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Abstract

In modern football, various variables as, for example, the distances the
teams run or the percentages of ball possession, are collected throughout a
match. However, there is a lack of methods to make use of these variables
simultaneously and to connect them with the final result of the match. This
paper considers data from the German Bundesliga season 2015/16. The
objective is to identify the variables that are connected to the sportive
success or failure of the single teams. A paired comparison model for
football matches is proposed that is able to take into account match-specific
covariates. The model extends the Bradley-Terry model in many different
ways. In addition to the inclusion of covariates, it uses ordered response
values and includes (possibly team-specific) home effects. Penalty terms
are used to reduce the complexity of the model and to find clusters of
teams with equal covariate effects.

Keywords: Paired Comparison, Bradley-Terry, penalization, BTLLasso.

1 Introduction

Traditionally, discussions about football (and football tactics in particular) are
very controversial, both amongst professional and (us) non-professional football
experts. After all, most football enthusiasts generally agree on platitudes like the
importance of winning tackles or running more than the opponent. This work
aims at contributing to these discussions from a scientific point of view and to
the examination of the validity of football platitudes. In modern football, several
match-specific variables as, for example, the running performance of teams or the
tackling rate are measured and are publicly available from several online media.
We will consider a specific regression model incorporating a set of covariates of
that kind.
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From a statistical point of view, a football match between two competing
teams can be seen as a paired comparison. In paired comparisons, two objects are
compared and it is observed, which of the objects dominates. It is assumed, that
the dominance is generated by an unobserved latent trait. In football matches,
the latent traits are the playing abilities of both teams. The standard model
for paired comparisons is the Bradley-Terry model (Bradley and Terry, 1952),
which has been extended in several ways. An extensive overview on different
paired comparison models is found in Cattelan (2012). Only few publications ad-
dress the issue of including covariates in paired comparison models. Francis et al.
(2010) and Turner and Firth (2012) use (subject-specific) covariates character-
izing the persons that perform the respective comparison. The incorporation of
covariates into paired comparison models leads to more complex models. There-
fore, regularization methods can be applied to reduce the complexity of the final
models. Casalicchio et al. (2015) presented a boosting approach while Tutz and
Schauberger (2015) and Schauberger and Tutz (2015) use L1-type penalties.

There is a wide range of literature on modeling football match outcomes
considering football matches in international tournaments or national football
leagues. Part of the literature concentrates on models to predict the match out-
comes. Therefore, these approaches can only use covariates which are known
before a match takes place. Examples of predictive approaches focusing on the
prediction of the exact scores of a match can be found in Dixon and Coles (1997);
Karlis and Ntzoufras (2003); Dyte and Clarke (2000); Groll et al. (2015). An-
other (but smaller) part of the literature focuses on the post hoc analysis of
football matches. Here, the goal is to detect which variables influence the ob-
served outcomes. A popular field of interest is the influence of the ball possession
on the success of teams. There is an ongoing debate of whether direct play or
possession play is preferable (Collet, 2013; Hughes and Franks, 2005; Vogelbein
et al., 2014). Simultaneous analyses of several match-specific covariates are rather
rare. Castellano et al. (2012) perform a multivariate discriminant analysis to dis-
criminate between winning, drawing and losing teams in FIFA World Cups. A
model-based approach can be found in Carmichael et al. (2000). There, a linear
model for the difference of goals is proposed considering a set of match-specific
covariates, such as the number of shots, the percentage of successful passes or the
number of tackles, and the model is applied on data from the English Premier
League.

The goal of this work is to determine, which match-specific variables are
related to the success or failure of teams in the German Bundesliga. Furthermore,
we are interested in possible differences between the teams or if there are clusters
of teams with similar effects of variables, as for example the percentage of ball
possession. For that purpose, we include such match-specific covariates into a
paired comparison model. The effects of the covariates can be parametrized in
the form of global or team-specific effects. The ordinary Bradley-Terry model
is extended in various ways. For the estimation, a penalty term is proposed
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that is able to detect clusters of teams with respect to certain covariate effects
and reduces the complexity of the final model. The model is estimated using
R-Code extending the package BTLLasso (Schauberger, 2015) from the statistical
environment R (R Core Team, 2015) which is available from the authors.

