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Abstract

While much work on the fitting of spatial point processes to complex point pattern data is

available, interactions between two point processes have not been in the focus so far. In this

thesis, we provide methods for modelling such interactions by means of one-dimensional log-

Gaussian Cox processes. Moreover, techniques for speeding up the inferential task are applied.

These techniques comprise the approximation of Gaussian processes by Gauss-Markov processes

and the use of the integrated nested Laplace approximation (INLA) approach.

Several tools for model validation and comparison are introduced. We use them in diverse

simulation studies to assess the quality of the established interaction models. The studies are

performed within the R software package R-INLA.

Finally, a discussion on how to determine the best interaction model for the situation at hand is

conducted. Some possible extensions complete the present work.

This thesis is intended to be a basis for further work on interactions between point processes. In

particular, the extension to two-dimensional use cases with much larger point patterns, where

the speed-up techniques reveal their full potential, are a long-term objective.
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1 Introduction

Point processes, particularly spatial ones, are of great interest in a wide range of applications.

They play an important role in many areas of science, including geosciences [SG03], ecology

[IMS+13], [FBV+15] and epidemiology [KHB01]. While there exist a lot of publications about

fitting point process models to point patterns of varying complexity, the modelling of interactions

between multiple point processes has not been a big theme so far – even though it is acknowledged

to be helpful. Gelfand et al. [GSBS04, p.267] for instance state that they “[. . . ] [seek] flexible,

interpretable and computationally tractable multivariate models [. . . ] which capture association

both within measurements at a given site and across the sites.”

In the present work, we expand the “toolbox for fitting complex spatial point process models”

provided by Illian et al. [ISR12] to the setting of interaction modelling. We will limit ourselves

to the case of two one-dimensional point processes, though. A popular approach to model such

point processes is by means of log-Gaussian Cox processes, which are introduced in Section 2.1

and constitute our tool to model the interactions between the two point processes.

While in former times, one had to make an essential decision between modelling the processes

in the right but computationally expensive continuous way or by a computationally effective but

essentially not appropriate lattice-based approach, Lindgren et al. [LRL11] recently showed that

there is a link between those two techniques. Consequently, it is possible to model the point

processes in the correct continuous setting and simultaneously conducting the calculations in a

computational effective manner. In contrast to Illian et al. [ISR12], we make explicitly use of

this approach and describe it in Section 2.2.

The remaining work is organized as follows: After introducing several methods to model the

interactions between two point processes in Section 3, we give some concrete examples as well

as simulations based on the models in Section 4. In Section 5, the INLA methodology, used

for the inference of the simulation studies in Section 6, and its software implementation within

the R program are presented. Moreover, tools to validate and compare the models during the

simulation studies are provided. In Section 7, we summarize and discuss the results with the focus

lying on a comparison of the interaction modelling methods. Finally, some possible extensions

are given in Section 8.

1



2 Theoretical background

2.1 Log-Gaussian Cox processes

A useful class for modelling (spatial) point processes are log-Gaussian Cox processes (see Rue et

al. [RMC09, p.340]). Before examining them, we have to state how a spatial point process and

a Poisson process are generally defined.

Transferring the definition of Møller and Waagepetersen [MW07, p.647] to our one-dimensional

setting, a spatial point process {χ} is defined as a finite random subset of a given bounded region

S ⊂ R and a realization of such a process is a spatial point pattern {ξ1, . . . , ξn} of n ≥ 0 points

contained in S.

Then, an inhomogeneous Poisson point process {χ} is a particular point process with intensity

measure µ and intensity function Λ, which satisfies for any bounded region B ⊂ S with µ(B) > 0

that the number of points in B is Poisson distributed with mean µ(B). Furthermore, conditional

on the number of points, the points in B are i.i.d. with the density being proportional to Λ(s)

for s ∈ B [MW07, pp.649,650].

A log-Gaussian Cox process finally is a hierarchical Poisson process {χ} with random intensity

Λ(s) = exp(η(s)), where η = {η(s) : s ∈ R} denotes a Gaussian process.

The Gaussian process accounts for various effects in an additive way. For our spatial setting, it

may be written as (see also Rue et al. [RMC09, p.320])

η(ξi) = β + f(ξi) + ε(ξi) (1)

for given observations {ξ1, . . . , ξn}. Here, β is the intercept of the process while f denotes a

spatially structured effect and ε a spatially unstructured effect. As the process η is Gaussian

within the log-Gaussian Cox process setting, the appropriate priors for f and ε are normal ones

with

f ∼ Nn(0,Σ), (2)

ε(ξi)
iid∼ N (0, σ2

ε ), (3)

and the prior for the intercept β may be improper (constant) or normal as well.

The last question remaining is how to model the covariance matrix Σ for the spatially structured

effect f . We will employ the Matérn covariance to make use of the explicit link between Gaussian

processes and Gauss-Markov processes. This possibility is discussed in the next section where

also a definition of the Matérn covariance function is given.
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2.2 The “big-n problem”: Approximation of Gaussian processes by

Gauss-Markov processes

As stated in the last section, the covariance matrix Σ of the spatially structured effect f must be

specified to complete the representation of the Gaussian process. This is usually done by using

a covariance matrix C(·, ·) so that Σ = (C (ξi, ξj))i,j (see Lindgren et al. [LRL11, p.424]). The

covariance function is often modelled to be isotropic, i.e. it is only dependent on the Euclidean

distance between two points instead of the exact locations. We will apply this simplified case

here, see Section 8 for a discussion on more general covariances.

Nevertheless, the covariance function must be chosen so that the covariance matrix Σ is sym-

metric non-negative definite. This restriction leads to some usual covariance functions like the

exponential covariance function, the spherical covariance function or the Matérn covariance func-

tion. However, all these functions have a common problem when using their related covariance

matrices in the inference step: the covariance matrix Σ is dense in general. So factorizing the

precision matrix (the inverse covariance) while fitting a log-Gaussian Cox process model is often

much too expensive concerning the running time for large point patterns. This issue is called

the “big-n problem” as the larger the point pattern is the slower the computation gets.

For a long time, a workaround for this problem was to utilize discretely indexed Gauss-Markov

processes instead of the continuous Gaussian processes. A Gauss-Markov process is a Gaussian

random variable γ = (γ1, . . . , γn) with Markov properties: For most of the i 6= j, γi and γj are

independent conditional on the set of the other γk: γ−ij . This fact results in a sparse precision

matrix which may consequently be factorized computationally efficient in the inference step.

In contrast, as the Gauss-Markov processes are specified through their full conditionals, their

marginal properties are not transparent [LRL11, p.423]. See Rue et al. [RMC09, Ch.2.1] for

further information on the implementation of Gauss-Markov processes.

Until recently, there was the question if for a Gaussian process at hand there exists a Gauss-

Markov process which is able to represent it well enough to maintain the interpretation of the

parameters and the results. Lindgren et al. [LRL11] showed that this is indeed possible for a

certain type of covariance functions, the so-called Matérn covariance functions. They establish

an explicit link by using stochastic partial differential equations (SPDEs), see Lindgren et al.

[LRL11] for more information.

Therefore, we can model the log-Gauss Cox processes in our work by using the well interpretable

Gaussian processes with covariance matrices determined by Matérn covariance functions, but do

the computations by implementing the computational efficient Gauss-Markov processes. While

this possibility is not crucial in our setting, the explicit link between Gaussian and Gauss-Markov

processes becomes more important when one wants to apply the methods presented in our work

to much larger point patterns or in higher dimensions. Then the use of Gauss-Markov processes

in the computational step may be essential for the computational feasibility of one of our models.

The Matérn covariance function between two locations ξi and ξj in R is defined as (see Lindgren
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et al. [LRL11, p.426])

Cov(ξi, ξj) =
σ2

2ν−1Γ(ν)
(κ|ξi − ξj |)νKν(κ|ξi − ξj |), (4)

with |·| denoting the Euclidean distance in R and Kν the modified Bessel function of the second

kind and order ν > 0. The parameter ν is a smoothness parameter and the rounded value of ν

determines the differentiability of the Gaussian process. κ > 0 is a scaling parameter and σ2 > 0

is the marginal variance here.

One often uses an additional parameter ρ, the so-called range, where

ρ =
(8ν)1/2

κ
(5)

is the distance for which the correlation – not the covariance – has fallen to approximately 0.13

for all ν > 0.5 (see Lindgren and Rue [LR15, p.4]). At this distance, the observations are conse-

quently nearly independent. The range parameter admits a better interpretation of the scaling

parameter κ.

Note that the explicit link between Gaussian processes containing Matérn covariances and Gauss-

Markov processes may only be applied for integer values of α in the SPDE approximation ap-

proach, where α = ν + d/2. The value for d is one in our case as d is the dimension. So the

explicit link is true for ν = 0.5, 1.5, 2.5, . . . here. Nevertheless, a more “relaxed” relation based

on continuous domain Markov models may be applied for Matérn models with fractional α. See

Lindgren et al. [LRL11, p.493] for more information about this possibility.

Finally, one may think that the Matérn models are a too restrictive class to work with. They are

“[. . . ] the most important and most used covariance [models] in spatial statistics [...]” though

[LRL11, p.425]. Moreover, the often utilized exponential covariance function is a special case of

the Matérn covariance with ν = 0.5, which is one of the cases where the explicit link is available

in our one-dimensional setting.
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3 Methods for interaction modelling

There are several options to model the interaction of inhomogeneous Poisson processes, even

though we limit ourselves to modelling by means of log-Gaussian Cox processes. In this work, the

diversity of modelling techniques is demonstrated by considering the interdependence structure

in the case of two one-dimensional Poisson processes (see Section 8 for a discussion on interaction

modelling for multidimensional Poisson processes respectively more than two processes).

For this issue, we transfer the approach from Illian et al. [ISR12, p.1504] to the case of two

one-dimensional point patterns. The common one-dimensional observation range (see Remark

3.1 below) is discretized into N disjoint segments {si}, i = 1, . . . , N of equal length |si| = |s|.
Let us call this an equally spaced grid on the observation range. The points in the two patterns

are named {ξiki} and {τili} respectively with ki = 1, . . . , xi and li = 1, . . . , yi, where xi is the

observed number of points of point pattern one in grid segment i and yi the observed number of

points of point pattern two in grid segment i.

Remark 3.1. We assume that the two Poisson processes are defined in the same one-dimensional

region as their interactions are generally modelled at common locations, or at least at locations

close to each other which become virtually identical by using grids for approximation. An

exception of this assumption are effect delays which occur for instance in time series. In this

situation the influence of one process on the other one becomes clear only after a time lag.

There are two possibilities to handle delay effects. If the exact shift of the delay effect is known

for example due to natural laws, one of the processes can be indexed accordingly so that the

processes match and the (time) locations are nearly the same. In contrast, if the amount of the

delay is not clear, delay effect models can be used as they are described in Wackernagel [Wac03,

Ch.20,30].

As we model the two inhomogeneous Poisson processes using log-Gaussian Cox processes, the

number of points in each grid segment is described conditionally on latent processes {ηi} and

{ωi}, i = 1, . . . , N :

Xi | ηi ∼ Po(|s| exp(ηi)), (6)

Yi | ωi ∼ Po(|s| exp(ωi)). (7)

The underlying processes in turn are modelled as

ηi = β1 + f1(si) + ui, (8)

ωi = β2 + f2(si) + vi. (9)

The parameters β1 and β2 are the means of the two latent processes. f1(si) and f2(si) de-

note spatially structured effects while ui and vi are spatially unstructured effects. As we wish

to work with sparse precision matrices, we model the structured effects using one-dimensional
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Gauss-Markov processes with mean zero on the constructed grid instead of the Gaussian pro-

cesses which give the log-Gaussian Cox process its name (see Section 2.2 for a discussion on the

“big-n problem”). These spatially structured effects shall represent unobserved spatially struc-

tured covariates. In contrast, the effects ui and vi are modelled by zero-mean Gaussian i.i.d.

error terms and depict unobserved covariates which are spatially unstructured (see Rue et al.

[RMC09, p.340]).

While Illian et al. [ISR12] use more than one spatially structured effect (per latent process) to

account for observed covariates, we restrict ourselves to simulation studies without any further

covariates and therefore do not need more than one Gauss-Markov process. Furthermore, the

authors consider a constructed covariate in the latent process to include local interaction and

competition. For the sake of simplicity, we omit these extension here, see Section 8 for a more

detailed discussion on the named eventualities.

Note that in our context the priors of the parameters are necessarily Gaussian as the interactions

are modelled by log-Gaussian Cox processes. Illian et al. also give priors for the hyperparam-

eters, which don’t have to be Gaussian distributed. The exact priors for the parameters and

hyperparameters are assigned in Section 6 regarding simulation studies of the proposed models.

At this point, another aspect shall be discussed. For the inference step it does not matter how

the points are distributed within a particular grid segment. However, it is necessary to have an

instruction for simulations of point patterns as well as for samples from the posterior distribution.

The question is: If Xi takes the value xi in grid segment si, how are the xi points {ξi1, . . . , ξixi
}

distributed within the grid segment?

Møller and Waagepetersen [MW03, p.15] showed that those points form a Binomial process, i.e.

they are uniformly distributed within the grid segment.

As aforementioned, there exist several possibilities to model the interactions of Poisson processes

by dependencies between the two latent processes. We divide these methods in Modelling by

functional connections and Modelling by bivariate Gauss-Markov processes, which are presented

in Sections 3.1 and 3.2.

3.1 Modelling by functional connections

The first “functional connection model” is already shown in Equations 8 and 9: the model of

independence. To demonstrate this fact, let us rewrite the model to

ηi = β1 + f1(si) + ui, (10)

ωi = β2 + g(f1(si)) + f2(si) + vi, (11)

where in general g is an arbitrary function.

Independence If g ≡ a with a ∈ R, then we are back at Equation 9 with a new mean β̃2 :=

β2 +a. Thus, modelling of two independent Poisson processes is included in the model presented
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in Equations 10 and 11 by using a constant function g.

Linear dependence If g is a linear function, Equation 11 has the form

ωi = β2 + [a+ β3f1(si)] + f2(si) + vi, (12)

which we can rewrite by considering β2 and a as a common mean to

ωi = β2 + β3f1(si) + f2(si) + vi. (13)

If we assume the process ωi to depend only on the same spatially structured effect as ηi, the last

model is even simplified to

ωi = β2 + β3f1(si) + vi. (14)

Non-linear dependence Finally, g can also be a non-linear function. There exist several meth-

ods to estimate such smooth effects in a Bayesian setting as we use for inference. Our approach

is a full Bayesian one with P-splines (see Section 6 for inference and Fahrmeir et al. [FKL09,

Ch.7] for a German introduction to splines and P-splines).

Remark 3.2.

(a) Note that smooth effects modelling by Markov processes is included in the P-spline approach.

Actually, they correspond to B-splines of degree zero where the knots are specified by the

values of the observed covariate. These are the values of f1(si) for all i ∈ {1, . . . , N} in our

context (see Fahrmeir et al. [FKL09, p.326]).

(b) One might ask why the spatially structured effects f1(si) and f2(si) are not also modelled

by the more general P-splines instead of restricting ourselves to Gauss-Markov processes.

This is due to the fact that we want to use the approach in Lindgren et al. [LRL11] to

approximate Gaussian processes with special Matérn covariance functions by Gauss-Markov

processes. See Section 2.2 for further explanation.

Back to the non-linear function g: In this context, it is important to model the effect between

the two processes ηi and ωi in the “right direction” as g is not invertible in general (consider

for example g(f1(si)) = sin(f1(si))). That is, the supposed causality between the two overlying

Poisson processes must be considered.

Adding dependencies on the latent process and Poisson process So far, only functional con-

nection models with dependencies on the spatially structured effect f1(si) have been considered.

However, the latent process ωi might also depend on the whole other latent process ηi or even

on the realisations of the overlying Poisson process Xi (idea extracted from Illian et al. [ISR12,
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pp.1520,1521]). Equation 11 is consequently expanded to

ωi = β2 + g1(f1(si)) + g2(ηi) + g3(Xi) + f2(si) + vi. (15)

Just as g1 (which was g in the previous equations), g2 and g3 are modelled as linear or non-

linear functions, the latter by P-splines. In the majority of cases, only one of the three stated

dependencies will be included in the equation. Yet, if more than one is modelled, another issue

might arise: that of collinearity. We analyse this problematic in an example.

Example 3.3. Assume that both g1(f1(si)) and g2(ηi) are included in the model. That is, f1(si)

and ηi are the explanatory variables here. Recall Equation 8

ηi = β1 + f1(si) + ui,

where a linear relationship almost exists between f1(si) and ηi. Only the spatially unstructured

effect ui prevents f1(si) and ηi from being in an exact linear relationship. However, if the variance

of ui – which is modelled by a zero-mean Gaussian distribution – is negligible compared to the

absolute values that the term β1 + f1(si) achieves, we are in the case of a strong collinearity.

Therefore, each time we consider to include more than one of the three possible dependencies

into the model, we have to verify in advance whether collinearity may arise.

