesetzt

⇒ exp(α+θ1)
1+exp(α+θ1)

/ 1
1+exp(α+θ1)

= exp(α + θ1)

In (#) eingesetzt

⇒ 1
1+exp(α−θ1)

/ 1+exp(α−θ1)−1
1+exp(α−θ1)

= 1
exp(α−θ1)

Beides in (3.3) eingesetzt
⇒ 1

2 log exp(α+θ1)
1

exp(α−θ1)
= 1

2 log(exp(2α)) = α

Für den Fall k = 5 drückt α bei identischer Spielstärke die anteiligen Gewinnchancen eines
schwach bzw. klar dominierten Spieles von Mannschaft r im Verhältnis zu einem schwach
dominierten bzw. stark dominierten Sieg von Mannschaft s aus.
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3.3.2 Teamspezifischer Heimeffekt

Eine Betrachtung der Ergebnisse zeigt eindeutig, dass ein Heimvorteil existiert. Jede Mann-
schaft holte in der Spielzeit 2014/2015 mehr Punkte zu Hause als auf fremdem Platz. Es
stellt sich jedoch die Frage, ob die Annahme eines globalen Heimvorteils ausreicht. Daher
wird zusätzlich auch ein teamspezifischer Heimvorteil betrachtet. Hierfür muss lediglich
der Parameter α zu einem spezifischen Parameter αr verändert werden. Der Parameter
besitzt die selben Indizes wie der γ-Parameter der Heimmannschaft. Der lineare Prädiktor
lautet dann

ηrsj = αr + θj + γr − γs.

Durch diese Anpassungen eines Heimeffektes verändert sich auch die Interpretation der
γ-Parameter. Diese lassen sich jetzt nicht mehr sofort als Spielstärke einer Mannschaft
interpretieren, da nun unterschieden werden muss, ob eine Mannschaft zu Hause oder aus-
wärts spielt. Die Parameter können jedoch als Spielstärke eines Teams bei Auswärtsspielen
angesehen werden. Soll die Spielstärke bei Heimspielen ermittelt werden, so ergibt sich
diese aus der Summe des Heimeffektes und des γ-Koeffizienten der jeweiligen Mannschaft.
Der teamspezifische α-Koeffizient lässt sich äquivalent zum globalen Heimkoeffizienten
interpretieren [vgl. Tutz und Schauberger (2015)].

3.4 Zusammenhang zum GLM

Wie bereits erwähnt, handelt es sich bei unserem Modellansatz um ein kumulatives Modell.
Im Folgenden soll dieser Ansatz in die Struktur eines multivariaten generalisierten linea-
ren Modells (GLM) eingebettet werden. Diese Zusammenführung der Modelle wurde von
McCullagh und Nelder (1989) eingeführt. Bei unserem Modell kann der lineare Prädiktor
mit Yrs ∈ {1, ..., k} und r, s ∈ {1, ..., m} als

ηrsj = αr + θj + γr − γs = αr + θj + x(r,s)
2 γ2 + ... + x(r,s)

m γm = αr + θj + (xxx(r,s))Tγγγ

11



3 Statisches Bradley-Terry Modell

geschrieben werden, wobei die (m-1) Komponenten des xxx(r,s)-Vektors durch

x(r,s)
l =

1 , l = r
−1 , l = s

0 , sonst

gegeben sind. Bei dieser Gleichung handelt es sich also um ein kumuliertes Modell mit
Schwellenparameter θj, teamspezifischem Heimeffekt αr und dem Prädiktorenvektor
xxx(r,s). Fahrmeir und Tutz (2001) und auch Tutz (2012) verwenden die Einbettung des
kumulierten Modells in den Rahmen der multivariaten generalisierten Modelle zur Para-
meterschätzung. Diese Maßnahme erlaubt es, die bereits bekannte Inferenz der GLMs auf
die vorgestellten Modelle anzuwenden und somit sind Hypothesentests in unserer Arbeit
mit der bekannten goodness-of-fit-Statistik sowie der Likelihood-ratio-Statistik durch-
führbar. Einzige Bedingung hierbei ist, dass die einzelnen Beobachtungen bei gegebenen
Spielstärken als unabhängig angenommen werden müssen [vgl.Tutz und Schauberger
(2015)].

3.5 Ergebnisse

Wendet man die oben genannten Methodiken auf die Daten der Bundesligasaison 2014/2015
mit k = 5 verschiedenen Responsemöglichkeiten und globalen Heimeffekt an, so erhält
man folgende Ergebnisse:
Der geschätzte globale Heimeffekt beträgt α̂ = 0.528. Für die Schwellenparameter ergeben
sich die Werte θ̂1 = −θ̂4 = −1.794 und θ̂2 = −θ̂3 = −0.671. Mit diesen Schätzern lassen
sich jetzt die allgemeinen Wahrscheinlichkeiten für ein bestimmtes Ereignis modellieren.
Die Wahrscheinlichkeit eines Heimsieges mit mindestens zwei Toren Unterschied bei
gleicher Spielstärke liegt demnach bei 22% und für einen Heimsieg mit genau einem Tor
Differenz bei 24.4%. In 46.4% aller Spiele sollte laut Modell daher die Heimmannschaft
das Spielfeld als Sieger verlassen. Für Unentschieden schätzt das Modell einen Wert von
30.4%. Eine knappe Niederlage tritt in 14.3% Prozent aller Heimspiele auf und eine klare
Niederlage gibt es in 8.9% der Spiele. Die Wahrscheinlichkeit einer Heimniederlage bei
gleicher Spielstärke liegt im Allgemeinen also bei 23.4%. Es gilt natürlich zu beachten,
dass sich diese Werte als Mittelwerte aller Spiele ergeben und die Mannschaften unter-
schiedliche Spielstärken besitzen. Hier zeigt sich ein großer Vorteil der latent trait Modelle.
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Diese Modelle beachten die Unterschiede in den Spielstärken zwischen den einzelnen
Mannschaften und beziehen diese in die Schätzung des Heimeffektes mit ein.
In Tabelle 2.1 sind die modellierten Spielstärken und ihre theoretischen Platzierungen
durch diese Werte für k = 5 angegeben. Für die vier besten Mannschaften stimmt die mo-
dellierte Platzierung mit der wahren Platzierung überein. Bei den restlichen Mannschaften
kommt es zu einigen Veränderungen im Vergleich zur wahren Platzierung. Diese Verände-
rungen können jedoch durch die Betrachtung der quasi-Standardabweichungen relativiert
werden. Die Berechnung dieser erfolgt wie in Firth und De Menezes (2004) beschrieben.
Mit Hilfe des quasi-Standardfehlers kann überprüft werden, ob sich die Spielstärken
zweier Mannschaften signifikant voneinander unterscheiden oder nicht. Dies ist möglich,
da sich nun die Standardabweichungen der Differenzen zweier Mannschaften berechnen
lassen. Soll beispielsweise überprüft werden, ob sich die Spielstärke von Schalke 04 und Bo-
russia Dortmund signifikant unterscheidet, so ergibt sich als Standardfehler der Differenz
der Spielstärken der Mannschaften ein Wert von

√
(0.2992 + 0.2992) = 0.423. Das dazu-

gehörige 95%-Konfidenzintervall ergibt sich dann mit µ = −1.087− (−0.939) = −0.148
als [−0.148± 1.96 · 0.423] = [−0.987, 0.690]. Die Spielstärken der beiden Mannschaften
unterscheiden sich daher nicht signifikant. Vergleicht man die Spielstärken des FC Bayern
München und des VfL Wolfsburg, so lässt sich auch zwischen diesen beiden Mannschaften
kein signifikanter Unterschied in den Spielstärken nachweisen, obwohl Bayern München
die Meisterschaft mit 10 Punkten Vorsprung gewann. Dies zeigt, dass sich anhand der
errechneten Spielstärken keine konkreten Aussagen über die Endplatzierungen treffen
lassen.
In Kapitel 2 wurde bereits erwähnt, dass eine Mannschaft für ein gewonnenes Spiel drei
Punkte erhält, für ein Unentschieden einen Punkt und bei einer Niederlage keine Punkte.
Diese Punktewertung wurde im Fußball bei der Weltmeisterschaft 1994 in den USA einge-
führt und findet seit der Saison 1995/1996 auch in der deutschen Bundesliga Anwendung.
Zuvor gab es für einen Sieg nur zwei anstatt drei Punkte. In diversen Artikeln, wie zum
Beispiel auf ran.de (2015) oder von Nedo (2015), ist nachzulesen, dass diese Einführung
damals sehr umstritten war. So wäre zum Beispiel mit der alten Zwei-Punkte-Regel in der
Saison 1999/2000 nicht der FC Bayern München, sondern Bayer 04 Leverkusen deutscher
Meister geworden. Vor allem im Kampf um den Klassenerhalt würde sich oft ein anderes
Tabellenbild ergeben. Daher ist es interessant zu überprüfen, wie hoch die Korrelation
zwischen den geschätzten Spielstärken der Teams und den gesammelten Punkten im
Verlauf der Saison ist und bei welcher Punktewertung diese maximiert werden würde. Die
Korrelation zwischen den beiden Ergebnissen für die Saison 2014/2015 liegt bei 0.983 und
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ist damit sehr hoch.
Abbildung 3.1 stellt dar, wie sich die Korrelationen entwickeln, wenn man die Punktean-
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Abbildung 3.1: Korrelation zwischen den geschätzten Spielstärken und den zu er-
haltenden Punkten für einen Sieg.

zahl für einen Sieg nun verändert. Die maximale Korrelation erhält man mit einem Wert
von 0.985 bei einer Wertung von 2.2 Punkten für einen Sieg. Zu demselben Ergebnis kamen
auch Tutz und Schauberger (2015) für die Daten der Saison 2012/2013. Es fällt auf, dass die
Korrelation selbst bei starker Veränderung der Punktewertung relativ konstant bleibt. Dies
heißt, dass es für ein Ligensystem, bei dem jeder gegen jeden antritt, eine relativ geringe
Rolle spielt, wie viele Punkte ein Sieg einbringt. Wird die Korrelation getrennt für Hin-
und Rückrunde betrachtet, so ist für höhere Punktwertungen der Abfall der Korrelation
wesentlich größer.
Abschließend sollen noch das Modell mit globalen Heimeffekt und das Modell mit teams-
pezifischen Heimeffekt miteinander verglichen werden. Der Likelihood-ratio Test mit
der Nullhypothese, alle Effekte seien gleich, gibt für k = 5 einen Wert von 12.58 bei 17
Freiheitsgraden an, was einem p-Wert von 0.764 entspricht. Die Nullhypothese kann daher
eindeutig nicht abgelehnt werden, so dass der teamspezifische Heimeffekt keine signi-
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fikante Verbesserung des Modells bringt. Bei einem Test derselben Hypothese für beide
Modelle und k = 3, liegt die Devianz bei 12.62, was einem p-Wert von 0.761 entspricht.
Demzufolge kann auch hier die Nullhypothese nicht verworfen werden. Ein Vergleich der
gesammelten Punkte der Mannschaften in Heim- und Auswärtsspielen zeigt, dass dieses
Ergebnis wenig überraschend ist. Die ersten vier Mannschaften der Tabelle haben sowohl
zu Hause als auch auswärts die meisten Punkte geholt. Bei den anderen 14 Teams ergeben
sich zwar teils große Unterschiede zwischen Heim- und Auswärtstabelle - so belegt der
1.FC Köln zum Beispiel in der Heimtabelle Platz 15 und in der Auswärtstabelle Platz 5 -, da
die Mannschaften aber in der Auswärtstabelle alle zwischen 11 und 19 Punkte gesammelt
haben, also innerhalb von 8 Punkten liegen, hat dies eine relativ geringe Aussagekraft. Auf
selbiges Ergebnis kommt auch Knorr-Held (2000) bei der Betrachtung von Bundesligadaten
der Saison 1996/1997. Die Aussage muss jedoch für jede Saison einzeln überprüft werden.
So spielt der teamspezifische Heimvorteil bei anderen Analysen, wie z.B. Glickman und
Stern (1998) oder auch Clark und Norman (1995), eine bedeutende Rolle. Auch Tutz und
Schauberger (2015) erweiterten ihre Analysen auf Basis des teamspezifischen Heimvorteils,
obwohl die Verbesserung dieses Modells anhand des p-Wertes nicht signifikant gegeben
ist.
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Die Betrachtungen der quasi-Standardabweichungen in Abschnitt 3.5 zeigten, dass sich
mit diesem Kriterium die einzelnen Spielstärken der Mannschaften nicht signifikant
voneinander unterscheiden lassen. Im Folgenden soll nun ein weiterer Ansatz zur Un-
terscheidung der Spielstärken der Mannschaften betrachtet werden. Mit Hilfe von Regu-
larisierungstechniken sollen Cluster von Teams mit gleicher Spielstärke herausgefiltert
werden. Gertheiss und Tutz (2010) stellen solche Regularisierungstechniken vor. Diese
wurden von Masarotto und Varin (2012) benutzt, um genau solche Cluster in verschiede-
nen Sportarten - mit und ohne mögliche Unentschieden - zu finden. Tutz und Schauberger
(2015) erweiterten diese Techniken zusätzlich für den Fall eines teamspezifischen Heim-
vorteils.

4.1 Ranking LASSO

Im unpenalisierten Modell ergeben sich die einzelnen Koeffizienten durch die Maximie-
rung der Bradley-Terry-Likelihood, welche sich unter der Annahme der Unabhängigkeit
der einzelnen Spiele als

l(γ, α, θ) = ∑
r 6=s

k

∑
u=1

1{Yrs=u} · log(P(Yrs = u)) (4.1)

bestimmen lässt. n gibt die Anzahl der Spiele und k die unterschiedlichen ordinalen
Responses an. Um nun eine Gruppierung der einzelnen Spielstärkekoeffizienten der
Mannschaften zu erhalten, wird die Bradley-Terry-Likelihood mit einem Strafterm für alle
paarweisen Spielstärkedifferenzen belegt und muss dann wiederum maximiert werden.
Der Strafterm ergibt sich als

J(γ, α, θ) = ∑
r<s

wrs|γr − γs| (4.2)

und somit muss der Term

lp(γ, α, θ) = l(γ, α, θ)− λJ(γ, α, θ) = l(γ, α, θ)− λ ∑
r<s

wrs|γr − γs| (4.3)
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maximiert werden. λ wird hierbei als Tuning-Parameter bezeichnet und wrs sind spe-
zifische Gewichte für die einzelnen Differenzen. Der hier verwendete Strafterm ist eine
Verallgemeinerung des fusionierten Lasso-Strafterms von Tibshirani et al. (2005). Durch die
Verwendung der L1-Norm für die Differenzen folgt, dass für einen wachsenden Tuning-
Parameter λ sich die Fähigkeiten der einzelnen Mannschaften ähnlicher werden. Für den
Extremfall λ→ ∞ sind alle Stärkeparameter gleich.
Die Lasso-Methode kann jedoch zu inkonsistenten Schätzern für die Parameter führen, da
die Möglichkeit besteht, dass durch die L1-Norm zu viele Parameter gleich Null geschätzt
werden. Für den in dieser Arbeit betrachteten Fall mit der Anwendung des Ranking Lasso
bedeutet dies, dass der Bias der Schätzer der paarweisen Fähigkeitsdifferenzen ungleich
Null bei steigender Spielanzahl nicht gegen Null konvergiert. Eine Möglichkeit, dies zu
verhindern, ist die von Fan und Li (2001) vorgeschlagene SCAD (smoothly clipped absolu-
te deviation)-Methode, in welcher der L1-Strafterm durch einen stetigen Strafterm, welcher
starke Effekte stärker bestraft, ersetzt wird. In dieser Arbeit wird jedoch ein anderer Ansatz
verfolgt. Die Inhalte des L1-Strafterms sollen stärker gewichtet werden als die Abnahme
der Effekte. Dies kann durch den von Zou (2006) entwickelten adaptiven Lasso erreicht
werden. Die Gewichte ergeben sich hier als inverse der Maximum-Likelihood Schätzer,
formell ausgedrückt:

wrs = |γ̂(ML)
r − γ̂

(ML)
s |−1. (4.4)

Diese Herangehensweise ist an eine Bedingung geknüpft. Eine Anwendung ist nur mög-
lich, wenn kein Verein alle Spiele gewinnt oder alle Spiele verliert. Würde dies der Fall
sein, so würde der Maximum-Likelihood-Schätzer divergieren. Aus diesem Grund erhält
der Maximum-Likelihood-Schätzer einen Ridge-Strafterm mit der Festlegung ε = 10−4,
um diesem Problem entgegenzuwirken [vgl. Masarotto und Varin (2012)].
Diese oben genannte Form des Strafterms bezieht sich auf den Fall eines globalen Heimef-
fektes. Soll ein Clustering mit den teamspezifischen Heimeffekten stattfinden, so gestaltet
sich dies schwieriger. Grund dafür ist die nun nötige Unterscheidung zwischen der Spiel-
stärke eines Teams bei Heimspielen und bei Auswärtsspielen. Nach Tutz und Schauberger
(2015) ändert sich dadurch der Strafterm zu

J(γ, α, θ) = ∑
r<s

wrs|γr − γs|+ ∑
r<s

urs|γr − γs + αr − αs|+ ∑
r<s

vrs|αr − αs|. (4.5)
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In diesem Strafterm werden die Spielfähigkeiten für ein Auswärtsspiel γr, für ein Heim-
spiel γr + αr und der teamspezifische Heimeffekt αr als eigene Terme mit den Gewichten
wrs = |γ̂(ML)

r − γ̂
(ML)
s |−1, urs = |γ̂(ML)

r − γ̂
(ML)
s + α̂

(ML)
r − α̂

(ML)
s |−1 und vrs = |α̂(ML)

r −
α̂
(ML)
s |−1 berücksichtigt. Dadurch können beide Spielfähigkeiten einer Mannschaft - für

Heimspiele und für Auswärtsspiele - getrennt geclustert werden.

