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Abstract

Rudolf Carnap’s mature work on the logical reconstruction of scientific theories

consists of two components. The first is the elimination of the theoretical vocabulary

of a theory in terms of its Ramsification. The second is the reintroduction of the theo-

retical terms through explicit definitions in a language containing an epsilon operator.

This paper investigates Carnap’s epsilon-reconstruction of theories in the context of

pure mathematics. The main objective here is twofold: first, to specify the epsilon logic

underlying his suggested definition of theoretical terms and a suitable choice semantics

for it. Second, to analyze whether Carnap’s approach is compatible with a structuralist

conception of mathematics.

1 Introduction

In the logical analysis of science, theories are often described as axiomatic systems formu-

lated in a language whose vocabulary is bipartitioned into observational and theoretical

terms.1 A central interpretive issue in the relevant literature since Carnap concerns the

proper understanding of the latter. What is the meaning of such theoretical terms? How,

if at all, is their reference to non-observable entities fixed? In what ways does a scientific

theory contribute to the specification of the interpretation of its theoretical vocabulary?

Questions of this sort are usually referred to as “the problem of theoretical terms” (e.g.

[28, 37, 2, 25]).

The philosophical discussion of this problem usually focuses on two related issues. The

first concerns the formulation of a proper semantics for theoretical terms. More specif-

ically, different philosophical theories are currently on the market that aim to explain a

1See [3] for an overview of the discussion and relevant literature.
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central semantic property of such terms, namely the fact that their meaning is usually left

incomplete or undetermined in a relevant sense. Put differently, it is often the case that

the reference of theoretical terms is not specified uniquely by the theory in which they

occur.2 A central topic in the literature is thus the question how to accommodate for this

indefinite character of the theoretical vocabulary in the logical reconstruction of scientific

theories. The second issue under discussion concerns the philosophical interpretation of

different forms of theory reconstruction with respect to their ontological underpinnings.

Specifically, the question here is whether a particular representation of theoretical terms

commits one to a realist or non-realist account of theoretical entities such as electrons,

genes, or wave functions. It is here that work on the “logic of science” in the tradition of

Carnap connects with more general debates in the philosophy of science, in particular with

the realism-antirealism controversy and with scientific structuralism.3

The present paper will address both issues by investigating a specific proposal made by

Carnap on how to define theoretical terms. His mature work on the logical reconstruction

of scientific theories—as documented in [16] and [44]—consists of two components. The

first is the elimination of the theoretical vocabulary of a theory in terms of its ramsifica-

tion. Roughly put, this is the reformulation of a theory—understood as a single formula

expressing the conjunction of its axioms—by the substitution of its theoretical terms by

existentially quantified variables. The second component consists in the reintroduction

of the theoretical vocabulary by explicit definitions in the observational language supple-

mented by a logical epsilon operator. Intuitively speaking, these definitions pick out an

arbitrary sequence of “theoretical entities” in the domain of the background language as

the referents of the theoretical terms provided that the theory in question is consistent.

We will dub this two-step approach the epsilon-reconstruction of scientific theories.

This paper assesses Carnap’s epsilon-reconstruction of theories both from a logical and

a philosophical perspective. The objective in the first part of the paper will be to give a

modernized presentation of the logic underlying Carnap’s approach, in particular his use

of Hilbert’s epsilon-operator in the definition of theoretical terms. As we will see, a closer

study of this logical framework and its standard choice-functional semantics will allow us to

2For a discussion of this indefinite character of theoretical terms see, in particular, [2], [18], [25], and
[43]. Carnap’s work on the so-called “partial” or “indirect interpretation” of theoretical terms in [13] and
[14] can be considered as an early systematic attempt to deal with this indefinite character of such terms.

3Work on this topic has so far focused mainly on the Ramsification of theories (to be described below)
and its ontological commitments. See, in particular, [28], [17], and [37] for early contributions as well as
[43], [20], and [24] for more recent discussions.
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make precise the informal talk of the indefinite or indeterminate character of such terms.

The second part of the paper will then give a philosophical evaluation of the epsilon-

reconstruction of theories. Recent scholarship on Carnap’s mature logic of science (in

particular [43, 25, 21]), has considered whether his account reflects a “neutral” perspective

between a realist and an instrumentalist conception of scientific theories. Moreover, it has

been suggested that his account is compatible with scientific structuralism. Compare, for

instance, Friedman on this point:4

[Carnap] may in fact have articulated a version of structuralism that recognizes

the strengths of both instrumentalism and realism while simultaneously avoid-

ing the philosophical “pseudoquestions” on which they appear substantively to

differ. [25, p.252]

The central aim in the second part of the present paper will be to further address this

philosophical conjecture. More specifically, the aim will be to see whether and if so, in

what sense, Carnap’s approach is compatible with a structuralist conception of scientific

theories.5

Our discussion of Friedman’s observation will be based on three simplifying assump-

tions: first, we adopt a deflationist or Lewisian understanding of the theoretical vocabulary.

According to this view, theoretical terms are those terms newly introduced by a theory

in question. Put differently, they are terms implicitly defined by the axioms or postulates

of that theory (see [34]). In turn, the observational vocabulary consists of “old” terms

whose meaning has already been specified elsewhere, for instance, in a predecessor the-

ory.6 Adopting this understanding will allow us to sidestep the traditional debates (and

4Remarks to a similar effect can be found in [43] and [21]. Compare also Cei & French: “Carnap’s formu-
lation leads to a structuralist treatment of the theoretical terms implying a form of multiple realisability.”
[18, p.643]

5Structuralism will be understood here primarily as an epistemic thesis about the nature of scientific
theories. Roughly put, it is the view that theories investigate only the structural properties of their subject
fields while remaining ignorant about qualitative or intrinsic properties of the objects considered. Such an
account of scientific knowledge has a long history and traces back to work by Poincaré, Russell, Ramsey,
Maxwell, and Carnap. See, in particular, [21] for an extensive investigation of the historical roots of scientific
structuralism. Compare [51] and [32] for formative contributions to the modern debate.

6Compare Lewis on this understanding: “I do not understand what it is just to be a theoretical term,
not of any theory in particular, as opposed to being an observational term (or a logical or mathematical
term). I believe I do understand what it is to be a T -term: that is, a theoretical term introduced by a
given theory T at a given stage in the history of science. If so, then I also understand what it is to be an
O-term: that is, any other term, one of our original terms, an old term we already understood before the
new theory T with its new T -terms was proposed.” [34, p.428]
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philosophical problems discussed therein) on the proper demarcation of theoretical and

observational terms.

Second, in contrast to the usual focus on the empirical sciences, we will restrict our

attention to purely mathematical theories, in particular to axiomatic theories from abstract

algebra and number theory. Carnap’s epsilon-reconstruction will thus be applied to pure

mathematics in this paper. As we will see, this focus will have several simplifying effects for

the subsequent discussion. In particular, theoretical terms in the context of mathematics

will be understood as the primitive terms of a formal language whose meaning is specified

implicitly by the axioms of a particular theory.7

Third, our focus in addressing the philosophical underpinnings of Carnap’s account will

not be on scientific structuralism in general, but on a closely related position, namely math-

ematical structuralism. Roughly put, this is the view that mathematical theories study

only abstract structures or structural properties of mathematical objects. An important

aim in the paper will be to clarify the conceptual similarities between the epistemic struc-

turalism associated with Carnap’s logical reconstruction of theories and such a structuralist

account of mathematical knowledge. Specifically, Friedman’s claim will be translated into

the following questions in the present paper: is Carnap’s epsilon-reconstruction of theo-

ries compatible with a structuralist conception of mathematics? If so, which version of

mathematical structuralism squares best with his account?

The paper will be organized as follows: Section 2 will present Carnap’s epsilon-reconstruction

of theories and discuss two mathematical examples from algebra and number theory. Sec-

tion 3 will then turn to a more detailed logical discussion of the epsilon-logic underlying

his account and as well as of a suitable choice semantics. Section 4 will discuss the specific

nature of the semantic “indeterminedness” of Carnap’s theoretical terms by contrasting

Hilbert’s ε-terms, specifically their property of referring to objects arbitrarily, with so-

called Russell indefinites. Section 5 will then discuss different versions of structuralism in

the context of the philosophy of mathematics as well as their conceptual ties with scientific

structuralism. We will outline a specific version of mathematical structuralism, usually

labelled relative structuralism, and argue that it presents a natural philosophical frame-

work for the epsilon-term reconstruction of mathematical theories. Finally, Section 6 will

contain a brief outlook on different ways in which Carnap’s reconstruction of theories might

be applied to several open issues in philosophy of science.