The paper is structured as follows. In Section 2 some basic models for paired
comparisons, especially for the case of football data, are introduced. Section 3
gives an introduction into the data with a special focus on the variables we are
interested in. A paired comparison model including the variables of interest in
our data set is introduced in Section 4. A penalized estimation approach is
proposed and the results are presented. In Section 5 the results of an alternative
modeling approach are shown. The predictive performance of all proposed models
is assessed in Section 6.

2 Modeling Paired Comparisons

In the following, different models for paired comparisons are introduced, begin-
ning with the Bradley-Terry model. The Bradley-Terry model (Bradley and
Terry, 1952) is the standard model for paired comparisons. It does not consider
covariates and, in general, does not pay any attention to heterogeneity caused by
the subjects of paired comparisons.

2.1 The Bradley-Terry Model

Assuming a set of objects ta1, . . . , amu, in its most simple form the (binary)
Bradley-Terry model is given by

P par ¡ asq � P pYpr,sq � 1q �
exppγr � γsq

1 � exppγr � γsq
.

The response of the model represents the probability that a certain object ar
is preferred over another object as, denoted by ar ¡ as. This response can be
formalized in the dichotomous random variable Ypr,sq which is defined to be Ypr,sq �
1 if ar is preferred over as and Ypr,sq � 0 otherwise. The parameters γr, r �
1, . . . ,m, represent the attractiveness or strength of the respective objects. For
identifiability, a restriction on the parameters is needed, for example

°m
r�1 γr � 0

or γm � 0. In the following, we will use the symmetric side constraint
°m
r�1 γr � 0.

2.2 The Bradley–Terry Model with Ordered Response Cat-
egories

In many applications the dominance of one of the objects is quite naturally ob-
served on an ordered scale. In our current application of paired comparisons to
football matches, it is mandatory to account for draws. Therefore, the model has
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to account for at least three ordered response categories. Early extensions of the
BTL-model include at least the possibility of ties, see Rao and Kupper (1967),
Glenn and David (1960) and Davidson (1970). General models for ordered re-
sponses, for example to allow for a general number of K categories were proposed
by Tutz (1986) and Agresti (1992). In a natural extension of the binary Bradley-
Terry model to K response categories, the model parametrizes the cumulative
probabilities in the form

P pYpr,sq ¤ kq �
exppθk � γr � γsq

1 � exppθk � γr � γsq

with k � 1, . . . , K denoting the possible response categories. The parameters θk
represent the so-called threshold parameters for the single response categories,
they determine the preference for specific categories. In particular, Ypr,sq � 1
represents the maximal preference for object ar over as and Ypr,sq � K represents
the maximal preference for object as over ar. To be able to efficiently use the
information contained in the result of a football match, we will consider a response
variable on a 5-point scale.

In general, for ordinal paired comparisons it can be assumed that the response
categories have a symmetric interpretation so that P pYpr,sq � kq � P pYps,rq �
K � k � 1q holds. Therefore, the threshold parameters should be restricted by
θk � �θK�k and, if K is even, θK{2 � 0 to guarantee for symmetric probabilities.
The threshold for the last category is fixed to θK � 8 so that P pYpr,sq ¤ Kq � 1
will hold. The probability for a single response category can be derived from
the difference between two adjacent categories, P pYpr,sq � kq � P pYpr,sq ¤ kq �
P pYpr,sq ¤ k � 1q. To guarantee for non-negative probabilities for the single
response categories one restricts θ1 ¤ θ2 ¤ . . . ¤ θK . The ordinal Bradley-
Terry model corresponds to a cumulative logit model and can be estimated using
methods from this general framework (Agresti, 2002).

2.3 The Bradley–Terry Models Including Order Effects

After all, the symmetry of the response categories, guaranteed by the restric-
tions on the threshold parameters θk, is not appropriate for all data situations.
Sometimes, the order of the objects can be decisive. In particular, in sport com-
petitions as in our application to football matches the order matters. In our data
structure, the first team represents the team playing at its home ground where
it might have a (home) advantage over its opponent. Therefore, the assumption
that the response categories are symmetric does not hold anymore and the model
needs to be adapted accordingly. Extending the basic models by an additional
parameter δ yields the binary Bradley-Terry model

P pYpr,sq � 1q �
exppδ � γr � γsq

1 � exppδ � γr � γsq
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and the ordinal model

P pYpr,sq ¤ kq �
exppδ � θk � γr � γsq

1 � exppδ � θk � γr � γsq
. (1)

Here, δ denotes the order effect which is simply incorporated into the design
matrix by an additional intercept column. If δ ¡ 0, it increases the probability
of the first-named object ar to win the comparison or, in the case of an ordinal
response, to achieve a superior result. Given the order effect, the symmetry
assumption for the response categories still holds. When applied to football
matches, δ represents a home effect which, as δ does not depend on team ar, is
assumed to be equal for all teams.

