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Abstract

Abstract

The LASSO (Tibshirani, 1996) is a powerful method which due to the fact that is uses a
l1-penalty allows for the estimation of regression coefficients and variable selection at the
same time. An important property of the LASSO is that it can be applied even when the
number of covariates p is larger than the number of observations n. This differs the LASSO
from the popular OLS method which requires p < n. An assumption that is common
to the vast majority of studies on the LASSO is that the design matrix X passed to the
LASSO for performing linear regression contains perfect covariate measurements that do
not suffer from additive measurement error. However, in practice where data corrupted by
measurement errors or errors-in-variable data are rather the norm than the exception, this
assumption does not meet the truth. In this work, we studied the LASSO in the presence
of additive measurement error in the design matrix. In doing so, we allowed for analytical
results on the estimation and variable selection consistency of both the LASSO with perfect
design and the naive LASSO with additive covariate measurement error. We performed a
Monte Carlo simulation study to assess the finite sample performance of the OLS and the
LASSO under matrix uncertainty. Thereby, we also computed the corresponding corrected
estimates. In particular, we used the well-known reliability ratio (Fuller, 1987) for the OLS
estimates and a reliability ratio-like factor according to Sørensen et al. (2014) for the naive
LASSO estimates in the presence of measurement error.
In summary, we found that the MSE values of both the naive LASSO and the naive OLS
increase with growing measurement error variance and covariate correlation. With respect
to the corrected LASSO and OLS estimates, our results suggest that there does not exist
any overall evidence of the efficacy of the applied measurement error correction factors.
Especially, the MSE values of the corrected estimates tend to be larger than the ones
for the naive estimators. However, we found that the empirical averages of the MSE
values were inflated by a few outliers and that the occurrence of outliers was due to the
bad conditioning of a matrix which contributes to the correction factor. Moreover, our
simulation results suggest that the coincidence of high covariate correlation and large
measurement error variance leads the LASSO to be more or less unable to differ between
important and unimportant covariates. This finding is also supported by theory. Finally,
we also examined the distributions of the tuning parameter constituted by 500 runs of the
simulation. We found that the general level of penalization measured by the median of the
λ-distributions rises with increasing noise level and that the considered distributions are
far from being Gaussian.
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1 Introduction

1 Introduction
For various reasons, the popular and well-known Ordinary Least Squares (OLS) estimator
represents the method of choice in the classical linear regression setting where the number
of observations n exceeds or at least equals the number of model covariates p. However,
in practice arise potentially many situations that deviate from the classical regression
setting and thus lead the OLS solutions to be unstable or unidentifiable. For instance, in
situations where some of the covariates that are assumed to be independent from each
other are de facto perfectly correlated, the problem of multi-collinearity arises and entails
rank deficiencies in the design matrix. The latter lead the OLS estimator to collapse (in the
extreme case of perfect correlation) or at least to be unstable in the sense that it exhibits a
very large variance. Another reason for rank deficiencies occurs in high-dimensional data
settings where the number of model covariates p is typically larger than the sample size
n. Given such "large p and small n problem", the model parameters cannot be uniquely
defined by the OLS estimator. However, as stated by Raskutti et al. (2010), various fields
in modern science and engineering such as computational biology, astrophysics, medical
imaging, natural language processing and remote sensing, involve collecting data sets
whose dimension p exceeds by far the sample size n. In such cases, strong variable selec-
tion is desirable in order to obtain interpretable prediction rules and shrinkage is desirable
to prevent over-fit (Goeman, 2010). An important property of the Least Absolute Shrinkage
and Selection Operator (hereinafter referred to as the LASSO) proposed by Tibshirani (1996)
is that it is applicable even when the number of covariates exceeds the number of observa-
tions. This property makes the LASSO a suitable regression method for high-dimensional
data settings with p > n or p � n. Besides the well-known Ridge estimator (Hoerl and
Kennard, 1970), the latter can be considered as being the most important shrinkage or
regularization method in linear regression.

The LASSO minimizes the sum of squared empirical errors subject to an l1-penalty for
complexity regularization. In this view, the resulting LASSO estimates can be regarded
as shrunken LS estimator. Basically, the LASSO seeks to identify a model that not only
fits well, but that is also "simple" to avoid large variation which typically occurs in the
estimation of complex models with a huge amount of covariates (Zhao and Yu, 2006).
With its l1-geometry, the LASSO has an exceptional position among estimators using a
lq-norm for regularization. The reason therefore is that q = 1 is the only value of q for
which variable selection takes place, while the optimization problem is still convex and
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1 Introduction

hence feasible for high-dimensional problems (see Meinshausen and Bühlmann, 2006).
This implies that the LASSO does variable selection in the sense that depending on the
respective choice of the regularization parameter, the coefficients estimated can exactly
be zero for some variables. Its variable selection capability represents the main feature
that distinguishes the LASSO from the Ridge estimator (Hoerl and Kennard, 1970).1 With
regard to variable selection, the LASSO meets the requirements of statistical accuracy and
computational feasibility also for p� n (Bunea et al., 2007). The latter property differs it
from conventional variable selection methods, such as the Akaike Information Criterion
(AIC) and the Bayesian Information Criterion (BIC) which both are infeasible to compute
when the number of covariates p is of medium or large size (Bühlmann and Van de Geer,
2011). Furthermore, by doing variable selection for high-dimensional data, the LASSO
reflects the assumption that in many applications, such as studies involving microarray or
mass spectrum data, the total number of covariates p is large or even much larger than
n, while the number of important covariates is typically smaller than n (see Zhang and
Huang, 2008). This notion describes the main rationale behind the sparsity assumption
inherent to the LASSO. Sparsity plays a role of utmost importance when the LASSO’s
performance is considered from a theoretical point of view (see section 3). From a practical
perspective, the sparsity assumption in the LASSO leads to sparse or "simple" models
that are easy to interpret. More precisely, by potentially setting some or even the majority
of covariate coefficients exactly to zero, the LASSO produces sparse solutions and thus
facilitates model interpretation when the number of covariates exceeds the number of
observations.

Due to the fact that the LASSO has the ability to simultaneously select covariates and
estimate parameters, it has become one of the most important and widely used models
for regularization in high-dimensional linear regression settings. Thus, it gave rise to an
extensive and fast growing body of literature over the last decade. Within the LASSO liter-
ature, there is one strand of literature that mainly focuses on the properties of the LASSO
with regard to prediction and estimation (see Knight and Fu, 2000; Zhang and Huang,
2008; Meinshausen and Bühlmann, 2006; Meinshausen and Yu, 2009). In this context, one
of the main results is the Compatibility Condition (CC) discussed in subsubsection 3.3.1.
The latter allows to establish so-called oracle results for prediction and estimation which

1 Note that the Ridge estimator has the advantage of handling multicollinearity much better than the
LASSO (see, e.g., Tibshirani, 1996).

2



1 Introduction

concern the LASSO’s ability to nearly achieve the risk of infeasible optimal selection in
canonical regression (Hansen, 2013). On the other hand, its model selection properties
and in particular its variable selection accuracy have been studied by - amongst others
- Meinshausen and Bühlmann (2006), Zhao and Yu (2006), Zou (2006) and Bickel et al.
(2009). Meinshausen and Bühlmann (2006) introduced the neighborhood stability condition
which is sufficient and essentially necessary (in a sense to be specified) for the variable
selection consistency of the LASSO. At least for the classical case where n > p, the latter is
equivalent to the Irrepresentable Condition (IC) which has been introduced simultaneously,
but nevertheless independently by Zhao and Yu (2006) and Zou (2006). The IC is sufficient
and essentially necessary for consistent model selection with the LASSO and it constitutes
the central argument regarding its variable selection consistency. Bühlmann and Van de
Geer (2009, 2011) formally showed that the IC for variable consistency implies the CC
for prediction and estimation accuracy. This indicates that using the LASSO for variable
selection constitutes a more sophisticated problem than using it for parameter estimation
and prediction (Bühlmann and Van de Geer, 2011).

An assumption that is common to all of the aforementioned studies on the LASSO is that
the design matrix X passed to the LASSO for performing linear regression contains true
covariate measurements that do not suffer from additive measurement error. However, in
practice where data corrupted by measurement errors or errors-in-variable data are rather
the norm than the exception, this assumption does not meet the truth. In fact, error-prone
covariate measurements represent a challenge for the majority of conventional statistical
models. Moreover, the practitioner might not be aware of the existence or the precise
extent of measurement error in certain situations. Therefore, a legitimate and interesting
research question is how the LASSO performs with regard to estimation, prediction and
variable selection given the presence of measurement error in the design matrix X.

We would like to dedicate our work to the above question and hence focus on the LASSO
for linear models in cases where the design matrix passed on to the LASSO suffers from
measurement error. In recent literature, this situation has also been denominated by matrix
uncertainty (Rosenbaum and Tsybakov, 2010, 2013). In that sense, our work differs from the
large majority of literature on the LASSO where the authors implicitly assume perfectly
measured covariates. We would like to contribute to a relatively recent and emerging
strand of literature and study the LASSO under matrix uncertainty from a theoretical and
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1 Introduction

simulation-based point of view. Although the main rationale behind the LASSO and also
its application based on suitable software packages, such as the GLMNET or penalized pack-
age in R (R Core Team, 2013), seem straightforward and do not pose major problems, the
theory on the LASSO is very technical and - in our view - a very demanding and complex
field of research. It is thus sensible to start with some central theoretical results regarding
crucial properties of the LASSO under the assumption of perfect covariate measurements
(see section 3). We would like to point out that in literature there have been established nu-
merous different, but largely congruent conditions that imply that the LASSO is consistent
for estimation and prediction or variable selection, respectively. Given the vast amount
of different conditions and approaches, She (2010) summarizes that using the LASSO the
design matrix cannot be too far from orthogonal to reach meaningful conclusions. He also
brings forward that the many different assumptions used to guarantee the properties of
the LASSO make it difficult to compare the theoretical results with each other and that
they also seem to be restrictive in applications. We share this perspective adopted by She
(2010). Thus, besides giving a rough outline of the different theoretical perspectives in
subsection 3.2, we focus on a few main results regarding the estimation and prediction and
variable selection accuracy of the LASSO (see section 3). For the sake of brevity we will not
get into detail with respect to the theory of measurement error models, which constitutes
itself a complex field of research. There is, however, a vast amount of insightful literature
that deals with it and we refer the interested reader to the latter and the references therein
(see, e.g., Fuller, 1987; Cheng and Van Ness, 1999; Carroll et al., 2006). Our introduction to
measurement error models given in section 4 is rather tightly tailored towards the specific
measurement error context examined in the simulation study on the LASSO discussed in
section 6 of this work.

The organization of the work is as follows. We start in section 2 by giving some background
information and a detailed description of the LASSO estimator for high-dimensional linear
regression. The most important theoretical results on the LASSO assuming that the design
matrix contains true covariate measurements will be presented in section 3. In section 4, we
will shortly introduce the basics of measurement error theory for linear models and outline
potential correction methods before considering the LASSO under matrix uncertainty
from an analytical point of view in section 5. In the final part of this work (section 6), we
perform a Monte Carlo (MC) simulation study to assess the finite sample performance of
the LASSO under matrix uncertainty. To conclude, section 7 draws a balance and discusses
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2 Background and definition of the LASSO for high-dimensional data

some limitations of our work. Appendix A contains some helpful results with regard to
matrix algebra and provides additional simulation results.

2 Background and definition of the LASSO for high-dimensional data
In the following, we consider a situation where the observed data (yi, xi) (i = 1, ..., n) are
realizations of the random variables (Yi, Xi). Given a p-dimensional vector of predictor
variables or covariates, xi ∈ Rp, and a univariate continuous output yi ∈ R for individual
or observation i, in the classical multiple linear regression model the response yi is linked
to the covariate vector xi by means of the linear relation yi = xT

i β + εi, where εi is a scalar
observation noise and β = (β1, ..., βp) is the underlying true coefficient vector. If we allow
for a set of n such observations, the above model can be written in the matrix-vector
form

y = Xβ + ε, (1)

where y ∈ Rn×1 is the response vector, X ∈ Rn×p is the design matrix containing true
covariate values without measurement error (in which row xi ∈ R1×p represents the
covariates for the ith observation), β ∈ Rp×1 is the true, but unknown regression coefficient
vector and ε ∈ Rn×1 is a vector of observation noise. We assume that the model errors
ε = (ε1, ..., εn)T are i.i.d. (independent and identically distributed) normally distributed
with mean zero and variance σ2, i.e., ε ∼ N(0, σ2I). Given this setting, our goal typically
is to quantify the unknown vector of regression coefficients β by means of the estimate β̂.
Thereby, we implicitly assume that the model in Equation 1 is correct, i.e., we imply that the
relation that underlies our data is truly linear. This assumption is crucial, since in practice
we do not have notice of the true underlying model and thus need to differ between the
true parameter β and the best approximating parameter β∗. Note that throughout this
work, we write vectors and matrices in boldface. In particular, upper case bold letters such
as X are used for matrices. Estimates are denoted by placing a hat over the corresponding
letter for the true parameter, e.g., β̂ is an estimator for β. Finally, we use capital letters to
denote random variables as compared to their corresponding realized values which we
denote by small letters.

The most widely-used estimation method to solve the linear model in Equation 1 for the
vector of regression coefficients β is the Least Squares (LS) estimation method (see, e.g.,
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2 Background and definition of the LASSO for high-dimensional data

Fahrmeir et al., 2013; Hastie et al., 2009) which results in the popular OLS estimator given
by

β̂OLS = (XTX)−1XTy. (2)

If the design matrix X has full column rank, the Gram matrix XTX is positive definite (see
subsection A.1) which implies that the OLS estimator given by Equation 2 is the unique
solution to Equation 1. Note that for the full rank case the OLS estimator can be shown
to be the best linear unbiased estimator (BLUE). This means that the LS estimates for the
coefficients β j (j = 1, ..., p) have the smallest variance among all linear unbiased estimates
which in turn implies that they also exhibit the smallest mean squared error (MSE) among
all linear unbiased estimators (see Gauss-Markov Theorem in, e.g., Hastie et al. (2009,
Chapter 3)).Then However, if the columns of X are linearly dependent, X has not full
column rank and XTX results in being singular. In this case the OLS coefficients in β̂OLS

given by Equation 2 are not uniquely defined and thus unidentifiable. As a consequence,
the OLS estimator does no longer produce meaningful estimations of the true underlying
parameter vector β ∈ Rp.

In their study on Ridge regression Hoerl and Kennard (1970) consider the behaviour of the
OLS estimator in a setting where due to non-orthogonal problems caused by correlations
between covariates, the Gram matrix XTX is not nearly a unit matrix. To demonstrate
the impact of XTX being ill-conditioned on β̂OLS, they introduce the squared distance
from β̂OLS to the true coefficient vector β, L2

1 (see Equation 3). The expectation and the
variance of L2

1 are given in Equation 4 and Equation 5, respectively. Thereby, λmax = λ1 ≥
λ2 ≥ . . . ≥ λp = λmin > 0 denote the eigenvalues of the Gram matrix XTX in descending
order.

L2
1 = (β̂OLS − β)T(β̂OLS − β) (3)

E(L2
1) = σ2

p

∑
k=1

(
1

λk
) (4)
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2 Background and definition of the LASSO for high-dimensional data

V(L2
1) = 2σ4

p

∑
k=1

(
1

λk
)2 (5)

Lower bounds for the expectation and the variance are σ2/λmin and 2σ4/λ2
min, respectively.

As long as λmin 6= 0, it holds that XTX ∈ R(p×p) is regular (see subsection A.1) which
implies that the inverse of XTX exists and is unique (see subsection A.1). However, it
can easily be seen from Equation 4 and Equation 5 that β̂OLS becomes more and more
unstable in the sense that the expected distance between the true coefficient vector β and
β̂OLS and also the variance of this distance will tend to be large given that XTX has one or
more small eigenvalues λk (k = 1, ..., p). The above considerations show the uncertainty in
β̂OLS when XTX moves from a unit matrix to an ill-conditioned one (Hoerl and Kennard,
1970). In section 3, we will study the importance of the eigenvalues of the Gram matrix
XTX more deeply and show that they play a role of utmost importance with regard to the
performance of the LASSO.

One potential reason that leads to linear dependencies among columns in X and thus to
XTX having one or more small eigenvalues is given by (multi-)collinearity among covari-
ates. The latter arises in situations where some of the covariates that are assumed to be
independent from each other are de facto (perfectly) correlated. Hastie et al. (2009) state
that the non-full-rank case occurs mostly if one or more qualitative inputs are coded in a
redundant fashion. A further reason for rank deficiencies entailing small eigenvalues of
XTX typically occurs in high-dimensional regression settings where the number of model
covariates p is (considerably) larger than the sample size n (p > n or p� n, hereinafter
also referred to as large p small n case). More in particular, the rank of X cannot be larger
than n if p > n. This leads XTX to have - at a maximum - n eigenvalues being non-zero or
equivalently, to have at least (p− n) eigenvalues equal to zero.
However, in scientific fields, such as computational biology, astrophysics or signal and
(medical) image analysis, there are application areas where the large p small n case is
inherent to potential research problems (Raskutti et al., 2010). Since the researcher is
typically unaware of the variables playing a role for the considered response, there is no
natural way to resolve the non-unique representation problem of OLS estimation by, e.g.,
recoding or dropping redundant columns in X (see Hastie et al., 2009). In view of the
aforementioned deliberations, we can summarize that given high-dimensional regression
settings with p > n or given the presence of perfect collinearity among covariates, the OLS
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solutions β̂OLS for Equation 1 are unidentifiable.

Against this background, in high-dimensional data settings it is a sensible approach to
allow for the class of shrinkage estimators which in fact are biased estimators, but typically
have a smaller variance than OLS estimators. This means that they sacrifice a little bias to
achieve a larger reduction in variance of the predicted values and thus improve the overall
prediction accuracy in terms of exhibiting low MSE values. According to Hastie et al.
(2009), the MSE of an estimator θ̂ in estimating θ is defined by

MSE(θ̂) = E
(
θ̂− θ

)2
= Var(θ̂) +

[
E(θ̂)− θ

]2
. (6)

Besides the well-known Ridge estimator (Hoerl and Kennard, 1970), the LASSO proposed
by Tibshirani (1996) can be considered as being the most important shrinkage or regulariza-
tion method in linear regression. The LASSO estimate is defined by

β̂LASSO(λ) = arg min
β

(
1/n ‖y− Xβ‖2

2 + λ‖β‖1

)
, (7)

where ‖y − Xβ‖2
2 = ∑n

i=1(yi − (Xβ)i)
2 and ‖β‖1 = ∑

p
j=1|β j| which equals the sum of

absolute values of the vector’s entries. Note that λ ≥ 0 is a penalty parameter (also regular-
ization parameter or tuning parameter). The LASSO estimator given in Equation 7 minimizes
the sum of squared empirical errors subject to a l1-penalty for complexity regularization.
In this view, the resulting LASSO estimates β̂LASSO,j(λ) (j = 1, ..., p) can be regarded
as shrunken or regularized LS estimator, a fact that is directly reflected in the LASSO’s
name (Bühlmann and Van de Geer, 2011). The LASSO seeks to identify a model that not
only fits well, but that is also "simple" - in the sense of sparse - to avoid large variation
which typically occurs in the estimation of complex models that involve a vast amount of
covariates (Zhao and Yu, 2006).
The optimization problem in Equation 7 is convex which allows the LASSO to identify the
solution and also facilitates efficient computation of the LASSO estimates even if p� n
(Bühlmann and Van de Geer, 2011). The convexity of optimization problems implies that
any locally optimal point is also (globally) optimal (Boyd and Vandenberghe, 2004), while
non-convexity entails the presence of local minima. As mentioned before, the fact that its
program is convex differs the LASSO from popular model selection methods, such as AIC
or BIC which both use a l0-penalty and therefore are non-convex functions in the parameter
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estimate β. Note that AIC and BIC are infeasible to compute when p is of medium or large
size (Bühlmann and Vande Geer, 2011). In contrast, the l1-penalty used by the LASSO is
symmetric, convex on (0, inf) and has singularities at the origin which is necessary for
a method to produce sparse solutions (Fan and Li, 2001). However, note that unlike for
the Ridge estimator there does not exist any analytic solution for the LASSO. The reason
therefore is that the LASSO coefficients are non-linear in the response y. Efron et al. (2004)
proposed the Least Angle Regression (LARS) algorithm which is a fast iterative algorithm
whose regularization path is close to that of the LASSO. The LARS algorithm can be used
for computing the entire LASSO regularization path for linear regression models. In doing
so, it makes use of the fact that the coefficient profiles are piecewise linear which leads to
an algorithm with the same computational cost as the full LS fit on the data (Goeman, 2010).

The amount of regularization that is applied to the LASSO estimate is controlled by the
penalty parameter λ ≥ 0. For λ = 0, the LASSO estimator given by Equation 7 equals the
OLS estimator which minimizes the un-regularized empirical loss. In contrast, a very large
λ (λ→ ∞) will in the limit shrink the entire coefficient vector β̂LASSO to zero and thus result
in the null model. Moderate values of λ will in general result in shrinkage of the solutions
towards zero where some coefficients may be estimated as being exactly zero. However, the
above described shrinkage behaviour of the LASSO simultaneously implies one of its major
advantages and disadvantages. In fact, as stated by Zhang (2009) the l1-regularization
used by the LASSO has two important properties: it shrinks estimated coefficients β̂ j

corresponding to irrelevant features towards zero, but it also shrinks estimated coefficients
corresponding to relevant features towards zero. This implies that the LASSO leads to
biased estimates for large covariate coefficients and thus could be suboptimal in terms of
estimation risk (Zou, 2006). The aforementioned considerations of Zhang (2009) and Zou
(2006) are in line with the results of a study on the asymptotic behaviour of the LASSO
estimates (Knight and Fu, 2000). More in particular, Knight and Fu (2000, Theorem 2)
show that the non-zero parameters are estimated with some asymptotic bias if λ > 0.
Besides producing biased estimates for covariates with a reasonable large effect on the
response, the LASSO also shows poor performance for nearly singular designs. Note
that nearly singular designs are designs whose Gram matrix is non-singular but may
have one or more small eigenvalues (Knight and Fu, 2000). Generally, nearly singular
designs indicate the presence of (multi-)collinearity among the covariates that are part of
the model. Tibshirani (1996) showed that given the presence of (multi-)collinearity among
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covariates, the LASSO is inferior in terms of prediction performance compared to the Ridge
estimator. The Ridge regression shrinks the coefficients of correlated covariates towards
each other whereas the LASSO tends to somehow ignore the correlation by picking only
one of the correlated covariates and disregarding the remaining ones (Friedman et al.,
2010). Hence, if there are several covariates with high pairwise correlation the LASSO
only selects one of the correlated covariates (Zou and Hastie, 2005). Finally, as stated by
Bühlmann and Van de Geer (2011), it follows from the analysis of the LARS algorithm
(Efron et al., 2004) that every model estimated by the LASSO has a cardinality smaller
than or equal to min(n, p). This property of the LASSO might be beneficial for high-
dimensional datasets with p � n, since it allows the LASSO per se to achieve a certain
dimensionality reduction (see also subsubsection 3.3.2). On the other hand, this property
can also be considered as a caveat of the LASSO, since in cases where more than min(n, p)
covariates have a de facto impact on the response, it leads to a wrongful reduction of
dimensionality.

3 Theory for the LASSO
Before considering the performance of the LASSO for linear models in the presence of
measurement error in the design, it is sensible to examine its performance under the
assumption of the availability of an ideal X containing perfect covariate measurements.
In this section, we thus focus on LASSO without measurement error in the design. In
doing so, we will derive that the latter exhibits good theoretical properties in the sense
that its prediction error is of the same order of magnitude as the prediction error resulting
if the correct sub-model was known in advance (Bühlmann and Van de Geer, 2011; Fan
and Li, 2001). We account for the performance of the LASSO in terms of its ability to
correctly estimate the coefficients β j (j = 1, ..., p) and to select the influential covariates by
setting the coefficients of unimportant covariates to zero. While the latter performance
component refers to the LASSO’s consistency in variable selection, the former relates to
its estimation consistency. The theoretical results presented in the following thus allow
us to assess under which ideal conditions the LASSO will be consistent in estimation
and prediction and variable selection given a perfect design matrix. As shown below,
such conditions are mostly conditions on the design matrix X which already suggests
that the presence of measurement error in the latter might have an impact on the perfor-
mance of the LASSO. In our work, we will restrict ourselves to fixed design. However,
Bunea et al. (2007) give interesting insights into oracle inequalities for the LASSO with
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random design. Therefore, the interested reader is referred to the latter and the references
therein.

3.1 Assumptions and corresponding notation
According to the majority of the prevalent literature on the LASSO, we generally assume
throughout this work that the true coefficient vector β is sparse. This means that we hy-
pothesize that the majority of coefficients βLASSO,j is exactly zero. Note that the assumption
of sparsity refers to the fact that in high-dimensional data settings the number of covariates
p is potentially growing as any power of the number of observations n if n→ ∞, while the
number of variables de facto impacting the response is growing at most slightly slower
than n (Meinshausen and Bühlmann, 2006). The sparsity assumption will be formalized
below. Besides sparsity in β, we hypothesize for simplicity and without loss of generality
that the intercept of the considered linear model is zero and that all covariates are centred
and measured on the same scale. These assumptions are literally made in all theoretical
studies on the LASSO and they are also of practical relevance. They can be achieved
approximately by empirical mean centring of the covariate vectors X(j) (j = 1, ..., p) and
the response vector Y and scaling with the corresponding empirical standard deviation
σ̂j. Such standardization procedure guarantees that each covariate is affected more or less
equally by the penalization (Bühlmann and Van de Geer, 2011). Bühlmann and Van de
Geer (2011) point out that the normalization with the standard deviation is quite natural
and commonly used in practice. After these steps, the standardized data to which the
LASSO is applied, satisfies Ȳ = n−1 ∑n

i=1 Yi = 0 and σ̂2
j = n−1 ∑n

i=1(X(j)
i − X̄(j))2 = 1 for

all j. Note that with having only ones on the diagonal the Gram matrix for the covariates
Cxx corresponds rather to a correlation matrix than to a covariance matrix. An alternative
approach to the above procedure is to keep an intercept, but leave the latter unpenalized
(Bühlmann and Van de Geer, 2011).We now introduce the general notation used through-
out our work. Basically, we follow the notation used in Sørensen et al. (2014) as well as in
Zhao and Yu (2006). However, the dependence on n is neglected notationally and we also
make some small notational adjustments where necessary. Some notational refinements,
which are necessary for the examination of the LASSO with measurement error, will be
given in section 4 and section 5.

Without loss of generality, we assume that

β = (β1, ..., βq, βq+1, ..., βp)
T
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is the true, but unknown coefficient vector where β j 6= 0 for j = 1, ..., q and β j = 0 for
j = q + 1, ..., p. Given the sparsity inherent to β, we partition the set of existing covariates
by defining S0 = {1, ..., q} and Sc

0 = {q + 1, ..., p}. As a consequence, one has |S0| = q and
|Sc

0| = (p− q), where | · | denotes the cardinality of a set. We will call S0 the active set and q
the corresponding sparsity index of β. Furthermore, we partition β according to the active
set S0 by defining βS0

= (β1, ..., βq)T ∈ Rq and βSc
0
= (βq+1, ..., βp)T ∈ R(p−q). Thus, βS0

is the part of the true coefficient vector that contains non-zero coefficients belonging to
influential covariates, while βSc

0
is the part of the true coefficient vector that contains zero

coefficients which belong to unimportant or non-relevant covariates. It is obvious that if
we knew the active set S0, we could simply neglect all unimportant variables X(j) with
j /∈ S0. The overall squared accuracy would then be σ2

n × q (see Bühlmann and Van de
Geer, 2011). However, in practice S0 is typically unknown.

It follows from the assumption of sparsity that β = (βT
S0

, βT
Sc

0
)T and that βSc

0
= 0. In

line with the above definitions, we introduce the partitioning of the design matrix X =

(XS0 , XSc
0
), where XS0 ∈ Rn×q and XSc

0
∈ Rn×(p−q) are the first q and the last (p − q)

columns of X ∈ Rn×p, respectively. Thus, XS0 contains the n perfect measurements of
the q influential covariates, while XSc

0
contains the n perfect measurements of the (p− q)

unimportant covariates.

Throughout this work, sample covariance matrices are denoted by C and subscripts show
which covariates are involved. Thus, let Cxx = 1

n XTX be the empirical covariance of the co-
variate measurements or equally the scaled Gram matrix of the design matrix X. Defining
the covariance of the q influential covariates as Cxx(S0, S0) =

1
n XT

S0
XS0 ∈ Rq×q, the covari-

ance of the p− q unimportant covariates as Cxx(Sc
0, Sc

0) =
1
n XT

Sc
0
XSc

0
∈ R(p−q)×(p−q) and the

covariance of the influential covariates with the unimportant covariates as Cxx(S0, Sc
0) =

1
n XT

S0
XSc

0
= Cxx(Sc

0, S0)
T = ( 1

n XT
Sc

0
XS0)

T ∈ Rq×(p−q), respectively, one can express the
scaled Gram matrix Cxx in terms of a block-wise form:

Cxx =

(
Cxx(S0, S0) Cxx(S0, Sc

0)

Cxx(Sc
0, S0) Cxx(Sc

0, Sc
0)

)
· (8)

Population covariance matrices are denoted by Σ and indexed by subscripts and su-
perscripts according to the way described for sample covariance matrices. Thus, we
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have

Σxx =

(
Σxx(S0, S0) Σxx(S0, Sc

0)

Σxx(Sc
0, S0) Σxx(Sc

0, Sc
0)

)
, (9)

where Σxx(S0, S0) ∈ Rq×q, Σxx(Sc
0, S0) ∈ R(p−q)×q, Σxx(S0, Sc

0) ∈ Rq×(p−q) and Σxx(Sc
0, Sc

0) ∈
R(p−q)×(p−q).

Unless otherwise specified, we assume fixed true covariates that satisfy

(1/n) XTX = Cxx → Σxx , as n→ ∞ (10)

and
(1/n) max

1≤i≤n
(xT

i xi)→ 0 , as n→ ∞, (11)

where Σxx is a positive definite matrix. As mentioned before, we typically assume that the
covariates are scaled so that the diagonal elements of Cxx are all identical 1. The conver-
gences in Equation 10 and Equation 11 are deterministic. 2

The LASSO estimates are partitioned according to the same pattern as β. This means
that we have β̂ = (β̂

T
S0

, β̂
T
Sc

0
)T = β̂Lasso(λ) where β̂S0

∈ Rq and β̂Sc
0
∈ R(p−q). Note that

according to the above definition, the dependence of β̂ on λ is implicit. Furthermore,
we would like to point out that since the LASSO does not necessarily provide correct
estimations of the true β, the elements of β̂S0

are not necessarily non-zero, neither are the
elements of β̂Sc

0
necessarily zero. To differentiate the true active set S0 from the active set

of the LASSO, we define for any λ ≥ 0, Ŝ(λ) = {j : β̂LASSO,j(λ) 6= 0} being the active set
of the LASSO. Ŝ(λ) contains all non-zero LASSO coefficient estimates, i.e., the β̂LASSO,j’s
for all covariates that the LASSO deems to have an impact on the response.

In the following, we use the notation ‖ · ‖q for the lq-norm of a vector. The lq-norm of a
vector x is defined as

‖x‖q = q

√
∑

i
|xi|q, where q ∈ R. (12)

2 The above regularity conditions have been introduced in the literature by Knight and Fu (2000). However,
they have also been used by Zhao and Yu (2006) and Sørensen (2014), among others.
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In line with the above definition, it holds for the l1-norm of x that ‖x‖1 = ∑i|xi|. This
implies that the l1-norm of x equals the sum of absolute values of the vector’s entries. The

l2-norm of x is defined as ‖x‖2 =
√

∑i x2
i .

3.2 Literature review on the LASSO for estimation and variable

selection
Although directly after its publication in Tibshirani (1996) the LASSO received only very
little attention (Tibshirani, 2011), it has become a very popular and widely used model for
regularization in the context of high-dimensional regression during the last years. One of
the reasons for its gain in popularity is undoubtedly its ability to simultaneously select
covariates and estimate parameters. Given an appropriate amount of regularization, the
LASSO was further shown to have oracle procedure properties. The term oracle procedure
refers to the fact that in terms of estimating the zero and the non-zero components of β,
the LASSO estimator works as well as if the correct sub-model was known in advance
(Fan and Li ,2001). Given the aforementioned reasons, the LASSO gave rise to an extensive
and still growing body of literature over the last decade. In view of the large number of
theoretical studies which lead to a broad variety of partly competing findings and results,
it is reasonable to first get an overview of the most important LASSO studies and the
results presented therein. Note that the vast majority of LASSO studies focuses either on
the estimation and prediction accuracy (see, e.g., Bunea et al., 2007; Zhang and Huang,
2008; Bickel et al., 2009; Meinshausen and Yu, 2009) or on the variable selection capacity of
the LASSO (Meinshausen and Bühlmann, 2006; Zhao and Yu, 2006; Zou, 2006). However,
note that the LASSO’s oracle capacity simultaneously implies the accuracy for correctly
estimating the zero coefficients (variable selection) and the accuracy for correctly assessing
the non-zero coefficients (Fan and Li, 2001). The reason therefore simply is that identifying
the significant predictors will also enhance the prediction performance of the fitted model
(Zou, 2006).

Knight and Fu (2000) were the first to thoroughly study the asymptotic properties of
LASSO-type estimates in the low-dimensional setting where the number of parameters p is
fixed and smaller than the sample size n. In doing so, they showed that under appropriate
conditions for the design matrix X, the LASSO estimates are consistent for the coefficients
β j (j = 1, ..., p). Moreover, they derived that with an appropriate choice for the tuning
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parameter (λn ∝ n1/2 as n → ∞), the limiting distributions of the estimated coefficients
can have positive probability mass at 0 if β j = 0. This implies that given an appropriate
amount of regularization there is a non-vanishing positive probability for the LASSO to
select the true model. However, Zhang and Huang (2008) state that on closer inspection of
the results presented by Knight and Fu (2000), the positive probability mass at zero is less
than one in the limit for certain configurations of the covariates and regression coefficients.
This means that the LASSO does not perform consistent variable selection without proper
assumptions.

Meinshausen and Bühlmann (2006) studied the LASSO for neighbourhood selection in
Gaussian graphical models. They showed that given the sparsity of β, the LASSO is
computationally very efficient and consistent even in the estimation of high-dimensional
graphs if a so-called neighbourhood stability condition is satisfied. They also insisted on the
importance of suitably choosing the penalty parameter λ for consistency of the LASSO. In
particular, they demonstrated that an prediction-optimal oracle penalty obtained through
a cross-validated choice λcv, leads the LASSO to include many noise variables in the neigh-
bourhood estimate and therefore does not allow for consistent neighbourhood estimation.
In fact, the probability of including noise variables using λcv does not even vanish asymp-
totically for a fixed number of variables p (Meinshausen and Bühlmann, 2006, Proposition
1). To achieve consistency in neighbourhood selection, λ must be chosen larger than the
prediction-optimal value. In addition, certain regularity conditions must be satisfied for
the covariate covariance matrices. More specifically, the latter must be non-singular, show
a common empirical variance and satisfy the neighbourhood stability assumption. Mein-
shausen and Bühlmann (2006) demonstrated that under the aforementioned conditions
the LASSO is consistent in estimating the dependency between Gaussian variables even
when p grows faster than n.

Zhao and Yu (2006) and Zou (2006) studied the LASSO’s variable selection consistency
and independently from each other obtained the same results. They formalized the neigh-
bourhood stability condition according to Bühlmann and Meinshausen (2006) in the context
of linear regression as so-called irrepresentable condition (IC). In doing so, they showed that
given the lC and certain other regularity conditions on the design matrix, the LASSO is
sign-consistent with the convention sign(0) !

= 0 and selects exactly the set of non-zero
regression coefficients, provided that these are bounded away from zero at a certain rate.
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Under the above conditions, the LASSO is consistent for variable selection even when the
number of covariates p is as large as exp(na) for some 0 < a < 1. For being the central
argument in favour of the LASSO’s variable selection consistency, we will perform an
in-depth analysis of the IC according to Zhao and Yu (2006) in subsubsection 3.3.2.