7Consequently, old terms (in Lewis’ sense) will not be relevant in the present context. See Section 2 for
a further discussion of this point.
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2 The epsilon-reconstruction of theories

Carnap’s own discussion of the use of Hilbert’s ε-operator for the logical reconstruction of

theories remains rather sketchy and programmatic. The only two sources it is explicitly

mentioned in are a short paper [16] as well as the posthumously published lecture notes

titled “Theoretical concepts in science” from 1959 (see [44]). Moreover, his approach has

so far found only little resonance in the subsequent literature. In particular, no scholarly

attention has so far been dedicated to the possible applications of Carnap’s account as

well as its general philosophical significance.8 This section will set the stage for a closer

discussion of the epsilon-reconstruction and show how it can be applied to mathematical

theories.

Following Carnap’s practice, we assume a rich object language in which both scientific

theories and their Ramsey sentences can be formulated. This can be a type- or a set-

theoretical language. Unlike Carnap’s original rich background theory which is typically a

version of type-theory comprising enough mathematics, we shall confine our approach to

set theory here. This has the effect that we are allowed to quantify over sets. Given that

set theory is considered a (rather rich) first order theory, we say that we can express the

Ramsey sentence in set theory, hence as a first-order sentence since relations are interpreted

as sets. From this perspective no generality is lost. In the following, we sometimes go back

and forth in our notation, and assume that no confusion should arise if one considers this

in the light of these remarks.

Let L be a language of set theory with primitive ‘∈’ standing for the membership

relation as its only non-logical constant. This language comes fully interpreted, that is, it

describes a rich mathematical ontology, namely the cumulative universe of sets. Thus, as

the interpretation of L we assume (V,∈∗). An axiomatic theory T is usually understood

as a set of sentences, more specifically, as the set of its axioms. The language in which

T is formulated usually contains additional descriptive vocabulary, namely a number of

“theoretical” terms T1, . . . , Tn and possibly also a number of “old” (that is, previously

defined) termsO1, . . . , Om. These non-logical terms can be individual constants, predicates,

or function symbols (of a given type and arity). Let LT be the language with this signature,

i.e. L ∪ {T1, . . . , Tn;O1, . . . Om}. This is what Carnap usually calls a theoretical language

(see, e.g., [15]).

Following the standard convention, we can represent T formally as a complex sentence

8See, however, [44], [18], and [34] for general discussions of Carnap’s approach.

5



Φ ∈ LT that expresses the conjunction of its axioms:

Φ(T1, . . . , Tn;O1, . . . Om) (ΦT )

The Ramsey sentence of T is now constructed by substituting its theoretical symbols by

existentially quantified variables of the corresponding logical category:9

∃X1 . . . ∃XnΦ(X1, . . . , Xn, O1, . . . Om) (RS)

Informally speaking, RS states that there are theoretical relations in the universe of L—in

our case the cumulative universe of sets—which have the features that the theory attributes

to them. (We give two examples of the Ramsification of a theory for further illustration

below.)

It has sometimes been argued in the literature that this method of Ramsification sup-

ports a non-realist or instrumentalist conception of theoretical concepts in science. How-

ever, as pointed out in [37, 28], and subsequently, by Carnap himself [17], the elimination

of theoretical symbols does not effectively lead to an elimination of the reference to theo-

retical entities, relations, or functions, however these might be conceived. As Carnap puts

it, the Ramsey-sentence “does indeed refer to theoretical entities by the use of abstract

variables.” [17, 963]. Thus, despite the fact that a direct reference to theoretical objects is

eliminated in RS, the variables in the sentence still range over the class of such objects.10

As mentioned above, Carnap’s mature work on the logic of science does not halt at this

point. He suggests a two-step reconstruction of theoretical knowledge, where the first step

consists in the Ramsification of a theory. The second step then consists in the subsequent

reintroduction of its theoretical constants in either of two ways. Carnap’s first, more

well-known approach is in terms of the so-called “Carnap sentence,” that is a conditional

sentence of the form:

∃X1 . . . ∃Xn(Φ(X1, . . . , Xn, O1, . . . Om))→ Φ(T1, . . . , Tn, O1, . . . Om) (CS)

9To keep the discussion simple, we will assume here that the theoretical vocabulary consists only of
predicates of a specified arity. As a consequence, the existentially bound variables in the Ramsey sentence
of a theory range over relations in the domain of L.

10A central point of discussion in the literature is whether this fact commits one a realist conception of
theoretical entities. For a detailed discussion of this and related issues concerning the proper interpretation
of the Ramsey sentence reconstruction of theories see [43, 21, 25].
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Informally, this sentence expresses the fact that if RS of a theory is true, then so is the

theory in its original formulation with theoretical terms.11

The second, less well-known approach to reintroduce the theoretical vocabulary of T is

through an explicit definition of them in the “observational” language supplemented by a

logical ε-operator. The ε-operator added here is a logical term-forming operator that was

originally introduced by Hilbert in the 1920s in his work on proof theory. Carnap applies

the operator in the context of the logical reconstruction of theories in the following way:

let t = 〈T1, . . . , Tn〉 stand for a tuple of theoretical terms of T . Then the explicit definition

of tuple t has this form:

t =df εz∃X1 . . . ∃Xn(z = 〈X1, . . . , Xn〉 ∧ Φ(X1, . . . , Xn, O1, . . . Om)) (ε-Def)

Stated informally, the sequence of theoretical terms is defined here as referring to an arbi-

trary tuple of theoretical relations if the theory in question is satisfied, that is if its Ramsey

sentence is true. The interpretation of the individual theoretical terms is then, in a second

step, specified relative to this particular choice. Each Ti (for all 1 ≤ i ≤ n) is defined in

the following way:

Ti =df εY ∃X1 . . . ∃Xn(t = 〈X1, . . . , Xn〉 ∧ Y = Xi) (ε-Def∗)

The ‘local’ definitions of individual terms by (ε-Def∗) are specified relative to the prior

definition of the tuple of theoretical symbols.12

Two possible motivations for this reintroduction of the theoretical vocabulary in terms

of these explicit definitions have been discussed in the recent literature. The first concerns

Carnap’s attempt to mimic informal deductive reasoning in scientific practice with implic-

itly defined theoretical terms. Specifically, such terms are reintroduced by (CS) or (ε-Def)

in order to avoid the cumbersome use of existential instantiation that would be necessary

11While RS is supposed to capture the observational content of a theory, CS is usually considered to
express its analytical content. See in particular [25] and [21] for further details on this point.

12The use of the epsilon-term in the definiens of Carnap’s original formulation of (ε-Def∗) is therefore
redundant. The only relevant occurrence of an ε-term is the one in the ‘global’ scheme (ε-Def), where a
particular ε-representative for the tuple t of theoretical terms is fixed. Given this particular choice, the
reference of the singular theoretical terms Ti can also be specified more easily in terms of a projection
function. Carnap was in fact aware of the redundancy of the ε-operator in (ε-Def∗). Compare his remarks
on (ε-Def∗) in [16]: “Instead of the operator ‘εx’ we could use here the customary description operator
‘(ιx)’, since the formula in square brackets fulfills the uniqueness condition with respect to ‘x’. [16, p.161].
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if the logical reconstruction of a theory consisted only of its Ramsification.13 The second

possible motivation for introducing t-terms through of explicit definitions is, as Psillos has

pointed out, Carnap’s wish to give a non-holistic or “atomistic” specification of such terms

(see [44]).

Our focus in this paper will be less on these general conceptual motivations for the

ε-reconstruction but rather on its application in the context of mathematics. We give two

examples of mathematical theories to further illustrate Carnap’s approach. Both will be

used as toy examples in the philosophical discussion in the subsequent sections. Before

turning to them, note again that a Lewisian account of theoretical terms is adopted here.

