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Abstract

In a large scale analysis to investigate the abundance of the common eider in
Massachusetts, a hurdle model was fitted to handle excess zeros, overdispersion,
nonlinearity and spatiotemporal structures. The number of birds was estimated
via boosting generalized additive models for location, scale and shape (GAMLSS),
allowing both mean and overdispersion to be regressed on covariates and incorpo-
rating variable selection.

An increasingly popular way to obtain stable sets of covariates while controlling
the false discovery rate (FDR) is stability selection. The model is fitted repeatedly
to subsampled data and variables with high selection frequencies are extracted.
Currently, this leads to a fundamental problem with boosted GAMLSS, where in
every boosting iteration, the algorithm sequentially selects the best fitting effect
for each distribution parameter. Thus, it is currently not possible to stop fitting
individual parameters as soon as they are sufficiently modeled.

In order to solve this problem, we developed a new approach to fit boosted
GAMLSS. Instead of updating all distribution parameters in each iteration, only
the update of the parameter which leads to the biggest reduction in loss is per-
formed. With this modification, the stability selection framework can be applied.
Furthermore, optimizing the tuning parameters of boosting is reduced from a mul-
tidimensional to a one-dimensional problem.

The performance of the algorithm is evaluated in a large-scale simulation study and
the application is demonstrated for the seabirds data, selecting stable predictors
while controlling the FDR.
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1 Introduction to boosting

”Garnering wisdom from a council of fools”

This quote by Schapire and Freund [2012] grasps the idea behind statistical boosting
in one sentence. The fools in this case are so called (weak) base-learners, which
are combined to estimate complex statistical dependencies. They are weak in the
sense, that they only possess moderate prediction accuracy, but on the other hand
are easy and fast to fit.

One base-learner by itself will most likely not be enough to answer a statistical
question, but if a large number is combined in a smart way, they can compete with
advanced and complex model classes.

Some examples for base-learners are linear regression models, stumps of regression
or classifcation trees or nonlinear functions like P or B-splines [Eilers and Marx,
1996].

1.1 Boosting - Why?

In a standard regression model, the number of observations n has to be larger
than the number of possible covariates p. If this is not the case, X' X, with X as
the designmatriz of the data @, can’t be inverted and standard fitting algorithms
cannot be applied. These are so called p > n problems.

An area of research where this kind of data is very widespread, is the analysis of
biometric data. For example the ARCANE dataset used in Guyon et al. [2004],
consists of mass-spectrometric data of 900 patients with 10000 covariates. A gen-
eral introduction to p > n problems, especially in biometric research, can be found
in Van De Geer et al. [2004].

Boosting can handle these p > n situations, because each base-learner only takes
a small number of covariates (in most cases just one) and thus can be easily fitted
to the outcome. Combined, the base-learners have the ability to model complex
nonlinear data even when the number of observations is small compared to the
number of covariates.

In these situations with a large number of covariates, it is often in the interest of
the scientist to identify a subset of covariates to model the response variable. This
step is especially important the case of p > n situations, but should not be ignored
situations where a large enough number of observations is available as well.

The boosting methodology is a method for intrinsic variable selection. In each
step, only the best fitting base-learner is chosen to be updated. In most cases
one base-learner directly corresponds to a covariate, so it is possible to directly
measure the influence a covariate has on the model accuracy. Variables with no
influence will (ideally) never be included in the update and thus are dropped from
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the model.

Using only a subset of the best variables has some major advantages: (a) the model
is easier and faster to fit, (b) the prediction quality of the model can be improved,
(c) a better interpretation of the model is possible, and (d) it will most likely be
easier and cheaper to obtain additional data, which can be required if the model
fit is not sufficient.

The concept of boosting is wildly used and can be expanded in different ways,
compare for example Mayr et al. [2014]. One extension is to apply it to multidi-
mensional prediction functions as we will see in Chapter 2. The concept of variable
selection can be expanded with stability selection, which is shown in Chapter 3. A
combination of both approaches and their complexity is discussed in Chapters 4
to 6.

1.2 Boosting - How?

Generally we want to model a response variable Y = y,...,y,, by a set of covari-
ates x. Each covariate x;, j = 1,...,p consists of n observations ®; = 1, ..., Zjn.
The designmatrix X consints of all p covariates as well as an constant intercept
term: X = (1,xq,...,2p).

The relation of the covariates to the response can be represented by an additive
predictor n:

n(X) = 50+ij(wj)> (1)

where [y is the intercept coefficient and f;(-) are functions of the different covari-
ates.
The relation between the expected value of Y and 7 is specified via the link func-

tion g(-):

n(X) = g(E(Y)). (2)

The simplest form for the f(x;)’s are linear effects f(x;) = f;x;. With an adequate
response distribution the model represents a Generalized Linear Model (GLM)
[McCullagh and Nelder, 1989]. For other forms of base-learners, e.g. P-splines [Eil-
ers and Marx, 1996], the model class is called Generalized Additive Model (GAM)
[Hastie and Tibshirani, 1990].

To fit such a model, we want to minimize the empirical risk:
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R=" ol (@), )

where @; is a vector of the i’ts elements of every covariate vector and p(-,-) is the
loss function, which measures the discrepancy between the true value of Y and
the estimation based on X.

This can be the absolute or quadratic difference, as well as the negative log-
likelihood of an arbitrary distribution family of Y, depending on the desired model
[Friedman et al., 2000].

Here, a boosting approach can be utilized: Friedman [2001] showed, that to mini-
mize the empirical risk (3), it is sufficient to sequentially add base-learners h(z;)
to the model in a greedy way. This means, that in each iteration a base-learner
is added to the model, without adjusting the parameters of base-learners that al-
ready have been added.

This boosting approach can be used to estimate Equation 1.

The estimated additive predictor 7 at iteration m can be written as:

A = i b ), (4)

with 0 < v < 1 as the learning rate or shrinkage parameter. That is, in one step of
the iterative fitting, only a small margin of the actual base-learners is added to the
model. This is useful to prevent the model from overfitting the data and develop
bad prediction accuracy on new observations. The choice of v is not of critical
importance as long as it is chosen small enough [Schmid and Hothorn, 2008|.

To fit the model, a single base-learner has to be selected in every step of the fitting
process. There are several different ways to fit and select base-learners. The idea
of gradient boosting is to calculate the negative gradient of the loss function,

w=—2oyn) (5)

an

and subsequently fit each base-learner separately to u instead of the data directly.
For this linear base-learner in a GLM setting, the estimation can be done via least
squares. For smooth base-learner in a GAM setting penalized least squares has to
be used, compare for example Eilers and Marx [1996].

The negative gradient has a similar form to the residuals in a classic regression
setting (in case of a square loss, they are actually identical) and are consequently
named pseudo residuals. The best base-learner is then selected based on the min-
imization of the quadratic loss:

n

D (s = hy(xi)*. (6)

i=1
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Because of the quadratic loss this process is identical to the minimization of the
residual sum of squares (RSS) criterion. Consequently this means, that Equation
6 can be fitted with the least squares criterion, regardless of the actually used loss
function. In other words, the loss function p does no need to be identical to the
quadratic-loss of the RSS.

The algorithm of component-wise gradient boosting fitting is shown as Algorithm
1. After initialization, the algorithm follows the steps described above. The nega-
tive gradient is computed, the base-learners are fitted to the negative gradient, the
best base-learner is selected via Equation 6 and then added to the set of already
calculated base-learners.

This process represents an optimization of the empirical risk (Equation 3) by steep-
est gradient descent in function space [Friedman, 2001], [Bithlmann and Hothorn,
2007).

1.2.1 The importance of early stopping

Considering Algorithm 1, it can be seen, that additional to the loss function p(,-)
and the base-learner h;(x), one more hyperparameter has to be specified: The
number of iterations ms,p. As mentioned the choice of the learning rate is not re-
ally important as long as it is chosen small enough. Depending on the base-learner,
additional hyperparameters can be required as well, for example the degrees-of-
freedom in B or P-splines.

The number of iterations has a crucial influence on the performance of the model.
If the number of iterations is too small, the model cannot fully grasp the influence
of the covariates on the response and will consequently have a bad performance.
On the other hand, too many iterations will result in overfitting the model. This
means that the model tries to explain the random error in the data, instead of
only the influence of covariates on the response. Generally, the model will predict
observations used to fit the model very well (the risk, Equation 3, will be small),
but new observations will be predicted very poorly.

To avoid overfitting, cross-validation can be used to evaluate the model. The
model is estimated only on a subset of the existing data (the training set) and
evaluated on the remaining observations (the test set). This process is repeated
multiple times with different training and test sets to evaluate the model for dif-
ferent mgop. Thus, the optimal choice of mgp, is based on the performance on
data points that are not used to fit the model, so that the model is less likely to
overfit.

Different resampling approaches can be applied via the out-of-bag (OOB) risk:
Bootstrapping means to use B samples of size n, drawn with replacement from the
data to estimate the model and evaluate it on the data not sampled. K-fold cross-
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Algorithm 1 Component-wise gradient boosting, Mayr et al. [2014]

e Initialization:

— Set 1)

[0]

%

to an offset value

— Specify a set of base-learners hy(z1),...,hs(z;) where J is the number

of different base-learner (note that for each covariate more than one

base-learner can be used).

e For m =1 to Mggop:

1.

Compute the negative gradient u; of the loss function p(y;, n;), evaluated

at the previous iteration:

) _ _ O
uz 8771 p(yw,rh) Wi:ﬁl[m_l]

Fit each base-learner to the negative gradient vector w” with (penal-

ized) least squares estimation:

ul™ P B ) for =1,

Select the base-learner j* that minimizes the RSS:

j* = argmin Z(ugm} - ﬁg-m}(a:j))Q
1

1<5<7 2
Update the additive predictor 7 with the selected base-learner:

i ==ty ()
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validation is the process of splitting the data in K fractions and fit the model on
all but one fraction, which is then used to measure the model performance. This is
repeated for every of the K fractions. Subsampling is similar to the bootstrap ap-
proach, but samples are drawn without replacement and the sample-size is smaller
than n.

Choosing the optimal number of iterations via resampling procedures will most
likely result in early stopping of the fitting process and shrinkage of the coefficients.
This means, that the resulting coefficients are smaller than the true coefficients or
even zero. This early stopping rule generally results in better prediction accuracy
than if the algorithm is run until convergence [Mayr et al., 2012b]. Here the intrin-
sic variable selection mechanism of boosting can be observed, as non-informative
variables will most likely be not included in the model.

1.3 Example: Seabird populations

In a large scale analysis by Smith et al. [2016], the abundance of wintering sea
ducks in Nantucket Sound, USA, was investigated and their implications for marine
spatial planning, especially for offshore wind energy developments (OWED) was
assessed.

The study was conducted between 2003 and 2005. The research area was split
in 2.25m? segments, see Figure 1. The spatial and temporal variation of three
different species was investigated: Common eider, long-tailed duck and scoter.
For the following analysis only the common eider is considered.

The data was collected by counting seaducks on multiple aerial strip transects
with a small plain. The researchers were interested in variables that explain the
distribution of the common eider in the examined area.