4.2 Auswahlkriterien

Durch die gerade vorgestellte Methodik können nun die einzelnen Koeffizientenschätzer
für unterschiedliche Wahl des Tuning-Paramters λ ermittelt werden. Doch welche Wahl
von λ liefert die besten Ergebnisse für die Daten? Bei generalisierten linearen Modellen
wird in solchen Fällen meist auf das Akaike-Kriterium (AIC) oder das Schwarz-Bayes-
Kriterium (BIC) zurückgegriffen. Da sich das Bradley-Terry-Modell in die Gruppe der
GLMs einbetten lässt, verwenden wir nun ebenfalls diese beiden Kriterien, obwohl es
noch keinen Nachweis für die Effizienz bei einer solchen Anwendung gibt. Zunächst seien
beide Kriterien kurz erläutert.

AIC

Der AIC wurde von Akaike (1974) entwickelt und ist das älteste Kriterium zur Auswahl
eines Modells. Seine Formel lautet

AIC(λ) = −2 · l(β) + 2 · d f (λ), (4.6)

d.h es berechnet sich aus der Summe der doppelten negativen log-Likelihood-Funktion
und der doppelten Anzahl der Freiheitsgrade des betrachteten Modells. Das Kriterium ist
zu minimieren. Als Kritikpunkt am AIC wird häufig angeführt, dass die Zahl der Beobach-
tungen für die Modellwahl bei diesem Kriterium keine Rolle spielt. Das Modell neigt des-
halb oft dazu, zu viele Koeffizienten in ein Modell mit aufzunehmen.
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4 Clustering durch Regularisierung

BIC

Ein weiteres anerkanntes Kriterium, welches restriktivere Resultate durch die Berück-
sichtigung der Stichprobengröße zur Folge hat, ist das von Schwarz (1978) entwickelte
Bayessche Informationskriterium.

BIC(λ) = −2 · l(β) + log(n) · d f (λ) (4.7)

In diesem wird die Zahl der Freiheitsgrade mit der logarithmierten Stichprobengröße
multipliziert. Dies hat zur Folge, dass bereits ab einer Stichprobengröße von acht Beobach-
tungen die Zahl der Parameter stärker bestraft wird als beim AIC.

Es gilt zu beachten, dass bei den Analysen die Zahl der Parameter nicht der Anzahl
der Parameter des Modells gleicht. Grund hierfür sind die Effekte der Variablenselektion
und des Shrinkages, welche sich bei penalisierten Modellen ergeben. Die Zahl der Frei-
heitsgrade ergibt sich nach Buja et al. (1989) als tr(2HHH−HT HHT HHT H), wobei HHH die hat-Matrix des
letzten Fischer-Scoring-Schritts des PIRLS-Algorithmus, welcher hier verwendet wurde,
darstellt. Der Algorithmus ist in Oelker und Tutz (2013) näher beschrieben [vgl. Tutz und
Schauberger (2015)].

4.3 Ergebnisse

Abschließend sollen in diesem Kapitel noch die Ergebnisse des Clusterings vorgestellt
werden. Abbildung 4.1 zeigt die Koeffizientenentwicklungen der einzelnen Teams für
unterschiedliche Tuning-Parameter λ und fünf Responsekategorien.
Die x-Achse ist äquivalent zu den Analysen von Tutz und Schauberger (2015) gewählt. Mit
der gewählten Darstellung lassen sich die Pfade in einem Wertebereich zwischen 0 und 1
fixieren. Wie in Abschnitt 4.1 beschrieben, werden sich die Koeffizientenschätzer bei größer
werdendem Tuning-Parameter λ immer ähnlicher und die gewählte x-Achsen-Funktion
wird dadurch immer kleiner. Bei einem gewählten λ = 0 entsprechen die Koeffizienten-
schätzer denen des unpenalisierten Modells. In Abbildung 4.1 wurden die Schätzer für
λ ∈ [0, 3] für 100 verschiedene Tuning-Parameter in diesem Wertebereich modelliert. Es
gilt jedoch zu beachten, dass durch die gewählte Darstellung die Beobachtungspunkte
nicht gleichmäßig verteilt sind. So sind beispielsweise die ersten 71 gemessenen Modelle
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4 Clustering durch Regularisierung
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Abbildung 4.1: Koeffizientenpfade bei globalem Heimeffekt unter Verwendung eines
adaptiven L1-Strafterms

(λ ∈ [0.88, 3]) in einem Bereich kleiner 0.1 zu finden. Die in der Grafik mit angegebenen
Werte bei einer Optimierung des AIC bzw. BIC liegen bei λ = 0.09, bzw λ = 0.18. Bei
Betrachtung des AIC lassen sich die 18 Vereine in zehn verschiedene Cluster einteilen,
beim restriktiveren BIC sind es sechs unterschiedliche Cluster. Tabelle 4.1 gibt diese durch
den BIC erhaltenen Cluster an.
Es fällt auf, dass fünf der sechs Cluster nur aus jeweils einer Mannschaft bestehen. Die

restlichen 13 Mannschaften bilden den sechsten Cluster. Würden die Ergebnisse auf nur
eine Nachkommastelle analysiert werden, so würden sich die Spielstärken sogar nur auf
vier unterschiedliche Cluster verteilen. Dieses Ergebnis spiegelt auch den tatsächlichen
Verlauf dieser Bundesligasaison wider. Die ersten vier Mannschaften setzten sich am Ende
deutlich von den restlichen Mannschaften ab, welche sich auf relativ ähnlichem Niveau
bewegten. Für k = 3 bilden der AIC und BIC acht bzw. fünf Cluster. Die dazugehörige
Grafik findet sich im Anhang.
In Abschnitt 3.5 wurde zwar gezeigt, dass das Modell bei teamspezifischem Heimvorteil
keine signifikante Verbesserung aufweist, nichtsdestotrotz sollen die Ergebnisse bei einer
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4 Clustering durch Regularisierung

Cluster Mannschaften Spielstärke
1 FC Bayern München 0.65
2 VfL Wolfsburg 0
3 Borussia Mönchengladbach -0.01
4 Bayer 04 Leverkusen -0.19
5 1.FC Köln, 1.FSV Mainz, TSG 1899 Hoffenheim -0.98

Borussia Dortmund, Eintracht Frankfurt, FC Augsburg
FC Schalke 04, Hamburger SV, Hannover 96
SC Freiburg, Hertha BSC Berlin, SV Werder Bremen,
VfB Stuttgart

6 SC Paderborn -1.00

Tabelle 4.1: Cluster der Spielstärken bei globalem Heimeffekt unter Verwendung des
BIC-Kriteriums

solchen Betrachtung hier vorgestellt werden um diesen Sachverhalt nochmals zu erläu-
tern. Abbildung 4.2 zeigt die ermittelten Koeffizientenpfade für die einzelnen Teams bei
Unterscheidung zwischen Heimvorteil, Heimstärke und Auswärtsstärke. Wiederum sind
auch der AIC und BIC mit angegeben. Die Ergebnisse für den BIC finden sich ebenfalls in
Tabelle 4.2.
Es fällt auf, dass sich für die verschiedenen Betrachtungen bis zu elf verschiedene Cluster

ergeben. Ein Blick auf die Spielstärken der einzelnen Cluster lässt erkennen, dass sich diese
teils kaum unterscheiden. Sowohl bei der Heimstärke als auch bei der Auswärtsstärke
bilden die vier besten Mannschaften der Spielzeit 2014/2015 wie schon bei Betrachtung
der Spielstärke bei globalem Heimeffekt eigene Cluster. Für die restlichen Mannschaften
ändern sich durch den teamspezifischen Heimvorteil die Zuordnungen zu den Clustern.
So ist beispielsweise Eintracht Frankfurt dem Modell zufolge eine besonders auswärts-
schwache Mannschaft, zu Hause gehört sie durch ihren Heimvorteil jedoch zum vorderen
Drittel der Mannschaften. Bei näherer Betrachtung des Heimvorteils fällt auf, dass sich
die neun Cluster in einem Wertebereich von [0.3, 0.79] befinden, d.h. der größte gemes-
sene Unterschied bei den Heimvorteilen bei 0.49 liegt. Hierdurch erklärt sich zum einen,
warum bei den Heim- und Auswärtsspielstärken die Cluster sehr ähnlich sind, und zum
anderen, warum dieses Modell keine signifikante Verbesserung zum Modell mit globalem
Heimeffekt darstellt.
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Abbildung 4.2: Koeffizientenpfade bei teamspezifischem Heimeffekt unter Verwen-
dung eines adaptiven L1-Strafterms
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4 Clustering durch Regularisierung

Cluster Mannschaften Spielstärke
Heimstärke
1 FC Bayern München 1.11
2 VfL Wolfsburg 0.48
3 Borussia Mönchengladbach 0.47
4 Bayer 04 Leverkusen 0.20
5 Eintracht Frankfurt, Borussia Dortmund, FC Augsburg, Schalke 04 -0.44
6 TSG Hoffenheim -0.50
7 1.FSV Mainz 05 -0.51
8 1. FC Köln, SV Werder Bremen -0.64
9 Hamburger SV, Hertha BSC Berlin, SC Freiburg -0.65
10 Hannover 96, SC Paderborn 07 -0.78
11 VfB Stuttgart -0.79
Auswärtsstärke
1 FC Bayern München 0.66
2 VfL Wolfsburg 0.00
3 Borussia Mönchengladbach -0.01
4 Bayer Leverkusen -0.28
5 1.FC Köln -0.96
6 Borussia Dortmund, FC Augsburg, VfB Stuttgart -1.09
7 1.FSV Mainz 05, FC SChalke 04, Hannover 96 -1.10

Hertha BSC Berlin, SC Freiburg, SV Werder Bremen
8 TSG 1899 Hoffenheim -1.15
9 Eintracht Frankfurt -1.23
10 Hamburger SV, SC Paderborn 07 -1.24
Heimvorteil
1 Eintracht Frankfurt 0.79
2 FC Schalke 04 0.66
3 TSG 1899 Hoffenheim, Borussia Dortmund, FC Augsburg 0.65
4 1.FSV Mainz 05, Hamburger SV 0.59
5 Bayer 04 Leverkusen, Borussia Mönchengladbach, VfL Wolfsburg 0.48
6 SC Paderborn 07, SV Werder Bremen 0.46
7 FC Bayern München, Hertha BSC Berlin, SC Freiburg 0.45
8 1.FC Köln, Hannover 96 0.32
9 VfB Stuttgart 0.30

Tabelle 4.2: Cluster der Spielstärken und des Heimvorteils bei teamspezifischem
Heimeffekt unter Verwendung des BIC-Kriteriums
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5 Modelle mit mannschaftsspezifischen
Einflussgrößen

Die letzten beiden Kapitel beschäftigten sich mit der Bestimmung der Spielstärke der
einzelnen Mannschaften. Zur Modellierung dienten dabei die Resultate der Mannschaf-
ten über die 34 Spieltage. Dabei wurde die Frage nach den Gründen für die erzielten
Ergebnisse bisher völlig außer Acht gelassen. Im Folgenden soll daher versucht werden,
die Streuung der einzelnen Spielstärken durch die Hinzunahme von Kovariablen in das
Modell zu erklären. Dabei beschränken wir uns auf Variablen, welche eindeutig einem
Verein zugeschrieben werden können, wie zum Beispiel das Spielerbudget oder der Mann-
schaftswert eines Vereins. Variablen, welche von keinem der Vereine beeinflusst werden
können, wie zum Beispiel das Wetter am Spieltag, werden im Weiteren nicht betrachtet.

5.1 Modellerweiterung für erklärende Variablen

Im Folgenden seien die Daten gegeben durch (Yrs ∈ {1, ..., k}, x1, ..., xm), wobei k der An-
zahl der Responsemöglichkeiten und m der Zahl der Mannschaften entspricht. xrxrxr stellt
den zu Mannschaft r gehörenden Vektor der erklärenden Variablen dar. Durch den Zusatz
solcher erklärenden Variablen lässt sich die Spielstärke einer Mannschaft bei der Annahme
eines globalen Heimeffektes im Folgenden nicht mehr durch γr, sondern durch γr + xT

r βxT
r βxT
r β

beschreiben. Für den linearen Prädiktor ηrsj ergibt sich nun

ηrsj = α + θj + γr − γs +(xr − xs)β(xr − xs)β(xr − xs)β. (5.1)

Für den Fall eines teamspezifischen Heimeffektes würde α einfach durch αr ersetzt werden.
Dieses Modell ist jedoch nicht eindeutig identifizierbar, weshalb eine Restriktion getrof-
fen werden muss, um die Identifizierbarkeit zu gewährleisten. Eine von Springall (1973)
vorgeschlagene Restriktion gewährleistet Identifizierbarkeit durch die Bedingung γr = 0
für alle r = 1, ..., m. Dies führt zu einem sehr restriktiven Modell, da diese Bedingung die
Annahme zur Folge hat, dass die modellierten Spielstärken vollständig durch die zusätzli-
chen Variablen erklärt werden können. Durch die Beschränkung auf wenige Variablen in
dieser Arbeit erscheint diese Annahme hier nicht angemessen.
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5 Modelle mit mannschaftsspezifischen Einflussgrößen

Ein weiterer Ansatz löst das Problem der Identifizierbarkeit durch die Annahme, die Spiel-
stärken seien Zufallseffekte und können daher durch Random-Effects-Modelle geschätzt
werden. Beschrieben wird dieser Ansatz von Turner und Firth (2012).
Betrachtet wird jedoch ein dritter Ansatz, welcher das Problem durch den Einsatz penali-
sierter Schätzprozesse innerhalb eines Modells mit festen Effekten löst. Angenommen die
Spielstärken sind wie in Kapitel 4 geclustert, so kann Gleichung 4.2 verwendet werden.
Dadurch erhält der nicht durch die Kovariablen erklärte Teil des Modells γr für r = 1, ..., m
eine Penalisierung, der Parameter β jedoch nicht. Wiederum gilt hier: Konvergiert λ→ ∞,
sind alle Koeffizienten γr identisch. Die Spielstärke ergibt sich dann ausschließlich durch
xT

r βxT
r βxT
r β. Dies würde zum Modell von Springall (1973) führen. Für die Wahl eines positiven

Tuning-Parameters wurde die zuletzt beschriebene Methode von Friedman et al. (2010) für
überschätzte multinomiale Regressionsmodelle verwendet. Solch ein Modell mit festen
Effekten hat den Vorteil, dass keine Annahme einer Unkorreliertheit zwischen Zufallseffek-
ten und den Kovariablen nötig ist. Eine solche Annahme ist in unseren Betrachtungen aber
sowieso nicht gefragt. Viel wichtiger ist der zweite Vorteil, den diese Methodik mit sich
bringt: Durch die Verwendung von bereits bekannten Straftermen lässt sich die Methodik
relativ problemlos in die bereits verwendete Schätzprozedur einfügen [vgl. Tutz und
Schauberger (2015)].
Nun stellt sich noch die Frage, welche Kovariablen für das Modell verwendet werden
sollen. Tutz und Schauberger (2015) berücksichtigten in ihrer Arbeit die Lizenzspieleretats
der einzelnen Mannschaften, was zu guten Ergebnissen führte. Der Lizenzspieleretat gibt
an, welches Budget einem Verein für die Gehälter all seiner Profis zur Verfügung steht.
Da der Verein nicht verpflichtet ist, diese Zahlen zu veröffentlichen, können sie oft nur
geschätzt werden. Ein weiteres Problem dieser Wahl als Kovariable ist, dass Vereine mit
einem hohen Spieleretat meist für ähnlich starke Spieler grundsätzlich höhere Gehälter
zahlen als Vereine mit niedrigerem Etat. Eine alternative Möglichkeit wäre daher die
Betrachtung des durchschnittlichen Marktwertes der einzelnen Mannschaften. Dadurch
wird das gerade beschriebene Problem des Spieleretats gelöst. Noch dazu kann durch
die Betrachtung des Marktwertes zusätzliche Information gewonnen werden. Im Fußball
besitzen Spieler meist mehrjährige Verträge. Es ist möglich, dass mehrere Spieler in kurzer
Zeit einen Leistungssprung in ihrer Entwicklung machen. Dadurch steigt der Marktwert
dieser Spieler an. Da diese Spieler durch Verträge jedoch an ihren Verein gebunden sind,
können sich immer wieder Vereine mit einem relativ kleinen Spieleretat mittelfristig in der
Bundesliga etablieren. So liefert der Marktwert in gewisser Weise Informationen über die
jüngste Entwicklung eines Vereins.
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5 Modelle mit mannschaftsspezifischen Einflussgrößen

Als weitere Alternative zur vorgestellten Wahl der Kovariablen können auch die durch-
schnittlichen Marktwerte der eingesetzten Spieler pro Partie betrachtet werden. Dadurch
fließen in das Modell Informationen mit ein, ob eine Mannschaft seine besten Spieler
auf das Feld schickte oder ob sie geschwächt antrat. Dies könnte das Modell unter Um-
ständen noch weiter verbessern. Um solche spieltagsabhängigen Kovariablen ins Modell
aufnehmen zu können, muss der lineare Prädiktor zu

ηrsji = α + θj + γr − γs +(xr,i − xs,i)β(xr,i − xs,i)β(xr,i − xs,i)β (5.2)

erweitert werden. i ∈ {1, ..., 34} gibt dabei den jeweiligen Spieltag an. Diese Erweiterung
erscheint vor allem in Hinblick auf die späteren prädiktiven Analysen in Kapitel 7 sinnvoll,
da die Startaufstellungen der Mannschaften bereits vor dem Spiel bekannt gegeben werden
und somit zusätzliche Informationen liefern.

5.2 Ergebnisse

Zum Vergleich werden zunächst die geschätzten Spielstärken der Mannschaften sowohl
für den Lizenzspieleretat als auch für die Marktwerte der einzelnen Vereine betrachtet.
Die Betrachtung der Ergebnisse bei ausschließlicher Berücksichtigung der zu Spielbeginn
eingesetzten Spieler erfolgt anschließend. Die Spieleretats erschienen in einem Artikel von
Reich und Fritzen (2014). Die Marktwerte können auf der Internetseite transfermarkt.de
(2016) eingesehen werden. Sie werden regelmäßig aktualisiert. Die Analysen wurden mit
den Marktwerten am 23.10.2014, 01.02.2015 und dem Mittel der beiden Werte durchgeführt.
Die jeweiligen Startaufstellungen der Vereine finden sich ebenfalls auf transfermarkt.de
(2016).
Abbildung 5.1 zeigt die Spielstärken der Mannschaften unter Berücksichtigung der durch-
schnittlichen Marktwerte der Vereine. Die einzelnen Vereinsmarktwerte sowie die Lizenz-
spieleretats der Vereine finden sich im Anhang.
Bei Betrachtung des BIC lassen sich die Teams in vier unterschiedliche Cluster einteilen.