The full functional connection model Each of the models presented above can be incorporated

in a general functional connection model:

Xi | ηi ∼ Poi(|s| exp(ηi)),

Yi | ωi ∼ Poi(|s| exp(ωi)),

ηi = β1 + f1(si) + ui,

ωi = β2 + g1(f1(si)) + g2(ηi) + g3(Xi) + f2(si) + vi.

(16)

We give some examples and simulations of them in Section 4 as well as coming back to modelling

by functional connections when conducting simulation studies in Section 6.

3.2 Modelling by bivariate Gauss-Markov processes

Another approach to model the interaction of two Poisson processes is by combining the two

univariate Gaussian processes of Equations 8 and 9 in one bivariate Gaussian process. This

yields to the formula

Φi = β + f(si) + εi, (17)
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where Φi = (ηi, ωi)
T , β = (β1, β2)T , f(si) = (f1(si), f2(si))

T and εi = (ui, vi)
T .

Again, the parameter β is the mean of the bivariate process, while the εi are spatially unstruc-

tured effects and modelled as Gaussian white noise vectors. Therefore, the εi are zero-mean

bivariate normal distributed (εi ∼ N2(0,D)), where D is a 2×2 diagonal matrix with Dkk = τ2k
being the variance of the ui respectively vi (k ∈ {1, 2}). Thus, the εi are independent from each

other (i ∈ {1, . . . , N}), as well as ui and vi are independent for a given segment si.

Consequently, the dependencies both within the processes ηi and ωi and between the two pro-

cesses are determined by the vectors f(si), as before representing spatially structured effects.

The typical way to do this is to assume f1(si) and f2(si) to have mean zero and to spec-

ify marginal-covariance functions for the dependence structure within the processes and cross-

covariance functions for the interactions between them [GK15, pp.147,148]. As f(si) is bivariate

Gaussian, this is enough to define the entire process.

For this purpose, let C : {s1, . . . , sN}×{s1, . . . , sN} →M2×2 be a matrix-valued mapping with

C(si, sj) =

(
C11(si, sj) C12(si, sj)

C21(si, sj) C22(si, sj)

)
. (18)

Here, M2×2 is the set of 2 × 2 real-valued matrices and the Ckl(si, sj) = Cov(fk(si), fl(sj))

(k, l ∈ 1, 2) are the marginal-covariance functions for k = l and the cross-covariance functions for

k 6= l. Therefore, C(si, sj) = Cov(f(si),f(sj)). Note that C12(si, sj) = C21(sj , si) must hold

as the covariance is symmetric, but in general C12(si, sj) 6= C21(si, sj), so two cross-covariance

functions should be specified in our case.

The main issue is that the cross-covariance functions must be chosen to be consistent with

the marginal-covariance functions. That is, the covariance matrix Σ of the random vector(
f(s1)

T
, . . . ,f(sN)

T
)T
∈ R2N

Σ =


C(s1, s1) C(s1, s2) · · · C(s1, sN)

C(s2, s1) C(s2, s2) · · · C(s2, sN)
...

...
. . . · · ·

C(sN , s1) C(sN , s2) · · · C(sN , sN)

 (19)

must be symmetric non-negative definite to be valid.

This is a non-trivial task and usually solved by constructive approaches. Such techniques include

separable models, convolution methods, latent dimension models, the linear model of coregion-

alization (LMC) and multivariate Matérn models. In this work, we will focus on the LMC and

the multivariate Matérn, since these two procedures allow once again the approximation of the

Gaussian processes f1(si) and f2(si) by Gauss-Markov processes (with an appropriate depen-

dence structure both within and between the processes). See Gelfand et al. [GSBS04, Sec.2] and

Genton and Kleiber [GK15, Sec.2.2,2.3] for a brief review of the other approaches as well as for

references to more elaborated descriptions.
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3.2.1 The linear model of coregionalization

The linear model of coregionalization is “[probably] the most popular approach of combining

univariate covariances [. . . ]” [GK15, p.150]. Originally used as a tool for dimension reduction

(see Grzebyk and Wackernagel [GW94]), the idea of the LMC was seized by Schmidt and Gelfand

[SG03] for multivariate process modelling (see Gelfand et al. [GSBS04, Ch.3]).

The idea is to represent the bivariate Gaussian process as a linear combination of independent

univariate Gaussian processes: f(si) = Aw(si), A is a 2 × r real-valued matrix with r ≤ 2

and w(si) is a vector of independent univariate spatial processes. For our purposes, assume

w(si) to be zero-mean Gaussian and r = 2, i.e. w(si) = (w1(si), w2(si))
T (for r = 1 the matter

in hand corresponds to the functional connection model with linear dependence as modelled in

Equations 10 and 14). Then we get

ηi = β1 + a11w1(si) + a12w2(si) + ui, (20)

ωi = β2 + a21w1(si) + a22w2(si) + vi, (21)

or, by incorporating a11 and a22 in the variances of the Gaussian processes w1(si) and w2(si)

respectively,

ηi = β1 + w1(si) + a12w2(si) + ui, (22)

ωi = β2 + a21w1(si) + w2(si) + vi. (23)

Therefore, f(si) consists of

f1(si) = w1(si) + a12w2(si), (24)

f2(si) = a21w1(si) + w2(si). (25)

As the processes w1(si) and w2(si) are independent, the cross-covariance functions for in-

teraction modelling of ηi and ωi do no longer have to be specified. Instead, there is only

one cross-covariance function which is already fixed by the marginal-covariances of w1(si) and

w2(si) as C12(si, sj) = Cov(f1(si), f2(sj)) = a21Cov(w1(si), w1(sj)) + a12Cov(w2(si), w2(sj)) =

Cov(f2(si), f1(sj)) = C21(si, sj). Consequently, only the marginal-covariances for w1(si) and

w2(si) must be determined here. These are modelled as seen previously as Gaussian processes

representing spatially structured effects, each of them affecting both f1(si) and f2(si).

While the problem of cross-covariance specification is solved by this approach, it must be men-

tioned that the matrix C(si, sj) in the LMC is restricted to be symmetric although this does

in general not hold (see the beginning of Section 3.2 and the discussion in Wackernagel [Wac03,

Ch.20]).

Note that the “standard” LMC is somewhat limited in the case of interaction modelling of two

processes as the number of independent Gaussian processes r is restricted to be not higher than
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the number of processes to model the dependence between. Its full potential is only achieved in

the case of interaction modelling of more than two processes (cf. the extensions in Section 8).

However, if we transmit the idea of a shared component model for spatial disease mapping in

the work of Knorr-Held and Best [KHB01] to our case, this results in a more general LMC which

allows for more than two latent processes.

The shared component model In our shared component model, each of the processes f1(si)

and f2(si) depends on a shared Gaussian process z(si) and a process-specific Gaussian process

w1(si) respectively w2(si):

f1(si) = z(si) + w1(si), (26)

f2(si) = az(si) + w2(si), (27)

all three of them being independent from one another. So there are three independent latent

processes instead of two as in the “standard” LMC.

Hypothetically, one could even extend the number of latent univariate processes which influence

the processes f1(si) and f2(si). However, there must be a conclusive model to explain why

one should do this. In the case of the shared component model above, the theoretical basis

lies in disease mapping. Knorr-Held and Best state that when considering two diseases, there

might be a common risk factor (which is modelled by z(si) in our case, e.g. smoking) as well as

disease-specific risk factors (w1(si) and w2(si), e.g. different genetic causes). Such a modelling

approach is reasonable if one is not only interested in interactions but also in finding the amount

and the spatially structure of a common effect. Nevertheless, this requires greatest caution to

ensure identifiability – a problem which is already present in the “standard” LMC, albeit less

pronounced.

The identifiability issue As announced in the introduction, our approach for inference is a

Bayesian hierarchical one (see Section 2.1). Moreover, we model the covariance functions of the

Gaussian processes w1(si), w2(si) and z(si) (in the case of the shared component model) once

again by Gauss-Markov processes to get sparse precision matrices (see Section 2.2). While the

complete inference is described in Section 5, the matter of identifiability shall be discussed right

here. Actually, there is a lack of identifiability in the likelihood as the number of parameters

to estimate is higher than the quantity of observations which are available. To begin with, we

demonstrate this fact in the case of the “standard” LMC.

Recall the equations for the (dependent) processes f1(si) and f2(si):

f1(si) = w1(si) + a12w2(si),

f2(si) = a21w1(si) + w2(si).
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Then for each segment si there are the two values w1(si) and w2(si) to estimate while two

observations (one for each process) are available for this purpose. But there are additionally the

two parameters a12 and a21 to be estimated globally as well as the hyperparameters (variance,

scale and smoothness) of the two processes. That is, one is confronted with the announced

identifiability issue. This can be solved in our Bayesian approach by using appropriate prior

distributions for the variances of the Gauss-Markov processes and the smoothness and scale of

the Matérn covariance functions to be modelled (see again Section 2.2) as these influence the

values of w1(si) and w2(si) by “shifting” the posterior distributions in a way that is concordant

with prior believes. For instance, it is often assumed that the underlying processes represent

spatially structured effects with two different spatial scales which can be expressed by suitable

informative priors for the scales of the covariance functions (see Ren and Banerjee [RB13] and

Ribeiro et al. [RSP15]). Another possibility is to impose constraints on some of the parameters

or actually fix them a priori. Regardless of which method is applied, one has to choose the

regularization very carefully to avoid undesired effects.

In the shared component model the issue is even more pronounced as there are the three values

w1(si), w2(si) and z(si) for each segment, a global parameter a and the hyperparameters which

have to be estimated with only two observations per segment. The approaches to solve this

problem are the same as above: Choose appropriate prior distributions, impose constraints on

the parameters or fix them (the proposals in this paragraph are partially adopted from Knorr-

Held and Best [KHB01, pp.77,78], Lindgren et al. [LRL11, p.470] and Ren and Banerjee [RB13,

pp.21,22]).

Remark 3.4. If we are not interested in the amounts and spatially structures of the underlying

effects in the “standard” LMC, but solely in the construction of a valid covariance matrix by

means of the LMC – which is often the case – we may assumeA to be lower triangular to facilitate

inference (see Gelfand et al. [GSBS04, p.272]). This is due to the fact that it is possible to define

w̃1(si) = w1(si) + a12w2(si) and w̃2(si) = (1 − a21a12)w2(si), allowing rewriting Equations 24

and 25:

f1(si) = w̃1(si), (28)

f2(si) = a21w̃1(si) + w̃2(si). (29)

Hence, we are back at the functional connection model with linear dependence of Equations 10

and 13.

3.2.2 The bivariate Matérn model

A more recent technique to construct bivariate Gaussian processes dates from Gneiting et al.

[GKS10]. In their approach the marginal-covariances as well as the cross-covariances are modelled

as covariance functions of the Matérn-class. As mentioned previously, this is an appropriate

choice to describe the (spatial) dependencies both within and between the processes as the the
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Matérn covariance is the standard covariance model for univariate processes (see the discussion

on this point in Section 2.2). Nevertheless, the issue of ensuring the covariance matrix Σ in

Equation 19 to be non-negative definite at first remains in this approach.

For this purpose, Gneiting et al. present some relatively complex relations which must hold for

the parameters of their model to receive a valid covariance matrix (see Gneiting et al. [GKS10,

p.1170]). While these conditions fully characterize a valid bivariate Matérn model, they also give

some simpler sufficient conditions (see Gneiting et al. [GKS10, p.1171]).

That means, the issue of constructing a valid bivariate Gaussian process can be solved by their

approach, albeit it is a little bit tricky. But the precision matrices of the two processes, which

we want to be sparse, are dense in general. Consequently, the method of Gneiting et al. is not

suitable for our purposes.

To solve this final issue, Hu et al. [HSLR13] bring together the idea of Gneiting et al. and

the Gauss-Markov approximation approach of the univariate case presented in Lindgren et al.

[LRL11]. Similar to the approximation of the univariate case (cf. Section 2.2), the bivariate

Matérn model is constructed using a system of stochastic partial differential equations (SPDEs),

and, more important, the constructed covariance matrix Σ is automatically symmetric non-

negative definite, i.e. valid (see Hu et al. [HSLR13, p.5]). How this may be achieved is beyond

the scope of this thesis, we refer to Sections 2 and 3.1 in the paper of Hu et al. for a detailed

description of the model construction approach by SPDEs.

With this method, the precision matrix of the (approximated) bivariate Gaussian process is

sparse due to the usage of a bivariate Gauss-Markov process, i.e. the remaining problem of

the approach of Gneiting et al. is solved (see Hu et al. [HSLR13, p.11]). Furthermore, there

is a relationship between the approaches of Gneiting et al. and Hu et al. in the sense that

the parameters of the two approaches are related by several equations (see Hu et al. [HSLR13,

Sec.3.3]).

It shall be announced that when modelling by SPDEs, one may use the triangular or the full

version of SPDEs. In the triangular version, the properties of the bivariate Gaussian process are

easier to interpret than in the full version. In return, there is once again an imposed symmetry

property on the cross-covariance just like in the LMC, which is not the case in the full version

(see Hu et al. [HSLR13, p.13]). Moreover, in both versions, the first process is a Matérn process,

but the second in general is not. It is actually a mixture of Matérn models which is very close to

a Matérn (see Hu et al. [HSS+15, p.16]). In Hu et al. [HSLR13, p.19] the authors state that with

additional conditions, the second process could also be a Matérn process, unfortunately without

denoting the exact conditions.

Remark 3.5. A discussion on the pros and cons of the different modelling techniques presented

so far shall not be conducted at this point. Rather, it is an essential part of the discussion in

Section 7, since the comparison highly depends on the accuracy of the inference conducted in

Section 6.
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4 Examples and simulations

A lot of theoretical (sub-)models have been introduced so far. In the following, some concrete

examples are given as well as simulated and illustrated. These examples constitute the basis for

the inference in Section 6, where we try to retrieve the parameters and effects of the simulated

models.

Before stating the examples, several general information shall be announced. For all the exam-

ples, the point patterns of the two one-dimensional Poisson processes are simulated on a segment

which starts at 0 and ends at 1. This is a modelling simplification which can be extended in a

straightforward way to other segments of finite length.

Furthermore, the spatially structured effects are simulated as Gaussian processes with Matérn

covariance functions as they shall be approximated by Gauss-Markov processes in the inference

step. See again Section 2.2 for a discussion on this matter.

For simulation purposes, the values of the spatially effects (and consequently of the Poisson

processes) are simulated at the centres of an equally spaced grid with 1000 segments covering

the observation range from 0 to 1. Then the points in one grid segment are equally distributed

within that segment (see Section 3 and Møller and Waagepetersen [MW03, p.15]) and may easily

be simulated.

4.1 Modelling by functional connections: Independence

To begin with, two independent Poisson processes are presented. While this example does not

give any insight into interaction modelling, it is a good reference point for comparisons with

the other models, e.g. in terms of accuracy of the estimates of the parameters and spatially

structured effects.

The two Poisson processes are determined by the latent processes which are modelled as (see

Equations 8 and 9)

ηi = β1 + f1(si) + ui,

ωi = β2 + f2(si) + vi,

where

f1 ∼ N1000(0,Σ1), (30)

f2 ∼ N1000(0,Σ2), (31)

ui
iid∼ N (0, σ2

u), (32)

vi
iid∼ N (0, σ2

v), (33)

and the parameters and hyperparameters in this first example are given as indicated in Table 1.

There are six parameters which have not been discussed yet: σ2
f1

, ν1, κ1, σ2
f2

, ν2 and κ2. These
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Table 1: Modelling by functional connections: Parameters and hyperparameters for the indepen-
dence example.

Process ηi ωi
Parameter β1 σ2

u σ2
f1

ν1 κ1 β2 σ2
v σ2

f2
ν2 κ2

Value 5 0.1 0.7 0.5 10 4 0.1 0.4 1.5 6

are the parameters which determine the values of the Matérn covariance functions of the two

processes and which define in this way the covariance matrices Σ1 and Σ2 (see also Section 2.2

for a definition of the Matérn covariance function). σ2
f1

and σ2
f2

are the marginal variances of

the processes f1(si) respectively f2(si), ν1 and ν2 are smoothness parameters, and κ1 and κ2 are

scaling parameters of the two processes. It must be pointed out that ν1 = 0.5 and ν2 = 1.5 are

chosen so that the explicit link between Gaussian processes and Gauss-Markov processes may

be used in the inference step. In other examples, we use values for ν which do not profit by this

link but by a more relaxed relation between Gaussian processes and Gauss-Markov processes

(see Section 2.2 for a discussion on both possibilities).

In Figure 1 simulations of the processes based on the parameters in Table 1 are illustrated. The

two top panels show realizations of the spatially structured effects f1(si) and f2(si), simulated

as Gaussian processes with Matérn covariance functions with the parameters indicated in Table

1. The process f2(si) is much smoother than the process f1(si) as the smoothness parameter

is higher: ν2 = 1.5 whereas ν1 = 0.5. The scope of reached values is higher for f1(si) (roughly

5) than for f2(si) (roughly 1.5) as the variance parameter σ2
f1

for the Gaussian process f1(si) is

higher. Moreover, the range value of the process f2(si) is much higher than that of f1(si) (see

again Section 2.2 for the definition and implications of the range of a given process). This is

also the reason why the second process is not centred at all around zero although the processes

initially have been modelled with expectation zero: One accidental high value at the beginning

of the observation range has a big influence on all the other values of f2(si).

