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Abstract

A statistical criterion for evaluating the appropriateness of preference aggregation functions for a
fixed group of persons is introduced. Specifically, we propose a method comparing aggregation
procedures by relying on probabilistic information on the homogeneity structure of the group
members’ preferences. For utilizing the available information, we give a minimal axiomatization as
well as a proposal for measuring homogeneity and discuss related work. Based on our measure, the
group specific probability governing the constitution of preference profiles is approximated, either
relying on maximum entropy or imprecise probabilities. Finally, we investigate our framework by
comparing aggregation rules in a small study.
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probabilities, maximum entropy. JEL classification: C1, C6

1. Introduction

One of the main issues in Social Choice Theory is the question how to combine the individual
preferences of the members of a group into one fair social preference. Pioneers in facing these kind
of problems from a rather mathematical point of view were the French mathematicians Nicolas
de Condorcet and Jean-Charles de Borda, who are best known for proposing and investigating
two different preference aggregation procedures: Condorcet’s method and the Borda count (see
de Condorcet (1785) and de Borda (1781), respectively). However, both methods are known to
cause certain disadvantages and, consequently, are not unanimously seen as a completely satisfying
solution for the problems of Social Choice. More than 150 years after Condorcet’s and Borda’s
proposals, the economist Kenneth Arrow proposed an axiomatic approach for addressing the prob-
lem. Specifically, he formulated three very appealing minimal requirements that every preference
aggregation procedure (or social welfare function in Arrow’s terminology) should satisfy: (1) una-
nimity, (2) independence of irrelevant alternatives and (3) no dictatorship.1 Unfortunately, Arrow’s
impossibility result from 1951 startlingly shows the mutual inconsistency of these three axioms.
More precisely, it states: Every social welfare function that satisfies unanimity and independence

∗Corresponding author
Email address: christoph.jansen@stat.uni-muenchen.de (C. Jansen)

1Originally, Arrow formulated five axioms. However, if one demands social welfare functions to map n-tuples of
arbitrary weak orders to weak orders again, the other axioms are implicitly satisfied. The three axioms recalled in
the text, in some sense, form the core of the Arrovian framework.
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of irrelevant alternatives violates no dictatorship (see Arrow (1950)) and, therefore, rules out the
possibility of the existence of fair procedures for preference aggregation at least at first sight.

Ever since its publication, much effort has been put on getting around Arrow’s impossibility theo-
rem. Very roughly, one can distinguish between two main classes of approach here: (1) Restricting
the domain of the aggregation rule on (in some sense) feasible preferences (e.g. on single-peaked
or single-caved preferences, see Inada (1964)) or (2) weakening/modifying the axioms by taking
into account some notion of strength of the individual preferences (e.g. by using value difference
functions (see (French, 1988, pp. 280-323)) or preferences in accordance with an expected utility
model (see Bacharach (1975))). However, while the first class dismisses certain preferences as being
irrational in advance and therefore restricts the free will of the individuals, the second one assumes
more than an ordinal information on the preferences of the group members involved.2 Accordingly,
both ways appear to be too restrictive for the description of certain situations.

For this reason, we intend to follow a different approach: Taking the (potentially) ordinal struc-
ture of the group members’ preferences and their free will seriously, we avoid making restricting
assumptions concerning the domain of the aggregation rule or some cardinal scale underlying the
individual preferences. Instead, we propose a statistical3 performance criterion that allows for
comparing the appropriateness of different aggregation procedures for a fixed group of individuals
under consideration. Specifically, we propose a method for assessing a group specific probabilistic
model on the space of all preference profiles that is driven by the degree of homogeneity of the
preferences of the members of the considered group. Applying this model then makes it possible
to evaluate and compare different procedures for preference aggregation by utilizing the available
information on the group specific homogeneity structure of preferences.

The paper is structured as follows: In section 2, we first briefly recall some basic mathematical
preliminaries and introduce the notations used in this paper. Afterwards, we successively develop
a statistical framework for evaluating the appropriateness of a certain preference aggregation pro-
cedure for a fixed group under considerations if information on the homogeneity structure of the
group members’ preferences is available. Here, the evaluation framework is statistical in the sense
that the performance criterion is based on a probabilistic model, which is assessed by utilizing the
homogeneity information for the considered group. Section 3 is divided in two parts: In the first
part, we briefly recall some well-investigated preference aggregation procedures, namely the Borda
count, Condorcet’s method, Instant-runoff voting, Coomb’s rule and Dictatorship, and characterize
them in terms of preference aggregation functions. In the second part, we summarize a recently
proposed aggregation procedure, which addresses the problem by a purely order theoretical ap-
proach. In section 4, we apply the introduced evaluation framework in a small group setting.
Particularly, we investigate the performance of the aggregation functions recalled in section 3 with
respect to the proposed criterion of optimality for groups of varying degree of homogeneity and,
subsequently, discuss the results of the study. Section 5 is preserved for concluding remarks as well
as an outlook on future research questions.

2The demand for ordinality of the individual preferences in the Arrovian framework is mainly coded in the
independence axiom. Consequently, most attempts of modification have this axiom as a target.

3In contrast, some of the common criteria known from Social Choice Theory (e.g. avoidance of Condorcet losers)
have a rather axiomatic character and do not allow for using group specific probabilistic information or, in concrete
applications, corresponding statistical estimates.
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2. A statistical framework for evaluating preference aggregation functions

Within this paper, our goal is to establish a statistical framework for comparing different proce-
dures of preference aggregation for one specific group of individuals of interest. Specifically, the
comparison of the procedures will be based on expected aggregation quality, where the probability
measure with respect to which the expectation is taken is approximated by using the available
information on the homogeneity of preferences of the group under consideration and in concrete
application is estimated from data or expert knowledge. Consequently, this makes it necessary to
firstly introduce some notion of homogeneity for collections of individual preference orders. Before
we can start, some terminology has to be fixed.

2.1. Mathematical preliminaries

Throughout the whole paper, C denotes a finite set of at least two consequences. The elements
of C have to be ranked by the members of a specific group of fixed size n ≥ 2, where certain
requirements of rationality regarding the involved individual orderings are imposed. Precisely, we
will work on the following spaces:

R := {R ⊂ C2 : R asymmetric, negatively transitive} (1)

Q := {Q ⊂ C2 : Q asymmetric} (2)

We call every R ∈ R a preference order on C. Moreover, for every R ∈ R, we define an equivalence
relation ∼R on C by setting a ∼R b if and only if (a, b) /∈ R ∧ (b, a) /∈ R. Having fixed this, we
interpret (a, b) ∈ R as a is strictly preferred to b, whereas (a, b) ∈∼R is interpreted as indifference
between a and b. The elements ofR are associated with the individual orders of the group members.
Hence, the group members are assumed to have asymmetric and negatively transitive preferences.
For n ≥ 2, we call every element R := (R1, . . . , Rn) ∈ Rn a preference profile on C, where each
component is interpreted as the opinion about the consequences of a member of a group of size n.

In contrast, every element Q ∈ Q is called a consensus order (or group preference). Except of
asymmetry, we do not impose any further restricting assumptions on the consensus order.4 This
allows for investigating also aggregation procedures for which the group preference is not always
as well-behaving as the individual orders (this includes e.g. Condorcet’s method, see section 3.1).
Given this setting, we call every mapping

S : Rn → Q , R 7→ S(R) (3)

a preference aggregation function. Specifically, for every preference profile R ∈ Rn, the image
S(R) ∈ Q gives the consensus order of the group with respect to the aggregation procedure de-
scribed by S.