This is to say that theoretical terms are understood here as those terms newly introduced by

a theory in question. According to Lewis, such terms do not have pre-established meaning

or interpretation. Rather, their meaning is specified indirectly or implicitly through the

postulates of the theory in which they are mentioned [34, p.429].

Applied to the context of pure mathematics, theoretical terms are precisely the primitive

non-logical constants of a language that are implicitly defined by the axioms of a particular

theory. Since mathematical theories are treated in isolation here, there are no “old” but

only theoretical terms to consider.14 Let us consider two examples to further illustrate

this approach: The first example comes from abstract algebra and concerns the theory of

a simple type of algebraic structures, namely of monoids:

Example 1 (Monoids) A monoid is a triple 〈G, ◦, e〉, where G is a set, e ∈ G, and ◦ is

a binary operation G×G→ G that satisfies two axioms:

(M1) ∀x, y, z ∈ G : (x ◦ y) ◦ z = x ◦ (y ◦ z)
(M2) ∀x ∈ G : e ◦ x = x ◦ e = x

13See, for instance, [24]. Friedman puts this point as follows: “For the Carnap sentence is now seen to
take over the role of precisely existential instantiation from the Ramsey-sentence, and it then allows us to
proceed with ordinary mathematical reasoning in the style of Hilbert without worrying about cumbersome
restrictions on existential variables in natural deduction. Whereas existential instantiation, of course, is
not a logically valid inference, the Carnap sentence (...), taken as a non-logical axiom of T , is now seen,
nonetheless, as an analytic postulate—a conventional choice of (constant) names arbitrarily given to a
sequence of values of the variables (...), which, by the Ramsey-sentence, must (synthetically) exist. ” [24,
p.397]

14It is possible, however, to speak also of old terms in the context of mathematics, at least if these terms
are understood in Lewis’s sense. Such terms become relevant in cases where extensions of a mathematical
theory are considered. Consider the example of Robinson arithmetic presented below: Axiom system (Q1-
Q7) implicitly defines the terms S,+, ∗. Thus, relative to theory (Q1-Q7), these count as theoretical terms
in our understanding. However, relative to the extended axiomatic theory (Q1-Q8), expressions S,+, ∗ can
also be viewed as old terms, i.e. as already defined terms. This issue will not be pursued here any further.
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The Ramsey sentence of the theory Mon[G, ◦, e] is:

∃X∃f∃v∀x∀y∀z(X(x) ∧X(y) ∧X(z)→ (f(f(x, y), z) = f(x,f(y, z)) ∧

f(v, x) = f(x, v) = v))

The ε-definition of t = 〈G, ◦, e〉 then is:

t =df εz∃X∃f∃v(z = 〈X, f, v〉 ∧Mon[X, f, v])

The second example is from number theory and concerns those number systems satisfying

a weakened version of Peano arithmetic, namely Robinson arithmetic.

Example 2 (Robinson arithmetic (Q)) Let LA be the language of arithmetic. Q, aka

Robinson Arithmetic is axiomatized as follows:15

(Q1) S(x) 6= 0

(Q2) S(x) = S(y)→ x = y

(Q3) x 6= 0→ ∃y(x = Sy)

(Q4) x+ 0 = x

(Q5) (x+ Sy) = S(x+ y)

(Q6) (x ∗ 0 = 0)

(Q7) (x ∗ Sy) = (x ∗ y) + x

(Q8) x ≤ y ↔ ∃z(x+ z) = y

Schematically, the conjunction of (Q1)-(Q8) can be represented as Q[S,+, ∗,≤]. The Ramsey-

sentence of Q[S,+, ∗,≤] is:

∃f1∃f2∃f3∃r4Q[f1, f2, f3, r4]

The sequence of theoretical terms t = 〈S,+, ∗,≤〉 is then defined as:

t = εz∃f1∃f2∃f3∃r4(z = 〈f1, f2, f3, r4〉 ∧ Q[f1, f2, f3, r4])

Two points of commentary concerning these examples are in order here. First, notice that

the respective Ramsey sentence simply expresses the consistency of the theory in question

here, viz. the fact that there exists at least one model that satisfies it. As we said, the

ε-term definition then picks out one object in the model class in question and specifies the

interpretation of the primitive terms relative to this choice. In the case of monoids, this

15See, e.g., [27, p.28].
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ε-representative can be any structured set living in the cumulative hierarchy of sets V that

satisfies the two monoid axioms, for instance 〈N,+, 0〉 or 〈R,×, 1〉. The reference of the

primitive terms ‘G’, ‘◦’, ‘e’ is then specified relative to either one of these structures.

Second, a point concerning the ontological underpinnings of this logical reconstruction:

it should be clear that Carnap’s approach does not lend support to a nominalist account

of mathematics. In particular, it presupposes a rich mathematical background ontology,

in our case, the cumulative universe of sets. Given these strong set-theoretic assumptions,

it is not clear, at least prima facie, how Carnap’s approach should at the same time be

compatible with a structuralist conception of mathematical theories. In order to address

this connection with structuralism, we have to get more specific about the underlying logic

of Carnap’s approach, in particular his use of the ε-operator and its standard semantic

interpretation.

3 Epsilon terms and their choice semantics

The key component in Carnap’s logical reconstruction of theories is Hilbert’s ε-operator.16

This Section will present the logic of this operator as well as its standard semantic interpre-

tation. As mentioned above, the ε-operator functions as a logical term-forming operator:

if A(x) is a formula with x occurring as free variable in it, then εxA(x) is a term where all

occurrences of x are bound.17

Deductive systems describing the logical behaviour of such epsilon terms, so-called

Epsilon Calculi (EC), usually consist of two central axioms (in addition to the standard

axioms and deduction rules of first-order logic):

A(t)→ A(εxA(x)) (Critical formulas)

∀x(A(x)↔ B(x))→ εxA(x) = εxB(x) (Extensionality)

The extensionality axiom states that if two formulas are equivalent, then their correspond-

ing ε-representatives are identical. Given these two axioms, the standard first-order quan-

16See [52] for a detailed history of the epsilon logic. Compare [33], [53], and [39] for modern presentations
of the epsilon calculus and its semantics.

17Given a second-order or type-theoretic language, “higher-order” epsilon terms can be constructed in a
similar way. For instance, let A(X) be a formula with a free n-ary relation variable X. The term εXA(X)
will pick out an arbitrary n-ary relation on the domain of the model relative to which statement A is true.
Epsilon terms built from function variables of any arity can be constructed in a similar way.
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tifiers can be defined explicitly in the following way:

∃xA(x) :↔ A(εxA(x)) (Def∃)

∀xA(x) :↔ A(εx¬A(x)) (Def∀)

As Carnap has pointed out in [44] and [16], (Def∃) together with his definitional scheme

for t-terms allows one to deduce the Carnap sentence of a theory. Thus, he was able to

show logically, i.e. in terms of a simple argument given in EC, the equivalence of his two

logical reconstructions of theories, namely of (1) RS and CS and (2) RS and (ε-Def).

It is important to note, however, that the main conceptual motivation for the intro-

duction of ε-terms in Carnap’s reconstruction of theories does not lie in their inferential

use but rather in their semantics. More specifically, it concerns a central intuition about a

semantic feature of the ε-operator, namely a kind of referential indeterminacy of the terms

constructible from it. Compare the following remark made by Carnap on the special nature

of ε-terms as “indeterminate constants”:

(...) the symbol ‘ε’ was intentionally introduced by Hilbert as an indeterminate

constant. Its meaning is specified by the axioms (1) and (2) only to the extent

that any non-empty set has exactly one representative and that this represen-

tative is an element of the set. If the set has more than one element, then

nothing is said, either officially or unofficially, as to which of the elements is

the representative. [16, pp.162-163]18

Unfortunately, Carnap never gave an explicit specification of the semantics of the ε-operator

and of the terms constructible from it in his work. Nevertheless, there exists a natural

explication of his intuitions about the “incomplete” or “indeterminate meaning” of such

expressions in terms of a choice-functional semantics, that is a semantic interpretation of

epsilon terms based on choice functions.19

A choice semantics for an extensional epsilon logic is usually characterized in the follow-

ing way:20 an interpretation M of the language Lε has the form 〈D, I〉, where D is a domain

18Compare also the following related remark: “(...) the Hilbert ε-operator belongs to a small class (...)
of logical constants of a very particular kind. I will call them indeterminate. They are such that their
meaning is not completely specified.” [44, p.171]

19It should be noted here that Carnap was aware of the possibility of such a choice-functional interpreta-
tion of epsilon logic. He refers in [16] to Asser’s paper “Theorie der logischen Auswahlfunktionen” [4] were
a first systematic treatment of different choice semantics for the epsilon calculus is given.