The two bottom panels of Figure 1 show realizations of the two latent processes ηi and ωi,

based on the simulations of f1(si) and f2(si) displayed in the top panels. That is, intercepts and

Gaussian white noise (parameters again denoted in Table 1) are added to the spatially structured

effects. The latent processes ηi and ωi constitute the basis for the following simulations of the

Poisson processes Xi and Yi.

Realizations of the counts of the two processes are shown in the bottom panels of Figure 2.

One may see that there are more counts at the positions of the observation range where the

corresponding latent process has higher values. This is for example visible at the end of the

observation range for the processes ηi and Xi and – less pronounced – at the beginning and in

the middle of the range for ωi and Yi.

In the top left panel the simulations of the two latent processes ηi and ωi are plotted once again

in a joint graphic for comparison purposes, while the top right panel illustrates simulations of
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Figure 1: Modelling by functional connections: Simulations for the independence example. Top
left: The spatially structured effect f1(si) of the first Poisson process Xi. Top right:
The spatially structured effect f2(si) of the second Poisson process Yi. Bottom left:
The latent process ηi of the Poisson process Xi. Bottom right: The latent process ωi
of the Poisson process Yi.

16



Figure 2: Modelling by functional connections: Simulations for the independence example II. Top
left: The latent processes ηi (black line) and ωi (grey line) of the Poisson processes Xi

and Yi. Top right: One-dimensional point patterns ξiki (black points) and τiki (grey
points) of the Poisson processes Xi and Yi. Bottom left: The counts of the Poisson
process Xi. Bottom right: The counts of the Poisson process Yi.
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the point patterns ξiki and τikicorresponding to the the realizations of the two Poisson pro-

cesses. However, the point patterns are less transparent than the Poisson counts concerning the

representation of the point processes.

4.2 Modelling by functional connections: Linear and non-linear dependence

In the following, we maintain the realizations of the spatially structured effects f1(si) and f2(si)

shown in Figure 1 for a better visualization of the interactions which result from a linear respec-

tively non-linear dependence in the spatially structured effects. While

ηi = β1 + f1(si) + ui

as previously,

ωi = β2 + β3f1(si) + f2(si) + vi

in the linear case and

ωi = β2 + g(f1(si)) + f2(si) + vi

in the non-linear case with a non-linear function g.

Again, for the purpose of comparison, the parameters of the latent processes are the same as

indicated for the independence example in Table 1. Nevertheless, we have to state the parameter

β3 for the linear dependence example as well as a function g for the non-linear dependence

example. In fact, two linear dependence examples will be discussed, one with β3 = 0.4 and the

other with β3 = −0.4 since this makes a difference in the difficulty of inference as may be seen

in Section 6. For the function of non-linear dependence, we use

g(f1(si)) =
f1(si)

2

2
. (34)

In Figure 3, the interactions between the latent processes are made visible. The top left panel

shows the spatially structured effects of the independence example, i.e. without any interaction.

The top right panel shows first dependencies between the spatially structured effects: The black

line indicates the process f1(si), whereas the grey line represents the spatially structured effect

0.4f1(si)+f2(si) of the process ωi for the first linear dependence example. The blue line provides

a reference to how the spatially structured effect of ωi is depicted without any interactions (so

it represents solely f2(si)). One may recognize that the grey line “fluctuates” around the blue

line in the same way as f1(si) moves, which is due to the positive linear dependence parameter

β3 = 0.4. In contrast, the grey line in the bottom left panel behaves inversely to the black one
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as the dependence parameter is β3 = −0.4 here. Finally, in the bottom right panel, the grey line

behaves consistently with the black one in some parts of the observation range, in others not.

This is caused by the non-linear dependence of the function g that reinforces the effect of f1(si)

when f1(si) is greater than zero but controverts it when it is lower than zero.

The exact non-linear dependence determined by the function f1(si)
2/2 may be seen in the top

panel of Figure 4. As the range of values for the simulation of the process f1(si) goes roughly

from −2 to a bit less than 3, only the excerpt of interest for the functional connection is shown.

The range of values for g(f1(si)) = f1(si)
2/2 is 0 to around 4.

In the section about inference, we will see how (well) all these possible interactions may be

recovered from Poisson counts based on the latent processes including the stated dependencies.

4.3 Modelling by functional connections: Dependence on the latent process

The last example for interaction modelling by functional connections is a simplified version of

Equation 15. While

ηi = β1 + f1(si) + ui

once again, ωi is only dependent on the whole latent process ηi without an additional spatially

structured effect f2(si):

ωi = β2 + g(ηi) + vi, (35)

where, this time, g(ηi) = −2 sin(ηi).

As before, the parameters of the processes ηi and ωi are as indicated in Table 1 (note that the

parameters σ2
f2
, ν2 and κ2 of the process f2(si) are not used at this point). The realization of

f1(si) just as the realizations of the two unstructured effects ui and vi are the same as in the

independence example (we do not need the realization of f2(si) here). That is, the latent process

ηi exhibits the same pattern as illustrated in the bottom left panel of Figure 1.

This is visible in Figure 5: The black line in both panels, representing ηi, is identical to the ηi of

the former examples (albeit more stretched). The grey line in the top panel indicates the linear

predictor of ωi, i.e. it corresponds to ωi without the unstructured spatially effect vi. The top

panel shall point out the special dependence between the two latent processes: As the grey line is

equal to 4−2 sin(ηi) (the intercept β2 is 4), it must adopt values between 2 and 6 as −2 sin(ηi) can

only fluctuate between these two values. This is the reason why the grey line looks “trimmed”

at the value 6 of the y-axis – and less pronounced at the value 2, too. Finally, the bottom panel

shows both latent processes in one plot. They behave in a similar way apart from the end of the

observation range where they are inverse. This is due to the functional connection which may

be seen in the bottom panel of Figure 4 (again, only the excerpt of interest is shown). Up to

the value ηi = 5, ηi and −2 sin(ηi) are linked by a nearly linear function with slope one, whereas
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Figure 3: Modelling by functional connections: Simulations for the linear and non-linear depen-
dence example. Top left: The spatially structured effects f1(si) (black line) and f2(si)
(grey line) for the latent processes ηi and ωi in the independence example. Top right:
The spatially structured effects f1(si) (black line) and 0.4f1(si) + f2(si) (grey line) for
the latent processes ηi and ωi in the first linear dependence example as well as the
process f2(si) for reference (blue line). Bottom left: The spatially structured effects
f1(si) (black line) and −0.4f1(si) + f2(si) (grey line) for the latent processes ηi and
ωi in the second linear dependence example. Bottom right: The spatially structured
effects f1(si) (black line) and f1(si)

2/2 + f2(si) (grey line) for the latent processes ηi
and ωi in the non-linear dependence example.
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Figure 4: Modelling by functional connections: Non-linear dependencies. Top: The non-linear
dependence example with the functional connection f1(si)

2/2 based on the values of
the spatially structured effect f1(si) of the latent process ηi. Bottom: The dependence
on the latent process example with the functional connection −2 sin(ηi) based on the
values of the whole latent process ηi.
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Figure 5: Modelling by functional connections: Simulations for the dependence on the latent
process example. Top: The latent process ηi (black line) and the linear predictor of
the process ωi (grey line) of the Poisson processes Xi and Yi. Bottom: The latent
processes ηi (black line) and ωi (grey line) of the Poisson processes Xi and Yi.

afterwards the relation gets more and more inverse. With values of ηi of 6 and higher being only

present at the end of the observation range, there are the locations where the inverted relation

effectively gets visible.

4.4 Modelling by bivariate Gauss-Markov processes: LMC and shared

component model

The next two examples deal with modelling by bivariate Gauss-Markov processes. In contrast to

the former examples, we use other parameters and therefore different simulations for the spatially

effects to gain further insights. In particular, the explicit link between Gaussian processes and

Gauss-Markov processes does not hold any more (but a more relaxed relation does, see Section
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Table 2: Modelling by bivariate Gauss-Markov processes: Parameters and hyperparameters for
the LMC example.

Process w1(si) w2(si) ηi ωi
Parameter σ2

w1
ν1 κ1 σ2

w2
ν2 κ2 β1 σ2

u a12 β2 σ2
v a21

Value 0.3 0.3 7 0.5 1.2 12 5 0.2 0.3 5.5 0.1 0.7

2.2).

The linear model of coregionalization The first example is the linear model of coregionalization

(LMC), where the latent processes are determined by (recall Equations 22 and 23)

ηi = β1 + w1(si) + a12w2(si) + ui,

ωi = β2 + a21w1(si) + w2(si) + vi,

where the spatially structured and unstructured effects are distributed once more as indicated

in Equations 30 to 33, replacing f1 and f2 by w1 and w2. The new parameters of the latent

processes are denoted in Table 2 and realizations of the spatially structured effects may be seen

in Figure 6.

Neither the table nor the figure shall be discussed in detail here, but there are two points to

mention: Firstly, as announced, ν1 = 0.3 and ν2 = 1.2 do not allow to profit from the explicit

link between Gaussian processes and Gauss-Markov processes but from a more relaxed relation.

Secondly, one may identify by a comparison of the top and the bottom panel of Figure 6 that

the black line and the grey line approach each other. This is due to the mixing of the processes

w1(si) and w2(si) in both overall spatially structured effects. The grey line “moves” more than

the black one by comparison of the top panel to the bottom panel as a12 = 0.3 only but a21 = 0.7

and therefore much higher.

The shared component model The second example for modelling by bivariate Gauss-Markov

processes is the shared component model. There, the latent processes are given by

ηi = β1 + z(si) + w1(si) + ui, (36)

ωi = β2 + az(si) + w2(si) + vi, (37)

where the effects are distributed as indicated in Equations 30 to 33 with f1 and f2 replaced by

w1 and w2. The process z is distributed just as w1 and w2 with another covariance matrix Σ3.

As may be seen in Table 3, the parameters for the two spatially structured effects w1(si) and

w2(si) are the same as for the LMC example (but now unmixed in the overall spatially effects

of the latent processes). For the shared component z(si) an even smoother process than w2(si)

with a long range is used to model a steady common effect. Only half of this effect is present in
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Figure 6: Modelling by bivariate Gauss-Markov processes: Simulations for the LMC example.
Top: The spatially structured effects w1(si) (black line) and w2(si) (grey line). Bottom:
The overall spatially structured effect w1(si) + a12w2(si) (black line) for the latent
process ηi and the overall spatially structured effect w2(si) + a21w1(si) (grey line) for
the latent process ωi.
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Table 3: Modelling by bivariate Gauss-Markov processes: Parameters and hyperparameters for
the shared component example.

Process w1(si) w2(si) z(si) ηi ωi
Parameter σ2

w1
ν1 κ1 σ2

w2
ν2 κ2 σ2

z ν3 κ3 β1 σ2
u β2 σ2

v a
Value 0.3 0.3 7 0.5 1.2 12 0.8 1.5 4 5 0.2 5.5 0.1 0.5

the second latent process ωi as a = 0.5.

Simulations of the three spatially structured effects w1(si), w2(si) and z(si) are illustrated in the

top panel of Figure 7, where the realizations of the processes w1(si) and w2(si) are the same as

in the LMC. The overall spatially structured effects z(si) + w1(si) of the latent process ηi and

az(si) + w2(si) of the process ωi are pictured in the bottom panel. It is visible by comparison

of the two panels that the shared effect “shifts” the two spatially structured effects w1(si) and

w2(si) upwards: a little bit at the beginning of the observation range, more at the end of the

range. The effect on the grey line is less pronounced as only half of the effect z(si) influences

the overall spatially effect of ωi (a = 0.5). In Section 6, we will examine how well the three

intermingled spatially structured effects may be recovered from Poisson counts based on the

latent processes ηi and ωi.

Remark 4.1. An example of the last model covered in Section 3 – the bivariate Matérn model

– is not provided here. This is due to a lack of feasibility in the inference step: At the moment

of the draft of this thesis, bivariate processes based on systems of SPDEs are not available in the

R software package used for inference of the stated models (the R-INLA package, see Section 5.2

for more details). Consequently, as we cannot recover any interactions modelled by a bivariate

Matérn model, we refrain from giving an example of that modelling option.
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Figure 7: Modelling by bivariate Gauss-Markov processes: Simulations for the shared component
example. Top: The spatially structured effects w1(si) (black line), w2(si) (grey line)
and z(si) (blue line). Bottom: The overall spatially structured effect z(si) + w1(si)
(black line) for the latent process ηi and the overall spatially structured effect az(si) +
w2(si) (grey line) for the latent process ωi.
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5 Inference methods

5.1 The INLA approach

Before going over to simulation studies, the “integrated nested Laplace approximation” (INLA)

methodology used for fitting the models shall be presented. We will introduce the procedure

only briefly, a detailed description may be found in Rue et al. [RMC09, pp.327–332].

INLA may in general be applied to each model which may be formulated as a latent Gaussian

model. In those models, the observation variable ξi has to belong to the exponential family where

the mean µ(ξi) is linked to a structured additive predictor η(ξi) through a link function g(·) so

that g(µ(ξi)) = η(ξi). The structured additive predictor η(ξi) then accounts for various effects in

an additive way, where the priors for these effects must be Gaussian. As may be seen in Section

2.1, log-Gaussian Cox processes satisfy these requirements (with a link function g(·) = log(·))
and hence the INLA approach may be applied.

INLA relies on deterministic approximations instead of randomization as it is used in Markov

chain Monte Carlo (MCMC) methods. Let ζ denote the vector of all the parameters which are

the intercepts β1, β2, the interaction parameters β3, a12, a21, a, the spatially structured effects

f1(si), f2(si), w1(si), w2(si), z(si), the spatially unstructured effects ui, vi and the coefficients of

a possible Bayesian P-spline regression in our setting. The vector θ represents the vector of the

hyperparameters σ2
f1
, σ2
f2
, σ2
w1
, σ2
w2
, σ2
z , ν1, ν2, ν3, κ1, κ2, κ3, σ2

u, σ
2
v and the variance of potential

P-spline random walk priors. Naturally, not all of the noted (hyper-)parameters are present in

a particular simulation study. Note that Gaussian priors must be assigned to the parameters,

whereas the hyperparameters are not necessarily Gaussian distributed.

The posteriors of interest are the marginal posteriors for the latent fields π(ζi | x,y) and the

marginal posteriors for the hyperparameters π(θj | x,y), which must be approximated by the

INLA approach (see Rue et al. [RMC09, p.324]). The vectors x and y denote the observed

Poisson counts of the first and second Poisson process here. To approximate the posteriors with

INLA, the posteriors are formulated as

π(ζi | x,y) =

∫
π(ζi | θ,x,y)π(θ | x,y)dθ, (38)

π(θj | x,y) =

∫
π(θ | x,y)dθ−j . (39)

Hence, the marginal posteriors π(ζi | x,y) are obtained by approximating π(ζi | θ,x,y) and

π(θ | x,y) and using numerical integration to integrate out θ, for what the number of hyper-

parameters should be small – preferably not higher than six (see Rue et al. [RMC09, p.321]).

π(θj | x,y) is also based on the approximation of π(θ | x,y), but θ−j is integrated out instead

of θ.
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The approximation for π(θ | x,y) is achieved by using the Laplace approximation

π̃(θ | x,y) ∝ π(ζ,θ,x,y)

π̃G(ζ | θ,x,y)

∣∣∣
ζ=ζ∗(θ)

, (40)

where π̃G(ζ | θ,x,y) is a Gaussian approximation to the full conditional for ζ by matching the

modal configuration and the curvature at the mode. The value ζ∗(θ) is the mode of the full

conditional for ζ for a given hyperparameter value θ. The approximation of π(ζi | θ,x,y) is

similarly based on a Laplace approximation, although not shown here.

In summary, the three different components of the INLA approach have been presented: The

required integration (I) and nested formulation (N) in Equations 38 and 39 and the Laplace

approximation (LA) in Equation 40.

Though the usual MCMC methods could also be used in our setting, we refrain from using them

as they often exhibit a poor performance when being applied to latent Gaussian models. This

has mainly two reasons (see Rue et al. [RMC09, p.322]): Firstly, the parameters ζ of the latent

process are strongly dependent on each other. Secondly, the parameters ζ and the hyperparame-

ters θ are strongly dependent, which gets worse when the number of observation rises. Both facts

provoke that MCMC methods need a very long running time to provide satisfiable results. As

Rue et al. [RMC09, p.348] state for latent Gaussian models, the INLA approach “[. . . ] provides

precise estimates in seconds and minutes, even for models involving thousands of variables, in

situations where any MCMC computation typically takes hours or even days.”

However, it must be said that the INLA approach is problematic when being applied to set-

tings where the number of hyperparameters is high as the computational cost is exponential

with respect to the number of hyperparameters. But this is only an issue for applications with

more than six hyperparameters, which is not the case for our models. The highest amount of

hyperparameters in our simulation studies are the six hyperparameters in the shared component

example.

5.2 The R-INLA package

The simulation studies presented in Section 6 were conducted by means of the “R-INLA” package,

a supplementary package for the statistical software “R”.