A l2-norm parameter estimation error bound for the LASSO together with the correspond-
ing convergence rate has been derived in studies conducted by Zhang and Huang (2008)
and Meinshausen and Yu (2009). In their work, Zhang and Huang (2008) altered the
prevalent model assumptions by using a different definition of sparsity. The latter implies
that the regression coefficients outside the true model are small in the sense that the sum
of their absolute values is below a certain level, but that they are not necessarily zero.
This clearly differs the analysis performed by Zhang and Huang (2008) from the study
on the l2-consistency of the LASSO proposed by Meinshausen and Bühlmann (2006) and
also from the above studies on the LASSO’s variable selection consistency. As opposed
to Zhang and Huang (2008), the aforementioned studies imply that the coefficients of
the covariates outside the true model are exactly zero and that all non-zero coefficients
are uniformly bounded away from zero at a certain rate. Given the particular sparsity
assumption used in Zhang and Huang (2008), variable selection no longer corresponds to
distinguishing between non-zero and zero coefficients. Instead, the objective is to select a
sparse model which fits the mean vector Xβ well and thus ideally includes all variables
with large coefficients |β j|. Against the background of this objective, Zhang and Huang
(2008) established a set of sufficient conditions which manages without the IC proposed by
Zhao and Yu (2006) and Zou (2006). Instead, they proposed a sparse Riesz condition on the
correlation of the design variables which limits the range of the eigenvalues of the covari-
ance matrices of all subsets of a fixed number of covariate vectors xj. Zhang and Huang
(2008) demonstrated that under the latter, the LASSO selects a model with the correct
order of dimension whose bias is bounded. Note that all variables with coefficients above
a pre-defined threshold level are selected regardless of the values of the other coefficients.
Zhang and Huang (2008) also showed that the LASSO is rate-consistent in the sparsity and
the bias even in high-dimensional regression settings.3 They concluded that with regard to
rate-consistency in model selection, the performance of the LASSO for correlated designs
under the sparse Riesz condition is comparable to its performance in the much simpler
orthogonal designs. It is worth noting that the sparse Riesz condition used by Zhang and

3 For the corresponding definition of rate consistency we refer to Zhang and Huang (2008, p. 1571).
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Huang (2008) and the Strong Irrepresentable Condition (SIC) derived by Zhao and Yu (2006)
and Zou (2006) do not imply each other in general.
An alternative key condition on the covariate covariance matrix which is similar to the
sparse Riesz condition introduced in Zhang and Huang (2008) is given by the Restricted
Eigenvalue assumption (RE assumption) proposed in a simultaneous study on the LASSO
and the Dantzig selector conducted by Bickel et al. (2009). Basically, the RE assumption
constitutes a condition on the Gram matrix that - similar to the sparse Riesz condition
proposed by Zhang and Huang (2008) - reflects that requiring the entire Gram matrix to
be positive definite might often be too restrictive. Under the RE assumption it is hence
sufficient that small sub-matrices of the Gram matrix are non-singular. Raskutti et al.
(2010) comment on the RE assumption introduced by Bickel et al. (2009) that it is one
of the weakest known sufficient conditions presented so far for bounding the l2-error of
the LASSO. Note that the definition of sub-matrices depends on the sparsity of the true
β. However, in practice the sparsity set S0 and also its cardinality q = |S0| are unknown.
This implies that the RE assumption itself requires an assumption about the sparsity of
the considered model. For a more detailed description of the RE assumption, we refer
to Bickel et al. (2009). We would like to point out here that the general notion of the RE
assumption is largely reflected in the IC proposed by Zhao and Yu (2006) and Zou (2006).
The latter will be discussed more in detail in subsubsection 3.3.2.

Meinshausen and Yu (2009) argument that the IC, which is the central condition for con-
sistent variable selection of the LASSO (see subsubsection 3.3.2), can easily be violated in
the presence of correlation among the covariates of a model. Therefore, they study the
behaviour of the LASSO if the IC is relaxed. The relaxed condition used by Meinshausen
and Yu (2009) regards the number of non-zero components of β and also the minimal
singular values of the design sub-matrices that contain small subsets of covariates. In the
prevalent LASSO literature, the relaxed condition is commonly referred to as the condition
of bounded minimal and maximal sparse eigenvalues. If the latter is satisfied and at the same
time an appropriate amount of shrinkage is applied, Meinshausen and Yu (2009) show
that the LASSO is still consistent in the l2-norm sense for fixed designs even if the IC
is violated.4 The corresponding rate of convergence can even be considered as optimal
in the sense that - apart from a logarithmic factor in p and n - it corresponds to the rate

4 Note that according to Meinshausen and Yu (2009), an estimator is said to be l2-consistent if ‖β̂− β‖l2 →
0 as n→ ∞.
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that could be achieved if the true sparse model was known (Meinshausen and Yu, 2009).
However, the LASSO is unable to recover the correct sparsity pattern of the model under
the relaxed conditions. More precisely, it tends to select the non-zero entries of β and, in
addition, some zero entries. Meinshausen and Yu (2009) emphasize in this context that the
non-zero entries of β are in any case included in the model selected by the LASSO as long
as the model covariates are linearly independent. It should be noted that in view of linear
dependencies among the covariates, even the relaxed condition proposed by Meinshausen
and Yu (2009) does not hold.

Van de Geer and Bühlmann (2009) revisit some sufficient conditions (together with their
interrelations) for oracle inequalities for the LASSO in regression. They argue that the
different sufficient conditions for oracle inequalities hold in fairly general situations and
thus also allow for a fairly general class of design matrices. However, at large all of
the partly very technical theories roughly outlined above have in common that they
are based on some rather strong working assumptions with respect to the Gram matrix
XTX. She (2010) states that - in some sense - the design matrix simply cannot be too
far from orthogonal to reach meaningful conclusions when using the LASSO. Yet, the
multitude of different assumptions makes it difficult to compare the theoretical results
with each other. Furthermore, such assumptions seem to be applicable in practice only
to a limited extent. We share the perspective adopted by She (2010) and thus focus on
two central results regarding the consistency of the LASSO in estimation and variable
selection. The actual application of the LASSO will be deferred to section 6 where we
present the results of our simulation study for the LASSO with measurement error in the
design matrix.

3.3 Theoretical properties of the LASSO for estimation and variable

selection
Under the assumption of sparsity for the true parameter vector β, we can use the LASSO
to simultaneously select covariates and estimate their corresponding coefficients β j. For
both of these features, we require the LASSO to exhibit good theoretical properties. In
particular, we would like the LASSO to be consistent in parameter estimation, i.e., we
stipulate that (β̂

n− βn)
p→ 0, as n→ ∞. At the same time, we want the LASSO to be consis-

tent in variable selection which implies that P({i : β̂n
i 6= 0} = {i : βn

i 6= 0})→ 1, as n→ ∞.

18



3 Theory for the LASSO

Ideally - of course - we would like the LASSO to achieve both types of consistency at the
same time. Unfortunately it is known from practice that an estimate which is consistent
in terms of parameter estimation does not necessarily consistently select the true model
and vice versa (Zhao and Yu, 2006). Given this background and also the fact that the
prevalent literature mostly treats both features of the LASSO separately, we divide this
subsection in an estimation consistency (subsubsection 3.3.1) and a variable selection
consistency (subsubsection 3.3.2) part. In subsubsection 3.3.1, we state the CC (Bühlmann
and Van de Geer, 2011) on the design matrix. The latter is sufficient and necessary for
the LASSO to be consistent in estimation. As aforementioned, the CC does not imply
the variable selection consistency of the LASSO which means that under only a CC, the
LASSO does not perform consistent variable selection (Bühlmann and Van de Geer, 2011).
In subsubsection 3.3.2, we present the SIC (Zhao and Yu, 2006) which is sufficient and
essentially necessary (in a sense to be specified) for the LASSO to perform consistent
variable selection.

3.3.1 Conditions for consistency of prediction and estimation
It can be shown that the LASSO enjoys good theoretical properties in the sense that its
prediction error is about the same magnitude as the prediction error one would have if one
knew a priori which covariates have an influence on the response compared to those that
are not part of the true model (Bühlmann and Van de Geer, 2011). This notion directly leads
to the aforementioned oracle inequality for the LASSO. Basically, the latter constitutes
a probability inequality for the LASSO’s error term. In the following, we consider the
case of squared error loss with fixed design and present some of the main theoretical
arguments for establishing such oracle results for the LASSO. Together with the CC on the
design matrix X, the latter provide the main argument that evidence the consistency of the
LASSO for estimating the parameter vector β. We explicitly assume that the linear model
in Equation 1 holds exactly. The parameter vector β comprises the true, but unknown
covariate coefficients. Generally, the results presented below are quoted from Bühlmann
and Van de Geer (2011, Chapter 6.2.1 - 6.2.2). Note that for the sake of consistent notation
throughout the entire work, we adjusted them notationally where necessary. In practice -
of course - we are not able to assure if our assumption of the linear model holding exactly
is truly correct. Thus, for corresponding oracle results in cases where the assumed model
only represents a linear approximation of the truth, the interested reader is referred to
Bühlmann and Van de Geer (2011, Chapter 6.2.3) and the references therein.
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The technical base for all derivations concerning the estimation and prediction error of the
LASSO is constituted by the basic inequality shown in Equation 13. The latter exploits the
fact that the LASSO estimator is a penalized empirical risk minimizer which implies that
its penalized empirical risk is less than or equal to the penalized empirical risk of any other
parameter choice (Bühlmann and Van de Geer, 2011). Note that Equation 14 can be obtained
by simply rewriting the basic inequality given by Equation 13.

‖Y− Xβ̂LASSO‖
2
2/n + λ‖β̂LASSO‖1 ≤ ‖Y− Xβ‖2

2/n + λ‖β‖1 (13)

‖X(β̂LASSO − β)‖2
2/n + λ‖β̂LASSO‖1 ≤ 2εTX(β̂LASSO − β)/n + λ‖β‖1 (14)

2|εTX(β̂LASSO − β)| ≤
(

max
1≤j≤p

2|εTX(j)|
)
‖β̂LASSO − β‖1 (15)

J := {max
1≤j≤p

2|εTX(j)|/n ≤ λ0} (16)

For the case of quadratic loss, the term 2εTX(β̂LASSO − β)/n on the right hand side of
Equation 14 is referred to as the empirical process part of the problem. The reason there-
fore simply is that it constitutes the term where the random noise vector ε plays a role.
According to Equation 15, we can bound the empirical process part for quadratic loss in
terms of the l1-norm of the parameters involved. It is clear that when using the LASSO,
we require its inherent penalization mechanism to correct for the effects caused by the
empirical process part, since we are clearly interested only in that portion of the difference
between β̂LASSO and β which is caused by systemic properties of the LASSO. Given the
upper bound of the empirical process part quantified in Equation 15, one can define the
set J in Equation 16. The latter contains all regularization parameters λ0 that are at least
as large as the empirical process and that are therefore supposed to "overrule" the random
part. According to Bühlmann and Van de Geer (2011), we conservatively assume for all
further derivations that the tuning parameter λ satisfies λ ≥ 2 λ0. This assumption is
arbitrary to some extent, but serves the purpose of assuring that the set J is adjusted for
the random influence. It can be shown that with Gaussian errors and λ0 being chosen of
order

√
log (p)/n, the set J has a large probability (see Bühlmann and Van de Geer, 2011,
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Lemma 6.2.).

Building on Equation 14 and applying a chain of several mathematical statements and
derivations to the latter,5 one obtains the CC on the design matrix X. The CC is a crucial
condition needed to establish results with respect to the estimation and prediction con-
sistency of the LASSO. It is met for the set S0, if for some φ0 > 0 and for all β satisfying
‖βSc

0
‖1 ≤ 3‖βS0

‖1, it holds that

‖βS0
‖2

1 ≤

(
βTCxx β

)
q

φ2
0

. (17)

Note that φ2
0 is a compatibility constant that equals a lower bound for the RE of the matrix

Cxx (see Bickel et al. (2009) presented in subsection 3.2). At best, φ2
0 is bounded from

below by a positive constant, since very small compatibility constants or REs imply that
the design X contains correlated covariates.6

The above presented CC can be interpreted as identifiability assumption in terms of the
l1-norm of the influential coefficients in the model. If one replaces ‖βS0

‖2
1 in Equation 17

by its upper bound q‖βS0
‖2

2, the CC resembles a condition on the smallest eigenvalue
of the Gram matrix Cxx (Bühlmann and Van de Geer, 2011). As illustrated in section 2,
the smallest eigenvalue of Cxx must be non-zero when working with the OLS method,
since otherwise XTX is singular and the inverse of XTX does not exist (see subsection A.1).
However, in Equation 17 the restriction ‖βSc

0
‖1 ≤ 3‖βS0

‖1 limits the set of coefficient
vectors β for which Equation 17 is de facto required to hold. Hence, the CC is actually
weaker than imposing non-zero eigenvalues on Cxx (Bühlmann and Van de Geer, 2011).
Since in practice one has no information about the nature of S0, Equation 17 is de facto
not applicable. Note that if at least the sparsity index q = |S0| was known, it would be
sufficient to check the above inequalities for all sets S ⊂ {1, ..., p} with cardinality q. This
approach directly refers to the aforementioned RE assumption which was proposed by
Bickel et al. (2009).

5 For being very technical, those derivations will not be discussed in this work. The interested reader is
referred to Bühlmann and Van de Geer (2011, Chapter 6.2.2.)

6 It should be stated that the constant 3 in the term ‖βSc
0
‖1 ≤ 3‖βS0

‖1 is - at least to a certain extent -
arbitrary and can thus be replaced by any constant bigger than 1 provided that some other constants
(in particular, the lower bound for λ) get also adjusted (see Bühlmann and Van de Geer (2011, Chapter
6.2.2)).
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Allowing for the CC and the conditions that are needed for J to have large probability,
it can be shown that the following probabilistic statement holds for the oracle inequality
(see Equation 20) of the LASSO with Gaussian errors (Bühlmann and Van de Geer, 2011,
Corollary 6.2.):

Oracle results for the LASSO with respect to estimation and prediction
Assume that all diagonal elements of the Gram matrix Cxx correspond to 1 (i.e., the
covariates are scaled) and that the CC holds for S0, with Cxx normalized in this way. For
some constant t > 0, let the regularization parameter be

λ = 4 σ̂

√
t2 + 2 log(p)

n
, (18)

where σ̂2 is an estimator of the noise variance σ2. Then with probability at least 1− α,
where

α = 2 exp
[
−t2/2

]
+ P (σ̂ ≤ σ) , (19)

one has

‖X(β̂LASSO − β)‖2
2/n + λ‖β̂LASSO − β‖1 ≤

4 λ2q
φ2

0
. (20)

In summary, the above statement constitutes a probability inequality for the error term
of the LASSO with Gaussian errors. It shows that if λ is chosen within a range of the
order σ̂

√
log(p)/n, the oracle inequality for fixed design (see Equation 20) holds with high

probability. In particular, the oracle inequality for the LASSO combines two major results.
Fristly, it provides the bound

‖X(β̂LASSO − β)‖2
2/n ≤ 4 λ2q

φ2
0

(21)

for the prediction error of the LASSO. And secondly, it limits the l1-error of the LASSO by
establishing the bound

‖β̂LASSO − β‖1 ≤
4 λq
φ2

0
. (22)

Either bound depends on the unknown sparsity index q which reflects the number of
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influential covariates in the model, on the compatibility constant φ2
0 which depends on p

or n only through the scaled Gram matrix and on the tuning parameter λ. Note that both
of the above bounds hold on J and that given

λ = 4 σ̂

√
t2 + 2 log(p)

n
, (23)

the amount of regularization λ satisfies λ ≥ 2 λ0. This implies that λ is large enough to
overrule the noise constituted by the empirical process part in Equation 14. Clearly, the
lower bound for (1− α) which determines the probability that Equation 20 holds given an
appropriate λ, diminishes if we use an inappropriate estimator for σ. Note that we call
an estimator σ̂ inappropriate if it tends to underestimate the true standard deviation of the
noise. This is due to the fact that α increases with P (σ̂ ≤ σ). Generally, we need σ̂ to be
well-calibrated, i.e., neither too small nor too large. According to Bühlmann and Van de
Geer (2011), the estimator σ̂2 = YTY/n satisfies σ ≤ σ̂ ≤ const. σ, with the constant (const.)
well under control for any reasonable signal-to-noise ratio.7

If one substitutes λ on the right hand side of Equation 20 by the definition of λ proposed
in Equation 23, one obtains

64q σ̂2

n φ2
0
(t2 + 2 log (p)) ∝ const.

σ̂2 log (p)
n

q (24)

as (approximate) bound for the term on the left hand side of Equation 20. Note that the
additional log (p)-factor in the transformed bound const. σ̂2 log (p)

n q can be seen as a kind of
fine that one has to pay for not knowing a priori the active set q. Recall also that (σ2/n)× q
is the squared accuracy for the prediction error of LS estimation in a situation where the
sparsity index q would be known (see Bühlmann and Van de Geer, 2011). Given the above
results, we can conclude that - up to the log (p)-factor and the compatibility constant φ2

0

- the mean-squared prediction error of the LASSO is of the same order as if one knew a
priori which covariates are relevant and thus calculated the OLS estimator for the model
including the q relevant variables only. In this regard, the rate in Equation 20 is optimal up
to the factor log (p) and the inverse compatibility constant 1/φ2 (see Bühlmann and Van
de Geer, 2011).

7 The signal-to-noise ratio (SNR) is defined by SNR = ‖Xβ‖2√
nσ

(Bühlmann and Van de Geer, 2011).

23



3 Theory for the LASSO

We can conclude that Equation 20 constitutes a probability inequality for the statistical
error of the LASSO with fixed design and Gaussian errors. Given an appropriate choice for
the tuning parameter λ, Equation 20 holds with high probability. In particular, it provides
bounds for the prediction and estimation error of the LASSO. Against the background of
Equation 18 to Equation 20, one can make the following statement about the prediction
and estimation consistency of the LASSO with true design matrix and Gaussian errors:
it follows from the oracle result given by Equation 20 that as long as the number of
observations n tends to infinity with a rate faster than q log (p), the LASSO will be
consistent for prediction (see Equation 21). With regard to its estimation consistency, it
holds that as long as the number of observations n tends to infinity faster than q2 log (p),
the LASSO will also be consistent for estimation in the l1-norm (see Equation 22) (see
also Sørensen et al., 2014). Note that the oracle inequality given by Equation 20 can be
considered as suboptimal if the linear model contains a lot of non-zero coefficients |β j|
that are smaller than the noise level

√
σ2/n. For such models, an oracle bound which is

proportional to the number of significantly non-zero β j times σ2log p/n would be better
suited (Bühlmann and Van de Geer, 2011). However, as stated by Bühlmann and Van de
Geer (2011), this extension is mathematically of the same nature as the extension where
the linear model is not assumed to hold exactly. For the above problem we refer the
interested reader to Bühlmann and Van de Geer (2011, Chapter 6.2.3) and the references
therein.

3.3.2 Conditions for consistency of covariate selection

In subsubsection 3.3.1, we showed that by imposing a lower bound on the RE of the
Gram matrix Cxx, the CC leads the LASSO to be consistent in prediction and estimation if
additional conditions regarding the noise vector ε and the tuning parameter λ are satisfied.
We now present the IC according to Zhao and Yu (2006) which is sufficient and essentially
necessary (in a sense specified below) for the LASSO to select the true underlying model
both in the classical fixed p setting and in the large p setting where p increases with rising
n (Zhao and Yu, 2006). It can be proved that the IC implies the CC and that the former is
thus always stronger than the latter (see Bühlmann and Van de Geer, 2009; Bühlmann and
Van de Geer, 2011, Chapter 7.2).
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In their study on the model selection consistency of the LASSO, Zhao and Yu (2006) investi-
gated how well the sparse linear models given by the LASSO relate to the underlying true
models. In doing so, they allowed for a high-dimensional data setting with p � n. The
high-dimensional data were basically generated according to the linear model considered
in Equation 1, with the difference, however, that the data and the coefficient vector β

are indexed by n which accounts for the fact that they are allowed to change with rising
sample size. Note that by using the notation presented in subsection 3.1, we notationally
neglect the dependence of the data and β on n.

As in subsubsection 3.3.1, we assume in the following that the true coefficient vector β

is sparse in the sense that some of the regression coefficients β j are exactly zero. This
assumption accounts for the fact that in practice we tend to include covariates in the
model which de facto have no influence on the response. Solely focusing on the model
selection capacity of the LASSO, Zhao and Yu (2006) used some dedicated definitions of
sign consistency to separate the variable selection consistency aspect of the LASSO from
its parameter estimation and prediction capacity aspect. Generally, they assumed that an
estimate β̂ is equal in sign with the true model β which is written β̂ =s β, if and only if
sign(β̂) = sign(β). Note that sign(.) maps a positive entry to 1, a negative entry to −1
and zero to 0. Hence, sign consistency is assumed to prevail if the estimator β̂ matches the
zeros and signs of the true model β. The above definition of sign consistency is stronger
than the usual selection consistency which requires the zeros of β̂ and β to be matched,
but not the signs. However, as indicated by Zhao and Yu (2006), such stronger definition
of sign consistency is needed to prove the necessity of the IC and to avoid situations where
a model is estimated with matching zeros, but reversed signs. Besides the aforementioned
global definition of sign consistency, Zhao and Yu (2006, Definition 2 and 3) introduced two
specific kinds of sign consistency which refer to the way how the amount of regularization
for the LASSO has been determined. More precisely, a distinction is made between Strong
Sign Consistency (SSC) given by Equation 25 and General Sign Consistency (GSC) defined by
Equation 26. SSC implies the usage of an a priori established penalization parameter that
ensures consistent model selection via the LASSO. On the other side, GSC implies that for
a random realization of the tuning parameter there exists a correct amount of shrinkage λ

that identifies the true model (Zhao and Yu, 2006). Zhao and Yu (2006) show that the two
kinds of sign consistency are almost equivalent to one condition which is the IC. For this
reason, we will not distinguish between both types of sign consistency when examining
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the IC in the following.

Strong Sign Consistency: The LASSO is strongly sign consistent if there exists λn = f (n),
i.e., a function of n and independent of Y or X such that

lim
n→∞

P(β̂(λn) =s β) = 1. (25)

General Sign Consistency: The LASSO is general sign consistent if

lim
n→∞

P(∃λ ≥ 0, β̂(λ) =s β) = 1. (26)

Given the above definitions of sign consistency, we now present the SIC according to Zhao
and Yu (2006). The SIC constitutes the central condition for the LASSO to be consistent
in variable selection. However, we also need to have a glance at the Weak Irrepresentable
Condition (WIC) to understand why the IC is said to be sufficient and essentially necessary
for the LASSO to be consistent in variable selection. Assuming that Cxx(S0, S0) is invertible,
the definitions of the SIC and the WIC are as follows:

Strong Irrepresentable Condition: There exists a positive constant vector η, such that

|Cxx(Sc
0, S0)Cxx(S0, S0)

−1sign(βS0
)| ≤ 1− η (27)

where 1 is a (p− q)× 1 vector of 1’s and the inequality holds element-wise.

Weak Irrepresentable Condition

|Cxx(Sc
0, S0)Cxx(S0, S0)

−1sign(βS0
)| < 1, (28)

where, as above, the inequality holds element-wise.

As implied by the name, the WIC is slightly weaker than the SIC. This means that Cxx can
converge in such way that the entries of |Cxx(Sc

0, S0)Cxx(S0, S0)
−1sign(βS0

)| approach 1
from below so that the WIC holds but the SIC fails in the limit (Zhao and Yu, 2006). From
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a technical point of view, the left hand sides of Equation 27 and Equation 28 are similar to
a regularization constraint on the regression coefficients of the unimportant covariates XSc

0

on the important ones XS0 . Note that in practice, the signs of the true β are not known so
that Equation 27 and Equation 28 possibly should hold for all signs of βS0

. With respect to
Equation 27, this means that we require Equation 29 to hold.

|(XT
S0

XS0)
−1XT

S0
XSc

0
| = |Cxx(S0, S0)

−1Cxx(S0, Sc
0)| < 1− η (29)

We can derive from Equation 29 that for the SIC to hold for all possible signs of βS0
, it is

necessary that the l1-norms of the regression coefficients are smaller than 1. Generally,
the SIC (and therefore also the WIC) mainly depends on the covariance of the predictor
variables. It implies that the LASSO achieves consistent model selection according to
the true model if and (almost) only if the covariates that are not part of the true model
are irrepresentable by the covariates that are part of the true model. This requirement is
met if Cxx(S0, Sc

0) has small entries which implies that the covariance between pertinent
and unimportant covariates is small. For Equation 29 to hold, the covariances between
the pertinent covariates of the true model must also be small, since otherwise Cxx(S0, S0)

may have small eigenvalues (nearly singular design) or even exhibit one or more zero
eigenvalues (singular design) which also results in the violation of Equation 29. In their
work, Zhao and Yu (2006, Proposition 1) quantitatively related the model selection capacity
of LASSO and how well the SIC holds by deriving a lower bound for the probability of
LASSO selecting the true model under the assumption that the SIC holds. In doing so,
they also stressed the role of the tuning parameter λ which counterbalances the trade-off
between sign consistency of the coefficient estimations for the influential covariates βS0

and
the shrinkage of the irrelevant coefficient estimations βSc

0
towards zero. They concluded

that it is easier for the LASSO to select the true model if the SIC in Equation 27 holds with
a larger constant η.

Basing on the SIC, Zhao and Yu (2006) established meaningful results with regard to the
model selection consistency of the LASSO both for the classical small p and q case where
q, p and βn = β are all fixed as n → ∞ and for the large p and q case where p = pn and
q = qn are allowed to grow with n.
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Regularity conditions for model selection consistency (small p and q case)8

Cn → C , as n→ ∞, (30)

where C is a positive definite matrix.

(1/n) max
1≤i≤n

((xn
i )

Txn
i )→ 0 , as n→ ∞. (31)

In particular, for the small p and q case they showed that under the assumption of the
regularity conditions given by Equation 30 and Equation 31, the LASSO is strongly sign
consistent if the SIC holds. Hence, if the SIC is satisfied, it holds for ∀λn that satisfy
λn/n→ 0 and λn/n

1+c
2 → ∞ with 0 ≤ c < 1 that

P(β̂n(λn) =s βn) = 1− o(e−nc
). (32)

This implies that if the SIC holds in the classical setting where q, p and βn are fixed as
n → ∞, the probability of the LASSO selecting the true model converges to 1 with an
exponential rate while only the finite second moment of the noise terms is assumed (Zhao
and Yu, 2006). Against the background of Equation 32 and the work of Knight and Fu
(2000)9, Zhao and Yu (2006) infer that the SIC enables consistent model selection and
parameter estimation at the same time. The WIC is also necessary even for the weaker
GSC (see Zhao and Yu, 2006, Theorem 2). Therefore, it holds that the SIC implies SSC
which again implies GSC which in turn implies the WIC. This chain of implications is
crucial since it constitutes the motivation for stating that the IC is essentially necessary and
sufficient for both SSC and GSC if one ignores the minor technical difference between the
WIC and the SIC. Recall that as necessary condition the WIC requires the relation ≤ 1 to
hold, while the SIC as sufficient condition requires the relation ≤ 1− η with 0 < η < 1
to hold. Nevertheless, we will no longer distinguish between the SIC and the WIC in
the following, but globally refer to the IC as being the essentially necessary and sufficient
condition for consistent variable selection with the LASSO.

8 Note that although the convergences in Equation 30 and Equation 31 are deterministic, the following
results regarding the consistency of the LASSO for variable selection also hold quite generally for random
designs (Zhao and Yu 2006).

9 Knight and Fu (2000) showed that for λn = o(n) the LASSO is consistent in parameter estimation and
exhibits asymptotic normality.
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Since the LASSO is known to be a suitable regression technique for high-dimensional
data, the implications of the SIC for the LASSO’s variable selection performance in high-
dimensional regression settings are of importance. In the large p and q setting, one has
p = pn and q = qn which implies that the number of included covariates and the sparsity
index are allowed to grow with the sample size. This means that the dimension of the
Gram matrix Cxx = Cn

xx and also the dimension of the coefficient vector β = βn are also
growing with n. Against this background, the regularity conditions given by Equation 30
and Equation 31 become inapplicable, since Cn

xx does no longer converge to a fixed, posi-
tive definite matrix. Furthermore, βn may alter as n grows. Consequently, Zhao and Yu
(2006) proposed the following regularity conditions for covariate selection consistency of
the LASSO in the large p and q case:

Regularity conditions for model selection consistency (large p and q case)
Assuming that there exists 0 ≤ c1 < c2 ≤ 1 and M1, M2, M3, M4 > 0, it holds that:

1/n (Xn
i )

TXn
i ≤ M1 f or ∀i, (33)

αTCn
xx(S0, S0)α ≥ M2, f or∀ ‖α‖2

2 = 1, (34)

qn = O(nc1), (35)

n1−c2/2 min
i=1,...,q

|βn
i | ≥ M3. (36)

The restriction imposed by Equation 33 is generally satisfied if the covariates are normal-
ized before the LASSO is applied (Zhao and Yu, 2006). Equation 34 imposes a lower bound
on the eigenvalues of the design which comprises the important covariates Cn

xx(S0, S0).
In doing so, Equation 34 ensures that Cn

xx(S0, S0) is positive definite and that hence its
inverse exists. This is crucial since Cn

xx(S0, S0) needs to be invertible for both the SIC and
the WIC to hold. Equation 35 and Equation 36 act as main conditions for the following
results and stand in close relation to each other. Bühlmann and Van de Geer (2011, Ch. 7.4)
call Equation 36 a beta-min condition, since it controls the size of the smallest entry of βn

S0
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and thus reflects the fact that important covariates must have a sufficiently large effect on
the response to possibly be detected by the LASSO. More in particular, Equation 36 implies
that there is a gap of size nc2 between the smallest entry or decay rate of βn

S0
and n−

1
2 to

prevent the LASSO estimation to be dominated by the noise terms which aggregate at a
rate of n−

1
2 (Zhao and Yu, 2006). On the other hand, Equation 35 defines a restriction for

the sparsity index qn which indicates the size of the true model. More precisely, its square
root
√

qn is required to grow at a rate slower than the rate gap to keep the estimation bias of
the LASSO solution from dominating the coefficient estimates (Zhao and Yu, 2006). Under
the above regularity conditions Equation 33 to Equation 36 and assuming that the SIC
holds, Zhao and Yu (2006, Theorem 3 and 4) establish variable selection consistency results
for the LASSO in the large p and q case. For general noise with εn

i (i = 1, ..., n) being i.i.d.
random variables with finite 2k’th moment E(εn

i )
2k < ∞ for an integer k > 0, they show

that the SIC implies that the LASSO has SSC for pn = o(n(c2−c1)k). In particular, for ∀λn

that satisfies λn√
n = o(n

c2−c1
2 ) and 1

pn
( λn√

n )
2k → ∞, it holds that

P(β̂n(λn) =s βn) ≥ 1−O(
pnnk

λ2k
n

)→ 1 as n→ ∞. (37)

For the specific case of Gaussian noise (εn
i are i.i.d.Gaussian random variables), Zhao and

Yu (2006, Theorem 4) derive that the SIC implies that the LASSO has SSC if there exists

0 ≤ c3 < c2− c1 for which pn = O(enc3 ). In particular, for λn ∝ n
1+c4

2 with c3 < c4 < c2− c1,
it holds that

P(β̂n(λn) =s βn) ≥ 1− o(en−c3 )→ 1 as n→ ∞. (38)

Generally, Equation 37 and Equation 38 relate to exactly the same context and only differ
with regard to the assumptions made for the noise terms εi. For general noise, Equation 37
implies that the LASSO does consistent variable selection if the SIC holds and if addition-
ally E(εn

i )
2k < ∞ for an integer k > 0 which means that the noise terms have some finite

moments. If, e.g., k = 1 (only the second moment is assumed), then p is allowed to grow
slower than nc2−c1 . If all moments of the noise exist (k = ∞), then the number of covariates
p is allowed to increase at any polynomial rate while the probability of LASSO selecting
the true model converges to 1 at a even faster rate (with rate O( pnnk

λ2k
n

)). For models where εi

follows an i.i.d. Gaussian distribution, the SIC implies that the probability of the LASSO
selecting the correct model converges to 1 quite fast (with rate o(en−c3 )), even though p
might increase up to exponentially fast compared to n (pn = O(enc3 )) (see Equation 38).
Note, however, that Zhao and Yu (2006) emphasize that a comparably high convergence

30



3 Theory for the LASSO

rate is not achievable for all noise distributions, since the tail probability of noise terms
does not vanish quick enough to allow p to grow at higher degree polynomial rates if
higher moments of the noise distribution do not exist.

In summary, the results stated in this subsubsection indicate that the IC is sufficient and
essentially necessary for consistent variable selection with the LASSO both in the classical
setting with fixed number of covariates p and in settings where p grows with the sample
size n (Zhao and Yu, 2006). The IC basically postulates that the covariance matrix of
the design may not exhibit too strong degrees of linear dependence within smaller sub-
matrices, in particular within the covariance sub-matrix of the irrelevant and the truly
important covariates Cxx(Sc

0, S0). If the IC is violated, the LASSO is unable to consistently
recover the underlying true model. The reason therefore lies in the fact that in order to
produce sparse models the LASSO shrinks the coefficient estimates belonging to important
covariates too heavily. Thus, if the IC fails, the irrelevant covariates are correlated with the
important covariates enough to be selected by the LASSO to outweigh the over-shrinkage
of the non-zero coefficient estimates (Zhao and Yu, 2006). From a technical point of view,
the IC also reflects that for singular covariance matrices, edges are not uniquely defined
by the distribution which makes nearly singular covariance matrices inappropriate for
consistent variable selection. For statistical practice, this implies that one has to be aware
of the fact that if unimportant variables are strongly correlated with covariates that are
part of the true model, the LASSO is unlikely to select the true model. However, the
problem is that in practice the active set S0 and thus also the sparsity index q are unknown.
In other words, we typically do not know which and how many covariates are part of
the true model, since not knowing the relevant covariates might mostly be the precise
reason for choosing the LASSO as regression method. This implies that for a practical
guarantee, the IC should hold for all possible S0. This finding is in line with Zhang and
Huang (2008) who comment on the IC that without knowing S0 it is not really obvious
how to verify the SIC other than using simple bounds on the covariate correlation xT

j xk

for j 6= k as in Zhao and Yu (2006, see Corollary 1).10 Furthermore, for sufficiency of the

10 Zhao and Yu (2006) provide some sufficient conditions that ascertain that the SIC is satisfied in practice.
It is, however, noticeable that for these conditions to hold, one must again make several assumptions. As
an example, we refer to Corollary 1 where they consider the case of constant positive correlation rn. They
show that there exists some c > 0 such that the SIC holds for 0 < rn ≤ 1

1+cq . In practice the question
would be how c should be determined. It is clear that if we use a reasonably large value for c, the upper
bound for rn becomes very low and we expect the SIC to hold. However, this simply corresponds to the
fact that our design does not contain correlations between the covariates which is rather an unlikely case
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SIC we explicitly assumed that the minimal non-zero coefficients of the true regression
model are sufficiently large (Equation 36). Apart from the problem of how to practically
define "sufficiently large", this assumption is in general unlikely to be satisfied (see also
Bühlmann and Van de Geer, 2011). We can thus infer that in spite of the fact that the IC
constitutes a clear condition which is also easy to interpret, it requires strong assumptions
that are not verifiable in statistical practice. This is line with Bühlmann and Van de Geer
(2011, p.184) who state that the LASSO for variable selection only works in a rather narrow
range of problems excluding many cases where there are strong (empirical) correlations
between the covariates. More in particular, the LASSO tends to select too many covariates.
On the other hand, a certain amount of false negative selections cannot be avoided either
if the absolute value of some β j is below the LASSO’s detection limit (Bühlmann and Van
de Geer, 2011). However, it should be pointed out that although the LASSO might not be
able to infer the correct set of covariates with non-zero coefficients from the data if the
IC is violated, in practice it can nevertheless be used to find at least some covariates with
substantial impact (in terms of their corresponding |β j|) on the response. More specifically,
it can be shown that it holds that

P[Ŝ(λ) ⊃ Srelevant(C)
0 ]→ 1 for n→ ∞, (39)

if the substantial covariates satisfy Srelevant(C)
0 = {j : |β j| ≥ C, j = 1, ..., p} for any fixed

threshold value 0 < C < ∞. Note that Ŝ(λ) is the sub-model chosen by the LASSO for a
given λ and Ŝ = {Ŝ(λ); all λ} is the set containing all possible LASSO sub-models. In cases
where Srelevant(C)

0 = S0 (which means that all non-zero coefficients have a minimal absolute
value of C), one has Ŝ(λ) ⊃ S0 with high probability. The property of the LASSO which is
reflected in Equation 39, is referred to as its variable screening property. The latter implies
that the model estimated by the LASSO includes the substantial covariates with high prob-
ability (Bühlmann and Van de Geer, 2011). Finally, as stated by Bühlmann and Van de Geer
(2011), it follows from the analysis of the LARS algorithm (Efron et al., 2004) that every
model estimated by the LASSO has a cardinality smaller than or equal to min(n, p). Hence,
for high-dimensional datasets with p� n, it follows that models estimated by the LASSO
have the cardinality min(n, p) = n. Given that n is a reasonably small number compared
to p if p � n, the LASSO achieves per se a considerable dimensionality reduction with
respect to the full amount of covariates contained in the dataset.11

in high-dimensional data settings.
11 For more theoretical details on variable screening with the LASSO, we refer to Bühlmann and Van de
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3.4 A short note on tuning parameter selection for the LASSO
Up to this point, we considered the regularization parameter λ as kind of "black box"
by simply assuming an a priori given, suitable amount of regularization. However, as
mentioned before, the amount of regularization λ applied is crucial for the LASSO to be
consistent in estimation and prediction as well as in variable selection. In this section, we
only briefly sketch the issue of tuning parameter selection for the LASSO which - of course
- constitutes a very interesting and important research question by its own.
Before we apply the LASSO in practice, we first need to determine an appropriate amount
of regularization λ. To choose λ, we usually revert to some cross-validation scheme which
aims at optimizing the prediction error. Hastie et al. (2009, p. 241) characterize cross-
validation as the "probably [...] simplest and most widely used method for estimating
prediction error". In the context of penalized linear regression with the LASSO, a common
approach for estimating λ is to use k-fold cross-validation. Note that k-fold cross-validation
randomly splits the available data into k equally sized, disjoint sets and then uses (k− 1)
folds to fit or train the model and the kth fold to test it. The estimate of the prediction
error corresponds to the mean of the totality of the k "left-out-fold" cases. Common choices
for k are, e.g., k = 5 and k = 10 (Hastie et al., 2009). Using k = n results in the so-called
leave-one-out cross-validation scheme which is, however, computationally very expensive
(Chand, 2012). An alternative consists in applying generalized cross-validation which uses an
approximation to leave-one-out cross-validation and therefore requires less computational
power. For a detailed discussion of the different cross-validation methods we refer to
Hastie et al. (2009).
A problem that arises from the use of a cross-validated tuning parameter λcv for the
LASSO is that prediction optimality does often not align with the goal of variable selection
(Bühlmann and Van de Geer, 2011). More precisely, the use of λcv leads the LASSO to select
too many variables, which results in an elevated false positive fraction (FPF). This implies
that if the LASSO is applied with the aim of variable selection, it is advisable to employ a
larger amount of regularization than the one suitable for good prediction (Bühlmann and
Van de Geer, 2011).