2.2. Preference homogeneity in related work

As already foreshadowed in the introduction, our main argument is that the quality of an aggre-
gation procedure S for a fixed group depends on how homogeneous the group members tend to
be in opinion. In the literature on Social Choice Theory there are mainly two different lines of
establishing a notion of homogeneity of groups. The first direction (cf., e.g., Niemi (1969); Jamison

4This is an important difference to the Arrovian framework, where the group order has to be transitive.
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and Luce (1972); Berg (1985); Gehrlein and Lepelley (2011); Lepelley and Valognes (2003)) con-
sists of establishing a stochastic model that governs the constitution of profiles and has a specific
parameter that implicitly regulates the group’s homogeneity. One prominent model is the mul-
tivariate Pólya-Eggenberger urn model (cf., e.g., Johnson and Kotz (1977)) used in Berg (1985);
Gehrlein and Lepelley (2011); Lepelley and Valognes (2003) to analyze the relationship between
group homogeneity and the probability of the voting paradox or the manipulability of different
aggregation functions. Here, all different possible orderings are coded as differently colored balls
in an urn. Then, n balls are drawn, but not simply with or without replacement but instead with
the replacement of an amount of σ additional balls of the same color as the color of the last drawn
ball. This modified replacement in a way models the interaction between the persons’ opinion,
and higher values for σ lead to stronger interactions and thus to a higher expected homogeneity
of the drawn profile. The Pólya-Eggenberger model contains as special cases also the so called
Impartial Culture and the Impartial Anonymous Culture that are often presumed in studies of the
voting paradox and the manipulability of aggregation procedures (cf. Aleskerov et al. (2012); Diss
et al. (2012); Pritchard and Slinko (2006)). Note that in the Pólya-Eggenberger model, usually one
assumes that the urn is initially composed with exactly one ball for every possible order and thus
there is perfect symmetry with respect to all orders. This seems to be a very unrealistic assumption
and thus is often criticized, especially in the field of Behavioral Social Choice (see, e.g., Tsetlin
et al. (2003) and Regenwetter et al. (2009)).

The second direction of establishing a notion of group homogeneity is to measure directly the ho-
mogeneity of a profile by some homogeneity measure. One sort of such measures are the so called
non-profile specific measures of homogeneity (cf., Gehrlein (1981)) that use only the categorical
scale of the different orders of a profile and are thus based only on the proportions pi of the differ-
ent orderings in the profile but not on the orderings themselves. Common measures are quadratic
forms in the pi’s, for example Herfindahl’s index H =

∑
p2
i . The other sort of measures does use

the information in the orderings of the profile. Not only in Social Choice Theory, but also e.g.
in the field of statistics and computer science (cf., e.g., Fligner and Verducci (1986); Dwork et al.
(2001)), there are many concepts based on a geometric understanding that introduces a notion of
distance between two orderings. Based on this, it is easy to define a measure of heterogeneity of a
group via the average distance of all pairs of orders in the profile. This idea is very similar to the
construction of the classical variance of a real-valued vector that can be represented both as the
mean of the squared deviations from the mean as well as the average squared distance of all possible
pairs of the vector. This type of measures of heterogeneity could be called local in the sense that
not the whole population is examined simultaneously, but only pairs are considered and afterwards
the mean over all pairs is taken. Another measure of homogeneity that was used especially in
Social Choice Theory (cf., e.g., Fishburn (1973)) is the measure W of Kendall and Smith (see
Kendall and Smith (1939)). This measure intends to analyze the whole population simultaneously
by looking at the variance of the vector of the sums of the ranks that the group altogether assigns
to the different alternatives. However, note that also this measure, as shown by Kendall and Smith
(1939), could be alternatively represented as the average Spearman correlation coefficient of pairs
of rank-vectors that are assigned by pairs of persons and thus could also be called local. Beyond
proposals of concrete homogeneity measures, axiomatic approaches for measures of homogeneity
are given in e.g. Bosch (2006); Alcalde-Unzu and Vorsatz (2013), where the terms consensus and
cohesiveness are used instead of the term homogeneity. For the concept of polarization, a concept
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very similar, but not identical to the concept of heterogeneity,5 an axiomatic characterization of a
measure of polarization of profiles is given in Can et al. (2015).

2.3. A minimal axiomatization for homogeneity of preferences

In section 2.4, we propose a new measure of preference homogeneity, where we intend to utilize
the information inherent in the order structure of the profile. Moreover, we aim at analyzing the
population as a whole, while the measures mentioned above rather rely on the analysis of pairs
of persons or on a solely categorical viewpoint. Against this background, we first formulate some
minimal requirements (“axioms”) our measure should satisfy:6

Definition 1. A preference homogeneity measure for a group of size n is a map An : Rn → [0, 1],
such that the following properties are satisfied:

(S1) Consensus sensitivity: An(R) = 1 if and only if R = (R∗, . . . , R∗) for some R∗ ∈ R.

(S2) Fair weighing: Let φ : {1, . . . , n} → {1, . . . , n} be a bijective map. Then An(R1, . . . , Rn) =
An(Rφ(1), . . . , Rφ(n)) for all (R1, . . . , Rn) ∈ Rn.

(S3) Majority strengthening: Let R ∈ Rn. Define k(j) := {i : Ri = Rj}. If there exists
j0 ∈ {1, . . . , n} such that n > |k(j0)| ≥ bn2 c, choose j1 ∈ {1, . . . , n} \ k(j0) and define
φ : {1, . . . , n} → {1, . . . , n} by φ(j) = j0, if j ∈ k(j0)∪ {j1} and φ(j) = j else. Then we have
An(R1, . . . , Rn) ≤ An(Rφ(1), . . . , Rφ(n)).

Axiom (S1) states that An should be sensible for identifying perfect consensus, i.e. its maximal
value 1 is attained iff all group members share identical preferences. Axiom (S2) ensures that the
homogeneity value of a profile does not depend on the order in which the individuals state their
preferences and, therefore, that no individual should have a bigger influence on the homogeneity
value than any of the others. Finally, (S3) can be interpreted as a weak demand for monotonicity: if
a subgroup consisting of at least bn2 c group members shares identical preferences and one member
from outside this subgroup changes his mind towards this subgroup, then the homogeneity value
of the modified profile should not decrease. Clearly, all three axioms solely rely on the categorical
and not on the ordinal structure of the orderings in the profile. Of course, one could also establish
a notion of (S3) that uses the ordinal structure by stating for instance that if one ordering R
in the profile is changed towards another ordering R′ that is more similar to the ordering of the
majority, then the homogeneity should not decrease. This is possible but would require a notion
of what the terms “majority” and “more similar ordering” then exactly mean. (In the categorical
case “majority” and “more similar ordering” straightforwardly translate to “more than the half
of the population” and “identical ordering”.) Accordingly, the axioms (S1), (S2) and (S3) are
to be understood as a minimal characterization of homogeneity leaving definitorical freedom for
substance matter considerations.7

5While the notion of heterogeneity refers here to the diversity of the orders in the profile, polarization means that
the orderings in the profile are clustered in two or more “opposite” subgroups. A clear cut rigorous disambiguation
between polarization and heterogeneity for the case of preference profiles is, as far as the knowledge of the authors
goes, not yet established for the more elaborated disambiguation between polarization and heterogeneity/inequality
in the context of e.g. poverty measurement, see, e.g., Esteban and Ray (1994); Duclos et al. (2004).