A two-step hurdle model [Mullahy, 1986] was used. In a first step it was estimated
if a segment is populated at all (occupancy model). For all populated areas the
abundance was estimated (conditional abundance model). In this introductory
example only the occupancy model will be considered. In Chapter 7 the conditional
abundance model is estimated.

To answer the question whether a given segment will be populated at all, the
response variable has to be discretized. All segments with at least one observed
common eider are marked populated (1) and segments with a count of zero are
assumed unpopulated (0). This results in a binary classification problem and thus
can be fitted with a binomial loss:

ply.n(@)) = —ylog (m) —(1=y)log (1 - m) -0



12 1.3 Example: Seabird populations

Cape Cod
|
| I
Tl
14 i
Il | | | [
] [ [0 IN |
PN RN
] |
l il
I |
S ae sruar
Manha's {} Nﬂ:_‘ u ﬁ
Vineyard £ H ]
| | \
A T
* EEE I
0 5 10 20 km Nantucket

Figure 1: Area of research of the seabird study

A large number of biophysical variables had to be considered as potential predictors
(compare Table 4 in Chapter 7). These can be classified into three groups: 5
temporal predictors (T), like the date or the North Atlantic Oscillation index, 11
spatial predictors (S), like the sediment grain size or the sea floor surface area, and 5
spatio-temporal (ST) predictors such as different water temperature measurements
and the effect of the actual surveyed area.

All of these effects can either be linear or nonlinear in their influence. These effect
types can be intrinsicly selected with an approach by Kneib et al. [2009]. The
main idea is to deconstruct a smooth base-learner in a linear part and smooth
part which captures the deviation from linearity [Fahrmeir et al., 2004]. We assign
the same degrees of freedom for both base-learners to reduce selection bias, [Hofner
et al., 2011]. In case of a linear and a smooth base-learner, selection bias means,
that smooth base-learners will be preferred due to their higher flexibility. With
this approach 48 different base-learners can be selected by the boosting algorithm.
For the smooth base-learners centered P-splines with one degree of freedom are
used. The linear base-learner are simple linear regressions of the form g;x;, that
are fitted without an intercept term.

The model is fitted with a learning rate v of 0.3 and the model quality is evaluated
with the OOB risk determined by 25-fold subsampling (Figure 2). Even though
the learning rate is chosen relatively high, no overfitting can be observed. In
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Figure 2: OOB risk of the the population model for up to 10000 iterations. No

overfitting is present

principle even more iterations could be performed, but the improvement in the last
iterations is only around 0.017. Out of the 48 possible predictors 42 are included
in the boosting model. The selected variables and their importance are shown
in Figure 3. The importance of a base-learner is defined as the relative overall
loss reduction gained by a respective base-learner [Friedman, 2001]. More than
half of the reduction in loss is based on the smooth spatial term of the measured
segment. All other base-learners have a way smaller influence, with a smooth term
of the sediment grain size (meanphi) as second most important base-learner with
an relative importance of 6.5%. The full variable names and descriptions can be
found in Table 4.

As can be seen, this is a rather large model with hardly any variable selection. This
hampers the interpretability a lot. One possible way to obtain a sparser model is
stability selection, which is introduced in Chapter 3 and applied to the population
model in Chapter 3.1.
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2 Component-wise gradient boosting in multiple

dimensions

The framework of component-wise gradient boosting, which was introduced in
Chapter 1, can be expanded to multidimensional prediction functions, as shown
by Schmid et al. [2010]. Until now, we assumed that the conditional distribution
of the response variable Y depends on only one parameter, usually the mean, or
if the distribution has multiple parameter, all but one are constant.

For example in a regression setting with an assumed normal distribution, the lo-
cation parameter u; depends on the observation ¢ and possibly a set of covariates,
while the scale parameter o; is assumed to be constant o; = o.

Such an assumption cannot always be made and should be critically examined.
One case in which the assumption of constant parameter(s) is not adequate, is if
the data features heteroscedasticity. If the homoscedasticity assumption holds, the
range in which the response varies should be similar for all possible values of .
As seen in Figure 4, the variance of y shows a strong trend. In the left panel no
influence of X; on the range of the data can be seen. On the right panel, with
larger values of X; the range of y increases. Such a behavior may be explained
with covariates, just like the distinction in the location parameter for different
observations.

When there is a dependency between the scale parameter and possible predictors, it
can be modeled in a similar way to the conditional mean (i.e. location parameter).
The prediction function 7, is analogous to Equation 1:

g(al) = Noyi = ﬁO,U + Z fjd(xj)' (8)
j=1

To distinguish between the different prediction functions they are indexed with
their corresponding parameter. The same idea applies, if different distribution
parameters or higher moments, like the shape v or kurtosis 7, are modeled.

One case where the skewness of the distribution changes is the age and body
mass index (BMI) measurement of 7482 Dutch boys by Fredriks et al. [2000]. The
measurements are visualized in Figure 4. It can be seen, that the skewness of the
distribution increases with age of the boys. Older boys have a tendency for more
extreme values in one direction (higher BMI) and less in the other (lower BMI).
One last, but important example is handling count data with overdispersion and/or
large amount of zeros. We will see this in the analysis of the abundance of the
common eider in Chapter 7.
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Figure 4: Data with heteroskedasticity (right) and without (left)

2.1 Generalized additive models for location scale and shape

(GAMLSS)

The framework to fit different prediction functions to multiple distribution pa-
rameters was developed by Rigby and Stasinopoulos [2005]. Given a conditional
density f(y;]0;), the idea is to fit multiple equations, similar to Equation 1:

Pk
Mo, = Boo, + Y fio(w),  k=1,....d (9)
j=1

for each distribution parameter #;. In principle the vector of distribution param-
eter @ = (01,...0,4) can be an arbitrary large vector of distribution parameters.
Yet, in practical applications more than four are not recommended, [Rigby and
Stasinopoulos, 2005]. The four distribution parameters @ = (61, 65,63, 6,) will be
called location (u), scale (o), shape (v) and kurtosis (7), in this exact order for
the rest of this thesis. Even though the actual parameters may include for ex-
ample the degrees of freedom of a t-distribution or an zero-inflation parameter
for zero-inflated count models. Subsequently the distribution parameter can be
written as 6; = (u;, 0;, V3, 7;). This model class is called generalized additive model
for location, scale and shape (GAMLSS), because of the additive structure of the
predictor (Equation 9) and the fitting of different distribution parameters.
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Figure 5: BMI and age measurments of 7482 dutch boys

To link the linear predictors to the estimated distribution parameters, multiple
link functions gx() similar to Equation 2, have to be specified. The inverse link
function of the corresponding additive predictor results in the estimated distribu-
tion parameter:

i = 9;1(77“)
0y = 9;1(770>
v; =g, (1)
7 =g, ' (71r)

For example, the link functions in a GAMLSS model with normal distribution are
gu(7) = 2 and g,(v) = exp(z).
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Typically these models are estimated via penalized likelihood. For details on the
fitting algorithm see Rigby et al. [2008]. Even though these models can be applied
to a large number of different situations, such as risk management [Scandroglio
et al., 2013], public health [Rees et al., 2010] or biometric applications [Fenske
et al., 2008], they inherit some shortcomings based on the estimation method:

(1) It is not possible to estimate models with a larger number of covariates than
observations. As mentioned in the introduction these problems often occur
in biometric research.

(2) Ome important step in (almost) every statistical model is a correct selec-
tion of relevant covariates. Unfortunately, maximum likelihood estimation
does not have an incorporated way for variable selection. There are different
ways to achieve variable selection after fitting the model, like Akaikes infor-
mation criterion (AIC) [Akaike, 1974], or the Bayes information criterion
(BIC) [Schwarz et al., 1978]. For GAMLSS models the standard AIC has
been expanded to the generalized AIC (GAIC) by Rigby and Stasinopoulos
[2005] to be applied to multidimensional prediction functions, see Equation 9.

(3) In a GAM setting the question, which predictors to model linear or nonlin-
ear, is not trivial. Unneeded smooth terms increase the complexity of the
model as well as the computation time. Similar to the problem of variable
selection, the GAIC criterion has to be used to choose between linear and
nonlinear terms.

All of these problems can be addressed with a different fitting approach, similar
to the component-wise gradient boosting approach shown in the introduction.

2.2 Boosting GAMLSS

To fit multiple prediction functions 7, 7., 1,, 7 at once, the algorithm for gradient
boosting has to be expanded.

The first idea that may come to mind is to optimize every parameter independently
of each other with the standard Algorithm 1. While this may give good results
for particular cases, it is a bad idea overall. For a lot of cases the gradients to
which we fit the base-learners cannot be viewed without consideration of the other
distribution parameters. Even if we look at a simple example with the normal
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distribution, the gradients of f(x|u, o) are

of (z|p,0) (z —p)

o o flp, o). 1)
af(cg\:,a) = O o), (11)

The calculation for the both gradients is found in the Appendix Chapter 10.1,
Equation 18 and 19. Each gradient contains pu and o, so they cannot be fitted
independently of each other.

Based on an approach of Schmid et al. [2010] to fit zero-inflated count models,
Mayr et al. [2012a] developed a general purpose algorithm to fit multidimensional
prediction functions with component-wise gradient boosting. The idea is to cy-
cle through the distribution parameters in the fitting process, instead of fitting
each parameter independently of the others. In one iteration of the algorithm, a
base-learner is fitted to each distribution and the updated parameters are directly
plugged in the gradients of the others. While updating one parameter, all others
are viewed as offset or nuisance parameters in the gradient.

For a four dimensional prediction function @ = (u, o, v, 7) the fitting process looks
like this [Mayr et al., 2012a]:

8 u ate
a_p(y,ﬂ[m]’ﬁ[m],ﬁ[m],f—[m}) pdat 1l — e
Um
dp
o,
dp
on,
dp
on

(y, a1 glml plml 2 ml)y updage pm+ll — glim+l

( Jﬂ[erl},a_[m+1],ﬁ[m],7:[m}) updage nl[/m+1] . plm+1]

(y, plm 1] glm+1] plms) 2] update gl — plmt1]

where m is the previous iteration and p the specified loss function.

At the beginning of the fitting process, each predictor has to be set to an initial
value. This can be the empirical mean for %, the sample variance for 61 or
generally a constant value ¢ with property:

iy = argmin »  p(y;, g, = c) (12)

=1

The full algorithm is can be found as Algorithm 2 and it is visualized in Figure 6.
After initialization, the algorithm cycles through the distribution parameters and
adds a base-learner to each prediction function in a similar fashion than Algorithm
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Figure 6: Cyclical fitting algorithm as defined in Mayr et al. [2012a]. The high-

lighted boxes represent the selected base-learners which yield the up-

dated prediction function and consequently the estimated distribution

parameter. The dashed lines shows the usage of the updated parameters

as nuisance parameters in the succeeding parameters.

1. Separate stopping values for each distribution parameter have to be specified
as Mstop = (Mstop,1, Mstop,2; Mstop,3, Mstop,4)- L his is required because the predic-
tion functions will most likely require different levels of complexity and therefore

varying numbers of iterations to be optimal.