Nevertheless, Bühlmann and Van de Geer (2011) point out that if we intend to apply
the LASSO with the purpose of variable screening (see subsubsection 3.3.2), using λ̂cv

Geer (2011, Chapter 2 and 7).
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is more appropriate. They state that there is an empirical evidence that Ŝ(λ̂CV) ⊇ S0

or Ŝ(λ̂CV) ⊇ Srelevant(Cn) and that this empirical evidence is further supported by theory
(see, e.g., Meinshausen and Bühlmann, 2006). Given the aforementioned dimensionality
reduction inherent to the LASSO (see subsubsection 3.3.2), one can alternatively include
all min(n, p) variables by using a value λ sufficiently close to zero which means that no
regularization parameter needs to be chosen (Bühlmann and Van de Geer, 2011).

In summary, it can be stated that for the LASSO to be consistent in variable selection,
the user has to apply a larger amount of regularization λ = λn than for good or even
optimal prediction (Bühlmann and Van de Geer, 2011). From a theoretical perspective, this
means that λ should be chosen of a larger order than

√
log(p)/n (see subsubsection 3.3.1).

This theory is also supported by empirical studies on the variable selection performance
of LASSO. More in particular, Chand (2012) performed an empirical study and pointed
out that cross-validation is not a reliable method if variable selection is the primary
objective when using the LASSO. As an alternative, he proposed to use a BIC-type tuning
parameter selector which he showed to facilitate consistent variable selection under certain
conditions.

4 Multiple linear regression with additive measurement error in the

covariates
An assumption that is common to all of the aforementioned studies on the LASSO is
that the design matrix X passed to the LASSO for performing linear regression contains
true covariate measurements that do not suffer from any type of measurement error. In
practice, where data corrupted by measurement errors including errors-in-variable data
are rather the norm than the exception, this assumption does, however, not meet the truth.
Error-prone covariate measurements represent a challenge for the majority of conventional
statistical models. Correspondingly, there is a well-developed body of literature discussing
various theoretical aspects of different types of covariate measurement errors and their
implications for, e.g., linear regression methods. Note that the field of measurement error
theory is a wide and interesting, but also complex field of research. The topic-related
complexity is further enhanced by the fact that the prevalent literature makes use of het-
erogeneous and partly very complex notational styles (see, e.g., Schneeweiß and Mittag,
1986; Fuller, 1987).
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Before considering the LASSO under matrix uncertainty from an analytical point of view
in section 5, we will now briefly outline the basics of measurement error theory for
linear models and present potential correction methods. We consider additive covariate
measurement error only. We will also not get into detail with regard to the theory of
additive measurement error models which constitutes itself a complex field of research.
There is a vast amount of insightful literature that deals with it and we refer the interested
reader to the latter and the references therein (see, e.g., Fuller, 1987; Cheng and Van Ness,
1999; Carroll et al., 2006). Our introduction of additive measurement error models given
in this section is rather tightly tailored towards the specific measurement error context
examined in our simulation study of the LASSO in section 6. The notation used and also
the majority of the results presented in the following are based on Buonaccorsi (2010,
Chapter 5 and 6).

4.1 Measurement error model setup
To introduce the measurement error model framework applied in section 5 and sec-
tion 6, we consider the multiple linear regression model defined in Equation 40. Note
that xi = (xi1, xi2, ..., xip)

T represents the vector of true covariate measurements for the
ith observation without the constant for the intercept β0 and xi∗ = (1, xi1, ..., xip)

T is
the same vector of truly measured covariates, but also includes the constant for the in-
tercept. Likewise, βT = (β0, β1, ..., βp) = (β0, βT

1 ) is the coefficient vector including
the intercept, while βT

1 = (β1, ..., βp) represents the coefficient vector without β0. For
a model without intercept β0 (see Equation 1 in section 2), it holds that xi = xi∗ and
β = β1.

Yi|xi = β0 +
p

∑
j=1

β j xij + εi = β0 + βT
1 xi + εi = βT xi∗ + εi (40)

The corresponding model for all available observations i (i = 1, ..., n) in matrix form is
given in Equation 41. Note that the only difference between Equation 41 and Equation 1 in
section 2 is that the linear model in Equation 41 includes an intercept. Hence, Equation 41
involves the design matrix X ∈ Rn×(p+1), where row xi ∈ R(p+1) contains the constant
for the intercept and all covariate measurements for the ith observation and the unknown
coefficient vector β ∈ R(p+1) to be estimated. In line with Equation 1, Y ∈ Rn is the
univariate response vector and ε ∈ Rn is a vector of model errors whose components εi
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(i = 1, ..., n) are assumed to be i.i.d. normally distributed with mean zero and constant
variance σ2, i.e., ε ∼ N(0, σ2I). In line with Buonaccorsi (2010), we will refer to ε as the
error in the equation or model error to explicitly distinguish it from the measurement error in
the response which is denoted by q.

Y = Xβ + ε (41)

where

X =


xT

1∗
xT

2∗
...

xT
n∗

 (42)

The sample means of X ∈ Rn×(p+1) and Y ∈ Rn can be obtained by means of Equation 43
and Equation 44, respectively. Note that X̄ ∈ R(p+1) is a vector, while Ȳ ∈ R is a scalar. The
corresponding sample covariances Cxx ∈ R(p×p) and Cxy ∈ Rp are defined in Equation 45
and Equation 46.

X̄ =
∑n

i=1 Xi

n
(43)

Ȳ =
∑n

i=1 Yi

n
(44)

Cxx =
∑n

i=1(Xi − X̄)(Xi − X̄)T

(n− 1)
(45)

Cxy =
∑n

i=1(Xi − X̄)(Yi − Ȳ)
n− 1

(46)

As mentioned above, in Equation 40 and Equation 41 we typically assume that the design
matrix X contains error-free covariate values. Given such true design matrix and further
assuming that the latter has full rank, we can use Equation 2 to infer β from the given data
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(yi, xi) (i = 1, ..., n). In doing so, we obtain the unbiased LS estimator β̂OLS which is also
BLUE. Instead of Equation 2, one can also use Equation 43 to Equation 46 to estimate β by
means of the following relations:

β̂1,OLS = C−1
xx Cxy (47)

β̂0,OLS = Ȳ− β̂
T
1 X̄ (48)

Before proceeding with prevalent additive measurement error models and their implica-
tions for the OLS estimator, it should be noted with regard to the covariate values in X that
a basic distinction can be made between functional and structural settings. In fully struc-
tural settings, one assumes that all covariates are random and that the random covariate
vectors Xi are i.i.d. normally distributed with mean µX and variance σ2

X. By contrast, in
functional settings the covariates are treated as fixed or realized values (Xi = xi). The main
reason for this distinction is that with random Xi one might also be interested in the correla-
tion between X and Y (Buonaccorsi, 2010). However, for simplicity, we do not particularly
differentiate between structural and functional settings in the following. Instead we use
broad definitions for µx and Σxx that potentially cover any combination of random and
fixed covariates. According to Buonaccorsi (2010), we define

µx =
n

∑
i=1

E(Xi)/n (49)

and
Σxx = E(Cxx). (50)

Thus, one has µx = E(Xi) and Σxx = Cov(Xi) in fully structural cases where the random
covariate vectors Xi (i = 1, ..., n) are i.i.d. normally distributed and µx = ∑n

i=1 xi/n and
Σxx = Cxx = ∑n

i=1(xi− x̄)(xi− x̄)T/(n− 1) in functional cases with fixed covariate vectors
xi (i = 1, ..., n). Given a combination of fixed and random covariates, the expected value
and the covariance of Xi are conditional on any fixed components and thus can change
with i (see Buonaccorsi, 2010, chapter 5.8.2). Equation 49 and Equation 50 allow for the
definition of approximate biases and correction methods in a general way, i.e., without
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differing between structural and functional seetings.

We now introduce two prevalent measurement error models, more specifically the ad-
ditive Berkson model and the classical additive measurement error model. The latter will be
applied in our simulation study in section 6 where we examine the performance of the
LASSO in the presence of additive measurement error in the design matrix X. Consider
the multiple linear model presented in Equation 41. Instead of the perfect covariate vec-
tors Xi (i = 1, ...n) given in Equation 41, in practice we commonly observe inaccurate
covariate values that suffer from additive measurement error. Depending on the particular
context of data generation, one can distinguish between two basic measurement error
models.

The additive Berkson model for observation i is defined as

Xi = wi + ei, (51)

where E(ei|wi) = 0 and Cov(ei|wi) = Σei , if we allow the measurement error variances
to change with i. If there is also measurement error in the univariate response yi, one
has Di = yi + qi with E(qi|yi) = 0 and Cov(qi|yi) = σ2

qi. As mentioned before, qi is the
error in the response and should not be confused with the noise term εi. We further
assume that the error in the response qi is independent of the error in the covariates ei.
Without error in the response qi, substituting Xi in Equation 40 by Equation 51 leads
to

Yi = β0 + β1wi + ηi, (52)

where
ηi = βT

1 ei + εi, (53)

with E(ηi) = 0 and Cov(ηi) = β2
1Σei + σ2.

It is characteristic for the above presented additive Berkson model that the inaccurate
covariate value vector wi is fixed, while the vector of true covariate values Xi is random.
Hence, the Berkson model specifies an assumption about the distribution of the random,
true covariate values Xi given the observed - or targeted - values wi. The Berkson model is
suitable for experimental situations where wi is a vector of fixed target doses or where wi

38



4 Multiple linear regression with additive measurement error in the covariates

corresponds to fixed factor levels in general. In such experiments, the observed covariate
vector wi is controlled in the sense that it is pre-specified by the experimenter. However,
in practice the true dose Xi will show more variability than the estimated or targeted
dose wi. For detailed examples of experimental settings which involve Berkson error and
applications of the Berkson error model we refer to Heid et al. (2004) and Fuller (1987,
Chapter 1.6).
Generally, the naive OLS estimator given in Equation 2 can be used for parameter estima-
tion in linear regression models with data subject to additive Berkson error. The reason
therefore is that the covariate vector wi is controlled so that the "error part" ηi of the linear
regression is uncorrelated with wi, since any random variable is uncorrelated with a con-
stant value. Thus, using the OLS estimator for inference of β j (j = 0, ..., p) in Equation 41
results in unbiased parameter estimates. Furthermore, if there is Berkson error in the
covariates but no error in the response, the predictions of Y from w and corresponding
prediction intervals are also correct (Buonaccorsi, 2010). It follows that one can ignore
the error in the covariates by simply using the standard OLS estimator for parameter
estimation in a linear regression model if wi is controlled. Nevertheless, it is important
that this conclusion only holds if the Berkson error is additive and if the underlying model
is linear (Fuller, 1987; Buonaccorsi, 2010).

In the additive Berkson model, the true value Xi and the random measurement error ei are
correlated, while the observed covariate values wi are controlled and thus independent of
the random measurement error ei. By contrast, the classical additive measurement error model
assumes that given yi and xi for observation i, it holds that

Di = yi + qi (54)

Wi = xi + ui, (55)

with
E(qi|yi, xi) = 0, (56)

E(ui|yi, xi) = 0, (57)
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and
Var(qi|yi, xi) = σ2

qi, (58)

Cov(ui|yi, xi) = Σui, (59)

Cov(ui, qi|yi, xi) = Σuqi. (60)

In this context, ui ∈ R(p+1)×1 is the vector of measurement errors that is added to the true
covariate values for observation i. Note that the first entry of ui corresponds to a zero
which is added to the intercept constant in xi. Di and Wi contain the inaccurate covariate
values that the practitioner observes. By assuming E(qi|yi, xi) = 0 and E(ui|yi, xi) = 0, we
generally imply that undesired errors arising due to random variations in the measurement
process add up to zero if a measuring system is well-calibrated (Fuller, 1987). In situations
without error in the response, it holds that σ2

qi = 0 and Σuqi = 0 which then results in a
simpler model. Likewise, if parts of the covariate vector xi are measured without error, all
components of ui, Σui and Σuqi that belong to those perfect covariate measurements equal
zero. Note that if one allows the above measurement error variances and covariances to
change with i, their respective average values across all n observations can be calculated
by means of the following equations:

Σuu =
n

∑
i=1

Σui/n, (61)

Σuq =
n

∑
i=1

Σuqi/n, (62)

σ2
q =

n

∑
i=1

σ2
qi/n. (63)

Compared to the Berkson model, the classical measurement error model describes situa-
tions where instead of the true covariate occurrences xi, we observe a random vector Wi

containing the true covariate values xi plus a certain amount of random measurement
error ui. Thus, with classical measurement error we model the distribution of the observed
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values Wi given the true covariate values xi. Note that the random measurement errors
ui and the true covariate values xi are assumed to be independent, while it follows from
Equation 55 that Wi and ui are correlated. As detailed above, in the case of Berkson
error the naive OLS estimator provides unbiased coefficient estimates. However, with Wi

and ui being correlated random variables, "naively" applying the OLS estimator to data
with classical measurement error results in biased coefficient estimates. The naive OLS
estimator for error-prone design is defined as

β̂naive = (WTW)−1WTD, (64)

where by analogy to Equation 2, one has W ∈ Rn×(p+1) and D ∈ Rn×1. In line with
Equation 47 and Equation 48, β̂naive can alternatively be obtained by means of Equation 65
and Equation 66, where one has Cww ∈ Rp×p and Cwd ∈ Rp×1. Note that Cww and Cwd

can be calculated by applying Equation 45 and Equation 46, but replacing X by W and Y
by D.

β̂1naive = C−1
wwCwd (65)

β̂0naive = D̄− β̂
T
1naiveW̄, (66)

E(Cww) = E(Cxx) + Σuu ≈ Σxx + Σuu (67)

E(Cwd) = E(Cxy) + Σuq ≈ Σxy + Σuq (68)

Consider the expectations for Cww and Cwd given in Equation 67 and Equation 68.12 Given
the latter, it follows from Equation 65 and Equation 66 that the naive OLS estimator clearly
produces biased estimates for β if it is applied to data with classical measurement error.

12 Note that these expectations are exact under the normal structural model with normal measurement
error and constant measurement error covariance matrix. For all other cases, they are only approximate
(Buenaccorsi, 2010, p. 109).
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More specifically, with measurement error in the covariates and in the response it follows
that

E(β̂1naive) = E(C−1
wwCwd) ≈ γ1 = (Σxx + Σuu)

−1Σxx β1 + (Σxx + Σuu)
−1Σuq (69)

and
E(β̂0naive) ≈ γ0 = β0 + (β1 − γ1)

Tµx. (70)

In our simulation study presented in section 6, we focus on the LASSO in the presence of
classical additive measurement error in the covariates. In doing so, we assume error-free
responses yi (i = 1, ..., n), i.e., we imply that qi = 0. As a consequence, one has Σuqi = 0
which means that there is no correlation between the error in the response and any errors in
the covariates. Given the above equations and assuming that qi = 0 leads to the following
simplified equation which shows the bias for the OLS estimator in the presence of classical
measurement error in the covariates:

E(β̂1naive) ≈ (Σxx + Σuu)
−1Σxx β1 = κβ1, (71)

where
κ = (Σxx + Σuu)

−1Σxx. (72)

κ is referred to as reliability ratio (Fuller, 1987; Carroll et al., 2006) or reliability matrix
(Buonaccorsi, 2010). As can be seen from Equation 71 and Equation 72, the fact that β1

is multiplied by the reliability matrix leads to a downward bias of the resulting naive
OLS estimators for β1. In the prevalent literature, this effect is referred to as attenuation
bias (Fuller, 1987; Carroll et al., 2006; Buonaccorsi, 2010). For the models presented in
this section and also in section 6, we implicitly assume that each of the p considered
covariates is measured with error. Note, however, that measurement error in only one of
the covariates often leads to biased estimates for all covariate coefficients including such
coefficients that are actually measured without error (see Buonaccorsi, 2010, Illustration
1-3 in Chapter 5.3).

4.2 Methods to correct for additive measurement error in the covariates
We illustrated in subsection 4.1 that the naive OLS estimator produces biased estimates
for the coefficients β j(j = 0, ..., p) if the design matrix contains covariate values that
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are measured with classical additive measurement error. Hence, there is a need for
methods that allow the user to correct for measurement error in cases where the latter
is inherent to the data of interest. In fact, there are numerous settings and assumptions
under which corresponding estimators can be developed. This has lead to quite a few
alternative estimators for measurement error data (see, e.g., Fuller, 1987; Cheng and Van
Ness, 1999; Buonaccorsi, 2010). However, in the following we confine ourselves to briefly
sketching some basic approaches that facilitate the estimation of reliable (in the sense of
unbiased) coefficients β j, albeit the presence of error-prone covariate values as described
in Equation 55. We present the so-called method of moments estimator which uses knowledge
about the true measurement error variance to correct for potential error in the covariates.
For the more likely case that the practitioner has no knowledge of the true measurement
error variance, we show how to use replicate data to estimate Σuu before applying the
method of moments (see subsubsection 4.2.2).

4.2.1 Error correction using the method of moments

A common and also very comprehensive method to correct for classical additive measure-
ment error and thus to avoid biased coefficient estimates when using the OLS estimator is
the method of moments (see, e.g., Carroll et al., 2006, Capter 3). As shown in subsection 4.1,
the expectation for the naive coefficient estimate β̂1naive can be expressed as the corre-
sponding true coefficient β1 times a factor. This factor is constituted by the reliability ratio
κ, which is defined as κ = (Σxx + Σuu)−1Σxx. If one had notice of the reliability ratio, one
could simply calculate the naive OLS estimator β̂1naive and subsequently correct for its bias
by dividing β̂1naive by the reliability ratio κ. However, since κ is unlikely to be known in
practice, it typically needs to be estimated.

To derive an appropriate estimator κ̂ for the reliability ratio, we first assume that the
individual or common estimates of the measurement error variances and covariances are
available. Let the estimator for the measurement error variance of the ith unit be denoted
by Σ̂ui. If the measurement error variances are heteroscedastic, i.e., if Σ̂ui changes with i,
the estimated average or inter-individual measurement error variance is Σ̂uu = ∑n

i=1 Σ̂ui/n.
Alternatively, it might hold that Σ̂ui = Σ̂uu which means that the measurement error
variances are constant.

Given the fact that the OLS estimator and the reliability ratio only depend on moments
of the observed data, the method of moments provides an appropriate estimator for β
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in the presence of measurement error (Carroll et al., 2006). Using the above introduced
relations Σ̂xx = Cww − Σ̂u and Σ̂xy = Cwy and assuming that Σ̂uq = 0, the estimator κ̂ can
be written as

κ̂ = (Σ̂xx + Σ̂uu)
−1Σ̂xx = (Cww − Σ̂u + Σ̂u)

−1(Cww − Σ̂u) = C−1
ww(Cww − Σ̂u). (73)

Provided that there is an estimator for the measurement error variance Σuu, one can calcu-
late κ̂ and subsequently use it to correct the naive estimate by dividing it by κ̂:

β̂1 = (Cww − Σ̂u)
−1Cww β̂1naive = κ̂−1β̂1naive. (74)

Directly formulating the unweighted moment corrected estimators (Buonaccorsi, 2010) leads
to

β̂1(moment) = Σ̂−1
xx Σ̂xy (75)

and
β̂0moment = D̄− β̂

T
1momentW̄, (76)

where Σ̂xx = Cww − Σ̂u and Σ̂xy = Cwd − Σ̂uq.13 For cases where there is no error in the
response, Σ̂xy equals Cwd.

4.2.2 Error correction using replicate data

In this subsubsection, we describe how to obtain an estimate of the measurement error
variances and covariances if there is replicate data available or if there is - at least - the
possibility to perform replicate measurements to create such data. To this end, we ignore
potential measurement error in the response and solely focus on the procedure for esti-
mating covariate measurement error variances. We assume that all considered covariates
are measured with additive error and that they are measured together in each replicate
so that one has balanced replicate data. However, the prevalent literature also proposes
estimation procedures for the case of unbalanced replicates. For an extended discussion of
the usage of replicate data to estimate measurement error variances, we refer the interested
reader to Buonacorrsi (2010, Chapter 5.4.3 and 6.5.1).

13 Note that the matrix Σ̂xx = Cww − Σ̂u can generally become negative which then requires modifications
of the estimators. This topic is discussed in Buonaccorsi (2010, Section 5.4.4.).
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4 Multiple linear regression with additive measurement error in the covariates

In the following, we assume that for each observation i (i = 1, ..., n) there are at least
mi > 1 corrupted replicate values Wija available for each of the p covariates. The vector
Wia ∈ R(p+1) contains the corrupted covariate values together with the intercept for the
ith observation measured in the ath replication. Altogether, there are mi such data vectors
Wi1, Wi2, ..., Wimi for the ith observation. Moreover, we assume that given yi and xi it holds
that

Wij = xi + uij, (77)

with
E(uij) = 0, (78)

Var(uij) = σ2
ui(1), (79)

and
Cov(uij) = Σui(1), (80)

where xi ∈ R(p+1) is the vector with error-free covariate values belonging to the ith
observation and Σui(1) is the per-replicate measurement error covariance matrix for the ith
observation which has the corresponding per-replicate variance σ2

ui(1) on its diagonal. Note
that by assuming σ2

uia(1) = σ2
ui(1) for each covariate a, we imply that the per-replicate error

variance is the same for each covariate. Since we have mi > 1 replicate vectors Wij which
contain corrupted covariate values, we can calculate the corresponding inter-replicate
mean

Wi =
mi

∑
j=1

Wij/mi. (81)

With Wi = xi + ui, one then has

Var(ui) = σ2
ui = σ2

ui(1)/mi, (82)

and
Cov(ui) = Σui = Σui(1)/mi. (83)

From Equation 83 we can conclude that one can estimate the measurement error variance
by simply dividing the per-replicate measurement error variance Σui(1) by the number
of replicates mi. Thus, we first need to estimate Σui(1). Given mi > 1, the per-replicate
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sample variance of Wi denoted by SWi can be obtained by using Equation 84. Note that if
we had covariates measured with error and such measured without error, any entries of
SWi involving uncorrupted covariates would be zero.

Σ̂ui(1) = SWi =
∑mi

j=1(Wij −Wi)(Wij −Wi)
T

(mi − 1)
(84)

In situations where the measurement errors of two variables are correlated, one needs at
least some paired replicate values for those two variables, say miab > 1 for variables a and
b. One can then use

σ̂uiab(1) = Siab =
∑miab

j=1 (Wija −Wia)(Wijb −Wib)

(miab − 1)
, (85)

where the sum is over those replications j for which Wija and Wijb are both available. An
estimate of the abth element of Σui is given by

σ̂uiab = Siab/miab. (86)

Combining Equation 83 and Equation 84 leads to Σ̂ui =
SWi
mi

as estimator for the ith
measurement error covariance matrix. If we assume that the error variance is the same for
all observations, one can set Σ̂ui = Σ̂uu. Otherwise one can simply estimate Σ̂uu by using
Equation 61.

5 Analytical results for the linear LASSO with additive measurement

error in the covariates
Introducing the linear LASSO and related theoretical aspects in section 2 and section 3,
we assumed that the design matrix X passed to the LASSO contained error-free covariate
measurements. However, in practice, where data corrupted by measurement error are
rather the norm than the exception, this assumption mostly does not hold. Against this
background, we now study the linear LASSO given in Equation 7 in the presence of
measurement error in the design matrix. The analytical results with respect to the LASSO
with error-prone design presented in this section involve classical additive measurement

46



5 Analytical results for the linear LASSO with additive measurement error in the covariates

error only.

In subsection 5.1, we outline the precise model setup for the subsequent analysis by
combining the theoretical components introduced in section 2, section 3 and section 4.
We then examine the impact of ignoring classical additive measurement error in the
design on the standard LASSO’s performance with regard to estimation and prediction
(subsection 5.2) and concerning variable selection (subsection 5.3). In doing so, we use
the central results for error-free design matrices presented in subsubsection 3.3.1 and
subsubsection 3.3.2 as a reference. We then investigate how these results are influenced
by additive measurement error in X. The theoretical results given in this section are from
Sørensen et al. (2014). We made, however, some notational modifications to achieve
consistent notation throughout our work.

5.1 Model Setup
In this section, we apply the above presented classical measurement error framework to
the linear regression model defined in Equation 1. Note that in line with subsection 3.1, we
assume that the LASSO is applied to standardized data that satisfies Ȳ = n−1 ∑n

i=1 Yi = 0
and σ̂2

j = n−1 ∑n
i=1(W

(j)
i − W̄(j))2 = 1 for all j. This assumption implies that the intercept

of our linear model is zero and that all covariates are centered and measured on the same
scale so that all diagonal elements of the error-prone Gram matrix Cww = 1

n WTW equal
1. Note that applying the empirical mean W̄ (j) for centring the error-prone covariate
vectors W(j) (j = 1, ..., p) in W, one has to be aware of the fact that the measurement error
is inherent to the centring process. Therefore, we would like to point out that assessing the
impact of empirical mean centring using the error-prone mean on the resulting LASSO
estimates is surely a worthwhile focus for future research.

Altogether, we assume the following model setup:

y = Xβ + ε, (87)

where y ∈ Rn is the perfectly measured, continuous response observed on n individuals,
β ∈ Rp is the true, but unknown coefficient vector for the p covariates and ε ∈ Rn is
the vector of model errors. We assume that the model errors ε = (ε1, ..., εn)T are i.i.d.
normally distributed with mean zero and variance σ2, i.e., ε ∼ N(0, σ2I). However, unlike
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in Equation 1, we observe W ∈ Rn×p containing noisy covariate measurements instead of
the true design matrix X ∈ Rn×p. More in particular, we have

W = X + U, (88)

where the matrix U ∈ Rn×p contains the covariate measurement errors. U is assumed
to have normally distributed rows with mean zero and variance-covariance matrix Σuu.
Hence, Ui ∼ N(0, Σuu) which means that the measurement error variances and covariances
do not change with i. Furthermore, we assume U and X to be independent (classical mea-
surement error). Directly applying the LASSO given by Equation 7 to the above error-prone
linear model, yields the naive LASSO (Sørensen et al., 2014):

β̂LASSO,naive(λ) = arg min
β

(
1/n ‖y−Wβ‖2

2 + λ‖β‖1

)
. (89)

Note that the only difference between Equation 7 and Equation 89 is that the latter
contains the noisy design matrix W instead of the true design matrix X. For the rest,
we adopt the assumptions and notation outlined in subsection 3.1. Additionally, we
introduce the partitioning of the error-prone design matrix W = (WS0 , WSc

0
), where

WS0 ∈ Rn×q and WSc
0
∈ Rn×(p−q) are the first q and the last (p− q) columns of W ∈ Rn×p,

respectively. Thus, WS0 contains the n corrupted measurements of the q influential co-
variates, while WSc

0
contains the n corrupted measurements of the (p− q) unimportant

covariates. Correspondingly, let Cww = 1
n WTW be the scaled Gram matrix of the cor-

rupted covariate measurements. In line with Cxx, we can write Cww in a block-wise form
as

Cww =

(
Cww(S0, S0) Cww(S0, Sc

0)

Cww(Sc
0, S0) Cww(Sc

0, Sc
0)

)
, (90)

where Cww(S0, S0) ∈ Rq×q, Cww(Sc
0, Sc

0) ∈ R(p−q)×(p−q) and Cww(S0, Sc
0) = Cww(Sc

0, S0)
T ∈

Rq×(p−q). Accordingly, the population covariance block matrix of W is given by

Σww =

(
Σww(S0, S0) Σww(S0, Sc

0)

Σww(Sc
0, S0) Σww(Sc

0, Sc
0)

)
, (91)

48



5 Analytical results for the linear LASSO with additive measurement error in the covariates

where the dimensions of the population block matrices equal those of the sample block
matrices above.

The LASSO estimates are partitioned according to the same pattern as β. This means that
one has β̂ = β̂Lasso,naive(λ) = (β̂

T
S0

, β̂
T
Sc

0
)T, where β̂S0

∈ Rq and β̂Sc
0
∈ R(p−q). Note that

according to the above definition, the dependence of β̂ on λ is implicit. We would like
to point out that since the LASSO does not necessarily provide correct estimations of the
true β, the elements of β̂S0

are not necessarily non-zero neither are the elements of β̂Sc
0

necessarily zero. To differentiate the true active set S0 from the active set of the LASSO,
we define for any λ ≥ 0 the active set of the LASSO as Ŝ(λ) = {j : β̂ j(λ) 6= 0}. Thus, Ŝ(λ)
contains all LASSO non-zero coefficient estimates.

Note that unless otherwise specified, we assume fixed true covariates that satisfy the
regularity conditions introduced in subsection 3.1 (see Equation 30 and Equation 31). In
addition, we adopt the following regularity conditions for the random measurement errors
in U defined by Sørensen et al. (2014):

Cuu → Σuu , as n→ ∞, (92)

(1/n) max
1≤i≤n

(uT
i ui)→ 0 , as n→ ∞. (93)

Since Ui ∼ N(0, Σuu), the convergences Equation 92 and Equation 93 can be shown to
hold with probability 1 (see Anderson (2003, Th. 3.4.4) cited in Sørensen et al. (2014)).
Given Equation 30, Equation 31, Equation 92 and Equation 93, it follows that W = X + U
satisfies

Cww → Σww , as n→ ∞ (94)

and
(1/n) max

1≤i≤n
(wT

i wi)→ 0 , as n→ ∞ (95)

with probability 1.
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5.2 Prediction and estimation accuracy
In subsubsection 3.3.1, we introduced two basic conditions that have to be satisfied for
the LASSO to be consistent in estimation and prediction. More precisely, we allowed for a
condition on the noise ε (Equation 16) and the CC (Equation 17). Both of these conditions
are crucial for establishing oracle results for the LASSO with regard to estimation and
prediction. The oracle results for the LASSO with perfect design are given in Equation 18 to
Equation 20. In summary, Equation 20 constitutes a probability inequality for the statistical
error of the LASSO with fixed design and Gaussian errors. Given an appropriate choice
for the tuning parameter λ, Equation 20 holds with high probability. In particular, the
oracle inequalities for the LASSO provides bounds for the prediction and estimation error
of the LASSO. Against the background of Equation 18 to Equation 20, we concluded in
subsubsection 3.3.1 for the LASSO with true design matrix X that as long as the number
of observations n tends to infinity with a rate faster than q log (p), the LASSO will be
consistent for prediction (see Equation 21). If n tends to infinity with a rate faster than
q2 log (p), the LASSO will also be consistent for estimation in the l1-norm (see Equation 22)
(Sørensen et al., 2014). To derive corresponding results for the naive LASSO with corrupted
covariate measurements W, we need to consider two sources of random error. More pre-
cisely, we need to bound the observational noise ε and the covariate measurement error
U. To establish oracle results for the LASSO with corrupted design, Sørensen et al. (2014)
propose the following CC which involves the observed covariate measurements W:

Compatibility condition for the naive LASSO with error-prone design
The CC is met for the index set S0, for some φ0 > 0 and for all γ ∈ Rp satisfying ‖γSc

0
‖1 ≤

3‖γS0
‖1, if it holds that

‖γS0
‖2

1 ≤
q ‖Wγ‖2

2
n φ2

0
. (96)

As in the CC for uncorrupted design (Equation 17), the compatibility constant φ0 in
Equation 96 corresponds to a lower bound for the restricted eigenvalue of the Gram matrix
Cww. By analogy to Equation 13 and Equation 14 for uncorrupted design, a basic inequality
serves as technical base for all derivations concerning the estimation and prediction error
of the naive LASSO with measurement error in the design. For the the latter, the basic
inequality is given by Equation 97.
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(1/n) ‖y−Wβ̂‖2
2 + λ‖β̂‖1 ≤ (1/n) ‖y−Wβ‖2

2 + λ‖β‖1 (97)

Recall that we defined β̂ = β̂Lasso,naive(λ). Building on Equation 97, one can use Equa-
tion 96 combined with the bound for the observational noise given in Equation 98 to
establish a bound for the estimation and prediction error of the naive LASSO with additive
measurement error. The resulting bound is defined in Equation 99. Note that the derivation
of Equation 98 is not trivial and requires several mathematical rearrangements and manipu-
lations. However, for being rather technical the latter are not discussed here. The interested
reader is refered to the appendix of Sørensen et al. (2014).

Prediction and estimation bound for the naive LASSO with error-prone design
Assume that the compatibility condition with constant φ0 holds for S0 and that there exists a
constant λ0 such that

(2/n) ‖(ε−Uβ)TW‖∞ ≤ λ0 (98)

Then, with a regularization parameter λ ≥ 2λ0, the following bound holds for the naive LASSO:

(1/n) ‖W(β̂− β)‖2
2 + λ‖β̂− β‖1 ≤

4λ2 q
φ2

0
. (99)

We can conclude from Equation 99 that - as for the LASSO with perfect design X - one
can generally bound the estimation and prediction error for the LASSO if additive mea-
surement error in the design is present. A problem lies, however, in the noise bound
given in Equation 98. Sørensen et al. (2014) rearrange Equation 98 by means of the
triangle inequality and obtain Equation 100 which implies the bound defined in Equa-
tion 98.

(2/n) ‖εTW‖∞ + (2/n)‖βTUTX‖∞ + (2/n) ‖β‖1‖UTU‖∞ ≤ λ0 (100)

As stated by Sørensen et al. (2014), the naive LASSO with corrupted design would be
consistent if all three terms in Equation 100 converged to zero. It is clear that the first two
terms in Equation 100 converge to zero as we raise the sample size to infinity, since then
(2/n)→ 0. By contrast, the term ‖UTU‖∞ is quadratic in the measurement error so that
the third term on the left hand side of Equation 100 does not converge to zero. This is due
to the fact that UTU converges to nΣuu as n→ ∞ so that the n factors cancel out while at
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the same time it holds that ‖Σuu‖∞ 6= 0. Hence, one can conclude that the naive LASSO
with corrupted design is not consistent in estimation and prediction (see Sørensen et al.,
2014). Against this background, Sørensen et al. (2014) provide the following asymptotic
result for the naive LASSO estimates:

Assume λ→ 0 as n→ ∞. Then, as n→ ∞ with fixed p, one has

β̂
p→ Σ−1

wwΣxxβ. (101)

We can derive from Equation 101 that the resulting estimates are clearly biased if the
naive LASSO is applied to covariate data corrupted by additive measurement error. On
the other side, as pointed out by Sørensen et al. (2014), it has been shown by Knight
and Fu (2000) that given a perfect design matrix, the estimates of the LASSO converge
in probability to β under the same conditions (λ → 0 as n → ∞ and n → ∞ with fixed
p) as assumed for Equation 101. We can use the asymptotic result given by Equation 101
to correct the naive LASSO for the bias induced by additive measurement error in the
following way:

β̂Lasso,corr = Σ−1
xx Σww β̂Lasso,naive ≈ (Cww − Σuu)

−1Cww β̂Lasso,naive (102)

It is not difficult to recognize that the above equation for measurement error correction
parallels the correction mode for additive measurement error in the common linear model
(see Equation 74). This implies that with λ being scaled properly, the bias induced by
additive measurement error is the same for the LASSO as for a multivariate linear model
(Sørensen et al., 2014; Carroll et al., 2006).

5.3 Variable selection accuracy
In subsubsection 3.3.2, we introduced the IC (Zhao and Yu, 2006) for the LASSO with
perfect design matrix X. In doing so, we showed that under certain regularity conditions
the latter is sufficient and essentially necessary for the LASSO to select the true model both
in the classical fixed p setting and in the large p setting where the number of covariates
increases with n. We now turn to the topic of variable selection consistency for the naive
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LASSO with measurement error in the design.

Equation 103 shows the SIC for the LASSO with corrupted design W. In line with Sørensen
et al. (2014), we refer to Equation 103 as IC with measurement error (IC-ME). Note that the
only difference between the IC-ME in Equation 103 and the SIC in Equation 27 is that the
partitions of the perfect Gram matrix Cxx are replaced by the error-prone partitions of Cww

in the IC-ME. Against this background, the interpretation of the IC-ME parallels the one
proposed for the SIC in subsubsection 3.3.2.