6Note that the otherwise also compelling measure of Kendall and Smith does not satisfy these axioms, see below.
7An (in parts) similar axiomatization, however stronger, is given in Alcalde-Unzu and Vorsatz (2013) in the

context of measuring cohesiveness of preferences profiles.
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2.4. A proposal for a preference homogeneity measure

Next we propose a concrete measure satisfying the axioms given in Definition 1. The basic idea
is to compare, for each pair (a, b) separately, the maximal number of coinciding opinions about
that pair in the profile to the maximal possible number n.8 Let n > 2 and let R0 ∈ R with
∼R0= diag(C2) be fixed, such that R0 always contains exactly one of the pairs (a, b) or (b, a) for
all a, b,∈ C with a 6= b. For a fixed preference profile R ∈ Rn and a fixed pair of consequences
(a, b) ∈ C2, a 6= b, we define the expressions

• cR(a, b) := |{i : (a, b) ∈ Ri}|

• eR(a, b) := |{i : (a, b) ∈∼Ri}|
to be the number of individuals in R that prefer a to b and the number of individuals that are
indifferent between these options, respectively. Using this, we define δn : Rn → [0, 1] by setting

δn(R) :=

∑
(a,b)∈R0

max
{
cR(a, b), cR(b, a), eR(a, b)

}

n ·
(|C|

2

) (4)

Note that if all orderings in the profile R have no equivalences, then δn is always at least 0.5.
Additionally, if we define a similarity measure s(f, g) :=

∑
(a,b)∈C2 f((a, b)) · g((a, b)) for valuation

functions f, g : C2 → R, then δn can be written as

δn(R) = s(fm, gc) =
1

q2

∑

(a,b)∈C2

fm((a, b)) · gc((a, b)) (5)

where fm((a, b)) = 1
n

∑n
i=1 1Ri((a, b)) corresponds to the “mean” and gc((a, b)) = 1CO(R)((a, b))

corresponds to the Condorcet consensus ordering of the profile, respectively (with CO(R) as defined
in equation (15)). Additionally, since δn sums over all pairs of alternatives it could be called local
w.r.t. alternatives, but it is not local w.r.t. persons in the sense that it cannot be represented as
an average similarity of pairs of orderings: For a counterexample, consider a profile R consisting of
three orderings equal to R1 and two orderings equal to R2, where C = {a, b, c} and aR1bR1c and
cR2bR2a, a homogeneity measure hn based on average pairwise similarities would automatically
satisfy

h5(R) =
3 · h2((R1, R1)) + 6 · h2((R1, R2)) + h2((R2, R2))

10

However, the measure δn does not satisfy this identity9, since we have δ4(R) = 0.6, but

3 · δ2((R1, R1)) + 6 · δ2((R1, R2)) + δ2((R2, R2))

10
= 0.7

Next we explicitly state that our construction is successful; the proposed measure indeed defines a
preference homogeneity measure:

8Note that the proposed measure is an (indirect) generalization of the probabilistic distance metric proposed in
Haddaway and Ha (2003) to the case n > 2. However, in our context we are interested in homogeneity rather than
distance. Another very similar measure is introduced in Can et al. (2015): Here the authors first list up a set of
axioms for measures of polarization that uniquely characterizes a measure that is closely related to the one used in
this work.

9Also if one used 2 · (δn − 0.5) instead of δn this would not change the situation.
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Proposition 1. The mapping δn from in equation (5) defines a preference homogeneity measure.

Proof. The proof of the proposition consists in straightforwardly verifying the axioms (S1), (S2)
and (S3) from Definition 1. A detailed proof is given in appendix A1. �

In contrast to δn, the homogeneity measure W of Kendall and Smith does not satisfy the majority
strengthening property (S3): Take for example C = {a, b, c, d, e} and R = (R1, R1, R1, R2, R3)
as well as R′ = (R1, R1, R1, R1, R3) with aR1bR1cR1dR1e; aR2bR2cR2eR2d and eR3bR3cR3aR3d.
Then, majority strengthening would require W (R′) ≥ W (R), but we actually have W (R′) =
0.584 < 0.592 = W (R). Note also that majority strengthening is not a too strong requirement
since, for example, heterogeneity measures based on average pairwise distances satisfy an analogous
property, where a non-decreasing homogeneity translates to a non-increasing heterogeneity.10

2.5. A criterion for evaluating preference aggregation functions

In this section, we want to demonstrate how the notion of a preference homogeneity measure can be
used in order to determine approximations of the group specific probability measure on the space of
profiles. Consider the measurable space (Rn, 2Rn). For a fixed group Gn consisting of n members,
we assume the existence of a true probability measure PGn on this space that is interpreted as
follows: For a profile R ∈ Rn, the value PGn({R}) is the probability that the group members of Gn
constitute the preference profile R at some randomly chosen time-point t. The main idea behind
this assumption is the following: As time changes, the preferences of the group members may
change. However, we assume that there exists a fixed, however latent, degree of group homogeneity
that remains stable over time. Accordingly, the more heterogeneous the group Gn is in principle,
the more likely it is that its members will constitute a profile which represents a high degree of
heterogeneity. Similarly, very homogeneous groups will tend to constitute profiles representing a
high degree of homogeneity.

Since we are interested in the influence of group homogeneity on the appropriateness of a certain
aggregation procedure, we first need to introduce a measure for the quality of a given preference
aggregation function. To express this formally, let S denote an arbitrary, however fixed preference
aggregation function. In order to evaluate the aggregation quality of S for a specific profile R ∈ Rn,
we define the following, intuitively appealing, mapping:

YS : Rn → R , R 7→
n∑

i=1

|Ri ∩ S(R)| (6)

Specifically, the value 1
n · YS(R) describes the average number of pairs that is shared by each

individual order Ri with the consensus order S(R) and, accordingly, can be interpreted as a measure
for the performance of aggregation rule S for the specific profile R. Formally, for every individual
relation Ri we compute the cardinality of the intersection with the relation S(R) and, afterwards,

10The reason is the triangle inequality: If an ordering R changes from a non-majority ordering to the majority
ordering R∗ then the distances d(R,R∗) change to d(R∗, R∗) = 0 and the distances d(R,Rj) from R to non-majority
orderings Rj change to d(R∗, Rj). With d(R∗, Rj) ≤ d(R∗, R) + d(R,Rj) we get d(R,R∗) ≥ d(R∗, Rj) − d(R,Rj).
Since beside the order R that changes to R∗ there are as least as many majority orderings as non-majority orderings
we can match every increase in distance associated with a pair (R,Rj) to a decrease associated to d(R,R∗) that is
greater or equal, so the overall change in the sum of all distances can only be decreasing or zero.
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sum up over all these values.11

For the moment, suppose the true PGn of group Gn is known. In this case, a straightforward
performance criterion for evaluating the performance of an aggregation function S for the group
Gn under consideration is to take the expectation of the random variable YS with respect to the
measure PGn . Clearly, the higher this value is, the higher is the expected similarity of the individual
preferences contained in R with the group preference S(R). Formally, we arrive at the performance
criterion:

mGn(S) := EPGn (YS) (7)

From a practical point of view, criterion (7) has of course a disadvantage: The true group specific
measure will, in general, be unknown, since there simply is no perfect probabilistic information
available. However, in many applications there will be at least some information on the homo-
geneity structure of the preferences of the group under investigation. In the following section 2.6,
we demonstrate how to construct approximations for the true group specific measure PGn if the
distribution of the chosen homogeneity measure An is assumed to be known. Subsequently, we
show how these approximations can be used to find assessments for expected similarity mGn(S).12

Finally, in section 2.7, we turn to the elicitation of these quantities from expert knowledge and
data.