Wie auch schon bei den früheren Ergebnissen bilden nur sehr wenige Mannschaften die
besten Cluster. Die vier Mannschaften der ersten beiden Cluster sind der VfL Wolfsburg,
Borussia Mönchengladbach, Bayer 04 Leverkusen und der FC Augsburg. Es ist interessant
zu sehen, dass diese vier Mannschaften auch in der realen Tabelle unter den besten fünf
zu finden sind, obwohl die γ-Parameter nun die Spielstärke, welche nicht durch den
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Abbildung 5.1: Koeffizientenpfade der Spielstärke bei globalem Heimeffekt und dem
durchschnittlichen Marktwert als erklärende Variable

Marktwert des Teams erklärt werden kann, abbilden. Nur der FC Bayern München fehlt
bei diesen Mannschaften. Dies ist wenig überraschend, da der FC Bayern den mit Abstand
größten durchschnittlichen Marktwert besitzt und dadurch bereits deutliche Überlegenheit
zu erwarten ist. Tabelle 5.1 zeigt die Einteilung der Vereine in die vier unterschiedlichen
Cluster.
Zusätzlich fällt auf, dass sich die beiden großen Cluster nur um 0.01 Einheiten unterschei-

den. Es kann daher unter Umständen auch von einer Einteilung in nur drei verschiedene
Cluster gesprochen werden.
Der geschätzte Parameter für die erklärenden Variablen liegt bei β = 0.1 für das vom
BIC gewählte λ = 0.1. β ist nicht in der Grafik aufgeführt, es sei aber gesagt, dass der
Koeffizient für unterschiedliche λ relativ konstant bleibt. Da die Differenzen der durch-
schnittlichen Marktwerte zweier Teams teilweise sehr groß sind, kann suggeriert werden,
dass die erklärenden Variablen einen relativ großen Einfluss auf das Modell haben. Die
Betrachtung der durchschnittlichen Mannschaftswerte zu Saisonbeginn und zum Beginn
der Rückrunde sind fast identisch zu den vorgestellten Ergebnissen. Die dazugehörigen
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5 Modelle mit mannschaftsspezifischen Einflussgrößen

Cluster Mannschaften Spielstärke
1 Borussia Mönchengladbach, VfL Wolfsburg 0.00
2 Bayer 04 Leverkusen, FC Augsburg -0.52
3 1.FC Köln, 1.FSV Mainz 05, Eintracht Frankfurt, FC Bayern München -0.87
4 1899 Hoffenheim, Borussia Dortmund, FC Schalke 04, Hamburger SV -0.88

Hannover 96, Hertha BSC Berlin, SC Paderborn 07, SC Freiburg
Werder Bremen, VfB Stuttgart

Tabelle 5.1: Cluster der Spielstärken bei globalem Heimeffekt und dem durchschnitt-
lichen Marktwert als erklärende Variable unter Verwendung des BIC-Kriteriums

Grafiken finden sich im Anhang.
Bei Betrachtung des Lizenzspieleretats als Kovariable sieht die ermittelte Spielstärke etwas
anders aus.
In Abbildung 5.2 ist bei Betrachtung der Ergebnisse des BIC zu erkennen, dass Borussia
Mönchengladbach klar die größte Spielstärke besitzt. Von den ersten vier Mannschaften
der Abschlusstabelle hat Borussia Mönchengladbach mit 38 Millionen Euro den mit Ab-
stand kleinsten Lizenzspieleretat. Der VfL Wolfsburg und Bayer 04 Leverkusen bilden das
zweite Cluster, dicht gefolgt vom FC Augsburg. Die Augsburger wurden in der Saison
2014/2015 Tabellenfünfter, hatten jedoch zwölf Punkte Rückstand auf die vor ihnen plat-
zierten Leverkusener. Da den Augsburgern aber nur einen Etat von 19 Millionen Euro
zur Verfügung stand, ist dies für sie ein sehr gutes Abschneiden und daher ist auch zu
erklären, warum sie bei dieser Betrachtung gut abschneiden. Die restlichen Mannschaften
bilden noch weitere zwei Cluster, welche sich nur um 0.01 Einheiten unterscheiden. Der
geschätzte Parameter für die erklärenden Variablen beträgt β = 1.44 für das vom BIC
gewählte λ = 0.15. Im Vergleich zur vorherigen Betrachtung ist dieses β sehr hoch. Dies
liegt an den erheblichen Unterschieden in der Größe der einzelnen Variablen. Der Einfluss
der Kovariablen kann aber auch hier als relativ stark angesehen werden.
Eine Möglichkeit, den Einfluss der erklärenden Variablen auf die Spielstärke zu ermitteln,
besteht darin, die Spielstärke als abhängige Variable und die gewählten Kovariablen für
die Teams als unabhängige Variable zu modellieren. Im Folgenden sei der durchschnittli-
che Marktwert der Teams die gewählte unabhängige Variable. Es besteht hier die Frage,
ob der Marktwert als linearer Effekt oder als nicht-linearer Effekt angesehen werden soll.
Abbildung 5.3 bildet die in diesem Fall zentrierten Spielstärken und durchschnittlichen
Marktwerte der Teams ab. Zusätzlich ist der oberen Grafik die lineare und der unteren
Grafik die additive Regressionsgleichung des Modelles angefügt.
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Abbildung 5.2: Koeffizientenpfade der Spielstärke bei globalem Heimeffekt und dem
Vereinsbudget als erklärende Variable
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5 Modelle mit mannschaftsspezifischen Einflussgrößen

Es ist zu erkennen, dass das lineare Modell bereits eine gute Annäherung an die Daten

Abbildung 5.3: durchschnittlicher Marktwert der Spieler der Vereine im Vergleich
zu den Spielstärken der Mannschaften mit zusätzlicher Angabe des linearen und
additiven Modellfits

fittet. Das adjustierte Bestimmtheitsmaß beim linearen Modell liegt bei 0.557, d.h mehr
als 55% der Streuung werden durch die Marktwerte der Mannschaften erklärt. Bei einem
nicht-linearen Modell steigt dieser Wert sogar auf 0.628. Durch die Verteilung der einzelnen
durchschnittlichen Marktwerte der Vereine ist ein overfitting zu erwarten, da bei einem
durchschnittlichen Marktwert von über 10 Millionen Euro pro Spieler das Modell nur
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durch zwei Beobachtungen erklärt wird. Dies ist an dem sehr breiten Konfidenzintervall
des zusätzlich angegebenen Glättungseffektes zu erkennen. Ein weiteres Indiz für das over-
fitting liefern die Veränderungen des adjustierten Bestimmtheitsmaßes bei Betrachtung
der Marktwerte zu unterschiedlichen Zeitpunkten. So liegt der Wert bei der Betrachtung
der Marktwerte zum 23.10.2014 bei einem Wert von 0.79, am 01.02.2015 sogar bei 0.82. Der
Wert von 0.628 ergibt sich bei Betrachtung der Mittelwerte der beiden Zeitpunkte. Wird
nochmals das lineare Modell zu Grunde gelegt, so lassen sich mit diesem die erhaltenen
Cluster gut erklären. Im Bereich zwischen 5 und 8 Millionen Euro Marktwert pro Spieler
befinden sich drei Mannschaften, welche sich deutlich von der Regressionsgeraden abhe-
ben. Dies sind Borussia Mönchengladbach, Bayer 04 Leverkusen und der VfL Wolfsburg.
Bei den Teams mit kleinem Marktwert hebt sich ebenso eine Mannschaft etwas heraus.
Hierbei handelt es sich um den FC Augsburg. Dies sind auch die Teams, welche sich in
Abbildung 5.3 als stärkste Mannschaften zeigen. Der FC Bayern schneidet trotz seiner
Ausnahmestellung beim Marktwert vergleichbar mit den restlichen Mannschaften ab.
Bei Betrachtung des Lizenzspieleretats als unabhängige Variable kann man konstatieren,
dass das Modell keinen nicht-linearen Effekt feststellt. Es kann daher nur über die lineare
Regressionsgleichung beschrieben werden. Hierbei ergibt sich ein Wert für das adjustierte
Bestimmtheitsmaß von 0.529. Wie bereits vermutet, liefert der Marktwert bessere Informa-
tionen zur Modellerklärung als das Vereinsbudget.
Abschließend werden in diesem Kapitel nun die Koeffizientenpfade der Spielstärke der
Mannschaften unter Berücksichtigung der durchschnittlichen Marktwerte der Startaufstel-
lungen betrachtet. Abbildung 5.4 stellt diese dar.
Bei Betrachtung des BIC-Kriteriums zur Wahl der Koeffizientenschätzer lassen sich die
Spielstärken der Mannschaften in sechs verschiedene Cluster einteilen, wie Tabelle 5.2
zeigt.
Borussia Mönchengladbach und der VfL Wolfsburg bilden wie bei der Betrachtung der
durchschnittlichen Marktwerte den ersten Cluster. Der zweite Cluster ist mit dem FC
Bayern München besetzt. Dies ist sehr überraschend, da Bayern München mit erheblichem
Abstand den größten durchschnittlichen Marktwert der Spieler bei den Startaufstellungen
aufweist. Er liegt bei einem Wert von über 27 Millionen Euro. Dies sind fast 12 Millionen
mehr als der durchschnittliche Wert der Spieler von Borussia Dortmund, welche bei den
Startaufstellungen den zweitstärksten Kader stellen, und liegt über 20 Millionen Euro
höher als der durchschnittliche Wert aller Vereine. Von daher ist eher zu erwarten, dass sich
die Spielstärke von Bayern München hauptsächlich durch diesen Wert erklären lässt. Bayer
Leverkusen bildet den nächsten Cluster. Mit einer Abweichung von nur 0.01 Einheiten zu
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Abbildung 5.4: Koeffizientenpfade der Spielstärke bei globalen Heimeffekt und dem
durchschnittlichen Marktwert der Startaufstellung als erklärende Variable

Cluster Mannschaften Spielstärke
1 Borussia Mönchengladbach, VfL Wolfsburg 0.00
2 FC Bayern München -0.23
3 Bayer 04 Leverkusen -0.24
4 FC Augsburg -0.64
5 1.FC Köln, 1.FSV Mainz 05, Eintracht Frankfurt, -0.65

1899 Hoffenheim, Borussia Dortmund, FC Schalke 04,
Hannover 96, Hertha BSC Berlin, SC Freiburg
Werder Bremen, VfB Stuttgart

6 Hamburger SV, SC Paderborn 07 -0.66

Tabelle 5.2: Cluster der Spielstärken bei globalem Heimeffekt und dem durchschnitt-
lichen Marktwert der Startaufstellungen als erklärende Variable unter Verwendung
des BIC-Kriteriums
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Bayern München könnten diese beiden Vereine auch in einen Cluster zusammengefasst
werden. Der FC Augsburg bildet ebenfalls einen eigenen Cluster. Die Differenz zu den
nächsten beiden Clustern, in denen sich alle restlichen Mannschaften befinden, beträgt
jedoch nur 0.01, bzw. 0.02 Einheiten, so dass theoretisch alle diese Mannschaften als ein
Cluster angesehen werden können.
Der geschätzte Parameter für die erklärenden Variablen liegt bei β = 0.59 für den durch
das BIC-Kriterium bestimmten Parameter λ = 0.17. Der Einfluss der erklärenden Variablen
scheint auch hier nicht vernachlässigbar zu sein.
Um dies zu überprüfen, werden auch hier die Spielstärke als abhängige und die durch-
schnittlichen Marktwerte als unabhängige Variablen betrachtet. Dargestellt wird dies in
Abbildung 5.5.
Da die Startaufstellungen der Teams von Spiel zu Spiel meistens variieren, gibt es in diesem
Fall wesentlich mehr unterschiedliche Datenpunkte. Die Spielstärken jeder Mannschaft
sind für alle Spiele jedoch gleich, so dass pro Spielstärke 34 Datenpunkte existieren. Be-
trachtet man das Modell mit einem additiven Effekt, so fällt auf, dass die Konfidenzbänder
eine wesentlich geringere Bandbreite aufweisen als bei Betrachtung der durchschnittlichen
Marktwerte. Für das lineare Regressionsmodell ergibt sich ein Wert für das adjustierte
Bestimmtheitsmaß von 0.567, beim additiven Modell sogar von 0.694. Es lassen sich also
69.4% der Streuung durch den durchschnittlichen Wert der Startaufstellungen erklären.
Dieser Wert stellt nochmals eine deutliche Steigerung zu obigen Betrachtungen dar. Vor
allem die Senkung der Varianz durch die Variabilität der unabhängigen Variablen bietet
eine starke Verbesserung des Modells.
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5 Modelle mit mannschaftsspezifischen Einflussgrößen

Abbildung 5.5: durchschnittlicher Marktwert der Startaufstellungen im Vergleich
zu den Spielstärken der Mannschaften mit zusätzlicher Angabe des linearen und
additiven Modellfits
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6 Dynamische Bradley-Terry
Modellierung

Nachdem in den vorangegangenen Kapiteln die Modellierung auf statische Modelle be-
schränkt war, sollen nun dynamische Ansätze für die Spielstärkemodellierung betrachtet
werden. Die Bundesligasaison ist in 34 Spieltage aufgeteilt, wobei die Spiele bis auf eine
längere Pause im Winter meist wöchentlich an den Wochenenden ausgetragen werden.
Aufgrund der langen Dauer einer Saison ist es unwahrscheinlich, dass eine Mannschaft
über die gesamte Saison eine konstante Leistung bringt. Wahrscheinlicher ist es, dass ein
Team Leistungsschwankungen über die Saison aufweist, sei es aufgrund von Verletzungen
wichtiger Spieler oder einfach weil einige Spieler eine Formschwäche aufweisen. Har-
ville (1980) nahm für eine dynamische Modellierung der Stärke von Mannschaften einen
autoregressiven Prozess an, welcher die Mannschaftsstärken saisonweise modellierte.
Eine Analyse der wöchentlichen Stärkeparameter der Mannschaften führten Glickman
und Stern (1998) unter Annahme eines autoregressiven Prozesses erster Ordnung für
die wöchentlichen Veränderungen durch. Dieses Kapitel widmet sich zunächst einem
Ansatz von Cattelan et al. (2013), in welchem die Spielstärke einer Mannschaft durch
einen exponential-gewichteten moving-average Prozess beeinflusst wird. Zunächst wird
hierfür das Bradley-Terry-Modell zu einem dynamischen Modell erweitert und die Mo-
dellierung der Spielstärken beschrieben. Des Weiteren wird ein Score zur Validierung
des Modells vorgestellt. Als zusätzlichen Ansatz zur dynamischen Modellierung der
Spielstärke wird anschließend versucht, die Likelihood der einzelnen Spiele mit Hilfe
einer Kernfunktion zu gewichten, je nachdem, wie lange die Spiele bereits zurücklie-
gen. Anschließend folgt wiederum die Anwendung der beschriebenen Modelle auf die
Daten.

6.1 Modellansatz nach Cattelan

In den vorangegangenen Kapiteln wurde ersichtlich, dass die Spielstärke davon abhängt
ob eine Mannschaft zu Hause oder auswärts spielt. Hierfür wurde dann sowohl ein globa-
ler als auch ein teamspezifischer Heimeffekt mit modelliert. Beim dynamischen Ansatz von
Cattelan et al. (2013) werden nun für jede Mannschaft eigene Spielstärken für Heim- und
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Auswärtspartien bestimmt, so dass der Heimeffekt α nicht benötigt wird. Das dynamische
Bradley-Terry Modell lautet daher:

P(Yrs,i ≤ j|Yi−1 = yi−1, ..., Y1 = y1) =
exp(θj + γr(ti)− γs(ti))

1 + exp(θj + γr(ti)− γs(ti))
. (6.1)

Yi, i = 1, ..., 34 stellt einen Sammelvektor dar, welcher für jeden Spieltag die einzelnen
Ergebnisse der neun stattfindenden Partien enthält. Yrs,i bezeichnet eine bestimmte Partie
zwischen Mannschaft r und Mannschaft s am i-ten Spieltag. Das Modell berechnet die ku-
mulierte Wahrscheinlichkeit des Spielausganges eines Spiels zwischen zwei Mannschaften
r und s unter der Bedingung, dass die Ergebnisse der zurückliegenden Spiele beider Teams
bekannt sind. γr(ti) gibt die Spielstärke der Heimmannschaft zum Zeitpunkt ti an. γs(ti)

beschreibt folglich die Spielstärke der Gastmannschaft zu diesem Zeitpunkt. Im Folgenden
wird angenommen, dass sich die Entwicklung der Spielstärke der Heimmannschaft nur
aus den Ergebnissen der vergangenen Heimspiele, nicht aber aus den Auswärtsspielen er-
gibt. Die Leistungsänderung der Gastmannschaft soll hingegen nur von den vergangenen
Auswärtsspielen abhängen. Des Weiteren sei t(−1)

i der Zeitpunkt des letzten Heimspiels
von Mannschaft r. Die Heimspielstärke von Team r lässt sich nach Cattelan et al. (2013)
nun durch den exponential-gewichteten moving-average (EWMA) Prozess

γr(ti) = λ1µr(ti) + (1− λ1)γr(t
(−1)
i ) (6.2)

berechnen. Bei λ1 ∈ [0, 1] handelt es sich dabei um einen heimspezifischen Glättungspara-
meter und bei

µr(ti) = β1rr(t
(−1)
i )) (6.3)

um die gemittelte Heimstärke von Team r, welche nur vom Ausgang des letzten Heim-
spiels rr(t

(−1)
i ) und einem heimspezifischen Parameter β1 abhängt. Für rr(t

(−1)
i ) wird

festgelegt:

rr(t
(−1)
i ) =

−1 , Niederlage mit mindestens 2 Toren Di f f erenz
0 , Niederlage mit genau einem Tor Di f f erenz
1 , Unentschieden
3 , Sieg mitgenau einem Tor Di f f erenz
4 , Sieg mit mindestens 2 Toren Di f f erenz