20We follow closely here Zach’s presentation of a choice semantics given in [53]. For a different semantic
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and I an interpretation function for the nonlogical vocabulary. We say that s : V ar → D

is an assignment function on M. The ε-operator is interpreted by an extensional choice

function δ : ℘(D)→ D such that, for any X ⊆ D:

δ(X) =

x ∈ X, if X 6= ∅;

x ∈ D otherwise.

The choice function picks out a “representative” object for any non-empty set and an

arbitrary object from domain D if the set in question is empty.21 Given this framework,

the reference of ε-terms can be specified relative to structure M, assignment function s,

and choice function δ on M based on the following valuation rule:22

valM,δ,s(εxA(x)) = δ(valM,s(A(x)))

= δ({d ∈ D |M, s[x/d] |= A(x)}).

Stated less formally, the rule states that the referent of an ε-term formed from formula A

is the element that the choice function picks from the subset of domain D defined by A.

This choice-functional semantics for ε-terms gives us a natural explication of the infor-

mal semantic treatment of theoretical terms implicit in Carnap’s logical reconstruction of

theories. To see this, consider again the theory of monoids presented above. As we saw,

the definition(s) of its primitive terms can be formulated in Lε, that is, in a first-order

language of set theory supplemented by an ε-operator. The semantic evaluation of the

ε-term definition of the primitives ‘G’, ‘◦’, and ‘e’ can then be specified relative to a given

choice function. What the ε-term definition does in this case is to pick out one object from

the class of monoids. The reference relation for theoretical terms is thus directly modeled

by the choice-functional interpretation of their defining ε-terms. For instance, relative to

account, see, e.g., [33].
21Given that our chosen background theory is set theory here, we can formulate choice functions as

a first-order condition in the above sense without any loss of generality. Nevertheless, choice functions
for higher-order epsilon terms can, in principle, be constructed in a similar way. Consider again the
epsilon term εXA(X) described in footnote 17. A suitable choice function for it is a function of the form
δ : ℘(℘(Dn))→ ℘(Dn) such that, for any set of relations R ⊆ ℘(Dn), we have:

δ(R) =

{
X ∈ R, if R 6= ∅;
X ∈ ℘(Dn) otherwise.

22See again [53].
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one such function, the extension of ‘G’, ‘◦’, and ‘e’ might be specified as N,+, and 0 re-

spectively. Relative to another choice function, it will be specified as R,×, and 1. As we

will see below, the reference of these primitive terms remains indeterminate, however, in

the sense that there is no principled way to choose one such interpretation over the other.

This choice semantics for ε-terms not only provides a precise account of the reference

of theoretical terms that nicely corresponds to Carnap’s informal remarks. It also allows

a general explication of the semantics of theoretical sentences, that is sentences containing

such terms. This explication comes in two steps: First, a translation function has to be

specified that maps theoretical sentences to their ε-translations, i.e. to those sentences

resulting from the systematic substitution of t-terms by the ε-terms defining them. More

formally, let A be a sentence in a theoretical language LT with signature {t1, . . . , tn}. Then,

given Carnap’s method of defining the theoretical terms via ε-terms, there is a function

f : LT → Lε that maps every theoretical sentence A to a sentence A∗ such that each

occurrence of ti (for every i ∈ n) in A is substituted by its defining ε-term. Second, the

resulting ε-translate A∗ can then be evaluated in terms of the choice-functional semantics

in the way presented above. More specifically, we can distinguish between two semantic

notions of relevance for theoretical sentence:

Explication 1 (Semantics of theoretical sentences) Let A be a theoretical sentence,

A∗ its ε-translation in Lε, and M an interpretation of Lε. We say that

1. A is true in M iff there exists a choice function δ on M such that M, δ |= A∗;

2. A is universally true (or valid) in M iff for every choice function δ on M, we have

M, δ |= A∗.

This choice-functional explication of the informal semantics of theoretical sentences can

be further clarified by looking more closely at the simple model theory underlying it.

According to the semantic conception of theories, a theory T (expressed by the complex

sentence Φ) can also be characterized as a class of models in the following way:

ModtΦ := {M : M is a t-structure ∧ M |= Φ}

where t stands for the theoretical signature {t1, . . . , tn} of the language in which Φ is for-

mulated. In Carnap’s reconstruction of theory T , a particular choice function interpreting

the ε-operator picks out one model from such a class and specifies the interpretation of the

13



theoretical vocabulary relative to this choice. Different choice functions pick out different

objects from the same model class. The notions of truth and universal truth of theoretical

sentences are then evaluated in terms of the possible choice functions on a theory’s model

class.23

Let us give two simple examples of mathematical sentences to illustrate this account.

Consider first a sentence expressible in terms of the vocabulary of monoids presented in

Example 1. The sentence in question states the existence of inverses in algebraic structures:

∀x ∈ G ∃y ∈ G : x ◦ y = y ◦ x = e (ψ)

This sentence is true of some monoids, namely those forming a group. However, it is

certainly not true of all monoids. (Our above example of structure 〈N,+, 0〉 is a case in

point here.) The fact that sentence ψ is realizable can be formally established by translating

it into its corresponding ε-sentence. This will be a “purely” logical sentence in language

Lε that can be semantically evaluated in the above sense. The observed fact that ψ is true

in some but not all monoids is captured by the fact that there exists at least one choice

function δ on the intended set-theoretic universe V of language Lε that assigns values to

the ε-terms defining ‘G’, ‘◦’, and ‘e’ such that V, δ |= ψ∗.24

Consider now the simple arithmetical sentence ‘2 + 2 = 4’. It can easily be translated

into a sentence containing only the primitive arithmetical terms ‘0’, ‘+’, and ‘S’ presented

in Example 2, namely:

S(S(0)) + S(S(0)) = S(S(S(S(0)))) (ϕ)

This is a simple theorem of Q, i.e. it is logically provable from the axioms listed in Example

2. As a consequence, it is also valid, that is, it holds in all number structures satisfying

Q. This semantic fact of the validity of ϕ can again be represented formally in the above

23Note that the present explication of theoretical truth is based on a variable choice interpretation of
the ε-operator: ε-terms (and thus sentences containing them) are evaluated relative to a all possible choice
functions for a given model. The question whether such a flexible choice semantics is in conformity with
Carnap’s original understanding of epsilon terms will be addressed in a separate paper.

24It should be emphasized here that this semantic evaluation of a sentence like ψ is, in an important sense,
theory relative. In Carnap’s approach, the t-terms are defined relative to a particular theory (expressed
in the definiens of the ε-term definition). It follows that the same terms are defined differently relative
to different theories. For instance, the same algebraic signature can be defined relative to the theory of
monoids or to group theory. These different theoretical contexts have direct implications for the semantic
evaluation of the sentences expressed in terms of these theoretical terms. Sentence ψ is, as we saw, satisfied
relative to the background theory of monoids, but obviously valid relative to the theory of groups.
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way by translating ϕ into a sentence of Lε based on Carnap’s ε-term definitions. As can be

shown, the ε-translation will turn out true in universe V for any possible choice function

assigning values to the ε-terms standing for the primitives ‘0’, ‘+’, and ‘S’.

The present account turns out to capture closely Carnap’s general views on the cru-

cial semantic feature of theoretical terms, namely their “indefinite” or “indeterminate”

nature.25 In the following Section, we further specify the particular status of theoretical

vocabulary as semantically indeterminate by looking at the special type of reference of

their corresponding epsilon terms.