2.6. Constructing assessments for expected similarity

Let An denote some fixed preference homogeneity measure on the space of profiles Rn. Moreover,
suppose the mapping An can exactly attain the values k1 < k2 < · · · < kξ ∈ [0, 1]. For a fixed
group Gn consisting of n members, our goal then is to approximate the group specific probability
measure PGn such that the available knowledge on the distribution of An, that is the information
concerning the homogeneity structure of the group’s preferences, is best possibly utilized. For the
moment, suppose we know the vector α := (a1, . . . , αξ) ∈ ∆ξ−1 := {x ∈ [0, 1]ξ :

∑ξ
i=1 xi = 1}

containing the probabilities of the homogeneity values k1, . . . , kξ, i.e. we have PGn(An = kj) = αj
for all j = 1 . . . , ξ. Substantially, this relates to the assumption that, even if the full group specific
measure PGn is unknown, we still know the probabilities α that the group Gn constitutes a certain
degree of homogeneity, which is operationalized by the chosen preference homogeneity measure An.

11The idea underlying YS could easily be used in order to define a distance function on the space R2. An axiomatic
framework for such distance functions together with a strong representation result is discussed in Kemeny (1959).

12At this point, it might be worth taking a little detour: Formally, one can define a preference aggregation function
S∗ by demanding S∗(R) ∈ argmaxQ∈Q

∑n
i=1 |Ri ∩Q| for all R ∈ Rn. By definition, this implies YS∗(R) ≥ YS(R) for

all R ∈ Rn for every other preference aggregation function S. Consequently, we then have that EP(YS∗) ≥ EP(YS)
for no matter which probability measure P. Thus, S∗ is optimal w.r.t. the proposed criterion for every group,
independently of its specific homogeneity structure. Although this approach, which basically corresponds to Kemeny’s
rule (Kemeny (1959)), has some nice properties and characteristics (see, e.g., Young and Levenglick (1978)), there
are, however, strong arguments why S∗ might not be satisfactory in certain situations: Far beyond computational
aspects referring to the NP-hardness of finding S∗(R) for a concrete profile R (see Bartholdi et al. (1989) for the
original result; compare also Ali and Meila (2012) for a comparison of algorithms alleviating the NP-hardness), there
is a fundamental problem: choosing S∗ very strongly relates to Goodhart’s law, which roughly states: When an
indicator becomes a target, it ceases to be a good indicator (see Goodhart (1975) for details). Specifically, the value
YS(R) is intended to be an indicator for the latent degree of similarity of the orders collected in R to the group order
S(R). However, choosing S∗ puts pressure on this indicator by optimizing it. If we had chosen another appropriate
indicator for similarity in advance, S∗ might perform pretty poorly. An axiomatization for similarity as listed as a
future research goal in section 5 would allow to judge how serious the impact of the indicator choice would be indeed.
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Note that the above assumption naturally gives rise not to a single probability on (Rn, 2Rn), but to
a whole set of such probabilities, namely the set of all probability measures that are compatible with
the available information on the homogeneity structure of the group, which defines a probability
over a partition of Rn as sample space and not Rn itself. If we take the information seriously,
any element of this set is a candidate for the true group specific measure and, therefore, an
equally plausible choice for approximating it. Principally, there are (at least) two different general
approaches for dealing with the ambiguity between the compatible measures. The first approach
consists in defining criteria for choosing one representative from the set of compatible measures and,
subsequently, bases all further analyses on the chosen representative. The most prominent example
for such a criterion, the maximum entropy principle (see Jaynes (1957) or, e.g., Wu (1996)), has its
origins in information theory and will be discussed in the following. The second approach treats
the set of all compatible measures, also called credal set13 in this context, as an entity on its own:
The uncertainty underlying the situation is then described by a whole set of probability measures,
not just by one single representative. The argument for doing so is that choosing a representative,
for no matter which criterion is applied, necessarily involves a certain degree of arbitrariness. The
chosen measure might be rather different from the true one and, accordingly, all inferences based
on this representative might be completely misleading. On the other hand, analyses based on the
credal set might produce less informative results, however, the results are more credible, since they
do not depend on a hardly justifiable reduction of the underlying ambiguity.

We contrast both approaches and the assessments based on them in the sequel:

Maximum entropy approach: According to our assumption, within each homogeneity class A−1
n (kj),

j = 1, . . . , ξ, we are completely vacuous between the probabilities of the contained profiles, whereas
the class itself is of known probability αj . As already foreshadowed above, we then choose that
representative in the set of compatible measures that maximizes Shannon’s entropy (Shannon
(1949) for details). The measure that does this job is induced by the assignment

P∗α({R}) :=
αφ(An(R))

|A−1
n (An(R))|

(8)

for all R ∈ Rn, where φ(kj) := j for j = 1, . . . , ξ. Note that this assignment corresponds exactly
to fixing the probability values of our partition given by the equivalence classes A−1

n (kj), where
j = 1, . . . , ξ, and assuming uniform distribution within each A−1

n (kj). Historically, this quite strong
assumption was also often justified by means of the principle of insufficient reason, which states
that, in absence of evidence, there is no reason for assuming anything different from uniformity.

Credal set approach: As argued above, if we intend to avoid making not fully justifiable assumptions
and a possibly misleading approximation of the true probability, we should take into account the
set of all probability measures on (Rn, 2Rn) that are compatible with the uncertainty underlying.
Consequently, a cautious and therefore more credible approximation is given by the credal set

Mα :=
{
π ∈ G(Rn, 2Rn) : π(A−1

n (kj)) = αj for all j = 1, . . . , ξ
}

(9)

13The name credal set is contributed to I. Levi, see Levi (1980). For the general framework of imprecise probabili-
ties, working with sets of probabilities or interval-valued assignments, see Walley (1991) and Weichselberger (2001),
or, for a recent introduction, Augustin et al. (2014). For our purposes here, it suffices to note that uncertainty is
no longer measured by one single probability, but by the set of all probabilities compatible with the information
available.
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where G(Rn, 2Rn) denotes the set of all probability measures on (Rn, 2Rn). Obviously, the setMα

contains exactly the probability measures compatible with the class probabilities. In particular,
we have PGn ∈ Mα and P∗α ∈ Mα, that is, both the true measure and its maximum entropy
approximation are contained in the credal set.

By using the two approaches just described, the construction of an assessment for the expected
similarity value mGn(S) for a fixed preference aggregation function S can be done pretty straight-
forwardly: Instead of taking the expectation with respect to the true group specific measure, we
take the expectation with respect to the corresponding approximations. Note that in the case of the
credal set approach this will lead to interval valued assessment for expected similarity. Formally,
this leads to the following two approaches.

Maximum entropy assessment: Compute the expected similarity with respect to the maximum
entropy measure P∗α. We arrive at the following real-valued assessment:

m∗Gn(S) := EP∗α(YS) =
∑

R∈Rn
YS(R) · P∗α({R}) (10)

Compared to the credal assessment defined below, this assessment clearly has the attractive feature
of being represented by one single number. Of course, whether one really sees this is an advantage,
depends on how convincing one finds the entropy based argument sketched before.