(6.4)
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Da am ersten Spieltag noch kein Spiel vorher stattgefunden hat, muss für Gleichung 6.2
noch eine Startbedingung festgelegt werden. Im Folgenden werden hierfür zwei ver-
schiedene Möglichkeiten betrachtet, zum einen die Grundannahme, dass alle Teams mit
gleichen Heim- bzw. Auswärtsspielstärken in die Saison starten, und zum anderen, dass
jede Mannschaft die Saison mit einer individuellen Spielstärke beginnt. Als Startwerte
werden bei beiden Ansätzen jeweils die durchschnittlich pro Spiel gesammelten Punkte
aller Mannschaften in der Vorsaison festgelegt, wobei hierfür nicht das klassische Punkte-
system, sondern die Verteilung aus Gleichung 6.4 verwendet wird. In der Saison 2013/2014
erzielten die Mannschaften hierbei durchschnittlich r̄r = 1.761 Punkte pro Heimspiel. Die
Startwerte bei individueller Heim- bzw. Auswärtsspielstärke sind in Tabelle 6.1 gegeben.
Bei Betrachtung von Gleichung 6.2 und Gleichung 6.3 fällt auf, die Berechnung der ak-

Mannschaft Startwert Heimstärke Startwert Auswärtsstärke
1. FC Köln 0.471 0.353
1. FSV Mainz 2.176 0.765
1899 Hoffenheim 1.882 0.824
Bayer 04 Leverkusen 2.294 1.765
Borussia Dortmund 2.353 2.412
Borussia Mönchengladbach 2.588 1.000
Eintracht Frankfurt 1.176 0.765
FC Augsburg 1.882 1.176
FC Bayern München 3.294 3.235
FC Schalke 04 2.765 1.530
Hamburger SV 0.824 0.235
Hannover 96 1.765 0.412
Hertha BSC 1.118 1.059
SC Paderborn 07 1.000 -0.118
SC Freiburg 1.176 0.588
SV Werder Bremen 1.294 0.588
VfB Stuttgart 1.235 0.588
VfL Wolfsburg 2.412 1.353

Tabelle 6.1: Startwerte Heim- bzw. Auswärtsspielstärke für k=5

tuellen Spielstärke einer Mannschaft hängt von der Spielstärke und dem Ergebnis des
vorangegangenen Spiels ab. Nun sei angenommen, Mannschaft r hat bisher N Heimspiele
bestritten. Die Spielstärke für die aktuelle Partie kann nun iterativ durch

γr(ti) = β1{λ1

N−1

∑
n=0

(1− λ1)
nrr(t

(−n−1)
i ) + (1− λ1)

N r̄r} = β1xr(ti; λ1) (6.5)
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modelliert werden. Die Heimspielstärke γr(ti) ist also eine Funktion, welche sich aus
den Ergebnissen aller vergangenen Heimspiele rr(t

(−1)
i ), rr(t

(−2)
i ), ..., rr(t

(−N)
i ) ermitteln

lässt. Dabei wird ein gewichtetes Mittel der vergangenen Ergebnisse berechnet, wobei
der Einfluss der länger zurückliegenden Ergebnisse immer weiter abnimmt und geome-
trisch gegen Null wandert. Durch den Glättungsparameter λ1 wird die Abhängigkeit der
Spielstärke von den vergangenen Ergebnissen bestimmt. Ein λ1 nahe Null bedeutet, die
Spielstärke der Mannschaft bleibt relativ konstant, da der Einfluss der vergangenen Spiele
nur langsam abnimmt. Somit würde sich wie in Abschnitt 3.3 quasi ein teamspezifischer
Heimspieleffekt ermitteln lassen. Bei einem Glättungsparameter nahe eins hängt γr haupt-
sächlich nur vom Ausgang der letzten Heimpartie ab.
Die eben beschriebenen Modelle dienen zur Modellierung der Heimspielstärke der ein-
zelnen Mannschaften. Äquivalent hierzu lässt sich auch die Auswärtsspielstärke der
Mannschaften modellieren. Hierzu wird ein zweiter EWMA-Prozess

γs(ti) = λ2µr(ti) + (1− λ2)γs(t
(−1)
i )

verwendet. Anstatt der Heimspiele werden nun die vergangenen Auswärtsspiele der
einzelnen Mannschaften betrachtet. Die Bedeutung und Interpretation der einzelnen
Parameter gleicht dem Modell für die Heimspielstärke. Als Startwerte für die Auswärtss-
pielstärke werden nun die durchschnittlich gesammelten Punkte pro Auswärtsspiel - im
ersten Ansatz gesamt, im zweiten Ansatz für jedes Team individuell - verwendet. Für die
Saison 2013/2014 waren dies r̄s = 1.029 Punkte pro Auswärtspartie bei Betrachtung aller
Spiele. Die individuellen Startwerte finden sich in Tabelle 6.1.
Da sich die Spielstärken iterativ berechnen lassen, sind bei diesem Ansatz von Cat-
telan et al. (2013) nur sechs Parameter zu schätzen. Zum Vergleich: Beim statischen
Bradley-Terry Modell müssen 20 Parameter geschätzt werden. Dabei werden zuerst die
beiden λ’s mit Hilfe einer Profile-Likelihood-Funktion bestimmt und anschließend wer-
den die restlichen vier Parameter ermittelt. Es sei aber erwähnt, dass diese vier rest-
lichen Parameter bereits indirekt bei der Bestimmung der λ-Parameter mit geschätzt
werden.
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6.2 Modellvalidierung

Es stellt sich nun die Frage, ob dieses Modell valide ist oder nicht. Hierzu sollen die
Ergebnisse des dynamischen Modells von Cattelan et al. (2013) denen des statischen
Bradley-Terry Modells von Tutz und Schauberger (2015) entgegengestellt werden, d.h
es werden die geschätzten Wahrscheinlichkeiten des dynamischen Modells mit denen
des statischen Modells verglichen. Hier gibt es zu beachten, dass sich die zeitabhängigen
Spielstärken bei einem möglichen Response mit k = 5 verschiedenen Spielausgängen mit
nur sechs Parametern bestimmen lassen, wohingegen beim statischen Modell m + 2 freie
Parameter nötig sind. m ist dabei die Anzahl der Mannschaften. Bei Daten der Fußballbun-
desliga werden also 20 Parameter geschätzt. Dadurch ist zu erwarten, dass das statische
Modell die Daten besser fittet. Das statische Modell soll daher einen Maßstab für die Güte
des dynamischen Modells bilden. Je ähnlicher sich die Wahrscheinlichkeiten der beiden
Modelle sind, desto besser ist der Fit des dynamischen Modells. Für den Vergleich beider
Modelle bietet sich an, einen Score zu verwenden. Cattelan et al. (2013) greifen in ihren
Ausführungen auf den sogenannten rank probability score zurück. Dieser wird von Czado
et al. (2009) für den Fall von mehr als zwei Responsekategorien vorgeschlagen und auch
in dieser Arbeit verwendet.

RPSrs,i =
k−1

∑
j=0
{P(Yrs,i ≤ j|Yi−1 = yi−1, ..., Y1 = y1)− 1{yi≤j}}2 (6.6)

Der Score berechnet sich aus der Summe der quadrierten Differenzen der modellierten
kumulierten Wahrscheinlichkeiten des Spielausganges und einer Indikatorvariable, welche
angibt, ob das Ergebnis bereits eingetreten ist. Der Score kann bei der Wahl von k = 5 einen
Wert zwischen Null und vier annehmen, wobei bei einem Wert von Null das Modell die
tatsächlichen Ergebnisse perfekt widerspiegeln würde. Ein Wert von vier würde bedeuten,
es gab nur Ergebnisse mit klarer Dominanz einer Mannschaft, das Modell legt seine
komplette Wahrscheinlichkeitsmasse jedoch auf die klare Dominanz der jeweils anderen
Mannschaft. Der Score kann auch auf alle anderen vorgestellten Modelle angewendet
werden und bietet daher eine gute Möglichkeit zum Modellvergleich. Ein ausführlicher
Vergleich, welcher auch die Stärken und Schwächen dieses Scores beleuchtet, folgt in
Kapitel 7.
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6.3 Dynamischer Ansatz über gewichtete

Likelihoodfunktion

Beim Modellansatz von Cattelan et al. (2013) spielt zwar die Reihenfolge der einzelnen
Spieltage eine Rolle, jedoch fließt in dieses Modell nicht mit ein, welcher zeitliche Abstand
zwischen den einzelnen Spielen vorherrscht. Da die Spiele der Bundesliga aufgrund von
Länderspielpausen, der Winterpause oder auch durch einzelne Spieltage unter der Woche
jedoch nicht in regelmäßigen Abständen stattfinden, sollte dies nicht außer Acht gelassen
werden. Herrscht zum Beispiel eine Länderspielpause, so haben die Mannschaften meist
zwei Wochen kein Bundesligaspiel und können diese Zeit nutzen, um ihre aktuelle Form
zu verbessern. Daher scheint es realistisch, dass länger zurückliegende Spiele einen gerin-
geren Einfluss haben. Ein Ansatz für eine solche dynamische Modellierung der Spielstärke
beschäftigt sich mit der Gewichtung der Likelihood der einzelnen Spiele. Hierzu soll die
Likelihoodfunktion mit einer Kernfunktion kombiniert werden, um eine zeitliche Gewich-
tung der einzelnen Spiele zu erhalten.
Als Ausgangspunkt für dieses Modell wird zunächst das statische Bradley-Terry Modell
zu einem dynamischen Modell erweitert. Im Gegensatz zum Ansatz von Cattelan et al.
(2013) sollen Heim- und Auswärtsspiele nicht getrennt betrachtet werden, so dass ein glo-
baler bzw. teamspezifischer Heimkoeffizient αr verwendet werden muss. Die kumulierten
Wahrscheinlichkeiten des Modells ergeben sich daher als

P(Yrs,i ≤ j|Yi−1 = yi−1, ..., Y1) =
exp(αr(ti) + θj(ti) + γr(ti)− γs(ti))

1 + exp(αr(ti) + θj(ti) + γr(ti)− γs(ti))
. (6.7)

Die Gleichung erinnert auf den ersten Blick sehr stark an Gleichung 6.1 aus Abschnitt 6.1,
jedoch sind nun alle Koeffizienten vom gewählten Zeitpunkt abhängig und die Inter-
pretation der einzelnen Koeffizienten ist hier etwas anders. Yi stellt einen Sammelvektor
der vergangenen Spieltage dar und auch Yrs,i beschreibt wie in Gleichung 6.1 ein Spiel
zwischen den Mannschaften r und s am i-ten Spieltag. γr(ti) ist hier jedoch nicht die
Heimspielstärke von Mannschaft r zum Zeitpunkt ti, sondern ebenso wie γs(ti) die Aus-
wärtsspielstärke des Teams zum Zeitpunkt ti. Die Heimstärke ergibt sich durch den
zusätzlichen zeitpunktabhängigen Koeffizienten αr(ti), welcher diesem Modell hinzuge-
fügt ist. Die Schwellenparameter θθθ hängen ebenfalls vom gewählten Zeitpunkt ab. Bei
konstanten Spielstärken, Heimeffekt und Schwellenparametern über die Zeit würde ti

keinen Einfluss auf das Modell haben und man erhielte das statische Bradley-Terry-Modell
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aus Kapitel 3. Es lässt sich somit feststellen, dass sich ein einfaches dynamisches Modell
aus dem statischen Modell entwickeln lässt, indem die Koeffizientenschätzer für jeden
Spieltag einzeln ermitteln werden. So ergibt sich das dynamische Modell aus dem Zusam-
menfügen mehrerer statischer Modelle.
Wie bereits erwähnt, sollen die Koeffizienten in diesem Modell nun zusätzlich durch einen
gewichteten Log-Likelihood-Ansatz geschätzt werden. Als Gewichtungsfaktor wird eine
Kernfunktion mit einem Gaußkern verwendet. Die Log-Likelihoodfunktion ergibt sich als

l(t0|γγγ, ααα, θθθ) = ∑
r,s,t

k

∑
u=1

1{Yrs=u} · log(P(Yrs = u)) · w(t0, t) (6.8)

mit

w(t0, t) ∝ K(
t− t0

σ
).

Im Gegensatz zur Log-Likelihoodfunktion aus Gleichung 4.1 spielen nun die Zeitpunkte
der einzelnen Spiele eine Rolle. Die Log-Likelihoodfunktion zum Zeitpunkt t0 ergibt sich
also aus der Summe der Log-Likelihoodfunktionen aller Spiele zu den unterschiedlichen
Zeitpunkten t < t0, der Gewichtungsfaktor w(t0, t) aus der Kernfunktion K( t−t0

σ ). Der
Parameter σ gibt die Bandbreite der Kernfunktion an. Mit Hilfe dieses Parameters kann
die Log-Likelihoodfunktion optimiert werden. Der Parameter ist allerdings unbekannt
und muss deshalb geschätzt werden. Dies geschieht mittels prädiktiver Simulation ver-
gangener Bundesligadaten aus dem Jahr 2013/14. Die genaue Vorgehensweise und Wahl
des Parameters werden in Unterabschnitt 6.4.2 beschrieben.

6.4 Anwendung

6.4.1 EWMA-Prozesse

Gemeinsame Startwerte

Wird die beschriebene Methodik nun auf die Daten angewandt, so erhält man als Schätzer
für die beiden Glättungsparameter die Werte λ1 = 0.198 und λ2 = 0.142. Da die Werte
nahe 0 sind, bedeutet dies, dass die Spielstärken auch von den schon länger vergangenen
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Spielen abhängen und nicht nur vom Ergebnis der letzten Partie. Wären beide Parameter
λ1 = λ2 = 0, so würde dies eine Variante eines statischen Bradley-Terry Modells mit
globalem Heimeffekt darstellen. Diese Variante wird vom Modell jedoch eindeutig nicht
unterstützt. Die maximierte Profile-Log-Likelihood für das geschätzte Modell liegt bei
-466.47, für das Modell mit λ1 = λ2 = 0 ist sie wesentlich niedriger bei -478.28. Schätzt man
nun die beiden Heim- bzw. Auswärtskoeffizienten β1 und β2, sowie die Schwellenparame-
ter θθθ mit Hilfe der erhaltenen Glättungsparameter, so ergeben sich Werte von β1 = 0.809
und β2 = 0.862 mit Standardfehlern von 0.146 bzw. 0.217, sowie θ1 = −θ4 = −1.637 und
θ2 = −θ3 = −0.613 mit Standardfehlern von 0.062 bzw. 0.100. Wird der rank-probability
score für jedes Spiel der Saison berechnet, so erhält man einen Mittelwert von 0.700 und
einen Median von 0.533 für das dynamische Modell. Beim statischen Modell aus Kapitel 3
beträgt der Score 0.635 für den Mittelwert und 0.482 für den Median. Der Score ist für das
dynamische Modell daher um 10.2%, bzw. 10.6% höher als beim statischen Modell. Die
Korrelation der Scores der beiden Modelle beträgt 0.785.
Mit Hilfe dieser geschätzten Parameter können nun die Spielstärken der einzelnen Mann-
schaften unterschieden nach Heim- und Auswärtsstärke berechnet werden. Abbildung 6.1
zeigt beispielhaft die Spielstärkeentwicklung für einige Mannschaften.
Durch die erste gewählte Anfangsbedingung der Spielstärke starten alle Mannschaften

mit gleichen Spielstärken in die Saison. Die durchgezogene Linie zeigt die Heimspielstärke
zum jeweiligen Heimspiel, die gestrichelte Linie die Auswärtsspielstärke. Es werden je 17
Heim- und Auswärtsspiele pro Saison bestritten. Die Überlegenheit des FC Bayern Mün-
chen in der Saison 2014/2015 ist durch seine rapide Verbesserung der Spielstärke sofort
erkennbar. Vor allem bei der Auswärtsspielstärke ist diese Entwicklung im Vergleich zu
den anderen Mannschaften hervorzuheben. Borussia Mönchengladbach verbesserte ihre
Spielstärke vor allem in der zweiten Saisonhälfte. In der Rückrunde holte sie tatsächlich
die meisten Punkte aller Mannschaften. Auch bei Borussia Dortmund ist in der zweiten
Saisonhälfte ein Anstieg der Spielstärke zu verzeichnen. Holte sie in der Hinrunde gerade
einmal 15 Punkte und war auf Position 17 platziert, so waren es in der Rückrunde 31
Punkte und sie beendete die Saison noch auf Platz sieben. Eintracht Frankfurt konnte in der
Rückrunde kein einziges Auswärtsspiel gewinnen und erreichte nur zwei Unentschieden
auf fremdem Platz. Dementsprechend verschlechtert sich auch ihre Auswärtsspielstärke.
Die Spielstärkeentwicklungen der restlichen Mannschaften finden sich im Anhang.
Da die Spielstärken nur indirekt geschätzt werden ist im Modell keine Bedingung wie in
Kapitel 3 nötig, um die Identifizierbarkeit des Modells gewährleisten zu können. Vielmehr
hängen sie von der Anfangsbedingung der gewählten Heim- und Auswärtsspielstärken
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Abbildung 6.1: Spielstärkeentwicklung einzelner Mannschaften mit Unterscheidung
zwischen Heim- (durchgezogene Linie) und Auswärtsspielstärke (gestrichelte Linie).

ab. Um trotzdem eine gewisse Vergleichbarkeit des statischen und dynamischen Bradley-
Terry-Modells herzustellen wird nun im Nachhinein festgelegt, dass der Mittelwert der
dynamischen Spielstärken des VfL Wolfsburg den Referenzwert bezeichnen soll und dieser
daher als Null gewählt wird. Tabelle 6.2 zeigt nochmals die Spielstärken des statischen
Modells, sowie zusätzlich die Mittelwerte der dynamischen Spielstärken - für gemeinsame
und individuelle Startwerte - und die durch die Modelle erhaltenen Platzierungen der
Mannschaften.
Die mittleren Spielstärkeunterschiede zwischen den Mannschaften sind beim dynami-

schen Modell wesentlich geringer als beim statischen Modell. Die Unterschiede zu den
tatsächlichen Platzierungen sind nur marginal. Nur der 1.FC Köln und der SC Paderborn
07 verbessern sich im Vergleich zu ihren tatsächlichen Endplatzierungen. Bei den rest-
lichen Mannschaften gibt es dadurch maximal Verschlechterungen um einen einzigen
Tabellenplatz. Die letzten beiden Spalten beziehen sich auf das Modell mit individuellen
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Mannschaft Punkte stat.Stärke QSE Rang gem.dyn Rang ind.dyn Rang
FC Bayern München 79 0.602 0.331 1 0.253 1 0.831 1
VfL Wolfsburg 69 0.000 0.311 2 0 2 0 5
Borussia Mgladbach 66 -0.164 0.307 3 -0.179 3 -0.082 6
Bayer 04 Leverkusen 61 -0.380 0.304 4 -0.252 4 0.025 4
FC Augsburg 49 -1.037 0.299 6 -0.343 5 -0.291 7
FC Schalke 04 48 -1.087 0.299 7 -0.402 6 0.058 3
Bor. Dortmund 46 -0.939 0.299 5 -0.486 7 0.122 2
1899 Hoffenheim 44 -1.398 0.300 12 -0.496 8 -0.42 9
Eintracht Frankfurt 43 -1.304 0.300 10 -0.562 9 -0.676 12
SV Werder Bremen 43 -1.379 0.300 11 -0.612 11 -0.705 13
1.FSV Mainz 05 40 -1.199 0.299 8 -0.616 12 -0.367 8
1.FC Köln 40 -1.238 0.299 9 -0.579 10 -0.968 17
Hannover 96 37 -1.576 0.302 15 -0.664 13 -0.585 10
VfB Stuttgart 36 -1.616 0.302 16 -0.810 18 -0.759 14
Hertha BSC Berlin 35 -1.531 0.301 14 -0.684 14 -0.648 11
Hamburger SV 35 -1.692 0.303 17 -0.763 17 -0.966 16
SC Freiburg 34 -1.440 0.300 13 -0.732 15 -0.759 15
SC Paderborn 07 31 -1.888 0.306 18 -0.744 16 -0.983 18

Tabelle 6.2: Vergleich der statischen und dynamischen Spielstärken der 18 Bundesli-
gavereine in der Saison 2014/2015

Startwerten und werden im nächsten Abschnitt genauer beschrieben.