3 Bundesliga Data 2015/2016

The data we consider are data from the season 2015/2016 of the German Bun-
desliga. The German Bundesliga is played as a double round robin between 18
teams. Table 1 shows the final table of the season 2015/16. As in all three
previous seasons, Bayern München won the championship. VfB Stuttgart and
Hannover 96 were relegated to the second division.

Position Team Goals For Goals Against Points
1 Bayern München 80 17 88
2 Borussia Dortmund 82 34 78
3 Bayer 04 Leverkusen 56 40 60

4 Bor. Mönchengladbach 67 50 55
5 FC Schalke 04 51 49 52
6 1. FSV Mainz 05 46 42 50
7 Hertha BSC 42 42 50
8 VfL Wolfsburg 47 49 45
9 1. FC Köln 38 42 43
10 Hamburger SV 40 46 41
11 FC Ingolstadt 04 33 42 40
12 FC Augsburg 42 52 38
13 Werder Bremen 50 65 38
14 SV Darmstadt 98 38 53 38

15 TSG Hoffenheim 39 54 37
16 Eintracht Frankfurt 34 52 36
17 VfB Stuttgart 50 75 33
18 Hannover 96 31 62 25

Table 1: Final table of the German Bundesliga in the season 2015/2016.
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All 306 matches played on the 34 match-days of this season will be considered
as the observations in the data set. We will treat a match as a paired comparison
of both teams with respect to their playing abilities. The response variables Yipr,sq
represent the outcome of a match between team ar (as the home team) and team
as on matchday i. We use a 5-point scale defined by

Yipr,sq �

$''''''&
''''''%

1 if team ar wins by at least 2 goals difference,

2 if team ar wins by 1 goal difference,

3 if the match ends with a draw,

4 if team as wins by 1 goal difference,

5 if team as wins by at least 2 goals difference.

Model (1) is able to handle such ordinal response categories. Fitted to the
Bundesliga data of the season 2015/16, the model yields ability estimates as
presented in Table 2. Additionally, estimates of the threshold parameters θ̂1 �
�θ̂4 � �1.591 and θ̂2 � �θ̂3 � �0.576 and the home effect δ̂ � 0.265 were
obtained.

Position Team γr Rank
1 BAY Bayern München 1.899 1
2 DOR Borussia Dortmund 1.598 2
3 LEV Bayer 04 Leverkusen 0.433 4

4 MGB Bor. Mönchengladbach 0.475 3
5 S04 FC Schalke 04 0.133 5
6 MAI 1. FSV Mainz 05 0.088 6
7 BER Hertha BSC -0.001 7
8 WOB VfL Wolfsburg -0.142 9
9 KOE 1. FC Köln -0.045 8

10 HSV Hamburger SV -0.183 10
11 ING FC Ingolstadt 04 -0.228 11
12 AUG FC Augsburg -0.363 13
13 BRE Werder Bremen -0.361 12
14 DAR SV Darmstadt 98 -0.467 15

15 HOF TSG Hoffenheim -0.448 14
16 FRA Eintracht Frankfurt -0.623 16
17 STU VfB Stuttgart -0.699 17
18 HAN Hannover 96 -1.068 18

Table 2: Ability estimates for single teams considering model (1)

The ranking of the estimated abilities more or less coincides with the rankings
of the final table. After all, there are a few interesting differences. For example,
Borussia Mönchengladbach is assessed to be on rank 3 according to the estimated
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ability 0.475. However, the team finished the season on position 4 and, in contrast
to the third-placed Bayer 04 Leverkusen, has to play qualification matches for
the participation in the UEFA Champions League.

Nowadays, in professional football matches a huge amount of variables is col-
lected. For example, for every team it is known what distance the team ran
in a certain match or its number of shots on goal. The main goal of this work
is to determine the influence of these match-specific variables. In the German
Bundesliga, the data supplier opta (http://www.optasports.com/) provides in-
teresting data collections. The data we use are freely available from the website of
the German football magazine kicker (http://www.kicker.de/), Table 3 shows
a short excerpt of the data including the first three matches of the season.