4 Indefinites and arbitrary reference

The epsilon-operator was introduced in Carnap’s logical framework to allow for an explicit

definition of the theoretical terminology of a scientific theory. As we saw, a central motiva-

tion for this was to reintroduce theoretical terms after their elimination by Ramsification

in order to describe more adequately the deductive inferences in actual science. A second,

equally important motivation was to capture in precise terms a certain indeterminacy or

non-uniqueness of reference that is typical for such terms. Compare again Carnap on this

second semantic point:

The postulates TC [of a theory] are intended by the scientist who constructs

the system to specify the meaning of ‘t’ to just this extent: if there is an entity

satisfying the postulates, then ‘t’ is to be understood as denoting one such

entity. Therefore the definition (...) gives to the indeterminate constant ‘t’

just the intended meaning with just the intended degree of indeterminacy. [16,

p.163, emphasis added]

As we saw, EC and its choice-function semantics provide a natural logical framework

for modeling this semantic indeterminacy. Nevertheless, in order to connect Carnap’s

logical approach with scientific structuralism, more needs to be said about the philosophical

interpretation of the specific kind of semantic indeterminacy of ε-terms. How can their

specific mode of reference be characterized more generally in philosophical terms?

25See in particular [14]. As has been pointed out in [44] and [2], this fact of the “non-uniqueness” of the
interpretation of theoretical terms distinguishes Carnap’s ε-definition from Lewis’ explicit definition of such
terms by use of a logical ι-operator [34].
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Interestingly, ε-terms are often described as indefinite descriptions in the philosophical

literature.26 This is a natural claim to make given that they are usually paraphrased

in terms of indefinite noun phrases: εxA(x) is standardly read as “an A, if there exists

one”. Moreover, in recent work in linguistics and semantic theory, ε-terms are frequently

used for the logical representation of dependent indefinite phrases of the form “an A is a

B” (e.g. [50]). Statements of this form are also ubiquitous in scientific reasoning and in

mathematical reasoning in particular. Consider, for instance, stipulative sentences with

indefinites such as “Let G be a complete graph” or “Let A be a cyclic group of order n”

which usually stand at the beginning of a mathematical proof. According to the above

view, their logical structure is best represented in the language of the epsilon calculus

by B(εxA(x)). But precisely what kind of indefinites are ε-terms? And, if descriptions

constructed from them are understood in their “referential” sense, what kind of reference

is typically associated with them?

In order to address these questions, it seems helpful to compare the indefinites expressed

by ε-terms—let us dub them Hilbert indefinites—with the standard Russellian account of

indefinite or ambiguous descriptions.27 Roughly put, an ambiguous description in the latter

sense is the occurrence of an indefinite phrase “an A” in a particular sentential context B,

viz. “an A is a B”. The standard formalization of this in first-order logic is:

∃x(A(x) ∧B(x))

where both A and B are unary predicates or formulas.28 As is shown in [26], Russell’s

indefinites can alternatively be expressed in terms of an term-forming operator that is in

several ways similar to Hilbert’s ε-operator. For a given formula A with x occurring free

in it, let ρx(A(x)) be a term standing for “an x, such that x has A”. This ρ-operator is

defined in the following way:

B(ρx(A(x))) :↔ ∃x(A(x) ∧B(x)) (Def ρ)

Given a system M, let A ⊆ dom(M) be the set of objects defined by formula A, and let

B ⊆ dom(M) be the set defined by formula B. Intuitively speaking, the operator ρ picks

26Psillos, for instance, states that: “(...) in a sense, the ε-operator characterises an indefinite description
(...).” [44, 157]

27For Russell’s remarks on ambiguous descriptions as opposed to definite descriptions, see his [47].
28An indefinite description can thus be constructed from the definite description “the A is a B”, expressed

by ∃x(A(x) ∧ ∀y(A(y)→ x = y) ∧B(x)), simply by dropping the uniqueness clause, that is the claim that
the description fixes the reference to one particular object in the domain.
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out one element in A that is also in B (assuming that their intersection is non-empty).

The central conceptual idea underlying this Russellian account of indefinites is a kind of

semantic context dependency, that is the fact that the specification of an A-representative

picked out by the operator depends on the particular sentential context in which formula

A occurs. In terms of the informal semantics underlying the ρ-operator, this point is given

by the constraint that the selection of a particular ρ-representative of set A is specified

only relative to a given ‘context’ set B in which it also occurs. Thus, in a slogan, one can

say that the reference of a given term is a function of its particular sentential context.29

How are Hilbert’s and Russell’s accounts of indefinite descriptions related? This ques-

tion can be addressed in a precise way by comparing the two underlying logics and their

respective term-forming operators. It can be shown by a simple argument that the two

notions of indefiniteness do not coincide. More specifically, for any two first-order formulas

A,B, we can show that:

B(εxA(x)) = B(ρx(A(x)))

Proof sketch: To show that the left-to-right implication fails, consider a model M where

A = ∅ as well as a choice-function δ interpreting the ε-operator such that δ(A) = x ∈ B.

Relative to M and δ, the antecedent will turn out true. However, the consequent must be

false, since any possible selection function interpreting the ρ-operator will give an element

in the domain outside B, since A ∩ B = ∅. In order to show the right-to-left direction to

be non-valid, consider a model where A ∩ B 6= ∅ and A 6⊆ B. Consider a choice function

interpreting the ε-operator such that δ(A) = x /∈ B. The right hand side formula will

turn out true relative to this model (and any possible selection function interpreting the

ρ-operator). However, this left hand side formula will be false relative to the particular

choice function.

This result states, in precise terms, that Hilbert indefinites are not identical to Russell

indefinites. A closer diagnosis shows that the reason for this difference is genuinely semantic

in nature. It concerns the fact that the reference of a ρ-term is not specified in isolation,

29More formally and in analogy with the choice semantics for the ε-operator, we can specify a functional
interpretation of the ρ-operator in the following way. For the above example, the selection function will
have the form:

Ψ(A) =

{
x ∈ A ∩ B A ∩ B 6= ∅
x ∈ D \A ∪B otherwise.

Thus, for a given formula A and a given context B, the function picks out an element in the intersection
of the sets A and B, if this set is nonempty, and an arbitrary element in the domain otherwise.
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but only relative to a given subset of the domain defined by a formula in which the term

occurs. The specific referential nature of such terms is such that they can refer to one thing

in a given (sentential) context, and to a different thing in another context. This context

dependency is clearly missing in the choice semantics for the ε-logic outlined in Section

3. Given a specific choice-functional interpretation of an epsilon term, its semantic value

remains invariant or stable under all changes of sentential contexts here.30

Where does this leave us with respect to the philosophical evaluation of free choice

indefinites presented by ε-terms? As we saw, epsilon terms differ from Russell’s ρ-terms

in at least two respects. First, indefiniteness in the former case does not mean semantic

indeterminacy in absence of context. Second, it also does not merely mean non-uniqueness

of reference as opposed to the standard account of definite descriptions. What seems to be

genuinely characteristic for ε-terms is a specific mode of reference associated with them,

that is, a specific way of referring to objects in the domain in question. This is sometimes

termed arbitrary reference in the philosophy of language.31

Typical cases of arbitrary reference are usually discussed in connection with so-called

“instantial terms” in deductive reasoning, in particular, with the use of such terms in

the (∃-Elimination) and the (∀-Introduction)-rules in natural deduction. Other examples

concern the use of “arbitrary names” in mathematical reasoning, in particular the use of

indefinite terms in stipulative statements such as “Let G be a graph of order n.”already

mentioned above.32 Breckenridge & Magidor give a general characterization of the kind of

reference typical in such cases:

Arbitrary Reference (AR): It is possible to fix the reference of an expression ar-

bitrarily. When we do so, the expression receives its ordinary kind of semantic-

value, though we do not and cannot know which value in particular it receives.

[10, p.378]

Two points of specification are in order here: first, terms that refer arbitrarily in this

sense do refer to particular objects. That is, their reference is not undetermined in the

30While Russell’s indefinites cannot be expressed in the language of EC, it turns out that they can be
formulated in a natural extension of it, namely in a language of indexed epsilon terms [50, 38]. Another
possible connection between the ρ-operator and epsilon logic concerns Bell’s work on the so-called “de-
pendent” epsilon terms in the context of intuitionistic logic [6]. A closer comparison between the logic of
the indexed ε-operator, Bell’s work on dependent choice, and the Russellian ρ-operator will be given in a
separate paper.