Credal assessment: Compute the expectation with respect to the set Mα, that is the interval of
all expectations that are compatible with the probabilistic information available. We arrive at the
following interval-valued assessment:

MGn(S) := [MGn(S),MGn(S)] :=
[

inf
π∈Mα

Eπ(YS), sup
π∈Mα

Eπ(YS)
]

(11)

Clearly, it holds that mGn(S) ∈MGn(S) and m∗Gn(S) ∈MGn(S) and thus both the true expected
similarity value and its maximum entropy assessment are contained in the credal interval. The
smaller the width of the credal interval, the less ambiguity is involved and, consequently, the more
reliable is the maximum entropy assessment.

For the computation of the quantities (10) and (11), we give a proposition showing that, once the
preimages of the homogeneity values are computed, one only has to compute the scalar products
of the weight vector α with corresponding fixed vectors associated to the previously computed
preimages. This will prove very valuable in our study in section 4. The validity of the proposition
can easily be checked by simple computation which is not explicitly given here.

Proposition 2. For the maximum entropy assessment and the credal assessment defined in (10)
and (11), the following equations hold, respectively:

i) m∗Gn(S) =
∑ξ

j=1

(
αj · 1

|A−1
n (kj)|

∑
R∈A−1

n (kj)
YS(R)

)

ii) MGn(S) =
∑ξ

j=1

(
αj ·minR∈A−1

n (kj)
YS(R)

)

iii) MGn(S) =
∑ξ

j=1

(
αj ·maxR∈A−1

n (kj)
YS(R)

)
�
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2.7. Elicitation of homogeneity class probabilities

In real world applications, the homogeneity class probabilities α will typically be unknown and,
accordingly, an estimate α̂ := (α̂1, . . . , α̂ξ) has to be obtained. This can be achieved by (at least)
three different approaches. Firstly, one can draw on expert knowledge, i.e. ask one or more experts
from the investigated field for their probability estimates. If more than one expert is involved,
one could receive an estimate by using either an weighted average of the experts’ estimates or
directly working with the credal set containing all of them.14 Secondly, one can collect data. For
this purpose, we can construct a questionnaire to assess the ordering of q := |C| alternatives by
preference at d time-points, or more practically, d parallel items simultaneously as surrogates.
Every group member participates in the survey. Then, each item produces a preference profile
of the group under consideration and, therefore, we receive a collection of d preference profiles
R1, . . . , Rd. For each of these profiles we compute the homogeneity measure and receive data
x := (x1, . . . , xd), where xs := An(Rs) for s = 1, . . . , d. We then estimate the class probabilities by
computing the relative frequencies, that is

α̂j :=
1

d
·

d∑

s=1

1{kj}(xs) (12)

Finally, one can think of a Bayesian approach: Note that a preference homogeneity measure
An : Rn → R defines a categorically distributed random variable taking values in {k1, . . . , kξ}.
Specifically, since αj := P(An = kj) for all j = 1, . . . , ξ, we have that An ∼ Cat(α). If we

choose a Dirichlet distribution with parameter vector γ ∈ Rξ+ as a prior for α, formally α ∼
Diri(γ), we can use R1, . . . , Rd from above and compute the posterior distribution of α given x.
As the two distribution families are conjugate to each other, the posterior is again a Dirichlet
distribution, however, with parameter γ|x := (γ1|x, . . . , γξ|x), where γj |x := γj +

∑q
s=1 1{kj}(xs)

for j = 1, . . . , ξ.15 As an estimate for α we then can, for instance, use the posterior expectation
given by

α̂j :=
γj |x∑ξ
l=1 γl|x

(13)

Clearly, which approach to follow, depends on the situation: If q is large and the homogeneity
measure can potentially attain lots of different values, taking the relative frequencies will often
fail, since it requires too many data points. In such cases, the Bayesian approach has certain
advantages. However, this approach needs to specify a hyperparameter γ. If available, γ can be
specified by expert knowledge. If this is not feasible, one instead could choose a near-vacuous prior
model like the Imprecise Dirichlet Model (IDM) (see Walley (1996) for the original work or Bernard
(2005) for an overview). Note that, when it comes to elicitation, the advantages of the proposed
framework become perfectly clear: Instead of directly asking experts on their probability estimates
on the space of profiles Rn, which contains (q!)n different elements, one could let them specify a
distribution α on the much smaller space {k1, . . . , kξ}. Due to its very intuitive interpretation, the
distribution α is much easier to elicitate: How homogeneous do you think the considered group is
in probability?

14For an detailed overview on expert elicitation methodology see for instance (Augustin et al., 2014, Chapter 15).
15For further details concerning the Dirichlet-Categorical Model (and techniques from Bayesian Statistics in gen-

eral), see for instance Gelman et al. (2004).
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3. Aggregation rules investigated in the study

In this section, we briefly recall five common preference aggregation procedures typically dis-
cussed in Social Choice Theory and demonstrate how they straightforwardly can be extended to
a preference aggregation function.16 All aggregation rules to be recalled here are well-investigated
concerning their behavior with respect to the axiomatic criteria known from Social Choice Theory
(such as for instance the avoidance of Condorcet losers or resistance to manipulability17). Contrar-
ily, in the focus of our investigation is the performance of these rules with respect to the criterion
introduced in the previous section 2.5. Afterwards, in section 3.2, we shortly describe a novel aggre-
gation method, recently proposed in Schollmeyer (2016), which is based on a generalized concept
of quantiles on complete lattices.

3.1. Full order variants of some common aggregation procedures

In the following, we list five common aggregation rules and briefly describe how these can be
extended into a full preference aggregation function.

Mean rank (Borda count): For R ∈ R and a ∈ C, let rankR(a) denote the rank of alternative a
with respect to the relation R.18 The mean rank aggregation function is given by

MR : Rn → Q , R 7→ MR(R) (14)

where we have (a, b) ∈ MR(R) iff
∑n

i=1

(
rankRi(a)− rankRi(b)

)
> 0. Specifically, the group assigns

each alternative its average rank and prefers alternative a to alternative b iff the latter achieves a
strictly lower average rank. Consequently, two alternatives a and b are equivalent with respect to
∼MR(R) iff they achieve coinciding average rank within the profile R.

Condorcet’s method: Another well-investigated aggregation procedure is Condorcet’s method. The
preference aggregation function induced by this rule has the form

CO : Rn → Q , R 7→ CO(R) (15)

where we have (a, b) ∈ CO(R) iff (cR(a, b) > cR(b, a) ∧ cR(a, b) > eR(a, b)). That is, for each pair
(a, b) we decide if the majority of the group prefers a to b or vice versa or if the majority of the
group is indifferent between a and b. Here, alternatives a and b are equivalent with respect to
∼CO(R) iff either at least half of the group is indifferent between them or equally many persons
prefer a before b and vice versa.

Instant runoff (Hare’s method):19 Instant runoff is an example for a sequential aggregation pro-
cedure: In the first step, all alternatives with the fewest number of first place votes are excluded
from C. These form the alternatives that are least preferred by the group, between them the
group is indifferent. Afterwards, we exclude the alternatives with the fewest first place votes in
the profile on the reduced space of alternatives and receive a set of alternatives, which the group
prefers second least. Again, between these alternatives the group is indifferent, but each of them

16Most of the common aggregation procedures are intended to only select one best alternative rather than a
complete ranking. However, the ideas underlying these often easily extend to a ranking of all alternatives.