The main characteristic feature of the presented algorithm is its property of cycling
through all distribution parameters in one iteration. In view of other algorithms
that will be introduced later, this one will be called cyclical fitting throughout the
thesis. A nice property of GAMLSS is, that a seperate set of covariates can be
specified for each additive predictor and consequently each distribution. In com-
bination with the internal variable selection in the boosting algorithm, the most
relevant covariates for each distribution parameter can be found. This can give
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Algorithm 2 Component-wise gradient boosting in multiple dimensions by Mayr

et al. [2012a]

Initialize

(1) Initialize the additive predictors 77;[2-]7 77([701.], 771[2], ﬁg.)] with offset values. Set the

iteration counter m = 0

(2) For each distribution parameter 0,k = 1,...,4 specify a set of base-learners:
i.e. for parameter O: hyi(:),..., hip, (-),k =1,...,4, where py is the cardinality

of the set of base-learners specified for 6.
Boosting in multiple dimensions
(3) Start a new boosting iteration: increase m by 1 and set k := 0.

(4) (a) Increase k by 1.

If m > mgiop i set ﬁgz] = ﬁgz_l] and skip this iteration.

Else compute negative partial derivative —% p(yi, m;) an plug in the current
k

estimates m; = (i, gk T ):

m] _ (O
’Ll,k, _(67)9 P(%ﬂ?z))

k

‘ —plm=1]
i=1,..,n 1=

(b) Fit the negative gradient vector ugn] to each of the base-learners contained

in the set of base-learners specified for the predictor 7, in step (2).

(c) Select the component j* that best fits the negative partial-derivative vec-
tor according to the leas-squares criterion, i.e. select the base-learner fy ;-

defined by

Alm] _ Alm—1]

o, = T, +o- R,

(e) Iterate steps 4(a) to 4(d) for k =2,...,4.
Iterate

(5) Iterate steps 3 to 4 until m > mgop s for all k =1,...,4
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interesting insights in hidden dependencies for the researcher. A covariate can for
example have a relevant influence on the variance of the data but not on the mean.
We will see this behavior in the seabird dataset in Chapter 7.

The optimization of one stopping value was shortly discussed in Chapter 1.2.1.
In case of multi-dimensional boosting the same techniques are applied but the
optimization gets considerably more difficult. The different mg,, values are not
independent of each other and the number of configurations to check in a grid
search is growing exponentially with each additional distribution parameter. For
example a grid with 5 possible settings for 2 parameters requires to check 25 com-
binations, with 3 parameters 125 combinations have to be examined and for 4
parameters over 600.

With boosting, the problem requires a bit less computational power, because a
whole path of iterations from 1 to msep is returned, but the computational effort
is still high.

One solution would certainly be to use more efficient methods like model based op-
timization [Jones et al., 1998], but a different approach was utilized in this thesis.
In Chapter 5 a way of fitting boosting GAMLSS models is introduced, with this al-
gorithm the optimization of the stopping iterations is reduced to a one-dimensional
problem, independent of the number of distribution parameters to fit.
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Function Description

bols(x) Linear effect 7 8 with intercept (dummy coding for factors)
bols(x, by = y) Linear effect interaction

bbs (x) Smooth P-spline

bbs(x, by = z) Varying coefficient

bbs (x) Smooth P-spline

bspatial (x) Spatial effect: tensor product P-spline

bmrf (x) Discrete spatial effect: Markov random field

brandom(x) Random intercept

brandom(x, by = x) Random slope

Table 1: Overview of the most important base-learners in mboost

2.3 Implementation

The algorithm developed by Mayr et al. [2012a] is implemented in gamboostLSS
[Hofner et al., 2015a] as a package for the R language for statistical computing [R
Core Team, 2015]. The implementation is based on the popular package mboost
[Hothorn et al., 2010, 2015] for component-wise gradient boosting. Essentially,
a gamboostLSS model is a combination of multiple mboost objects, one for each
distribution parameter. While fitting the models, the fit of one mboost model is
iteratively written in the nuisance value(s) of the remaining model(s).

This implementation allows the usage of the full mboost framework. Among others,
linear and nonlinear base-learners, spatial or random effects can be used out of the
box. An overview of the most important base-learners can be seen in Table 1.
Additionally, a lot of different distributions and regression models are built in
gamboostLSS; see Table 2. Distributions used in the gamlss package can be con-
verted with as.families() to distributions that gamboostLSS understands. The
number of supported distributions is further increased by the package gamlss.dist
[Stasinopoulos et al., 2015], which contains even more distributions.
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Function Distribution Parameters
GaussianLSS()  Normal distribution 2
GammaLSS () Gamma distribution 2
StudentTLSS()  Student’s distribution 3
NbinomiallLSS() Negative binomial distribution 2
WeibullLSS() Weibull distribution 2
LogLogLSS() Log-logistic distribution 2
LogNormallLSS() Log-normal distribution 2
Additional distributions via as.families() in gamboostLSS

GTQO Generalized Student’s distribution 4
BCT() Box-Cox Student’s distribution 4
GUQ) Gumbel distribution 2
RG() Reverse Gumbel distribution 2
IGAMMA Q) Inverse Gamma distribution 2
ZAGAQ) Zero adjusted Gamma distribution 3
IGO Inverse Normal distribution 2
BCCG() Box-Cox Cole and Green distribution 3
PARET02() Pareto type 2 distribution 2
BCPE() Box-Cox power exponential distribution 4
BE() Beta distribution 2
BEINF () Beta inflated distribution 4
BB() Beta Binomial distribution 2
ZINBI() Zero inflated negative binomial distribution 3
SIO Sichel distribution 3
DEL () Delaporte distribution 3

Table 2: Overview of supported distributions in gammboostLSS
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3 Stability selection

As mentioned in Chapter 1.1 of this thesis, selecting an optimal subset of explana-
tory variables is a crucial step in almost every data analysis problem. Especially
in situations with a large number of covariates it is often almost impossible to get
meaningful results without automatic, or at least semi-automatic, selection of the
most relevant predictors.

Selection of covariate subsets based on modified R? criteria (e.g. the AIC) can be
unstable, see for example Flack and Chang [1987]. Methods like wrapper (see Ko-
havi and John [1997] for an overview) or genetic algorithms [Vafaie and De Jong,
1992] to search the space of covariates, {1,0}”, can be infeasible for high dimen-
sional data, [Phuong et al., 2006].

One solution to select predictors in high dimensions and/or p > n problems are
boosting algorithms. As discussed in Chapter 1.2, boosting with cross-validation
for early stopping offers an internal way to do variable selection while fitting the
model.

A problem with variable selection via boosting is that the resulting model can still
contain a rather large number of noise variables (compare for example Bithlmann
and Yu [2006] or Mayr et al. [2012b]) . These are variables that have (almost) no
influence on the response. Similar behavior can be observed with other requlariza-
tion based selection methods like lasso [Tibshirani, 1996] or elastic net [Zou and
Hastie, 2005] regression [Meinshausen and Biithlmann, 2010].

To circumvent this problem, Meinshausen and Biithlmann [2010] developed the
stability selection approach. This general purpose algorithm can be applied to
boosting and all other variable selection methods.

The main idea of stability selection is to run the selection algorithms on multi-
ple subsamples of the original data. The idea is, that highly relevant variables
should be selected in (almost) all subsamples. The process of stability selection for
boosting is shown in Algorithm 3. B random subsets are drawn and a boosting
model is fitted to each one (see: subsampling in Chapter 1.2.1). These can have at
most Mmyop iterations but are interrupted as soon as ¢ different base-learners have
entered the model. For each base-learner the selection frequency can be calculated
with Equation 13. The selection frequency 7, is the fraction of subsets and conse-
quently models, in which the base-learner j was selected. All selection frequencies
are then compared with a user specified threshold 7, and included in the model
if m; > Ty, see Equation 14.

It can be shown that this approach leads to error bounds for the per-family error-
rate (PFER) of including non-informative variables. The PFER is defined as the
expected number of noise variables wrongly included in the model E(V'), with V" as
the number of non-informative variables. The upper bound for the PFER, based
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Algorithm 3 Stability selection for model-based boosting [Hofner et al., 2015b]
1. Forb=1,...,B:

a) Draw a subset of size |n/2] from the data

b) Fit a boosting model until the number of selected covariates is equal

to q or the number of iterations reaches mgqp.

2. Compute the relative selection frequencies per base-learner:

B

. 1

= E Z ]I{je‘SA'Ln/%,b}’ (13)
b=1

where S in/2), denote the set of selected variables in iteration b.

3. Select base-learners with a selection frequency of at least myy,,, which yields

a set of stable covariates

A

Sstable = {j : ﬁj 2 7Tthr}~ (14)
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on Meinshausen and Biithlmann [2010], is given by

E(V) < :

~ (2mge — 1)p’ (15)

where ¢ is the number of selected variables in each subset and 7y, is the user-
defined fraction of subsets the variable has to be included, to be considered rele-
vant. In order for Equation 15 to hold, two assumptions have to be made [Mein-
shausen and Biithlmann, 2010]:

(i) The distribution {I
ables N.

et EN } has to be exchangeable for all noise vari-

(ii) The selection process must not be worse than random guessing,.

Assumption (i) means, that each noise variable has the same selection probability.
In other words, the correlation between a noise variable and the response should
be identical for all noise variables. Assumption (ii) is rather self-explanatory. If
the selection process does not work better than randomly selecting covariates, sta-
bility selection cannot find meaningful predictors.

An advancement of the original algorithm was developed by Shah and Samworth
[2013], in order to receive stricter error bounds than Equation 15. They incorpo-
rate error control for the expected number of selected variables with low selection
probability and multiple assumptions (E1), (E1) and (E3) which are described in
detail in Shah and Samworth [2013] and Hofner et al. [2015b]. They also use com-
plementary pairs, which essentially means to use subsamples which contain 50% of
the observations and use the selected and not selected observations as two different
subsamples.

One of the main difficulties of stability selection in practice is the choice of the
parameters ¢, Ty, and PFER. Even though only two need to be specified (the last
one can then be derived using Equation 15) their choice isn’t trivial and not always
intuitive for the user. Meinshausen and Biihlmann [2010] state that the threshold
should be 7y, € (0.6,0.9) and has little influence on the result.

The number of variables ¢ has to be sufficiently large, that means that ¢ should be
at least as big as the number of informative variables in the data. This is obviously
a problem for real world applications, because the number of informative variables
is unknown. Simulation studies like Hofner et al. [2015b] have shown, that the
PFER is quite conservative and the true number of false positives will be most
likely smaller than the specified value. One nice property is, that if ¢ is fixed, my,
and the PFER can be varied without the need to refit the model.

In practical application two different approaches to select the parameters are typ-
ically used. Both assume that the number of covariates to include, ¢, is chosen
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intuitively by the user, which can be a problem by itself. After that, the remaining
two parameters can easily be changed without the need to refit the model. The
first idea is to look at the calculated 7; and look for a breakpoint in the decreas-
ing order of the values. The threshold can be then chosen so that all covariates
larger than the breakpoint are included and the result PFER is only used as an
additional information. The second possibility is to fix a PFER as a conservative
upper bound for including non-informative variables.