The R-INLA package can be downloaded from http://www.r-inla.org/ and provides a tool for

fitting models both by using the INLA methodology introduced in the previous section and

the SPDE approach for the approximation of Gaussian processes by Gauss-Markov processes

(see Section 2.2). Note that the default method for inference within R-INLA is a simplified

Laplace approximation instead of the standard Laplace approximation. However, Rue et al.

[RMC09, pp.329,332] state themselves that “[. . . ] the much smaller cost of the simplified Laplace

approximation generally compensates for the slight loss in accuracy [. . . ]” compared to the

standard Laplace approximation and that “[the] simplified Laplace approximation appears to

be highly accurate for many observational models”. We checked the differences between the
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standard and the simplified Laplace approximation for the first simulation study which is the

independence example – without any visible differences in the quality of the model fit, but with

a running time being almost ten times higher for the standard Laplace approximation. So we

decided to use the default simplified Laplace approximation for inference.

A lot of work has been proven beneficial for understanding the R-INLA package and implementing

our models. These include the ISBA Bulletin by Lindgren [Lin12] and the examples tutorial

by Krainski et al. [KLSR16], both available on the R-INLA website, the publication about

spatial data analysis with R-INLA by Bivand et al. [BGRR15] and the work on Bayesian spatial

modelling with R-INLA by Lindgren and Rue [LR15].

We used the R version 3.2.4 from March 10, 2016 and the R-INLA version 0.0-1457943991, dated

from March 14, 2016 for each of our examples. The commented R codes for the simulation

and inference of our modelling methods is available on the CD appended to the present work.

Moreover, a README.txt explaining the R codes (and helper functions) is attached to the CD.

5.3 Methods for model validation and comparison

In Section 6, we will conduct simulation studies to assess the quality of the different methods

for interaction modelling. For this purpose, the methods will be evaluated with regard to their

ability to rebuild the simulated examples based on each of the interaction methods. As we are

in the comfortable situation of examining simulations, there are several possibilities to do this.

They are announced below in the first paragraph.

Nevertheless, we also have to keep in mind that those validation methods are not applicable in

practice where the underlying processes of the examined Poisson processes are mostly unknown.

For this reason, we will not only introduce methods for model validation in this section, but

also techniques for model comparison which should be applied in practice to help detecting the

“best” – or at least a not too bad – interaction model for the situation at hand.

Methods for model validation For each of the simulated examples of Section 4, there are several

techniques to evaluate how well they are recognized when applying the appropriate model in the

inference step, i.e. the interaction method they are originally based on.

First of all, the posterior marginal distributions of the parameters and hyperparameters should

be compared with the true values. While this can be done using the posterior mean and an

equal-tailed credible interval for the Gaussian distributed parameters, it is reasonable to apply

the mode as a convenient point estimate as well as a HPD (highest posterior density) interval

for the hyperparameters as the posterior marginals for the not necessarily Gaussian distributed

hyperparameters can be severely skewed (see Rue et al. [RMC09, p.346]). When comparing the

fitted and true values, the focus lies on the accurate estimation of the interaction parameters.

Naturally, it is also important that the rest of the (hyper-)parameters are estimated correctly as

good modelled interactions based on bad fitted underlying processes are worthless. However, the

most important part of our models are the interactions which consequently should be estimated
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most accurately.

Remark 5.1. At this point, a comment on the estimation of the spatially unstructured effects

must be placed. The simulation studies showed that without an unreasonable highly informative

prior, the spatially unstructured effects are nearly undetectable in the inference step with INLA

(one gets precisions of 10,000 and more).

Dr. Finn Lindgren replied to the author’s request concerning this issue in the R-INLA discussion

group. He stated that there are two possible explanations for the observed effect: Firstly, “[. . . ]

the discretised spde model approximation error indeed tends to give slightly sharper correlation

for short distances [. . . ]” and so “[. . . ] there are parameter values for the spatial field that are

better at capturing the structure than the nugget part of the model [. . . ]”. Secondly, “[. . . ] the

point process is extremely weakly informative about the small scale structure of the intensity

process, so it’s likely that the nugget effect has only a very small practical effect on the point

pattern [. . . ]”. Consequently, “[. . . ] [unless the] average count in each grid box is very high [one]

won’t be able to detect overdispersion [. . . ]” (the nugget effect, i.e. the spatially unstructured

effect, leads to overdispersion in the Poisson counts).

As we do not want to highly increase the number of counts per segment (the approximation error

of the SPDE models would rise, too), we lay aside the estimation of the spatially unstructured

effects. Anyway, they do not play an important role in our interaction modelling examples.

While the comparison of the fitted with the true parameters already includes the comparison

of the fitted with the true spatially structured effects (as they are a part of the estimated

parameters), it might also be of interest how deviations from the true parameters influence the

fit of the complete latent processes. So comparisons of the fitted linear predictors (i.e. the latent

processes without the spatially unstructured effects) with the true ones are another option to

assess the quality of the fit. Note that the linear predictors, not the entire latent processes, should

be compared, since the spatially unstructured effects are nearly undetectable in the estimation

(see Remark 5.1).

To get a more objective score for the quality of the fits – both of the spatially structured effects

and of the linear predictors – one can compute the MAE (mean absolute error) and MSE (mean-

square error) of the estimated processes (see Hu et al. [HSS+15, p.8]). As the names already

indicate, the first index is the mean of the summed absolute differences between the estimated

and the true values of the process, whereas the second index is the mean of the summed squared

differences between the estimated and the true values. Thus, one can rely on exact scores for the

quality of the fits – at least as far as the posterior means are concerned. Furthermore, the two

indices constitute a possibility to quickly compare two different fits.

Methods for model comparison While we are able to fit and evaluate the “true” interaction

model for each of our simulated examples (i.e. the interaction model the examined simulation is

originally based on), a user in practical applications usually does not know the underlying struc-

ture. Actually, this is exactly the reason why interaction models shall be applied: One wants
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to get an idea of the interaction – if any – between the observed point processes. Naturally, a

comparison with “true” values is impossible in this case. To still find the best interaction model

for the particular situation, methods for model comparison must be used.

Illian et al. [ISR12, p.1505] applied “[. . . ] methods for model comparison based on the deviance

information criterion (DIC) [. . . ] to compare different models with different levels of complexity”.

The DIC is “a somewhat Bayesian version of AIC”, where the maximum likelihood estimate in

the formula is replaced with the posterior mean. Moreover, the penalizing term, which normally

is two times the number of parameters, is replaced with an estimation of two times the effective

number of parameters. The latter is necessary, since “[informative] prior distributions and hi-

erarchical structures tend to reduce the amount of overfitting, compared to what would happen

under simple least squares or maximum likelihood estimation” [GHV13, pp.7,8]. Consequently,

the penalization would be too strict if one took the usual penalty term. Just as for the AIC,

lower values of the DIC are preferable. Unfortunately, there is no general rule to determine when

the difference in the DIC between two different models is crucial. This depends on the particular

inference setting as well as on the data at hand. As Gelman et al. [GHV13, p.27] state, one

might calibrate the differences based on a very simple example model. In our setting of examining

interactions, a simple example is the independence example which we will use to calibrate the

differences in the DIC (see Section 6.1). For further information about the AIC and DIC as well

as for formulas for the calculation of the effective number of parameters, see Rue et al. [RMC09,

Ch.6.4] and Gelman et al. [GHV13, Ch.3.2,3.3].

Although we will use the DIC as a tool for model comparison in Section 6, we will not solely rely

on that measure as it has the drawback to take only a point estimate – the posterior mean – into

account instead of the entire posterior distribution (which would be desirable). A criterion which

is indeed based on the complete posterior distribution is the WAIC (called the widely applica-

ble information criterion). The WAIC is a fully Bayesian approach, again with a correction for

the effective number of parameters, and constitutes an approximation to cross-validation. The

reason why we do not directly use a cross-validation scheme is that it would be computational

expensive on the one hand, on the other hand, cross-validation is not well defined in our setting

with dependent data (see Gelman et al. [GHV13, p.28]). The dependent data might also be an

issue for the WAIC, which is the reason why we will not only rely on the WAIC either. Again,

lower values of the WAIC are preferable and we calibrate the differences on the independence

example. Further information about the WAIC is available in Gelman et al. [GHV13, Ch.3.4].

The third criterion we use for model comparison is the conditional predictive ordinate (CPO)

(see Rue et al. [RMC09, Ch.6.3]). The CPO is a “leave-one-out” predictive measure of fit which

is based on the predictive density π(qi | q−i) for the observed qi based on all the other observa-

tions. Here, q represents the vector of Poisson counts for both processes, i.e. q contains all the

Poisson counts xi and yi. While the CPO values are a helpful tool for model validation – namely

to detect surprising observations which are related to small CPO values – the mean of the CPO

values may also be used to compare between two different models for a given dataset. Obviously,
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higher means are preferable and the difference will be calibrated as before on the independence

example.

We want to emphasize that the goal is not to choose a single model based on a combination of

the DIC, WAIC and CPO, but rather to give some devices to narrow the quantity of models to

take into account in practical applications. As the title of the paragraph already implies, the

focus lies on model comparison, not on model selection. For the task of choosing a final model,

there are a lot of other aspects to be considered as the particular situation (for example one

might want to detect a common underlying factor of the two Poisson counts which would lead to

the shared component model) or the running time of the models (which we will also examine in

Section 6). A detailed discussion on when to choose which model will be conducted in Section 7.
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6 Simulation studies

Before examining the simulated examples from Section 4, some general comments on the infer-

ence approach shall be made. First of all, the inference is done on the same grid as has been

used for the simulation of the examples, i.e. on 1000 equally spaced segments, each of length

0.001, covering the observation range from 0 to 1. This yields ratios between 0.1 and 0.5 for the

proportion of points to grid segments in our examples, which corresponds to the ratios in other

(practical) studies. For instance, the ratios lie between 0.1 and 1.5 for the applications in Rue

et al. [RMC09, Ch.5.5], Illian et al. [ISR12, Ch.4,5] and Illian et al. [ISRH12, Ch.3]. There

are a lot of empty segments with our approach, what may lead to the idea of implementing an

irregular spaced grid to get a finer resolution at locations with many points and a rougher one at

locations with only a few points. However, as Hu and Simpson state in the discussion of Lindgren

et al. [LRL11, p.493], this complication is not necessary as “[. . . ] both the point pattern and

the ‘empty space’ provide important information.”

Furthermore, we use a joint modelling approach for the two point patterns whenever this is

possible in the inference of the simulated examples. This procedure has the advantage of a com-

mon likelihood for the two point patterns and hence of unified parameters and hyperparameters,

which induces a better fit. Actually, we are able to use a joint inference approach for all our

examples with the exception of the non-linear models, where the base values of the first point

pattern are needed to conduct the Bayesian P-spline approach. In the latter case, the MAE,

MSE and model comparison scores of the two individual fits are combined in the analysis.

Besides, sum-to-zero constraints are performed in the inference for the spatially structured ef-

fects as well as for the P-splines to separate the effect of the various components. That is, the

estimates of the intercepts β1 and β2 also include the means of the spatially effects – which have

been simulated with an expected value of zero but have nevertheless means not equal to zero –

and of the P-splines.

Another issue, not only in the INLA approach but in every inference setting containing Matérn

models, is the identifiability of the smoothness parameter ν. Usually, the smoothness param-

eter is fixed in advance (according to an a priori belief of the smoothness of the process or to

a favoured value concerning the smoothness of the trend one wants to detect) as it is hardly

identifiable (see Lindgren et al. [LRL11, pp.426,470] and Hu et al. [HSS+15, p.5]). For the

inference step in R-INLA, the smoothness parameter – in our situation the two smoothness pa-

rameters – must be fixed in advance, too, since the inference function is not able to estimate

the smoothness parameter(s). We are once again in the comfortable position of being able to

fix the two smoothness parameters ν1 and ν2 to our (simulated) known values, which we will do

in the following simulation studies. Nevertheless, we also want to examine what one may do in

practice to get an idea of the smoothness of the underlying processes. Although this is even more

challenging for Poisson processes than for Gaussian processes as point processes are extremely

weakly informative about the small scale structure of the latent processes (see Remark 5.1), we

will try in Section 6.1 to approximately identify the smoothness parameters ν1 and ν2 for the
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independence example as a benchmark. As the smoothness parameters have to be fixed before

the inference step in R-INLA, this will be done by fitting several models with reasonable prede-

fined values for ν1 and ν2 and comparing the results using the methods for model comparison

presented in Section 5.3.

Finally, there is the task of specifying appropriate priors for the rest of the (hyper-)parameters.

In general, prior specification is highly dependent on the particular application setting as the

prior shall incorporate a priori knowledge and believes. Prior distributions which may lead to

heavy overfitting in one scenario can be just reasonable in another.

In our case, we will use vague non-informative priors in the inference step like it is done in a

lot of other essays about inference for Poisson processes or SPDE models (see e.g. Rue et al.

[RMC09, p.343], Illian et al. [ISR12, p.1506], Illian et al. [ISRH12, Ch.2.3,2.4,3] and Hu et

al. [HSLR13, p.30]). For most of our examples, the default priors of R-INLA are therefore an

appropriate choice, which are stated below. Variations from these priors will be explained in

the particular simulation studies. For instance, the prior for the spatially structured effect of

the second Poisson process in the non-linear dependence example has to be modified to prevent

the spatially structured effect from overfitting due to incorporation of parts of the non-linear

relationship (see Section 6.2).

Remark 6.1. The fact that we basically use the default priors is due to an assumed non-

informative setting and means in no way that prior specification is unimportant. Users of our

interaction models must be aware that all the available a priori information and the characteristics

of the setting at hand have to be incorporated into the priors of the (hyper-)parameters to get

ideal results.

The default priors The default distributions for the (interaction-)parameters in R-INLA are

β1, β2 ∝ constant, (41)

β3, a12, a21, a ∼ N (0, 1000), (42)

and the priors for the hyperparameters are given by

log(τ1), log(τ2), log(τ3) ∼ N (b
(ν1)/(ν2)/(ν3)
1 , 10), (43)

log(κ1), log(κ2), log(κ3) ∼ N (b
(ν1)/(ν2)/(ν3)
2 , 10). (44)

Here, the τ are precision parameters of the spatially structured effects which are related to the

marginal variances by the equation (see Lindgren and Rue [LR15, p.3])

σ2 =
Γ(ν)

Γ(α)(4π)d/2κ2ντ2
, (45)

with α extracted from the SPDE approximation (see Section 2.2), i.e. α = ν + d/2 and d = 1 in
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our case as d is the dimension. Consequently, τ , κ and the a priori fixed ν determine together

the marginal variance through Equation 45 and a distribution for σ2 need not to be specified.

As for the means b
(ν1)/(ν2)/(ν3)
1 and b

(ν1)/(ν2)/(ν3)
2 in Equations 43 and 44, there is no documen-

tation on how they are exactly computed. At least, it is known that they are dependent on

the value of the particular ν and it is possible to get the exact values for a specified inference

setting. Although there is no proper documentation, we keep them as default values as they

have the great advantage of being “chosen heuristically to match the spatial scale of the mesh

domain” (response from Dr. Finn Lindgren in the R-INLA discussion group to the theme “Using

SPDE from Lindgren et al. (2011)” on September 9, 2012). So one may arbitrarily change the

resolution of the grid without having to specify each time a new prior distribution for the (SPDE

approximation based) spatially structured effects. More importantly, the default priors for the

spatially structured effects worked well in the inference of our simulation examples. However, we

will provide the explicit values of b
(ν1)/(ν2)/(ν3)
1 and b

(ν1)/(ν2)/(ν3)
2 for each of our studied examples.

Note that we have not specified any prior distributions for the hyperparameters σ2
u and σ2

v as

we lay aside the estimation of the spatially unstructured effects due to identifiability issues (see

Remark 5.1). Moreover, we have not denoted the distributions for the P-spline random walk

priors yet, which we will do in the specific non-linear dependence examples.

6.1 The independence example

Model validation Our first simulation study is that of the independence example presented in

Section 4.1. To evaluate how well it is recognized, we fit the independence model in the inference

step. Although we will try to identify the smoothness parameters ν1 and ν2 later on (see the

paragraph for model comparison below), we initially fix them to the true values ν1 = 0.5 and

ν2 = 1.5 for the sake of model validation. The priors for the remaining (hyper-)parameters of

Table 1 (without the variances of the spatially unstructured effects) are determined by the default

priors of R-INLA denoted in Equations 41 to 44 and by Equation 45. Note that for the current

independence setting there are no interaction parameters to focus on. Moreover, no variations

from the default priors are necessary. The values of b
(ν1)/(ν2)
1 and b

(ν1)/(ν2)
2 are dependent on the

values of ν1 and ν2 as well as on the grid and are given for the present independence example by

log(τ1) ∼ N (−2.131122, 10), (46)

log(κ1) ∼ N (2.303586, 10), (47)

log(τ2) ∼ N (−5.605241, 10), (48)

log(κ2) ∼ N (2.852892, 10). (49)

Fitting the independence model took 209 seconds to run on a Intel Pentium CPU B950 2 × 2.1

GHz processor with 4 GB RAM.