Irrepresentable condition with covariate measurement error (IC-ME): The IC-ME holds
if there exists a constant θ ∈ [0, 1), such that

‖Cww(Sc
0, S0)Cww(S0, S0)

−1sign(βS0
)‖∞ ≤ θ. (103)

However, Sørensen et al. (2014) show that besides the IC-ME an additional condition is
needed for the naive LASSO with corrupted design to sign consistently select covariates
with high probability in the large sample limit. As a consequence, they introduce the
Measurement Error Condition (MEC) which goes as follows:

Measurement Error Condition: The MEC is satisfied if

Σww(Sc
0, S0)Σww(S0, S0)

−1Σuu(S0, S0)− Σuu(Sc
0, S0) = 0. (104)

First of all, it is noticeable that compared to the IC-ME which involves sample covariance
matrices, the MEC involves population covariance matrices. From a technical point
of view, Equation 104 is satisfied if Σxx(Sc

0, S0) = Σuu(Sc
0, S0) = 0. This can be ex-

plained by the fact that with W = X + U and U and X being independent, it holds
that

Σww(Sc
0, S0) = Σxx(Sc

0, S0) + Σuu(Sc
0, S0). (105)

Thus, if Σxx(Sc
0, S0) = Σuu(Sc

0, S0) = 0, it follows that Σww(Sc
0, S0) = 0 which then

leads Equation 104 to hold. Note that the IC-ME requires the sample covariance ma-
trix Cww(Sc

0, S0) = Cxx(Sc
0, S0) + Cuu(Sc

0, S0) to show a moderate degree of correlation.
This implies that the empirical correlation between the unimportant error-prone covariates
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in Sc
0 and the important error-prone covariates in S0 must be reasonably small for Equa-

tion 103 to hold. On the other hand, the MEC requires the population matrices Σxx(Sc
0, S0)

and Σuu(Sc
0, S0) to be exactly zero. This requirement is satisfied in situations where there is

absolutely no correlation between the unimportant covariates and the covariates being
part of the true model. However, especially in high-dimensional data settings where p
grows with n, such entire absence of correlation is rather unlikely to occur. Alternatively,
the MEC holds if Σuu = cΣxx for some constant c. This corresponds to situations where
the population covariance matrix of the measurement errors has the same shape as the
population covariance matrix of the true covariates (Sørensen et al., 2014).

For the finite sample case, Sørensen et al. (2014) show that the IC-ME serves to establish
a positive lower bound on the probability of sign consistent covariate selection for the
LASSO with additive error in the covariates. For the large sample case where p is fixed,
they show that the MEC together with a couple of other conditions is sufficient for the
LASSO to sign consistently select the true model with probability approaching one (see
Theorem 1 in Sørensen et al. (2014)). While the IC forms a sufficient and essentially
necessary condition for consistent covariate selection in the absence of measurement error,
this is not the case for the LASSO with error-prone design matrix. For the latter, the IC-ME
which is equivalent to the IC in the error-free case can be applied to establish a lower
bound on the probability of consistent covariate selection. In addition, the MEC which is a
much stronger condition than the IC-ME must also be satisfied for the LASSO to perform
consistent covariate selection in the presence of measurement error. Note that the MEC
is, however, not necessary for asymptotically sign consistent covariate selection. This
means that the LASSO can still perform sign consistent covariate selection, even though
the MEC might not be satisfied (Sørensen et al., 2014). In summary, it can be stated that the
LASSO with measurement error does require a much stronger condition for sign consistent
covariate selection than the LASSO with perfect design does. It should be mentioned that,
while we already found it cumbersome to transfer the SIC into conditions for practical
application, translating the population variances-based MEC into practically applicable
terms appears almost impossible.
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5.4 Correction methods for the LASSO with additive measurement

error in the covariates
As for the classical linear model, the correction factor involved in Equation 102 repre-
sents a very straightforward solution to adjust the naive LASSO for the bias induced by
additive measurement error in the design. In general, the literature on the LASSO with
measurement error is very scarce and there are only very few studies that propose potential
correction methods for the naive LASSO. A small strand of literature focusing on this topic
and related questions has just emerged. Nevertheless, there are some interesting studies
providing insightful results with respect to the performance of the LASSO in the presence
of measurement error and potential approaches to correct for the bias induced by the latter.

Rosenbaum and Tsybakov (2010) studied a sparse linear regression model with p � n
whose design matrix was observed with additive measurement error. In doing so, they
introduced the notion of matrix uncertainty refering to situations where X is observed with
some kind of measurement error. They proposed a new class of matrix uncertainty selectors
(MU selectors) and performed a MC simulation study to compare the latter with the naive
LASSO and several other suitable estimators under matrix uncertainty. Examining the
estimation accuracy and the number of estimated non-zero coefficients belonging to the
true sparsity pattern, they showed the naive LASSO to be unstable in the selection of the
true sparsity pattern and also to exhibit less efficiency in the estimation of β than the MU
selectors. In particular, the naive LASSO lead to coefficients that were mostly too large and
it also included many irrelevant covariates. Furthermore, the it turned out to be sensitive
to the explicit values of the underlying β. Nevertheless, Rosenbaum and Tsybakov (2010)
also showed that the naive LASSO’s sets of non-zero coefficients consistently included the
true set of coefficients.

In their study of high-dimensional sparse linear regression, Loh and Wainwright (2012)
discussed the issue of non-convex optimization problems due to noisy and missing covari-
ate data. For the case of covariate data with additive measurement error, they presented
the following reasoning to motivate why directly correcting the naive LASSO by using
Equation 106 as estimator for Σxx cannot lead to meaningful results:
As mentioned before, the Gram matrix Cxx = 1/n XTX is required to be positive semi-
definite for the LASSO program in Equation 7 to be convex (Loh and Wainwright, 2012).
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The convexity of optimization problems implies that any locally optimal point is also (glob-
ally) optimal (Boyd and Vandenberghe, 2004). On the other hand, non-convexity implies
the presence of local minima. Note that Cxx is positive semi-definite if and only if λi ≥ 0 for
i = 1, ..., n and λi = 0 for at least one eigenvalue (see subsection A.1). With measurement
error as defined in Equation 55, one has X = W−U, where U ∈ Rn×p contains the random
covariate measurement errors.14 U is independent of the true covariate measurements
X. In subsection 4.1, we introduced the relation E(Cww) = E(Cxx) + Σuu ≈ Σxx + Σuu.
Theoretically, we could apply this relation in order to estimate Σxx by means of Equa-
tion 106.

Σ̂xx,addME =
1
n

WTW− Σuu. (106)

E(‖y−Wβ‖2
2|X, y) = ‖y− Xβ‖2

2 + n βTΣuuβ (107)

It can easily be seen from Equation 106 that given the absence of measurement error in
the covariates, i.e., if Σuu = 0, the estimator Σ̂xx,addME reduces to the error-prone Gram
matrix comprised by the naive LASSO. On the other hand, Σ̂xx,addME is no longer positive
semi-definite for p � n if there is measurement error in the covariates which implies
that Σuu > 0. This can be explained by the fact that in high-dimensional data settings,
W has at most rank n which means that W exhibits at least (p − n) eigenvalues equal
to zero. In this context, subtracting Σuu > 0 (Σuu ∈ Rn×p) from Cww = 1

n WTW may
result in Σ̂xx,addME showing a large number of negative eigenvalues. As an example, we
state that if Σuu = σ2

uI with σ2
u > 0, Σ̂xx,addME has p− n eigenvalues equal to −σ2

u and
thus p− n negative eigenvalues. This situation clearly leads to the non-convexity of the
LASSO program. Hence, we conclude that inserting the above relation in Equation 89 to
correct the naive LASSO for measurement error would turn the quadratic losses involved
in Equation 89 into a non-convex optimization problem and would thus not be sensible
(Loh and Wainwright, 2012). Note that if Cxx has at least one negative eigenvalue and is
therefore not positive semi-definite, the objective equation in Equation 89 is unbounded
from below and the RE condition proposed by Bickel et al. (2009) is violated. Given this
context and the fact that the loss function of the naive LASSO is biased (see Equation 107),

14 Recall that U has its rows ui drawn i.i.d. from N(0, Σuu).

56



6 Simulation study for the LASSO with additive measurement error in the covariates

Loh and Wainwright (2012) introduced the regularized corrected LASSO (RCL) which is
given by Equation 108.

β̂LASSO,RC(λ) = arg min
β:‖β‖1≤R

{(1/n)‖y−Wβ‖2
2 − βTΣuuβ + λ‖β‖1} (108)

They pointed out that the RCL facilitates sign consistent covariate selection under an
IC-type condition and that the loss function of the RCL is always non-convex when p > n.
Moreover, they showed that the RCL shows an improved estimation accuracy compared
to the naive LASSO when additive measurement error is present. With respect to covariate
selection consistency, Sørensen et al. (2014) showed that the RCL performs consistently
under a condition which is very similar to the IC for the LASSO without measurement
error. This means that compared to the MEC which is sufficient for the naive LASSO to
consistently select covariates in the presence of measurement error, the RCL is a good
alternative, since it requires conditions that are less strict and because it also shows a better
performance than the naive LASSO.

6 Simulation study for the LASSO with additive measurement error in

the covariates
This section aims at illustrating the finite sample performance of the LASSO in the presence
of measurement error in the design. In the following, we focus on the LASSO for a linear
model whose design matrix is corrupted by classical additive measurement error. In doing
so, we draw comparisons between the naive OLS estimator, the naive LASSO as well as
their corrected estimates, respectively. Furthermore, we allow for two different prevalent
implementations of the linear LASSO in the R software package (R Development Core
Team, 2013) to assess the differences between the resulting LASSO estimators. Another
focus is on the distribution of the tuning parameter. In this context, we consider the
impact of the general noise level ε on tuning parameter selection with cross-validation.
The general structure of our simulation is presented in subsection 6.1. The corresponding
results are presented and discussed in subsection 6.3.

6.1 Simulation model setup and methods
In our simulation, we generated data from the multiple linear regression model
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Yk = Xβk + ε, (109)

where X ∈ Rn×(p+1) contains the error-free measurements of the p covariates included
in the model together with a constant for the intercept and where βk ∈ R(p+1) is the
corresponding coefficient vector to estimate. The linear model presented in Equation 109
is sparse with active set S0 = {1, ..., 5} and Sc

0 = {6, ..., p}, provided that one ignores the
intercept constant. The corresponding sparsity index is q = |S0| = 5 for either choice of βk

(k = 1, 2, 3). This means that irrespective of the intercept and for either choice of βk, the
model in Equation 109 contains q = 5 influencing covariates with non-zero coefficients
βk,j and p− q irrelevant covariates with corresponding zero coefficients. As can be seen
from Table 1, the parameter vectors β1, β2 and β3 only differ in terms of the magnitude of
their non-zero coefficients. The model with β1 accounts for a situation where q = 5 out of
p covariates have a reasonably strong impact on the response. The non-zero coefficients of
β2 are half the size of the non-zero coefficients of β1 which reflects a situation where the
important covariates only have a moderate impact on the response. Finally, the coefficients
of β3 are exponentially decreasing from coefficient β3,1 to β3,5. This describes a situation
where the pertinent covariates are very heterogeneous with respect to their relative im-
portance. Note that augmenting the number of covariates p according to Table 2 leads to
smaller proportions q/p and hence to more sparsity in the above model.

Parameter vector βk (k = 1, 2, 3) belonging to non-zero and zero covariates

βk,S0
∈ R5 βk,Sc

0
∈ R(p−5)

β1 β1,S0
= (1, 1, 1, 1, 1)T β1,Sc

0
= (0, ..., 0)T

β2 β2,S0
= (0.5, 0.5, 0.5, 0.5, 0.5)T β2,Sc

0
= (0, ..., 0)T

β3 β3,S0
= (1, 0.5, 0.25, 0.125, 0.0625)T β3,Sc

0
= (0, ..., 0)T

Table 1: Composition of the parameter vectors βk (k = 1, 2, 3)

We performed simulations which involved two different sample sizes (n = 100, 500).
Table 2 provides an overview of the pertinent parameters and their respective levels.
To compare the naive OLS and LASSO estimators (Equation 2 and Equation 89) with
their corrected analogues (Equation 75 and Equation 102) we implemented the following
simulation procedure:
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• The parameter vectors βk (k = 1, 2, 3) accounting for three different data situations
were defined according to Table 1. Ignoring the intercept term in βk, every βk has the
active set S0 = {1, 2, 3, 4, 5} with corresponding sparsity index q = 5.

• The variance-covariance (or rather correlation) matrix for the p covariates was pre-
defined as Σxx ∈ Rp×p, with diag(Σxx) = (1, ...., 1) and the off-diagonal entries
corresponding to ρ. Note that ρ denotes the constant correlation between the p
covariates.

• The design matrix X ∈ Rn×p was generated with rows xi i.i.d. distributed according
to Np(1, Σxx). The constant for the intercept was then added to X as first column.

• The responses yk for k = 1, 2, 3 were generated applying Equation 109. ε ∈ Rn was
i.i.d. drawn from N (0, σ2In), where In denotes the identity matrix. Note that σ2 was
chosen according to Table 2, respectively.

• The error-prone design matrix W = X + U was created by adding classical measure-
ment error U to the true covariate values in X. The rows of U were i.i.d. drawn
from Np(0, Σuu) with Σuu = σ2

uIp. Hence, we assumed that all p covariates were
measured with constant measurement error which implies that the measurement
error variance σ2

u does change neither with j (index for covariates) nor with i (index
for observations). Note further that for one individual i, the measurement errors
of different covariates are independent from each other. This means that they are
uncorrelated and that the rows wi and xi in W = X + U are independent. Finally, the
model noise ε is independent from the measurement error in the covariates σ2

u.

• In subsection 3.1 and subsection 5.1, we proposed to apply the LASSO to linear
models with zero intercept and standardized covariates. For the estimation of the
LASSO in our simulation, we ignored the intercept term in Equation 109 by passing
W[,−1] to the respective R functions. The standardization of the covariates was then
automatically performed by the latter.

• The naive OLS and the naive LASSO estimates for βk (k = 1, 2, 3) were computed.
Thereby, two alternative estimation methods for the LASSO were considered. The
first estimate was computed by means of the R package GLMNET (Friedman et al., 2010).
The tuning parameter λ was chosen according to the minimal value of the 10-fold
cross-validation curve calculated by means of the cv.glmnet function with default
parameters. The second estimate was obtained by means of the R package penalized
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(Goeman et al., 2010) and the function OptL1 therein. The tuning parameter λ was
chosen according to the minimal value of the 10-fold cross-validation curve calculated
by means of OptL1 with default parameters. Note that using the default parameters
of the above functions implies that all covariates are standardized properly.

• The corrected versions of the OLS and the LASSO estimates were subsequently
calculated applying Equation 75 and Equation 102. In doing so, we assumed two
different scenarios: in the first scenario, we assumed that the measurement error
variance σ2

u was known and could directly be used to correct the naive estimates;
in the second scenario, we assumed that σ2

u was unknown and hence had to be
estimated. σ̂2

u was calculated as described in subsubsection 4.2.2 by using two error-
prone replicates of each covariate measurement which we assumed to be available in
the absence of a notion of the true σ2

u.

• Overall, the above procedure was performed for the different value combinations
of p, ρ, σ2

u and ε displayed in Table 2. For each unique parameter combination the
above procedure was repeated 500 times (MC simulation with 500 runs).

For each estimator, the estimation accuracy was measured by the global bias which equals
the bias induced by the over- or underestimation of the p− 5 zero coefficients as well as
by the MSE. Note that if we say that an estimator is unbiased, we only refer to the fact that
its global bias (as defined above) is zero. However, this does not imply that its overall bias
is also zero. The variable selection performance of the LASSO estimators was evaluated
by the number of non-zero coefficients that were correctly estimated as non-zero (true
positives) and the number of zero coefficients that were incorrectly estimated as non-zero
(false positives). The true positives are expressed in relation to the number of important
covariates q = 5 (true positive fraction, TPF) whereas the false positives are expressed
in relation to the number of irrelevant covariates p− 5 (false positive fraction, FPF). The
simulation results are presented and discussed in subsection 6.3. All results presented are
averages over 500 MC simulations. The numbers in parentheses are the corresponding
standard errors for TPF and FPF. We also considered the distributions of the 500 cross-
validated tuning parameters for different noise levels σ2.

6.2 Estimating LASSO in R with the packages GLMNET and penalized

As indicated above, we used two functions implemented in the R software package (R
Core Development Team, 2013) to estimate the LASSO in the above simulation procedure.
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β1 β2 β3

n = 100 n = 500 n = 100 n = 500 n = 100 n = 500

Number of covariates p 10 50 10 50 10 50

50 250 50 250 50 250

150 150 150

Correlation btw. covariates ρ 0.1 0.1 0.1 0.1 0.1 0.1

0.5 0.5 0.5 0.5 0.5 0.5

0.9 0.9 0.9 0.9 0.9 0.9

Measurement error variance σ2
u 0.01 0.01 0.01 0.01 0.01 0.01

0.10 0.10 0.10 0.10 0.10 0.10

1.00 1.00 1.00 1.00 1.00 1.00

Noise variance σ2 1.0 1.0 1.0 1.0 1.0 1.0

2.5 2.5 2.5 2.5 2.5 2.5

5.0 5.0 5.0 5.0 5.0 5.0

Table 2: Parameter combinations involved in the MC simulation study

More in particular, we used the packages GLMNET (Friedman et al., 2010) and penalized

(Goeman, 2010, 2014) and the corresponding functions for LASSO estimation therein. The
resulting estimates are compared in subsection 6.3.

The penalized package uses likelihood cross-validation for all models. Cross-validation is
a popular technique used to assess the predictive quality of the penalized prediction model
or to compare the predictive ability of models with different values of the tuning parameter
λ (Goeman, 2014). In our simulation, we performed 10-fold cross-validation using the
optL1 function provided by the penalized package. A 10-fold cross-validation randomly
divides the observations contained in the dataset into 10 disjunct groups of equal size.
The first fold is then used as validation set, while the model is fitted on the remaining 9
folds (see, e.g., Hastie et al., 2009, Chapter 7). We used the default standardize=TRUE to
standardize the covariates to unit second central moment before applying penalization.
In general, OptL1 optimizes the cross-validated log-likelihood with respect to the tuning
parameter λ and thus allows to identify the optimal amount of regularization. Note that
the allocation of the subjects to the folds is random which implies that λ can be considered
to be a random variable. This consideration forms the motivation for examining the
distributions of the optimal λ′s resulting from 500 MC simulations, respectively.
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OptL1 provides an efficient algorithm for l1-penalized estimation. The latter follows the
gradient to the maximum of the penalized likelihood, using a series of directional Taylor
approximations. In doing so, it uses Brent’s algorithm for minimization without derivatives
(Brent, 1973) to identify the optimal value of the tuning parameter λ. While leaving the
above approximation as an option for other model classes, penalized automatically ap-
plies the approximation method for linear models. The approximation method is much
faster than common cross-validation and for linear models it actually provides exact an-
swers. However, applying OptL1 one should be aware of the fact that Brent’s algorithm is
guaranteed to work only for uni-modal functions. This implies that OptL1 has the inherent
risk of converging to a local instead of to a global optimum (Goeman, 2010). Since the
cross-validated likelihood as a function of λ has very often several local optima, this
consideration especially refers to l1-optimization. Moreover, it is noticeable that although
the results of the approximation are generally quite accurate, the approximation method
has nevertheless the tendency to be overly optimistic in the sense that it leads to optimal
values of λ that are a slightly smaller than the ones resulting from usual cross-validation
(Goeman, 2014).
Besides the LASSO estimates resulting from OptL1 with the function arguments chosen
as indicated above, we also consider the LASSO estimates resulting from choosing λ ac-
cording to the minimum of the 10-fold cross-validation curve computed by the cv.glmnet

function (with default parameters) implemented in the GLMNET package (Friedman et al.,
2011). The latter facilitates extremely efficient procedures for fitting the entire LASSO path
for linear regression, logistic and multinomial regression models, Poisson regression and
the Cox model. The underlying algorithm uses cyclical coordinate descent in a pathwise
fashion (Friedman et al., 2011). Note that as the λ′s resulting from OptL1, also the results
of cv.glmnet are random, since the folds are selected at random. Friedman et al. (2011)
point out that this randomness can be reduced by running cv.glmnet many times and
averaging the error curves.

6.3 Simulation results
We now present the results obtained by conducting the above described MC study regard-
ing the performance of the LASSO in the presence of additive measurement error in the
design. As far as the performance of the LASSO is concerned, we adopt the two main
perspectives presented in subsection 3.3. More precisely, we consider the performance
of the naive LASSO and its corrected versions with respect to estimation in subsubsec-
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tion 6.3.1. Their variable selection performance is examined in subsubsection 6.3.2. To
draw comparisons with the LASSO, in subsubsection 6.3.1 we also consider the estimation
performance of the naive OLS estimator and its corrected estimates for some parameter
combinations. In subsubsection 6.3.3, we briefly outline the topic of tuning parameter
selection. In doing so, we examine the distributions of the tuning parameter λ constituted
by 500 runs of the MC procedure. We do this for different combinations of the considered
parameters. In the appendix (see subsubsection A.2.5), we provide some additional results.
The latter regard the differences between the estimates resulting from the cv.glmnet func-
tion provided by the GLMNET package and the OptL1 function provided by the penalized

package in R.

6.3.1 Results with respect to parameter estimation consistency

In the following, we present the simulation results regarding the estimation accuracy of
the naive OLS (OLSnaive) and LASSO (Lassonaive) estimators in the presence of additive
measurement error in the design. Recall that by naive we simply mean ignoring matrix
uncertainty. We also allow for the corrected estimates of OLS and LASSO, respectively
(see subsection 4.2 and subsection 5.3). The corrected estimates were computed by using
Equation 75 for the OLS estimates and Equation 102 for the LASSO estimates. The indices
TMEV (True Measurement Error Variance) and EMEV (Estimated Measurement Error Variance)
are used to denote the LASSO and OLS estimates which were corrected by the true and the
estimated measurement error variance, respectively. In this section, we only consider the
LASSO estimates that were obtained by using cv.glmnet (package GLMNET by Friedman
et al., 2011). The corresponding OptL1-LASSO estimates (package penalized by Goeman,
2010, 2014) are shown in the appendix of this work.15 Moreover, in this section we only
allow for the results implied by Gaussian noise with ε ∼ N (0, In). Table 3 to Table 13
summarize the empirical averages of the global bias and the MSE values for the naive
OLS and LASSO estimates as well as for their corrected estimates, respectively. They
account for several combinations of the parameters n, p, ρ and σ2

u. The global bias and
MSE values for further parameter combinations can be found in the appendix of this work
(see Appendix A).

15 Note that the cv.glmnet LASSO estimates are denoted by Lasso1, naive, Lasso1, TMEV and
Lasso1, EMEV, respectively, while the penalized LASSO estimates are denoted by Lasso2, naive,
Lasso2, TMEV and Lasso2, EMEV.
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In general, our results indicate that the naive LASSO - and therefore also the corrected
LASSO estimates - are somehow susceptible to the underlying coefficient values in β.
In particular, the naive LASSO clearly shows the worst estimation accuracy (in terms of
the highest global bias and MSE values) for β1. There is only a small difference in the
global bias and MSE values computed for the estimates of β2 and β3. Nonetheless, β3

exhibits the lowest global bias and MSE values for all considered parameter combinations.
This is in line with prevalent theory on the LASSO which points towards the fact that the
LASSO performs best for a small upto a moderate number of moderate-sized effects (see
Tibshirani, 1996). In the following, we consider results for the estimates of β3 only. For
corresponding results with respect to the estimates for β1 and β2, we refer to subsection A.2
in the appendix.

Considering the estimation accuracy of the naive LASSO and OLS estimates (see Table 3,
Table 4, Table 5 and Table 6), our first observation is that the global bias of the estimates
resulting from either method are reasonably small and always positive. Moreover, for both
naive estimators the global bias values are the largest if p = 10 and n = 100, while they
gradually decrease with a growing number of parameters p and growing sample size n.
This implies a fixed combination of the remaining parameters (ρ and σ2

u). If p = 250 and
n = 500, both estimators are almost unbiased (in terms of global bias), even if there is a
high degree of covariate correlation ρ and a high level of measurement error variance σ2

u.
If p = 10, the naive OLS estimates are generally unbiased if the measurement error vari-
ance is small (σ2

u = 0.01). Nevertheless, a small global bias is induced by moderate or
high measurement error variance (σ2

u = 0.1 and σ2
u = 1). The aforementioned effect is

further enhanced with an increasing covariate correlation ρ. Interestingly, if p = 50 the
tendency of global biases growing with σ2

u is at least partly still visible, but alleviated.
Under the same conditions, the naive OLS is still unbiased also for ρ = 0.5 in combination
with σ2

u = 0.1. However, if σ2
u = 1, there is a small bias which grows if ρ is raised. If for

p = 50 the sample size is increased from n = 100 to n = 500, the naive OLS still shows a
behaviour which is similar to the above described one. If n = 500 and p = 250, the OLS
is unbiased except for moderately and highly correlated covariates (ρ = 0.5 or ρ = 0.9)
combined with high measurement error variance (σ2

u = 1) where it, nevertheless, exhibits
only a tiny global bias.
Basically, the naive LASSO behaves in a way that is very similar to the one described for
the naive OLS. In general, the naive LASSO’s global bias values do not strongly diverge
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from the ones of the naive OLS. If n = 500, there is almost no difference between the bias
values of the LASSO and the OLS. Nevertheless, if p = 10 and σ2

u = 0.01 or σ2
u = 0.1, the

LASSO partly shows a larger bias than the OLS, while if p = 10 and σ2
u = 1, the LASSO

and the OLS are almost identical in terms of bias. For growing p, the difference in bias
between the LASSO and the OLS almost completely vanishes for all possible values of ρ

and σ2
u.

The LASSO estimates by themselves show increasing bias values with growing ρ and σ2
u.

However, with growing p and n the biases approach a value of zero. This may be inter-
preted as indication that the bias induced by the over- or underestimation of unimportant
coefficients becomes less important with growing p.

With respect to the MSE values of the naive estimates, we observe that the naive LASSO
exhibits smaller MSE values than the naive OLS for almost every value of p. Overall,
the LASSO shows a reasonably low MSE level also for an elevated number of model
parameters. In line with theory (see section 2), this reflects that despite the fact that the
LASSO exhibits a larger global bias than the naive OLS, it is clearly favourable in terms
of comparatively low MSE values. This advantage over the OLS appears particularly
strong if the number of covariates p is raised. Also for small p (p = 10), the naive LASSO
generally outperforms the naive OLS in terms of showing considerably smaller MSE
values. However, note that if σ2

u = 1, both estimate types have almost identical MSE and
global bias values regardless the actual value for ρ. This suggests that the presence of a
reasonably high amount of error in the covariates for quite small p makes the LASSO lose
its advantage in terms of low variance, while it makes the OLS lose its advantage in terms
of low bias. As a result, both methods approach in terms of estimation accuracy measured
by the MSE of their estimates. Interestingly, the degree of correlation among covariates
represented by ρ does not seem to play a role in the above situation.

Overall, the MSE values of both the naive LASSO and the naive OLS increase with growing
σ2

u and ρ. It is known that the problems of measurement error in the design and correlation
among the model covariates by themselves already impede both estimation methods to
correctly identify the underlying true model. Thus, it is not surprising that the combination
of both adversities makes it especially hard for the methods to consistently estimate the
coefficients of β3. Focusing on the naive OLS estimates, we can observe an interesting
phenomenon. More specifically, for high (ρ = 0.9) and partly also for intermediate (ρ = 0.5)
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correlation the MSE values of the naive OLS diminish with growing σ2
u. For instance, if

n = 100, p = 50 and ρ = 0.9, the naive OLS estimates have a MSE of 9.68 if σ2
u = 0.01, a

MSE of 5.88 if σ2
u = 0.1 and a MSE of 2.16 if σ2

u = 1. Likewise, there results a MSE of 9.21
for σ2

u = 0.01, a MSE of 5.66 for σ2
u = 0.01 and a MSE of 2.12 for σ2

u = 1, if n = 500 and
p = 250. Raising the sample size n has generally a mitigating effect on the MSE values
for both estimate types, while their estimation accuracy becomes worse (global bias and
MSE values increase) if ρ becomes larger. In summary, the MSE values of the naive LASSO
increase with σ2

u for all values of p and ρ.

n = 100 n = 500

p = 10 p = 50 p = 150 p = 50 p = 250

σ2
u = 0.01 σ2

u = 0.1 σ2
u = 1 σ2

u = 0.01 σ2
u = 0.1 σ2

u = 1 σ2
u = 0.01 σ2

u = 0.1 σ2
u = 1 σ2

u = 0.01 σ2
u = 0.1 σ2

u = 1 σ2
u = 0.01 σ2

u = 0.1 σ2
u = 1

ρ = 0.1 0.00 0.01 0.03 0.00 0.00 0.01 0.00 0.00 0.02 0.00 0.00 0.00

ρ = 0.5 0.00 0.02 0.10 0.00 0.00 0.02 0.00 0.01 0.02 0.00 0.00 0.01

ρ = 0.9 0.03 0.09 0.15 0.00 0.02 0.04 0.00 0.02 0.03 0.00 0.00 0.01

Table 3: Bias of the naive OLS estimator for β3 (averages of 500 MC simulations,
ε = 1)

n = 100 n = 500

p = 10 p = 50 p = 150 p = 50 p = 250

σ2
u = 0.01 σ2

u = 0.1 σ2
u = 1 σ2

u = 0.01 σ2
u = 0.1 σ2

u = 1 σ2
u = 0.01 σ2

u = 0.1 σ2
u = 1 σ2

u = 0.01 σ2
u = 0.1 σ2

u = 1 σ2
u = 0.01 σ2

u = 0.1 σ2
u = 1

ρ = 0.1 0.01 0.01 0.02 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00

ρ = 0.5 0.03 0.04 0.10 0.01 0.01 0.02 0.00 0.01 0.01 0.01 0.01 0.02 0.00 0.00 0.01

ρ = 0.9 0.07 0.11 0.15 0.02 0.03 0.03 0.01 0.01 0.01 0.01 0.02 0.03 0.00 0.01 0.01

Table 4: Bias of the naive LASSOcv.glmnet estimator for β3 (averages of 500 MC
simulations, ε = 1)

n = 100 n = 500

p = 10 p = 50 p = 150 p = 50 p = 250

σ2
u = 0.01 σ2

u = 0.1 σ2
u = 1 σ2

u = 0.01 σ2
u = 0.1 σ2

u = 1 σ2
u = 0.01 σ2

u = 0.1 σ2
u = 1 σ2

u = 0.01 σ2
u = 0.1 σ2

u = 1 σ2
u = 0.01 σ2

u = 0.1 σ2
u = 1

ρ = 0.1 0.12 0.15 0.42 1.15 1.18 1.19 0.12 0.14 0.46 1.13 1.14 1.24

ρ = 0.5 0.20 0.22 0.56 2.04 1.89 1.52 0.21 0.23 0.66 1.95 1.89 1.55

ρ = 0.9 1.01 0.84 0.93 9.68 5.88 2.16 1.02 0.90 1.15 9.21 5.66 2.12

Table 5: MSE of the naive OLS estimator for β3 (averages of 500 MC simulations,
ε = 1)
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n = 100 n = 500

p = 10 p = 50 p = 150 p = 50 p = 250

σ2
u = 0.01 σ2

u = 0.1 σ2
u = 1 σ2

u = 0.01 σ2
u = 0.1 σ2

u = 1 σ2
u = 0.01 σ2

u = 0.1 σ2
u = 1 σ2

u = 0.01 σ2
u = 0.1 σ2

u = 1 σ2
u = 0.01 σ2

u = 0.1 σ2
u = 1

ρ = 0.1 0.09 0.13 0.49 0.16 0.20 0.63 0.21 0.38 0.85 0.03 0.06 0.43 0.06 0.10 0.56

ρ = 0.5 0.12 0.16 0.56 0.23 0.30 0.75 0.34 0.39 1.04 0.05 0.11 0.63 0.09 0.16 0.73

ρ = 0.9 0.52 0.67 0.92 0.82 1.10 1.32 1.17 1.32 1.44 0.25 0.58 1.12 0.37 0.71 1.27

Table 6: MSE of the naive LASSOcv.glmnet estimator for β3 (averages of 500 MC
simulations, ε = 1)

Table 7 to Table 13 report the simulation results for the corrected OLS and LASSO esti-
mates. Recall that we used the true measurement error variance to calculate OLSTMEV and
LassoTMEV , while we assumed it to be unknown and therefore had to estimate it by means
of two error-prone replicate measurements when calculating OLSEMEV and LassoEMEV .
As far as the performance of OLSTMEV , LassoTMEV and OLSEMEV , LassoEMEV is concerned,
we find that the results provide no overall evidence of the efficacy of the applied mea-
surement error correction factors. There are cases where at least the TMEV-corrected
estimates exhibit a marginally smaller global bias than the naive estimates. For instance,
if ρ=0.9, p = 10 and σ2

u = 0.01, one has biasOLS,naive = 0.03 and MSEOLS,naive = 1.01,
biasOLS,TMEV = 0.01 and MSEOLS,TMEV = 1.29, and finally biasOLS,EMEV = 0.21 and
MSEOLS,EMEV = 424.72. Under the same conditions, it results for the LASSO that
biasLasso,naive = 0.07 and MSELasso,naive = 0.52, biasLasso,TMEV = 0.06, MSELasso,TMEV =

0.61 and biasLasso,EMEV = 0.26 and MSELasso,EMEV = 93.98. However, the above example
also shows that the MSE values of the corrected estimates are consistently larger than the
for the naive estimators regardless of the estimation method used. For the majority of
parameter combinations the increase in terms of MSE values exhibited by the corrected
estimates as compared to their naive analogues is substantial. Here, we give the exam-
ple of ρ = 0.9, p = 10 and σ2

u = 1, where one has biasOLS,naive = 0.15, MSEOLS,naive =

0.93 and biasOLS,TMEV = −0.13, MSEOLS,TMEV = 2409.62 and biasOLS,EMEV = −9.02,
MSEOLS,EMEV = 470450.00. For the LASSO estimates, one observes under the same
conditions that biasLasso,naive = 0.15, MSELasso,naive = 0.92 and biasLasso,TMEV = −0.12,
MSELasso,TMEV = 2269.63 and biasLasso,EMEV = −8.68, MSELasso,EMEV = 435774.00. A sim-
ilar situation can be observed if p = 50, n = 500, ρ = 0.5 and σ2

u = 0.01. Here, the general
MSE level of both TMEV-estimates and EMEV-estimates is, however, of smaller order of
magnitude. In the last-mentioned example, the MSE values of the TMEV-estimates ob-
tained by either method are considerably larger than those obtained for the naive estimates.
However, they are by far smaller than the MSE values for the EMEV-estimates which
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show enormous MSE values. The MSE values of the TMEV- and EMEV-estimates can
even be said to literally explode compared to the MSEs of the naive estimates, at least in the
majority of simulated scenarios. While, in general, we find the above described behaviour
of the corrected OLS and LASSO estimates absolutely surprising, it seems intuitive that
TMEV-estimates show smaller MSE values than EMEV-estimates. The reason therefore
simply is that for the latter, we estimated the measurement error variance by means of
Equation 83 and Equation 84. It is common sense that the use of estimated parameters
instead of true parameters induces additional uncertainty. In the above case, this results
in larger MSE values for the EMEV-estimates. In our simulation results, we also observe
situations where - by contrast - EMEV-estimates show considerably smaller MSE values
than TMEV-estimates. For instance, if p = 50, n = 100, ρ = 0.9, and σ2

u = 1, it results that
biasOLS,naive = 0.04, MSEOLS,naive = 2.16, biasOLS,TMEV = 0.04, MSEOLS,TMEV = 27793.11
and biasOLS,EMEV = 0.00, MSEOLS,EMEV = 5.48. For the LASSO, it holds under the
same conditions that biasLasso,naive = 0.03, MSELasso,naive = 1.32 and biasLasso,TMEV = 0.06,
MSELasso,TMEV = 3085.89 and biasLasso,EMEV = 0.00, MSELasso,EMEV = 4.95. However,
based on the prevalent statistical theory, we are not able to explain the above described
relation between the TMEV- and EMEV-estimates.

n = 100 n = 500

p = 10 p = 50 p = 150 p = 50 p = 250

σ2
u = 0.01 σ2

u = 0.1 σ2
u = 1 σ2

u = 0.01 σ2
u = 0.1 σ2

u = 1 σ2
u = 0.01 σ2

u = 0.1 σ2
u = 1 σ2

u = 0.01 σ2
u = 0.1 σ2

u = 1 σ2
u = 0.01 σ2

u = 0.1 σ2
u = 1

ρ = 0.1 0.00 0.00 -0.21 0.00 -0.01 -0.02 0.00 0.00 -0.03 0.00 -0.01 0.00

ρ = 0.5 0.00 -0.01 -22.19 0.00 -0.07 -0.10 0.00 0.00 -0.15 0.00 0.00 -0.06

ρ = 0.9 0.01 0.36 -0.13 -0.04 0.09 0.04 0.00 0.08 0.06 0.00 -0.01 0.00

Table 7: Bias of the OLS estimator corrected with TMEV for β3 (averages of 500
MC simulations, ε = 1)

n = 100 n = 500

p = 10 p = 50 p = 150 p = 50 p = 250

σ2
u = 0.01 σ2

u = 0.1 σ2
u = 1 σ2

u = 0.01 σ2
u = 0.1 σ2

u = 1 σ2
u = 0.01 σ2

u = 0.1 σ2
u = 1 σ2

u = 0.01 σ2
u = 0.1 σ2

u = 1 σ2
u = 0.01 σ2

u = 0.1 σ2
u = 1

ρ = 0.1 0.01 0.01 -0.12 0.00 0.01 -0.01 0.00 -0.01 -0.07 0.00 0.00 -0.04 0.00 0.00 0.00

ρ = 0.5 0.03 0.01 -21.80 0.01 -0.06 -0.06 0.01 0.01 0.00 0.00 0.00 -0.14 0.00 0.00 -0.01