Match Goals Home Team Distance Shots on Goal . . .

1 5 yes Bayern München 109 23 . . .
1 0 no Hamburger SV 111 5 . . .

2 2 yes Bayer 04 Leverkusen 116 25 . . .

2 1 no TSG Hoffenheim 116 6 . . .

3 0 yes FC Augsburg 106 20 . . .
3 1 no Hertha BSC 04 111 11 . . .

...
...

...
...

...
...

. . .

Table 3: Exemplary extract of the Bundesliga data basis from http://www.

kicker.de/

From these (original) data, the ordinal responses for the paired comparisons
(as described above) were derived. In detail, the following variables are available
(per team and per match):

Home Dummy variable for home team

Distance Total amount of km run

BallPossession Percentage of ball possession

TacklingRate Rate of won tacklings

ShotsonGoal Total number of shots on goal

Passes Total number of passes

Misplaced Total number of misplaced passes (not reaching teammates)

CompletionRate Percentage of passes reaching teammates
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Home 1.000
Distance 0.035 1.000

BallPossession 0.102 -0.113 1.000
TacklingRate 0.102 -0.082 0.186 1.000
ShotsonGoal 0.230 0.042 0.519 0.261 1.000

CompletionRate 0.068 0.103 0.717 0.118 0.422 1.000
FoulsSuffered 0.067 -0.200 0.089 0.236 0.035 -0.160 1.000

Offside 0.038 -0.037 0.091 0.088 0.055 0.042 -0.011 1.000

Table 4: Correlation matrix for all used variables and home effect

Fouls Number of fouls or hands

FoulsSuffered Number of fouls suffered

Offside Number of offsides (in attack)

Obviously, some of these variables are correlated or even simple transforma-
tions of each other and, therefore, not all of the variables should be included into
a regression analysis. As the variable Fouls is equal to the variable FoulsSuf-
fered of the respective opponent (except for hands), only FoulsSuffered will be
used. CompletionRate can be calculated as the ratio Passes�Misplaced

Passes
and seems

to be a sensible and very informative variable for the passing behavior of a team.
Also, Passes is highly correlated with BallPossession with an overall correlation
of 0.88 and team-specific correlations up to 0.92 for Hertha BSC Berlin. There-
fore, Passes and Misplaced were excluded from the analysis. Table 4 contains
the correlation matrix for all remaining variables from the data set. Note that
Table 4 was generated by considering the overall pairwise correlations of the vari-
ables, over all the 34 matches and the 18 teams. It can be seen that, due to the
high correlation between Passes and BallPossession also CompletionRate and
BallPossession are correlated, but not too strongly.

4 A Paired Comparison Model Including Match-

specific Covariates

In general, in paired comparison data one has to distinguish between objects and
subjects. The objects in paired comparisons are the entities that are compared
with respect to a certain underlying latent (or non-observable) trait. In football
matches, the objects are the teams that are compared with respect to their playing
abilities. The subjects are the entities that perform the respective comparison.
For example, in marketing studies one often tries to determine the attractiveness
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of several products by presenting pairs of the products to participants. Then,
the participant (who is the subject of the paired comparison) has to decide which
product is more attractive to him. In football matches, a single match itself or a
match-day, respectively, can be seen as the subject that performs the comparison.
The distinction between objects and subjects is particularly important when it
comes to the inclusion of covariates. Covariates in paired comparisons can vary

• only over the subjects (subject-specific)

• only over the objects (object-specific)

• both over the subjects and the objects (subject-object-specific).

For each type of covariates, different modeling strategies are necessary. The
variables that will be considered in the following (and are introduced in Section 3)
vary both over the teams and the matchdays and, therefore, can be regarded as
subject-object-specific covariates.

4.1 Model Specification

In the following, a model is proposed that is able to include match-specific covari-
ates. The starting point is the basic model (1), which is able to handle ordered
response values (including draws) together with a global order effect. In the con-
text of football matches the order effect is considered as the home effect, i.e. the
(possible) advantage a team has over its opponent if playing at the home ground.
The order effect δ in model (1) is a global order effect which does not vary across
objects. In our extended model, δ is replaced by δr so that home effects are
team-specific instead of being global effects equal for all teams.