3.1 Stability selection for the seabird population model

A boosted model for the population of common eider in segments of Nantucket
Sound, USA, was fitted in Chapter 1.3. The intrinsic variable selection mechanism
of boosting already selected a subset of predictors. Yet, this resulted in a quite
large model, where 42 out of 48 possible predictors were included. To reduce the
model complexity, stability selection will be applied as a second step to achieve
a sparser model with error control for the inclusion of non-informative variables.
Different parameter settings where tested by Smith et al. [2016] and came to the
conclusion that ¢ = 35 and a PFER of 3 yield plausible results. Considering
p = 48 base-learners, the threshold m,, can be calculated as 0.99 with an addi-
tional unimodality assumption (compare Shah and Samworth [2013]). In Figure 7
the relative selection frequencies 7; are plotted in decreasing order. The threshold
of 0.99 is drawn as a dashed line, so that the selected variables are easy visu-
ally identified. All covariates right of the line are selected by stability selection.
Compared with the 42 predictors that were selected with the boosting model from
Chapter 1.3, the stability selection approach yields a considerably sparser model.
A different threshold could be selected if we look for breakpoints in the selection
frequency. One rather small breakpoint is at my, = 0.99 and a larger breakpoint
at around 7y, = 0.95 which would result in a larger model. With these settings
12 out of 48 covariates are selected.
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Figure 7: Stability selection for the common eider population model with ¢ = 35

included variables in each sample, a PFER of 3 and a threshold of 0.99.

Covariates right of the dashed line are selected.
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4 Stability selection and boosted GAMLSS

In the last chapter stability selection was introduced as a method to achieve sparser
models for boosting methods. The scope of this thesis was to find a efficient way
to apply the stability selection methodology to boosting of multidimensional pre-
diction functions.

The question of variable selection in GAMLSS and boosted GAMLSS is even
more critical than in regular models with one dimensional prediction functions.
The question of including a variable implies not only if the covariate should be
used in the model at all, but for which distribution parameter(s) it should be used.
Essentially, the number of possible covariates doubles in a distribution with two
parameters, triples in one with three parameters and so on. This is especially
difficult in situations with a large amount of covariates in the beginning and in
p > n situations.

Iteration: 1 2 3 4

#base-learner: 2 3 4

Stop

Figure 8: Fitting a boosted GAMLSS with two parameters, until ¢ = 4 variables
are selected. The nodes represent the selected variable in iteration m

and the numbers on the edges, Ap, the loss reduction.

The method of fitting boosted GAMLSS models in a cyclical way leads to a se-
vere problem when used in combination with stability selection. Base-learners are
counted separately for each distribution parameter, so a variable that is selected
for the location and scale parameter counts as two different variables regarding
the maximum number of variables to consider in the model. An alternative, in
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which a covariate is only counted once, is discussed in the outlook of Chapter 8.
In one iteration of the algorithm all distribution parameters will receive an addi-
tional base-learner as long as their mgop limit is not exceeded. This means, that
base-learners (and consequently new variables) are added to the additive predictor
of parameters in the model, that have rather small importance compared to vari-
ables that may have larger influence based on other distribution parameters. This
gets especially relevant if the number of informative variables varies drastically
between distribution parameters. In Figure 8, a small toy example of the problem
is visualized. In this example, we set the maximum number of selected variables
to ¢ = 4, so the fitting stops as soon as four variables are included in the model.
This happens at iteration 3 (obviously in real world applications the number will
be much higher) which is after variable x5 enters the model to fit o. This means
that variable x4 won’t be added to the model any more, even though the overall
gain for the model fit Ap is way higher than the gain of x5 for o, that was forced
in the model based on the cyclical fitting structure.

It can be argued to choose a higher value of ¢, but the problem is still present,
especially when the number of informative variables differs a lot, as we will see in
the simulation study in Chapter 6. One aspect of the problem is, that the possible
model improvement between different distribution parameters is not considered.
A careful selection of the number of iterations may resolve the problem, but the
process will still be unstable because the margin of base-learner selection in later
stages of the algorithm is quite small.
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5 Noncyclical fitting algorithm

In the previous chapters we presented two major disadvantages of the cyclical
fitting algorithm:

(i) Choosing optimal stopping values gets harder, the more distribution param-
eters have to be fitted. This problem was shortly discussed in Chapter 2.2.
As the optimization can get very time consuming, it would be good to have
the possibility to optimize these hyperparameters independent of the number
of distribution parameters.

(ii) The concept of stability selection does not work well in the context of a
cyclical fitting method. This can be traced back to the missing comparison
of model improvement between the different distribution parameters.

We solved both of these problems with a new fitting method.

The core idea is, instead of cycling through all distribution parameters in one step
of the algorithm, only the best distribution parameter is selected in each iteration.
The notion of best means the distribution parameter that leads to the highest
reduction of the loss.

In gradient boosting, the selection of the base-learners is done via comparing the
RSS of the base-learners against the gradient of the parameter. Unfortunately,
it is not possible to compare gradients between different distribution parameters,
because they may be scaled differently.

5.1 Cyclical fitting via inner loss

Because the comparison of base-learners from different distribution parameters
cannot be done via the RSS criterion (Equation 6), a different selection criterion
has to be found. An obvious way is to check which distribution parameter leads
to the biggest reduction in the empirical risk (Equation 3).

In the first step, the best base-learner for each distribution parameter is selected
via minimizing the RSS of the respective gradients. In a second step, the potential
improvement in the empirical loss Ap is measured for the selected base-learners.
Only the parameter and consequently base-learner with the biggest improvement
is added to the model. A schematic overview of the fitting process can be seen
in Figure 9. Because the base-learner selection is still done with the inner loss
(RSS), this algorithm will be called analogously.
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Figure 9: Noncyclical fitting algorithm - base-learner selection via inner loss
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This alternative fitting method is defined in Algorithm 4. Each estimated predictor
has its own number of iterations mq, mso, ms, my. The overall number of iterations
is the sum of all:

m = mq + Mo + M3+ My. (16)

Here, the advantage compared to the cyclical fitting algorithm can be seen. It
solves problem (i) because mg,p, is always scalar and is adaptively composed from
the iterations for each distribution parameter. The optimal partitioning (and
sequence) of base-learners between different parameters is done internally while
fitting the model. The only hyperparameter that has to be optimized is the (one
dimensional) number of iterations, which can be done very efficiently.
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Algorithm 4 Noncyclical component-wise gradient boosting in multiple dimen-

sions — via inner loss

Initialize

[0] 0] 0] [0]

— Initialize the additive predictors 7, , Mo, , T, » iz, With offset values.

— for each distribution parameter 0y, k = 1,...,4 specify a set of base-learners:
i.e. for parameter 0y by hii(-),...,hip,(-),k = 1,...,4, where p; is the

cardinality of the set of base-learners specified for 6

Boosting in multiple dimensions

For m =1 to mstop:
(1) For k=1 to 4:

(a) Compute negative partial derivatives —% p(yi,m) and plugging in the
k

current estimates 7); = (ﬁLT_1]7 ﬁC[,T_l], 771[,7?—1], 77%%_1})1

m _ (O

(b) Fit the negative gradient vector uggm] to each of the base-learners con-

’ _ A[m-—1]
i=1,...,n' 1=

tained in the set of base-learners specified for the predictor 7y, in the
initialization.
(c) Select the component j* that best fits the negative partial-derivative

vector according to the least squares criterion, i.e. select the base-learner

hyj« defined by:

(d) Calculate the possible reduction in the empirical loss as follows:

Ao =Y ply, iy v W)
=1

(2) Depending on the value of the loss reduction

k* = argming (Apg), k=1,...,4 execute only the best step:

(3) Set iy = Ay for all k # k.
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5.2 Noncyclical fitting via outer loss

Choosing base-learners and parameters on two different optimization criteria is
not ideal. A better solution would be to find one criterion that can measure the
improvement over all base-learners and distribution parameters together. Such a
behavior can be achieved if the complete selection is based on the empirical loss.

An schematic overview of this process can be seen in Figure 10. The gradient is
now only used to compute the base-learner hy1(-), ..., 711p1 ON IO : ﬁ4p4(-).
In the second step the possible improvement in the risk is calculated for each base-
learner of every distribution parameter and only the overall best base-learner is
actually updated. The last step is identical to the fitting method via the inner
loss, the chosen predictor gets updated and written in the gradients.

Instead of the using the inner loss (RSS) the whole selection is done based on the
outer loss (empiric loss) and the method is named accordingly. Algorithm 5 shows
the fitting method via outer loss.

This approach has a lot of similarities to coordinate descent (compare for example
Wright [2015]). Coordinate descent is a general purpose optimization algorithm,
in which, in every step, exactly one component is updated. Similar to our outer
loss boosting approach, the stepsize as well as the direction can be determined by
the gradient.

Coordinate descent algorithms are popular due to their convenience and easy ex-
pandability, e.g. to include bounds for coefficients.

Doing the complete selection process with the outer loss takes more computing
time, because, additionally to the gradients, which have to be calculated anyway,
the loss reduction for every base-learner has to be calculated as well.

We introduced two different ways of noncyclical fitting for component-wise gradi-
ent boosting in multiple dimensions, both having the major advantage of easier
hyperparameter optimization in comparison to the cyclical algorithm. The per-
formance of noncyclical fitting is evaluated in Chapter 5.3 and the performance in
regards of stability selection is evaluated in Chapter 6.
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Figure 10: Noncyclical fitting algorithm — base-learner selection via outer loss



38 5.2 Noncyclical fitting via outer loss

Algorithm 5 Noncyclical component-wise gradient boosting in multiple dimen-

sions — via outer loss

Initialize

Al0]  A[0]  L[0]  A[0]

— Initialize the additive predictors 7, , Mo, , T, » iz, With offset values.

— for each distribution parameter 0,k = 1,...,4 specify a set of base-learner:
i.e. for parameter 0y by hii(-),...,hip,(-),k = 1,...,4, where p; is the

cardinality of the set of base-learnerss specified for 6

Boosting in multiple dimensions

For m =1 to mstop:
(1) For k=1 to 4:

(a) Compute negative partial derivatives —# p(yi,m) and plugging in the
Ok

current estimates ﬁl[m_l] = (?7[77 1, ??([;T 1 ﬁz[jrzn 1 7/77[':71 1])

ml _ (O > ’
u - 2
g <5’770k ol ) i1, =0

(b) Fit the negative gradient vector uggm] to each of the base-learners con-

tained in the set of base-learners specified for the predictor 7y, in the
initialization.
(c) Calculate the possible reduction in the empiric loss for every base-

learner as follows:

Apyj = Zpy g Vv BIO) =1 k=14
(2) Depending on the value of the loss reduction

Appj = argming;(Apg;) k=1,...,4 j=1,... p

execute only the best step:

(3) Set Ay =iy for all k # k*.
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5.3 Comparison with cyclical fitting

Regarding these new algorithms, several questions should be evaluated:

(a) Do both new noncyclical fitting methods (via inner and outer loss) converge
to the same solution as GAMLSS [Rigby et al., 2008]? And how much differ
the estimated parameters of the four different fitting variants.