ρ = 0.9 0.06 0.23 -0.12 0.02 0.05 0.06 0.01 0.01 0.01 0.01 0.04 0.05 0.00 -0.01 -0.01

Table 8: Bias of the LASSOcv.glmnet estimator corrected with TMEV for β3 (av-
erages of 500 MC simulations, ε = 1)

Overall, the above results propose that the phenomenon of exploding MSE values of the
corrected LASSO and OLS estimates appears to be independent of the precise parameter

68



6 Simulation study for the LASSO with additive measurement error in the covariates

n = 100 n = 500

p = 10 p = 50 p = 150 p = 50 p = 250

σ2
u = 0.01 σ2

u = 0.1 σ2
u = 1 σ2

u = 0.01 σ2
u = 0.1 σ2

u = 1 σ2
u = 0.01 σ2

u = 0.1 σ2
u = 1 σ2

u = 0.01 σ2
u = 0.1 σ2

u = 1 σ2
u = 0.01 σ2

u = 0.1 σ2
u = 1

ρ = 0.1 0.12 0.18 725.67 1.28 5718.10 12193.50 0.13 0.17 231422.00 1.25 7440.42 38465.90

ρ = 0.5 0.21 0.33 70245900.00 2.48 76129.60 23230.00 0.22 0.34 222620.00 2.32 155438.00 6495340.00

ρ = 0.9 1.29 76754.30 2409.62 8066.53 130568.00 27793.11 1.29 114371.00 5365.51 19331.20 113155.00 1616120.00

Table 9: MSE of OLS estimator corrected with TMEV for β3 (averages of 500 MC
simulations, ε = 1)

n = 100 n = 500

p = 10 p = 50 p = 150 p = 50 p = 250

σ2
u = 0.01 σ2

u = 0.1 σ2
u = 1 σ2

u = 0.01 σ2
u = 0.1 σ2

u = 1 σ2
u = 0.01 σ2

u = 0.1 σ2
u = 1 σ2

u = 0.01 σ2
u = 0.1 σ2

u = 1 σ2
u = 0.01 σ2

u = 0.1 σ2
u = 1

ρ = 0.1 0.09 0.12 281.20 0.15 381.95 4162.58 0.57 1532.49 32888.60 0.03 0.04 37340.20 0.05 2138.64 3280.45

ρ = 0.5 0.12 0.19 67750200.00 0.24 35195.40 7469.23 0.71 1466.48 6933.58 0.05 0.08 275087.00 0.08 15638.00 1098690.00

ρ = 0.9 0.61 22890.90 2269.63 152.09 6618.64 3085.89 253.21 13554.06 2506.51 0.24 23566.90 4457.17 787.35 20747.50 417329.00

Table 10: MSE of the LASSOcv.glmnet estimator corrected with TMEV for β3
(averages of 500 MC simulations, ε = 1)

n = 100 n = 500

p = 10 p = 50 p = 150 p = 50 p = 250

σ2
u = 0.01 σ2

u = 0.1 σ2
u = 1 σ2

u = 0.01 σ2
u = 0.1 σ2

u = 1 σ2
u = 0.01 σ2

u = 0.1 σ2
u = 1 σ2

u = 0.01 σ2
u = 0.1 σ2

u = 1 σ2
u = 0.01 σ2

u = 0.1 σ2
u = 1

ρ = 0.1 0.33 0.00 0.00 0.10 0.01 0.00 0.10 -0.01 0.00 0.01 -0.02 0.00

ρ = 0.5 0.50 -0.10 -0.02 0.05 -0.01 0.11 0.05 -1.26 0.00 0.01 0.01 0.00

ρ = 0.9 0.21 0.26 -9.02 0.05 -0.04 0.00 0.05 -0.06 -0.01 0.01 0.01 0.00

Table 11: Bias of the OLS estimator corrected with EMEV for β3 (averages of 500
MC simulations, ε = 1)

n = 100 n = 500

p = 10 p = 50 p = 150 p = 50 p = 250

σ2
u = 0.01 σ2

u = 0.1 σ2
u = 1 σ2

u = 0.01 σ2
u = 0.1 σ2

u = 1 σ2
u = 0.01 σ2

u = 0.1 σ2
u = 1 σ2

u = 0.01 σ2
u = 0.1 σ2

u = 1 σ2
u = 0.01 σ2

u = 0.1 σ2
u = 1

ρ = 0.1 0.30 0.00 0.00 0.08 0.01 0.00 0.01 0.01 0.00 0.08 -0.01 0.00 0.00 -0.02 0.00

ρ = 0.5 0.48 -0.10 -0.02 0.06 -0.01 0.10 0.03 0.03 -0.04 0.05 -1.21 -0.01 0.01 0.01 0.00

ρ = 0.9 0.26 0.25 -8.68 0.04 -0.04 0.00 0.01 0.02 -0.04 0.04 -0.07 -0.01 0.01 0.01 0.00

Table 12: Bias of the LASSOcv.glmnet estimator corrected with EMEV for β3
(averages of 500 MC simulations, ε = 1)

n = 100 n = 500

p = 10 p = 50 p = 150 p = 50 p = 250

σ2
u = 0.01 σ2

u = 0.1 σ2
u = 1 σ2

u = 0.01 σ2
u = 0.1 σ2

u = 1 σ2
u = 0.01 σ2

u = 0.1 σ2
u = 1 σ2

u = 0.01 σ2
u = 0.1 σ2

u = 1 σ2
u = 0.01 σ2

u = 0.1 σ2
u = 1

ρ = 0.1 5461.30 7.63 2.93 4331.30 24.82 7.82 2161.83 25.71 2.67 18051.90 443.34 7.83

ρ = 0.5 546.77 87.50 2.01 9906.70 71.77 435.45 1714.72 38488.00 2.92 2935.00 1143.08 21.83

ρ = 0.9 424.72 427.14 470450.00 158.60 43537.80 5.48 134.41 23287.90 30.64 648.46 90.02 18.82

Table 13: MSE of the OLS estimator corrected with EMEV for β3 (averages of
500 MC simulations, ε = 1)
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n = 100 n = 500

p = 10 p = 50 p = 150 p = 50 p = 250

σ2
u = 0.01 σ2

u = 0.1 σ2
u = 1 σ2

u = 0.01 σ2
u = 0.1 σ2

u = 1 σ2
u = 0.01 σ2

u = 0.1 σ2
u = 1 σ2

u = 0.01 σ2
u = 0.1 σ2

u = 1 σ2
u = 0.01 σ2

u = 0.1 σ2
u = 1

ρ = 0.1 4546.07 6.04 3.02 3658.34 65.41 12.48 2194.10 256 30.43 2138.80 33.11 3.38 12344.30 110.49 3.41

ρ = 0.5 484.68 81.75 1.93 10332.30 56.57 570.64 19998.80 29426.40 72.36 1463.75 35428.10 4.13 1327.20 75.73 19.13

ρ = 0.9 93.98 404.59 435774.00 35.72 28558.00 4.95 384.86 2201.95 153.09 25.14 14252.40 10.97 68.00 9.69 16.97

Table 14: MSE of the LASSOcv.glmnet estimator corrected with EMEV for β3
(averages of 500 MC simulations, ε = 1)

choice for the sample size n, the number of parameters p, the magnitude of the correlation
among the design covariates ρ and also of the magnitude of covariate measurement error
σ2

u. On the other side, one can easily see that the corrected OLS and LASSO estimates
are equally affected by the phenomenon of exploding MSE values. This suggests that the
reason for the disproportionate MSE values arises during the correction procedure for both
methods and estimate types (TMEV and EMEV). By examining the distribution of MSE
values of the corrected OLS and LASSO estimates in the context of a specific parameter
combination (p = 10, ρ = 0.5, σ2

u = 1, ε = 1), we found out that the empirical averages
of the MSE values were in fact inflated by a few outliers. Against this background, we
had a closer look at the computation of the corresponding correction factors that lead to
such outliers in terms of disproportionate MSE values. In doing so, we found that the
occurrence of outliers was due to the bad conditioning of the matrix (Cww − Σuu) within
specific runs of our MC simulation. As a measure of ill-conditioning of (Cww − Σuu), we
considered the condition number P(A) defined in Equation 110.
P(A) quantifies the relation between the largest and the smallest eigenvalue of (Cww −
Σuu). If P(A) results in being very large, the difference between the minimal and the maxi-
mal eigenvalue of (Cww − Σuu) is very large. Then, (Cww − Σuu) is called ill-conditioned.
On the other side, we expect a well-conditioned matrix to have P(A) ≈ 1. If a system
of equations bases on an ill-conditioned matrix, an inaccurate solution can be obtained
which, nevertheless, appears to fulfil the underlying system quite well (Riley, 1955). More-
over, ill-conditioned matrices are positive definite, but can become singular and therefore
non-invertible if some of its entries are slightly changed. The aforementioned fact implies
that problems that involve ill-conditioned matrices are sensitive to very small changes in
the data. In fact, the matrices (Cww − Σuu) that belonged to MSE outliers had one or more
eigenvalues that were very close to zero. Recall that a matrix loses rank (and therefore
becomes non-invertible) if any of its eigenvalues are zero.
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P(A) =
|λ|max

|λ|min
(110)

Given the above finding, we can conclude that although using the empirical average as
measure to describe the central tendency of the distribution for a given parameter is a
common approach for the analysis of MC simulation results, its lack of robustness leads
to misleading results if the MC procedure produces outliers. Therefore, the use of the
empirical average to evaluate the MSE value distribution for different combinations of n, p,
ρ and σ2

u represents a clear limitation of our work. We therefore recommend using robust
measures, such as the median MSE, for the performance evaluation of the (corrected) OLS
and LASSO estimates in future studies.

6.3.2 Results with respect to variable selection consistency

Table 15 and Table 16 summarize useful information on the variable selection consistency
of the naive LASSO. More precisely, Table 15 presents the empirical averages of the TPFs,
while Table 16 reports the empirical averages of the FPFs for a selection of parameter
combinations examined in our simulation study. Note that by considering the above
presented global definition of TPF and FPF, we do not check for sign consistency of the
LASSO estimates.
If p = 10, the TPF of the naive LASSO is clearly larger for ρ = 0.5 than for ρ = 0.1. Sur-
prisingly, the coincidence of high covariate correlation (ρ = 0.9) and large measurement
error variance (σ2

u = 1) leads to a TPF of 94.64%. This implies that, in average, the LASSO
correctly selects 94.64% of the important covariates under the above conditions. Note that
the above TPF is higher than the TPF occurring for any other parameter combination. On
the other hand, the coincidence of high covariate correlation and large measurement error
variance also results in a dramatic increase of the LASSO’s FPF (from approximately 40%
for low and moderate covariate correlation and measurement error variance to approxi-
mately 90% for high covariate correlation and measurement error variance). This means
that in the above case, the LASSO is more or less unable to differ between important and
unimportant covariates. As a consequence, it makes a conservative selection by simply
including almost all covariates. Note that this finding accords with theoretical results re-
garding the naive LASSO with measurement error (see Sørensen et al., 2014) and also with
analytical findings with respect to the LASSO without measurement error in the design
(see, e.g., Bühlmann and Van de Geer, 2011). Bühlmann and Van de Geer (2011) suggest
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that, in general, the LASSO performs quite badly for variable selection, but nevertheless
achieves good results in variable screening. With respect to the naive LASSO, Tibshirani
himself proposed that the second "S" in the acronyme LASSO should rather stand for
"screening" than for "selection" (Tibshirani, 2011).

Overall, increasing the sample size for fixed p considerably improves upon the selection
capacity of the LASSO. More precisely, the TPFs of the LASSO are about 20%-30% higher,
while its FPFs increase for only about 2%-12% if n is raised from 100 to 500 for p = 50.
However, for fixed sample size, the LASSO shows lower TPFs but also lower FPFs if the
number of covariates p is increased.

As far as the sensitivity of the LASSO to the level of covariate measurement error and
covariate correlation is concerned, we note that disregarding the exceptional case of p = 10,
the increase in both of these factors leads the LASSO to perform worse in variable selection.
More in particular, both a high level of measurement error and a high level of covariate
correlation imply that the LASSO selects a smaller number of important, but a larger
number of irrelevant covariates at the same time.
Note that the precise impact of increasing the measurement error variance on the TPF of
the naive LASSO is, however, not evident. If p = 10 or p = 50 (for n = 100 and n = 500),
the TPFs increase with growing measurement error variance if there is a moderate or high
level of covariate correlation (ρ = 0.5 or ρ = 0.9). This increase in the TPFs of the LASSO
is accompanied by a markable rise in its FPFs (approximatively 20%-30%). Nevertheless,
the above described improvement upon the LASSO’s TPFs is somehow surprising, since it
seems intuitive that a higher amount of measurement error in the design makes it harder
for the LASSO to select the correct covariates. This intuition is also supported by theory
(see Sørensen et al. (2014)). Our results indicate that for larger p (p = 150 and p = 250),
the coincidence of high covariate correlation and high measurement error variance entails
the worst variable selection performance of the LASSO for a given number of covariates
p. Note that, in general, a high level of covariate correlation seems to prevent the LASSO
more from including the important covariates than a high level of measurement error
does. This aligns with the aforementioned tendency of the LASSO to only select one of the
correlated covariates if there are several covariates with high pairwise correlation (Zou
and Hastie, 2005; Friedman et al., 2010). On the other side, high levels of measurement
error lead the LASSO to include more unimportant covariates as it is the case for only
high covariate correlation. For instance, if n = 500 and p = 50 or p = 250, the FPFs given
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ρ = 0.1 and σ2
u = 1 are about twice the size of the FPFs if ρ = 0.9 and σ2

u = 0.01.

We can conclude that for most parameter combinations, the LASSO estimates include the
majority of important covariates, even though there are high levels of covariate correlation
and/or measurement error variance. This observation is also in line with Bühlmann and
Van de Geer (2011) and Tibshirani (2011) who both point towards the LASSO’s reliability
in terms of variable screening, also in situations where the conditions that are required for
it to be consistent in variable selection are violated. Moreover, we find that although the
LASSO is shown to perform sub-optimally in the presence of high covariate correlation in
theory, it still exhibits a reasonably high TPF if the latter is present. This finding seems
to be in line with Raskutti et al. (2010) who state that, in practice, l1-methods tend to
perform very well with regard to variable selection also in settings where the covariates
are correlated and non-unitary. However, they also point out that there is no theoretical
base so far that proves the performance of l1-relaxations for dependent designs.

n = 100 n = 500

p = 10 p = 50 p = 150 p = 50 p = 250

σ2
u = 0.01 σ2

u = 0.1 σ2
u = 1 σ2

u = 0.01 σ2
u = 0.1 σ2

u = 1 σ2
u = 0.01 σ2

u = 0.1 σ2
u = 1 σ2

u = 0.01 σ2
u = 0.1 σ2

u = 1 σ2
u = 0.01 σ2

u = 0.1 σ2
u = 1

ρ = 0.1 80.60 84.24 77.92 67.44 70.72 61.24 64.16 59.52 55.80 89.20 92.60 93.00 80.80 83.12 73.64

ρ = 0.5 82.60 88.80 94.04 67.72 69.80 74.40 60.40 57.96 51.00 88.92 88.72 90.80 79.36 77.68 77.16

ρ = 0.9 72.08 83.24 94.64 51.68 49.64 57.12 41.92 34.56 26.04 71.72 77.68 84.44 58.44 57.32 52.00

Table 15: TPFs of the naive LASSOcv.glmnet estimator for β3 (averages of 500 MC
simulations, ε = 1)

n = 100 n = 500

p = 10 p = 50 p = 150 p = 50 p = 250

σ2
u = 0.01 σ2

u = 0.1 σ2
u = 1 σ2

u = 0.01 σ2
u = 0.1 σ2

u = 1 σ2
u = 0.01 σ2

u = 0.1 σ2
u = 1 σ2

u = 0.01 σ2
u = 0.1 σ2

u = 1 σ2
u = 0.01 σ2

u = 0.1 σ2
u = 1

ρ = 0.1 44.40 44.96 44.52 16.53 17.72 18.40 8.48 10.23 11.86 19.34 23.36 40.72 7.12 8.20 15.54

ρ = 0.5 43.52 51.76 82.44 19.35 19.81 34.32 9.68 10.48 17.50 21.33 28.53 58.99 8.01 9.94 21.87

ρ = 0.9 44.28 59.84 90.44 17.49 24.43 44.29 9.24 11.35 20.22 22.19 36.34 70.36 7.22 11.59 26.31

Table 16: FPFs of the naive LASSOcv.glmnet estimator for β3 (averages of 500 MC
simulations, ε = 1)
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n = 100 n = 500

p = 10 p = 50 p = 150 p = 50 p = 250

σ2
u = 0.01 σ2

u = 0.1 σ2
u = 1 σ2

u = 0.01 σ2
u = 0.1 σ2

u = 1 σ2
u = 0.01 σ2

u = 0.1 σ2
u = 1 σ2

u = 0.01 σ2
u = 0.1 σ2

u = 1 σ2
u = 0.01 σ2

u = 0.1 σ2
u = 1

ρ = 0.1 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.00 100.00 100.00 100.00 100.00 100.00 100.00

ρ = 0.5 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

ρ = 0.9 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Table 17: TPFs of the LASSOcv.glmnet estimator corrected with TMEV for β3
(averages of 500 MC simulations, ε = 1)

n = 100 n = 500

p = 10 p = 50 p = 150 p = 50 p = 250

σ2
u = 0.01 σ2

u = 0.1 σ2
u = 1 σ2

u = 0.01 σ2
u = 0.1 σ2

u = 1 σ2
u = 0.01 σ2

u = 0.1 σ2
u = 1 σ2

u = 0.01 σ2
u = 0.1 σ2

u = 1 σ2
u = 0.01 σ2

u = 0.1 σ2
u = 1

ρ = 0.1 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.00 100.00 100.00 100.00 100.00 100.00 100.00

ρ = 0.5 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

ρ = 0.9 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Table 18: FPFs of the LASSOcv.glmnet estimator corrected with TMEV for β3
(averages of 500 MC simulations, ε = 1)

n = 100 n = 500

p = 10 p = 50 p = 150 p = 50 p = 250

σ2
u = 0.01 σ2

u = 0.1 σ2
u = 1 σ2

u = 0.01 σ2
u = 0.1 σ2

u = 1 σ2
u = 0.01 σ2

u = 0.1 σ2
u = 1 σ2

u = 0.01 σ2
u = 0.1 σ2

u = 1 σ2
u = 0.01 σ2

u = 0.1 σ2
u = 1

ρ = 0.1 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.00 100.00 100.00 100.00 100.00 100.00 100.00

ρ = 0.5 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

ρ = 0.9 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Table 19: TPFs of the LASSOcv.glmnet estimator corrected with EMEV for β3
(averages of 500 MC simulations, ε = 1)

n = 100 n = 500

p = 10 p = 50 p = 150 p = 50 p = 250

σ2
u = 0.01 σ2

u = 0.1 σ2
u = 1 σ2

u = 0.01 σ2
u = 0.1 σ2

u = 1 σ2
u = 0.01 σ2

u = 0.1 σ2
u = 1 σ2

u = 0.01 σ2
u = 0.1 σ2

u = 1 σ2
u = 0.01 σ2

u = 0.1 σ2
u = 1

ρ = 0.1 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.00 100.00 100.00 100.00 100.00 100.00 100.00

ρ = 0.5 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

ρ = 0.9 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Table 20: FPFs of the LASSOcv.glmnet estimator corrected with EMEV for β3
(averages of 500 MC simulations, ε = 1)
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6.3.3 Results with respect to tuning parameter selection

In this section, we examine the distributions of the tuning parameter λ constituted by 500
runs of the simulation performed for each unique parameter combination. In doing so,
we mainly focus on how the magnitude of λ is influenced if the values chosen for the
noise level ε are altered. Moreover, we aim at evaluating if the two functions cv.glmnet
and OptL1 differ in terms of the amount of shrinkage applied when estimating the LASSO
coefficients. As an example, we consider the parameter combination p = 10 and σ2

u = 0.01
for varying values of βk, ρ and ε. Table 21 and Table 22 show some summary statistics
(standard deviation (SD), median, range, skewness and kurtosis) for the distributions of
500 MC estimations for the optimal λ obtained by using cv.glmnet and OptL1, respectively.

As first implication of the results given in Table 21 and Table 22, we state that the general
level of penalization is much higher if OptL1 instead of cv.glmnet is used for LASSO
coefficient estimation. Note that unlike λOptL1, λcv.glmnet is reported on a log scale. This
does, however, not explain the extreme difference between both functions in terms of
the general level of penalization applied. More in particular, for a designated parameter
combination the distributions differ by a factor of approximately 117 (in terms of their SD,
medians and ranges).
Overall, we find that both functions show the same behaviour as far as their sensitivity
to changes in the level of model noise ε and to changes in the degree of covariate cor-
relation ρ is concerned. The general level of penalization measured by the median of
the λ-distributions rises with increasing noise level. This observation is evident, since
a higher level of model noise implies that the LASSO has to penalize harder and thus
must spend more λ in order to correct for the random error induced by the model noise
(see also subsubsection 3.3.1). Besides the increase in the general penalization level, the
tables presented below suggest that a higher level of model noise leads to wider ranges
as well as elevated SDs of the resulting distributions for λ. This indicates that there is
more variation in tuning parameter selection for larger ε. Furthermore, we note that for
ε = 2.5 the skewness and the kurtosis of the λ-distributions tend to attempt a higher
positive level than for ε = 1, while for ε = 5 compared to ε = 2.5 the reverse effect occurs
for some values of βk and ρ. Recall that the skewness of a distribution quantifies how
symmetrical it is. A skewness of zero indicates that the distribution is symmetrical. By
contrast, positive skewness points towards the fact that the distribution is right-skewed
and negative skewness implies that the considered distibution is left-skewed. On the
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other hand, the kurtosis of a distribution quantifies to which extent the form of the latter
satisfies the Gaussian distribution. More in particular, a Gaussian distribution has zero
kurtosis, while a positive (negative) kurtosis indicates that the considered distribution is
more peaked (flatter) than a Gaussian distribution (see Fahrmeir et al., 2011).

In general, we observe that the considered distributions of λcv.glmnet exhibit a low negative
or a low positive level of skewness if ε = 1. However, they tend to be more right-skewed
if ε = 2.5 or ε = 5. Note that the same trend can be observed for the kurtoses of the
distributions which become more peaked if ε is raised. The penalization behaviour of
OptL1 is clearly less obvious than the one of cv.glmnet. However, overall one can state
that the distributions of λcv.glmnet and λOptL1 are quite close to being Gaussian if ε = 1
(cv.glmnet) respectively if ε = 1 and ρ = 0.1 (OptL1). They are substantially skewed and
peaked if ε is elevated. Moreover, the results suggest that a high degree of covariate corre-
lation (ρ = 0.9) implies highly right-skewed and very peaked distributions of λcv.glmnet

and λOptL1. At the same time, we see that the distributions exhibit mostly considerable
lower SDs, smaller ranges as well as lower medians if ρ = 0.9 compared to if ρ = 0.1. This
indicates that a higher degree of covariate correlation generally leads the LASSO to apply
a smaller amount of shrinkage. In any case, the considered distributions are far from being
Gaussian while the distributions of λcv.glmnet are less skewed and exhibit flatter peaks
than the distributions obtained by means of OptL1.

Finally, we state that the different underlying coefficients in β1, β2 and β3 result in mostly
just slightly different levels of penalization. Especially, β1 and β2 are very similar in terms
of the amount of penalization applied by the LASSO to estimate them. However, with
rising ε the difference in penalization applied to estimate the three different parameter
vectors becomes larger. For β2 the highest amount of shrinkage is used. Note that the
above finding seems to be independent of the used R function.

The density plots shown below give a further impression on the sensitivity of tuning
parameter estimation to the different parameters involved in our simulation study.
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6 Simulation study for the LASSO with additive measurement error in the covariates

ε = 1 ε = 2.5 ε = 5

Std. Deviation Median Range Skewness Kurtosis Std. Deviation Median Range Skewness Kurtosis Std. Deviation Median Range Skewness Kurtosis

β = β1

ρ = 0.1 0.02 0.05 0.11 0.02 -0.69 0.06 0.13 0.31 0.08 -0.26 0.27 0.36 1.51 1.54 2.82

ρ = 0.9 0.01 0.03 0.07 -0.10 5.05 0.03 0.08 0.22 0.41 1.43 0.09 0.23 0.56 0.23 0.90

β = β2

ρ = 0.1 0.02 0.05 0.11 -0.15 -0.61 0.12 0.17 0.72 1.45 3.14 0.28 0.68 1.37 0.07 -0.64

ρ = 0.9 0.01 0.03 0.07 0.10 -0.14 0.04 0.10 0.30 0.54 1.85 0.12 0.28 1.10 0.91 4.44

β = β3

ρ = 0.1 0.03 0.07 0.21 0.15 0.09 0.12 0.22 0.59 0.71 0.50 0.27 0.66 1.47 0.26 -0.28

ρ = 0.9 0.01 0.04 0.09 -0.04 0.09 0.04 0.12 0.26 0.32 0.72 0.17 0.30 1.21 2.06 6.78

Table 21: Summary statistics for the tuning parameter λcv.glmnet (10-fold cross-
validation, p = 10, σ2

u = 0.01)

ε = 1 ε = 2.5 ε = 5

Std. Deviation Median Range Skewness Kurtosis Std. Deviation Median Range Skewness Kurtosis Std. Deviation Median Range Skewness Kurtosis

β = β1

ρ = 0.1 2.47 5.86 13.41 -0.03 -0.14 5.94 14.85 31.38 -0.25 0.08 30.55 44.10 183.82 1.60 2.93

ρ = 0.9 1.63 2.98 16.21 1.71 8.25 4.20 8.09 25.79 1.60 3.39 8.94 23.19 48.68 0.79 0.53

β = β2

ρ = 0.1 2.53 5.96 13.87 -0.09 -0.05 14.70 19.95 86.10 1.76 3.57 33.11 75.87 179.10 0.27 -0.68

ρ = 0.9 1.61 3.31 9.53 1.25 2.41 4.16 9.66 38.18 1.59 5.89 12.56 28.59 122.76 2.59 14.55

β = β3

ρ = 0.1 3.44 8.22 21.11 0.23 0.25 10.64 25.41 98.02 1.02 3.86 32.09 72.51 157.53 0.44 -0.50

ρ = 0.9 1.63 3.58 10.94 1.34 2.92 4.65 10.60 36.15 1.49 3.98 19.70 29.79 171.35 3.32 15.38

Table 22: Summary statistics for the tuning parameter λOptL1(p = 10, σ2
u =

0.01,10-fold cross-validation)
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6 Simulation study for the LASSO with additive measurement error in the covariates

p=10 with OptL1 p=10 with cv.glmnet

p = 50 with OptL1 p = 50 with cv.glmnet

p = 150 with OptL1 p = 50 with cv.glmnet

Figure 1: Density plots for the tuning parameters λOptL1and λcv.glmnet (n = 100,
ε=1, ρ=0.1, σ2

u = 0.01)
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6 Simulation study for the LASSO with additive measurement error in the covariates

p=50 with OptL1 function p=50 with cv.glmnet function

p=250 with OptL1 function p=50 with cv.glmnet function

Figure 2: Density plots for the tuning parameters λOptL1and λcv.glmnet (n = 500,
ε=1, ρ=0.1, σ2

u = 0.01)
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6 Simulation study for the LASSO with additive measurement error in the covariates

ε=1, ρ=0.1, σ2
u = 0.01 ε=1, ρ=0.9, σ2

u =0.01

ε=2.5, ρ=0.1, σ2
u =0.01 ε=2.5, ρ=0.9, σ2

u = 0.01

ε=5, ρ=0.1, σ2
u = 0.01 ε=5, ρ=0.9, σ2

u = 0.01

Figure 3: Density plots for the tuning parameter λcv.glmnet (n=100, p=10)
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6 Simulation study for the LASSO with additive measurement error in the covariates

ε=1, ρ=0.1, σ2
u = 0.01 ε=1, ρ=0.1, σ2

u = 1

ε=2.5, ρ=0.1, σ2
u =0.01 ε=2.5, ρ=0.1, σ2

u = 1

ε=5, ρ=0.1, σ2
u = 0.01 ε=5, ρ=0.1, σ2

u = 1

Figure 4: Density plots for the tuning parameter λcv.glmnet (n=100, p=50)
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6 Simulation study for the LASSO with additive measurement error in the covariates

ε=1, ρ=0.1, σ2
u = 0.01 ε=1, ρ=0.1, σ2

u = 1

ε=2.5, ρ=0.1, σ2
u =0.01 ε=2.5, ρ=0.1, σ2

u = 1

ε=5, ρ=0.1, σ2
u = 0.01 ε=5, ρ=0.1, σ2

u = 1

Figure 5: Density plots for the tuning parameter λcv.glmnet (n=500, p=50)
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6 Simulation study for the LASSO with additive measurement error in the covariates

ε=1, ρ=0.1, σ2
u = 0.01 ε=1, ρ=0.1, σ2

u = 1

ε=1, ρ=0.9, σ2
u =0.01 ε=1, ρ=0.9, σ2

u = 1

Figure 6: Density plots for the tuning parameter λcv.glmnet (n=100, p=150)
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7 Discussion and conclusion

7 Discussion and conclusion
The LASSO (Tibshirani, 1996) is a powerful method which due to the fact that is uses a
l1-penalty allows for the estimation of regression coefficients and variable selection at the
same time. It does variable selection in the sense that depending on the respective choice
of the regularization parameter, the estimated coefficients can exactly be zero for some
variables. Its ability to perform variable selection is the main feature which distinguishes
it from the well-known Ridge regression method (Hoerl and Kennard, 1970). Another
important property of the LASSO is that it can be applied even when the number of
covariates p is larger than the number of observations n. This differs the LASSO from
the popular OLS method which typically requires p < n. From a practical point of view,
the LASSO produces sparse solutions and thus facilitates model interpretation when the
number of covariates exceeds the number of observations.
In this work, we studied the LASSO in the presence of additive measurement error in the
design matrix. In doing so, we allowed for analytical results on the estimation and variable
selection consistency of both the LASSO with perfect design and the naive LASSO with
additive covariate measurement error. Moreover, we performed a MC simulation study to
assess the finite sample performance of the OLS and the LASSO under matrix uncertainty.
Thereby, we also computed the corresponding corrected (in terms of adjusted by the effect
of additive measurement error) estimates. In particular, we used the well-known reliability
ratio (Fuller, 1987) to correct the OLS estimates and a reliability ratio-like factor according
to Sørensen et al. (2014) to correct the naive LASSO estimates.
With regard to the theoretical background of the LASSO with perfect design, we introduced
two basic conditions that need to be satisfied for the LASSO to be consistent in estimation
and prediction. More precisely, we assumed a condition on the noise together with the
CC (Bühlmann and Van de Geer, 2011) which imposes a lower bound on the RE of the
Gram matrix Cxx. The latter conditions lead the LASSO to be consistent in prediction
and estimation if, in addition, the tuning parameter is chosen appropriately. Moreover,
they are crucial for establishing oracle results which provide bounds for the prediction
and estimation error of the LASSO. Overall, we illustrated that the LASSO enjoys good
theoretical properties in the sense that its prediction error is about the same magnitude as
the prediction error one would have if one knew a priori which covariates have an influ-
ence on the response (Bühlmann and Van de Geer, 2011). As far as the variable selection
consistency of the LASSO is concerned, we introduced the IC (Zhao and Yu, 2006) which -
under certain regularity conditions - is sufficient and essentially necessary for the LASSO
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7 Discussion and conclusion

to select the true model both in the classical fixed p setting and in the large p setting where
the number of covariates increases with n. As detailed in subsubsection 3.3.2, the term
essentially refers to the fact that the necessary condition requires a quantity to be equal
less than one, while the sufficient condition requires strict < 1 (Bühlmann and Van de
Geer, 2011). The IC basically postulates that the covariance matrix of the design may not
exhibit too strong degrees of linear dependence within smaller sub-matrices, in particular
within the covariance sub-matrix of the irrelevant and the truly important covariates. If
the IC is violated, the LASSO is unable to consistently recover the underlying true model.
The reason therefore is that in order to produce sparse models, the LASSO shrinks the
coefficient estimates belonging to important covariates too heavily. If the IC fails, the
irrelevant covariates are enough correlated with the important covariates to be selected
by the LASSO to outweigh the over-shrinkage of the non-zero coefficient estimates (Zhao
and Yu, 2006). For statistical practice, this implies that one has to be aware of the fact
that if unimportant variables are strongly correlated with covariates that are part of the
true model, the LASSO is unlikely to select the true model. As mentioned before, the IC
requires strong assumptions that are not verifiable in statistical practice. Although the
LASSO might not be able to infer the correct set of covariates with non-zero coefficients
from the data if the IC is violated, in practice it can nevertheless be used for variable
screening which means that the model estimated by the LASSO includes the substantial
covariates with high probability (Bühlmann and Van de Geer, 2011). Bühlmann and Van
de Geer (2009, 2011) formally showed that the IC for variable consistency implies the CC
for prediction and estimation accuracy. This indicates that using the LASSO for variable
selection constitutes a more sophisticated problem than using it for parameter estimation
and prediction.
With respect to the naive LASSO with corrupted covariate measurements, it can be stated
that corresponding analytical results can barely be translated in words or conditions
which are applicable in practice. We presented analytical results according to Sørensen
et al. (2014). The results with regard to the estimation accuracy of the naive LASSO with
corrupted design imply that in the presence of measurement error the LASSO does not
consistently estimate the regression coefficients of the model. This means that the resulting
estimates are clearly biased (see subsection 5.2). However, one can use the asymptotic
results presented by Sørensen et al. (2014) to correct the naive LASSO for the bias in-
duced by additive measurement error. Note that the correction factor for the naive LASSO
basically equals the well-known reliability ratio used to correct for the attenuation bias
caused by additive measurement error in the common linear model. This also implies
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7 Discussion and conclusion

that with λ being scaled properly, the bias induced by additive measurement error is
the same for the LASSO as for a multivariate linear model (Sørensen et al., 2014; Carroll
et al., 2006). While in the absence of measurement error, the IC forms a sufficient and
essentially necessary condition for consistent covariate selection, it does not guarantee
consistent variable selection for the LASSO with error-prone design. For the latter, the
IC-ME which is equivalent to the IC in the error-free case, serves to establish a lower
bound on the probability of consistent covariate selection. In addition, the MEC, which
is a much stronger condition than the IC-ME, must also be satisfied for the LASSO with
error-prone design to perform consistently in covariate selection. Nevertheless, the MEC
is not necessary for asymptotically sign consistent covariate selection, which means that
the LASSO can still perform sign consistent covariate selection, even though the MEC
might not be satisfied (Sørensen et al., 2014). In summary, it can be stated that the LASSO
with measurement error requires a much stronger condition for sign consistent covariate
selection than the LASSO with perfect design. Moreover, while we already found it hard
to transfer the SIC into conditions for practical application, translating the population
variances-based MEC into practically applicable terms appears almost impossible.

From the results of our MC simulation study (500 runs for each dedicated parameter
combination) we conclude that in the absence of matrix uncertainty the LASSO generally
outperforms the naive OLS in terms of exhibiting considerably smaller MSE values. This
reflects that despite the fact that the LASSO exhibits a larger global bias than the naive
OLS, it is clearly favourable in terms of exhibiting comparatively low MSE values. This
advantage over the OLS appears particularly strong if the number of covariates is raised.
However, our results also suggest that the presence of a reasonably high amount of error
in the covariates for a quite small number of covariates makes the LASSO estimates lose
their advantage in terms of low variance, while it makes the OLS estimates lose their
advantage in terms of low bias. As a result, both methods approach in terms of estimation
accuracy measured by the MSE of their estimates. Interestingly, the degree of correlation
among covariates does not seem to play a role here. Overall, the MSE values of both the
naive LASSO and the naive OLS increase with growing measurement error variance and
covariate correlation. It is known that the problems of measurement error in the design
and correlation among the model covariates by themselves already impede both estima-
tion methods to correctly identify the underlying true model. Thus, it is not surprising
that the combination of both adversities makes it especially hard for both methods to
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7 Discussion and conclusion

consistently estimate the regression coefficients. With respect to the corrected LASSO
and OLS estimates, our results suggest that there does not exist any overall evidence
of the efficacy of the applied measurement error correction factors. Especially, the MSE
values of the corrected estimates tend to be larger than the ones for the naive estimators,
regardless of the estimation method used. Furthermore, for the majority of parameter
combinations the increase in terms of MSE values exhibited by the corrected estimates as
compared to their naive analogues is substantial. By examining the distribution of MSE
values for corrected OLS and LASSO estimates in the context of a specific combination
of parameters, we found out that the empirical averages of the MSE values were inflated
by a few outliers and that the occurrence of outliers was due to the bad conditioning of
the matrix (Cww − Σuu) within specific runs of our MC simulation. In fact, those matrices
(Cww − Σuu) that belonged to MSE outliers had one or more eigenvalues that were very
close to zero. Given the above finding, we conclude that although using the empirical av-
erage as measure to describe the central tendency of the distribution for a given parameter
is a common approach for the analysis of MC simulation results, its lack of robustness
leads to misleading results if the MC procedure produces outliers. Therefore, the use of
empirical averages to evaluate the MSE value distributions represents a clear limitation of
our work. We therefore recommend using robust measures, such as the median MSE, for
the performance evaluation of the (corrected) OLS and LASSO estimates in future studies.
As far as the variable selection consistency of the LASSO is concerned, our simulation
results suggest that the coincidence of high covariate correlation and large measurement
error variance leads the LASSO to be more or less unable to differ between important
and unimportant covariates which is why it includes nearly all proposed covariates. This
finding is also supported by theory which suggests that the LASSO performs quite badly
for variable selection, but nevertheless achieves good results in variable screening. More-
over, Bühlmann and Van de Geer (2011) state that the LASSO for variable selection only
works in a rather narrow range of problems excluding many cases where there are strong
empirical correlations between the covariates. In general, the LASSO tends to select too
many covariates, but on the other hand a certain amount of false negative selections cannot
be avoided either if the absolute value of some β j is below the LASSO’s detection limit
(Bühlmann and Van de Geer, 2011). As far as the sensitivity of the LASSO to covariate
measurement error and covariate correlation is concerned, we note that the increase in
both of these factors leads the LASSO to perform worse in variable selection. More in
particular, high levels of both of these factors lead the LASSO to select a smaller number
of important, but a larger number of irrelevant covariates at the same time. Note that,
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in general, a high level of covariate correlation seems to prevent the LASSO more from
including the important covariates than a high level of measurement error does. This
aligns with the aforementioned tendency of the LASSO to only select one of the correlated
covariates if there are several covariates with high pairwise correlation (Zou and Hastie,
2005; Friedman et al., 2010). On the other side, high levels of measurement error lead the
LASSO to include more unimportant covariates as it is the case for only high covariate
correlation. However, we can conclude that for most combinations, the LASSO estimates
include the majority of important covariates, even though there are high levels of covariate
correlation and/or measurement error variance. This observation is also in line with
Bühlmann and Van de Geer (2011) and Tibshirani (2011) who both point towards the
LASSO’s reliability in terms of variable screening, also in situations where the conditions
that are required for it to be consistent in variable selection are violated.