Individuelle Startwerte

Nun werden dieselben Analysen wie in Abschnitt 6.4.1, jedoch mit individuellen Startwer-
ten, welche in Tabelle 6.1 gegeben sind, durchgeführt. Als Startwerte der beiden Aufsteiger
aus Köln und Paderborn wurden die Punktzahlen der beiden Absteiger der Vorsaison,
Nürnberg und Braunschweig, übernommen. Für die Glättungsparameter erhält man nun
Werte von λ1 = 0.019 und λ2 = 0.043. Die Werte sind nochmals wesentlich kleiner als bei
den gemeinsamen Startwerten. Der Einfluss schon länger zurückliegender Spiele sowie
der Startwerte ist deshalb nochmals wesentlich höher. Es kann stark angezweifelt werden,
ob sich die ermittelten Werte überhaupt noch signifikant von der Annahme λ1 = λ2 = 0
unterscheiden. Bei Betrachtung der jeweiligen Profile-Likelihoods ergeben sich Werte von
-456.77 für die Nullannahme und -456.26 für die optimierten λ-Werte. Für die Heim- bzw.
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Auswärtsspielstärkekoeffizienten ergeben sich Werte von β1 = 0.730 und β2 = 0.700 mit
Standardfehlern von 0.098 und 0.138. Die Schwellenparameter lauten θ1 = −θ4 = −1.707
und θ2 = −θ3 = −0.638 mit Standardfehlern von 0.062 und 0.100. Für den rank probability
score ergibt sich für das dynamische Modell ein Mittelwert von 0.672 und ein Median
von 0.514. Dieser Wert ist um 5.8%, bzw. 6.6% höher als der Mittelwert bzw. Median
des statischen Modells und um 4%, bzw. 3.6% niedriger als bei Annahme gemeinsamer
Startwerte. Die Korrelation der Scores des dynamischen und statischen Modells liegt hier
bei 0.867 und ist damit wesentlich höher als im vorherigen Abschnitt.
In Abbildung 6.2 sind die ermittelten Spielstärken beispielhaft für dieselben sechs Mann-
schaften wie in Abbildung 6.1 abgebildet.
Durch die sehr kleinen Werte für die beiden Glättungsparameter verändern sich die jewei-
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Abbildung 6.2: Spielstärkeentwicklung einzelner Mannschaften mit Unterscheidung
zwischen Heim- (durchgezogene Linie) und Auswärtsspielstärke (gestrichelte Linie)
und individuellen Startwerten.

ligen Heim- bzw. Auswärtsspielstärken der einzelnen Mannschaften kaum. Dadurch ist
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es hier nicht möglich, Aussagen über die aktuelle Formentwicklung einer Mannschaft zu
treffen. Borussia Dortmund zum Beispiel erzielte in der Rückrunde, wie bereits erwähnt,
wesentlich mehr Punkte als in der Hinrunde. Dies lässt sich aber aus den ermittelten
Spielstärken nicht erkennen. Die Spielstärke einer Mannschaft ergibt sich in diesem Modell
fast ausschließlich durch die Startwerte. Daraus lässt sich folgern, dass sich die Spielstär-
ken der Mannschaften über die Saison hinaus nicht stark verändern. Die Verläufe der
restlichen Mannschaften sind im Anhang angefügt. Werden die gemittelten Spielstärken
der Mannschaften über die gesamte Saison, welche in Tabelle 6.2 gegeben sind, betrachtet,
so ist zwar wiederum der FC Bayern München die stärkste Mannschaft, jedoch gibt es
auf den restlichen Positionen größere Unterschiede. Borussia Dortmund wird nun als
zweitstärkste Mannschaft klassifiziert, wohingegen der VfL Wolfsburg nur auf Platz fünf
geführt wird. Bei einem Vergleich mit dem Ausgang der Vorsaison 2013/14 stellt man fest,
dass die ermittelten Platzierungen des Modells mit diesen fast vollständig übereinstimmen.
Besonders deutlich wird diese Eigenschaft des Modells bei der Betrachtung des 1. FC Köln.
Für diesen Verein wurden die Werte der Vorsaison des 1. FC Nürnberg übernommen, da
Köln in der Vorsaison nicht in der Bundesliga vertreten und Nürnberg einer von zwei
Absteigern war. Obwohl die Kölner die Saison im sicheren Mittelfeld abgeschlossen ha-
ben, prognostiziert das Modell sie auf Platz 17. Dies entspricht der Platzierung des 1. FC
Nürnberg in der Vorsaison. Warum wird dieses Modell trotz dieser starken Einschränkung
trotzdem betrachtet? Die Grundannahme, dass immer dieselben Mannschaften in ähnli-
chen Tabellenbereichen landen, ist nicht so unrealistisch, wie sie im ersten Moment klingt.
Vereine werden sich kaum innerhalb eines Jahres auf Dauer im oberen Tabellenbereich
festsetzen können, wenn sie die Jahre vorher nur im Tabellenmittelfeld platziert waren.
Ebenso wird der FC Bayern München mit seinen finanziellen Mitteln wohl kaum mehrere
Jahre in Folge nur einen Platz im Tabellenmittelfeld belegen. Ein weiterer Punkt, der
diesen Modellansatz plausibel wirken lässt, sind die quasi-Standardabweichungen, welche
sich im statischen Modell ergeben. Bereits bei diesem Modell hat sich gezeigt, dass sich
allein durch die Spielstärken der meisten Mannschaften keine genauen Aussagen über
ihre Endplatzierungen treffen lassen. Als Letztes sei noch angeführt, dass der mittlere
rank probability score bei diesem Modellansatz niedriger ist als bei der Wahl gemeinsa-
mer Startwerte. Deshalb wird das Modell auch in die später noch folgenden Analysen
miteinbezogen.
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6.4.2 Gewichtete Likelihood

Um die einzelnen Parameterschätzer für das dynamische Modell zu erhalten, muss zu-
nächst der Parameter σ geschätzt werden. Für die Schätzung dieses Parameters wird
eine prädiktive Simulation der Bundesligadaten der Saison 2013/14 mit verschiedenen σ-
Parametern durchgeführt. Als Optimierungskriterium wird dann der rank probability sco-
re betrachtet und mit diesem der optimale Parameter ausgewählt. Als Auswahlkriterium
innerhalb dieses Scores fiel die Entscheidung auf den Median. In späteren Betrachtungen,
genauer in Kapitel 7, wird diese Wahl näher begründet.
Die prädiktive Simulation wurde für σ-Werte zwischen 15 und 100 durchgeführt. Abbil-
dung 6.3 zeigt die Mediane der einzelnen Simulationen.
Die Mediane bewegen sich etwa in einem Bereich zwischen 0.6 und 0.85. Für steigende
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Abbildung 6.3: RPS-Mediane für verschiedene Sigma-Werte anhand der Daten aus
der Saison 2013/14

σ-Werte sinkt der Median zu Beginn relativ rasch. Bei σ = 50 wird das Minimum im
betrachteten Bereich mit einem Wert von 0.581 erreicht. Für höhere σ-Werte bewegen sich
die Mediane in einem relativ ähnlichen Bereich.
Nach der Bestimmung dieses Koeffizienten ergibt sich aber bei diesem Modellansatz noch
ein weiteres Problem. Da für die dynamische Modellierung nur die bereits vergangenen
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und der aktuelle Spieltag als Datengrundlage betrachtet werden, ist die Schätzung, vor
allem zu Saisonbeginn, sehr unsicher. Ebenso ist die Schätzung zu Beginn der Rückrun-
de instabil, da durch die Winterpause, welche ca. 40 Tage dauert, der aktuelle Spieltag
eine sehr große Gewichtung im Vergleich zu den anderen Partien erfährt. Das zuletzt
genannte Problem lässt sich dadurch etwas entschärfen, dass der Zeitraum der Winter-
pause künstlich verkürzt wird und zwar zwischen dem 17. und 18.Spieltag um 21 Tage,
so dass zwischen diesen beiden eine Zeitspanne von 19 Tagen liegt. Dies ist damit immer
noch der größte Zeitraum zwischen zwei Spielen. Ein weiteres Problem besteht darin,
dass sich die Modellierung erst ab dem Zeitpunkt durchführen lässt, ab welchem jede
Mannschaft nicht mehr jedes Spiel gewonnen oder verloren hat. Solange dies der Fall
ist, würde das Modell die Spielstärke dieser Mannschaften auf +∞ oder −∞ setzen. In
der Saison 2014/15 ist dies bereits ab dem 3. Spieltag der Fall, so dass ab diesem Spieltag
dynamische Spielstärken berechnet werden können. Abbildung 6.4 zeigt für einige Vereine
die geschätzten Spielstärkekoeffizienten.
Im Gegensatz zum Ansatz von Cattelan et al. (2013) besitzt nun jede Mannschaft nur

einen einzigen Spielstärkekoeffizientenpfad. Es ist zu erkennen, dass erst ab dem dritten
Spieltag Koeffizientenschätzer existieren. Die teilweise großen Schwankungen bis zum
fünften Spieltag sind durch die große Unsicherheit aufgrund der geringen Datenmenge
zu erklären. Bei Borussia Dortmund fällt auf, dass ihre Spielstärke zu Saisonbeginn bis
etwa zum 10. Spieltag sinkt, jedoch danach im Laufe der Zeit wieder zunimmt. Borussia
Mönchengladbach ist vor allem zu Saisonbeginn und noch auffälliger zum Saisonende
hin sehr stark. Diese Auffälligkeiten stimmen auch mit der tatsächlichen Entwicklung
der Mannschaften überein, wie sie in Abschnitt 6.4.1 bereits beschrieben wurden. Die
Koeffizientenpfade für die restlichen Mannschaften sind ergänzend im Anhang beigefügt.
Durch die Modellierung jedes einzelnen Spieltags darf jedoch nicht außer Acht gelassen
werden, dass für jeden Spieltag individuelle Heimstärkeparameter α und Schwellenpa-
rameter θθθ existieren. In Tabelle 6.3 sind nachfolgend die einzelnen Heimstärkeparameter
sowie die Spielstärken und quasi-Standardabweichungen für Borussia Mönchengladbach
abgebildet.
Die Heimstärkekoeffizienten schwanken an den einzelnen Spieltagen zwischen -0.136 und
0.793. Im Vergleich zu den Schwankungen der Spielstärken der einzelnen Mannschaften
ist diese Spanne jedoch relativ gering. Die Spielstärke von Borussia Mönchengladbach
schwankt zum Beispiel zwischen -1.994 am 3. Spieltag und 2.580 am 33. Spieltag. Am
wichtigsten sind in der Tabelle jedoch die angegebenen quasi-Standardabweichungen. Vor
allem am 3. Spieltag ist diese mit einem Wert von 3.126 sehr hoch. Je weiter die Saison
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Abbildung 6.4: Geschätzte Spielstärkekoeffizienten einzelner Mannschaften bei ge-
wichteter Likelihood vom 3. bis 34. Spieltag

voranschreitet, desto sicherer werden auch die einzelnen Schätzer. Am 24. Spieltag nimmt
die quasi-Standardabweichung der Spielstärke von Borussia Mönchengladbach ihren ge-
ringsten Wert mit 0.846 an. Jedoch lassen sich auch hier wie bereits beim statischen Modell
die Spielstärken vieler Vereine nicht signifikant voneinander unterscheiden, weshalb die
Spielstärken alleine den Tabellenplatz nicht exakt widerspiegeln können.
Aus diesem Grund stellt sich nun wieder die Frage nach der Güte des Modells. Daher
sollen die Ergebnisse wie bereits beim Ansatz von Cattelan et al. (2013) mit dem statischen
Modell verglichen werden. Während bei Cattelan et al. (2013) nur sechs verschiedene
Parameter geschätzt wurden und somit das Ziel des Modells nur darin bestand, möglichst
nah an die Ergebnisse des statischen Modells heranzukommen, werden bei diesem Modell
für jeden Spieltag dieselben 20 Koeffizienten geschätzt wie beim statischen Modell. Als Gü-
tekriterium dient der rank probability score. Beim statischen Modell beträgt der Mittelwert
dieses Scores 0.635 und der Median nimmt einen Wert von 0.482 an. Beim gewichteten
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Spieltag 3 4 5 6 7 8 9 10 11 12 13
α -0.136 0.389 0.483 0.437 0.530 0.609 0.715 0.614 0.661 0.544 0.632
γ -1.994 -0.088 0.535 0.779 0.891 1.565 1.380 1.593 1.083 0.504 0.318
QSE 3.126 1.862 1.471 1.322 1.200 1.264 1.165 1.147 1.067 1.113 1.038
Spieltag 14 15 16 17 18 19 20 21 22 23 24
α 0.619 0.469 0.499 0.438 0.485 0.373 0.272 0.291 0.268 0.379 0.450
γ 0.260 0.428 0.648 0.465 0.545 0.556 0.409 0.424 0.344 0.467 0.410
QSE 1.001 0.979 0.960 0.918 0.972 0.921 0.873 0.855 0.850 0.862 0.846
Spieltag 25 26 27 28 29 30 31 32 33 34
α 0.470 0.501 0.553 0.675 0.674 0.787 0.686 0.738 0.764 0.793
γ 0.519 0.930 1.420 1.914 1.709 2.080 2.054 2.266 2.580 2.051
QSE 0.862 0.943 1.107 1.205 1.165 1.191 1.115 1.114 1.130 1.105

Tabelle 6.3: Heimstärkekoeffizienten der einzelnen Spieltage sowie die Spiel-
stärken und die dazugehörigen quasi-Standardabweichungen von Borussia
Mönchengladbach

dynamischen Modell mit einem σ-Wert von 50 erhält man für den Mittelwert des Scores
0.508 und für den Median 0.358. Die Werte sind also um 20% bzw. 25.7% niedriger als
beim statischen Modell. Es ist daher davon auszugehen, dass das gewichtete dynamische
Modell bessere Ergebnisse als das statische Bradley-Terry-Modell liefert. Die Korrelation
zwischen den beiden Modellen liegt bei 0.729. Würde man ein dynamisches Modell mit
identischen Gewichten, sprich einer Gleichverteilung als Kernfunktion verwenden, so
würde der rank probability score Werte von 0.586 für den Mittelwert und 0.416 für den
Median liefern. Diese Werte sind 7.7% bzw. 13.7% niedriger als die des statischen Modells,
aber auch 15.4% bzw. 16.2% höher als die des dynamischen Modells mit Gauß-gewichteter
Likelihood. Eine solche Gewichtung über einen Gaußkern scheint daher gerechtfertigt.
Zum besseren Vergleich der Scores zeigt Abbildung 6.5 die Boxplots der einzelnen Scores
für das statische Modell, die beiden exponential-gewichteten moving-average Prozesse
mit gemeinsamen und individuellen Startwerten sowie die Boxplots für die beiden dyna-
mischen Modelle mit unterschiedlicher und ohne unterschiedliche Gewichtung.
Vorneweg sei gesagt, dass für die ersten drei Boxplots Scores für alle Spiele - 306 Werte