31See, in particular, [10] for the most extensive discussion of arbitrary reference in the literature.
32See [36] for an explicit discussion of arbitrary reference in the context of mathematics. Compare also

[10] for an interesting discussion of instantial reasoning in geometrical reasoning.
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sense that they fail to denote individual objects. This point distinguishes the present AR-

account from other explanations of the semantic behaviour of instantial terms, in particular

the “quantificational” account of such terms.33 Second, as is pointed out in [10], AR does

not mean that these terms refer to non-ordinary or arbitrary objects in the domain in

the sense of Fine’s theory of arbitrary objects (e.g. [22]).34 What makes instantial terms

“arbitrary” is the fact that the reference relation itself is left undetermined or unspecified.

As Breckenridge & Magidor point out, what distinguishes AR from Fine’s account is the

difference between referring arbitrarily to ordinary and particular objects in the domain

and referring to arbitrary objects (in Fine’s sense of the term).

It should be clear at this point that Hilbert’s ε-terms refer to objects in precisely

this way. AR can therefore be seen as a natural philosophical description of the kind of

reference specified by the choice functional semantics for such terms. Note in particular

that ε-terms meet the two characteristic features of AR just described: relative to a given

choice structure, an ε-term denotes a singular object in the domain. Thus, the mode of

reference here is not “quantificational” or plural in nature. Moreover, epsilon terms do not

presuppose a separate domain of nonstandard, arbitrary objects as in Fine’s account but

models with a uniform domain.35 What makes the semantic framework nonstandard in

the sense of AR is the fact that the choice functions specifying the selection made by an

ε-operator guarantee that this selection is completely arbitrary. Thus, the most suitable

translation of B(εx(A(x))) into colloquial English is “an arbitrary A is a B”.

We can conclude from this that “arbitrary reference” is the defining and philosophically

relevant semantic feature of the epsilon logic. Hilbert’s ε-terms belong to a specific type

of indefinite descriptions that behave semantically like arbitrary reference names, i.e. as

singular expressions that refer to objects arbitrarily. As we will see in the next section,

it is precisely this feature of arbitrary reference that also connects Carnap’s explicit use

of ε-terms in his logical reconstruction of theories with a structuralist understanding of

the latter. More specifically, we will show that the epsilon-reconstruction gives a natural

33According to the latter view, instantial terms are best explained not as denoting particular objects but
rather as ranging over a class of relevant objects just as variables do. Thus, terms or names are really
variables in disguise, that is plurally referring expressions. For a detailed presentation of such a position,
see, in particular, [31]. Compare [10] for a detailed critique of this approach as well as a comparison of the
different approaches to instantial terms.

34Fine’s account holds that in contexts of logical and mathematical reasoning, instantial terms can be
taken to refer not to individual objects, but to objects of a different kind, namely arbitrary objects.

35Thus, one can say that while Fine assumes a classical semantics but a nonclassical ontology, the epsilon-
logic is based on a nonclassical choice semantics, but requires only a standard ontology of objects.
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explication of the informal semantics of mathematical terms if one adopts a particular

version of mathematical structuralism.

5 Eliminative structuralism

As mentioned in the Introduction, it has recently been observed by Friedman and others

that Carnap’s logical reconstruction of theories is compatible with scientific structuralism.

Compare, for instance, Demopoulos’ general characterization of a “structuralist thesis”

underlying Carnap’s work:

The theoretical component of what our theories express in wholly captured

by statements which depend only on the logical category of their constituent

concepts. [21, p.161]

The central idea expressed here is that the theoretical—that is, the non-observational—

content of a scientific theory is purely structural in character. Moreover, this structural

content can be expressed by the theory’s Ramsey sentence in the way outlined in Section 2.

The structuralism described here is similar to the epistemic structural realism first intro-

duced in [51], that is, the view that all we know about the physical world is structural in

character. Nevertheless, Demopoulos’ account differs from standard versions of epistemic

structural realism in his focus on what makes theoretical knowledge structural in charac-

ter. This is the fact that the interpretation of the theoretical vocabulary is usually left

undetermined by a scientific theory. Thus, in his words, “apart from their logical category,

nothing is assumed about the meaning of [a theory’s theoretical] terms” [21, p.163].

It is precisely this generality of theoretical knowledge that connects Demopoulos’ (and

arguably also Friedman’s) scientific structuralism with a structuralist account of mathe-

matics. Specifically, we can see that a similar generality has also been ascribed to math-

ematical knowledge in recent debates on mathematical structuralism.36 This is, roughly

put, the view that mathematical theories studies only the abstract structures of structural

36Interestingly, Demolopous describes the “structuralist thesis” in direct comparison with a central
method in modern structural mathematics, namely Hilbert’s formal axiomatics:

The structuralist thesis is a simple extrapolation from Hilbert’s understanding of the essential
generality of mathematical theories. Hilbert argued that the proper formulation of a math-
ematical theory should not be constrained by the demand that it preserve[s] preconceptions
regarding the nature of the theory’s primitive notions. [21, p.82]
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properties of object domains. For instance, Robinson arithmetic does not investigate par-

ticular number systems, but rather their shared abstract structure described by the axioms

of Q. The central philosophical motivation for such a structuralist account is to explain

so-called “Benacerraf phenomena” in mathematics. Roughly put, these are mathematical

objects—first described in Benacerraf’s influential article “What numbers could not be”

[7]—that can be defined or interpreted in different ways. Moreover, the theory describing

these objects gives us no systematic way to decide on which of these interpretations is the

correct one. Thus, it leaves systematically undetermined the true nature of the mathemat-

ical objects it talks about. Benacerraf’s main example to illustrate this point concerns the

reduction of natural numbers to sets: the number ‘2’ can be defined set-theoretically either

as the von Neumann set ‘{∅, {∅}}’ or as the Zermelo set ‘{{∅}}’. Any number theory at

hand, for instance Q, remains ignorant as to which of the two set-theoretic representations

is actually the correct one. It tells us only about the relational or structural properties of

number ‘2’ with respect to the other numbers in a given number system.

The ontological indifference or indeterminacy expressed in such examples has generated

a number of different and partly incompatible versions of structuralism. More specifically,

one can say that Benacerraf’s observation has led to two distinct ways to think of the

structural content of mathematical theories. The first one are so-called non-eliminative

theories, for instance Shapiro’s ante-rem structuralism or Resnik’s theory of mathematical

patterns ([46], [48]). What is typical for these accounts is that they propose a realist picture

of abstract structures. Structures are conceived here as abstract objects, for instance

as structured Platonic universals that can be instantiated by “concrete” mathematical

systems.37 The second camp consists of eliminative theories of structuralism.38 Such

accounts are typically anti-realist or nominalist in the question concerning the existence of

abstract structures. Thus, while these theories also propose an explanation of Benacerraf

phenomena in mathematics, this does not depend on an additional mathematical ontology

of structural objects. Moreover, non-eliminative accounts usually defend the view that

mathematicians’ talk about abstract structures should not to be taken literally or at face

value, but rather as a way of abstracting from the systems of a theory in question.

37See, e.g., [48], [46], and [35] for different versions of such a non-eliminative position. There are interesting
parallels between non-eliminative mathematical structuralism and different versions of ontic structural
realism discussed in philosophy of science. Compare, e.g., [12] and [23] for a closer discussion. Compare
also [9] for a more general comparison of mathematical and scientific structuralism.

38Compare [45] for a more detailed comparison of the two approaches.
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In the present context, we will briefly outline two eliminative approaches in mathe-

matical structuralism that are closely in line with Demopoulos’ more general description

of the structuralist thesis for theoretical knowledge. Moreover, we will argue that one of

them fits particularly well with Carnap’s epsilon-reconstruction of theories. To see this, our

focus will be on the general implications of these eliminativist accounts for the semantics

of mathematical discourse, and more specifically, for the mode of reference of mathemat-

ical terms. Structuralism today mainly comprises different theories about the ontology

of mathematics, that is the metaphysical nature of structural objects. Nevertheless it is

important to stress that each of these accounts also comes with a different understanding

of the reference of the mathematical vocabulary. Hence, we can say that the phenomena

of ontological or definitional indeterminacy that motivate these structuralist ontologies di-

rectly translate into issues concerning the referential indeterminacy of mathematical terms.