Remark 6.2. For the sake of simplicity, we do not write the posteriors for the (hyper-)parameters
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as σ2
f1
| x,y and κ1 | x,y and so on (with x and y denoting the observed Poisson counts of

the first and second Poisson process, respectively) but rather as σ2
f1

, κ1 etc. like before for the

priors. We want to point out that if we talk about the (hyper-)parameters before the model

fitting process, we think of the priors, and if we talk of them after the fit, we think of the

posteriors. We will state the meaning of the formulation in each situation where uncertainness

might arise.

The first part of the model validation step is a comparison of the posterior marginal distribu-

tions for the (hyper-)parameters with the values on which the simulation is based – the “true”

values. This is done in a graphical way in Figure 8 (without the parameters of the spatially

structured effects which are presented later and without the not estimated (hyper-)parameters

of the spatially unstructured effects).

The figure shows the posterior distributions for the (hyper-)parameters of the first Poisson process

in the four top panels, the posterior distributions of the (hyper-)parameters of the second Poisson

process in the four bottom panels. Some explanations are needed when considering the panels.

Firstly, not the posteriors for the parameters β1 and β2 are presented in the first and the fifth

panel, but the posteriors for the mean of the latent processes, since sum-to-zero constraints are

performed in the inference step to separate the effects of the various components (see Section

6). That is, the estimated posteriors for β1 and β2 are actually posteriors for the means of

the latent processes and therefore indicated as mean(η) and mean(ω). Secondly, the fourth and

the eighth panel show the nominal ranges of the first and the second latent process, which are

technically none of the parameters that have to be estimated. Nevertheless, they give a useful

insight into the correctness of the estimation as the range represents the distance where two

observations are almost independent (see Section 2.2 for a definition and an interpretation of the

range parameter).

Concerning the interpretation of the panels, the grey lines always indicate the true values of

the (hyper-)parameters of the simulated processes. The solid black lines in the first and the

fifth panel represent the means of the posterior marginal distributions for the means of the

latent processes while the dashed lines stand for the 2.5% and 97.5% quantiles of an equal-tailed

credible interval. For the rest of the panels, the dashed lines indicate the borders of a 95% HPD

credible interval. The reason for this has already been announced in Section 5.3: While mean(η)

and mean(ω) are Gaussian distributed parameters, the posterior marginal distributions for the

variance, the scaling and the range hyperparameters are highly skewed (as may actually be seen

in Figure 8) and consequently the modes and HPD intervals are a better choice for comparisons

of the distributions with the true hyperparameters.

The panels demonstrate that for each of the eight considered parameters the true value lies within

the particular 95% credible interval, which is an indication for a good model fit. Furthermore,

the modes (i.e. the point estimates for the hyperparameters) for the posterior distributions of

the marginal variance σ2
f1

, the nominal range for the first process and the scaling parameter κ2

are almost perfect estimates of the true values (although one has to be cautious because of the
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Figure 8: Modelling by functional connections: Posterior marginal distributions for the parame-
ters and hyperparameters of the independence example. Four top panels: The (hyper-)
parameters for the first Poisson process. Four bottom panels: The (hyper-)parameters
for the second Poisson process. The true values are indicated by a grey line in each of
the panels. For the first and the fifth panel, the mean of the posterior is marked by a
solid black line, the 2.5% and 97.5% quantiles of an equal-tailed credible interval by a
dashed line. For the remaining panels, the dashed lines indicate the borders of a 95%
HPD credible interval.
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different domains of the parameters).

We refrain from further investigations of the figure as the full potential of the analysis method

will only be revealed when comparing the fit of the independence model with the fits of the other

interaction models in the following sections. Then one may examine if the inclusion of interactions

into the model debases the estimates of the other parameters. That is, the current model will

constitute the baseline model for model validation.

The same applies for the estimates of the parameters for the spatially structured effects f1(si)

and f2(si), which are illustrated in Figure 9. We call them the posterior marginal distributions

for the parameters f1(si) and f2(si) in the following even though only the posterior means and

95% equal-tailed credible intervals instead of the whole distributions (which would be thousand

distributions per spatially structured effect) are shown in the figure.

Again, the model fit seems quite good as the true spatially structured effects (indicated by grey

lines) are nearly everywhere inside the 95% equal-tailed credible intervals (marked by dashed

lines). Since there are 1000 segments, the spatially structured effects may lie 50 times outside

the 95% credible intervals on average, but they do so only 39 times for the spatially structured

effect f1(si) and not at all for the effect f2(si). However, the posterior means (indicated by

solid black lines) are not everywhere a good point estimate for the true values but rather a

“smoother” of the spatially structured effects – a result which may actually be favoured in many

applications. This observation is caused by the non-informative priors for the hyperparameters

(partly dependent on the values of ν1 and ν2), but also by the Poisson processes which are

extremely weakly informative about the small scale structure of the latent processes (see Remark

5.1).

Concerning the fits of the linear predictors of the latent processes ηi and ωi in Figure 10, there

are nearly no new insights to gain in the independence example, since both linear predictors are

only dependent on one of the two spatially structured effects.

It is hardly visible in the figure that the 95% equal-tailed credible intervals get slightly wider due

to the uncertainty regarding the mean of the latent processes. Furthermore, the posterior means

of the linear predictor values are a little bit shifted compared with the true linear predictors as

the point estimates of the means of the latent processes are not completely correct (see panels one

and five of Figure 8). Nevertheless, the fits of the linear predictors will become more important

for the interaction models examined in the following sections.

The last model validation step is the calculation of the mean absolute error (MAE) and mean-

square error (MSE) for the estimated spatially structured effects and the linear predictors (see

Section 5.3). The (rounded) computed scores are shown in Table 4.

The scores are very similar for the first spatially structured effect f1(si) and the linear predictor

of the first latent process ηi as the latent process only relies on the spatially structured effect

f1(si). The reason for the small difference is once again that the mean estimate of ηi is not

completely correct. Analogously, the MAE and MSE values for the second spatially structured

effect f2(si) and the linear predictor of the second latent process ωi are very similar. Concerning
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Figure 9: Modelling by functional connections: Posterior marginal distributions for the spatially
structured effects of the independence example. Top: The posterior mean for the
parameters of the spatially structured effect f1(si) (solid black line), the 2.5% and
97.5% quantiles of an equal-tailed credible interval (dashed lines) and the true sim-
ulated spatially structured effect (solid grey line). Bottom: The posterior mean for
the parameters of the spatially structured effect f2(si) (solid black line), the 2.5%
and 97.5% quantiles of an equal-tailed credible interval (dashed lines) and the true
simulated spatially structured effect (solid grey line).
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Figure 10: Modelling by functional connections: Posterior marginal distributions for the linear
predictors of the latent processes in the independence example. The notation is the
same as in Figure 9.
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Table 4: Modelling by functional connections: MAEs and MSEs for the point estimates of the
independence example.

Process f1(si) f2(si) linear predictor of ηi linear predictor of ωi
MAE 0.259 0.132 0.276 0.153
MSE 0.107 0.029 0.123 0.039

the particular values, it is difficult to interpret them without the MAE and MSE scores of similar

examples. We will compare them with the scores of the fitted examples in the following sections

to get an idea of how the quality of the model fit changes when including interaction parameters.

Note that the MAE and the MSE values are incomplete measures of the quality of the fits as

they only take the posterior means into account, not the entire posterior distribution.

Model comparison While we are able to compare the fits with the simulated examples, a user

in practical applications cannot do this. If one would like to detect the underlying interaction

structure of two Poisson processes at hand, other methods must be applied to find an appropriate

model for the particular situation. In Section 5.3 we presented the DIC, the WAIC and the CPO

as tools to narrow the quantity of models to take into account. In the following, we will fit each

of the interaction models presented in Section 3 to the current independence example, except for

the dependence on the latent process and the dependence on the Poisson process models (and the

bivariate Matérn model which we already excluded in Remark 4.1). We will compare the DIC,

WAIC and CPO values and examine if the correct interaction model for the current example –

which is the independence model – can be detected by them.

Remark 6.3. Usually, the great extent of available interaction models to be considered is already

reduced in advance dependent on the situation at hand. (We partially do this by excluding the

dependence on the latent process and Poisson process models which have to be well justified to

be applied.) Afterwards, only the “interesting” interaction models for the particular application

are compared by means of the DIC, WAIC and CPO. Even then, the user should not blindly

choose the “best” model according to the DIC, WAIC and CPO. Rather, the three scores should

be seen as a tool to eliminate the interaction models which produce a bad fit for the application

at hand. The final decision for a single model should rely on a plurality of aspects, with the

model comparison scores discussed here being only a part of.

The fitted models together with their DIC, WAIC and (rounded) CPO values are presented in

Table 5. Additionally, the running time of the models is indicated.

Before analysing the table, note that for all our fitted models we assume that each of the two

latent processes is dependent on at least one spatially structured effect. Although not shown

here, we tested for the independence example what is happening if one tries to fit models with

one or both latent processes not being dependent on a spatially structured effect. The results

revealed differences in the DIC and WAIC which were high enough to exclude those models from
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Table 5: Model comparison scores and running times of several fitted models for the independence
example.

Model Formula DIC WAIC CPO Time (sec)

Independence
ηi = β1 + f1(si) 209
ωi = β2 + f2(si)

2068.37 2070.36 0.7178

Simplified linear ηi = β1 + f1(si) 2075.43 2077.35 0.7170 106
dependence ωi = β2 + β3f1(si)

Linear ηi = β1 + f1(si) 372
dependence 1 ωi = β2 + β3f1(si) + f2(si)

2069.89 2071.79 0.7178

Linear ηi = β1 + f1(si) + β3f2(si) 381
dependence 2 ωi = β2 + f2(si)

2069.22 2071.17 0.7177

Simplified non-linear ηi = β1 + f1(si) 2076.50 2078.34 0.7169 133
dependence 1 ωi = β2 + g(f1(si))

Simplified non-linear ηi = β1 + g(f2(si)) 2123.48 2124.18 0.7118 244
dependence 2 ωi = β2 + f2(si)

Non-linear ηi = β1 + f1(si) 188
dependence 1 ωi = β2 + g(f1(si)) + f2(si)

2069.66 2071.82 0.7179

Non-linear ηi = β1 + f1(si) + g(f2(si)) 279
dependence 2 ωi = β2 + f2(si)

2068.74 2070.85 0.7178

LMC
ηi = β1 + w1(si) + a12w2(si) 982
ωi = β2 + a21w1(si) + w2(si)

2070.42 2072.30 0.7177

Shared component
ηi = β1 + z(si) + w1(si) 1912
ωi = β2 + az(si) + w2(si)

2072.64 2076.07 0.7187
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further investigations (see below for a discussion on the differences for which we decide not to

consider a model any more).

Moreover, the priors for the (hyper-)parameters of the fitted models haven’t been stated yet.

For each of the models, we used exactly the priors that have been shown useful in fitting their

simulated counterparts. So the priors may be seen in the model validation steps of Sections 6.1

to 6.4.

Concerning the computed scores for the fitted models, the “true” model for the present situation

– the independence model – is indeed identified as the best one regarding the DIC and WAIC

values. Nonetheless, there are several models with very similar scores to those of the independence

model, these scores are indicated by a medium grey in Table 5. The graduation of “similarity”

in this context was calibrated by the quality of the fits, which may be examined in Figure 11

exemplarily for the first linear dependence model, the shared component model and the first

simplified non-linear dependence model. For the sake of simplicity, only the linear predictor of

the second latent process ωi is shown. While the first linear dependence model (top panel) leads

to a fit which is similar to that of the independence model presented at the bottom of Figure

10 – albeit less smooth –, the fit by means of the shared component model (middle panel) is

unnecessarily “wiggled”. The first simplified non-linear dependence model (bottom panel) fails

completely to produce a passable fit of the independence example.

Examining the DIC and WAIC, one may then classify fits with values within a range of 2 as

very similar and values with a discrepancy between 2 and 5 as similar enough to still being

considered (the latter are marked by a light grey). For the CPO values, a margin of 0.0005

seems appropriate. However, there is an “outlier” recognizable as the CPO value of the shared

component model (marked by a dark grey) is 0.0009 higher than the CPO of the independence

model. While this would initially be an indicator for the assumption that the shared component

model might give a better fit for the independence example than the independence model itself,

this is contradicted by the poor DIC and WAIC values. More importantly, the plot in the middle

of Figure 11 points out that the fit by means of the shared component model may not be seen as

the best one. Consequently, the shared component model represents a case of ambiguity for the

present example. This fact confirms our recommendation not to solely rely on model comparison

scores for the goal of model selection.

Considering the complete table, it is visible that all the models which are not simplified – i.e. that

include two spatially structured terms in the formula – are similar enough to the independence

model to be considered. This is reasonable as those models are able to reflect the independence

structure of the example, although containing some useless dependency parameters which may

somewhat alter the fit. We recommend to concentrate on the simplest available model when con-

sidering models with similar comparison scores. In the present case, this would be the “correct”

independence model.

We should also remark that the running time of the LMC and the shared component model may

get very high in practical applications with much larger point patterns. We will come back to
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Figure 11: Model comparison: Posterior marginal distributions for the linear predictor of the
second latent process ωi in the independence example, fitted by means of the first
linear dependence model (top), the shared component model (middle) and the first
simplified non-linear dependence model (bottom). The notation is the same as in
Figure 9.
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Table 6: Model comparison scores for the independence model fitted with several selected values
for the smoothness parameters ν1 and ν2.

ν1

ν2 0.5 1.25 1.4 1.5

0.25
DIC: — DIC: —

WAIC: — WAIC: —
CPO: — CPO: —

0.4
DIC: 2068.43 DIC: 2068.40

WAIC: 2070.41 WAIC: 2070.38
CPO: 0.7178 CPO: 0.7178

0.5
DIC: 2068.36 DIC: 2068.48 DIC: 2068.40 DIC: 2068.37

WAIC: 2070.30 WAIC: 2070.47 WAIC: 2070.39 WAIC: 2070.36
CPO: 0.7179 CPO: 0.7178 CPO: 0.7178 CPO: 0.7178

0.6
DIC: 2069.90 DIC: 2069.86

WAIC: 2071.53 WAIC: 2071.49
CPO: 0.7175 CPO: 0.7176

0.75
DIC: 2070.65 DIC: 2070.57

WAIC: 2072.16 WAIC: 2072.09
CPO: 0.7174 CPO: 0.7174

1.5
DIC: 2071.48 DIC: 2071.52

WAIC: 2072.82 WAIC: 2072.91
CPO: 0.7174 CPO: 0.7173

this point when discussing the advantages and drawbacks of the models in Section 7.

As announced previously, we now address ourselves to the task of (approximately) identifying the

smoothness parameters of the two Poisson processes. Recall that the true values for the example

at hand are ν1 = 0.5 and ν2 = 1.5, which allow an explicit link between Gaussian processes

and Gauss-Markov processes. We name those models EL-models (“explicit link models”) in the

following.

We selected some interesting values for ν and fitted the independence model with these values.

Note that in the one-dimensional case values between −0.5 and 1.5 are possible to fit in R-INLA

with a reasonable interpretation only being available for positive values of ν (see Lindgren and

Rue [LR15, p.3]). We limited ourselves to the latter case. The model comparison scores for the

different fitted independence models are presented in Table 6. Note that there are no values

available for ν1 = 0.25 as the Newton-Raphson algorithm did not converge.

The true model with ν1 = 0.5 and ν2 = 1.5 is marked by a medium grey. It has the best

model comparison scores of the considered models apart from the model with ν1 = ν2 = 0.5

(indicated by a dark grey), which is slightly better. When applying the rules developed during

the comparison of the different modelling types (see above), at least all models with a value for

ν1 of equal or less than 0.6 must be seen as very similar.

We stated previously that the simplest available model among similar models may be preferred.
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The simplest model in the case of smoothness parameter comparison is the ν1 = ν2 = 1.5

model (marked by a light grey) as it gives in general the “smoothest trend”. For the present

example, though, the difference in comparison scores compared to the “best” model is too high

to reasonably choose this model. Instead, one might choose the “smoothest” model among the

similar models which would be the model with ν1 = 0.6 and ν2 = 1.5. But with this one being

close to the model with ν1 = ν2 = 0.5, which is an EL-model, one might be tempted to use the

latter instead.

So what might be a reasonable rule for the goal of choosing appropriate values for the smoothness

parameters? One should begin with the simplest model available in R-INLA, which is the model

with ν1 = ν2 = 1.5 in the one-dimensional case and represents an EL-model. The next step is to

compare this model to the EL-models with ν1 = 0.5 and/or ν2 = 0.5 and choosing the latter if

differences in DIC or WAIC are higher than 2. Finally, one may compare the so selected model

to models with values of ν being 0.5 higher (if possible) and choose the latter if the DIC/WAIC

differences do not exceed a value of 2.

This strategy leads indeed to the true model in the present example. Although not shown here,

we tried the strategy for simulations of the independence model including other values of ν. The

strategy was successful in detecting the true values for each of the available EL-examples. For

a simulation with ν1 = 1 and ν2 = 1.5 the strategy chose the EL-model with ν1 = ν2 = 1.5.