17See for instance Grofman and Feld (2004) for further details.
18Formally, we have rankR(a) := |{b ∈ C : (a, b) ∈ R}|+ 1

2
|{b ∈ C : (a, b) ∈∼R ∧a 6= b}|+ 1

19Originally proposed in Hare (1857); for an overview on runoff methods see Colomer (2004).
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is preferred to every alternative excluded in the first step. Successively keeping on repeating this
procedure, we end up with a set of optimal options having the same number of first place votes.
Informally, this describes a preference aggregation function

IR : Rn → Q , R 7→ IR(R) (16)

A formal description of the method can be found in appendix A2. Note that two alternatives are
equivalent with respect to ∼IR(R) iff they are excluded at the same stage of the procedure.

Coomb’s rule:20 The basic idea of Coomb’s rule is very similar to that of instant runoff voting as it
also is based on sequential exclusion of alternatives. However, in contrast to instant runoff voting,
we exclude the alternatives with the maximal number of last place votes instead of the ones with
the minimal number of first place votes in every step. We denote the corresponding preference
aggregation function by

CM : Rn → Q , R 7→ CM(R) (17)

where we have (a, b) ∈ CM(R) iff a is excluded at a later stage than b. Moreover, a and b are
equivalent with respect to ∼CM(R) iff they are excluded at the same stage. A formal definition of
the method can be given analogously as for instant runoff voting (see again appendix A2).

Dictatorship: The idea of the dictatorship aggregation function is pretty simple to state: The whole
group has to prefer whatever the dictator prefers. If we for instance nominate group member i0 to
be the dictator, we receive the following preference aggregation function:

DIi0 : Rn → Q , R 7→ Ri0 (18)

Clearly, this does not seem like the fairest way of aggregating preferences (at least for individ-
uals other than i0). Nevertheless, it might be worth investigating how dictatorship performs in
comparison to the well-investigated aggregation functions recalled above.

3.2. An aggregation rule based on quantiles on complete lattices: commonality sharing

The comparison in section 4 will contain, next to the extensions of the well-known rules just dis-
cussed, also an aggregation procedure that initially arose from an attempt to generalize concepts
of centrality and outlyingness of observations to partially ordered data: commonality sharing21.
Opposed to the other aggregation methods investigated here, this aggregation procedure does not
locally look at different alternatives or pairs of alternatives, but takes into account the whole or-
derings of all persons and embeds these into the complete lattice of binary relations on C equipped
with the set intersection and set union as meets and joins, respectively. Then, a notion of outly-
ingness in this space, described in Schollmeyer (2016), is used to select one or more orderings of
persons who are most centered in the population. Concretely, one applies the following procedure:
For a given minimum size k, one looks at every possible sub-population M i

k consisting of at least

k persons. Then, one considers the set Qk of all persons qjk who share with every sub-population
M i
k all commonalities of this sub-population (i.e.: all edges (a, b) that the population M i

k has in

20A discussion of Coomb’s rule can be found in Coomb and Cohen (1984), a comparison with Hare’s method is
done in Grofman and Feld (2004).

21For a more detailed description, see Schollmeyer (2016).
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common should also be edges of every ordering qjk in Qk). The set Qk of persons who share with
every sub-population of size ≥ k its commonalities is to some extent representative for every such
sub-population. If k is too small, then Qk is empty. In contrast, for k = n the set Qk is the whole
population. Now, for a given ordering q, the smaller the smallest k such that Qk still contains
q, the more central is the ordering q, since then q is a representative for a bigger collection of
sub-populations including smaller sub-populations with bigger and thus more specific commonal-
ities. Finally, to select a consensus order, choose k as small as possible under the restriction that
Qk 6= ∅ and choose the arising Qk as the set of candidates for the consensus order. If Qk has more
than one element then for a unique consensus order choose arbitrary from the set Qk or apply
some further aggregation rule to the orderings in Qk. (In the study of section 4 we apply the first
approach.) Note that the commonality sharing consensus rule is in fact a non-local rule in the
sense that if for example two persons in a profile both prefer all alternatives in the set {a, b, c} over
the alternatives in the set {d, e, f}, but with different orders within these sets, then the consensus
order could possibly change if the persons interchange with each other their orderings within the
set {a, b, c} while remaining their orderings within the set {d, e, f}, so the whole orderings play
in fact a role as a whole. This is a main difference to the aggregation rules of section 3.1 (except
dictatorship), where e.g. it does not matter from which person an alternative gets its score in the
mean rank aggregation or where edges for pairs of alternatives in Condorcets method are counted
without differentiating between edges belonging to the same person and edges belonging to dif-
ferent persons. Note also that the commonality sharing rule can be computed in a much simpler
way as one would expect from the conceptual description of the aggregation procedure. In fact,
computing the commonality sharing rule can be done in O(n · |C|2) time.

4. A study for the case n = 8 and |C| = 4

In this section, we apply the evaluation framework developed in section 2 by means of a study for
groups under varying degree of preference homogeneity. More precisely, we investigate to which
extent the performance of the preference aggregation functions recalled in section 3 depends on
the degree of homogeneity of the group under consideration for the case of a group consisting of
n = 8 personss that have to rank |C| = 4 alternatives.

4.1. Setup of the study

Assume that |C| = 4. For sake of simplicity, we assume that within the individual preferences
there is no indifference, i.e. we consider only profiles in which every person either strictly ranks a
better than b or vice versa whenever a 6= b and a, b ∈ C . For measuring homogeneity, we choose
the measure δ8 from equation (4) restricted to the domain H8 ⊂ R8, where H is the set of all
relations R ∈ R satisfying ∼R= diag(C2). Clearly, in this case the definition of the measure δ8

given in equation (4) reduces to

δ8 : H8 → [0, 1] , R 7→
∑

(a,b)∈R0
max

{
cR(a, b), cR(b, a)

}

48
(19)

For this setting, we investigate how the six preference aggregation functions recalled in section 3
perform for groups constituting different degrees of preference homogeneity, formalized by different
choices of the homogeneity class weights α. Specifically, the comparison of the aggregation proce-
dures is done using both assessment approaches proposed, the maximum entropy approach defined
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in equation (8) and the credal set approach defined in equation (9).

First, note that the measure δ8 takes exactly the values 24
48 ,

25
48 , . . . ,

48
48 , where a value of 1

2 in-
dicates minimum homogeneity, whereas a value of 1 indicates perfect homogeneity (and there-
fore that all group members share identical preferences due to (S1)). Accordingly, it is obvi-
ous that the weight vector αmin := (1, 0, . . . , 0) represents a lower degree of group homogeneity
than the weight vector αmax := (0, . . . , 0, 1). Generalizing this idea, we can construct a sequence
α0 := αmin, α1, . . . , α49, α50 := αmax ∈ ∆24 of weight vectors representing increasing degree of
group homogeneity by setting

αij := Bin
(
24, i

50

)
({j}) =

(
24
j

)
· ( i

50)j · (1− i
50)24−j (20)

for i = 0, . . . , 50 and j = 0, . . . , 24, where αij denotes the jth component of the ith weight vector
and Bin(n, p) denotes the binomial distribution with parameters n and p. Using the constructed
sequence then allows for analyzing the performance of a preference aggregation function for varying
degrees of group consensus, i.e. varying degree of group homogeneity. Due to proposition 2, this is
possible without computing the whole assessment for every single weight vector.

4.2. Discussion of the results

The results of the study described in the previous section 4.1 are visualized in the figures 1 and
2. Figure 1 shows the assessments for expected similarity for all aggregation functions considered
in section 3 and all weight vectors α0, . . . , α50. In each of the pictures, the x-axis ranges from 0
to 50, where an x-value of i represents weight vector αi. The y-axis ranges from 0 to 48, where 0
is the minimal and 48 is the maximal reachable expected similarity value. The red line shows the
maximum entropy assessment for the expected similarity value along increasing degree of group
homogeneity. The grey shaded region represents the interval-valued credal assessment. If, for in-
stance, the group’s homogeneity is represented by α20 the maximum entropy assessment for mean
rank aggregation value equals approximately 32, whereas the credal assessment ranges in [15, 33].