For instance, if the arithmetical theory Q remains systematically indifferent with respect to

the correct (set-theoretical) identification of natural number 2, it also leaves undecided the

proper reference of numeral ‘2’.39 Let us briefly look at two different accounts to deal with

this kind of semantic indeterminedness based on two versions of eliminative structuralism.

The first version considered here is usually labelled universal structuralism.40 Universal

structuralists hold that talk about the abstract structure of a mathematical theory is a way

to paraphrase talk about all of its models. Thus, mathematicians use the term “abstract

structure” as a way to generalize over all possible interpretations of a particular theory.

This informal idea is usually made precise in terms of the following logical reconstruction of

mathematical statements: take, for instance, the language of arithmetic LA with signature

{S,+, ∗,≤} in which our theory Q is formulated. As was shown above, every arithmetical

sentence can be expressed in terms of the primitive vocabulary of LA, that is as a sentence

of the form ϕ[S,+, ∗,≤]. The central idea underlying universal structuralism is that the

semantic content of such a statement is best captured by the following universally quantified

conditional sentence:

∀f1∀f2∀f3∀r4(Q[f1, f2, f3, r4]→ ϕ[f1, f2, f3, r4]) (ϕ∗)

39This semantic aspects related to structuralism, in particular the semantic indeterminacy of mathemat-
ical terms has been subject of recent discussions, in particular in [30], [49], and [41].

40See [45] and [40] for detailed discussions of this position.
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The consequent here is the formula resulting through the substitution of the primitive terms

S,+, ∗,≤ in sentence ϕ by variables of the appropriate type. This syntactic reconstruction

is motivated by the semantic assumption that ordinary mathematical statements do in

fact express general claims about all possible interpretations of the background theory in

question. Thus, a mathematical statement such as ‘2 + 2 = 4’ does not express a fact

about a particular number system but about all possible systems of theory Q.41

Two points of commentary concerning this approach are in order here. First, given that

universal structuralism does not posit a new mathematical ontology of structural objects,

it is also sometimes labelled as “structuralism without structures” (see [48]). Nevertheless,

the position does not come without ontological commitments. Notice that the formal re-

construction of mathematical statements has to be formulated in an interpreted language

with quantifiers ranging over sets. It follows that universal structuralism in mathematics

is not really universally eliminative (in the sense of applying to all mathematical domains)

but presupposes a non-structural set theory as a background theory and thus a rich back-

ground ontology of sets.42 Universal structuralist are thus usually realists about sets, but

nominalists about all other mathematical structures representable in the theory of sets.

Second, how should we think of the semantics of the primitive terms such as ‘S’, ‘+’, ‘

* ’, ‘≤’ in light of the present account? Do these terms refer, and if so, to what? Presently,

the most extensive discussion of this question is in [41]. According to what Pettigrew

calls the antirealist or Aristotelian interpretation, such primitives as best understood as

free variables (or as parameters) and not as constant expressions. More specifically, he

argues that mathematical primitives act semantically similarly to the way variables do

in the context of natural deduction, in particular under the standard rules of existential

elimination and universal quantifier introduction.43

41In the present example, ϕ∗ can be viewed as a structuralist translation of statement ϕ that is given in a
“purified” (second-order) object language, i.e. a language with an empty signature. It can be viewed as an
object-language translation of the underlying metatheoretical claim, namely that ϕ is a logical consequence
of theory Q. See[45] for further details.

42This set-theoretic ontology assumed here is usually specified by an axiomatic set theory, for instance
ZFC.

43Compare Pettigrew on this analogy:

Thus, in a first-order system of natural deduction, free variables allow us to express generalities
and to reason about them: in the case of universal introduction, we note that, if we can derive
Φ(a) without making any assumptions about a, then we may conclude that, for any a, Φ(a);
and, in the case of existential elimination, if we have that, for some a, Φ(a), and, whatever a
is, if Φ(a), then B (where B says nothing of a), then we can infer B. For this reason, it is not
surprising that mathematical discourse contains a great many expressions that behave in its
non-formal discourse exactly as free variables behave in formal systems of natural deduction.
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As mentioned above, one way to describe the semantic role of instantial terms in this

context is the so-called quantificational account (see again [10] for a detailed discussion).

This is the idea that the variables in question can be viewed as being tacitly bound by

quantifiers. The very same understanding seems also viable in the context of mathematics.

For instance, arithmetical primitives such as the ‘+’-operator can be viewed to function as

a variable that ranges over all possible addition-functions in all possible number systems.

As Pettigrew points out, we do not want the primitive variables to range over absolutely

everything, i.e. over every admissible function in the set-theoretic universe, however. In-

stead, the mathematical terminology needs to be bound by certain theoretical constraints

that can be specified relative to a given mathematical context. Specifically, the range of

the same ‘primitive’ variables can be effectively relativized to different theoretical contexts

in which they occur.44 In the translation scheme ϕ∗ presented above, this context rela-

tivity is represented formally by the antecedent of the conditional statement, i.e. by the

relativization to the interpretation of the arithmetical terms to a particular theory, in the

above case by Q.

Universal structuralism and the corresponding quantificational account of mathematical

terms provide a natural explanation of modern structural mathematics as well as of the

Benacerraf phenomena described above. Moreover, the account corresponds closely to

the general “structuralist thesis” for scientific theories described above. In particular, the

generality of theoretical knowledge is directly captured here in terms of the suggested

reconstruction of a mathematical statement ϕ by ϕ∗: nothing is assumed here about the

interpretation of the primitive terms but their logical category.

There exists a second version of eliminative structuralism in which this undetermined-

ness of mathematical terms is captured in a different way. This position has been labelled

“relative structuralism” in [45] and shares many of the features of universal structuralism.

In particular, it also assumes a non-structural set theory in which models of mathematical

theories can be constructed. Moreover, it is also clearly deflationist in the sense that math-

ematical structures are not treated as bona fide abstract objects. In contrast to universal

After all, mathematics deals in generalities. [41, p.313]

44Pettigrew therefore describes primitive terms as “contextually dedicated free variables”. The range
of the variables 0, 1,+,× depends on the specific context in which they are introduced. Contexts can be
theoretical constraints such as: (1) ‘R, 0, 1,+,×, and < satisfy the axioms for a complete ordered field’;
‘C, 0, 1,+,×, and < satisfy the axioms for a complex field’; ‘R, 0, 1,+, and × satisfy the ring axioms’. [41,
pp.316-317]
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structuralism, talk about structures is not understood as a way to generalize over models,

however. Instead, structures are understood here as arbitrary representatives of the model

class of a theory.

Moreover, unlike in universal structuralism, the mathematical primitives of a theory

are not considered as variables, but as constant expressions with determinate referents

in a given model. What distinguishes this structuralist position from more traditional

realist accounts is a certain “relativity of reference” typical for such terms. Thus, the

primitive terms of a mathematical theory are treated as constant expressions that refer

to specific objects (i.e. individuals, relations, or functions) in one of its models. Their

reference, however, is specified relative to an arbitrary choice of such a model. Thus, one

can pick out any model in question and fix the the reference of the theory’s terms relative

to this choice. Consider, for instance, the language or second-order Peano arithmetic with

signature ‘s’ (for ‘successor’) and ‘1’. How are these terms interpreted according to the

present account? Reck & Price give the following explanation:

A relativist structuralist offers the following response: We simply pick one

particular model M of PA2, of a domain S, a distinguished element e in S, and

a successor function f on S (here M can be some model that is particularly

convenient for the purposes at hand, but it doesn’t have to be); and we stipulate

that ‘1’ refers to e, that ‘s’ refers to f , and that the range of the quantifiers is

S. At the same time, we note that we could also have picked any other model

M ′ of PA2. (...) Still, having made it we keep our initial stipulation fixed until

further notice. [45, p.349]

Two aspects of this understanding of the semantics of mathematical terms should be em-

phasized here. The first is the relativity of the interpretation function, i.e. the specification

of reference relative to a chosen model and second. The second is arbitrariness of this model

selection. The reference of the primitive terms can thus be determined relative to any pos-

sible model, that is, one can pick out any object from the model class in question and fix

their reference relative to this choice. In the above example, any number system satisfying

PA2 can in principle be considered for the specification of the reference of terms ‘s’ and

‘1’.