(b) How is the convergence speed? Does one method converge faster and conse-
quently needs fewer iterations?

(¢c) How do the runtimes of the new algorithms compare to the cyclical fitting
approach? It is likely that fitting will be slower, as much more gradients and
possible model improvements have to be computed. Yet the optimization of
the hyperparameter might be much faster.

(d) Does stability selection work better with the new fitting methods? This
question is evaluated in Chapter 6.

To answer these question it is useful to conduct a small simulation study. We start
with a simulation design that is as simple as possible.

The response y; is drawn from a normal distribution N(u;,0;) with p; and oy
composed of 4 covariates each. The covariates are independently drawn from a
uniform distribution between —1 and 1: U(—1,1). Two covariates z3 and x4 are
shared between both i and o and will be informative for both parameters.

To summarize the data generation process for a sample size of n = 500:
1. For each xy,...,x¢ draw a sample of size 500 from U(—1,1).
2. Calculate p; = 21,81, + 202, + @383, + Taifay, ©=1,...,500.
3. Calculate o; = x3;016 + T4iP25 + T5iP35 + Teis Bae 1 = 1,...,500.

4. Draw y; from N(u;,0;) fori=1,...,500.

5.3.1 Convergence to maximum likelihood solution

It can be shown that the solutions of the cyclical fitting algorithm converge to the
same solutions as obtained by maximizing the penalized likelihood [Mayr et al.,
2012a).

The question is, if both boosting methods, via inner and outer loss, also converge
to the same solution. The results of a simulation with 100 runs is shown in Figure
11. All four methods seem to converge to the correct solution. Coefficients are
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T T2 X3 Ty X3 Ts Ts Te

cyclic 042 048 044 0.72 0.29 031 0.35 0.41
outer 0.40 0.47 042 0.71 0.30 0.32 0.36 0.42
inner 0.40 0.47 042 0.71 0.30 0.32 0.36 0.42
GAMLSS 0.39 048 040 0.59 0.31 0.32 0.36 0.41

Table 3: MSE (in 1072) for the the parameter estimations, based of B = 100

simulation runs. All algorithms were fitted until convergence.

underestimated by the boosting algorithms, this is shrinkage effect of boosting
that was talked about in Chapter 1.2.1.

The mean squared error (MSE) of the parameter estimates is shown in Table 3.
The estimation of u seems to be better for boosting with inner or outer loss,
compared to the cycling algorithm. In ¢ the cyclical algorithm is slightly better
than both noncylical boosting methods. Yet, the differences are very small (note
the factor of 1072 in the table) and between inner and outer loss no differences
are found at all.

5.3.2 Convergence speed

We have seen that all three boosting methods will converge to the penalized max-
imum likelihood solution reasonably well. The second question is then, how fast
this convergence is. In Figure 12 the risk is plotted against the number of itera-
tions. Here additional non-informative variables were added to the model. Four
settings of are considered, 0,50, 25 and 500 additional non-informative covariates.
Considering the n = 500 data points generated, both p = 250 and p = 500 are
p > n situations, because the number of base-learners is doubled as we have two
distribution parameters. The shown values are the mean risks of 100 runs on
different simulated datasets. Quter and inner loss boosting have the exact same
rate in all four settings. Compared to the cyclical algorithm the convergence is
faster in the first 500 iterations. After more than 500 iteration the reduction is the
same for all three methods. The margin between the cyclical and both noncyclical
algorithms decreases with a larger number of noise variables.
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5.3.3 Runtime analysis

The main calculation effort for the algorithms is the base-learner selection, which
is different for all three methods. The cyclical algorithm has to calculate no poten-
tial loss reductions at all. In case of the inner loss algorithm, base-learner selection
and following possible loss reduction has to be calculated only for the best-fitting
base-learner for each distribution parameter in every step of the algorithm. For
the outer loss version, the possible reduction of the loss has to be calculated for
every base-learner in every step of the algorithm, which should takes longer than
the other versions.

To estimate the runtime, all algorithms were run 50 times with the settings in-
troduced in Chapter 5.3, but only the first 10 iterations were performed. The
mean runtime in seconds was measured for 0 up to 500 additional non-informative
base-learners. The result of this small benchmark study can be seen in Figure 13.
The mean runtime of the initialization and the first 10 boosting iterations was
smoothed and a 0.95 confidence interval was calculated.

The cyclical fitting algorithm is the fastest, which is not surprising, because of the
fewer number of comparisons that are needed. The inner fitting algorithms is a
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bit slower but still minimally faster than the outer loss method, for a very small
number of base-learners. When increasing the number of covariates, the runtime
for the outer fitting method increases way stronger than for the inner and cyclical
variant.

5.4 Implementation in gamboostLSS

Both new noncyclical fitting algorithms are implemented in gamboostLSS [Hofner
et al., 2015al, so that all advantages of the framework can be used.

We shortly recapitulate the implementation of gamboostLSS, which was explained
in Chapter 2.3. A gamboostLSS object is a list of multiple mboost [Hothorn et al.,
2015] objects. These are initialized with loss functions and gradients of the loss,
based on the used distribution. For example, when fitting a gamboostLSS model
with a normal distribution, one mboost object uses the negative log likelihood of
the normal distribution, with the respective gradient of i, and a second mboost
object with the same loss function and gradient of ¢ (compare Equation 10). The
main fitting process has to update one mboost object, which essentially means
to add a new base-learner to the model or update an existing one, then update
the new estimated parameter in every mboost object and update the gradients.
This main functionality is captured in a single function, iBoost. For an in-depth
introduction to the gamboostLSS package, see the tutorial by Hofner et al. [2015¢].
To achieve a noncyclical fitting algorithm, only the main iBoost function has to be
replaced, almost all functionality from the gamboostLSS package can be used with
minimal adaptions. Two new fitting functions iBoost_inner and iBoost_outer
are integrated as an alternative to the cyclical iBoost function. The R code of
both functions is found in the Appendix, Section 10.3.

The working implementation of the new fitting methods can be found on the github
page of the gamboostLSS package in a separate branch called noncyclical_fitting.

5.4.1 Implementation of the inner fitting algorithm

The implementation of the wnner fitting algorithm, see Chapter 5.1, is pretty
straightforward. For each mboost object one base-learner is added in a separate
environment. The selection of one base-learner for each distribution parameter is
performed by the internal mboost mechanism, which is the selection via the RSS.
Then, the improvement of the loss can be easily calculated for each selected base-
learner and only the update with the highest reduction is actually performed. The
rest of the fitting process is similar to the cyclical algorithm, meaning, that the
updated estimate is written as a nuisance parameter in all other mboost objects
and the gradients are recalculated.
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5.4.2 Implementation of the outer fitting algorithm

The implementation of the outer loss fitting algorithm, see Chapter 5.2, is more
complex than the previous one. In the outer loss fitting algorithm, the selection of
base-learners over all distribution parameters is conducted via the loss function.
The main obstacle is, that the base-learner selection within an mboost object is
always done with the RSS criterion and it is not intended by the mboost developers
to add or update a different base-learner that the one that minimizes the RSS
criterion. In order to still have access to the large number of supported base-
learners (compare Table 1), as well as distributions (compare Table 2), that the
mboost framework offers, the usage of mboost objects in the fitting process is
crucial.

Instead of just updating one mboost object, all possible base-learner objects in
one step hi1(-), ..., hap (), hoa (), ..  hup, (+) have to be constructed explicitly
and their possible loss reduction has to be calculated. The best base-learner is
then added to its corresponding mboost object, essentially doing one iteration of
the mboost fit manually. This process is further complicated by the fact, that this
functionality has to be implemented differently depending on the used class of base-
learners. For example have linear cwlin base-learner a different internal structure
than linear bols base-learner. This results in a (currently) slower implementation
as seen in Figure 13.
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6 Stability selection in a simulation study

The main question in this thesis was the usage of stability selection with component-
wise gradient boosting in multiple dimensions. The theoretical problem arising
from the usage of a cyclical fitting algorithm in combination with the stability
selection was examined in Chapter 4. In this chapter, these theoretical considera-
tions were evaluated in a simulation study.

Different simulation settings were constructed to find differences in the behavior
of the algorithms. First, three different distributions were considered:

(1) The normal distribution with two parameters, mean, y; and standard devi-
ation, o;.

(2) The negative binomial distribution with two parameters, first the location
w; and second o;, the overdispersion parameter.

(3) The zero-inflated negative binomial (ZINB) distribution with three parame-
ters: u;, o; and v;, with p;, o; identical to the negative binomial distribution
and v; as the zero-inflation probability of the distribution.

Second, different partitioning of informative covariates between distribution pa-
rameters are evaluated:

(A) Balanced case: For normal and negative binomial distribution, both y; and
o; consist of four informative covariates, where two are shared. In case of
the ZINB distribution, each parameter has three informative covariates each
sharing on with the other two parameters.

(B) Unbalanced case: For normal and negative binomial distribution, p; consists
of five informative covariates, while o; has only one and none are shared be-
tween the two parameters. For the ZINB distribution, u; has five informative
variables as well, o; has two informative variables, sharing one with u; and
one with v;. Lastly v; has only one covariate it shares with o;.

To summarize this for a total of six informative variables, x1, ..., x4:
(1A, 2A) o 1, = B1uT1i + Bop®oi + B33 + BauTai
® 0; = (3,23 + BacTai + PsoTsi + Peoei

(1B, 2B) o L = BT + Bopmai + BapTsi + BapTai + BsuTsi

o 0; = BooTei

(3A) @ p; = Bruwyi + BopTai + Bautai
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0i = B30%3i + BagTai + PsoTsi

Vi = B, + Bsusi + BeuTei

(3B) o ;= Bru®ii + PopToi + BauTsi + Bapai + BsuTsi
o 0, = Bs,T5i + BooTei

o v = BT

The simulation process is identical to Chapter 5.3. To evaluate the quality of
stability selection, two criteria have to be considered. First, stability selection
should include as many informative variables as possible, ideally all of them. This
is the true positive rate, or the number of true positives (TP). Secondly, as few
non-informative variables as possible should be wrongly classified as informative,
which is the false positive rate, or the number of false positives (FP).

In the best case all informative variables are found and none are wrongly identified
as informative.

AS the true positive rate should be maximized and the false positive rate should
be minimized, there is a trade-off between both criteria. If the model selection is
done more conservatively, the false positive rate will decrease as well as the true
positive rate. On the other hand, if it is easy to include variables in the model, it
is more likely to find the informative variables, but also to include non informative
variables in the model. Consequently, large models will, in tendency, have a high
true and false positive rate and small models a low true and false positive rate.
Considering stability selection, the most obvious criterion to steer the false and
the true positive rate is the threshold m,,. If the threshold is high, less variables
are included in the model, so the true positive rate will (most likely) decrease, as
well as the false positive rate.