However, as the fit of the model was very similar to that of the true model, we keep our strategy.

6.2 The linear and non-linear dependence examples

The positive linear dependence example – model validation Concerning the positive linear

dependence example (where β3 = 0.4), we use again the default priors denoted in Equations 41 to

44. With the grid and the values of ν1 and ν2 remaining unchanged, b
(ν1)/(ν2)
1 and b

(ν1)/(ν2)
2 stay

the same as in the independence example. Fitting the linear dependence model to the positive

linear dependence example took 294 seconds.

As for the previous example, the model validation starts with an examination of the posterior

marginal distributions for the (hyper-)parameters, now including an interaction parameter β3

to focus on. In Figure 12, only the posteriors for the interaction parameter, the mean of the

second latent process ωi and the hyperparameters of the second spatially structured effect f2(si)

are illustrated as the rest of the (hyper-)parameters show nearly no differences to those of the

independence example.

Regarding the posterior for the interaction parameter β3, it is visible that the posterior mean

is a good point estimate for the true interaction parameter (the posterior mean of β3 is 0.475

while the true parameter is β3 = 0.4). Moreover, the interaction is significant as the value 0 does

not lie inside the equal-tailed 95% credible interval. So the interaction between the two Poisson

processes is recognized rather well.

The inclusion of an interaction parameter should not debase the estimates for the remaining

(hyper-)parameters. As we already stated, some of the estimates for the (hyper-)parameter
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Figure 12: Modelling by functional connections: Posterior marginal distributions for the parame-
ters and hyperparameters of the positive linear dependence example. Top panel: The
interaction parameter. Four bottom panels: The mean of the second latent process
ωi and the hyperparameters of the second spatially structured effect f2(si). For the
interaction parameter, the true value is indicated by a grey line, the mean of the pos-
terior by a solid black line, the 2.5% and 97.5% quantiles of an equal-tailed credible
interval by a dashed line. For the remaining panels, the notation is the same as in
Figure 8.
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posteriors do not show any differences to those of the independence example. The four bottom

panels of Figure 12 illustrate the posteriors for the (hyper-)parameters with some differences

in the fit between the independence and the positive linear dependence example. Overall, the

results in estimating the (hyper-)parameters are equal in quality for the two examples (see Figure

8 for the fitted posterior marginal distributions of the independence example). Again, the true

values lie inside the particular 95% credible intervals. The point estimates are similar good for

the positive linear dependence example as for the independence example. Nonetheless, there is a

visible difference: The variances of the posterior marginal distributions – and simultaneously the

spreads of the credible intervals – are higher for the positive linear dependence example. This

implies that the estimates of the (hyper-)parameters for the positive linear dependence example

may be less clear than those for the independence example.

When considering the fits of the spatially structured effects and the linear predictors, the posterior

marginal distributions for f1(si) and ηi (not represented here) show almost no differences to those

of the independence example illustrated in the top panels of Figures 9 and 10. The posteriors for

the second spatially structured effect f2(si) and the linear predictor of the second latent process

ωi are presented in Figure 13.

The fitted process f2(si) for the positive linear dependence example is not very different to

that of the independence example shown in the bottom panel of Figure 9, but it is even more

smooth. In contrast, the posterior for the linear predictor of the latent process ωi is much less

accurate concerning the point estimates of the true simulated linear predictor than that of the

independence example illustrated in the bottom panel of Figure 10. Particularly in the end of

the observation range, the point estimates fail to represent the true linear predictor behaviour.

However, the true linear predictor lies mostly inside the 95% credible intervals. Note that the

true simulated linear predictor is different to that of the independence example as it includes an

interaction with the first spatially structured effect f1(si). One may check in the top right panel

of Figure 3 how much the linear predictor is modified by the interaction.

The MAE and MSE scores for the point estimates of the positive linear dependence example

confirm our previous analysis (although not shown here). While the MAEs and MSEs of f1(si)

and ηi rise by an amount of less than 15%, the MAE and MSE values for f2(si) rise by an

amount of around 30% due to the further smoothing. The scores for the linear predictor of ωi

even increase by about 40% and 75% respectively, which verifies our observation of less accurate

point estimates for the present example in comparison with the independence example.

The positive linear dependence example – model comparison Examining the DIC, WAIC

and CPO, one can indeed identify the “true” model for the present situation, i.e. the linear

dependence model with the right direction. Applying the rule developed for the independence

model results in two other very similar models with the DIC and WAIC being at most 2 higher

and the CPO at most 0.0005 lower. These models are the first non-linear dependence model

and the LMC. Both models are able to reflect the linear dependence structure by means of
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Figure 13: Modelling by functional connections: Posterior marginal distributions for the second
spatially structured effect f2(si) (top) and the linear predictor of the second latent
process ωi (bottom) in the positive linear dependence example. The notation is the
same as in Figure 9.
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their formulas, but include some potentially unnecessary additional flexibility. This may be the

reason why the “true” linear dependence model is actually recognized as the best one regarding

the model comparison scores.

The negative linear dependence example – model validation When moving on to the negative

linear dependence example (with β3 = −0.4), we use the same priors as for the two previous

examples. Fitting the linear dependence model by means of R-INLA took 314 seconds.

The examination of the posterior marginal distributions for the (hyper-)parameters presented in

Figure 14 reveals that the interaction parameter is not at all correctly estimated. The true value

does not lie inside the 95% credible interval. Moreover, the point estimate is untruly positive

with β3 = 0.4043.

Concerning the other parameters shown in Figure 14, they are not estimated less accurate than

in the independence example. Furthermore, the observation we have made for the positive linear

dependence example – that the variances of the posterior marginal distributions and the spreads

of the credible intervals are higher – does not hold here. Rather, some of the parameters have

wider credible intervals (σ2
f2

), other have smaller ones (κ2 and the second nominal range). Again,

only the parameters which show differences to those of the independence example are illustrated

in the Figure.

The posteriors for the spatially structured effect f2(si), the interaction process β3f1(si) and the

linear predictor of the second latent process ωi (presented in Figure 15) demonstrate the complete

inadequacy of the fit. Especially the middle panel points out that the interaction is estimated

in the false direction which leads to an estimated curve being inverse to the true one. One may

also recognize that the two estimated processes f2(si) and β3f1(si), while failing completely to

estimate their true counterparts, counterbalance each other within the second latent process.

Consequently, the fit for the linear predictor of ωi is not estimated so bad, a high deviation from

the true linear predictor is only visible in the end of the observation range.

The MAE and MSE scores confirm our observations. While the scores for the point estimates

of the linear predictor of ωi rise “only” by 50% and 130% compared to the independence model

(it has already been 40% and 75% for the correctly estimated positive linear dependence), the

MAE and MSE for the spatially structured effect f2(si) rise by an amount of about 190% and

660% (only around 30% for the positive linear dependence example).

In summary one has to state that the negative interaction in the simulated example cannot

be estimated correctly. One may be tempted to change the prior to improve the results, but

testing this hypothesis showed that this is only possible with an unreasonable high prior for β3

of about N (−0.5, 0.01). The inability of the model fit to discover the negative linear interaction

has also been shown not to be a one-time occurrence. Experiments with other negative values for

the interaction parameter as well as with other simulations demonstrated that this is a general

problem in our setting. Even in a simplified linear dependence setting without a second spatially

structured effect f2(si), the model fit fails to detect the negative interaction.
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Figure 14: Modelling by functional connections: Posterior marginal distributions for the param-
eters and hyperparameters of the negative linear dependence example. Top panel:
The interaction parameter. Four bottom panels: The mean of the second latent pro-
cess ωi and the hyperparameters of the second spatially structured effect f2(si). The
notation is the same as in Figure 12.
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Figure 15: Modelling by functional connections: Posterior marginal distributions for the second
spatially structured effect f2(si) (top), the interaction process β3f1(si) included in the
second latent process ωi (middle) and the linear predictor of the second latent process
(bottom) in the negative linear dependence example. The notation is the same as in
Figure 9.
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In contrast, attempts with different positive values for the interaction parameter and other

simulations of positive linear dependencies pointed out that positive linear interactions may

mostly be discovered very well.

The negative linear dependence example – model comparison The inability of the model

fitting process to estimate the negative linear interaction correctly is also uncovered by the

model comparison scores. Concerning the DIC, WAIC and CPO values, there are five models

which may be seen as potential candidates according to our developed rule: the independence

model, the “true” first linear dependence model, the first non-linear dependence model, the

second non-linear dependence model and the shared component model. All the stated models

have differences in the DIC or WAIC of at most two with the independence model being the best

one according to the DIC and the first non-linear dependence model according to the WAIC.

We do not consider the CPO values here as the shared component model is again an outlier

regarding the CPO (but the other models show differences within a range of 0.0005).

Consequently, the first linear dependence model is not recognized as the best one here. One would

probably favour the independence model as it is the simplest of the models stated above. This

may be seen as a desirable result when taking into account that the negative linear dependence

cannot be estimated correctly.

Note that in contrast to the linear dependence model, the non-linear dependence model succeeds

in detecting the negative interaction, albeit not completely in the right linear way. This may

be seen in Figure 16, where the posterior mean of the fitted interaction is marked by a solid

black line and the true negative linear interaction by a grey line (both curves are shifted to have

zero-means). Thus, our suggestion is to conduct the fitting process once by means of the linear

dependence model and once by means of the non-linear dependence model and to compare the

results whenever a negative linear interaction must be considered.

The non-linear dependence example – model validation When moving on to the non-linear

dependence example, we must first state the method which is used to model the non-linear

dependency between the two Poisson processes. As announced in Section 3.1, we use Bayesian

P-splines for this purpose. These have the advantage of explicitly demonstrating the uncertainty

in smoothing parameters (see Fraaije et al. [FBV+15, Appendix S3]).

A German introduction to (B-)splines and P-splines may be found in Fahrmeir et al. [FKL09,

Ch.7]. We use a cubic B-spline basis with 21 knots (to allow for oscillating functions) and a

penalty matrix which determines the deviation from a horizontal line. The order of the difference

penalty is one for the non-linear dependence model (we tried a difference penalty of order two as

it is used by Fraaije et al., but the Newton-Raphson algorithm did not converge). The variance

of the zero-mean random walk prior on the coefficients of the P-spline regression is determined

by a IG(2, 0.1) (inverse gamma) prior. We use this prior instead of the IG(1, 0.01) prior employed

by Fraaije et al., to compensate for the missing smoothing due to the lower difference penalty

order.
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Figure 16: The estimated interaction when fitting the first non-linear dependence model to the
negative linear dependence example. The posterior mean of the fitted interaction is
marked by a solid black line, the 95% equal-tailed credible interval by dashed lines
and the true negative linear interaction by a grey line. The interactions are shifted to
have zero-means.

While the priors for the intercepts of the two latent processes and the hyperparameters of the

first spatially structured effect stay the same as in the previous examples, we have to be more

careful regarding the priors for the hyperparameters of the second spatially structured effect.

When fitting the non-linear dependence model without any changes of the prior distributions,

this yields in a “wiggled” posterior mean for the spatially structured effect f2(si) (see the top

panel of Figure 17). The reason for this may be that the spatially structured effect absorbs parts

of the non-linear interaction.

We calibrated the prior of the spatially structured effect by investigating the fitted spatially

structured effect f2(si) in simulations with other – not too informative – prior distributions. A

less wiggled effect is achieved with a prior of

log(κ2) ∼ N (2.852892, 1) (50)

instead of the prior denoted in Equation 49, i.e. the variance of log(κ2) is 1 instead of 10. The

prior for τ2 stays the same as in Equation 48. The resulting modified fit is shown in the bottom

panel of Figure 17. It is difficult to get a still smoother spatially structured effect as one runs in

the risk of obtaining a horizontal line then (what happened in some of our simulations).

Another issue which must be discussed at this point is that a joint model fitting approach is not

possible for the non-linear dependence model. As the Bayesian P-spline approach is based on

fixed values for the B-spline basis, one must fit the first Poisson process and afterwards the second

process based on the results of the first one. This hierarchical modelling approach provokes two
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Figure 17: Modelling by functional connections: Posterior marginal distributions for the second
spatially structured effect f2(si) in the non-linear dependence example. Top: The
fitted spatially structured effect with the default prior. Bottom: The fitted spatially
structured effect when using a normal prior with variance 1 instead of variance 10 for
log(κ2). The notation is the same as in Figure 9.
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problems when using the posterior means of the first spatially structured effect f1(si) as the

basis values to model the non-linear interaction. The two problems are illustrated in Figure 18.

The top panel of the figure displays the posterior marginal distributions for the first spatially

structured effect f1(si), which was fitted by means of the non-linear dependence model. For

the present hierarchical approach this means that solely the first Poisson process was fitted and

so it is obvious that there are no differences compared to the independence example. What

may also be seen is that in contrast to the true spatially structured effect (marked by the

grey line) the posterior means of the parameters f1(si) do not have big amplitudes upwards and

downwards. This observation is due to the fact that the Poisson point process is extremely weakly

informative about the small scale structure of the latent process and the small scale structure may

consequently not be detected from the Poisson counts (see Remark 5.1). Consequently, the range

of values achieved by the posterior means is smaller than that of the true spatially structured

effect. This is indicated in the bottom panel of Figure 18, where the non-linear relationship

in the non-linear dependence example is illustrated and the constricted range of values for the

posterior means of f1(si) is marked by grey lines. Hence, the complete non-linear dependency

cannot be detected.

Therefore, the first drawback of the inevitable hierarchical modelling is that there is no chance to

discover the non-linear interaction completely correct. Due to the smoothed estimated process,

the non-linear relationship is only partially detectable. But there is a second drawback, too.

When one uses the posterior means of the spatially structured effect f1(si) as the fixed basis

values of the Bayesian P-spline approach, the uncertainty in estimating the effect f1(si) gets lost.

Consequently, the 95% credible intervals for the estimated non-linear interaction, represented in

Figure 19, are incorrect. They are assumed to be wider in general.

After stating the particularities and difficulties of the non-linear dependence model, we can now

evaluate the quality of the model fit. Fitting the non-linear dependence model took 140 seconds.

We start with an examination of the posterior marginal distributions for the (hyper-)parameters,

presented in Figure 20. Only the mean of the second latent process ωi and the hyperparameters

of the second spatially structured effect f2(si) are shown.

When looking at the figure it is striking that the mean of the second latent process is estimated

completely wrong (first panel). This is the result of a technical problem during fitting the non-

linear dependence model: When fitting the second Poisson process, the values of the Bayesian

P-spline at each of the knots – which are equivalent to different values of f1(si) – are weighted

equally in the estimation of the intercept. But in practice there may be knots with a lot of values

of f1(si) nearby and others with only a few. So the estimation of the mean is falsified. However,

one may obtain a point estimate for the mean of the second latent process via the average of the

posterior means for the linear predictor of the process ωi. This average is marked by a blue line

in the first panel of Figure 20 and is close to the true value.

Regarding the hyperparameters of the second spatially structured effect f2(si) (panels two to

four in the figure), they are estimated worse than in the independence example. The true value of
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Figure 18: The hierarchical modelling issue for the non-linear dependence model. Top: The
posterior marginal distributions for the first spatially structured effect f1(si), fitted
by means of the non-linear dependence model in the non-linear dependence example.
Bottom: The non-linear relationship present in the simulated non-linear dependence
example (black line) and the range of values that the posterior means of the fitted
first spatially structured effect achieve (borders indicated by grey lines).
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Figure 19: The estimated interaction when fitting the non-linear dependence model to the non-
linear dependence example. The posterior mean of the fitted interaction is marked by
a solid black line, the 95% equal-tailed credible interval by dashed lines and the true
non-linear interaction by a grey line. The interactions are shifted to have zero-means.

the nominal range is outside the 95% credible interval and the true value of the marginal variance

is also near the border of the credible interval. Obviously, the second spatially structured effect

is not very well recognized. This can also be observed from the fit of the second spatially

structured effect parameters f2(si) themselves which have already been presented in the bottom

panel of Figure 17. The fit is not as good as that for the second spatially structured effect in the

independence example.

With the focus of our work lying on interaction modelling, it is more important that the non-

linear interaction function of the simulated example is estimated correctly. The fit has already

been presented in Figure 19. It seems to be good aside from the middle part where the values

are estimated too low. Nevertheless, the true interaction function lies everywhere inside the

95% credible interval. Note that the fit is only available for the range of values achieved by the

posterior means of the estimated spatially structured effect f1(si) (see above). We will see below

in the model comparison if the overall non-linear interaction is estimated good enough to be

recognized.

Finally, the posterior marginal distributions for the linear predictor of the second latent process

ωi are displayed in Figure 21. The true linear predictor lies mostly inside the 95% credible

intervals, but the posterior means are often highly shifted compared to the true linear predictor

(e.g. around the value 0.4 and after the value 0.8 of the observation range).