- einfließen und für die beiden dynamischen Modelle nur 288 Werte, da erst ab dem 3.
Spieltag Ergebnisse modelliert werden können. Es ist gut zu erkennen, dass die beiden
EWMA-Prozesse im Schnitt höhere Werte liefern als das statische Modell. Ebenso sieht
man, dass bei individuellen Startwerten leicht bessere Ergebnisse erzielt werden als bei
gemeinsamen Startwerten. Die Ausreißer sind bei allen drei Modellen in etwa gleich
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Abbildung 6.5: Vergleich der rank probability scores für das statische Modell, die
beiden exponential-gewichteten moving-average-Prozesse, sowie das gewichtete
dynamische Modell

und nehmen maximal einen Scorewert von etwa 2.5 an. Das dynamische Modell ohne
Gewichtung sieht dem statischen Modell relativ ähnlich, vor allem bei den Ausreißern.
Alle gekennzeichneten Quantile liegen etwas niedriger als beim statischen Modell. Das
gewichtete dynamische Modell liefert im Schnitt sichtbar geringere Werte als die anderen
Modelle. Nicht nur der Median, sondern auch das 75%-Quantil sind deutlich niedriger
bei diesem Modell. Die Ausreißer sind ähnlich, bis auf eine Ausnahme: Der maximale
Score erreicht einen Wert von 3.45 und hebt sich somit deutlich von den anderen ab.
Dieser Wert ergibt sich beim Spiel zwischen Borussia Mönchengladbach und dem FC
Augsburg. Der Borussia wird in diesem Spiel eine über 93%-ige Siegeschance modelliert,
jedoch gewann der FC Augsburg dieses Spiel mit 3:1, was sogar einen Sieg mit zwei
Toren Unterschied bedeutet. Diesem Ereignis wird nur eine Wahrscheinlichkeit von 0.5%
zugerechnet.
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In den vergangenen Kapiteln wurden Modelle vorgestellt, mit denen sich die Spielstärke
der Mannschaften mit Hilfe der erzielten Ergebnisse und zusätzlicher Kovariablen mo-
dellieren lassen. Dabei wurde immer angenommen, dass die Ergebnisse bekannt sind,
und aufgrund dieser wurde die Spielstärke modelliert. Diese Modellergebnisse wurden
danach angewandt und ausgewertet. Ein wichtiger und gleichzeitig interessanter Punkt
wurde bei all diesen Vorgehensweisen jedoch bisher noch nicht beleuchtet: die prädiktive
Aussagekraft der Modelle. Die Spielstärke im Nachhinein zu modellieren liefert zwar
bessere Ergebnisse als eine prädiktive Analyse, jedoch hat dies für einen Anwender re-
lativ geringen Nutzen. Viel wichtiger ist es einem solchen, anhand vergangener Daten
zukünftige Ergebnisse prognostizieren zu können, um sich so einen Vorteil gegenüber
Anderen zu verschaffen. Dieses Kapitel widmet sich daher der prädiktiven Aussagekraft
der vorgestellten Modelle. Das bedeutet, es werden nur die Daten bis zu einem bestimmten
Spieltag betrachtet. Mit diesen werden dann die einzelnen Koeffizienten geschätzt und auf
den folgenden Spieltag angewandt. Dieses Vorgehen wird für jeden Spieltag wiederholt.
Da die Modelle zu Beginn bereits einige Daten benötigen, um „stabile“ Ergebnisse zu
erhalten, wird dieses Vorgehen am 7. Spieltag der Saison 2014/15 gestartet. Es werden
also zu Beginn nur die Ergebnisse der ersten sechs Spieltage herangezogen und mit diesen
die Koeffizienten geschätzt. Mit diesen Schätzern werden anschließend die Siegeswahr-
scheinlichkeiten der einzelnen Mannschaften für den 7. Spieltag berechnet. Anschließend
werden die Daten der ersten sieben Spieltage betrachtet und wiederum die Koeffizien-
tenschätzer modelliert. Die somit erhaltenen Ergebnisse werden im Folgenden unter drei
verschiedenen Gesichtspunkten betrachtet. Zuerst sollen die einzelnen rank probability
scores der Modelle miteinander verglichen werden. Anschließend wird überprüft, wie
viele Spiele sich, mit Hilfe der Modelle, richtig vorhersagen lassen. Hierfür wird zum einen
eine Simulationsstudie durchgeführt, welche die Ergebnisse anhand der durch das Modell
erhaltenen Wahrscheinlichkeiten simuliert, und zum anderen werden die Spiele anhand
der wahrscheinlichsten Ergebnisse getippt. Zuletzt soll noch mit verschiedenen Ansätzen
überprüft werden, ob sich mit Hilfe dieser Modelle in der Saison 2014/15 Gewinne durch
gezielte Wetten erzielen lassen.
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Abbildung 7.1: Vergleich der verschiedenen RPS für sieben verschiedene Modelle:
Einfaches BTL (stat), gewichtetes BTL (dyn), Modell mit Penalisierung und globalem
Heimeffekt (clust), Modell mit Penalisierung, globalem Heimeffekt und Berücksichti-
gung der Startaufstellung (mw), exponential-gewichteter moving-average Prozess
mit gemeinsamen Startwerten (EWMA), exponential-gewichteter moving-average
Prozess mit individuellen Startwerten (EWMA1) und ein Modell mit gemittelten
Ergebniswahrscheinlichkeiten (emp)

7.1 Rank probability scores

Nachfolgende Abbildung 7.1 zeigt die ermittelten rank probability scores für insgesamt
sieben verschiedene Modellansätze.
Bei den ersten sechs Modellen handelt es sich um einige der im bisherigen Verlauf dieser

Arbeit vorgestellten Modelle. Da bei der prädiktiven Analyse, wie bereits beschrieben,
die Modelle für jeden Spieltag neu modelliert werden, können nun alle als dynamische
Modelle angesehen werden. Das siebte Modell betrachtet einen sehr allgemeinen Ansatz.
Bei diesem wird die Anzahl der Heimsiege, Unentschieden und Auswärtssiege jeweils
durch die Anzahl aller bisher stattgefundenen Spiele geteilt. Dies ergibt dann die jeweiligen
Wahrscheinlichkeiten. Folglich sind diese für jedes Heimteam bzw. jedes Auswärtsteam
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gleich. Bei Betrachtung des rps für dieses Modell fällt auf, dass keine Ausreißer existieren.
Der Mittelwert ist ähnlich dem der anderen Modelle. Das 25%-Quantil und noch deutlicher
der Median sind klar höher als bei den anderen Modellen. Anhand dieses Boxplots lassen
sich gut die Stärken und Schwächen des rps erkennen. Aufgrund der Unabhängigkeit der
einzelnen Wahrscheinlichkeiten von den Mannschaften ergeben sich bei einem allgemeinen
Ansatz keine eindeutigen Siegeswahrscheinlichkeiten. Deshalb ist es folglich auch nicht
möglich, eine völlig falsche Einschätzung abzugeben, und daher existieren keine großen
Ausreißer. Das Problem dabei ist nun jedoch, dass dadurch auch keine besonders kleinen
Werte für den rps erzielt werden können. Deshalb muss sich ein Anwender je nach Ziel
seiner Auswertung entscheiden, wie er sein Modell wählen will. Ein Modell, welches klare
Aussagen darüber trifft, welche Mannschaft ein Spiel gewinnt wird viele kleine Werte,
aber auch einige große Ausreißer produzieren. Ein Modell, welches potenziell den Teams
eher ausgeglichene Siegeswahrscheinlichkeiten zuweist, wird alle seine Scores etwa im
selben Bereich erhalten. Wie Abbildung 7.1 zeigt, führt dies dazu, dass die Mittelwerte
der Modelle kaum unterscheidbar sind. Deshalb wird in dieser Arbeit hauptsächlich der
Median betrachtet. Dieser ist beim Modell mit gemittelten Siegeswahrscheinlichkeiten,
wie erwähnt, deutlich höher, weshalb dieses Modell als schwächstes bezeichnet werden
kann. Bei den anderen Modellen ist für eine Unterscheidung eine genauere Betrachtung
der Werte nötig. In Tabelle 7.1 sind daher das 25%-Quantil, der Mittelwert, der Median
und das 75%-Quantil für die verschiedenen Modelle aufgeführt.
Die Tabelle ist dabei in vier verschiedene Gruppen aufgeteilt. Die erste Gruppe betrachtet

stat dyn clust mw EWMA EWMA1 emp
0.25-Quantil 0.323 0.314 0.358 0.338 0.368 0.344 0.395
Median 0.523 0.482 0.518 0.531 0.591 0.568 0.829
Mittelwert 0.715 0.734 0.692 0.682 0.745 0.703 0.750
0.75-Quantil 0.940 1.029 0.953 0.908 0.971 0.934 0.954

Tabelle 7.1: Kennwerte der sieben zu vergleichenden Modelle: Einfaches BTL (stat),
gewichtetes BTL (dyn), Modell mit Penalisierung und globalem Heimeffekt (clust),
Modell mit Penalisierung, globalem Heimeffekt und Berücksichtigung der Startauf-
stellung (mw), exponential-gewichteter moving-average Prozess mit gemeinsamen
Startwerten (EWMA), exponential-gewichteter moving-average Prozess mit indivi-
duellen Startwerten (EWMA1) und ein Modell mit gemittelten Ergebniswahrschein-
lichkeiten (emp)

die dynamischen Modelle basierend auf dem klassischen Bradley-Terry Modell, mit und
ohne Gewichtung der Likelihood. Die zweite Gruppe umfasst die geclusterten Modelle,
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welche sich durch das BIC-Kriterium ergeben, zum einen ohne Kovariablen und zum
anderen mit den durchschnittlichen Marktwerten der Startaufstellungen der Mannschaften.
Die dritte Gruppe enthält die Modelle, welche über einen exponential-gewichteten moving-
average Prozess, wie in Cattelan et al. (2013) beschrieben, hergeleitet werden können,
einmal mit gemeinsamen und einmal mit individuellen Startwerten für den Prozess.
Die vierte und letzte Gruppe besteht schließlich aus dem allgemeinen Ansatz, wie oben
beschrieben.
Das 25%-Quantil ist beim gewichteten dynamischen Modell am geringsten mit einem
Wert von 0.314. Bei den geclusterten Modellen sind die Werte des Modells ohne den
Einfluss von Kovariablen höher als beim Modell mit Berücksichtigung der Marktwerte
der Startaufstellungen. Beide Werte sind höher als bei den nicht-geclusterten Modellen.
Die EWMA-Prozesse weisen ähnlich hohe Werte auf, wobei der Prozess mit individuellen
Startwerten besser abschneidet als der Prozess mit gemeinsamen Startwerten. Warum die
von Tutz und Schauberger (2015) verwendeten Modelle besser abschneiden als die EWMA-
Prozesse, wurde bereits in Kapitel 6 erläutert, es sei aber nochmals erwähnt. Der Grund
hierfür liegt an der wesentlich geringeren Parameterzahl der EWMA-Prozess-Modelle.
Der größte Wert wird beim allgemeinen Ansatz mit einem Quantilswert von 0.395 erreicht.
Beim Median ist die Reihenfolge der besten Werte gleich den 25%-Quantilswerten. Der
Median des empirischen Modells liegt eindeutig über dem der anderen Modelle. Beim 75%-
Quantil gestaltet sich die Reihenfolge anders. Hier schneidet das gewichtete dynamische
Modell am schwächsten ab und der allgemeine Ansatz fällt nicht mehr von den anderen
ab. Dies liegt daran, dass es durch die klaren Aussagen des gewichteten dynamischen
Modells prinzipiell auch zu mehr höheren Werten kommen kann. Beim allgemeinen
Ansatz liegen die Werte, wie bereits erwähnt, alle relativ ähnlich. Der Median und das
75%-Quantil unterscheiden sich bei diesem Ansatz daher nur um 0.125 Scorepunkte. Die
Werte für den Mittelwert sind alle sehr ähnlich. Die Reihenfolge der besten Werte spielt
aufgrund der geringen Aussagekraft dieses Wertes keine Rolle. Da die Differenzen der
einzelnen Quantile, mit Ausnahme derer des allgemeinen Ansatzes, aber ebenfalls relativ
ähnlich sind, kann angezweifelt werden, ob aufgrund der ermittelten Scores Aussagen
getroffen werden können, welche Modelle am geeignetsten für die Vorhersage zukünftiger
Ereignisse sind.
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7.2 Ergebnisvorhersage

Nachdem die prädiktiven rank probability scores betrachtet wurden, folgt eine Anwen-
dung der Modelle, welche für die Praxis relevant ist. Es soll getestet werden, wie viele
Spiele einer Saison durch die vorgestellten Modelle richtig getippt werden. Dafür werden
zwei unterschiedliche Ansätze betrachtet.

7.2.1 Simulationsstudie

Als erstes wird getestet, wie viele Spiele mit Hilfe einer Simulationsstudie richtig getippt
werden können. Hierfür interessiert im Folgenden nur, ob ein Spiel mit einem Sieg, einer
Niederlage oder Unentschieden endete. Die Unterscheidung, mit wie vielen Toren Unter-
schied das Spiel endete, fällt weg. Zunächst werden dafür die Wahrscheinlichkeiten der
Spielausgänge für jedes einzelne Spiel und jedes Modell berechnet. Anschließend werden
alle 252 Partien ab dem 7. Spieltag zehntausendmal mit den ermittelten Wahrscheinlich-
keiten simuliert. Die Ergebnisse dieser Simulation finden sich in Tabelle 7.2 wieder.
Es sind jeweils die durchschnittlichen Anzahlen richtig getippter Spiele in Prozent ange-

stat dyn clust mw EWMA EWMA1 emp
Minimum 0.313 0.298 0.286 0.290 0.270 0.290 0.254
0.05-Quantil 0.365 0.381 0.349 0.357 0.333 0.349 0.313
Durchschnitt 0.410 0.423 0.396 0.405 0.380 0.395 0.360
0.95-Quantil 0.456 0.468 0.444 0.452 0.429 0.444 0.409
Maximum 0.512 0.540 0.496 0.520 0.488 0.508 0.476

Tabelle 7.2: Ergebnisse der Simulationsstudie bei 10000 Simulationen pro Modell:
Einfaches BTL (stat), gewichtetes BTL (dyn), Modell mit Penalisierung und globalem
Heimeffekt (clust), Modell mit Penalisierung, globalem Heimeffekt und Berücksichti-
gung der Startaufstellung (mw), exponential-gewichteter moving-average Prozess
mit gemeinsamen Startwerten (EWMA), exponential-gewichteter moving-average
Prozess mit individuellen Startwerten (EWMA1) und ein Modell mit gemittelten
Ergebniswahrscheinlichkeiten (emp)

geben. Bei allgemeiner Wahrscheinlichkeitsverteilung werden, wie erwartet, im Schnitt am
wenigsten Spiele richtig getippt. Im Fall der schlechtesten Simulation werden nur 25.4%
aller Spiele richtig getippt, das entspricht nur knapp jedem vierten Spiel. Beim einfachen
Bradley-Terry Modell werden durchschnittlich 41% der Spiele richtig vorhergesagt, was

56



7 Prädiktiver Modellvergleich

einer Anzahl von über 103 richtig getippten Spielen entspricht. Bei der besten Simulation
werden sogar mehr als die Hälfte der Spiele richtig vorhergesagt. Beim gewichteten dyna-
mischen Modell liegen die Zahlen der richtig getippten Spiele etwas höher als beim Modell
ohne Gewichtung. Es weist im Schnitt 42.3% der Spiele das richtige Ergebnis zu. Es werden
also im Schnitt fast 107 von 252 Spielen richtig getippt. Bei der besten Simulation dieses
Modells wurden 54% der Spiele richtig getippt. Dies entspricht einer Zahl von gut 136
Spielen und liefert das beste Ergebnis aller durchgeführten Simulationen. Alle Modelle bis
auf den allgemeinen Ansatz erhalten für das 5%-Quantil mindestens Werte in Höhe von
0.33. Daraus folgt, die Modelle liefern normalerweise bessere Ergebnisse als die Annahme,
die Spielausgänge seien zufällig und jedem Ausgang wird die gleiche Wahrscheinlichkeit
zugerechnet. Daher erscheinen die Modelle auf den ersten Blick als gute Möglichkeit,
Spielausgänge aufgrund ihrer prognostizierten Ergebnisse zu tippen. Jedoch wurde bereits
in Kapitel 2 erwähnt, dass in der Saison 2014/15 47.4% aller Heimspiele gewonnen wurden.
In den vorherigen Saisons war die Zahl der Heimsiege ähnlich hoch. In den letzten acht
Spielzeiten wurden immer über 40% aller Heimspiele gewonnen und niemals mehr als ein
Drittel aller Auswärtsspiele. In der Saison 2008/2009 lag der Anteil der Heimsiege sogar
bei 48%[vgl.fussball.wettpoint.com (2016)].

7.2.2 Tipp der höchsten Wahrscheinlichkeit

Wie gerade beschrieben, liegen bei einer Simulationsstudie große Schwankungen bei der
Anzahl der richtig vorhergesagten Ergebnisse vor und die Anzahl der richtig getippten
Spiele ist ebenso nicht zufriedenstellend. In der Realität wird normalerweise auch nur ein
einziges Mal auf den Ausgang eines Spieles gesetzt und nicht zehntausendmal. Daher
soll nun noch ein Ansatz betrachtet werden, bei welchem tatsächlich jedes Spiel nur ein
einziges Mal getippt wird. Nachfolgend wird immer auf das Ergebnis gesetzt, welches vom
Modell als am wahrscheinlichsten vorhergesagt wird. Dabei ergeben sich die Ergebnisse
aus Tabelle 7.3.
Bei diesem Ansatz liegen die Anzahlen der richtig getippten Spiele bei allen Modellen

höher als das 95%-Quantil der Ergebnisse der entsprechenden Modelle aus der Simulati-
onsstudie. Das geclusterte Modell mit globalem Heimeffekt, der exponential-gewichtete
moving-average Prozess mit individuellen Startwerten und das geclusterte Modell mit
Berücksichtigung der Startaufstellungen sagen mehr als die Hälfte aller Ergebnisse richtig
vorher. Auch die anderen Modelle liefern ähnlich gute Ergebnisse. Daher erscheint die in
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Modell richtige Tipps Anteil richtiger Tipps
stat 124 0.492
dyn 124 0.492
clust 128 0.508
mw 130 0.516
EWMA 119 0.472
EWMA1 127 0.504
emp 123 0.488

Tabelle 7.3: Anzahl richtiger Ergebnisse bei 252 Spielen und Tipp auf das wahrschein-
lichste durch das Modell ermittelte Ergebnis: Einfaches BTL (stat), gewichtetes BTL
(dyn), Modell mit Penalisierung und globalem Heimeffekt (clust), Modell mit Pena-
lisierung, globalem Heimeffekt und Berücksichtigung der Startaufstellung (mw),
exponential-gewichteter moving-average Prozess mit gemeinsamen Startwerten (EW-
MA), exponential-gewichteter moving-average Prozess mit individuellen Startwerten
(EWMA1) und ein Modell mit gemittelten Ergebniswahrscheinlichkeiten (emp)

diesem Abschnitt vorgestellte Vorgehensweise die effektivere zu sein. Es sei noch ange-
merkt, dass beim Ansatz mit allgemeinen Ergebniswahrscheinlichkeiten jedes Spiel auf
einen Heimsieg getippt wird.