Clearly, the width of the interval given by the credal assessment (and therefore the strength of am-
biguity underlying the situation) depends on the degree of homogeneity of the group as well as on
the choice of the aggregation rule. If we again consider the mean rank rule, we see that for groups
with high or low degree of homogeneity, the credal intervals are rather narrow, whereas for groups
of medium homogeneity the credal intervals are relatively wide. If we compare mean rank rule with
Condorcet’s method, we see that for almost every degree of homogeneity the latter involves less
ambiguity, since it produces narrower credal intervals. Note that the comparison of the width of
the credal intervals constitutes a highly relevant information as it indicates how sensitive the evalu-
ation of an aggregation procedure reacts on choosing one (possibly wrong) approximating measure
from the credal set: If we wrongfully evaluate an aggregation function by its maximum entropy
assessment, the average error we make will be higher for aggregation functions whose evaluation
reacts very sensitive to wrong model choice. Taking solely into account this sensitivity towards the
choice of an inappropriate probabilistic model, we see that the commonality sharing rule performs
best, followed by Condorcet’s method. Moreover, both dictatorship and mean rank aggregation
are medium sensitive towards wrong model choice, whereas Coomb’s rule and instant-runoff voting
perform pretty poorly.

For larger settings, the esimates need to be computed simulation based. First results of such sim-
ulation studies indicated that the ranking of the aggregation procedures remains unchanged. The
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Figure 1: Results for the aggregation procedures from section 3.

exact design of the simulation that was applied is described in appendix A3.

Figure 2 consists of two different pictures: The upper picture shows the lower expected similarity
value (the lower bound of the credal interval) along increasing degree of group consensus for all
aggregation procedures under consideration. The first (maybe surprising) fact to note is that the
commonality sharing rule outperforms all other aggregation rules for no matter which weight vector
the underlying degree of group consensus is represented by. Further, we see that for rather inhomo-
geneous groups (represented by weight vectors αi, where i ≤ 16) choosing a dictatorship performs
better than all other methods except from commonality sharing. For medium to completely ho-
mogeneous groups (represented by αi, where i ≥ 16), Condorcet’s rule turns out to be the second
best performing aggregation method behind commonality sharing, however, for very homogeneous
groups (i ≥ 30) very closely followed by mean rank aggregation and Coomb’s rule. Moreover,
it is interesting to note that Coomb’s rule outperforms instant runoff voting for no matter what
degree of homogeneity. The same holds true for commonality sharing and dictatorship. Comparing
the maximum entropy assessments instead, paints us a very similar picture. Again, commonality
sharing is superior to all the other aggregation methods. However, mean rank aggregation now
outperforms Condorcet’s method and is superior to an dictatorship already for groups with a very
low homogeneity value (i ≥ 8). In contrast to the upper picture, the different methods are closer
together and not as easy to compare, when the maximum entropy assessment is considered.
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Figure 2: Comparison of the lower expected similarity values (upper picture) and the maximum entropy assessment
(lower picture) of the different aggregation functions along increasing degree of group homogeneity.

5. Summary, concluding remarks and discussion

In this paper, we introduced a statistical criterion for evaluating the quality of a preference aggre-
gation function if probabilistic information on the homogeneity structure of the group members’
preferences is available. The proposed criterion is fundamentally based on the concept of a prefer-
ence homogeneity measure, for which we gave both a minimal axiomatization as well as a concrete
proposal. Moreover, some conceptual differences of the proposed homogeneity measure and mea-
sures already known from literature (such as Kendall’s and Smith’s W or Herfindahl’s index) are
discussed. Subsequently, we introduced two different approaches for assessing the value mGn(S) of
the criterion for given group Gn and aggregation function S: The maximum entropy assessment is
motivated by a criterion originating from information theory, while the credal assessment provides
an ambiguity-robust approach applying the theory of imprecise probabilities. Comparing these
assessments, we investigated the performance of five common aggregation procedures as well as the
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recently proposed commonality sharing rule by means of a small study for groups along varying
degree of homogeneity. Specifically, we could show that the optimality of a preference aggregation
function for a fixed group might indeed depend on the group’s homogeneity structure.

Of course, in future research the framework needs to be applied to real world data. Specifically, we
plan to try out the proposed elicitation procedures and evaluating framework for survey data on
political opinions and investigate whether groups of significantly differing degree of homogeneity
can be identified in empirical studies. Additionally, several refinements/extensions/improvements
of the evaluation framework presented in this paper can be considered in future research. In the
following, we briefly mention the two aspects seeming most promising to us:

Axiomatic foundations: The axioms that have been proposed in section 2.3 are to be understood
as minimal requirements for measures of preference homogeneity. However, they are rather weak,
since they only look at the profile on a categorical scale. Going beyond the categorical scale in
the spirit of Bosch (2006) and Alcalde-Unzu and Vorsatz (2013) could give a more detailed pic-
ture of what is actually meant by homogeneity on an axiomatic level. Moreover, in the light of
the discussion in section 2.5, it should not remain unmentioned that our choice of the similarity
measure (6) as an indicator rather relies on intuition and heuristics, still waiting for a rigorous
axiomatic justification, where the main difficulties include keeping the definitorical freedom of a
pure categorical approach.

Efficient algorithms for simulation: In section 4, we presented a study for a group of n = 8 mem-
bers ranking |C| = 4 alternatives. For this setting, the assessments for expected similarity could
be computed analytically. However, for larger settings this becomes computer intensive and simu-
lation based assessment has to be applied instead. A proposal for a simulation design is given in
appendix A3. More efficient designs, comparable to the MCMC-driven approaches already used in
the statistical analysis of networks, are planned to be investigated in future research. This would
also allow for much deeper evaluation and comparison of the different aggregation procedures.
In particular, one could clarify whether the commonality sharing rule still outperforms the other
investigated rules in larger settings.
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Appendix

A1: Proof of Proposition 1

First, note that the definition of δn does not depend on the choice of R0 ∈ R with ∼R0= diag(C2),
since every such relation contains exactly one of the pairs (a, b) and (b, a) for all a, b ∈ C with
a 6= b and summation is commutative. Moreover, one easily verifies that Im(δn) ⊂ [0, 1]. Hence,
δn is well-defined.

(S1): We have to show that 1 is attained iff the profile consists of identical preference relations.
Obviously, δn equals 1 for identical profiles by construction. In contrast, if R := (R1, . . . , Rn) ∈ Rn
is a non-identical profile, there exists a pair (a, b) ∈ R0 such that max

{
cR(a, b), cR(b, a), eR(a, b)

}
<

n. This gives δn(R) < 1.

(S2): Let φ : {1, . . . , n} → {1, . . . , n} be a bijective map and R := (R1, . . . , Rn) ∈ Rn. By
definition, we have c(R1,...,Rn)(a, b) = c(Rφ(1),...,Rφ(n))(a, b) and e(R1,...,Rn)(a, b) = e(Rφ(1),...,Rφ(n))(a, b).

This implies δn(R1, . . . , Rn) = δn(Rφ(1), . . . , Rφ(n)).