To evaluate the algorithms depending on the settings of stability selection, differ-
ent values for the number of variables to include in the model ¢ as well as the
threshold 7y, are considered.

A third factor to consider, is the number of noise variables in the model. The more
noise variables in the model, the harder is, to identify the informative variables.
For the simulation four possible values of ¢ are considered: 8,15,25,50. ¢ should
be at least as large as the number of informative variables. The number of covari-
ates is p = 50, 250 or 500, minus the number of informative variables. It should be
taken into consideration, that the actual number of possible covariates is p times
the number of distribution parameters, because each covariate can be included in
one or more additive predictors.

The threshold is varying between 0.55 and 0.99 in steps of 0.01, this small increases
can be easily calculated, because the stability selection algorithm does not need
to be re-run to adjust the threshold.
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To visualize the results of the simulation for a given ¢, the progress of true and
false positives are plotted against the threshold for different values of ¢ and p. True
and false positives are summed up over all distribution parameters. Visualizations
for every single distribution parameter can be found in the Appendix.

6.1 Results for the normal distribution setting

In Figure 14 and 15 the results for the balanced and unbalanced case with normal
distribution are displayed (case 1A and 1B).

As mentioned before, it can be observed that with increasing threshold .., the
number of true positives as well as the number of false positives declines. This is
present in every combination of ¢ and p.

In the balanced case (Figure 14) a higher number of true positives of the noncycli-
cal algorithm can be seen, for most simulation settings. Especially for smaller ¢
values (¢ = 8,15) the true positive rate is always higher than the cyclical vari-
ant. For higher ¢ values the margin decreases and for the highest settings both
methods have approximately the same progression over my,,, with slightly better
results for the cyclical algorithm. Overall, the number of true positives increases
with a higher value of ¢. Hofner et al. [2015b] found similar results for boosting
with one dimensional prediction functions, but also showed that the true positive
rate decreases again after a certain value of ¢. This could not be verified for the
multidimensional case.

The false positive rate is extremely low for both methods, especially in the high-
dimensional settings. The noncyclical fitting method has a constantly smaller or
identical false positive rate, the difference between both reduces for higher my,,, as
expected. For all settings the false positive rate reaches zero for a threshold higher
than 0.9. The setting with the highest false positive rate is p = 50 and ¢ = 25,
so, a low dimensional case with a relatively high threshold. This is also the only
settings where on average all 8 informative variables are found (for a threshold of
0.55).

In the unbalanced case, Figure 15 shows similar results. Yet, the number of false
positives for the noncyclical variant is higher in almost all settings. The main
difference between the balanced and the unbalanced case is that whereas the true
positives for the p = 25, ¢ = 25 setting was almost identical between both meth-
ods, now the noncyclical variant is dominating. On the other hand, the high-
dimensional case with a small ¢ (p = 500, ¢ = 8) both fitting methods have about
the same true positive rate for all possible ;.
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6.1 Results for the normal distribution setting

Average number of True/False positives

Figure 14:
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In summary, it can be seen, that the new noncyclical way is better in identifying
the true positives or at least performs similar to the cyclical method for all shown
settings. On the other hand, the (although over all very small) false positive
rate is less or identical to the cyclical method. Some simulation showed minor
different results for cases when the scale component o; was higher compared to
the location p;, see Table 5 and 6 in the Appendix. There, the cyclical variant
achieved slightly better performance (in the true positives) at high p and ¢ values
than the noncyclical variant. The results separated for each distribution parameter
can be found in the Appendix in Figure 23 for the balanced case and Figure 24
for the unbalanced.

6.2 Results for the negative binomial distribution

In the balanced case of the negative binomial distribution (Figure 16), the number
of true positives is almost identical for cyclical and noncyclical fitting in all settings.
Generally, the number of true positives is quite high overall. Almost all settings
are between 6 and 8, with an optimum of 8 true positives, except for the cases
with a very small number of variables to include ¢ = 8. This is consistent with the
results for stability selection with one dimensional boosting [Hofner et al., 2015b].
The number of false positives in the noncyclical variants is smaller or identical to
the cyclical variant in all tested settings.

The differences between both methods get smaller for the unbalanced case (Figure
17). For smaller values of ¢ = 8 and ¢ = 15, the noncyclical variant has still a
higher number of true positives for all evaluated thresholds my,,. For larger values
of ¢ the true positives are almost identical. The larger number of false positives
for the noncyclical variant, as seen in the balanced case, is less pronounced, but
still evident for smaller values of ¢.

Overall the noncyclical variant seems to be better for the here evaluated distri-
butions (normal and negative binomial). The noncyclical variant has a higher
number of true positives and a fewer false positives. In most cases these differ-
ences are reduced for larger values of the number of variables to include ¢ and a
larger threshold .
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6.2 Results for the negative binomial distribution

Figure 16:
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6.2 Results for the negative binomial distribution

Average number of True/False positives
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6.3 Results for the zero-inflated negative binomial distribution

The third considered distribution in our simulation setting is the the zero-inflated
negative binomial (ZINB) distribution. Instead of only two distribution parame-
ters, like in the case of normal or negative binomial distribution, the ZINB distri-
bution features three parameters that have to be fitted.

In Figure 18, the results for the balanced case (3A), are visualized. The tendency of
a larger number true positives in the noncyclical variant, which could be examined
for both two-parametric distributions, is not present. For all settings, except for
high dimensional settings with a low number of variables to include, p = 250, 500
and g = 50, the cyclical variant has a higher number of true positives. Additionally,
the number of false positives is constantly higher for the noncyclical variant.

In the unbalanced case (Figure 19) the number of true positives is considerably
smaller compared to all other simulated settings. Especially in the high dimen-
sional cases (p = 250, 500), not even half of all informative covariates are found. In
settings with smaller ¢ the number of true positives can be lower than two. Here,
both algorithms have approximately the same number of true positives for all set-
tings, in cases with a very low number of variables to include ¢ = 8 or a very high
number, ¢ = 50, the noncyclical algorithm is slightly better. The number of false
positives is, especially compared with the number of true positives, very high. For
a lot of settings, more than half of the included variables were non-informative.
The number of false positives is higher for the noncyclical case. The difference
is especially present in settings with a high number of variables to include and a
low threshold, but these are settings, that still have the highest numbers of true
positives.

Altogether the trend from the simulated two-parameter distributions is not present
in the three-parameter setting. The noncyclical algorithm is worse or identical
in both true and false positives for almost all tested settings compared to the
cyclical variant. Other distributions with three parameters, like the Student’s t-
distribution, gave similar results and can be found in the Appendix, Chapter 10.2
Figure 27 and 28.

The bad performance for three-parameter distributions of the noncyclical algo-
rithm, may be due to its additional flexibility. With the more complex distribu-
tions, a similar looking density can be achieved with different parameter settings.
For example in a zero-inflated negative binomial setting, a small location may be
hard to distinguish from a large zero-inflation parameter. This may result in the
noncyclical variant trying to fit very different models on each subsample and conse-
quently selecting non-informative variable, or covariates for the wrong distribution
parameter and missing informative ones. This behavior is shortly discussed in the
outlook Chapter 8.2.2.
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6.3 Results for the zero-inflated negative binomial distribution

Average number of True/False positives
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q=8 q=15 q=25 q =50
6-
©
1
o
o
14
6.
5 4 measure
— FP
4+ 5 ==TP
1
N
34 g  method
N — cyclical
teny R cyclical
21z s L < non-cyc.
-~
..R \.\
-~
1.
64
5.
44 ]
1
g
34 S
-~
- .-.
2 — R~ = .-\‘\R‘ I
-.._.~_.\ '::% 2 \
11 T v v T -I T v T T v T T T v v T v T T v
0.6 0.7 08 09 1.0 06 0.7 08 09 1.0 06 0.7 0.8 09 1.0 0.6 0.7 0.8 09 1.0

Thhr

Stability selection: Zero-inflated negative binomial distribution and un-
balanced number of informative variables. The different methods are
color-coded. The number of true positives is shown as dashed lines and
the false positives as continuous lines. The rows represent the different

values of ¢ and the columns the values of p. Case (3B).



o7

7 Analysis of the seabird abundance

In this chapter, the analysis of the common eider population from Chapter 1.3 is
continued. To recap, the population of common eider in Nantucket Sound, Mes-
sachussets are estimated with a hurdle model because of the zero-inflation in the
data. The population model was estimated by boosting a GAM with binomial loss
(see Chapter 1.3). In the second step, the number of birds in populated segments
is estimated with a boosted GAMLSS model. Considering only observations larger
than zero for the abundance model, out of originally 7751 observations 1930 re-
main. In Figure 20 it can be seen that the distribution is quite long-tailed and may
exhibit overdispersion. So, instead of the poisson distribution, the negative bino-
mial distribution was chosen for this model (compare Mullahy [1986]). Because we
used the negative binomial distribution in a hurdle model, the distribution had to
be truncated. As compared to zero-inflation models, the count distribution in hur-
dle models cannot predict zeros. A zero-truncated distribution can be generated
from a count distribution feount(z, it, o) with

fcount($7 ,U/a 0)
]- - fcount(oy M, O-) 7

[Zeileis et al., 2007], both distribution parameters, mean and overdispersion, were
regressed on the biophysical covariates (Table 4). Similar to the population model
the covariates were split in linear and nonlinear base-learners. Because of the
strong possibility for overdispersion, nonlinearity, large amount of possible effects
the use a boosted GAMLSS model is adequate. To generate a zero-truncated neg-
ative binomial distribution for GAMLSS, the R package gamlss.tr [Stasinopoulos
and Rigby, 2015] was used.

To reduce computation time, a rather large learning-rate of 0.3 was used. The
optimal number of mg,,, value(s) is found with cross-validating subsamples of 50%
of the original data.

We used the inner version (Chapter 5.1) for noncyclical fitting, because the sim-
ulation study in Chapter 5.3 has shown only minimal differences between both
noncyclical methods and the inner version is easier and faster to compute. This
yields a myop value of 2231, split in mgop,, = 1871 and mygiep,, = 336. The se-
quence in which the distribution parameters were fitted is shown in Figure 21. The
resulting model selected 46 out of 48 possible covariates in p and 8 out of 48 in
o. This is (especially in p) a way too large model, which suggests to use stability
selection as an additional way to select variables for a sparser model.

The chosen parameters for stability selection were, numbers of variables to include
of ¢ = 35 and a per-familiy error-rate of 6. Using Equation (15) this results in
a threshold of 7y, = 0.9. These settings were chosen similar to the originally by
Smith et al. [2016] conducted analysis.

for z > 0 (17)
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Figure 20: Histogram of bird counts larger zero. 28 observations in the range of

5000 — 30000 are omitted.