The MAE and MSE scores confirm our observations once again. The MAE and MSE of the
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Figure 20: Modelling by functional connections: Posterior marginal distributions for the param-
eters and hyperparameters of the non-linear dependence example. First panel: The
mean of the second latent process ωi. Other panels: The hyperparameters of the sec-
ond spatially structured effect f2(si). The notation is the same as in Figure 12, but
additionally the average of the posterior means for the linear predictor of the process
ωi is indicated by a blue line in the first panel.
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Figure 21: Modelling by functional connections: Posterior marginal distributions for the linear
predictor of the second latent process ωi in the non-linear dependence example. The
notation is the same as in Figure 9.

spatially structured effect f2(si) are much better than those of the poorly fitted negative linear

dependence example but also worse than the scores of the independence and the positive linear

dependence example. The MAE and MSE for the linear predictor of ωi are again worse than

those of the independence and the positive linear dependence example, but nearly equal to the

scores of the negative linear dependence example (where the fit of the second linear predictor

actually was not so bad).

The non-linear dependence example – model comparison When fitting the models denoted

in Table 5 to the non-linear dependence example, half of the models fail to fit the example due

to non-convergence of the Newton-Raphson algorithm or a singular covariance matrix. Applying

our developed rule to the remaining model fits, there is a clear winner which is not the “true”

first non-linear dependence model, but the first linear dependence model. The first non-linear

dependence model is only the second best model and this with differences in the DIC and WAIC of

more than 5 and in the CPO of more than 0.0005. Actually, the non-linear dependence model fits

the simulated example better regarding the spatially structured effects and both linear predictors

but obviously the difference in the fitting quality is not high enough to counterbalance or even

outmatch the penalization due to the additional flexibility within the non-linear dependence

model.

One might worry if the non-linear dependence model is generally able to outperform the linear
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dependence model, taking into account all the drawbacks of the hierarchical approach of the

non-linear modelling. We will see in the next section that this is in fact possible.

6.3 The dependence on the latent process example

Model validation Next, we investigate dependencies on the latent process. Recall the simulated

example of Section 4.3 for this purpose. There, a simplified version of non-linear dependency on

the first latent process ηi has been simulated with the latent processes described by

ηi = β1 + f1(si) + ui,

ωi = β2 + g(ηi) + vi,

and g(ηi) = −2 sin(ηi).

Again, the non-linear interaction is modelled by the Bayesian P-spline approach. This time, the

Newton-Raphson algorithm converges for a difference penalty of order two, so we use that with a

IG(1, 0.01) prior for the variance of the zero-mean random walk on the coefficients of the P-spline

regression as it is employed in Fraaije et al. [FBV+15].

The priors for the remaining (hyper-)parameters stay the same as in the independence example.

Note that we do not need a prior for the second spatially structured effect f2(si) as it does not

appear in the simplified version of the non-linear dependency on the latent process considered

here. So we do not have the issue that the spatially structured effect might absorb parts of the

non-linear relationship.

Using the posterior means of the fitted latent process ηi as the basis values for the Bayesian

P-splines results in an interesting observation: Actually, it does not make any difference in our

simulation studies if we use the posterior means of the latent process ηi or the posterior means of

the spatially structured effect f1(si) as the basis values for the non-linear interaction modelling.

The reason for this is that the spatially unstructured effects may not be detected in the fitting

process (as we already stated several times) so that the difference between the estimated processes

f1(si) and ηi is simply given by the intercept β1. But this value is equal for every segment of

the observation range and only shifts the entire process in one direction. It has consequently no

influence on the inference of the non-linear interaction. Hence, the estimated relationship is the

same for the dependency on the latent process as for the dependency on the spatially structured

effect.

Fitting the non-linear dependence on the latent process model to the dependence on the latent

process example took 105 seconds which is the lowest running time of all the models examined

so far. The examination of the posterior marginal distributions is limited to that of the mean

of the second latent process ωi as there is no second spatially structured effect f2(si) and the

remaining (hyper-)parameters are estimated equally to the independence example. Regarding

the posterior marginal distribution for the mean of the second latent process in Figure 22, the
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Figure 22: Modelling by functional connections: Posterior marginal distribution for the mean of
the second latent process ωi in the dependence on the latent process example. The
notation is the same as in Figure 20.

true value lies once again outside the 95% credible interval due to the technical problem during

the fitting process already announced in the previous section. Nevertheless, the average of the

posterior means for the linear predictor of the process ωi (marked by a blue line) is close to the

true value.

Concerning the estimated non-linear interaction, there is again a constricted range of values

achieved by the posterior means of the latent process ηi. Hence the complete non-linear depen-

dency is undetectable. This is indicated in the top panel of Figure 23, where the constricted

range is marked by grey lines.

In the bottom panel, the estimated non-linear interaction is illustrated. Note that once again,

the 95% credible interval is assumed to be wider than presented in the panel as the uncertainty

in estimating the values of the latent process ηi is not included into the model fit. While here

the true interaction function lies outside the credible interval at the beginning, it might be that

in fact (when considering the uncertainty) it is inside the interval. All in all, the non-linear

interaction is detected satisfactorily, even though it is estimated a bit too low at the beginning

and too high in the middle.

As there is no second spatially structured effect f2(si) and the first one is fitted equally to the

independence example, we skip the analysis of the spatially structured effects and go on with the

investigation of the fitted linear predictor of the second latent process ωi (the linear predictor of

the first latent process is fitted equally to the independence example). The posterior marginal

distributions for the linear predictor of the second latent process are illustrated in the top panel

of Figure 24.

One must not require that the true linear predictor (marked by a grey line) lies inside the 95%
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Figure 23: The hierarchical modelling issue for the non-linear dependence on the latent process
model and the estimated interaction when fitting the model to the dependence on
the latent process example. Top: The non-linear relationship present in the simulated
dependence on the latent process example (black line) and the range of values that the
posterior means of the fitted first latent process ηi achieve (borders indicated by grey
lines). Bottom: The posterior mean of the fitted interaction (solid black line), the
95% equal-tailed credible interval (dashed lines) and the true non-linear interaction
(grey line). The interactions are shifted to have zero-means.
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Figure 24: Model validation and model comparison: Posterior marginal distributions for the
linear predictor of the second latent process ωi in the dependence on the latent process
example, fitted by means of the first simplified non-linear dependence on the latent
process model (top) and the first simplified linear dependence on the latent process
model (bottom). The notation is the same as in Figure 9.
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credible interval as the linear predictor also contains the simulated spatially unstructured effect

ui which is undetectable due to its small scale structure. It is more important that the general

trend of the linear predictor is estimated correctly what is generally achieved – especially for the

strong peak downwards at the end of the observation range.

Considering the MAE and MSE, only the posterior means of the linear predictor of the sec-

ond latent process ωi are of interest – and exhibit scores which are worse than those of the

other examples considered so far. However, the scores of the present example must be regarded

with suspicion as they include spatially unstructured effects which are not present in the other

examples. So we do not further go into the explicit values of the two scores.

Model comparison Fitting the models denoted in Table 5 to the dependence on the latent

process example results in only two models to be considered. Note that it makes no difference if

one fits the dependence on the spatially structured effect or the dependence on the latent process

as already explained above. The best model regarding the comparison scores is the “true” first

simplified non-linear dependence on the latent process model, the second best with differences in

the DIC and WAIC between 4 and 5 and in the CPO of 0.0004 is the not simplified non-linear

dependence model. It is obvious that one chooses the simpler “true” model then.

It might be surprising that the first simplified linear dependence model is not considered this

time while the linear dependence model has been able to fit the non-linear dependence example in

the previous section satisfactorily enough to even outperform the “true” non-linear dependence

model. But a look at the fit of the simplified linear dependence model to the present example

(shown in the bottom panel of Figure 24) reveals that the simplified linear dependence model is

apparently not flexible enough to model the strong peak at the end of the observation range.

6.4 The LMC and shared component examples

The LMC example – model validation The last two models covered in our simulation studies

are the LMC and the shared component model. Simulated examples of the two models have been

introduced in Section 4.4. We start with the LMC example, where the priors for the (hyper-)

parameters are determined by Equations 41 to 45 like in most of the examples before. However,

since we have changed the (hyper-)parameters for the LMC and shared component model and

the values of b
(ν1)/(ν2)
1 and b

(ν1)/(ν2)
2 are dependent on the values of ν1 and ν2 (which are ν1 = 0.3

and ν2 = 1.2 here), the priors for τ1, κ1, τ2 and κ2, denoted in Equations 46 to 49, must be

modified. The new priors for the inference of the LMC example are given by
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log(τ1) ∼ N (−2.131122, 10), (51)

log(κ1) ∼ N (2.303586, 10), (52)

log(τ2) ∼ N (−4.549879, 10), (53)

log(κ2) ∼ N (2.74132, 10). (54)

Obviously, only the priors for the hyperparameters of the second spatially structured effect f2(si)

are changed, but the different value for ν1 (0.3 instead of 0.5) does not cause a change of the

default first spatially structured effect hyperparameter priors.

Fitting the LMC took 853 seconds which is a very long running time compared to the previous

examples. When looking at Figure 25 for an examination of the posterior marginal distributions

for the (hyper-)parameters, it is visible that the interaction parameters (two top panels) are

estimated in a satisfactory way. The true values a12 = 0.3 and a21 = 0.7 lie inside the 95%

credible intervals, in some distance from the interval borders. Moreover, the posterior means are

good point estimates for the true interactions with values of 0.4066 and 0.5894 respectively. The

second interaction parameter a21 is significantly different from zero as the value zero does not

lie inside the interval. In contrast, the first interaction a12 is just not significant which may be

due to the low true value of 0.3.

Concerning the remaining (hyper-)parameters illustrated in Figure 25, the mean of the first la-

tent process ηi (third panel) is well estimated, whereas the mean of the second latent process ωi

(seventh panel) is not. Five of the six hyperparameters of the two spatially structured effects

are satisfactorily estimated with the true values lying inside the 95% HPD intervals, only the

marginal variance σ2
w1

of the spatially structured effect w1(si) is not contained in the particular

credible interval (note that the spatially structured effects are named w1(si) and w2(si) in the

LMC).

The posterior marginal distributions cannot be compared to those of the fitted independence

example in Section 6.1 as we have changed the values for the parameters in the present example.

We rather compared the fitted (hyper-)parameters to those of an independence model fitted to

a simulated independence example with the new parameter values (and a12 = a21 = 0). The

posteriors for the (hyper-)parameters turned out to be better estimated in the LMC example

than in the new independence example.

Considering the posteriors for the fitted spatially structured effects w1(si) and w2(si) displayed

in Figure 26, the true spatially structured effects are almost everywhere inside the 95% cred-

ible intervals. The posterior means of the parameters w1(si) are good point estimates for a

“smoothed” first spatially structured effect w1(si). Regarding the second spatially structured

effect w2(si), the posterior means fail to follow the oscillations downwards after the point 0.2

and upwards after the point 0.4 of the observation range. Apart from that, the true spatially

structured effect is well estimated.
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Figure 25: Modelling by bivariate Gauss-Markov processes: Posterior marginal distributions for
the parameters and hyperparameters in the LMC example. Two top panels: The
interaction parameters. Four middle panels: The mean of the first latent process ηi
and the hyperparameters of the first spatially structured effect w1(si). Four bottom
panels: The mean of the second latent process ωi and the hyperparameters of the
second spatially structured effect w2(si). The notation is the same as in Figure 12.
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Figure 26: Modelling by bivariate Gauss-Markov processes: Posterior marginal distributions for
the spatially structured effects in the LMC example. The notation is the same as in
Figure 9.
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The good quality of the fits for the spatially structured effects is somewhat surprising as there is

technically an existing identifiability issue in the LMC model (see the corresponding paragraph

in Section 3.2.1). The different priors for the hyperparameters of the spatially structured effects

as well as the a priori fixed (different) smoothness parameters are apparently enough to allow

the discrimination of the two processes.

The posteriors of the linear predictors of the two latent processes may be examined in Figure 27.

The linear predictor of the first latent process ηi is very similar to the first spatially structured

effect w1(si) as the influence of the second spatially structured effect w2(si) on the latent process

ηi is low due to the small value of the first interaction parameter (a12 = 0.3). The impact of the

second spatially structured effect is only visible by a little shift upwards at the beginning of the

observation range and a shift downwards at the end of the observation range (both for the true

and the fitted linear predictor).

Regarding the linear predictor of the second latent process ωi, the influence of the first spatially

structured effect is clearly perceptible due to the lower smoothness of the linear predictor com-

pared to the second spatially structured effect f2(si). Additionally, there is a zone between the

values 0.2 and 0.3 of the observation range where several values of the true linear predictor lie

outside of the 95% credible interval. For the rest of the linear predictor, the posterior means are

good point estimates of the (smoothed) true values.

We do not consider the MAE and MSE values here as they do not give any further insides, but

rather move on to the model comparison for the LMC example.

The LMC example – model comparison Fitting the models of Table 5 to the LMC example

yields very strange results concerning the model comparison scores. If applying our developed

rule for model comparison to the fitted models, the clear winner in terms of the DIC and WAIC

would be the first non-linear dependence model. Regarding the CPO, the best one (apart from

the usual winner for the CPO, which is the shared component model) is the independence model

which is simultaneously the second best when looking at the DIC and WAIC. The “true” LMC

is only in the third place together with the first and the second linear dependence model as well

as the shared component model.

The differences in the DIC and WAIC between the first non-linear dependence model and the

“true” LMC are around 42 and 28, far too much than that the LMC might even be considered.

When looking at the fit of the non-linear dependence model, the reason for this odd observation

becomes clear: The process ηi is completely overfitted. This is directly visible in Figure 28.

The same problem is present in the independence model. In fact, the overfitting issue may be

uncovered without considering the fits: For each of the overfitted models, the difference between

the DIC and WAIC score is about 20 while values around 10 have been the maximal difference

between the two scores for the fitted models in each of the previous examples.

The best models for which there is no overfitting visible is the announced group of (roughly)

equally rated models, originally being in the third place. The group comprises the two linear
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Figure 27: Modelling by bivariate Gauss-Markov processes: Posterior marginal distributions for
the linear predictors of the latent processes in the LMC example. The notation is the
same as in Figure 9.
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Figure 28: The overfitting issue in the LMC example: Posterior marginal distributions for the
linear predictor of the first latent process ηi in the LMC example, fitted by means of
the first non-linear dependence model. The notation is the same as in Figure 9.

dependence models, the shared component model and the LMC. This is plausible when taking

into account that the LMC may be rewritten to a linear dependence model (see Remark 3.4).

Moreover, the shared component model offers additional flexibility. It is a matter of interest if

the LMC is chosen then. For example, one may prefer the LMC if one wants to detect the “main”

underlying effects for each of the Poisson processes as well as the amount of the interaction with

regard to the “other” Poisson process. In contrast, if one is only interested in the construction of

a valid covariance matrix, one may use the linear dependence model instead (see again Remark

3.4).

The shared component example – model validation The last simulation study deals with the

shared component example. There, the default priors must be modified to avoid that two of the

three processes w1(si), w2(si) and z(si) take the whole spatially structure of the latent processes

ηi and ωi while the third is estimated to be almost a horizontal line at zero. Experiments with
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different priors for the hyperparameters showed that this may be prevented with the priors

log(τ1) ∼ N (−2.131122, 0.1), (55)

log(κ1) ∼ N (2.303586, 0.1), (56)

log(τ2) ∼ N (−4.549879, 0.1), (57)

log(κ2) ∼ N (2.74132, 0.1), (58)

log(τ3) ∼ N (−5.605241, 0.1), (59)

log(κ3) ∼ N (2.852892, 0.1). (60)

Here, τ1 and κ1 are the hyperparameters of the spatially structured effect w1(si), while τ2 and

κ2 are the hyperparameters of the effect w2(si). τ3 and κ3 are the hyperparameters of the shared

component z(si) (see Table 3). The means of the prior distributions for the hyperparameters

are once again determined by the (unchanged) resolution of the grid and the values of the fixed

smoothness parameters. In contrast, the default variance of 10 has been replaced by a variance

of only 0.1 for each of the priors. These priors may seem to be too informative, but otherwise it

has been showed to be impossible to avoid that only two of the processes take the whole spatially

structured effects.

The prior distributions for β1, β2 and the interaction parameter a remain the default ones as

denoted in Equations 41 and 42. Fitting the model with the stated priors took 2188 seconds, i.e.

over half an hour, which is more than the running time of all the previous models together.

Regarding the posterior marginal distributions for the interaction parameter a and for the hy-

perparameters of the shared component z(si) presented in Figure 29, it is striking that the in-

teraction parameter is well estimated, but the hyperparameters of the shared component cannot

be recovered.

The true interaction parameter a = 0.5 lies inside the 95% credible interval, far away from the

borders. Not only that the posterior mean is a satisfying point estimate with a value of 0.6938,

more importantly, the interaction is significantly positive with the value zero being outside the

credible interval. So the interaction parameter a is very well estimated. But this is almost

worthless if the shared component is not well detected – which seems to be the case here. A look

at the hyperparameters of the shared component reveals a very bad fit. The true values for κ3

and the nominal range lie far outside the 95% credible intervals. The necessity to impose priors

with low variances on the hyperparameters may have additionally falsified the fit here. We will

see below how heavy the implications on the fit of the shared component parameters z(si) are.