(S3): Let R := (R1, . . . , Rn) ∈ Rn be any preference profile such that exactly k ∈ {bn2 c, . . . , n− 1}
group members share identical preferences. W.l.o.g., assume it holds that R1 = · · · = Rk =: R∗

(otherwise we can rearrange the profile in this way due to (S2)). For all pairs (a, b) ∈ C2 with
a 6= b it then holds that

fR(a, b) := max
{
cR(a, b), cR(b, a), eR(a, b)

}
≥ k (21)

since each pair (a, b) is identically ranked within the orders R1, . . . , Rk. Choose an arbitrary index
j0 ∈ {k+1, . . . , n} and define Q := (Q1, . . . , Qn) to be the profile that arises from R by exchanging
order Rj0 by order R∗. We show that δn(R) ≤ δn(Q). Therefore, let a0, b0 ∈ C, a0 6= b0 be
arbitrary but fixed. We distinguish two cases:

Case 1: fR(a0, b0) = k. Clearly, this implies fQ(a0, b0) = k + 1 > k = fR(a0, b0), since (a0, b0) is
then identically ranked by exactly Q1, . . . , Qk and Qj0 .

Case 2: fR(a0, b0) > k. For arbitrary but fixed R ∈ R and a, b ∈ C, a 6= b, define the expression
R{a,b} := {(x, y) : x, y ∈ {a, b} ∧ (x, y) ∈ R}. We then distinguish two sub-cases:

Sub-case 1: ∀ j ∈ {k + 1, . . . , n} : R∗{a0,b0} 6= (Rj){a0,b0}.

This implies that (Rj1){a0,b0} = (Rj2){a0,b0} for all j1, j2 ∈ {k + 1, . . . , n} (and that k = bn2 c and
n is odd), since otherwise fR(a0, b0) > k would not be possible. Hence, the pair (a0, b0) is ranked
identically by bn2 c+1 members and, therefore, we have fR(a0, b0) = bn2 c+1. However, it also holds
that fQ(a0, b0) = bn2 c+ 1, since (a0, b0) is identically ranked by exactly Q1, . . . , Qk and Qj0 .

Sub-case 2: ∃ j ∈ {k + 1, . . . , n} : R∗{a0,b0} = (Rj){a0,b0}.

Then, if R∗{a0,b0} = (Rj0){a0,b0} we have fR(a0, b0) = fQ(a0, b0), and if R∗{a0,b0} 6= (Rj0){a0,b0} we

have fR(a0, b0) < fQ(a0, b0). In either case, we have fR(a0, b0) ≤ fQ(a0, b0).

Thus, we showed that, in every case, it holds that fR(a0, b0) ≤ fQ(a0, b0). Since the pair (a0, b0)
was chosen arbitrarily, this implies δn(R) ≤ δn(Q), completing the proof. �

A2: A mathematical description of the aggregation function induced by instant-runoff voting

To formally state the aggregation function induced by instant-runoff voting, some additional no-
tation is needed: For R ∈ R and L ⊂ C, we denote by R−L ⊂ (C \ L)2 the restriction of R
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on L.22 Denote by R−L the set of all such relations. Moreover, denote by max(R−L) the set of
undominated elements w.r.t. R−L. Then, for a profile R−L := (R−L1 , . . . , R−Ln ) ∈ (R−L)n we set
L(R−L) := argmina|{i : a ∈ max(R−Li )}|, that is all alternatives with the fewest number of first
place votes in R−L. For fixed R := (R1, . . . , Rn) ∈ Rn, we recursively define the sets

Lk+1(R) := L
(
R−∪

k
s=0Ls(R)

)
(22)

for k = 0, . . . , kmax − 1, where L0 := ∅ and kmax is the smallest integer satisfying ∪kmax
s=0 Ls(R) = C.

Now we can state the instant runoff aggregation function as

IR : Rn → Q , R 7→ IR(R) (23)

where (a, b) ∈ IR(R) iff ∃k1 > k2 ∈ {0, . . . , kmax} such that a ∈ Lk1(R) ∧ b ∈ Lk2(R). Using this
rule, the group is indifferent between a and b, if there exists ∃k ∈ {0, . . . , kmax} with a, b ∈ Lk(R).
Moreover, for R ∈ Rn, IR(R) is an asymmetric and negatively transitive relation again.

A3: A possible simulation design for larger settings

The simulation is done in the following way: Draw N random samples R1, . . . , RN from the space
of profiles Rn. For all j = 1, . . . , ξ, define the set Nj := {Ri : An(Ri) = kj} of all samples mapped
to homogeneity class kj . For given weights α := (α1, . . . , αξ) and aggregation function S, we use
the characterization of the assessments given in Proposition 2 and receive

m∗Gn(S) =
∑ξ

j=1

(
αj · 1

|A−1
n (kj)|

∑
R∈A−1

n (kj)
YS(R)

)
≈ ∑ξ

j=1

(
αj · 1

|Nj |
∑

R∈Nj YS(R)
)

MGn(S) =
∑ξ

j=1

(
αj ·minR∈A−1

n (kj)
YS(R)

)
≈ ∑ξ

j=1

(
αj ·minR∈Nj YS(R)

)

MGn(S) =
∑ξ

j=1

(
αj ·maxR∈A−1

n (kj)
YS(R)

)
≈ ∑ξ

j=1

(
αj ·maxR∈Nj YS(R)

)

However, note this simulation design requires a sample satisfying the condition Nj 6= ∅ for all
j = 1, . . . , ξ, i.e. the sample needs to be rich enough that every homogeneity class has been met at
least once. Consequently, such a design gets computational intensive as n and |C| increase.

A simulation design producing less computational costs can be realized by taking advantage of the
fact that the maps An and YS are invariant under permutations of the inserted profile. Let Φ
denote the set of all bijective maps φ : {1, . . . , n} → {1, . . . , n}. For R := (R1, . . . , Rn) ∈ Rn and
φ ∈ Φ, we set Rφ := (Rφ(1), . . . , Rφ(n)) and define an equivalence relation ∼Φ on Rn by setting

R ∼Φ Q :⇔ ∃φ ∈ Φ : R = Q
φ

Moreover, let Rn∼Φ
denote the quotient space produced by ∼Φ and let f : Rn∼Φ

→ Rn be any choice
function satisfying f(C) ∈ C for all C ∈ Rn∼Φ

. Further, for every possible homogeneity value kj ,
where j = 1, . . . , ξ, we define the set Lj := {C ∈ Rn∼Φ

: An(f(C)) = kj} of all equivalence classes
with members that are mapped to kj . Due to Proposition 2 and the fact that both An and YS are

22Precisely, we have (a, b) ∈ R−L iff ((a, b) ∈ R∧a, b ∈ C \L). Note that the elements of Rn are again asymmetric
and negatively transitive binary relations, however, defined on the set C \ L.
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constant on every C ∈ Rn∼Φ
(as they are invariant under permutations of the inserted profile), one

easily verifies the following identities:

m∗Gn(S) =

ξ∑

j=1

(
αj ·

∑
C∈Lj YS(f(C)) · |C|
∑
C∈Lj |C|

)

MGn(S) =

ξ∑

j=1

(
αj · min

C∈Lj
YS(f(C))

)

MGn(S) =

ξ∑

j=1

(
αj ·max

C∈Lj
YS(f(C))

)

Using the above identities allows to apply a similar simulation design as proposed before, however,
instead of drawing samples from the space Rn, we can now sample from the smaller space Rn∼Φ

.
In our context, this means we can sample from the space of all n-combinations of R instead of
sampling from the space of n-permutations of R.

23