7.3 Wettquoten und Gewinnmöglichkeiten

Beim Tipp auf die höchste Gewinnwahrscheinlichkeit fällt auf, dass die Ergebnisse für alle
Modelle ähnlich ausfallen und in etwa genauso viele Spiele wie bei durchgehendem Tipp
auf die Heimmannschaft richtig vorhergesagt werden. Ist nur die Anzahl der richtigen
Tipps von Bedeutung, ist kein Modell zu favorisieren. Wie sieht es aber aus, wenn nicht
die Anzahl der richtigen Tipps das wichtigste Merkmal darstellt, sondern ein möglichst
hoher Gewinn erzielt werden soll? Wettanbieter bieten beim Tipp der einzelnen Spiele
unterschiedliche Quoten an, um Anreize zu setzen riskante Tipps abzugeben. Daher kann
es aus profitorientierten Gründen oft sinnvoll sein, sein Geld nicht auf das favorisierte
Team zu setzen. Dies sei an den Quoten für den FC Bayern München verdeutlicht. Der
Verein dominierte in den letzten paar Jahren die Bundesliga und ist seit Jahrzehnten immer
im vorderen Tabellenbereich zu finden. Soll ein sicherer Tipp abgegeben werden, so sollte
jedes Spiel auf einen Sieg des FC Bayern getippt werden. Jedoch ließe sich damit nicht
viel Geld verdienen, da die Quoten sehr niedrig sind. Im Schnitt waren die Quoten für
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einen Sieg der Münchner in der vergangenen Saison bei 1.33. Bei einem Einsatz von einem
Euro wäre also ein Gewinn von 33 Cent erzielt worden. Folglich würden bereits Verluste
eintreten, wenn Bayern schon jedes vierte Spiel nicht gewinnt. Riskante Tipps können
daher theoretisch eine bessere Rendite einbringen. Beim Spiel zwischen Bayern München
und dem Hamburger SV am 21. Spieltag lag die Quote für einen HSV-Sieg bei 28.5, was
der höchsten Quote der ganzen Saison entsprach. Bei einem Euro Einsatz wäre ein Gewinn
von 27.50 Euro bei einem Sieg des Hamburger SV erzielt worden.
Auch bei den Wettquoten lässt sich der Heimvorteil der Mannschaften erkennen. Die
Quoten für einen Heimsieg lagen in der Saison 2014/2015 im Schnitt bei 2.87, die Quoten
für ein Unentschieden bei 4.09 und die Quoten für einen Auswärtssieg bei 4.54. Bei
ständigen Tipps auf einen Heimsieg lässt sich also wesentlich weniger Geld verdienen
als bei Tipps auf Unentschieden oder Auswärtssiege. Aus diesen Gründen werden nun
verschiedene Ansätze zur Platzierung gezielter Wetten auf die Daten der Saison 2014/15
angewendet und so überprüft, ob sich mit einem der Modelle Gewinne hätten erzielen
lassen.

7.3.1 Simulationsstudie

Zunächst sollen die Ergebnisse aus Unterabschnitt 7.2.1 mit den Wettquoten verknüpft
werden. Das Vorgehen ist dabei folgendermaßen: Es wird auf jedes Spiel ein Euro gesetzt.
War der Tipp richtig, so wird dem Konto die Quote minus dem Einsatz hinzugefügt. War
der Tipp falsch, beträgt der Verlust einen Euro. Tabelle 7.4 zeigt die Ergebnisse dieser
Simulation.
Bei dieser Betrachtung fällt nun auf, dass der allgemeine Ansatz hier nicht die schlech-

testen Ergebnisse liefert. Im Durchschnitt beträgt der Verlust bei diesem Modell nach
252 getippten Spielen 1.83 Euro. Am meisten Geld verliert man im Durchschnitt über-
raschenderweise bei den Prognosen des geclusterten Modells mit Berücksichtigung der
Startaufstellungen. Hier liegt der durchschnittliche Verlust bei 4.70 Euro. Im bestmöglichen
Fall liegt der Gewinn bei diesem Modell bei 103.77 Euro, bei der schlechtesten Simulation
liegt der Verlust jedoch bei 86.66 Euro. Beim einfachen Bradley-Terry Modell wird im
Schnitt ein Gewinn von 3.00 Euro erzielt. Jedoch ist die Spanne der Simulationsergebnisse
sehr hoch. Bei Betrachtung der Spanne, in welcher 90% der Simulationsergebnisse liegen,
fällt auf, dass diese zwischen einem Verlust von 34.07 Euro und einem Gewinn von 41.18
Euro schwankt. Beim gewichteten dynamischen Modell ist der durchschnittliche Gewinn
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stat dyn clust mw EWMA EWMA1 emp
Minimum -77.34 -100.15 -76.75 -86.66 -89.28 -82.41 -83.57
0.05-Quantil -34.07 -32.95 -38.83 -42.10 -42.45 -43.49 -42.89
Durchschnitt 3.00 3.34 -1.11 -4.70 -3.34 -5.60 -1.83
0.95-Quantil 41.18 40.51 38.28 33.98 36.55 33.30 39.89
Maximum 90.61 88.42 79.05 103.77 86.10 83.98 101.40

Tabelle 7.4: Ergebnisse der Simulationsstudie zur Gewinnberechnung bei 10000 Si-
mulationen pro Modell: Ergebnisse der Simulationsstudie bei 10000 Simulationen pro
Modell: Einfaches BTL (stat), gewichtetes BTL (dyn), Modell mit Penalisierung und
globalem Heimeffekt (clust), Modell mit Penalisierung, globalem Heimeffekt und Be-
achtung der Startaufstellung (mw), exponential-gewichteter moving-average Prozess
mit gemeinsamen Startwerten (EWMA), exponential-gewichteter moving-average
Prozess mit individuellen Startwerten (EWMA1) und ein Modell mit gemittelten
Ergebniswahrscheinlichkeiten (emp)

sogar noch etwas höher und liegt bei 3.34 Euro. Doch auch hier sind die Schwankungen
sehr hoch. Aufgrund der hohen Schwankungen ist das Risiko sehr hoch und dieser Ansatz
zur Gewinnoptimierung nicht zu empfehlen.

7.3.2 Tipp der höchsten Wahrscheinlichkeit

Eine zweite Betrachtungsmöglichkeit besteht darin, die Spiele wie in Unterabschnitt 7.2.2
nach den höchsten Gewinnwahrscheinlichkeiten des Modells zu tippen. In Verknüpfung
mit den entsprechenden Wettquoten ergeben sich die Ergebnisse aus Tabelle 7.5.
Im Vergleich zum vorherigen Ansatz lassen sich jetzt bessere Ergebnisse erzielen. Das klas-
sische Bradley-Terry Modell, das gewichtete Modell, das geclusterte Modell mit globalem
Heimeffekt und der exponential-gewichtete moving-average Prozess mit gemeinsamen
Startwerten liefern nahezu identische Gewinne. Die Rendite bei diesen Modellen liegt
bei etwa 7%. Beim EWMA-Prozess mit individuellen Startwerten liegt der Verlust bei
3.49 Euro. Beim geclusterten Modell mit globalem Heimeffekt und Berücksichtigung der
Startaufstellungen lässt sich kaum ein Gewinn im Vergleich zu anderen Modellen erzielen.
Dies ist etwas überraschend, da durch die zusätzliche Information der Startaufstellungen
eine Verbesserung erwartet wurde. Beim Ansatz mit allgemeinen Ergebniswahrscheinlich-
keiten werden, wie erwähnt, alle Spiele auf einen Heimsieg getippt. Mit dieser Methode
ließe sich ein Gewinn von 31.41 Euro erzielen, was einer Rendite von 12.5% entspricht. Für
die vorliegenden Daten scheint ein durchgehender Tipp auf Heimsiege scheinbar die beste
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Modell richtige Tipps Anteil Gewinn Gewinn pro Spiel
stat 124 0.492 17.97 0.071
dyn 124 0.492 17.56 0.070
clust 128 0.508 17.79 0.071
mw 130 0.516 1.08 0.004
EWMA 119 0.472 17.59 0.070
EWMA1 127 0.504 -3.49 -0.014
emp 123 0.488 31.41 0.125

Tabelle 7.5: Anzahl richtiger Ergebnisse und Höhe des Gewinns bei 252 Spielen und
Tipp auf das wahrscheinlichste durch das Modell ermittelte Ergebnis: Einfaches BTL
(stat), gewichtetes BTL (dyn), Modell mit Penalisierung und globalem Heimeffekt
(clust), Modell mit Penalisierung, globalem Heimeffekt und Berücksichtigung der
Startaufstellung (mw), exponential-gewichteter moving-average Prozess mit gemein-
samen Startwerten (EWMA), exponential-gewichteter moving-average Prozess mit
individuellen Startwerten (EWMA1) und ein Modell mit gemittelten Ergebniswahr-
scheinlichkeiten (emp)

Tippmethode darzustellen.

7.3.3 Tipp nach Rentabilität

Wie zu Beginn von Abschnitt 7.3 beschrieben, bieten Wettanbieter unterschiedliche Quoten
an, um einen Anreiz für riskante Tipps zu schaffen. Im Folgenden wird die Rentatbilität
solcher Tipps betrachtet. Hierfür werden die von den Modellen errechneten Ergebnis-
wahrscheinlichkeiten mit den Quoten verknüpft und anschließend wird überprüft, ob sich
ein Tipp auf dieses Spiel lohnt oder nicht. Die Rentabilität eines Tipps ergibt sich dabei
folgendermaßen: Angenommen, ein Modell weist der Heimmannschaft in einer Partie
eine Siegeswahrscheinlichkeit von 45% zu und die Quote des Wettanbieters für einen
Heimsieg beträgt 2.1, dann ergibt sich die erwartete Rückzahlung bei einem solchen Tipp
aus dem Produkt der beiden Zahlen und liegt bei 0.945. Da diese kleiner ist als der Einsatz,
wäre ein solcher Tipp nicht rentabel und es sollte nicht auf dieses Ergebnis gesetzt werden.
Abschließend werden nun noch zwei unterschiedliche Wettstrategien, basierend auf der
Rentabilität der Tipps, betrachtet.
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Rentabilität bei höchster Wahrscheinlichkeit

Bei dieser Wettstrategie wird wie in Unterabschnitt 7.3.2 jedes Spiel auf die Mannschaft
mit der höchsten Gewinnwahrscheinlichkeit gesetzt, jedoch mit der Einschränkung, dass
nur Spiele getippt werden, welche als rentabel klassifiziert werden. Tabelle 7.6 zeigt die
Ergebnisse einer solchen Vorgehensweise.
Es ergeben sich größere Unterschiede bei der Anzahl der getippten Spiele. Während

Modell getippte Spiele richtige Tipps Anteil Gewinn Gewinn pro Spiel
stat 159 69 0.434 19.43 0.122
dyn 192 89 0.464 21.12 0.110
clust 116 46 0.390 18.86 0.163
mw 104 47 0.452 10.79 0.104
EWMA 152 52 0.342 7.08 0.047
EWMA1 127 51 0.402 -2.459 -0.019
emp 126 49 0.389 36.38 0.289

Tabelle 7.6: Anzahl richtiger Ergebnisse und Höhe des Gewinns bei Tipp auf das
wahrscheinlichste durch das Modell ermittelte Ergebnis und Berücksichtigung der
Rentabilität: Einfaches BTL (stat), gewichtetes BTL (dyn), Modell mit Penalisierung
und globalem Heimeffekt (clust), Modell mit Penalisierung, globalem Heimeffekt
und Berücksichtigung der Startaufstellung (mw), exponential-gewichteter moving-
average Prozess mit gemeinsamen Startwerten (EWMA), exponential-gewichteter
moving-average Prozess mit individuellen Startwerten (EWMA1) und ein Modell
mit gemittelten Ergebniswahrscheinlichkeiten (emp)

beim gewichteten Modell nur 60 Spiele als nicht rentabel klassifiziert werden und deshalb
noch 192 Spiele getippt werden können, liegt die Zahl der getippten Spiele beim Modell
unter Berücksichtigung der Startaufstellungen bei nur knapp über 100 Spielen. Bei allen
Modellen hat sich der Anteil der richtig getippten Spiele verringert. Beim EWMA-Prozess
mit gemeinsamen Startwerten werden nur noch gut ein Drittel aller Spiele richtig pro-
gnostiziert. Aufgrund der unterschiedlichen Anzahl getippter Spiele ist es nun besser,
die Modelle nicht anhand ihrer Gewinne, sondern anhand der zu erwartenden Renditen
miteinander zu vergleichen. Dabei fällt auf, dass sich beim einfachen Bradley-Terry Modell,
beim gewichteten Modell und beim geclusterten Modell mit globalem Heimeffekt die
Renditen zwischen 5% und 9% erhöhen. Bei Berücksichtigung der Startwerte lässt sich die
Rendite auf über 10% steigern und das Modell, welches nur Heimsiege vorhersagt, steigert
seine Rendite auf 28.9%. Bei den restlichen zwei Modellen sinkt die Rendite im Vergleich
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zum Tipp auf alle Spiele. Es scheint, als sei auch bei dieser Methode ein grundsätzlicher
Tipp auf Heimerfolge zu bevorzugen.

Tipp auf höchste Rentabilität

Ein letzter Wettansatz testet die zu erwartenden Ergebnisse bei ausschließlichem Tipp auf
die höchste Rentabilität eines Spiels. Es werden nun für alle Ereigniswahrscheinlichkeiten
und Quoten die jeweiligen erwarteten Rückzahlungen berechnet. Anschließend wird auf
das Ergebnis gesetzt, welches die höchste Rentabilität aufweist ungeachtet der zugrun-
deliegenden Wahrscheinlichkeit des Ergebnisses. Liegt die Rentabilität bei einem Spiel
für alle drei möglichen Ergebnisse niedriger als das Risiko, so wird auf dieses Spiel nicht
gesetzt. Tabelle 7.7 zeigt die entsprechenden Ergebnisse.
Bei einer solchen Vorgehensweise sinken die Anteile der richtig getippten Ergebnisse

Modell getippte Spiele richtige Tipps Anteil Gewinn Gewinn pro Spiel
stat 241 81 0.336 19.02 0.079
dyn 245 95 0.386 32.17 0.131
clust 241 63 0.261 -2.99 -0.012
mw 234 69 0.295 -5.47 -0.103
EWMA 239 65 0.272 3.88 0.016
EWMA1 250 72 0.288 0.820 0.003
emp 232 65 0.280 29.48 0.127

Tabelle 7.7: Anzahl richtiger Ergebnisse und Höhe des Gewinns bei Tipp auf das
Ergebnis mit der höchsten Rentabilität: Einfaches BTL (stat), gewichtetes BTL (dyn),
Modell mit Penalisierung und globalem Heimeffekt (clust), Modell mit Penali-
sierung, globalem Heimeffekt und Berücksichtigung der Startaufstellung (mw),
exponential-gewichteter moving-average Prozess mit gemeinsamen Startwerten (EW-
MA), exponential-gewichteter moving-average Prozess mit individuellen Startwerten
(EWMA1) und ein Modell mit gemittelten Ergebniswahrscheinlichkeiten (emp)