The result of stability selection can be seen in Figure 22. 10 effects were selected
for the location: The intercept, the relative surface temperature (smooth), the
chlorophyil-a material levels (smooth), the chromophoric material levels (smooth),
sediment grain size (linear and smooth), sea floor surface area (smooth), the mean
epidenthic tidal velocity (smooth) and the smooth spatial interaction as well as the
two factors for the year and nearby ferry routes. For the overdispersion, 5 effects
were selected: The sea surface temperatur (linear), the bathymetry (linear), the
mean (smooth) and standard deviation (linear) of the epibenthic tidal velocity and
the linear spatial interaction. Only the sediment grain size was selected linearly
as well as nonlinearly in the model. For the location, all metric variables entered
the model nonlinearly. For the overdispersion it was the other way round, the
mean epibenthic velocity was selected as a smooth effect, all others were selected
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Figure 21: Convergence of the risk for the seabird abundance model. The color

notes which parameter was updated in a step.

as linear effects.

If we compare the resulting model with Smith et al. [2016], the noncyclical model is
larger in p (10 effects, compared to 8 effects), but smaller in o (5 effects, compared
to 7 effects). Overall both models contain the same number of effects, if a linear and
nonlinear base-learner of the same effect is only counted once. The chlorophyill-
a levels, mean epibenthic tidal velocity, smooth spatial variation and the year
were not selected for the mean by stability selection, after fitting with the cyclical
fitting algorithm. On the other hand bathymetry was selected by the cyclical
fitting method, but not by the noncyclical. For the overdispersion parameter the
cyclical algorithm selected the year and the northing of a segment (how much
further north the segment is than the median) additional to all selected effects by
the noncyclical variant.

Overall, the differences in the selected effects are rather small. Most effects were
selected by both the cyclical and the noncyclical algorithm. In the simulation
study for the negative binomial distribution (Chapter 6.2), the noncyclical variant
had a smaller false positive rate and a higher true positive rate. Even though
the simulation was simplified compared to this real data application (only linear
effects, known true number of informative covariates, uncorrelated effects), the
result suggest to believe the noncyclical variant. Yet, the final decision, which
model to trust more and how to interpret it, should be evaluated by a specialist
with subject matter expertise.



61

ferry [mu
f(cdomii mu!

mu

f(tidebmean) [mu
f(tldebmean&[5| ma,
f(xk mg m mu

int

xkm * ykm * sTlm
f(t|desd) [sigma]

depth * time [mu
f(obs_window) [mu
f(cdom, chla) [mu

STw) [sigma]
d2land mu
SSTm) [mu

f(obs_) wnn&ow} sigma]
f(cdom) [sigma,
mmu

mu

ykm * time [SI ma]
cdommu

fSSTreI sigma]
f(d2land) [sigma]
depth * time [sigma]
obs_window [sigma]
ferrg Sigma]

wmu

f(cdom, chla} [S|gma

xkm
xkm * ykm * sTime [sigma]
STrel * time [sigma,

sigma]
f(depth, tlme) sigma]
tidebmean [mu
STm mu
strat [sigma]
SSTrel [sigma]
f(time) Tmu
d2land [sigma,
f(tidesd) Tmu
SSTrel * time [mu
f(SBT) [si ma
ime
xkm * time S|gma
SAR [sigma]
meanphi [sigma]
tldebmean Sigma]

al
f(dePth tlme)(’i
[S|gma
sigma
Al
f(meanﬁm S|gma
f egth sigma;

noncyclical
(4
°
d
[ d
o
o
@
[ 3
[ 3
[
o
o
[ 4
@
o
[ J
L ]
(
(J
[
o
@
[ J
[ J
(4
[ d
@
[
@
[
(J
[}
@

S|gma
A w mu

Figure 22: Selection frequencies for biophyiscal covariates of common eider abun-

dance, determined by stability selection. Variables included in each

I I I I I I
00 02 04 06 08 10

A
Tt

f(tidebmean) [sigma]
mu
f(cdomxi mu

f(SAR) mu
meanph| mu
xkm * ykm sigma]

y2¥)04 sigma]

f(S%TrsI) mu
tidesd [sigma]
SSTm [sigma;
f(meanpm

f(SBT)
f(cdom) [sigma]
f(xk k2 [: ma
xkm, ykm) [si ma
(ky &
( hla mu
f(SSTrel Fs
f(cdom, chla
f(t|debr¥19an
f(time) [sigma,
f(xkm, ykm)

f(xkm, f}/km) e{me mu

f(_SSTW S|
f(obs_window) [si
xkm * ykmmu
X km
f(tldest}s [sigma,
d2land
strat [sl
d2land [sigma]
f(cdom, chla) [s
depth ftlm

f(SSTm mul

ykm *time [sigma,
obs_window [sigma;
depth * time [sigma|
fSBT) sigma]

xk * km sTime [mu
xkm * ykm * sTlme sigma]
hla)

u
f(depthjmu
meanphi [sigma,
obs_window [mu

cdom [Sﬁma

f d2land) [mu;
SSTrel [sigma]

ime [sigma]

f(obs, W|ndow) mu
ykm * timé [mu
SSTrél * time [sigma;
f(SSTm) sigma|
Xxkm * time Tmu
cdom [mu

f(strat; 3|gma
f(depth, time) [sigma,
T mu

SSTrel [mu

m [mu
xkm * time [sigma,
AR

tldebmean mu
'\42005 sigma]
AOW SI ma

f(depth, time m
(dep NAOV\)I mﬂ

cyclical
— @
— [ 4
— 4
— o
— o
— [ J
— [
— [
— [
— o
— (J
— o
— [
— o
— (J
— o
— (J
— o
— [
— (J
— o
— [
— [
— [
— (J
— [ J
— (J
— o
— (J
— @
— (J
— o
— [ 3
— [ d
— @
— [
— (J
— [
— o
— {
— o
— (J
— @
— [ 4
— o
— o
— o
— (4
— [
— [ 3
— o
— [
— o
— o
— (J
— o
— o
— o
— o
— o
— (4
— [ 3
— [ d
- ©
- ©
- ©®
- ©
- @
- ©®
— @
— @
— &
— ®
— @
— ©®
— ©®
—®
— e
—®
— e
—®
—0
—®
—®
—®
—®
—®
—®
—®

time [mu

I I I I I I
00 02 04 06 08 10

A
Tt

iteration ¢ = 35 and a per-family error-rate of 6



62

8 Conclusion and outlook

In this thesis a new way of fitting boosted generalized additive models for location
scale and shape was introduced and thoroughly analyzed. In this chapter the
results are summarized and some outlook and future work will be discussed.

8.1 Conclusion

For complex data situations flexible fitting methods are often required. One of
these methods is the gamboostLSS framework by Hofner et al. [2015a]. The frame-
work suffered from a very costly optimization phase, especially if a large number of
iterations is required. Our new noncyclical fitting algorithm simplifies the model
optimization tremendously. Even though the initial runtime to fit a single model is
higher (especially if the base-learner selection is done via the outer loss approach),
the time is regained while finding the optimal number of iterations. In case of
the seabird abundance model, the runtime to optimize the number of iterations
was reduced from more than one week (the runtime was not exactly measured
and only extrapolated from a smaller fit on the dataset) to a mere two days. The
convergence speed of the new algorithm is faster, as shown in a simulation, and
consequently fewer iterations are needed compared to the cyclical way of fitting
such models. Both different noncyclical fitting methods, one in which base-learner
selection is conducted via RSS within each distribution parameter and with the
loss function between the different distribution parameters, and one where all se-
lection is based on the loss function, are almost identical in their performance.

The second argument for a noncyclical fitting approach was the combination of
boosted GAMLSS with stability selection, to achieve sparser models and select
informative effects. Because of the cyclical nature of the algorithm, it may force
effects into the model that have small influence on the response, compared to ef-
fects that would be added in a later iteration for other distribution parameters.
We conducted a simulation study with different distributions to validate this the-
ory. For the tested two-parameter distributions, the noncyclical algorithm had
fewer false positives as well as more true positives compared to the cyclical variant
for almost all settings. For high dimensional cases, the differences between both
methods reduced and, especially in the number of true positives, approximately
equal results were achieved. For three-parameter distributions these results could
not be verified and the cyclical variant achieved better values in both true and
negative positives. In the abundance of the common eider populations, both cycli-
cal and noncyclical fitting methods were tested on how they influence the results
of the stability selection. The selected models were similar in most effects, but the
noncyclical variant selected more effects for u, whereas the cyclical variant selected
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two additional effects in o.
Overall, out new fitting method is faster and showed a better performance for
stability selection in two-parameter distributions.

8.2 Outlook

In this Chapter some additional remarks are summarized where the presented
techniques may be expanded in the future.

8.2.1 Stability selection: Counting base-learners independent of their
parameter

Currently, if a effect is selected multiple times for different distribution parameters,
it is counted multiple times to check if the maximum number of variables to include
q, is reached. An alternative would be, to count the base-learners globally over all
distribution parameters. An effect that is selected for p and o would still count
only as one effect to check if the required number of base-learners is reached.
The question if this is a reasonable thing to do, is highly dependent on the situation
and the actual problem definition. There may be situations, in which a researcher is
interested exactly which effects are meaningful for a specific distribution parameter
(e.g. which effects have influence on the variance in a normal distribution). On
the other hand, there are situations where only the relevant question is, if a effect
is informative at all. One thing to consider is, that if the base-learners are counted
independently of their parameters, situations where distribution parameters have
a similar effect may be improved. This could be especially useful for distributions
with more than two parameters. The simulation study in Chapter 6 showed that
both, cyclical and noncyclical algorithm have problems finding the informative
variables in these cases.

8.2.2 Stability selection for three-parameter distributions

Stability selection for boosted GAMLSS models with three-parameter distributions
currently does not work very well. Especially for high dimensional cases, it gets
very difficult to find informative effects, while controlling the false discovery rate.
The new noncyclical way of fitting boosted GAMLSS models results in fewer true
positive effects and more false positive ones. We are currently not sure why this
is the case, but it may have to do with the additional flexibility of the noncyclical
fitting method. Often the decision which variable to include is concise. The
noncyclical algorithm has a way larger number of possible base-learners to consider
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in each iterations. The subsampling within stability selection, may result in a
lot more different selections for the noncyclical method compared to the cyclical
fitting method and consequently fewer informative effects are found. This behavior
should be further examined, but currently no adequate solution is found and we
recommend to use the cyclical algorithm for three-parameter, which showed better
performance in most cases.
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10 Appendix

10.1 Derivates of the normal distribution

Let f(x|u,o) be the density of the normal distribution. Then the derivates in
regard to p and o are:

of (z|p,0) _ 1 (z —p)* x—p
T = WGXP(— 902 ) o2 (18)
= flaln. o) T
8.]0(‘7’":“7 U) _ 1 (.13 — :U’)2 1 (SC — M)Q) (‘T — M)Q (19)

do - \V2ro? exp(= 207 )+ V2ro? Pl 20°
1 (v — p)?
= flal,o) + el o)
2

3
(z—p)3? -0 ’
= 0_3 f(m‘/,é,o')