The same issue must be considered when regarding the posteriors for the hyperparameters of the

two process-specific spatially structured effects w1(si) and w2(si) (see Figure 30). Especially the

hyperparameters of the second spatially structured effect w2(si) are estimated very incorrect. In

contrast, the hyperparameters for the first spatially structured effect are estimated satisfactorily

with the true values always lying inside the particular credible intervals. Apparently, the model

fitting procedure has more problems in distinguishing the two processes z(si) and w2(si) than
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Figure 29: Modelling by bivariate Gauss-Markov processes: Posterior marginal distributions for
the interaction parameter and the hyperparameters of the shared component in the
shared component example. The notation is the same as in Figure 12.

the processes z(si) and w1(si). A possible reason might be that the effects z(si) and w2(si) are

similarly smooth (ν3 = 1.5 and ν2 = 1.2) and hence difficult to separate from each other while

the process w1(si) is very rough (ν1 = 0.3) and so easier to discriminate.

On top of that, the intercepts of the two latent processes (first and fifth panel) are also bad

estimated with the true values being outside the 95% credible intervals. All things considered,

the fits for the hyperparameters of the spatially structured effects and for the intercepts of the

latent processes are the worse of all the examples considered in our simulation studies.

An important aspect for the shared component model is that the three true spatially structured

effects z(si), w1(si) and w2(si) should be detected in the model fitting step. The fits of the three

spatially structured effects as well as the true simulated effects are illustrated in Figure 31.

It is obvious that the shared component z(si) (first panel) is not well identified – we already

suspected this when assessing the quality of the hyperparameter fits for the shared component.

The true spatially effect parameters z(si) lie inside the 95% equal-tailed credible interval, but

this is mainly due to the identifiability issue that results in wide intervals for the three spatially

structured effects (see the corresponding paragraph in Section 3.2.1). In contrast, the posterior

means as point estimates for the shared component fail completely to follow the path of the true

effect. Being lower than the true shared component at the beginning of the observation range,

they particularly fail at the end of the observation range where the posterior means are much

lower than the true effect.
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Figure 30: Modelling by bivariate Gauss-Markov processes: Posterior marginal distributions for
the parameters of the two latent processes and the hyperparameters of the two process-
specific spatially structured effects in the shared component example. Four top panels:
The mean of the first latent process ηi and the hyperparameters of the first spatially
structured effect w1(si). Four bottom panels: The mean of the second latent process
ωi and the hyperparameters of the second spatially structured effect w2(si). The
notation is the same as in Figure 12.
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Figure 31: Modelling by bivariate Gauss-Markov processes: Posterior marginal distributions for
the spatially structured effects in the shared component example. The notation is the
same as in Figure 9.
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The two process-specific spatially structured effects w1(si) and w2(si) (shown in the middle and

bottom panel of Figure 31 respectively) are better recognized. The fit for the first spatially

structured effect w1(si) shows indeed a similar pattern to that of the LMC example displayed in

the top panel of Figure 27, although it is less correct especially at the end of the observation range

where the posterior means are too high (note that the effects w1(si) and w2(si) are the same

for the LMC and the shared component example). The fit for the second spatially structured

effect w2(si) is even better for the shared component example than for the LMC example as the

posterior means are better in recovering the oscillations of the true effect.

Regarding the posteriors for the linear predictors of the two latent processes ηi and ωi, illustrated

in Figure 32, it is visible that the true linear predictors lie almost everywhere inside the credible

intervals. In contrast to the fits of the spatially structured effects z(si) and w1(si), the point

estimates for the first linear predictor are correct at the end of the observation range. Obviously,

the poor fits of z(si) and w1(si) counterbalance each other there. Nevertheless, the posterior

means for the first linear predictor are too low at the beginning of the observation range.

The fit for the second linear predictor seems to be even better than that in the LMC example

as there is no zone with very bad fitted values as it is visible in the bottom panel of Figure 26.

The MAE and MSE scores confirm our graphic based analysis. The spatially structured effect

w1(si) and the linear predictor for the first latent process ηi show higher values in the MAE and

the MSE than in the LMC example. In return, the MAE and MSE for the process w2(si) and

the second linear predictor ωi are lower.

Remark 6.4. Unsatisfied by the poor fit of the shared component – on which the focus of the

shared component model generally lies – we conducted further simulation studies with several

simulations based on many different (hyper-)parameters, but without satisfying results in esti-

mating the true shared component. Even when conducting the inference on the latent Gaussian

processes instead of the overlying Poisson processes, the true shared component could not be

revealed. We also tried what happened if the hyperparameters are fixed a priori to their true

values – even then, the correct shared component was not detected. Apparently, it is difficult to

regain the shared component in our simulation based setting with R-INLA what does not mean

that it does not work in other settings. See for example Knorr-Held and Best [KHB01] for an

application of the shared component model in disease mapping.

The shared component example – model comparison Regarding the DIC and WAIC values

for the models of Table 5 fitted to the shared component example reveals the “true” shared

component model as the best model. However, there are two similar models regarding the

DIC (differences between 2 and 5) and even five very similar models according to the WAIC

(differences in the WAIC of lower than 2). We do not consider the CPO values here as the

shared component model is an outlier concerning the CPO value – as it has been in nearly all

our simulation studies.

The similar models in terms of the DIC or WAIC are the independence model, the first and
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Figure 32: Modelling by bivariate Gauss-Markov processes: Posterior marginal distributions for
the linear predictors of the latent processes in the shared component example. The
notation is the same as in Figure 9.
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second linear dependence models, the second non-linear dependence model and the LMC. While

one would normally prefer the independence model from a set of very similar models as it is the

simplest model, the situation is less clear here: There are no models which are very similar to the

shared component model in terms of the DIC. As always, the final decision should depend on the

particular application: If one wants to detect a shared component, one would possibly take the

shared component model as it is recognized as an appropriate model by the model comparison

scores. In contrast, if one wants to find the simplest model that still explains the situation in a

satisfiable way, one would take the independence model here. As already stated several times,

there is no objective “best” model, the decision should depend on the circumstances rather than

to solely rely on a simplified score.
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7 Summary and discussion

In the present work, we have modelled interactions between two one-dimensional point processes

by means of log-Gaussian Cox processes. Several methods for modelling these interactions have

been established: On the one hand, there is the group of functional connection methods, com-

prising the independence model as a baseline model and the linear and non-linear dependencies

on the spatially structured effect, the latent process or the Poisson process. On the other hand,

one has the class of bivariate Gauss-Markov models, containing the LMC, the shared component

model and the bivariate Matérn model.

Techniques for speeding up the inference of these models have been provided through the approx-

imation of Gaussian processes by Gauss-Markov processes as well as through the INLA approach.

The diversity of modelling methods has been illustrated in several simulated examples. Infer-

ence based on these simulations has been conducted within the R package R-INLA to reveal the

potentials and shortcomings of the different interaction modelling approaches.

For this aim, we have used several comparison scores: the DIC, the WAIC and the CPO. While

the first two have shown to give similar results, the CPO has the drawback of not being able to

rank the fit of the shared component model correctly. Apart from this failure, the CPO has also

been useful for detecting appropriate model fits for the simulated example at hand.

In the following, we will discuss the different modelling techniques regarding the results of the

related simulation studies. This summary is intended to help a user of our models to choose an

appropriate model for the particular application at hand.

Independence model We start with the independence model. It is the benchmark model with

regard to the quality of the model fits, but apart from that not very informative as it does not

contain any interactions. The independence is well detected by the model comparison scores

when applying our rule that the simplest model should be preferred among very similar models.

Linear dependence model The linear dependence model for the positive linear dependence

example has a running time being marginal higher than that of the independence model. The

most important fact is that the interaction parameter is well detected and even significantly

higher than zero (with the true value β3 = 0.4). The fits for the spatially structured effects and

the linear predictors are almost as good as in the independence example and the positive linear

dependence model is recognized as the best one regarding the model comparison scores.

In contrast, the linear dependence model fails completely to model the negative interaction in the

negative linear dependence example. The interaction is estimated to be positive instead. The

linear dependence model is consequentially not detected in the model comparison step where

the independence model is rated as the best one. As the negative dependency can be detected

by the non-linear dependence model, our recommendation is to fit the dataset at hand once by

means of the linear dependence model and once by means of the non-linear dependence model

whenever a negative interaction must be considered.
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Non-linear dependence model For the non-linear dependence example, there is the hierarchical

modelling issue of the non-linear dependence model. As the basis values for the Bayesian P-splines

must be fixed, the point estimates for the first spatially structured effect have to be used which

results in a smaller range of values as the fits of the effects are generally smoother than the true

effects. So the interaction may not be correctly estimated. The non-linear interaction function

of the simulation is well estimated, but the remaining (hyper-)parameters of the second spatially

structured effect become a little bit worse. In the model comparison, however, the non-linear

dependence model is only the second-best as the linear dependence model is able to embed most

of the non-linear interaction.

Dependence on the latent process model The dependence on the latent process model in the

dependence on the latent process example is equal to a simplified non-linear dependence model as

the spatially unstructured effect cannot be detected in our approach with R-INLA (see Remark

5.1). The non-linear interaction of the example can be satisfactorily recognized. In the model

comparison, the dependence on the latent process model is well detected, since in contrast to the

non-linear dependence example the (simplified) linear dependence models are not flexible enough

to model the non-linear interaction.

LMC The LMC has a very long running time, but the interaction parameters are well recog-

nized. The same applies for the spatially structured effects, a result which is rather surprising,

taking the identifiability issue into account (see Section 3.2.1). Apparently, the a priori fixed

smoothness parameters and different priors for the spatially structured effects are enough to

distinguish them. In the model comparison step, much models proved to be overfitted. Sorting

them out, the LMC remains with a group of equally rated models, containing the linear depen-

dence model as the simplest model. It depends on the situation at hand if to choose the LMC

then. One may prefer it when wishing to detect the “main” underlying effect for each of the

Poisson processes as well as the amount of interaction concerning the other Poisson process.

Shared component model Finally, the shared component model has a running time being

higher than those of all the other models together. The shared component model estimates the

interaction parameter in the shared component example very well. This is nearly worthless,

however, as the fit for the shared component is completely incorrect. Nevertheless, the shared

component model is detected as the best one concerning the model comparison scores with no

very similar models, but with the independence model rated similar enough for being considered.

So which model should be chosen in which situation? Additionally to the analysed simulation

studies, some further aspects must be considered. For example, if one wants to detect an un-

derlying common component, the decision is already made in advance as the shared component

model is the method of choice in this setting. This might be the case when one wants to detect

a common risk factor of two diseases.
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Furthermore, the LMC model formulation may be rewritten as a linear dependence model (see

Remark 3.4) and will consequently hardly be rated as the best one in the model comparison step.

However, as stated in the results of the LMC simulation study above, one may prefer the LMC

among a group of similar rated models when it is wished to detect the “main” underlying effect

for each of the Poisson processes and the amount of interaction with regard to the other Poisson

process.

Consequently, the model choice highly depends on the application at hand. Nevertheless, some

general conclusions may be drawn on the basis of our studies – although one has to bear in mind

that they are based on simulations solely.

Firstly, the linear dependence model seems to be an appropriate choice when examining positive

interactions. It does not only estimate the interactions correctly, but may also embed non-linear

interactions when the oscillations of the latent processes are not too high.

Secondly, in spite of all its drawbacks, the hierarchical non-linear modelling by means of Bayesian

P-splines seems to be a good choice when modelling Poisson processes with high variations within

small distances as they exhibit the required flexibility to model those.

Thirdly, one has to be extremely careful when modelling negative interactions as the linear de-

pendence model in R-INLA fails in this setting. Modelling by means of non-linear dependencies

may reveal the problem.

Finally, the identifiability issue seems to be a problem for the shared component model within

R-INLA, but not for the LMC, where the spatially structured effects as well as the interactions

are well detected in our simulation studies.

We complete our conclusions with a warning regarding the use of the LMC and the shared

component model: While the running time of those models is still practicable in our setting,

it might become a problem when applying our methods to use cases with much larger point

patterns. Especially when extending our approach to large two-dimensional point patterns, the

implementation of these methods may not be computationally feasible any more.
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8 Extensions

Some possible extensions of the present work shall be discussed in the following. Two obvious

enhancements would be to examine the interactions of more than two Poisson processes or to

transfer the methods described above to a setting including more than one dimension.

Multivariate interaction modelling for instance would diminish the drawback of the LMC that

the number of independent Gaussian processes is restricted to be not higher than the number of

processes to model the dependence between. In fact, it might be a favoured strategy to find less

spatially structured effects than there are processes to be modelled, to get a model which is as

simple as possible. This is done by Ribeiro et al. [RSP15] for example.

In contrast, interaction modelling of more than two Poisson processes might be a problem for non-

linear dependence models as one would have to fix a priori the probable hierarchical structure.

Otherwise there would be plenty of models with different hierarchies what quickly becomes

computationally infeasible.

Moreover, multivariate Matérn models as an extension of bivariate Matérn models are discussed

in the work of Hu et al. [HSLR13].

Concerning interaction models in more than one dimension, the most natural case is the modelling

of dependencies between two two-dimensional point processes. Indeed, the analysis of two-

dimensional point patterns plays the leading part in almost each of the publications stated in

the present work, since they are the common use case. In contrast, multidimensional point

patterns with more than three dimensions are rather a theoretical construct, although many of

the theoretical results remain basically the same.

Another dimension which may be added is the time axis. Blangiardo et al. [BCBR13] show for

instance how to implement such spatio-temporal models within R-INLA.

As mentioned in Section 3, Illian et al. [ISR12] also account for observed covariates. These may

equally be inserted in our approach when not studying simulations any more but applying our

methods to “real-world” datasets. Furthermore, Illian et al. make use of a constructed covariate

to include local interactions, clustering and competition. This approach may be useful if the

points represent individuals influencing each other, since mutual interactions of the points in a

particular pattern may in general not be modelled using log-Gaussian Cox processes. While it is

indeed possible to model local repulsion very well by means of a constructed covariate, modelling

of local clustering is more problematic. See Illian et al. [ISR12, Ch.3] for some simulation studies

on this issue.

Finally, we have limited ourselves to the case of isotropic Matérn covariance functions which are

only dependent on the Euclidean distance between two particular points. While we recommend

to maintain the Matérn covariance to still profit by the explicit link between Gaussian processes

and Gauss-Markov processes, Lindgren et al. [LRL11] show that the explicit link remains true for

non-stationary Matérn models where the covariance function is dependent on the exact locations.

This fact is particularly useful when analysing globally collected data as the points are obtained

on a differently curved sphere then. Instead of trying to flatten the surface to get the correct

82



distances, one can easily use non-stationary models without loosing the explicit link.

In summary, the present work shall constitute a basis for further work on interactions between

point processes. In particular, the extension to two-dimensional use cases with much larger point

patterns, where the introduced speed-up techniques reveal their full potential, are a long-term

objective.
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[BGRR15] Roger S Bivand, Virgilio Gómez-Rubio, and H̊avard Rue. Spatial data analysis with

r-inla with some extensions. Journal of Statistical Software, 63(20), 2015.

[FBV+15] Rob GA Fraaije, Cajo JF Braak, Betty Verduyn, Leonieke Breeman, Jos TA Verho-

even, and Merel B Soons. Early plant recruitment stages set the template for the

development of vegetation patterns along a hydrological gradient. Functional Ecology,

29(7):971–980, 2015.

[FKL09] Ludwig Fahrmeier, Thomas Kneib, and Stefan Lang. Regression: Modelle, Methoden

und Anwendungen, volume 2. Springer, 2009.

[GHV13] Andrew Gelman, Jessica Hwang, and Aki Vehtari. Understanding predictive infor-

mation criteria for bayesian models, 2013.

[GK15] Marc G Genton and William Kleiber. Cross-covariance functions for multivariate

geostatistics. Statistical Science, 30(2):147–163, 2015.

[GKS10] Tilmann Gneiting, William Kleiber, and Martin Schlather. Matérn cross-covariance

functions for multivariate random fields. Journal of the American Statistical Associ-

ation, 2010.

[GSBS04] Alan E Gelfand, Alexandra M Schmidt, Sudipto Banerjee, and CF Sirmans. Non-

stationary multivariate process modeling through spatially varying coregionalization.

Test, 13(2):263–312, 2004.

[GW94] Michel Grzebyk and Hans Wackernagel. Multivariate analysis and spatial/temporal

scales: real and complex models. In Proceedings of the XVIIth International Biomet-

rics Conference, volume 1, pages 19–33. Citeseer, 1994.

[HSLR13] Xiangping Hu, Daniel Simpson, Finn Lindgren, and H̊avard Rue. Multivariate gaus-

sian random fields using systems of stochastic partial differential equations. arXiv

preprint arXiv:1307.1379v2, 2013.

[HSS+15] Xiangping Hu, Ingelin Steinsland, Daniel Simpson, Sara Martino, and H̊avard Rue.

Spatial modelling of temperature and humidity using systems of stochastic partial

differential equations. arXiv preprint arXiv:1307.1402v2, 2015.

[IMS+13] Janine B Illian, Sara Martino, Sigrunn H Sørbye, Juan B Gallego-Fernández, Maŕıa
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