Why should this account be viewed as a kind of structuralism concerning mathematical

theories? The central structuralist insight here is again a semantic point, namely that

the mathematical reference is stipulated arbitrarily with respect to a given model class.
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Compare again Reck & Price on this point:

That is to say, relativist structuralism works with a notion of reference (modeled

on the notion of interpretation in model theory) that is relative to such a choice

- thus its name. On the basis of such reference it is also determined what is

meant by “the natural numbers”; namely the particular model M of PA2 that

has been chosen initially. Of course this choice is largely arbitrary, since we

could have picked any other model of PA2 instead. But that does not matter.

All that matters, from this point of view, is that we are consistent about our

choice. [45, p.349]

It is essentially the arbitrariness of the (model-theoretic) interpretation mentioned here

that makes the present position into a structuralist one. In a slogan, one could say that

relative structuralism is the combination of a set-theoretic realism (i.e. a realism about

sets) with a theory of arbitrary reference for mathematical terms.45

Relative structuralism corresponds closely to the structuralist thesis sketched above.

The generality of theoretical knowledge typical for the latter is not captured here in terms

of the generalization over possible interpretations however, but in terms of an arbitrary

choice of such an interpretation. It should also be clear that this ‘relativist’ account of

structuralism squares particularly well with Carnap’s epsilon-reconstruction of theories.

More specifically, the explicit definition of theoretical terms presented in Section 3 gives an

explication of the semantic behaviour of mathematical primitives that is in direct accord

with this philosophical view. Notice in particular that the epsilon-term definition captures

the two central desiderata of relative structuralism described above, namely that (i) the

reference of primitive terms is specified relative to a given choice of a model (of the theory

in question) and (ii) that the choice of this model is arbitrary. To illustrate this, consider

again the reconstruction of the theory of monoids presented in Section 3. The epsilon-

definition of the tuple of primitive terms t = 〈G, ◦, e〉 was explicitly defined here by:

t =df εz(∃X∃f∃v(z = 〈X, f, v〉 ∧Mon(X, f, v))

The theoretical context relative to which the interpretation of tuple t (and thus, indirectly,

of each primitive term) is determined is captured by the complex formula Mon(X, f, v) that

45The fact that mathematical primitive terms are taken to refer arbitrarily is not so untypical of math-
ematical discourse. As pointed out in [36] and more recently, in [10], the use of arbitrary terms is quite
common in mathematical reasoning, for instance in stipulative sentences occurring in mathematical proofs.
What the present account shows is that this idea of arbitrary reference can be generalized to hold not only
for uses of instantial terms in mathematical reasoning, but for mathematical discourse in general.
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expresses the conjunction of the monoid axioms. Possible assignments to the elements in

tuple t are specified relative to the model class defined by this formula.46

The second main desideratum of relative structuralism, namely that the reference of

the mathematical terms is specified relative to an arbitrary model selection, is directly

captured by the use of an epsilon-operator in the above definition. Thus, the reference

of terms ‘G’, ‘◦’, and ‘e’ is specified by their defining epsilon-terms and a modern choice-

semantical interpretation of those. In the specific example, the epsilon operator picks out

one arbitrary representative from the class of monoids. The local interpretation of the

primitive terms is then specified relative to this choice.

Given this formal framework for relative structuralism, we can offer a general transla-

tion scheme for mathematical statements similar to the translation scheme usually asso-

ciated with universal structuralism. We say that a mathematical statement of the form

ϕ(t)—where t is again the tuple of the mathematical primitives of a theory T—can be

reconstructed as:

ϕ(εx(T (x)))

where tuple t is simply replaced by the epsilon-definiens constructed in the above way.47

Carnap’s epsilon-reconstruction thus gives us a way to make precise this intuitive version

of mathematical structuralism and the semantics of mathematical discourse that comes

with it.

6 Conclusion

In this paper, we presented a modernized account of the logic and semantics underlying

the epsilon-reconstruction of theories and applied it to the context of pure mathematics.

Our guiding philosophical motivation was to evaluate a recent observation (made in work

by Friedman, Demopoulos, and others) that Carnap’s mature logic of science is compatible

46We can thus say that this pure formula (or its Ramsification) functions similarly here to the way
Pettigrew speaks of theoretical contexts and “contextually dedicated variables” in his account of universal
structuralism. Unlike in Pettigrew’s account, however, theoretical constraints are not specified externally
but internally, i.e. in the definiens of the relevant terms.

47Notice that in this structuralist reconstruction of mathematical statements, much depends on the choice
of the theoretical context T here. The semantic evaluation of a statement can vary significantly relative to
different background theories. Say, for instance, that for a given statement expressed in a general algebraic
terminology, we can specify as our background theory either the theory of monoids or the theory of abelian
groups. The model selection given by the epsilon-operator can lead to different truth values of the statement
in question.
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with scientific structuralism. To address this, we gave a logical analysis of the indefinite

character of the epsilon operator as well as of the specific type of reference usually asso-

ciated with epsilon terms. As was argued, this type of arbitrary reference characteristic

of Carnap’s understanding of theoretical terms connects his account with scientific struc-

turalism. More specifically, it was shown that the epsilon-term definition of theoretical

vocabulary—in our case of the primitive terms of theories of pure mathematics—also sug-

gests an explication of the informal semantics such terms have according to a particular

structuralist conception of mathematics.

Given this, two lines of possible future research on the epsilon reconstruction and

its philosophical interpretation should be mentioned briefly here. First, what has not

been addressed in detail here is how our analysis of Carnap’s method applies also to non-

mathematical branches of sciences and to scientific structuralism more generally. These

connections are in our view less obvious than those to the philosophy of mathematics,

mainly for two reasons: first, it is less clear than in the case of mathematics how to

specify formally what a scientific theory is and also how to conceive of the semantics of

its theoretical terminology. Moreover, unlike in the case of pure mathematics, it is also

less established what a structuralist conception of theories in the context of the natural

sciences really amounts to. For instance, the central idea underlying epistemic structural

realism, namely that scientific theories describe only structural properties of the world,

has been cashed out formally in different ways (see, e.g., [8], [18], and [21]). Moreover,

there exists a broad spectrum of diverging views in ontic structural realism on how the

specify the metaphysical notion of the structure of the world.48 A study of possible points

of contact between Carnap’s approach and these structuralist positions in the philosophy

of science will thus depend on a closer analysis of how the epsilon-reconstruction relates to

different versions of structural realism.

Second, it might be interesting to see how Carnap’s epsilon-reconstruction can be ap-

plied to other topics under discussion in general philosophy of science and scientific struc-

turalism in particular. This concerns, in particular, issues relevant in the philosophical

discussion of non-revolutionary theory change. In the present paper, we have assumed a

‘static’ account of theories, that is a focus on individual theories, considered in isolation.

In contrast, recent work on scientific structuralism is primarily concerned with dynamic

processes, for instance the supersession of one theory by another. Applying Carnap’s ac-

48Consider, e.g., [5] and [1] for excellent overviews of the current state of debate.
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count to such a dynamical framework might allow us to make logically precise several

critical notions in the philosophical discussion of scientific theory change. Two topics seem

particularly noteworthy here. The first concerns the referential continuity of theoretical

terms in theory change. Carnap’s epsilon-term definition—and in particular its modern

choice semantical specification— might allow us to formulate a weak but precise criterion

for referential continuity.49 The second topic concerns the notion of structural continuity in

theory change that plays a central role in the debates on epistemic structural realism since

Worrall’s [51]. The underlying idea here is that there is a continuity between theories and

their successor theories on a purely structural level, that is, continuity in terms of shared

structural content. Carnap’s epsilon account of theories might be put to use here again

in order to give an alternative precise characterization of this notion. Both topics will be

dealt with in future work.
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