Finally, we also examined the distributions of the tuning parameter constituted by 500
runs of the simulation performed for each unique parameter combination. We mainly
focused on how the magnitude of λ is influenced if the values chosen for the noise level ε

are altered. We found that the general level of penalization measured by the median of
the λ-distributions rises with increasing noise level. This observation is evident since a
higher level of model noise implies that the LASSO has to penalize harder and thus must
spend more λ in order to correct for the random error induced by the model noise. Besides
the increase in the general penalization level, our results also indicate that there is more
variation in tuning parameter selection for larger ε. The results suggest that a high degree
of covariate correlation implies highly right-skewed and very peaked distributions of
λcv.glmnet and λOptL1. At the same time, our results imply that a higher degree of covariate
correlation generally leads the LASSO to apply a smaller amount of shrinkage. In any case,
the considered distributions of the tuning parameter are far from being Gaussian while the
distributions of λcv.glmnet are less skewed and exhibit flatter peaks than the distributions
obtained by means of OptL1.

Overall, the above presented simulation results support the theory on the LASSO out-
lined in section 3 and section 5. However, due to their lack of robustness the use of
empirical averages in our MC simulation study was inappropriate. This lead to results
which were not meaningful but highly influenced by a very small number of outliers.
Hence, further studies are needed to appropriately examine the performance of a relia-
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7 Discussion and conclusion

bility ratio-like measurement error correction factor for the naive LASSO. The question
of how to determine an amount of shrinkage which simultaneously satisfies the require-
ments of estimation and variable selection consistency has not been addressed by the
prevalent literature so far. We find that the above aspects are interesting topics for future
research.
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A Appendix

A.1 Some important results from matrix algebra
This part of the appendix gives a summary of basic definitions and results in matrix
algebra which are applied throughout this work. We restrict ourselves to important
definitions and theorems which we state without allowing for the corresponding proofs.
All the following matrix algebra results are quoted from Fahrmeir et al. (2013, Chapter
A).

Theorem A.10 Existence and Uniqueness of the Inverse
The inverse A−1 of a square n× n-matrix A exists if and only if rk(A) = n, i.e., if A is
regular. The inverse is unique, and A is called invertible, regular, or nonsingular. If no
inverse of A exists, it is called singular.

Theorem A.22 Properties of the Eigenvalues
The eigenvalues λi of an n × n-matrix A have (amongst others) the following proper-
ties:

• A is regular if and only if all eigenvalues are non-zero.

• The matrices A and AT have the same eigenvalues.

• If λ is an eigenvalue of a regular matrix A, then 1
λ is an eigenvalue of A−1.

• The eigenvalues of a diagonal matrix are the elements of the diagonal.

• The eigenvalues of an orthogonal matrix A are either 1 or −1.

• The eigenvalues of an idempotent matrix A are either 1 or 0.

Definition A.27 Definite Matrices
The quadratic form xT Ax and the matrix A are called:

• Positive definite (p.d.), if xT Ax > 0 for all x 6= 0, notation:A > 0.

• Positive semidefinite (p.s.d.), if xT Ax ≥ 0 and xT Ax = 0 for at least one x 6= 0.

• Nonnegative definite, if xT Ax and A are either p.d. or p.s.d., notation: A ≥ 0.

• Negative definite (n.d.), if −A is positive definite.

• Negative semidefinite (n.s.d.), if −A is p.s.d.
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• Indefinite in all other cases.

Theorem A.27 Criteria for Definite Matrices
Let A be a symmetric matrix with real eigenvalues λ1, ..., λn. It then follows that A
is:

• Positive definite, if and only if λi > 0 for i = 1, ..., n.

• Positive semidefinite, if and only if λi ≥ 0 for i = 1, ..., n and λi = 0 for at least one
eigenvalue.

• Negative definite, if and only if λi < 0 for i = 1, ..., n.

• Negative semidefinite, if and only if λi ≤ 0 for i = 1, ..., n and at least one λi = 0.

• Indefinite, if and only if A has at least one positive and one negative eigenvalue.

Theorem A.28 Properties of Positive Definite Matrices
For any positive definite matrix A the following properties hold:

• A is regular and thus invertible.

• A−1 is positive definite.

• The diagonal elements aii, i = 1, ..., n are positive, i.e., aii > 0.

• tr(A) > 0.

• If B is positive semidefinite, then A + B is positive definite.
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A.2 Simulation results
All results presented in the following represent averages over 500 MC simulations.

Note that the cv.glmnet LASSO estimates are denoted by Lasso1, naive, Lasso1, TMEV
and Lasso1, EMEV, respectively, while the penalized LASSO estimates are denoted by
Lasso2, naive, Lasso2, TMEV and Lasso2, EMEV.

A.2.1 Tables containing MSE, bias, TPF and FPF (n=100)

p = 10 p = 50 p = 150

MSE Bias TPF FPF MSE Bias TPF FPF MSE Bias TPF FPF

σ2
u = 0.01

OLSnaive 1.06 0.06 10.04 0.01

OLSTMEV 1.33 0.00 6450.41 -0.05

OLSEMEV 216.91 0.72 260.04 0.11

Lasso1,naive 0.82 0.12 99.56 (0.15) 51.36 (1.11) 1.72 0.03 98.44 (0.28) 24.84 (4.55) 2.29 0.02 94.84 (0.49) 11.37 (4.32)

Lasso1,TMEV 0.93 0.07 100 (0.00) 100 (0.00) 1295.65 0.02 100 (0.00) 100 (0.00) 416.86 0.02 100 (0.00) 100 (0.00)

Lasso1,EMEV 54.55 0.76 100 (0.00) 100 (0.00) 110.05 0.11 100 (0.00) 100 (0.00) 2642.88 0.03 100 (0.00) 100 (0.00)

Lasso2,naive 0.81 0.12 99.60 (0.14) 51.60 (1.08 ) 1.57 0.04 98.36 (0.29) 21.11 (2.58) 2.25 0.02 94.48 (0.50) 10.44 (3.61)

Lasso2,TMEV 0.92 0.08 100 (0.00) 100 (0.00) 714.17 0.02 100 (0.00) 100 (0.00) 393.46 0.02 100 (0.00) 100 (0.00)

Lasso2,EMEV 53.94 0.77 100 (0.00) 100 (0.00) 103.01 0.11 100 (0.00) 100 (0.00) 2479.52 0.03 100 (0.00) 100 (0.00)

σ2
u = 0.1

OLSnaive 1.21 0.22 7.67 0.05

OLSTMEV 132084.00 0.25 162999.00 0.10

OLSEMEV 2929.78 0.68 3742.98 -0.11

Lasso1,naive 1.15 0.23 99.76 (0.11) 79.48 (0.83) 2.85 0.06 94.08 (0.50) 24.43 (3.89) 3.91 0.02 81.32 (0.86) 18.36 (5.44)

Lasso1,TMEV 67300.40 0.15 100 (0.00) 100 (0.00) 34243.30 0.07 100 (0.00) 100 (0.00) 67519.39 0.02 100 (0.00) 100 (0.00)

Lasso1,EMEV 2889.55 0.68 100 (0.00) 100 (0.00) 5912.83 -0.11 100 (0.00) 100 (0.00) 1315.93 0.05 100 (0.00) 100 (0.00)

Lasso2,naive 1.15 0.23 99.76 (0.11) 79.16 (0.82) 2.77 0.06 93.84 (0.51) 22.05 (2.56) 3.82 0.02 80.24 (0.86) 16.52 (3.47)

Lasso2,TMEV 67327.10 0.17 100 (0.00) 100 (0.00) 31683.50 0.08 100 (0.00) 100 (0.00) 76993.97 0.01 100 (0.00) 100 (0.00)

Lasso2,EMEV 2843.70 0.67 100 (0.00) 100 (0.00) 7044.70 -0.11 100 (0.00) 100 (0.00) 225.61 0.04 100 (0.00) 100 (0.00)

σ2
u = 1

OLSnaive 2.39 0.41 5.53 0.09

OLSTMEV 3160.62 0.04 13481.62 0.14

OLSEMEV 3174680.00 -23.43 29.52 0.00

Lasso1,naive 2.39 0.41 99.80 (0.10) 98.96 (0.22) 4.54 0.09 83.96 (0.82) 64.45 (2.92) 5.15 0.03 52.92 (1.11) 33.44 (6.11)

Lasso1,TMEV 3118.31 0.05 100 (0.00) 100 (0.00) 6703.77 0.13 100 (0.00) 100 (0.00) 18771.61 0.03 100 (0.00) 100 (0.00)

Lasso1,EMEV 3128850.00 -23.26 100 (0.00) 100 (0.00) 28.51 0.00 100 (0.00) 100 (0.00) 1295.84 -0.11 100 (0.00) 100 (0.00)

Lasso2,naive 2.39 0.41 99.76 (0.11) 98.88 (0.23) 4.51 0.09 82.24 (0.86) 61.13 (2.67) 5.16 0.02 36.4 (1.09) 22.69 (3.78)

Lasso2,TMEV 3116.66 0.05 100 (0.00) 100 (0.00) 7808.80 0.13 100 (0.00) 100 (0.00) 2146.58 0.02 100 (0.00) 100 (0.00)

Lasso2,EMEV 3170360.00 -23.41 100 (0.00) 100 (0.00) 26.54 0.00 100 (0.00) 100 (0.00) 903.24 -0.10 100 (0.00) 100 (0.00)

Table 23: MSE, bias, TPF and FPF for β1 (n=100, ρ = 0.9, ε = 1)
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p = 10 p = 50 p = 150

MSE Bias TPF FPF MSE Bias TPF FPF MSE Bias TPF FPF

σ2
u = 0.01

OLSnaive 1.01 0.03 9.68 0.00

OLSTMEV 1.29 0.01 7295.33 -0.04

OLSEMEV 123.63 0.34 145.62 0.06

Lasso1,naive 0.66 0.09 89.88 (0.61) 49.80 (1.16) 1.13 0.03 73.36 (0.88) 20.74 (3.75) 1.47 0.01 56.44 (1.07) 10.86 (6.96)

Lasso1,TMEV 0.80 0.07 100 (0.00) 100 (0.00) 257.96 0.02 100 (0.00) 100 (0.00) 263.74 0.01 100 (0.00) 100 (0.00)

Lasso1,EMEV 55.68 0.39 100 (0.00) 100 (0.00) 37.75 0.05 100 (0.00) 100 (0.00) 343.56 0.01 100 (0.00) 100 (0.00)

Lasso2,naive 0.62 0.10 89.52 (0.61) 46.24 (1.06) 1.02 0.03 72.28 (0.89) 18.24 (2.27) 1.26 0.01 55.32 (1.07) 8.59 (3.06)

Lasso2,TMEV 0.74 0.08 100 (0.00) 100 (0.00) 209.53 0.02 100 (0.00) 100 (0.00) 243.25 0.01 100 (0.00) 100 (0.00)

Lasso2,EMEV 46.21 0.38 100 (0.00) 100 (0.00) 34.35 0.05 100 (0.00) 100 (0.00) 283.05 0.01 100 (0.00) 100 (0.00)

σ2
u = 0.1

OLSnaive 0.70 0.11 5.82 0.02

OLSTMEV 5855.60 0.00 83064.30 0.06

OLSEMEV 720.75 0.34 10621.80 -0.06

Lasso1,naive 0.58 0.13 94.68 (0.49) 66.04 (1.02) 1.18 0.04 68.36 (0.95) 27.68 (3.72) 1.49 0.01 45.36 (1.03) 13.52 (6.81)

Lasso1,TMEV 1927.45 -0.08 100 (0.00) 100 (0.00) 10256.10 0.04 100 (0.00) 100 (0.00) 43108.06 0.02 100 (0.00) 100 (0.00)

Lasso1,EMEV 702.51 0.33 100 (0.00) 100 (0.00) 10649.90 -0.06 100 (0.00) 100 (0.00) 1809.57 0.03 100 (0.00) 100 (0.00)

Lasso2,naive 0.57 0.13 94.48 (0.49) 64.12 (1.00) 1.13 0.04 67.64 (0.94) 25.51 ( 2.60) 1.38 0.01 44.48 (1.03) 11.80 (3.16)

Lasso2,TMEV 1685.33 -0.07 100 (0.00) 100 (0.00) 8334.89 0.04 100 (0.00) 100 (0.00) 38505.26 0.02 100 (0.00) 100 (0.00)

Lasso2,EMEV 691.09 0.33 100 (0.00) 100 (0.00) 11420.40 -0.06 100 (0.00) 100 (0.00) 6.02 0.02 100 (0.00) 100 (0.00)

σ2
u = 1

OLSnaive 0.66 0.21 2.09 0.05

OLSTMEV 2072.25 -0.08 13326.84 0.07

OLSEMEV 801725.00 -11.78 7.64 0.00

Lasso1,naive 0.66 0.20 97.08 (0.38) 95.00 (0.46) 1.27 0.05 65.92 ( 1.05) 50.78 (3.26) 1.40 0.02 35.60 (1.10) 24.10 (6.39)

Lasso1,TMEV 2060.59 -0.07 100 (0.00) 100 (0.00) 3815.19 0.08 100 (0.00) 100 (0.00) 5828.87 0.02 100 (0.00) 100 (0.00)

Lasso1,EMEV 746017.00 -11.36 100 (0.00) 100 (0.00) 7.11 0.00 100 (0.00) 100 (0.00) 283.98 -0.05 100 (0.00) 100 (0.00)

Lasso2,naive 0.66 0.20 97.2 (0.37) 94.8 (0.47) 1.25 0.04 64.00 (1.06) 47.74 (2.68) 1.36 0.01 27.96 (1.00) 19.20 (3.65)

Lasso2,TMEV 2069.34 -0.07 100 (0.00) 100 (0.00) 5707.37 0.08 100 (0.00) 100 (0.00) 5553.56 0.01 100 (0.00) 100 (0.00)

Lasso2,EMEV 745299.00 -11.35 100 (0.00) 100 (0.00) 6.79 0.00 100 (0.00) 100 (0.00) 274.13 -0.05 100 (0.00) 100 (0.00)

Table 24: MSE, bias, TPF and FPF for β2 (n=100, ρ = 0.9, ε = 1)
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p = 10 p = 50 p = 150

MSE Bias TPF FPF MSE Bias TPF FPF MSE Bias TPF FPF

σ2
u = 0.01

OLSnaive 1.01 0.03 9.68 0.00

OLSTMEV 1.29 0.01 8066.53 -0.04

OLSEMEV 424.72 0.21 158.60 0.05

Lasso1,naive 0.52 0.07 72.08 (0.92) 44.28 (1.13) 0.82 0.02 51.68 (0.92) 17.49 (4.16) 1.17 0.01 41.92 (0.89) 9.24 (7.73)

Lasso1,TMEV 0.61 0.06 100 (0.00) 100 (0.00) 152.09 0.02 100 (0.00) 100 (0.00) 253.21 0.01 100 (0.00) 100 (0.00)

Lasso1,EMEV 93.98 0.26 100 (0.00) 100 (0.00) 35.72 0.04 100 (0.00) 100 (0.00) 384.86 0.01 100 (0.00) 100 (0.00)

Lasso2,naive 0.48 0.08 70.92 (0.90) 41.28 (1.03) 0.70 0.02 50.04 (0.87) 14.81 (2.28) 0.95 0.01 39.48 (0.83) 6.90 (2.93)

Lasso2,TMEV 0.56 0.06 100 (0.00) 100 (0.00) 55.42 0.02 100 (0.00) 100 (0.00) 243.22 0.01 100 (0.00) 100 (0.00)

Lasso2,EMEV 94.95 0.26 100 (0.00) 100 (0.00) 32.58 0.04 100 (0.00) 100 (0.00) 380.22 0.01 100 (0.00) 100 (0.00)

σ2
u = 0.1

OLSnaive 0.84 0.09 5.88 0.02

OLSTMEV 76754.30 0.36 130568.00 0.09

OLSEMEV 427.14 0.26 43537.80 -0.04

Lasso1,naive 0.67 0.11 83.24 (0.77) 59.84 ( 1.07) 1.10 0.03 49.64 (0.96) 24.43 (3.886) 1.32 0.01 34.56 (0.86) 11.35 (6.62)

Lasso1,TMEV 22890.90 0.23 100 (0.00) 100 (0.00) 6618.64 0.05 100 (0.00) 100 (0.00) 13554.06 0.01 100 (0.00) 100 (0.00)

Lasso1,EMEV 404.59 0.25 100 (0.00) 100 (0.00) 28558.00 -0.04 100 (0.00) 100 (0.00) 2201.95 0.02 100 (0.00) 100 (0.00)

Lasso2,naive 0.66 0.11 82.68 (0.77) 57.84 (1.04 ) 1.04 0.03 48.28 ( 0.94) 22.05 ( 2.56) 1.22 0.01 33.2 (0.84) 9.57 (2.93)

Lasso2,TMEV 22624.20 0.25 100 (0.00) 100 (0.00) 6726.20 0.05 100 (0.00) 100 (0.00) 12911.92 0.01 100 (0.00) 100 (0.00)

Lasso2,EMEV 403.09 0.25 100 (0.00) 100 (0.00) 28114.30 -0.04 100 (0.00) 100 (0.00) 6.22 0.02 100 (0.00) 100 (0.00)

σ2
u = 1

OLSnaive 0.93 0.15 2.16 0.04

OLSTMEV 2409.62 -0.13 27793.11 0.04

OLSEMEV 470450.00 -9.02 5.48 0.00

Lasso1,naive 0.92 0.15 94.64 (0.51) 90.44 (0.62) 1.32 0.03 57.12 ( 1.04) 44.29 (3.20) 1.44 0.01 26.04 (0.97) 20.22 (6.86)

Lasso1,TMEV 2269.63 -0.12 100 (0.00) 100 (0.00) 3085.89 0.06 100 (0.00) 100 (0.00) 2506.51 0.01 100 (0.00) 100 (0.00)

Lasso1,EMEV 435774.00 -8.68 100 (0.00) 100 (0.00) 4.95 0.00 100 (0.00) 100 (0.00) 153.09 -0.04 100 (0.00) 100 (0.00)

Lasso2,naive 0.92 0.15 94.24 (0.52) 89.80 (0.64) 1.30 0.03 55.52 (1.03) 41.56 (2.55) 1.41 0.01 22.00 (0.92) 16.30 (3.39)

Lasso2,TMEV 2228.35 -0.12 100 (0.00) 100 (0.00) 2973.26 0.06 100 (0.00) 100 (0.00) 1644.63 0.01 100 (0.00) 100 (0.00)

Lasso2,EMEV 434083.00 -8.67 100 (0.00) 100 (0.00) 4.70 0.00 100 (0.00) 100 (0.00) 141.36 -0.04 100 (0.00) 100 (0.00)

Table 25: MSE, bias, TPF and FPF for β3 (n=100, ρ = 0.9, ε = 1)
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p = 10 p = 50 p = 150

MSE Bias TPF FPF MSE Bias TPF FPF MSE Bias TPF FPF

σ2
u = 0.01

OLSnaive 0.21 0.01 2.11 0.00

OLSTMEV 0.22 0.00 2.57 0.00

OLSEMEV 3662.08 1.37 11493.90 0.13

Lasso1,naive 0.16 0.04 100 (0.00) 51.72 (1.29) 0.36 0.01 100 (0.00) 23.80 (4.94) 0.69 0.01 99.96 (0.04) 12.92 (8.62)

Lasso1,TMEV 0.16 0.03 100 (0.00) 100 (0.00) 0.35 0.01 100 (0.00) 100 (0.00) 2.08 0.01 100 (0.00) 100 (0.00)

Lasso1,EMEV 3277.89 1.35 100 (0.00) 100 (0.00) 6928.36 0.13 100 (0.00) 100 (0.00) 38184.80 0.06 100 (0.00) 100 (0.00)

Lasso2,naive 0.16 0.04 100 (0.00) 46.40 (1.14) 0.33 0.01 100 (0.00) 19.45 (2.70) 0.66 0.01 99.96 (0.045) 9.74 (3.48)

Lasso2,TMEV 0.15 0.03 100 (0.00) 100 (0.00) 0.31 0.01 100 (0.00) 100 (0.00) 2.05 0.01 100 (0.00) 100 (0.00)

Lasso2,EMEV 3294.78 1.35 100 (0.00) 100 (0.00) 11059.40 0.14 100 (0.00) 100 (0.00) 30814.00 0.06 100 (0.00) 100 (0.00)

σ2
u = 0.1

OLSnaive 0.30 0.06 2.49 0.01

OLSTMEV 0.44 -0.01 65576.80 -0.05

OLSEMEV 542.93 -0.24 264.35 -0.03

Lasso1,naive 0.26 0.07 100 (0.00) 62.16 (1.16) 0.72 0.02 100 (0.00) 27.96 (4.25) 0.93 0.01 100 (0.00) 14.21 (7.81)

Lasso1,TMEV 0.31 0.00 100 (0.00) 100 (0.00) 17451.30 -0.04 100 (0.00) 100 (0.00) 3677.29 0.01 100 (0.00) 100 (0.00)

Lasso1,EMEV 532.05 -0.23 100 (0.00) 100 (0.00) 240.67 -0.03 100 (0.00) 100 (0.00) 2740.81 0.06 100 (0.00) 100 (0.00)

Lasso2,naive 0.25 0.08 100 (0.00) 59.16 (1.11) 0.69 0.02 100 (0.00) 24.74 (2.75) 0.86 0.01 100 (0.00) 10.82 (3.44)

Lasso2,TMEV 0.29 0.00 100 (0.00) 100 (0.00) 12613.50 -0.03 100 (0.00) 100 (0.00) 3507.62 0.01 100 (0.00) 100 (0.00)

Lasso2,EMEV 522.30 -0.24 100 (0.00) 100 (0.00) 239.31 -0.04 100 (0.00) 100 (0.00) 2687.71 0.05 100 (0.00) 100 (0.00)

σ2
u = 1

OLSnaive 1.46 0.27 3.81 0.06

OLSTMEV 477460000.00 -57.90 64574.20 -0.15

OLSEMEV 8.61 -0.05 4074.59 0.25

Lasso1,naive 1.48 0.26 100 (0.00) 94.6 (0.50) 2.48 0.06 99.16 (0.20) 47.77 (3.63) 3.73 0.02 90.40 (0.66) 26.60 (5.85)

Lasso1,TMEV 440394000.00 -55.60 100 (0.00) 100 (0.00) 36308.60 -0.12 100 (0.00) 100 (0.00) 13460.39 0.02 100 (0.00) 100 (0.00)

Lasso1,EMEV 8.44 -0.04 100 (0.00) 100 (0.00) 1287.60 0.26 100 (0.00) 100 (0.00) 639.05 -0.12 100 (0.00) 100 (0.00)

Lasso2,naive 1.48 0.26 100 (0.00) 94.32 (0.50) 2.48 0.05 99.00 (0.23) 42. 68 (2.83) 3.94 0.02 78.32 (0.88) 17.78 (3.59)

Lasso2,TMEV 445852000.00 -55.95 100 (0.00) 100 (0.00) 35297.60 -0.13 100 (0.00) 100 (0.00) 4863.49 0.02 100 (0.00) 100 (0.00)

Lasso2,EMEV 8.51 -0.05 100 (0.00) 100 (0.00) 1020.00 0.24 100 (0.00) 100 (0.00) 401.51 -0.09 100 (0.00) 100 (0.00)

Table 26: MSE, bias, TPF and FPF for β1 (n=100, ρ = 0.5, ε = 1)
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p = 10 p = 50 p = 150

MSE Bias TPF FPF MSE Bias TPF FPF MSE Bias TPF FPF

σ2
u = 0.01

OLSnaive 0.20 0.01 2.04 0.00

OLSTMEV 0.21 0.00 2.48 0.00

OLSEMEV 1100.51 0.67 17277.40 0.05

Lasso1,naive 0.16 0.03 99.88 (0.08) 50.24 (1.31) 0.34 0.01 99.44 (0.17) 23.28 (5.32) 0.61 0.01 93.48 (0.55) 12.66 (10.28)

Lasso1,TMEV 0.16 0.03 100 (0.00) 100 (0.00) 0.35 0.01 100 (0.00) 100 (0.00) 0.78 0.01 100 (0.00) 100 (0.00)

Lasso1,EMEV 894.90 0.66 100 (0.00) 100 (0.00) 1093.94 0.06 100 (0.00) 100 (0.00) 2537.28 0.02 100 (0.00) 100 (0.00)

Lasso2,naive 0.15 0.04 99.88 (0.08) 45.76 (1.19) 0.30 0.01 99.44 (0.17) 18.74 (2.77) 0.57 0.01 90.88 (0.64) 8.92 (3.17)

Lasso2,TMEV 0.15 0.03 100 (0.00) 100 (0.00) 0.30 0.01 100 (0.00) 100 (0.00) 0.74 0.01 100 (0.00) 100 (0.00)

Lasso2,EMEV 892.17 0.65 100 (0.00) 100 (0.00) 1025.83 0.06 100 (0.00) 100 (0.00) 2413.81 0.02 100 (0.00) 100 (0.00)

σ2
u = 0.1

OLSnaive 0.20 0.03 1.88 0.01

OLSTMEV 0.33 -0.01 36218.40 -0.03

OLSEMEV 138.09 -0.12 85.79 -0.02

Lasso1,naive 0.16 0.05 100 (0.00) 56.4 (1.25) 0.43 0.02 98.56 (0.26) 25.46 (4.93) 0.56 0.01 95.76 (0.44) 12.76 (8.09)

Lasso1,TMEV 0.22 0.01 100 (0.00) 100 (0.00) 1642.52 0.01 100 (0.00) 100 (0.00) 1344.26 0.01 100 (0.00) 100 (0.00)

Lasso1,EMEV 127.73 -0.12 100 (0.00) 100 (0.00) 59.51 -0.02 100 (0.00) 100 (0.00) 1134.39 0.03 100 (0.00) 100 (0.00)

Lasso2,naive 0.16 0.05 100 (0.00) 52.56 (1.14) 0.40 0.02 98.48 (0.27) 21.30 (2.76) 0.51 0.01 95.72 (0.45) 9.50 (3.48)

Lasso2,TMEV 0.21 0.02 100 (0.00) 100 (0.00) 561.49 0.01 100 (0.00) 100 (0.00) 1232.52 0.01 100 (0.00) 100 (0.00)

Lasso2,EMEV 128.07 -0.12 100 (0.00) 100 (0.00) 63.01 -0.02 100 (0.00) 100 (0.00) 951.13 0.03 100 (0.00) 100 (0.00)

σ2
u = 1

OLSnaive 0.41 0.13 1.46 0.03

OLSTMEV 189011000.00 -36.46 25881.80 -0.09

OLSEMEV 2.19 -0.02 320.58 0.13

Lasso1,naive 0.42 0.13 99.64 (0.13) 88.6 (0.70) 0.76 0.03 94.76 (0.50) 40.10 (3.61) 1.11 0.01 71.76 (0.99) 21.72 (7.22)

Lasso1,TMEV 183940000.00 -36.00 100 (0.00) 100 (0.00) 11302.70 -0.07 100 (0.00) 100 (0.00) 2589.74 0.01 100 (0.00) 100 (0.00)

Lasso1,EMEV 2.12 -0.02 100 (0.00) 100 (0.00) 1327.36 0.14 100 (0.00) 100 (0.00) 146.19 -0.05 100 (0.00) 100 (0.00)

Lasso2,naive 0.42 0.13 99.68 (0.13) 88.0 (0.70) 0.75 0.03 93.84 (0.53) 35.79 (2.74) 1.11 0.01 61.08 (1.02) 15.39 (3.71)

Lasso2,TMEV 131874000.00 -30.42 100 (0.00) 100 (0.00) 9946.66 -0.07 100 (0.00) 100 (0.00) 3504.93 0.00 100 (0.00) 100 (0.00)

Lasso2,EMEV 2.13 -0.02 100 (0.00) 100 (0.00) 991.04 0.11 100 (0.00) 100 (0.00) 73.66 -0.04 100 (0.00) 100 (0.00)

Table 27: MSE, bias, TPF and FPF for β2 (n=100, ρ = 0.5, ε = 1)
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p = 10 p = 50 p = 150

MSE Bias TPF FPF MSE Bias TPF FPF MSE Bias TPF FPF

σ2
u = 0.01

OLSnaive 0.20 0.00 2.04 0.00

OLSTMEV 0.21 0.00 2.48 0.00

OLSEMEV 546.77 0.50 9906.70 0.05

Lasso1,naive 0.12 0.03 82.60 (0.77) 43.52 (1.26) 0.23 0.01 67.72 (0.80) 19.35 ( 5.11) 0.34 0.00 60.40 (0.67) 9.68 (9.24)

Lasso1,TMEV 0.12 0.03 100 (0.00) 100 (0.00) 0.24 0.01 100 (0.00) 100 (0.00) 0.71 0.01 100 (0.00) 100 (0.00)

Lasso1,EMEV 484.68 0.48 100 (0.00) 100 (0.00) 10332.30 0.06 100 (0.00) 100 (0.00) 19998.80 0.03 100 (0.00) 100 (0.00)

Lasso2,naive 0.11 0.03 81.76 (0.75) 40.64 (1.16) 0.20 0.01 66.20 (0.78) 15.43 (2.52) 0.29 0.00 58.16 (0.62) 6.71 (3.25)

Lasso2,TMEV 0.12 0.03 100 (0.00) 100 (0.00) 0.20 0.01 100 (0.00) 100 (0.00) 0.66 0.01 100 (0.00) 100 (0.00)

Lasso2,EMEV 484.42 0.48 100 (0.00) 100 (0.00) 12370.60 0.06 100 (0.00) 100 (0.00) 18173.40 0.03 100 (0.00) 100 (0.00)

σ2
u = 0.1

OLSnaive 0.22 0.02 1.89 0.00

OLSTMEV 0.33 -0.01 76129.60 -0.07

OLSEMEV 87.50 -0.10 71.77 -0.01

Lasso1,naive 0.16 0.04 88.8 (0.64) 51.76 (1.27) 0.30 0.01 69.80 (0.78) 19.81 (4.38) 0.39 0.01 57.96 (0.80) 10.48 (8.60)

Lasso1,TMEV 0.19 0.01 100 (0.00) 100 (0.00) 35195.40 -0.06 100 (0.00) 100 (0.00) 1466.48 0.01 100 (0.00) 100 (0.00)

Lasso1,EMEV 81.75 -0.10 100 (0.00) 100 (0.00) 56.57 -0.01 100 (0.00) 100 (0.00) 29426.40 0.03 100 (0.00) 100 (0.00)

Lasso2,naive 0.15 0.04 88.24 (0.64) 47.16 (1.15) 0.28 0.01 68.44 (0.76) 16.42 (2.56) 0.34 0.00 56.56 (0.78) 7.58 (3.35)

Lasso2,TMEV 0.17 0.02 100 (0.00) 100 (0.00) 37782.50 -0.06 100 (0.00) 100 (0.00) 1508.91 0.00 100 (0.00)

Lasso2,EMEV 80.00 -0.10 100 (0.00) 100 (0.00) 56.48 -0.01 100 (0.00) 100 (0.00) 28973.70 0.03 100 (0.00)

σ2
u = 1

OLSnaive 0.56 0.10 1.52 0.02

OLSTMEV 70245900.00 -22.19 23230.00 -0.10

OLSEMEV 2.01 -0.02 435.45 0.11

Lasso1,naive 0.56 0.10 94.04 (0.49) 82.44 (0.86) 0.75 0.02 74.40 (0.87) 34.32 (4.21) 1.04 0.01 51.00 (0.78) 17.50 (7.37)

Lasso1,TMEV 67750200.00 -21.80 100 (0.00) 100 (0.00) 7469.23 -0.06 100 (0.00) 100 (0.00) 6933.58 0.00 100 (0.00) 100 (0.00)

Lasso1,EMEV 1.93 -0.02 100 (0.00) 100 (0.00) 570.64 0.10 100 (0.00) 100 (0.00) 72.36 -0.04 100 (0.00) 100 (0.00)

Lasso2,naive 0.56 0.10 93.80 (0.50) 81.44 (0.85) 0.74 0.02 72.24 (0.92) 29.45 (2.68) 1.06 0.01 47.08 (0.78) 12.92 (3.61)

Lasso2,TMEV 70240800.00 -22.21 100 (0.00) 100 (0.00) 6418.93 -0.05 100 (0.00) 100 (0.00) 4433.17 0.00 100 (0.00) 100 (0.00)

Lasso2,EMEV 1.95 -0.02 100 (0.00) 100 (0.00) 273.52 0.08 100 (0.00) 100 (0.00) 69.11 -0.04 100 (0.00) 100 (0.00)

Table 28: MSE, bias, TPF and FPF for β3 (n=100, ρ = 0.5, ε = 1)
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p = 10 p = 50 p = 150

MSE Bias TPF FPF MSE Bias TPF FPF MSE Bias TPF FPF

σ2
u = 0.01

OLSnaive 0.12 0.00 1.20 0.00

OLSTMEV 0.13 0.00 1.33 0.00

OLSEMEV 4516.21 -0.25 11309.60 0.24

Lasso1,naive 0.11 0.01 100.0 (00) 56.24 (1.46) 0.23 0.01 100.0 (00) 23.02 (5.80) 0.33 0.00 100.0 (00) 11.74 (10.03)

Lasso1,TMEV 0.11 0.01 100.0 (00) 100.0 (00) 0.21 0.00 100.0 (00) 100.0 (00) 1.68 0.01 100.0 (00) 100.0 (00)

Lasso1,EMEV 4269.92 -0.25 100.0 (00) 100.0 (00) 9590.31 0.23 100.0 (00) 100.0 (00) 8819.94 0.03 100.0 (00) 100.0 (00)

Lasso2,naive 0.11 0.01 100.0 (00) 52.28 (1.37) 0.22 0.01 100.0 (00) 15.64 (2.79) 0.32 0.00 100.0 (00) 6.36 (3.17)

Lasso2,TMEV 0.11 0.01 100.0 (00) 100.0 (00) 0.20 0.00 100.0 (00) 100.0 (00) 1.67 0.01 100.0 (00) 100.0 (00)

Lasso2,EMEV 4067.98 -0.27 100.0 (00) 100.0 (00) 9477.97 0.22 100.0 (00) 100.0 (00) 7998.17 0.03 100.0 (00) 100.0 (00)

σ2
u = 0.1

OLSnaive 0.22 0.04 1.54 0.01

OLSTMEV 0.25 -0.01 32775.00 -0.01

OLSEMEV 39.87 -0.04 1424.33 0.04

Lasso1,naive 0.23 0.04 100.0 (00) 59.72 (1.34) 0.37 0.01 100.0 (00) 22.94 (5.63) 0.76 0.01 100.0 (00) 14.78 (11.75)

Lasso1,TMEV 0.19 0.00 100.0 (00) 100.0 (00) 4434.29 0.01 100.0 (00) 100.0 (00) 105.47 0.02 100.0 (00) 100.0 (00)

Lasso1,EMEV 35.00 -0.04 100.0 (00) 100.0 (00) 1274.84 0.04 100.0 (00) 100.0 (00) 847.31 0.03 100.0 (00) 100.0 (00)

Lasso2,naive 0.23 0.04 100.0 (00) 55.48 (1.25) 0.36 0.01 100.0 (00) 16.50 (2.74) 0.75 0.00 100.0 (00) 7.92 (3.21)

Lasso2,TMEV 0.18 0.00 100.0 (00) 100.0 (00) 4625.53 0.00 100.0 (00) 100.0 (00) 1131.05 0.02 100.0 (00) 100.0 (00)

Lasso2,EMEV 34.98 -0.04 100.0 (00) 100.0 (00) 1312.80 0.04 100.0 (00) 100.0 (00) 566.52 0.03 100.0 (00) 100.0 (00)