10.2 Additional tables and graphics for the stability selection

simulation
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p q Tthr = 0.6 Tthe = 0.7 Tehr = 0.8 Tehr = 0.9
cyc outer PFER cyc outer PFER cyc outer PFER cyc outer PFER
50 8 10 16/0 1.7 10 150 08 10 120 05 10 110 0.3
15 30 360 59 300 340 29 290 320 18 250 310 1
25 40 4/0 164  4)0  4)0 8§ 390 390 51 380 380 27
250 & 10 1/0 0.3 110 110 0.2 10 10 0.1 110 1/0 0.1
15 150 180 12 130 1.6/0 06 110 130 04 110 1.20 0.2
25 300 3|0 33 30 290 1.6 290 260 1 270 24/0 05
50 40 390 132  4/0 380 64 390 360 41 380 340 22
500 8  1J0 1/0 0.2 110 110 0.1 1/0 110 0.1 110 1/0 0
15 110 110 06 110 110 0.3 1/0 110 0.2 110 1/0 0.1
25 2.9/0 2|0 1.6 270 180 08 240 160 05 190 130 03
50 40 340 6.6 3900 320 32 380 30 2.1 3700 280 1.1
Table 5: Number true|false positives for p in simulation with 100 runs and normal
distribution
p q Tehr = 0.6 Tenr = 0.7 Tehr = 0.8 Tehr = 0.9
cyc outer PFER cyc outer PFER cyc outer PFER cyc outer PFER
50 8 3801 380 1.7 360 350 08 340 330 05 280 270 03
15 4]0.2 4/0 59 39001 3900 29 380 380 18 350 3.40 1
25 406 4/0.2 164  4/0.2 4]0 8 40 3900 51 370 350 27
250 8 3]0 3|0 03 270 270 02 250 250 01 220 220 0.1
15 3.4/01 3401 12 3200 320 06 30 290 04 250 250 0.2
25 3.700.2 3702 33 340 350 1.6 30  3.1/0 1 26/0 250 05
50 3.9/0.1 3.9/0.1 132 3700 3700 64 330 340 41 280 270 22
50 8 270 270 0.2 250 250 01 230 220 01 210 21[0 0
15 3200 320 06 290 290 03 260 260 02 230 230 01
25 350 34/01 1.6 3200 320 08 290 290 05 240 240 0.3
50 3.70 3701 6.6  3.4/0 340 32 30  3/0 21 250 240 11

Table 6: Number true|false positives for o in simulation with 100 runs and normal

distribution
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p q Tthr = 0.6 Tehr = 0.7 Tehr = 0.8 Tthr = 0.9
cyc outer PFER cyc outer PFER cyc outer PFER cyc outer PFER
50 8 3]0 3|0 1.7 3/0 290 08 290 280 05 270 260 03
15 3102 3101 59 3101  3[0 2.9 310 310 1.8 290 280 1
25 32|14 3206 164 3.1/05 3.1/02 8 3102 301 5.1 30 290 27
250 8 270 280 03 250 260 02 220 240 01 180 20 0.1
15 30 3|0 1.2 3|0 2900 06 2.9/0 2.8/0 04 280 250 02
25 3.1/01 3.1/0 33 3101  3[0 1.6 30 290 1 290 280 05
50 3.1 3104 132 31003 3101 64 3001  3[0 41 290 290 22
500 8 250 260 0.2 2200  24/0 01 1910 210 01 160 1.70 0
15 30 290 06 3/0 280 0.3 290 260 02 2600 230 0.1
25 3.1J0 3l0 1.6 3l0 3]0 0.8 30 290 05 280 260 03
50 3.1/04 3.1/0.2 6.6  3.1/0.1  3[0 3.2 30 290 21 280 270 1.1
Table 7: Number true|false positives for p in simulation with 100 runs and negative
binomial distribution
p q Tehr = 0.6 Tehr = 0.7 Tehr = 0.8 Tehr = 0.9
cyc outer PFER cyc outer PFER cyc outer PFER cyc outer PFER
50 8 1.3)1.4 1.3)1.4 17 1113 1.2]1.3 08 1111 1112 05  0.8/1.1 0.8[1 0.3
15 1.8/1.8 221 59 1516 1.81.8 29 1.3]14 1516 1.8 1.2 1113 1
25 21025 2435 164 1912 2125 8 1.6/1.7  1.82 51 13|14 1516 2.7
250 8 0.8/1.2 09/1.2 03 0711 0711 02 0609 06|l 0.1  04/09 0408 0.1
15 13|14 1415 12 1113 1214 06 0912 112 04 06/1.1 0711 02
25 14|17 16/21 33 1214 14/1.7 16 1.1]1.2 1.2/]14 1 0.8/1.1  1]1.1 0.5
50 1.6)25 1.9)3.6 132 1519 1626 64  1.3]1.5 1.4[1.9 41 1112 1214 22
500 8 0.6/1.1 0711 0.2 051  0.5]1 0.1 0309 0309 01 02008 0208 0
15 113 114 06 0812 0912 03 06/l.1 06/1.1 02 0409 05| 0.1
25 1214 1316 1.6 1.1]1.3 1.21.4 08 091.1 112 05 071 0711 0.3
50 1.4]2 1727 6.6 1316 14]2 32 114 12116 21  081.2 1[1.3 1.1

Table 8: Number true|false positives for o in simulation with 100 runs and negative

binomial distribution
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10.3 Implementation of noncyclical fitting algorithms

iBoost_cycling <- function(niter) {

start <- sapply(fit, mstop)

mvals <- vector("list", length(niter))

for (j in 1:length(niter)){
mvals[[j]] <- rep(start[j] + niter[j], max(niter))
if (niter[j] > 0)

mvals[[j]][1:niter[j]] <- (start[j] + 1):(start[j] + niter[jl)

ENV <- lapply(mods, function(j) environment(fit[[j]]l$subset))

for (i in 1:max(niter)){
for (j in mods){
## update value of nuisance parameters
for (k in mods[-j])
assign(names(fit) [k], families[[k]]@response(fitted(fit[[k]1)),
environment (get ("ngradient", environment(fit[[j]]$subset))))

## update value of u, i.e. compute ngradient with new nuisance parameters

ENVL[j11[["u"]] <- ENV[[j1][["ngradient"]]1(ENVL[jI1]1L["y"1],
ENVL[j110["£it"]],
ENV[[j1][["weights"]1])
# same as:

# evalq(u <- ngradient(y, fit, weights), environment(fit[[j]]£subset))

## update j-th component to "m-th" boosting step
£it[[j1] [mvals[[j1]1[i]]
}
if (trace){
firstRun <- firstRun
## which is the current risk? rev() needed to get the last
## list element with mazimum length
whichRisk <- names(which.max(rev(lapply(lapply(fit, function(x) x$risk()),
length))))

do_trace(current = max(sapply(mvals, function(x) x[il)),
mstart = ifelse(firstRun, 0, max(start)),
mstop = ifelse(firstRun, max(niter) + 1, max(niter)),

risk = fit[[whichRisk]l]l$risk())

}

return (TRUE)
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iBoost_outer <- function(niter){

#this is the case for boosting from the beginning
if (is.null(attr(fit, "combined_risk")) | niter == 0){

combined_risk <- vapply(fit, risk, numeric(1))

best <- which(names(fit) == tail(names(combined_risk), 1))

ENV <- lapply(mods, function(j) environment(fit[[j]]l$subset))

for (i in seq_len(niter)){

## update value of nuisance parameters
for( k in mods[-best]){
assign(names(fit) [best], families[[best]]@response(fitted(fit[[best]])),

environment (get ("ngradient", environment(fit[[k]]$subset))))

evalq(u <- ngradient(y, fit, weights), ENV[[k]])

#glmboost with cwlin base-learner have to be considered separately
if (funchar == "glmboost") {
lik_risks <- list()

coefs <- list()

for(i in mods){
coefs[[il] <- evalq(environment (fit1) [["est"1] (u)/

environment (fit1) [["sxtx"]], envir = ENV[[il])

all_fitted <- sweep(environment (ENV[[il][["fit1"]]1)[["X"1]1, 2,
coefs[[il] , %)

lik_risks[[i]] <- sapply(l:ncol(all_fitted), function(j)
ENVL[i]][["triskfct"]](ENVL[i]][["y"1],
ENVL[i]JI[["fit"]] + nuli] * all_fitted[,jl))

#do a mboost step per hand
best <- which.min(vapply(lik_risks, min,

FUN.VALUE = numeric(1), ...))

ENV[[best]]$all_fitted <- all_fitted
ENV[[best]]$1lik_risks <- lik_risks
ENV[[best]]$best <- best
ENV[[best]]$coefs <- coefs

#construct base-learner
evalq({
xs <- which.min(lik_risks[[best]])
basses <- list(model = c(coef = coefs[[best]][xs],
xselect = xs,
p = length(coefs[[best]])),
fitted = function() {

return(coefs[[best]] [xs] * environment(fit1) [["X"11[, xs,
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drop = FALSE])

b
class(basses) <- c("bm_cwlin", "bm_lin", "bm")
fit <- fit + nu * basses$fitted()
u <- ngradient(y, fit, weights)
mrisk[(mstop + 1)] <- triskfct(y, fit)
ens[[(mstop + 1)]] <- basses
xselect[(mstop + 1)] <- xs
nuisance[[(mstop +1)]] <- family@nuisance()
mstop <- mstop + 1},
envir = ENV[[best]])

#all other base-learners
else{
risks <- list()
for( i in mods){
risks[[i]] <- evalq({
ss_new <- lapply(get("blfit", envir = environment(basefit)),
function(x) x(u))
sapply(ss_new, function(x) riskfct(y, fit + nu * x$fitted(), weights))
}, envir = ENV[[i]])

best <- which.min(vapply(risks, min,

FUN.VALUE = numeric(1)))

#construct base-learner
evalq({
ss <- lapply(get("blfit", envir = environment(basefit)),
function(x) x(u))
xselect [mstop + 1] <- which.min(sapply(ss, function(x)
riskfct(y, fit + nu * x$fitted(), weights)))
fit <- fit + nu * ss[[tail(xselect, 1)11$fitted()
u <- ngradient(y, fit, weights)
mrisk[(mstop + 1)] <- triskfct(y, fit)
ens[[(mstop + 1)11 <- ss[[tail(xselect, 1)1]
nuisance[[(mstop + 1)]] <- family@nuisance()
mstop <- mstop + 1},
envir = ENV[[best]])

combined_risk[(length(combined_risk) + 1)] <- tail(risk(fit[[best]]), 1)

names (combined_risk) [length(combined_risk)] <- names(fit) [best]

if (trace){
do_trace(current = length(combined_risk[combined_risk != 0]),
mstart = ifelse(firstRun, length(fit) + 1,
length(combined_risk[combined_risk != 0])),
mstop = ifelse(firstRun, niter - length(fit), niter),

risk = combined_risk[combined_risk != 0])

}

combined_risk <<- combined_risk

return(TRUE)
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10.4 Digital appendix - CD
e /code/

Contains the complete code that was used for the simulations and the visu-

alizations used in this thesis.

e /gamboostlss
Contains the current version of the noncyclical_fitting branch of the R pack-

age gamboostLSS.

e /seabirds/

Contains data and code used for the analysis of the seabird dataset.

e /thesis/

Contains this thesis in pdf form.

e /graphics/

Contains all graphics used in this thesis.

e /simulation results/

Contains the result of all run simulations as well as the code to process them.