erwartungsgemäß deutlich ab. Teilweise werden nur noch knapp ein Viertel aller Spiele
richtig vorhergesagt. Auch die Renditen fallen bei fast allen Modellen deutlich. Einzige
Ausnahme ist das gewichtete Modell. Bei diesem werden mit Abstand die meisten Spiele
richtig getippt und die Rendite liegt bei über 13%. Obwohl beim Ansatz mit allgemeinen
Ergebniswahrscheinlichkeiten nun nicht mehr alle Spiele auf einen Heimsieg getippt wer-
den, schneidet dieses Modell auch bei der vorgestellten Betrachtungsweise sehr gut ab. Es
lässt sich eine Rendite von 12.7% erzielen.
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Ziel dieser Arbeit war es, verschiedene Ansätze zu betrachten, um die Spielstärke der Fuß-
ballbundesligisten in der Saison 2014/2015 zu modellieren. Zunächst wurde hierfür das
statischen Bradley-Terry Modell behandelt. Nach einer kurzen Vorstellung dieses Modells
wurde es zu einem ordinalen Modell erweitert. Zusätzlich wurde noch ein globaler und
ein teamspezifischer Heimeffekt eingeführt, welche getrennt voneinander zu betrachten
sind. Durch seinen Zusammenhang mit den generalisierten linearen Modellen konnte auf
die vorgestellten Modelle die bekannte goodness-of-fit Statistik sowie die Likelihood-ratio-
Statistik angewandt werden. Die Anwendung dieser Modelle zeigte, dass eindeutig ein
Heimeffekt für die verwendeten Daten existiert. Ein teamspezifischer Heimeffekt brachte
im Vergleich zu einem globalen Heimeffekt jedoch keine Verbesserung. Die geschätzten
Stärken der Mannschaften spiegelten die tatsächlichen Platzierungen der Mannschaften
zwar relativ gut wider, jedoch zeigten die quasi-Standardabweichungen auf, dass sich die
meisten Spielstärken nicht signifikant voneinander unterscheiden lassen. Dies warf die
Vermutung auf, dass die Spielstärken der einzelnen Mannschaften geclustert sein könnten.
Kapitel 4 beschäftigte sich daher mit dem Clustering der Spielstärken durch Regularisie-
rungsmethoden. Zunächst wurde hier das Ranking LASSO vorgestellt. Diese Methodik
belegt die Bradley-Terry Likelihood mit einem Strafterm für alle paarweisen Spielstärkeko-
effizienten. Dieser Strafterm ist eine Verallgemeinerung des fusionierten LASSO-Strafterms
von Tibshirani et al. (2005). Um keine inkonsistenten Schätzer zu erhalten, werden die
Inhalte des Strafterms stärker gewichtet als die Abnahme der Effekte. Ein Nachteil dieses
Vorgehens besteht darin, dass die Methodik erst angewandt werden kann, sobald jedes
Team nicht mehr jedes Spiel gewonnen oder verloren hat, da sonst die Spielstärken dieser
Teams als +∞ oder −∞ geschätzt werden. Bei einer Unterscheidung der Ergebnisse in
fünf Kategorien schwächt sich diese Bedingung etwas ab. Hier ist eine Modellierung
möglich, sobald jedes Team nicht mehr durchgehend dasselbe Ergebnis erzielt hat. Als
Auswahlkriterien für das Clustering werden das Akaike und das Bayessche Informati-
onskriterium verwendet. Bei Betrachtung des BIC als Auswahlkriterium und globalem
Heimeffekt lassen sich die Mannschaften in sechs verschiedene Cluster einteilen, wobei
diese teilweise sehr ähnlich sind, so dass eine Einteilung in vier Cluster vertretbar scheint.
Die ersten drei Cluster sind dabei von den vier stärksten Teams der Liga besetzt. Diese
Teams hatten sich in der abgelaufenen Saison deutlich von den restlichen Teams abgesetzt,
so dass diese Einteilung sinnvoll erscheint.
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In Kapitel 5 wurde nun versucht herauszufinden, ob sich die Spielstärke der Mannschaften
durch einzelne Kovariablen erklären lässt. Dazu wurde das Modell so erweitert, dass sich
Kovariablen, welche eindeutig einem Verein zugeschrieben werden können ins Modell mit
aufnehmen lassen. Zunächst beschränkte sich diese Erweiterung auf Kovariablen, welche
sich für jede Mannschaft über die Saison nicht verändern. Dies waren der Lizenzspiele-
retat und der Marktwert der einzelnen Mannschaften. Später wurde das Modell noch so
angepasst, dass auch spieltagsabhängige Kovariablen modelliert werden können. Diese
Erweiterung fand Anwendung bei der Betrachtung der durchschnittlichen Marktwerte der
Startaufstellungen der Mannschaften. Bei der Analyse der Ergebnisse für die erstgenannte
Erweiterung fiel auf, dass trotz Berücksichtigung der Marktwerte oder auch der Vereins-
budgets vier der ersten fünf Mannschaften der Abschlusstabelle als stärkste Mannschaften
klassifiziert wurden. Nur der FC Bayern München fällt hier ins Mittelfeld ab. Werden die
Marktwerte als unabhängige Variablen und die ermittelten Spielstärken als abhängige
Variablen betrachtet und führt mit diesen eine lineare Regression durch, so ist festzustellen,
dass sich über 55% der Streuung durch ein lineares Modell und fast 63% der Streuung
durch ein additives Modell erklären lassen. Daraus lässt sich schließen, dass die gewählte
Kovariable einen erheblichen Teil der Spielstärken der Mannschaften erklären kann. Bei
Verwendung der durchschnittlichen Marktwerte der Startaufstellungen als Kovariablen
gehört der FC Bayern München überraschenderweise trotzdem zu den stärksten Teams
bei den ermittelten Spielstärken. Dies lässt vermuten, dass diese Wahl der Kovariablen
eventuell doch nicht so geeignet ist. Bei Betrachtung eines Regressionsmodelles, wie gera-
de beschrieben, lassen sich jedoch fast 57% bei einem linearen Modell bzw. über 69% bei
einem additiven Modell der Streuung des Modells so erklären.
Ein anderer Ansatz legte einen exponential-gewichteten moving-average Prozess zur Mo-
dellierung der Spielstärke der einzelnen Mannschaften zugrunde und wurde in Kapitel 6
beschrieben. Bei einem solchen Ansatz werden wesentlich weniger Parameter geschätzt als
bei der zuvor vorgestellten Methodik. Daher ist das Ziel eines solchen Modells, Ergebnisse
zu erhalten, welche möglichst nahe an denen des klassischen Bradley-Terry Modells liegen.
Der Vorteil dieses Ansatzes liegt darin, dass dynamische Spielstärken für jede Mannschaft
erhalten werden. Für jede Mannschaft werden getrennte Spielstärken für Heim- und Aus-
wärtsspiele modelliert. Die Heimspielstärke lässt sich mit Hilfe eines Glättungsparameters
sowie der vergangenen Ergebnisse der Heimspiele einer Mannschaft iterativ ermitteln. Die
Auswärtsspielstärke ergibt sich äquivalent. Bei der Wahl von gemeinsamen Startwerten
für jede Mannschaft lassen sich bei den ermittelten Stärkekurven die Veränderungen
während der Saison gut erkennen. Bei individuellen Startwerten für jede Mannschaft sind
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diese Verläufe nicht zu erkennen. Die Spielstärke ergibt sich vor allem aus den Endplat-
zierungen der Vorsaison. Zum Vergleich der Modelle mit dem klassischen Bradley-Terry
Ansatz wurde der rank probability score eingeführt. Dieser gibt an, wie gut die geschätz-
ten Ergebnisse auf die tatsächlichen Daten passen. Für beide EWMA-Modelle finden sich
sowohl Argumente für als auch Argumente gegen ihre Anwendung. Ein Nachteil dieser
Betrachtungsweise ist die strikte Trennung zwischen Heim- und Auswärtsspielen. Es wäre
wünschenswert, wenn sich die getrennten Betrachtungen zu einem gemeinsamen Modell
zusammenfügen ließen. Ein weiterer Ansatz, um ein dynamisches Modell zu erhalten,
ist dem vorgestellten klassischen Ansatz aus Kapitel 3 sehr ähnlich. Durch Modellierung
der Spielstärken für jeden Spieltag einzeln ergibt sich bereits ein dynamisches Modell.
Zusätzlich wurden aber noch die Likelihoods mit Hilfe einer Kernfunktion gewichtet.
Somit sollen weiter zurückliegende Spiele weniger Einfluss auf die Spielstärke erhalten.
Um zu entscheiden, welche Bandbreite für die Kernfunktion gewählt werden soll, wurde
ein prädiktives Modell auf die Daten der Saison 2013/2014 angewandt. Durch den nun
gewählten Ansatz lässt sich der rank probability score deutlich verbessern. Auch die
Spielstärkenentwicklung der einzelnen Vereine über die Saison ist bei diesem Modell gut
erkennbar. Hier ist jedoch wieder zu beachten, dass sich vor allem zu Beginn der Saison
aufgrund der geringen Anzahl an Daten sehr hohe quasi-Standardabweichungen ergeben.
Eine signifikante Unterscheidung der Spielstärke der Mannschaften ist daher meist nicht
möglich.
Für einen Anwender ist von Interesse, wie gut die Modelle prognostizieren. Kapitel 7
beschäftigte sich daher mit der Prognose von Ergebnissen. Zunächst wurde der jeweilige
rank probability score ausgewählter Modelle miteinander verglichen. Hierbei konnten
nur kleine Unterschiede zwischen den Modellen festgestellt werden. Daher wurde an-
schließend für diese Modelle überprüft, wie gut sie Spielausgänge vorhersagen. Bei einer
Simulationsstudie schnitt dabei das Modell mit den gewichteten Likelihoods am besten
ab. Bei ausschließlichen Tipps auf die Heimmannschaft liegt die Zahl der durchschnittlich
getippten Spiele jedoch deutlich höher als bei diesem Modell. Aufgrund dessen wurde
getestet, wie hoch die Erfolgsquote bei Tipps auf das wahrscheinlichste vom Modell pro-
gnostizierte Ergebnis liegt. Dadurch wurde erreicht, dass sich die Trefferquote auf über
50% erhöht. Als Letztes wurden zusätzlich noch die Wettquoten für alle Spiele betrach-
tet. Da die Quoten für Heimsiege geringer sind als für Auswärtsspiele, wird vermutet,
dass sich trotz einer geringeren Anzahl richtig getippter Spiele durch gezielt platzierte
Wetten höhere Gewinne erzielen lassen. Bei einer Simulation von 10000 Durchgängen
konnte man feststellen, dass sich nur bei drei Modellen im Schnitt ein geringer Gewinn

66



8 Zusammenfassung und Diskussion

erzielen lässt. Die Schwankungen der Ergebnisse sind zusätzlich sehr hoch. Tipps auf den
wahrscheinlichsten Spielausgang lieferten bessere Ergebnisse. Bei vier Modellen beträgt
die Rendite etwa 7%. Ausschließliches Tippen auf Heimsiege führt zu einer Rendite von
12.5%. Wird zusätzlich die Rentabilität eines Tipps berücksichtigt, lassen sich die Renditen
deutlich steigern. Das beste in dieser Arbeit vorgestellte Modell weist eine Rendite von
über 16% auf. Bei ausschließlichen Tipps auf einen Heimsieg unter Berücksichtigung der
Rentabilität liegt die Rendite bei 28.9%. Eine Wettstrategie, bei der die Wetten nur nach
der größten Rentabilität platziert werden, verschlechtert für die meisten Modelle den
erwarteten Gewinn. Nur beim gewichteten dynamischen Modell kann so die Rendite auf
über 13% gesteigert werden. Abschließend sollen die Ergebnisse nochmals hinterfragt und
diskutiert werden.
Für die vorliegenden Daten lassen sich mit Hilfe der vorgestellten Modelle leichte Gewinne
durch gezielte Wetten erzielen. Da auch Wettanbieter ihre Quoten über statistische Model-
le modellieren, welche wesentlich komplexer sind als die in dieser Arbeit vorgestellten
Modelle mit maximal einer Kovariablen, kann angezweifelt werden, dass die Modelle
allgemeingültig sind und auch für zufünftige Partien gute Ergebnisse liefern. Es ist jedoch
trotzdem überraschend, dass das Modell mit Berücksichtigung der Startaufstellungen
keine besseren Ergebnisse liefert als die anderen Modelle, da hier eigentlich für jedes Spiel
zusätzliche Information zur Verfügung steht. Dies könnte wohl vor allem an der Wahl des
BIC-Kriteriums bei der Clusterbildung liegen. Dieses ist sehr restriktiv und wird daher nur
wenige Cluster erzeugen. Durch die Einteilung in Cluster weist das Modell sehr ausgegli-
chene Ergebniswahrscheinlichkeiten aus. Daher beraubt sich das Modell klarer Aussagen.
Ebenso kann die Wahl der Kovariablen hinterfragt werden. Die in dieser Arbeit benutzten
Kovariablen beruhten hauptsächlich auf Schätzungen, welche hohe Fehler aufweisen
können. Interessant wäre ebenfalls, eine Verbindung zwischen den einzelnen Modellen
herzustellen, wie zum Beispiel zwischen den gewichteten Likelihoods und verschiedener
zusätzlicher Kovariablen.
Die Modellierung von Sportereignissen ist ein sehr weites Feld, in welchem sich stän-
dig neue Möglichkeiten ergeben und welches sich in den nächsten Jahren wohl stetig
weiterentwickeln wird. Besitzt man noch zusätzliches Insiderwissen wie Matthew Ben-
ham, so kann mit statistischer Modellierung im Sportbereich auch sehr viel Geld verdient
werden.
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A Verwendete Software

Alle für diese Arbeit durchgeführten Analysen wurden mit der statistischen Softwa-
re R (RCoreTeam (2016)) durchgeführt. Zur Modellierung der Koeffizientenschätzer in
Kapitel 3 wurde das Softwarepaket ordBTL (Casalicchio (2013)) verwendet. Die quasi-
Standardabweichungen konnten mit Hilfe des Paketes qvcalc (Firth (2015)) ermittelt wer-
den. Zur Identifizierung von Clustern sowie der Erweiterung des Modells für erklärende
Variablen diente ein von Gunther Schauberger zur Verfügung gestellter Code als Grund-
lage. Zur Ermittlung des Zusammenhangs zwischen den ermittelten Spielstärken und
den erklärenden Variablen wurde das Programmpaket mgcv (Wood (2015)) verwendet.
Der Programmiercode für die von Cattelan et al. (2013) durchgeführten Analysen ist im
Internet frei zugänglich und diente als Ansatz für die Anwendungen der in dieser Arbeit
betrachteten Daten. Sie stehen auf der Internetseite
http://www.blackwellpublishing.com/rss

zur Verfügung. Um Kernfunktionen zur Gewichtung der Likelihoods verwenden zu kön-
nen wurde mit dem Paket gplm (Mueller (2014)) gearbeitet. Zur Aufbereitung der Daten aus
der Saison 2013/2014 war das Paket plyr (Wickham (2015)) nötig.
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B Anhang

Cluster Mannschaften Spielstärke
1 FC Bayern München 0.64
2 VfL Wolfsburg 0
3 Borussia Mönchengladbach -0.05
4 Bayer 04 Leverkusen -0.27
5 Borussia Dortmund -1.04
6 FC Augsburg, FC Schalke 04 -1.06
7 1.FC Köln, 1.FSV Mainz, Eintracht Frankfurt -1.15
8 1899 Hoffenheim, SC Freiburg, Werder Bremen -1.16
9 Hamburger SV, Hannover 96, Hertha BSC Berlin -1.17

VfB Stuttgart
6 SC Paderborn -1.43

Tabelle B.1: Cluster der Spielstärken bei globalem Heimeffekt unter Verwendung
des AIC-Kriteriums
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Abbildung B.1: Koeffizientenpfade bei globalem Heimeffekt unter Verwendung ei-
nes adaptiven L1-Strafterms und drei Kategorien für die Ergebnisse
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Cluster Mannschaften Spielstärke
Heimstärke
1 FC Bayern München 1.06
2 VfL Wolfsburg 0.52
3 Borussia Mönchengladbach 0.45
4 Bayer 04 Leverkusen 0.18
5 Borussia Dortmund, Schalke 04 -0.33
6 Eintracht Frankfurt, FC Augsburg -0.34
7 1.FSV Mainz 05 -0.54
8 TSG Hoffenheim -0.55
9 SV Werder Bremen -0.80
10 1. FC Köln,Hamburger SV, Hertha BSC, SC Freiburg -0.86
11 Hannover 96, SC Paderborn 07 -1.12
12 VfB Stuttgart -1.20
Auswärtsstärke
1 FC Bayern München 0.72
2 VfL Wolfsburg 0.00
3 Borussia Mönchengladbach -0.08
4 Bayer Leverkusen -0.35
5 1.FC Köln -0.93
6 Borussia Dortmund -1.18
7 FC Augsburg, Hannover 96, VfB Stuttgart -1.19
8 1.FSV Mainz 05, Hertha BSC Berlin, SC Freiburg, SV Werder Bremen -1.20
9 FC Schalke 04 -1.22
10 TSG 1899 Hoffenheim -1.40
11 Eintracht Frankfurt, Hamburger SV, SC Paderborn 07 -1.52
Heimvorteil
1 Eintracht Frankfurt 1.18
2 FC Schalke 04 0.89
3 TSG 1899 Hoffenheim, Borussia Dortmund, FC Augsburg 0.85
4 1.FSV Mainz 05, Hamburger SV 0.66
5 Bayer 04 Leverkusen, Borussia Mönchengladbach 0.53
6 VfL Wolfsburg 0.52
7 SC Paderborn 07, SV Werder Bremen 0.40
8 FC Bayern München, Hertha BSC Berlin, SC Freiburg 0.34
9 1.FC Köln, Hannover 96 0.07
10 VfB Stuttgart -0.01

Tabelle B.2: Cluster der Spielstärken und des Heimvorteils bei teamspezifischem
Heimeffekt unter Verwendung des AIC-Kriteriums
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Abbildung B.2: Koeffizientenpfade bei teamspezifischem Heimeffekt unter Verwen-
dung eines adaptiven L1-Strafterms und drei Kategorien für die Ergebnisse
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Mannschaft Etat MW 23.10.2014 MW 01.02.2015
FC Bayern München 160 564.35(27) 544.05(25)
VfL Wolfsburg 75 174.45(28) 163.30(26)
Borussia Mönchengladbach 38 119.40(26) 128.65(26)
Bayer 04 Leverkusen 55 176.85(26) 179.30(24)
FC Augsburg 19 42.85(31) 47.55(31)
FC Schalke 04 78 208.25(31) 224.80(29)
Borussia Dortmund 73 344.45(30) 349.55(30)
TSG 1899 Hoffenheim 35 122.15(30) 116.65(27)
Eintracht Frankfurt 34 76.15(29) 73.98 (29)
SV Werder Bremen 30 55.00(27) 50.03(29)
1.FSV Mainz 05 29 79.05(30) 80.40(31)
1.FC Köln 25 41.25(25) 37.45(23)
Hannover 96 39 69.00(32) 73.93(33)
VfB Stuttgart 42 98.80(28) 95.25(28)
Hertha BSC Berlin 31 74.60(29) 70.85(27)
Hamburger SV 46 80.10(29) 78.50(30)
SC Freiburg 19 52.60(26) 54.85(26)
SC Paderborn 07 17 22.35(28) 24.95(28)

Tabelle B.3: Lizenzspieleretats und Marktwerte der einzelnen Vereine in Millionen
Euro. In Klammern ist die Anzahl der gemeldeten Spieler des Vereins angegeben
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Abbildung B.3: Koeffizientenpfade der Spielstärke bei globalem Heimeffekt und
dem durchschnittlichen Marktwert zu Saisonbeginn und zu Beginn der Winterpause
als erklärende Variable
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Abbildung B.4: Spielstärkeentwicklung der restlichen Mannschaften mit Unterschei-
dung zwischen Heim (durchgezogene Linie)- und Auswärtsspielstärke (gestrichelte
Linie) bei gemeinsamen Startwerten
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Abbildung B.5: Spielstärkeentwicklung der restlichen Mannschaften mit Unterschei-
dung zwischen Heim (durchgezogene Linie)- und Auswärtsspielstärke (gestrichelte
Linie) bei individuellen Startwerten
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Abbildung B.6: Geschätzte Spielstärkekoeffizienten der restlichen Mannschaften bei
gewichteter Likelihood vom 3. bis 34.Spieltag
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C Inhalt der CD

Auf beigelegter CD befinden sich folgende Ordner und Dateien:

• Ordner Masterarbeit:
Enthält die angefertigte Masterthesis im .pdf-Format

• Ordner R:
Enthält alle mit der Software R durchgeführten Analysen und ist in folgende Unter-
ordner unterteilt:
- Daten
- Datenaufbereitung
- Funktionen
- Grafiken
- Modelle
- Prädiktion
- workspaces
- startcode.R

• Die Datei ReadMe.txt enthält zusätzlich die Beschreibungen aller R-Codes welche
sich in den einzelnen Unterordnern befinden.
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