σ2
u = 1

OLSnaive 1.25 0.09 2.96 0.03

OLSTMEV 2992.95 -0.22 101118.00 -0.05

OLSEMEV 8.98 0.00 24.49 0.00

Lasso1,naive 1.41 0.08 99.8 (0.10) 73.0 (1.25) 2.11 0.02 99.56 (0.16) 31.86 (5.17) 2.88 0.01 96.6 (0.41) 19.36 (11.06)

Lasso1,TMEV 2744.61 -0.22 100.0 (00) 100.0 (00) 67969.60 -0.07 100.0 (00) 100.0 (00) 21790.20 -0.05 100.0 (00) 100.0 (00)

Lasso1,EMEV 9.26 0.00 100.0 (00) 100.0 (00) 31.36 0.00 100.0 (00) 100.0 (00) 98.84 0.00 100.0 (00) 100.0 (00)

Lasso2,naive 1.45 0.07 99.64 (0.13) 68.08 (1.25) 2.26 0.02 98.56 (0.30) 21.45 (2.95) 3.12 0.01 90.52 (0.69) 9.15 (3.70)

Lasso2,TMEV 2594.29 -0.20 100.0 (00) 100.0 (00) 34666.40 -0.04 100.0 (00) 100.0 (00) 10189.50 -0.03 100.0 (00) 100.0 (00)

Lasso2,EMEV 9.10 0.00 100.0 (00) 100.0 (00) 24.25 0.00 100.0 (00) 100.0 (00) 17.38 0.00 100.0 (00) 100.0 (00)

Table 29: MSE, bias, TPF and FPF for β1 (n=100, ρ = 0.1, ε = 1)
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p = 10 p = 50 p = 150

MSE Bias TPF FPF MSE Bias TPF FPF MSE Bias TPF FPF

σ2
u = 0.01

OLSnaive 0.12 0.00 1.15 0.00

OLSTMEV 0.12 0.00 1.28 0.00

OLSEMEV 1760.36 -0.05 2925.08 0.12

Lasso1,naive 0.11 0.01 100.0 (00) 55.52 (1.44) 0.22 0.01 99.92 (0.06) 23.32 (6.07) 0.32 0.00 99.40 (0.17) 11.86 (10.47)

Lasso1,TMEV 0.11 0.01 100.0 (00) 100.0 (00) 0.22 0.00 100.0 (00) 100.0 (00) 0.57 0.01 100.0 (00) 100.0 (00)

Lasso1,EMEV 1534.19 -0.04 100.0 (00) 100.0 (00) 2256.59 0.11 100.0 (00) 100.0 (00) 1964.05 0.01 100.0 (00) 100.0 (00)

Lasso2,naive 0.11 0.01 100.0 (00) 50.72 (1.37) 0.21 0.01 99.88 (0.08) 15.28 (2.79) 0.30 0.00 98.96 (0.22) 6.18 (3.07)

Lasso2,TMEV 0.11 0.01 100.0 (00) 100.0 (00) 0.20 0.00 100.0 (00) 100.0 (00) 0.56 0.01 100.0 (00) 100.0 (00)

Lasso2,EMEV 1500.20 -0.06 100.0 (00) 100.0 (00) 2125.01 0.10 100.0 (00) 100.0 (00) 1602.02 0.01 100.0 (00) 100.0 (00)

σ2
u = 0.1

OLSnaive 0.14 0.02 1.17 0.00

OLSTMEV 0.18 0.00 7609.42 0.00

OLSEMEV 10.10 -0.02 207.97 0.02

Lasso1,naive 0.14 0.03 100.0 (00) 56.84 (1.36) 0.24 0.01 100.0 (00) 22.44 (5.63) 0.48 0.00 98.2 (0.31) 13.86 (11.41)

Lasso1,TMEV 0.14 0.01 100.0 (00) 100.0 (00) 771.92 0.01 100.0 (00) 100.0 (00) 177.87 0.01 100.0 (00) 100.0 (00)

Lasso1,EMEV 8.20 -0.02 100.0 (00) 100.0 (00) 249.79 0.02 100.0 (00) 100.0 (00) 193.80 0.01 100.0 (00) 100.0 (00)

Lasso2,naive 0.14 0.03 100.0 (00) 51.88 (1.24) 0.23 0.01 100.0 (00) 15.32 (2.59) 0.47 0.00 96.76 (0.38) 6.97 (3.32)

Lasso2,TMEV 0.14 0.01 100.0 (00) 100.0 (00) 948.99 0.01 100.0 (00) 100.0 (00) 210.52 0.01 100.0 (00) 100.0 (00)

Lasso2,EMEV 8.17 -0.02 100.0 (00) 100.0 (00) 189.35 0.02 100.0 (00) 100.0 (00) 128.39 0.01 100.0 (00) 100.0 (00)

σ2
u = 1

OLSnaive 0.36 0.05 1.14 0.02

OLSTMEV 717.23 -0.12 30241.80 -0.04

OLSEMEV 1.78 0.00 5.81 0.00

Lasso1,naive 0.42 0.04 97.92 (0.32) 64.6 (1.37) 0.67 0.01 93.92 (0.56) 26.92 (5.66) 0.90 0.01 83.64 (0.94) 15.61 (11.27)

Lasso1,TMEV 438.00 -0.07 100.0 (00) 100.0 (00) 14602.30 -0.04 100.0 (00) 100.0 (00) 13531.90 -0.04 99.40 (0.39) 99.40 (11.21)

Lasso1,EMEV 1.86 0.00 100.0 (00) 100.0 (00) 8.55 0.00 100.0 (00) 100.0 (00) 24.79 0.00 99.40 (0.39) 99.40 (11.21)

Lasso2,naive 0.44 0.04 97.48 (0.34) 58.92 (1.37) 0.72 0.01 88.64 (0.82) 3.21 (16.66) 0.94 0.00 69.84 (1.20) 6.88 (4.17)

Lasso2,TMEV 520.86 -0.10 100.0 (00) 100.0 (00) 5723.56 -0.02 99.6 (0.32) 99.6 (2.84) 7009.80 -0.03 98.20 (0.67) 98.20 (19.30)

Lasso2,EMEV 1.84 0.00 100.0 (00) 100.0 (00) 6.45 0.00 99.6 (0.32) 99.6 (2.84) 2.77 0.00 98.20 (0.67) 98.20 (19.30)

Table 30: MSE, bias, TPF and FPF for β2 (n=100, ρ = 0.1, ε = 1)
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p = 10 p = 50 p = 150

MSE Bias TPF FPF MSE Bias TPF FPF MSE Bias TPF FPF

σ2
u = 0.01

OLSnaive 0.12 0.00 1.15 0.00

OLSTMEV 0.12 0.00 1.28 0.00

OLSEMEV 5461.30 0.33 4331.30 0.10

Lasso1,naive 0.09 0.01 80.6 (0.87) 44.4 (1.49) 0.16 0.00 67.44 (0.83) 16.53 (5.76) 0.21 0.00 64.16 (0.77) 8.48 (9.92)

Lasso1,TMEV 0.09 0.01 100.0 (00) 100.0 (00) 0.15 0.00 100.0 (00) 100.0 (00) 0.57 0.00 100.0 (00) 100.0 (00)

Lasso1,EMEV 4546.07 0.30 100.0 (00) 100.0 (00) 3658.34 0.08 100.0 (00) 100.0 (00) 2194.10 0.01 100.0 (00) 100.0 (00)

Lasso2,naive 0.09 0.01 78.76 (0.89) 38.48 (1.30) 0.14 0.00 64.32 (0.75) 11.25 (3.04) 0.19 0.00 60.68 (0.68) 4.46 (3.28)

Lasso2,TMEV 0.09 0.01 100.0 (00) 100.0 (00) 0.14 0.00 100.0 (00) 100.0 (00) 0.55 0.00 100.0 (00) 100.0 (00)

Lasso2,EMEV 4555.08 0.31 100.0 (00) 100.0 (00) 3405.47 0.08 100.0 (00) 100.0 (00) 2041.64 0.01 100.0 (00) 100.0 (00)

σ2
u = 0.1

OLSnaive 0.15 0.01 1.18 0.00

OLSTMEV 0.18 0.00 5718.10 -0.01

OLSEMEV 7.63 0.00 24.82 0.01

Lasso1,naive 0.13 0.01 84.24 (0.76) 46.96 (1.43) 0.20 0.00 70.72 (0.82) 17.72 (5.48) 0.38 0.00 59.52 (0.73) 10.23 (10.80)

Lasso1,TMEV 0.12 0.01 100.0 (00) 100.0 (00) 381.95 0.01 100.0 (00) 100.0 (00) 1532.49 -0.01 100.0 (00) 100.0 (00)

Lasso1,EMEV 6.04 0.00 100.0 (00) 100.0 (00) 65.41 0.01 100.0 (00) 100.0 (00) 256.00 0.01 100.0 (00) 100.0 (00)

Lasso2,naive 0.13 0.02 82.72 (0.75) 40.44 (1.27) 0.19 0.00 67.60 (0.78) 11.80 (2.75) 0.37 0.00 55.12 (0.69) 5.13 (3.46)

Lasso2,TMEV 0.12 0.01 100.0 (00) 100.0 (00) 346.39 0.01 100.0 (00) 100.0 (00) 1095.80 -0.01 100.0 (00) 100.0 (00)

Lasso2,EMEV 6.08 0.00 100.0 (00) 100.0 (00) 62.16 0.01 100.0 (00) 100.0 (00) 159.83 0.01 100.0 (00) 100.0 (00)

σ2
u = 1

OLSnaive 0.42 0.03 1.19 0.01

OLSTMEV 725.67 -0.21 12193.50 -0.02

OLSEMEV 2.93 0.00 7.82 0.00

Lasso1,naive 0.49 0.02 77.92 (1.03) 44.52 (1.53) 0.63 0.01 61.24 (1.02) 18.40 (5.59) 0.85 0.00 55.8 (0.88) 11.86 (12.03)

Lasso1,TMEV 281.20 -0.12 100.0 (00) 100.0 (00) 4162.58 -0.01 100.0 (00) 100.0 (00) 32888.60 -0.07 99.00 (0.50) 99.00 (14.44)

Lasso1,EMEV 3.02 0.00 100.0 (00) 100.0 (00) 12.48 0.00 100.0 (00) 100.0 (00) 30.43 0.00 99.00 (0.50) 99.00 (14.44)

Lasso2,naive 0.51 0.02 75.16 (1.06) 33.84 (1.43) 0.65 0.00 56.52 (0.95) 11.95 (3.21) 0.88 0.00 48.88 (0.89) 5.58 (4.09)

Lasso2,TMEV 283.29 -0.14 100.0 (00) 100.0 (00) 5778.71 0.00 100.0 (00) 100.0 (00) 17615.30 -0.05 97.40 (0.80) 97.40 (23.1)

Lasso2,EMEV 2.98 0.00 100.0 (00) 100.0 (00) 12.45 0.00 100.0 (00) 100.0 (00) 1.78 0.00 97.40 (0.80) 97.40 (23.1)

Table 31: MSE, bias, TPF and FPF for β3 (n=100, ρ = 0.1, ε = 1)
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p = 10 p = 50 p = 150

MSE Bias TPF FPF MSE Bias TPF FPF MSE Bias TPF FPF

σ2
u = 0.01

OLSnaive 1.32 0.01 12.19 0.00

OLSTMEV 1.40 -0.01 14.36 0.00

OLSEMEV 12138.10 0.82 2409170.00 -0.45

Lasso1,naive 1.00 0.08 99.44 (0.18) 50.64 (1.36) 1.99 0.03 95.60 (0.46) 21.97 (5.04) 2.69 0.01 91.72 (0.60) 11.02 (8.37)

Lasso1,TMEV 1.02 0.07 100 (0.00) 100 (0.00) 2.07 0.03 100 (0.00) 100 (0.00) 3.35 0.02 100 (0.00) 100 (0.00)

Lasso1,EMEV 11120.30 0.80 100 (0.00) 100 (0.00) 1270120.00 -0.31 100 (0.00) 100 (0.00) 81442.57 0.01 100 (0.00) 100 (0.00)

Lasso2,naive 0.94 0.09 99.36 (0.19) 46.44 (1.24) 1.78 0.03 95.36 (0.48) 17.38 (2.74) 2.41 0.01 90.60 (0.64) 8.27 (3.14)

Lasso2,TMEV 0.96 0.08 100 (0.00) 100 (0.00) 1.83 0.03 100 (0.00) 100 (0.00) 3.12 0.02 100 (0.00) 100 (0.00)

Lasso2,EMEV 6009.30 0.91 100 (0.00) 100 (0.00) 1306990.00 -0.32 100 (0.00) 100 (0.00) 78185.12 0.01 100 (0.00) 100 (0.00)

σ2
u = 0.1

OLSnaive 1.29 0.10 11.46 0.02

OLSTMEV 1.94 0.00 23121.50 -0.04

OLSEMEV 1535.01 0.05 33397.30 1.32

Lasso1,naive 1.12 0.13 99.20 (0.20) 59.84 (1.25) 2.79 0.05 91.28 (0.59) 27.74 (4.76) 2.95 0.02 89.52 (0.65) 12.32 (8.49)

Lasso1,TMEV 1.41 0.05 100 (0.00) 100 (0.00) 2300.03 0.03 100 (0.00) 100 (0.00) 2625.56 0.02 100 (0.00) 100 (0.00)

Lasso1,EMEV 1668.48 0.03 100 (0.00) 100 (0.00) 30061.50 1.27 100 (0.00) 100 (0.00) 152.79 0.06 100 (0.00) 100 (0.00)

Lasso2,naive 1.08 0.14 99.28 (0.19) 55.04 (1.15) 2.62 0.05 90.48 (0.61) 23.59 (2.55) 2.63 0.02 88.52 (0.68) 9.19 (3.08)

Lasso2,TMEV 1.30 0.06 100 (0.00) 100 (0.00) 1635.92 0.03 100 (0.00) 100 (0.00) 2243.34 0.02 100 (0.00) 100 (0.00)

Lasso2,EMEV 1794.98 0.03 100 (0.00) 100 (0.00) 29329.60 1.25 100 (0.00) 100 (0.00) 135.39 0.05 100 (0.00) 100 (0.00)

σ2
u = 1

OLSnaive 1.98 0.29 7.46 0.06

OLSTMEV 4260.46 0.00 10459800.00 -0.03

OLSEMEV 647.63 0.27 13.66 -0.02

Lasso1,naive 2.00 0.29 98.76 (0.24) 87.56 (0.74) 3.53 0.06 89.00 (0.66) 38.92 (3.73) 4.72 0.03 67.64 (1.01) 20.50 (7.27)

Lasso1,TMEV 4103.93 0.02 100 (0.00) 100 (0.00) 605100.00 0.07 100 (0.00) 100 (0.00) 8315.12 0.02 100 (0.00) 100 (0.00)

Lasso1,EMEV 637.54 0.27 100 (0.00) 100 (0.00) 10.88 -0.02 100 (0.00) 100 (0.00) 35247.95 0.79 100 (0.00) 100 (0.00)

Lasso2,naive 2.00 0.29 98.52 (0.26) 86.56 (0.77) 3.46 0.06 87.32 (0.69) 34.30 (2.73) 4.55 0.02 60.20 (1.10) 14.95 (3.55)

Lasso2,TMEV 4090.72 0.03 100 (0.00) 100 (0.00) 659905.00 0.04 100 (0.00) 100 (0.00) 8196.30 0.02 100 (0.00) 100 (0.00)

Lasso2,EMEV 642.74 0.27 100 (0.00) 100 (0.00) 10.31 -0.02 100 (0.00) 100 (0.00) 23505.36 0.64 100 (0.00) 100 (0.00)

Table 32: MSE, bias, TPF and FPF for β1 (n=100, ρ = 0.5, ε = 2.5)
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p = 10 p = 50 p = 150

MSE Bias TPF FPF MSE Bias TPF FPF MSE Bias TPF FPF

σ2
u = 0.01

OLSnaive 1.32 0.00 12.10 0.00

OLSTMEV 1.40 0.00 14.25 0.00

OLSEMEV 5941.39 0.30 836879.00 -0.27

Lasso1,naive 0.80 0.07 86.64 (0.71) 45.68 (1.31) 1.29 0.02 66.12 (1.01) 18.31 (4.20) 1.66 0.01 51.56 (1.02) 9.40 (8.96)

Lasso1,TMEV 0.83 0.07 100 (0.00) 100 (0.00) 1.36 0.02 100 (0.00) 100 (0.00) 1.55 0.01 100 (0.00) 100 (0.00)

Lasso1,EMEV 3485.15 0.33 100 (0.00) 100 (0.00) 178228.00 -0.10 100 (0.00) 100 (0.00) 14557.01 0.01 100 (0.00) 100 (0.00)

Lasso2,naive 0.73 0.08 86.04 (0.71) 41.00 (1.18) 1.12 0.03 63.92 (1.01) 14.69 (2.42) 1.33 0.01 48.28 (1.00) 6.71 (3.02)

Lasso2,TMEV 0.75 0.08 100 (0.00) 100 (0.00) 1.17 0.02 100 (0.00) 100 (0.00) 1.29 0.01 100 (0.00) 100 (0.00)

Lasso2,EMEV 1426.41 0.42 100 (0.00) 100 (0.00) 192647.00 -0.11 100 (0.00) 100 (0.00) 12910.46 0.00 100 (0.00) 100 (0.00)

σ2
u = 0.1

OLSnaive 1.14 0.05 10.77 0.01

OLSTMEV 1.82 0.01 28252.90 -0.03

OLSEMEV 588.05 0.01 8201.38 0.64

Lasso1,naive 0.76 0.10 85.56 (0.76) 48.64 (1.17) 1.44 0.03 56.24 (1.06) 21.19 (4.51) 1.60 0.01 50.88 (1.03) 9.87 (8.82)

Lasso1,TMEV 1.02 0.07 100 (0.00) 100 (0.00) 207.43 0.02 100 (0.00) 100 (0.00) 2389.30 0.01 100 (0.00) 100 (0.00)

Lasso1,EMEV 578.55 -0.02 100 (0.00) 100 (0.00) 6482.06 0.59 100 (0.00) 100 (0.00) 49.47 0.03 100 (0.00) 100 (0.00)

Lasso2,naive 0.74 0.10 85.48 (0.73) 47.12 (1.10) 1.27 0.03 53.40 (1.04) 17.63 (2.40) 1.29 0.01 47.64 (1.02) 7.02 (2.98)

Lasso2,TMEV 0.99 0.07 100 (0.00) 100 (0.00) 168.16 0.02 100 (0.00) 100 (0.00) 2618.79 0.01 100 (0.00) 100 (0.00)

Lasso2,EMEV 837.00 -0.03 100 (0.00) 100 (0.00) 4861.15 0.52 100 (0.00) 100 (0.00) 40.50 0.02 100 (0.00) 100 (0.00)

σ2
u = 1

OLSnaive 0.84 0.15 5.06 0.03

OLSTMEV 2186.81 -0.10 9254600.00 -0.06

OLSEMEV 172.96 0.14 5.48 -0.01

Lasso1,naive 0.75 0.14 85.24 (0.79) 68.64 (1.09) 1.25 0.03 58.76 (1.07) 27.84 (3.96) 1.51 0.01 34.04 (1.04) 13.67 (6.90)

Lasso1,TMEV 1714.15 -0.07 100 (0.00) 100 (0.00) 192051.00 0.04 100 (0.00) 100 (0.00) 4536.52 0.01 100 (0.00) 100 (0.00)

Lasso1,EMEV 159.20 0.14 100 (0.00) 100 (0.00) 3.01 -0.01 100 (0.00) 100 (0.00) 8431.41 0.38 100 (0.00) 100 (0.00)

Lasso2,naive 0.75 0.14 84.08 (0.83) 66.68 (1.08) 1.18 0.03 54.20 (1.07) 22.69 (2.86) 1.39 0.01 30.08 (0.97) 10.28 (3.42)

Lasso2,TMEV 1548.32 -0.02 100 (0.00) 100 (0.00) 113626.00 0.02 99.8 (0.22) 99.80 (2.01) 3530.41 0.01 100 (0.00) 100 (0.00)

Lasso2,EMEV 112.32 0.11 100 (0.00) 100 (0.00) 2.92 -0.01 99.8 (0.22) 99.80 (2.01) 7013.98 0.34 100 (0.00) 100 (0.00)

Table 33: MSE, bias, TPF and FPF for β2 (n=100, ρ = 0.5, ε = 2.5)
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p = 10 p = 50 p = 150

MSE Bias TPF FPF MSE Bias TPF FPF MSE Bias TPF FPF

σ2
u = 0.01

OLSnaive 1.31 0.00 12.11 0.00

OLSTMEV 1.39 0.00 14.26 0.00

OLSEMEV 3986.47 0.23 42066.20 -0.02

Lasso1,naive 0.55 0.05 64.76 (1.00) 36.44 (1.26) 1.02 0.02 46.24 (0.91) 15.08 (4.41) 1.32 0.01 36.52 (0.86) 7.56 (7.78)

Lasso1,TMEV 0.57 0.05 100 (0.00) 100 (0.00) 1.05 0.02 99.80 (0.22) 99.80 (2.01) 1.34 0.01 100 (0.00) 100 (0.00)

Lasso1,EMEV 202.82 0.40 100 (0.00) 100 (0.00) 226949.00 0.20 99.80 (0.22) 99.80 (2.01) 12846.23 0.00 100 (0.00) 100 (0.00)

Lasso2,naive 0.49 0.06 62.40 (0.95) 33.08 (1.12) 0.88 0.02 43.64 (0.85) 11.72 (2.43) 1.10 0.01 34.36 (0.81) 5.46 (3.09)

Lasso2,TMEV 0.50 0.05 100 (0.00) 100 (0.00) 0.90 0.02 99.80 (0.22) 99.80 (2.01) 1.17 0.01 100 (0.00) 100 (0.00)

Lasso2,EMEV 331.38 0.38 100 (0.00) 100 (0.00) 238399.00 0.20 99.80 (0.22) 99.80 (2.01) 10694.51 0.00 100 (0.00) 100 (0.00)

σ2
u = 0.1

OLSnaive 1.14 0.04 10.78 0.01

OLSTMEV 1.82 0.01 28066.70 -0.05

OLSEMEV 900.00 -0.02 4952.02 0.50

Lasso1,naive 0.61 0.07 66.60 (1.04) 41.56 (1.24) 1.13 0.02 41.28 (0.95) 17.52 (4.78) 1.14 0.01 37.32 (0.83) 7.76 (7.83)

Lasso1,TMEV 0.78 0.05 100 (0.00) 100 (0.00) 310.33 0.01 100 (0.00) 100 (0.00) 770.41 0.01 100 (0.00) 100 (0.00)

Lasso1,EMEV 961.73 -0.02 100 (0.00) 100 (0.00) 3786.58 0.46 100 (0.00) 100 (0.00) 27.45 0.02 100 (0.00) 100 (0.00)

Lasso2,naive 0.57 0.07 64.24 (0.97) 36.76 (1.09) 0.97 0.02 38.44 (0.87) 13.92 (2.36) 0.94 0.01 35.40 (0.78) 5.38 (3.01)

Lasso2,TMEV 0.70 0.06 100 (0.00) 100 (0.00) 278.91 0.01 99.80 (0.22) 99.80 (2.01) 947.64 0.01 99.60 (0.32) 99.60 (9.16)

Lasso2,EMEV 837.07 -0.01 100 (0.00) 100 (0.00) 3377.47 0.43 99.80 (0.22) 99.80 (2.01) 24.78 0.02 99.60 (0.32) 99.60 (9.16)

σ2
u = 1

OLSnaive 0.98 0.12 5.11 0.02

OLSTMEV 2666.22 0.09 8784010.00 -0.11

OLSEMEV 115.84 0.12 5.35 -0.01

Lasso1,naive 0.86 0.11 73.64 (0.96) 61.76 (1.13) 1.19 0.02 45.44 (1.09) 22.33 (4.24) 1.41 0.01 25.88 (0.90) 11.09 (7.48)

Lasso1,TMEV 1841.29 0.17 100 (0.00) 100 (0.00) 204592.00 0.01 99.60 (0.32) 99.60 (2.84) 2826.18 0.01 100 (0.00) 100 (0.00)

Lasso1,EMEV 69.52 0.09 100 (0.00) 100 (0.00) 2.67 -0.01 99.60 (0.32) 99.60 (2.84) 4204.56 0.26 100 (0.00) 100 (0.00)

Lasso2,naive 0.85 0.11 72.04 (0.94) 59.00 (1.12) 1.15 0.02 41.04 (1.05) 17.66 (3.01) 1.33 0.01 21.68 (0.85) 7.67 (3.55)

Lasso2,TMEV 2177.50 0.17 100 (0.00) 100 (0.00) 119330.00 0.01 98.8 (0.54) 98.80 (4.91) 1581.06 0.01 99.20 (0.45) 99.20 (12.93)

Lasso2,EMEV 35.85 0.05 100 (0.00) 100 (0.00) 2.55 -0.01 98.8 (0.54) 98.80 (4.91) 2074.63 0.18 99.20 (0.45) 99.20 (12.93)

Table 34: MSE, bias, TPF and FPF for β3 (n=100, ρ = 0.5, ε = 2.5)
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A.2.2 Density plots for the tuning parameter λ (n=100)
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u = 0.01 ε=5, ρ=0.9, σ2
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Figure 7: Density plots for the tuning parameter λOptL1(n=100, p=10)
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Figure 8: Density plots for the tuning parameter λcv.glmnet (n=100, p=10)
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Figure 9: Density plots for the tuning parameter λOptL1(n=100, p=50)
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Figure 10: Density plots for the tuning parameter λcv.glmnet (n=100, p=50)
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Figure 11: Density plots for the tuning parameter λOptL1(n=100, p=150)
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Figure 12: Density plots for the tuning parameter λcv.glmnet (n=100, p=150)
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A.2.3 Tables containing MSE, bias, TPF and FPF (n=500)

p = 50 p = 250 p = 750

MSE Bias TPF FPF MSE Bias TPF FPF MSE Bias TPF FPF

σ2
u = 0.01

OLSnaive 1.08 0.01 9.55 0.00

OLSTMEV 1.34 0.00 20005.50 0.00

OLSEMEV 217.52 0.12 971.13 0.02

Lasso1,naive 0.39 0.02 100 (0.00) 24.91 (2.87) 0.62 0.01 100 (0.00) 8.79 (4.72)

Lasso1,TMEV 0.31 0.01 100 (0.00) 100 (0.00) 1605.81 0.00 100 (0.00) 100 (0.00)

Lasso1,EMEV 67.92 0.12 100 (0.00) 100 (0.00) 301.87 0.02 100 (0.00) 100 (0.00)

Lasso2,naive 0.41 0.02 100 (0.00) 27.02 (3.41) 0.65 0.01 100 (0.00) 9.19 (5.07)

Lasso2,TMEV 0.34 0.01 100 (0.00) 100 (0.00) 1571.35 0.00 100 (0.00) 100 (0.00)

Lasso2,EMEV 68.25 0.12 100 (0.00) 100 (0.00) 298.87 0.02 100 (0.00) 100 (0.00)

σ2
u = 0.1

OLSnaive 1.77 0.05 7.52 0.01

OLSTMEV 196349.00 0.09 236860.00 0.00

OLSEMEV 49891.70 -0.21 76.05 0.02

Lasso1,naive 1.54 0.05 100 (0.00) 55.09 (2.77) 2.18 0.01 99.92 (0.06) 19.92 (6.86)

Lasso1,TMEV 89466.00 0.03 100 (0.00) 100 (0.00) 66942.60 0.00 100 (0.00) 100 (0.00)

Lasso1,EMEV 37565.90 -0.21 100 (0.00) 100 (0.00) 23.13 0.02 100 (0.00) 100 (0.00)

Lasso2,naive 1.56 0.05 100 (0.00) 55.51 (2.81) 2.20 0.01 99.92 (0.06) 19.35 (5.39)

Lasso2,TMEV 88112.00 0.03 100 (0.00) 100 (0.00) 64469.90 0.00 100 (0.00) 100 (0.00)

Lasso2,EMEV 37568.50 -0.21 100 (0.00) 100 (0.00) 20.53 0.02 100 (0.00) 100 (0.00)

σ2
u = 1

OLSnaive 3.87 0.09 5.45 0.02

OLSTMEV 7099.59 0.11 1999470.00 -0.04

OLSEMEV 84.27 -0.03 114.59 0.01

Lasso1,naive 3.86 0.09 99.80 (0.10) 91.96 (1.72) 4.51 0.02 93.48 (0.56) 44.00 (6.11)

Lasso1,TMEV 7743.47 0.10 100 (0.00) 100 (0.00) 2327700.00 -0.06 100 (0.00) 100 (0.00)

Lasso1,EMEV 87.13 -0.03 100 (0.00) 100 (0.00) 111.46 0.01 100 (0.00) 100 (0.00)

Lasso2,naive 3.86 0.09 99.80 (0.10) 91.83 (1.69) 4.51 0.02 93.32 (0.57) 43.48 (5.75)

Lasso2,TMEV 7634.88 0.10 100 (0.00) 100 (0.00) 2323210.00 -0.06 100 (0.00) 100 (0.00)

Lasso2,EMEV 85.88 -0.03 100 (0.00) 100 (0.00) 111.24 0.01 100 (0.00) 100 (0.00)

Table 35: MSE, bias, TPF and FPF for β1 (n=500, ρ = 0.9, ε = 1)
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p = 50 p = 250 p = 750

MSE Bias TPF FPF MSE Bias TPF FPF MSE Bias TPF FPF

σ2
u = 0.01

OLSnaive 1.02 0.00 9.20 0.00

OLSTMEV 1.29 0.00 21966.20 0.00

OLSEMEV 104.57 0.06 548.69 0.01

Lasso1,naive 0.32 0.02 99.52 (0.15) 25.43 (4.21) 0.51 0.00 97.28 (0.35) 8.84 (7.33)

Lasso1,TMEV 0.32 0.01 100 (0.00) 100 (0.00) 306.36 0.00 100 (0.00) 100 (0.00)

Lasso1,EMEV 15.27 0.06 100 (0.00) 100 (0.00) 56.31 0.01 100 (0.00) 100 (0.00)

Lasso2,naive 0.32 0.02 99.44 (0.17) 24.20 (3.31) 0.51 0.00 96.96 (0.39) 8.26 (4.95)

Lasso2,TMEV 0.32 0.01 100 (0.00) 100 (0.00) 296.72 0.00 100 (0.00) 100 (0.00)

Lasso2,EMEV 15.72 0.06 100 (0.00) 100 (0.00) 52.35 0.01 100 (0.00) 100 (0.00)

σ2
u = 0.1

OLSnaive 0.85 0.02 5.64 0.00

OLSTMEV 105284.00 0.05 145567.00 0.00

OLSEMEV 17976.10 -0.09 67.87 0.01

Lasso1,naive 0.57 0.03 98.6 (0.26) 41.34 (3.04) 0.86 0.01 90.80 (0.64) 14.53 (6.30)

Lasso1,TMEV 13141.90 0.00 100 (0.00) 100 (0.00) 15687.00 0.00 100 (0.00) 100 (0.00)

Lasso1,EMEV 9671.54 -0.11 100 (0.00) 100 (0.00) 8.78 0.01 100 (0.00) 100 (0.00)

Lasso2,naive 0.58 0.03 98.52 (0.27) 40.83 (2.82) 0.86 0.01 90.60 (0.64) 14.13 (5.02)

Lasso2,TMEV 12818.40 0.00 100 (0.00) 100 (0.00) 15061.60 0.00 100 (0.00) 100 (0.00)

Lasso2,EMEV 9612.76 -0.11 100 (0.00) 100 (0.00) 4.95 0.01 100 (0.00) 100 (0.00)

σ2
u = 1

OLSnaive 1.04 0.04 2.04 0.01

OLSTMEV 3454.02 0.06 1488650.00 -0.03

OLSEMEV 13.67 -0.01 29.23 0.00

Lasso1,naive 1.02 0.04 96.28 (0.40) 78.75 (2.56) 1.22 0.01 69.08 (1.01) 31.27 (6.31)

Lasso1,TMEV 3443.35 0.05 100 (0.00) 100 (0.00) 794474.00 -0.03 100 (0.00) 100 (0.00)

Lasso1,EMEV 17.02 -0.01 100 (0.00) 100 (0.00) 27.31 0.00 100 (0.00) 100 (0.00)

Lasso2,naive 1.02 0.04 96.32 (0.40) 78.46 (2.44) 1.22 0.01 69.04 (1.02) 30.78 (5.77)

Lasso2,TMEV 3253.21 0.05 100 (0.00) 100 (0.00) 788765.00 -0.03 100 (0.00) 100 (0.00)

Lasso2,EMEV 17.03 -0.01 100 (0.00) 100 (0.00) 27.02 0.00 100 (0.00) 100 (0.00)

Table 36: MSE, bias, TPF and FPF for β2 (n=500, ρ = 0.9, ε = 1)
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p = 50 p = 250 p = 750

MSE Bias TPF FPF MSE Bias TPF FPF MSE Bias TPF FPF

σ2
u = 0.01

OLSnaive 1.02 0.00 9.21 0.00

OLSTMEV 1.29 0.00 19331.20 0.00

OLSEMEV 134.41 0.05 648.46 0.01

Lasso1,naive 0.25 0.01 71.72 (0.79) 22.19 (3.80) 0.37 0.00 58.44 (0.80) 7.22 (6.51)

Lasso1,TMEV 0.24 0.01 100 (0.00) 100 (0.00) 787.35 0.00 100 (0.00) 100 (0.00)

Lasso1,EMEV 25.14 0.04 100 (0.00) 100 (0.00) 68.00 0.01 100 (0.00) 100 (0.00)

Lasso2,naive 0.24 0.01 70.84 (0.80) 20.96 (3.20) 0.36 0.00 57.84 (0.80) 6.78 (4.86)

Lasso2,TMEV 0.23 0.01 100 (0.00) 100 (0.00) 770.55 0.00 100 (0.00) 100 (0.00)

Lasso2,EMEV 23.95 0.04 100 (0.00) 100 (0.00) 65.88 0.01 100 (0.00) 100 (0.00)

σ2
u = 0.1

OLSnaive 0.90 0.02 5.66 0.00

OLSTMEV 114371.00 0.08 113155.00 -0.01

OLSEMEV 23287.90 -0.06 90.02 0.01

Lasso1,naive 0.58 0.02 77.68 (0.77) 36.34 (3.02) 0.71 0.01 57.32 (0.77) 11.59 (5.41)

Lasso1,TMEV 23566.90 0.04 100 (0.00) 100 (0.00) 20747.50 -0.01 100 (0.00) 100 (0.00)

Lasso1,EMEV 14252.40 -0.07 100 (0.00) 100 (0.00) 9.69 0.01 100 (0.00) 100 (0.00)

Lasso2,naive 0.58 0.02 77.44 (0.77) 35.82 (2.89) 0.71 0.01 56.92 (0.77) 11.29 (4.56)

Lasso2,TMEV 23396.00 0.04 100 (0.00) 100 (0.00) 20427.70 -0.01 100 (0.00) 100 (0.00)

Lasso2,EMEV 14279.80 -0.07 100 (0.00) 100 (0.00) 9.69 0.01 100 (0.00) 100 (0.00)

σ2
u = 1

OLSnaive 1.15 0.03 2.12 0.01

OLSTMEV 5365.51 0.06 1616120.00 0.00

OLSEMEV 30.64 -0.01 18.82 0.00

Lasso1,naive 1.12 0.03 84.44 (0.74) 70.36 (2.80) 1.27 0.01 52.00 (1.02) 26.31 (6.14)

Lasso1,TMEV 4457.17 0.05 100 (0.00) 100 (0.00) 417329.00 -0.01 100 (0.00) 100 (0.00)

Lasso1,EMEV 10.97 -0.01 100 (0.00) 100 (0.00) 16.97 0.00 100 (0.00) 100 (0.00)

Lasso2,naive 1.12 0.03 84.44 (0.74) 70.24 (2.71) 1.27 0.01 52.20 (1.02) 25.91 (5.57)

Lasso2,TMEV 4434.26 0.05 100 (0.00) 100 (0.00) 430842.00 -0.01 100 (0.00) 100 (0.00)

Lasso2,EMEV 10.95 -0.01 100 (0.00) 100 (0.00) 17.04 0.00 100 (0.00) 100 (0.00)

Table 37: MSE, bias, TPF and FPF for β3 (n=500, ρ = 0.9, ε = 1)
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p = 50 p = 250 p = 750

MSE Bias TPF FPF MSE Bias TPF FPF MSE Bias TPF FPF

σ2
u = 0.01

OLSnaive 0.22 0.00 2.03 0.00

OLSTMEV 0.23 0.00 2.41 0.00

OLSEMEV 2804.63 0.11 6910.83 0.02

Lasso1,naive 0.07 0.01 100 (0.00) 23.59 (4.12) 0.12 0.00 100 (0.00) 9.18 (7.97)

Lasso1,TMEV 0.06 0.00 100 (0.00) 100 (0.00) 0.09 0.00 100 (0.00) 100 (0.00)

Lasso1,EMEV 2440.68 0.11 100 (0.00) 100 (0.00) 4473.30 0.02 100 (0.00) 100 (0.00)

Lasso2,naive 0.06 0.01 100 (0.00) 23.12 (3.51) 0.12 0.00 100 (0.00) 8.46 (5.51)

Lasso2,TMEV 0.05 0.01 100 (0.00) 100 (0.00) 0.09 0.00 100 (0.00) 100 (0.00)

Lasso2,EMEV 2442.05 0.11 100 (0.00) 100 (0.00) 4447.36 0.02 100 (0.00) 100 (0.00)

σ2
u = 0.1

OLSnaive 0.37 0.02 2.49 0.00

OLSTMEV 0.45 0.00 206700.00 0.00

OLSEMEV 240073.00 -3.16 256.47 0.03

Lasso1,naive 0.25 0.02 100 (0.00) 40.46 (3.47) 0.36 0.00 100 (0.00) 13.53 (6.29)

Lasso1,TMEV 0.14 0.00 100 (0.00) 100 (0.00) 53837.70 0.01 100 (0.00) 100 (0.00)

Lasso1,EMEV 233381.00 -3.12 100 (0.00) 100 (0.00) 976.72 0.02 100 (0.00) 100 (0.00)

Lasso2,naive 0.25 0.02 100 (0.00) 39.94 (3.17) 0.36 0.00 100 (0.00) 13.10 (5.20)

Lasso2,TMEV 0.14 0.00 100 (0.00) 100 (0.00) 53342.50 0.01 100 (0.00) 100 (0.00)

Lasso2,EMEV 235073.00 -3.13 100 (0.00) 100 (0.00) 976.43 0.03 100 (0.00) 100 (0.00)

σ2
u = 1

OLSnaive 2.25 0.06 3.95 0.01

OLSTMEV 428608.00 -0.27 16219100.00 -0.07

OLSEMEV 55.94 -0.02 136.77 0.01

Lasso1,naive 2.24 0.06 100 (0.00) 80.13 (2.41) 2.54 0.01 100 (0.00) 32.34 (6.11)

Lasso1,TMEV 329976.00 -0.24 100 (0.00) 100 (0.00) 1299210.00 0.00 100 (0.00) 100 (0.00)

Lasso1,EMEV 85.45 -0.02 100 (0.00) 100 (0.00) 131.34 0.01 100 (0.00) 100 (0.00)

Lasso2,naive 2.24 0.06 100 (0.00) 79.98 (2.35) 2.54 0.01 100 (0.00) 31.55 (5.25)

Lasso2,TMEV 331967.00 -0.24 100 (0.00) 100 (0.00) 1399780.00 0.00 100 (0.00) 100 (0.00)

Lasso2,EMEV 85.30 -0.02 100 (0.00) 100 (0.00) 129.00 0.01 100 (0.00) 100 (0.00)

Table 38: MSE, bias, TPF and FPF for β1 (n=500, ρ = 0.5, ε = 1)
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p = 50 p = 250 p = 750

MSE Bias TPF FPF MSE Bias TPF FPF MSE Bias TPF FPF

σ2
u = 0.01

OLSnaive 0.21 0.00 1.95 0.00

OLSTMEV 0.22 0.00 2.32 0.00

OLSEMEV 685.51 0.06 2489.49 0.01

Lasso1,naive 0.06 0.01 100 (0.00) 22.91 (4.31) 0.11 0.00 100 (0.00) 9.24 (10.06)

Lasso1,TMEV 0.05 0.01 100 (0.00) 100 (0.00) 0.10 0.00 100 (0.00) 100 (0.00)

Lasso1,EMEV 524.47 0.06 100 (0.00) 100 (0.00) 980.10 0.01 100 (0.00) 100 (0.00)

Lasso2,naive 0.06 0.01 100 (0.00) 22.00 (3.57) 0.10 0.00 100 (0.00) 8.24 (5.79)

Lasso2,TMEV 0.05 0.01 100 (0.00) 100 (0.00) 0.09 0.00 100 (0.00) 100 (0.00)

Lasso2,EMEV 518.09 0.06 100 (0.00) 100 (0.00) 913.43 0.01 100 (0.00) 100 (0.00)

σ2
u = 0.1

OLSnaive 0.23 0.01 1.87 0.00

OLSTMEV 0.33 0.00 151581.00 0.00

OLSEMEV 62946.60 -1.62 89.16 0.01

Lasso1,naive 0.12 0.01 100 (0.00) 32.32 (3.73) 0.18 0.00 100 (0.00) 11.05 (6.93)

Lasso1,TMEV 0.08 0.00 100 (0.00) 100 (0.00) 14073.90 0.00 100 (0.00) 100 (0.00)

Lasso1,EMEV 59041.90 -1.56 100 (0.00) 100 (0.00) 200.86 0.01 100 (0.00) 100 (0.00)

Lasso2,naive 0.11 0.01 100 (0.00) 31.62 (3.37) 0.17 0.00 100 (0.00) 10.48 (5.07)

Lasso2,TMEV 0.08 0.00 100 (0.00) 100 (0.00) 14128.90 0.00 100 (0.00) 100 (0.00)

Lasso2,EMEV 59769.40 -1.57 100 (0.00) 100 (0.00) 200.35 0.01 100 (0.00) 100 (0.00)

σ2
u = 1

OLSnaive 0.62 0.03 1.49 0.01

OLSTMEV 148100.00 -0.13 5156790.00 -0.05

OLSEMEV 7.94 -0.01 34.51 0.01

Lasso1,naive 0.60 0.03 100 (0.00) 68.83 (2.88) 0.71 0.01 99.96 (0.04) 25.70 (6.60)

Lasso1,TMEV 90447.00 -0.12 100 (0.00) 100 (0.00) 770733.00 0.00 100 (0.00) 100 (0.00)

Lasso1,EMEV 19.09 -0.01 100 (0.00) 100 (0.00) 31.51 0.01 100 (0.00) 100 (0.00)

Lasso2,naive 0.60 0.03 100 (0.00) 68.47 (2.83) 0.71 0.01 99.96 (0.04) 25.06 (5.49)

Lasso2,TMEV 90182.40 -0.12 100 (0.00) 100 (0.00) 782889.00 0.00 100 (0.00) 100 (0.00)

Lasso2,EMEV 18.49 -0.01 100 (0.00) 100 (0.00) 31.51 0.01 100 (0.00) 100 (0.00)

Table 39: MSE, bias, TPF and FPF for β2 (n=500, ρ = 0.5, ε = 1)
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p = 50 p = 250 p = 750

MSE Bias TPF FPF MSE Bias TPF FPF MSE Bias TPF FPF

σ2
u = 0.01

OLSnaive 0.21 0.00 1.95 0.00

OLSTMEV 0.22 0.00 2.32 0.00

OLSEMEV 1714.72 0.05 2935.00 0.01

Lasso1,naive 0.05 0.01 88.92 (0.61) 21.33 (4.16) 0.09 0.00 79.36 (0.63) 8.01 (8.53)

Lasso1,TMEV 0.05 0.00 100 (0.00) 100 (0.00) 0.08 0.00 100 (0.00) 100 (0.00)

Lasso1,EMEV 1463.75 0.05 100 (0.00) 100 (0.00) 1327.20 0.01 100 (0.00) 100 (0.00)

Lasso2,naive 0.05 0.01 88.76 (0.62) 20.57 (3.56) 0.09 0.00 79.12 (0.63) 7.56 (6.32)

Lasso2,TMEV 0.05 0.01 100 (0.00) 100 (0.00) 0.08 0.00 100 (0.00) 100 (0.00)

Lasso2,EMEV 1462.88 0.05 100 (0.00) 100 (0.00) 1241.50 0.01 100 (0.00) 100 (0.00)

σ2
u = 0.1

OLSnaive 0.23 0.01 1.89 0.00

OLSTMEV 0.34 0.00 155438.00 0.00

OLSEMEV 38488.00 -1.26 1143.08 0.01

Lasso1,naive 0.11 0.01 88.72 (0.61) 28.53 (3.80) 0.16 0.00 77.68 (0.71) 9.94 (7.70)

Lasso1,TMEV 0.08 0.00 100 (0.00) 100 (0.00) 15638.00 0.00 100 (0.00) 100 (0.00)

Lasso1,EMEV 35428.10 -1.21 100 (0.00) 100 (0.00) 75.73 0.01 100 (0.00) 100 (0.00)

Lasso2,naive 0.11 0.01 88.48 (0.62) 28.00 (3.53) 0.15 0.00 77.64 (0.70) 9.28 (5.25)

Lasso2,TMEV 0.07 0.00 100 (0.00) 100 (0.00) 15746.70 0.00 100 (0.00) 100 (0.00)

Lasso2,EMEV 36899.00 -1.24 100 (0.00) 100 (0.00) 76.64 0.01 100 (0.00) 100 (0.00)

σ2
u = 1

OLSnaive 0.66 0.02 1.55 0.01

OLSTMEV 222620.00 -0.15 6495340.00 -0.06

OLSEMEV 2.92 0.00 21.83 0.00

Lasso1,naive 0.63 0.02 90.80 (0.57) 58.99 (2.98) 0.73 0.01 77.16 (0.78) 21.87 (6.73)

Lasso1,TMEV 275087.00 -0.14 100 (0.00) 100 (0.00) 1098690.00 -0.01 100 (0.00) 100 (0.00)

Lasso1,EMEV 4.13 -0.01 100 (0.00) 100 (0.00) 19.13 0.00 100 (0.00) 100 (0.00)

Lasso2,naive 0.63 0.02 90.84 (0.56) 58.67 (2.87) 0.73 0.01 77.08 (0.78) 21.19 (5.18)

Lasso2,TMEV 272544.00 -0.14 100 (0.00) 100 (0.00) 1091400.00 -0.01 100 (0.00) 100 (0.00)

Lasso2,EMEV 4.11 -0.01 100 (0.00) 100 (0.00) 19.29 0.00 100 (0.00) 100 (0.00)

Table 40: MSE, bias, TPF and FPF for β3 (n=500, ρ = 0.5, ε = 1)
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p = 50 p = 250 p = 750

MSE Bias TPF FPF MSE Bias TPF FPF MSE Bias TPF FPF

σ2
u = 0.01

OLSnaive 0.13 0.00 1.18 0.00

OLSTMEV 0.13 0.00 1.30 0.00

OLSEMEV 16961.00 0.25 47335.20 0.02

Lasso1,naive 0.04 0.00 100 (0.00) 21.53 (5.02) 0.08 0.00 100 (0.00) 8.58 (10.97)

Lasso1,TMEV 0.03 0.00 100 (0.00) 100 (0.00) 0.06 0.00 100 (0.00) 100 (0.00)

Lasso1,EMEV 15380.70 0.23 100 (0.00) 100 (0.00) 42052.20 0.02 100 (0.00) 100 (0.00)

Lasso2,naive 0.04 0.00 100 (0.00) 22.53 (4.44) 0.07 0.00 100 (0.00) 7.69 (6.34)

Lasso2,TMEV 0.03 0.00 100 (0.00) 100 (0.00) 0.06 0.00 100 (0.00) 100 (0.00)

Lasso2,EMEV 15812.20 0.23 100 (0.00) 100 (0.00) 41935.60 0.02 100 (0.00) 100 (0.00)

σ2
u = 0.1

OLSnaive 0.20 0.01 1.52 0.00

OLSTMEV 0.22 0.00 19001.70 -0.01

OLSEMEV 740.65 -0.05 1889.31 -0.06

Lasso1,naive 0.12 0.01 100 (0.00) 29.92 (4.51) 0.21 0.00 100 (0.00) 11.04 (9.50)

Lasso1,TMEV 0.06 0.00 100 (0.00) 100 (0.00) 13716.30 -0.01 100 (0.00) 100 (0.00)

Lasso1,EMEV 593.35 -0.05 100 (0.00) 100 (0.00) 1375.32 -0.06 100 (0.00) 100 (0.00)

Lasso2,naive 0.12 0.01 100 (0.00) 29.68 (3.95) 0.21 0.00 100 (0.00) 10.48 (6.70)

Lasso2,TMEV 0.06 0.00 100 (0.00) 100 (0.00) 13696.50 -0.01 100 (0.00) 100 (0.00)

Lasso2,EMEV 516.12 -0.04 100 (0.00) 100 (0.00) 1379.58 -0.06 100 (0.00) 100 (0.00)

σ2
u = 1

OLSnaive 1.36 0.04 3.26 0.00

OLSTMEV 436518.00 -0.07 28998.60 0.00

OLSEMEV 13.95 -0.01 20.03 0.00

Lasso1,naive 1.35 0.03 100 (0.00) 57.01 (4.01) 2.04 0.00 100 (0.00) 26.32 (8.53)

Lasso1,TMEV 367342.00 -0.08 100 (0.00) 100 (0.00) 12422.00 0.00 100 (0.00) 100 (0.00)

Lasso1,EMEV 11.88 -0.01 100 (0.00) 100 (0.00) 11.92 0.00 100 (0.00) 100 (0.00)

Lasso2,naive 1.35 0.03 100 (0.00) 56.57 (3.72) 2.04 0.00 100 (0.00) 23.68 (6.28)

Lasso2,TMEV 362068.00 -0.08 100 (0.00) 100 (0.00) 11938.70 0.00 100 (0.00) 100 (0.00)

Lasso2,EMEV 11.86 -0.01 100 (0.00) 100 (0.00) 11.65 0.00 100 (0.00) 100 (0.00)

Table 41: MSE, bias, TPF and FPF for β1 (n=500, ρ = 0.1, ε = 1)
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p = 50 p = 250 p = 750

MSE Bias TPF FPF MSE Bias TPF FPF MSE Bias TPF FPF

σ2
u = 0.01

OLSnaive 0.12 0.00 1.13 0.00

OLSTMEV 0.13 0.00 1.25 0.00

OLSEMEV 4605.95 0.12 13916.00 0.01

Lasso1,naive 0.04 0.00 100 (0.00) 22.05 (5.52) 0.07 0.00 100 (0.00) 8.29 (10.74)

Lasso1,TMEV 0.03 0.00 100 (0.00) 100 (0.00) 0.06 0.00 100 (0.00) 100 (0.00)

Lasso1,EMEV 3721.43 0.11 100 (0.00) 100 (0.00) 10253.60 0.01 100 (0.00) 100 (0.00)

Lasso2,naive 0.04 0.00 100 (0.00) 21.71 (4.43) 0.07 0.00 100 (0.00) 7.87 (7.20)

Lasso2,TMEV 0.03 0.00 100 (0.00) 100 (0.00) 0.06 0.00 100 (0.00) 100 (0.00)

Lasso2,EMEV 3762.88 0.11 100 (0.00) 100 (0.00) 10485.00 0.01 100 (0.00) 100 (0.00)

σ2
u = 0.1

OLSnaive 0.13 0.00 1.14 0.00

OLSTMEV 0.16 0.00 7713.11 -0.01

OLSEMEV 282.19 -0.03 657.93 -0.03

Lasso1,naive 0.06 0.00 100 (0.00) 25.96 (4.80) 0.11 0.00 100 (0.00) 9.30 (10.11)

Lasso1,TMEV 0.04 0.00 100 (0.00) 100 (0.00) 2787.45 0.00 100 (0.00) 100 (0.00)

Lasso1,EMEV 182.49 -0.02 100 (0.00) 100 (0.00) 322.44 -0.03 100 (0.00) 100 (0.00)

Lasso2,naive 0.06 0.01 100 (0.00) 26.25 (4.33) 0.11 0.00 100 (0.00) 8.78 (6.32)

Lasso2,TMEV 0.04 0.00 100 (0.00) 100 (0.00) 2859.44 0.00 100 (0.00) 100 (0.00)

Lasso2,EMEV 181.21 -0.02 100 (0.00) 100 (0.00) 325.46 -0.03 100 (0.00) 100 (0.00)

σ2
u = 1

OLSnaive 0.38 0.02 1.21 0.01

OLSTMEV 368930.00 -0.03 34442.70 0.01

OLSEMEV 3.65 0.00 7.37 0.00

Lasso1,naive 0.37 0.01 100 (0.00) 46.63 (4.58) 0.58 0.00 100 (0.00) 20.76 (9.67)

Lasso1,TMEV 137136.00 -0.03 100 (0.00) 100 (0.00) 2690.65 0.01 100 (0.00) 100 (0.00)

Lasso1,EMEV 2.91 0.00 100 (0.00) 100 (0.00) 3.06 0.00 100 (0.00) 100 (0.00)

Lasso2,naive 0.37 0.01 100 (0.00) 46.22 (4.23) 0.58 0.00 100 (0.00) 18.69 (6.87)

Lasso2,TMEV 136981.00 -0.03 100 (0.00) 100 (0.00) 2741.03 0.01 100 (0.00) 100 (0.00)

Lasso2,EMEV 2.90 0.00 100 (0.00) 100 (0.00) 2.97 0.00 100 (0.00) 100 (0.00)

Table 42: MSE, bias, TPF and FPF for β2 (n=500, ρ = 0.1, ε = 1)
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p = 50 p = 250 p = 750

MSE Bias TPF FPF MSE Bias TPF FPF MSE Bias TPF FPF

σ2
u = 0.01

OLSnaive 0.12 0.00 1.13 0.00

OLSTMEV 0.13 0.00 1.25 0.00

OLSEMEV 2161.83 0.10 18051.90 0.01

Lasso1,naive 0.03 0.00 89.20 (0.58) 19.34 (5.48) 0.06 0.00 80.8 (0.62) 7.12 (10.40)

Lasso1,TMEV 0.03 0.00 100 (0.00) 100 (0.00) 0.05 0.00 100 (0.00) 100 (0.00)

Lasso1,EMEV 2138.80 0.08 100 (0.00) 100 (0.00) 12344.30 0.00 100 (0.00) 100 (0.00)

Lasso2,naive 0.03 0.00 89.28 (0.58) 19.16 (4.38) 0.06 0.00 80.92 (0.62) 6.81 (6.88)

Lasso2,TMEV 0.03 0.00 100 (0.00) 100 (0.00) 0.05 0.00 100 (0.00) 100 (0.00)

Lasso2,EMEV 2194.52 0.08 100 (0.00) 100 (0.00) 12027.50 0.00 100 (0.00) 100 (0.00)

σ2
u = 0.1

OLSnaive 0.14 0.00 1.14 0.00

OLSTMEV 0.17 0.00 7440.42 -0.01

OLSEMEV 25.71 -0.01 443.34 -0.02

Lasso1,naive 0.06 0.00 92.60 (0.53) 23.36 (4.82) 0.10 0.00 83.12 (0.59) 8.20 (9.74)

Lasso1,TMEV 0.04 0.00 100 (0.00) 100 (0.00) 2138.64 0.00 100 (0.00) 100 (0.00)

Lasso1,EMEV 33.11 -0.01 100 (0.00) 100 (0.00) 110.49 -0.02 100 (0.00) 100 (0.00)

Lasso2,naive 0.06 0.00 92.56 (0.53) 23.64 (4.22) 0.10 0.00 83.20 (0.59) 7.83 (6.62)

Lasso2,TMEV 0.04 0.00 100 (0.00) 100 (0.00) 2174.98 0.00 100 (0.00) 100 (0.00)

Lasso2,EMEV 32.15 -0.01 100 (0.00) 100 (0.00) 112.24 -0.02 100 (0.00) 100 (0.00)

σ2
u = 1

OLSnaive 0.46 0.02 1.24 0.00

OLSTMEV 231422.00 -0.03 38465.90 0.00

OLSEMEV 2.67 0.00 7.83 0.00

Lasso1,naive 0.43 0.01 93.00 (0.49) 40.72 (5.02) 0.56 0.00 73.64 (0.74) 15.54 (9.84)

Lasso1,TMEV 37340.20 -0.04 100 (0.00) 100 (0.00) 3280.45 0.00 100 (0.00) 100 (0.00)

Lasso1,EMEV 3.38 0.00 100 (0.00) 100 (0.00) 3.41 0.00 100 (0.00) 100 (0.00)

Lasso2,naive 0.43 0.01 92.92 (0.50) 40.29 (4.24) 0.56 0.00 72.64 (0.76) 14.04 (7.45)

Lasso2,TMEV 10156.10 -0.04 100 (0.00) 100 (0.00) 3256.88 0.00 100 (0.00) 100 (0.00)

Lasso2,EMEV 3.40 0.00 100 (0.00) 100 (0.00) 3.26 0.00 100 (0.00) 100 (0.00)

Table 43: MSE, bias, TPF and FPF for β3 (n=500, ρ = 0.1, ε = 1)
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p = 50 p = 250 p = 750

MSE Bias TPF FPF MSE Bias TPF FPF MSE Bias TPF FPF

σ2
u = 0.01

OLSnaive 1.36 0.00 12.34 0.00

OLSTMEV 1.43 0.00 14.72 0.00

OLSEMEV 30980.90 0.20 33223.90 0.02

Lasso1,naive 0.39 0.02 100 (0.00) 23.80 (4.46) 0.64 0.00 100 (0.00) 8.52 (8.82)

Lasso1,TMEV 0.38 0.01 100 (0.00) 100 (0.00) 0.60 0.00 100 (0.00) 100 (0.00)

Lasso1,EMEV 35505.80 0.17 100 (0.00) 100 (0.00) 12309.10 0.02 100 (0.00) 100 (0.00)

Lasso2,naive 0.38 0.02 100 (0.00) 22.42 (3.77) 0.63 0.00 100 (0.00) 7.92 (6.02)

Lasso2,TMEV 0.36 0.01 100 (0.00) 100 (0.00) 0.58 0.00 100 (0.00) 100 (0.00)

Lasso2,EMEV 31211.70 0.18 100 (0.00) 100 (0.00) 12385.60 0.02 100 (0.00) 100 (0.00)

σ2
u = 0.1

OLSnaive 1.34 0.02 11.25 0.00

OLSTMEV 2.04 0.00 66192000.00 0.04

OLSEMEV 3945.74 0.29 143943.00 0.01

Lasso1,naive 0.61 0.02 100 (0.00) 29.76 (3.98) 1.12 0.01 100 (0.00) 11.24 (7.32)

Lasso1,TMEV 0.49 0.01 100 (0.00) 100 (0.00) 149039.00 -0.01 100 (0.00) 100 (0.00)

Lasso1,EMEV 3488.24 0.28 100 (0.00) 100 (0.00) 38141.60 0.02 100 (0.00) 100 (0.00)

Lasso2,naive 0.60 0.02 100 (0.00) 29.03 (3.54) 1.11 0.01 100 (0.00) 10.69 (5.12)

Lasso2,TMEV 0.47 0.01 100 (0.00) 100 (0.00) 141324.00 -0.01 100 (0.00) 100 (0.00)

Lasso2,EMEV 3404.13 0.28 100 (0.00) 100 (0.00) 38483.50 0.02 100 (0.00) 100 (0.00)

σ2
u = 1

OLSnaive 2.68 0.06 7.49 0.01

OLSTMEV 943795.00 -0.17 1735990.00 0.03

OLSEMEV 234.45 -0.02 51.82 -0.01

Lasso1,naive 2.57 0.06 100 (0.00) 63.99 (2.79) 3.20 0.01 99.44 (0.17) 23.07 (7.10)

Lasso1,TMEV 53602.10 0.02 100 (0.00) 100 (0.00) 3346780.00 0.03 100 (0.00) 100 (0.00)

Lasso1,EMEV 213.92 -0.02 100 (0.00) 100 (0.00) 17.90 -0.01 100 (0.00) 100 (0.00)

Lasso2,naive 2.56 0.06 100 (0.00) 63.97 (2.78) 3.19 0.01 99.48 (0.16) 22.49 (5.74)

Lasso2,TMEV 54393.30 0.02 100 (0.00) 100 (0.00) 3756530.00 0.03 100 (0.00) 100 (0.00)

Lasso2,EMEV 211.26 -0.02 100 (0.00) 100 (0.00) 18.74 -0.01 100 (0.00) 100 (0.00)

Table 44: MSE, bias, TPF and FPF for β1 (n=500, ρ = 0.5, ε = 2.5)
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p = 50 p = 250 p = 750

MSE Bias TPF FPF MSE Bias TPF FPF MSE Bias TPF FPF

σ2
u = 0.01

OLSnaive 1.35 0.00 12.27 0.00

OLSTMEV 1.42 0.00 14.63 0.00

OLSEMEV 8978.69 0.11 18467.80 0.01

Lasso1,naive 0.37 0.01 99.12 (0.21) 23.05 (4.44) 0.59 0.00 94.80 (0.48) 8.26 (8.78)

Lasso1,TMEV 0.37 0.01 100 (0.00) 100 (0.00) 0.60 0.00 100 (0.00) 100 (0.00)

Lasso1,EMEV 4179.08 0.09 100 (0.00) 100 (0.00) 3049.61 0.01 100 (0.00) 100 (0.00)

Lasso2,naive 0.36 0.01 99.08 (0.21) 22.12 (3.86) 0.57 0.00 94.68 (0.49) 7.49 (5.25)

Lasso2,TMEV 0.36 0.01 100 (0.00) 100 (0.00) 0.57 0.00 100 (0.00) 100 (0.00)

Lasso2,EMEV 4330.68 0.09 100 (0.00) 100 (0.00) 2743.65 0.01 100 (0.00) 100 (0.00)

σ2
u = 0.1

OLSnaive 1.20 0.01 10.58 0.00

OLSTMEV 1.92 0.00 73392600.00 0.05

OLSEMEV 1016.39 0.15 74382.50 0.00

Lasso1,naive 0.41 0.02 98.40 (0.29) 25.20 (3.82) 0.74 0.01 91.20 (0.63) 9.66 (7.35)

Lasso1,TMEV 0.43 0.01 100 (0.00) 100 (0.00) 23004.10 0.00 100 (0.00) 100 (0.00)

Lasso1,EMEV 795.37 0.14 100 (0.00) 100 (0.00) 7396.17 0.01 100 (0.00) 100 (0.00)

Lasso2,naive 0.40 0.02 98.44 (0.28) 24.52 (3.48) 0.73 0.01 91.04 (0.64) 9.13 (5.30)

Lasso2,TMEV 0.42 0.01 100 (0.00) 100 (0.00) 23698.40 0.00 100 (0.00) 100 (0.00)

Lasso2,EMEV 776.86 0.14 100 (0.00) 100 (0.00) 7428.92 0.01 100 (0.00) 100 (0.00)

σ2
u = 1

OLSnaive 1.01 0.03 5.03 0.01

OLSTMEV 827259.00 -0.24 1367390.00 0.02

OLSEMEV 122.88 -0.01 33.01 -0.01

Lasso1,naive 0.83 0.03 94.48 (0.52) 46.90 (3.40) 1.08 0.01 75.88 (0.97) 15.80 (6.83)

Lasso1,TMEV 47656.10 -0.04 100 (0.00) 100 (0.00) 1690530.00 0.01 100 (0.00) 100 (0.00)

Lasso1,EMEV 72.11 -0.01 100 (0.00) 100 (0.00) 5.69 -0.01 100 (0.00) 100 (0.00)

Lasso2,naive 0.83 0.03 94.40 (0.53) 46.63 (3.13) 1.07 0.01 75.80 (0.98) 15.37 (5.38)

Lasso2,TMEV 47295.00 -0.04 100 (0.00) 100 (0.00) 1653040.00 0.01 100 (0.00) 100 (0.00)

Lasso2,EMEV 73.27 -0.01 100 (0.00) 100 (0.00) 5.35 -0.01 100 (0.00) 100 (0.00)

Table 45: MSE, bias, TPF and FPF for β2 (n=500, ρ = 0.5, ε = 2.5)
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p = 50 p = 250 p = 750

MSE Bias TPF FPF MSE Bias TPF FPF MSE Bias TPF FPF

σ2
u = 0.01

OLSnaive 1.35 0.00 12.27 0.00

OLSTMEV 1.42 0.00 14.63 0.00

OLSEMEV 15970.50 0.10 23870.70 0.01

Lasso1,naive 0.27 0.01 68.00 (0.80) 19.06 (4.07) 0.35 0.00 52.36 (0.71) 6.09 (7.92)

Lasso1,TMEV 0.27 0.01 100 (0.00) 100 (0.00) 0.35 0.00 100 (0.00) 100 (0.00)

Lasso1,EMEV 4055.44 0.07 100 (0.00) 100 (0.00) 6933.42 0.01 100 (0.00) 100 (0.00)

Lasso2,naive 0.26 0.01 67.72 (0.79) 18.08 (3.44) 0.34 0.00 52.52 (0.70) 5.72 (5.27)

Lasso2,TMEV 0.26 0.01 100 (0.00) 100 (0.00) 0.34 0.00 100 (0.00) 100 (0.00)

Lasso2,EMEV 4269.23 0.07 100 (0.00) 100 (0.00) 6862.84 0.01 100 (0.00) 100 (0.00)

σ2
u = 0.1

OLSnaive 1.20 0.01 10.58 0.00

OLSTMEV 1.92 0.00 72127100.00 0.05

OLSEMEV 792.52 0.12 14186.90 0.01

Lasso1,naive 0.31 0.01 70.48 (0.81) 21.01 (3.79) 0.51 0.00 51.76 (0.77) 7.32 (7.11)

Lasso1,TMEV 0.31 0.01 100 (0.00) 100 (0.00) 636841.00 0.00 100 (0.00) 100 (0.00)

Lasso1,EMEV 615.80 0.12 100 (0.00) 100 (0.00) 740.69 0.01 100 (0.00) 100 (0.00)

Lasso2,naive 0.30 0.01 70.40 (0.80) 20.59 (3.17) 0.50 0.00 51.40 (0.76) 6.99 (4.91)

Lasso2,TMEV 0.30 0.01 100 (0.00) 100 (0.00) 638748.00 0.00 100 (0.00) 100 (0.00)

Lasso2,EMEV 576.94 0.12 100 (0.00) 100 (0.00) 691.39 0.01 100 (0.00) 100 (0.00)

σ2
u = 1

OLSnaive 1.05 0.03 5.10 0.00

OLSTMEV 409337.00 -0.19 100505.00 0.01

OLSEMEV 58.80 -0.01 31.75 0.00

Lasso1,naive 0.80 0.02 71.68 (0.87) 39.44 (3.36) 1.00 0.01 48.84 (0.87) 12.13 (6.31)

Lasso1,TMEV 107702.00 0.07 100 (0.00) 100 (0.00) 433724.00 0.01 100 (0.00) 100 (0.00)

Lasso1,EMEV 18.86 -0.01 100 (0.00) 100 (0.00) 3.91 0.00 100 (0.00) 100 (0.00)

Lasso2,naive 0.80 0.02 71.88 (0.87) 39.36 (3.11) 0.99 0.01 48.60 (0.86) 11.95 (5.06)

Lasso2,TMEV 84104.60 0.06 100 (0.00) 100 (0.00) 450765.00 0.01 100 (0.00) 100 (0.00)

Lasso2,EMEV 19.31 -0.01 100 (0.00) 100 (0.00) 2.80 0.00 100 (0.00) 100 (0.00)

Table 46: MSE, bias, TPF and FPF for β3 (n=500, ρ = 0.5, ε = 2.5)
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A.2.4 Density plots for the tuning parameter λ (n=500)
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ε=1, ρ=0.1, σ2
u = 0.01 ε=1, ρ=0.1, σ2

u = 1 ε=1, ρ=0.9, σ2
u =0.01 ε=1, ρ=0.9, σ2

u = 1

ε=2.5, ρ=0.1, σ2
u =0.01 ε=2.5, ρ=0.1, σ2

u = 1 ε=2.5, ρ=0.9, σ2
u = 0.01 ε=2.5, ρ=0.9, σ2

u = 1

ε=5, ρ=0.1, σ2
u = 0.01 ε=5, ρ=0.1, σ2

u = 1 ε=5, ρ=0.9, σ2
u = 0.01 ε=5, ρ=0.9, σ2

u = 1

Figure 13: Density plots for the tuning parameter λOptL1(n=500, p=50)
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ε=1, ρ=0.1, σ2
u = 0.01 ε=1, ρ=0.1, σ2

u = 1 ε=1, ρ=0.9, σ2
u =0.01 ε=1, ρ=0.9, σ2

u = 1

ε=2.5, ρ=0.1, σ2
u =0.01 ε=2.5, ρ=0.1, σ2

u = 1 ε=2.5, ρ=0.9, σ2
u = 0.01 ε=2.5, ρ=0.9, σ2

u = 1

ε=5, ρ=0.1, σ2
u = 0.01 ε=5, ρ=0.1, σ2

u = 1 ε=5, ρ=0.9, σ2
u = 0.01 ε=5, ρ=0.9, σ2

u = 1

Figure 14: Density plots for the tuning parameter λcv.glmnet (n=500, p=50)
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ε=1, ρ=0.1, σ2
u = 0.01 ε=1, ρ=0.1, σ2

u = 1 ε=1, ρ=0.9, σ2
u =0.01 ε=1, ρ=0.9, σ2

u = 1

ε=2.5, ρ=0.1, σ2
u =0.01 ε=2.5, ρ=0.1, σ2

u = 1 ε=2.5, ρ=0.9, σ2
u = 0.01 ε=2.5, ρ=0.9, σ2

u = 1

ε=5, ρ=0.1, σ2
u = 0.01 ε=5, ρ=0.1, σ2

u = 1 ε=5, ρ=0.9, σ2
u = 0.01 ε=5, ρ=0.9, σ2

u = 1

Figure 15: Density plots for the tuning parameter λOptL1(n=500, p=250)
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ε=1, ρ=0.1, σ2
u = 0.01 ε=1, ρ=0.1, σ2

u = 1 ε=1, ρ=0.9, σ2
u =0.01 ε=1, ρ=0.9, σ2

u = 1

ε=2.5, ρ=0.1, σ2
u =0.01 ε=2.5, ρ=0.1, σ2

u = 1 ε=2.5, ρ=0.9, σ2
u = 0.01 ε=2.5, ρ=0.9, σ2

u = 1

ε=5, ρ=0.1, σ2
u = 0.01 ε=5, ρ=0.1, σ2

u = 1 ε=5, ρ=0.9, σ2
u = 0.01 ε=5, ρ=0.9, σ2

u = 1

Figure 16: Density plots for the tuning parameter λcv.glmnet (n=500, p=250)
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A.2.5 Comparison of LASSOcv.glmnet and LASSOOptL1

n = 100 n = 500

p = 10 p = 50 p = 150 p = 50 p = 250

rho = 0.1, σ2
u = 0.01

Lassonaive 0.014 0.008 0.005 0.002 0.001

LassoTMEV 0.014 0.009 0.008 0.002 0.001

LassoEMEV 0.091 0.125 0.175 0.051 0.041

rho = 0.1, σ2
u = 1

Lassonaive 0.020 0.015 0.012 0.002 0.001

LassoTMEV 0.261 0.869 0.617 0.087 0.113

LassoEMEV 0.002 0.009 0.029 0.001 0.001

rho = 0.9, σ2
u = 0.01

Lassonaive 0.010 0.025 0.003 0.003 0.001

LassoTMEV 0.011 0.902 0.043 0.004 0.013

LassoEMEV 0.009 0.016 0.022 0.012 0.003

rho = 0.9, σ2
u = 1

Lassonaive 0.004 0.012 0.023 0.001 0.001

LassoTMEV 0.062 0.410 0.859 0.031 0.091

LassoEMEV 0.165 0.006 0.048 0.001 0.001

Table 47: Mean absolute difference between LASSOcv.glmnet and LASSOpenalized

for β3 (ε = 1)
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n = 100 n = 500

p = 10 p = 50 p = 150 p = 50 p = 250

rho = 0.1, σ2
u = 0.01

Lassonaive 0.014 0.009 0.005 0.002 0.001

LassoTMEV 0.015 0.009 0.008 0.002 0.001

LassoEMEV 0.073 0.121 0.171 0.022 0.038

rho = 0.1, σ2
u = 1

Lassonaive 0.013 0.010 0.007 0.002 0.001

LassoTMEV 0.236 0.577 0.418 0.045 0.068

LassoEMEV 0.001 0.004 0.019 0.000 0.001

rho = 0.9, σ2
u = 0.01

Lassonaive 0.017 0.016 0.005 0.004 0.001

LassoTMEV 0.019 0.646 0.059 0.004 0.019

LassoEMEV 0.037 0.007 0.030 0.003 0.005

rho = 0.9, σ2
u = 1

Lassonaive 0.003 0.006 0.007 0.001 0.000

LassoTMEV 0.036 0.278 0.219 0.044 0.063

LassoEMEV 0.006 0.003 0.010 0.000 0.001

Table 48: Mean absolute difference between LASSOcv.glmnet and LASSOpenalized

for β2 (ε = 1)
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n = 100 n = 500

p = 10 p = 50 p = 150 p = 50 p = 250

rho = 0.1, σ2
u = 0.01

Lassonaive 0.015 0.006 0.003 0.002 0.001

LassoTMEV 0.015 0.007 0.006 0.002 0.001

LassoEMEV 0.062 0.010 0.154 0.031 0.051

rho = 0.1, σ2
u = 1

Lassonaive 0.014 0.006 0.004 0.002 0.001

LassoTMEV 0.219 0.334 0.409 0.525 0.049

LassoEMEV 0.002 0.001 0.020 0.001 0.001

rho = 0.9, σ2
u = 0.01

Lassonaive 0.015 0.012 0.005 0.003 0.001

LassoTMEV 0.018 0.870 0.059 0.003 0.014

LassoEMEV 0.012 0.004 0.030 0.004 0.004

rho = 0.9, σ2
u = 1

Lassonaive 0.003 0.004 0.004 0.001 0.000

LassoTMEV 0.059 0.184 0.183 0.039 0.010

LassoEMEV 0.018 0.002 0.006 0.000 0.000

Table 49: Mean absolute difference between LASSOcv.glmnet and LASSOpenalized

for β3 (ε = 1)
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