Another and more important extension is the inclusion of match-specific, or,
more technical, subject-object-specific covariates zir. The covariates are incorpo-
rated into the model with object-specific parameters αr. As the covariates vary
over the subjects (matches) i, also the playing abilities γir and the response Yiprsq
now have to depend on the specific match. For that purpose, we propose to use
the general model for ordinal response data Yipr,sq P t1, . . . , Ku

P pYipr,sq ¤ kq �
exppδr � θk � γir � γisq

1 � exppδr � θk � γir � γisq

�
exppδr � θk � βr0 � βs0 � z

T
irαr � z

T
isαsq

1 � exppδr � θk � βr0 � βs0 � zT
irαr � z

T
isαsq

, (2)

assuming that the abilities in match i are given by γir � βr0�z
T
irαr. Altogether,

the linear predictor of the model contains the following terms:

δr team-specific home effects of team ar
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θk category-specific threshold parameters

βr0 team-specific intercepts

zir p-dimensional covariate vector that varies over teams and matches

αr p-dimensional parameter vector that varies over teams.

In contrast to the playing abilities γr from model (1) the playing abilities are now
extended by covariate effects.

4.2 Estimation and Penalization

The team-specific home effects and the inclusion of team-match-specific covariates
leads to a huge increase of the model complexity. Therefore, it is reasonable to
include penalty terms into the estimation procedures. The goal is to end up with
a model with a moderate complexity only using the parameters that are really
needed. In general, a penalized version lpp�q � lp�q � λJp�q of the likelihood lp�q
will be maximized considering a general penalty term Jp�q controlled by a tuning
parameter λ. In particular, L1-type penalties on differences of coefficients will be
used.

Both the home effect and the covariate effects could also be included as global
parameters instead of team-specific parameters. To decide, whether the home ef-
fect or single covariate effects should be considered with team-specific or global
parameters, penalty terms with respect to all pairwise differences of the respec-
tive parameters will be used. Such a penalty is able to set differences between
parameters to exactly zero and, therefore, to find clusters of teams with equal
effects. Furthermore, it is also possible that single covariates have no effect at all
and are excluded from the model completely.

First, the penalty term for the home effects is considered. Penalizing all
pairwise absolute differences leads to the penalty term

Pδpδ1, . . . , δmq �
¸
r s

|δr � δs|. (3)

As stated before, the penalty can lead to differences of exactly zero so that δr � δs
for r, s P t1, . . . ,mu. If several differences are set zero, one gets clusters of teams
with equal home effects. In the most extreme case (λ Ñ 8), all differences are
estimated to be zero which leads to a model with a global home effect δ � δ1 �
. . . � δm equal across all teams. As there is no doubt about the general presence
of a home effect in national league football, no additional penalty on the absolute
values of the home effects is applied.

Second, the penalty term for the covariate effects is considered. Here, in addi-
tion to all pairwise absolute differences between the parameters that correspond
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to one covariate, also all absolute values are penalized using the penalty term

Pαpα1, . . . ,αmq �
p̧

j�1

¸
r s

|αrj � αsj| �
p̧

j�1

m̧

r�1

|αrj|. (4)

In contrast to the home effect, for the other covariates it is not known in advance
if a certain covariate is influential at all. Therefore, an additional penalty on
the absolute values is introduced. Now, in the most extreme case (λ Ñ 8) all
covariates are excluded completely from the model. With a decreasing tuning
parameter λ, single covariates enter the model, either with equal effects for all
teams or with different clusters of teams.

Both penalties are combined resulting in a joint penalty term Jp�q � Pδp�q �
Pαp�q. In general, the tuning parameter λ bridges between two extreme models,
namely model (1) and model (2). While model (1) contains a global home effect
and no covariate effects at all, model (2) contains (different) team-specific home
and covariate effects. Starting from model (1), the team-specific playing abilities
γr coincide with the team-specific intercepts βr0 from model (2). With decreasing
tuning parameter λ, additional covariate effects enter the model. In general, it
can be assumed that there is a strong correlation between some covariates and
the team-specific intercepts. For example, stronger teams certainly have (on
average) higher values for the shots on goal than weaker teams. As, in contrast
to the covariate effects, the intercepts are not penalized, in such a case the effect
of the shots on goal is already covered by the regular team-specific intercepts.
Therefore, the covariate effects can be seen as extensions of the playing abilities,
containing additional effects that are not yet covered by those. In that sense, the
covariate effects can help to explain (unexpected) match results which can not
fully be explained solely by the team-specific intercepts. As the (unpenalized)
team-specific intercepts can be expected to cover most of the abilities of the
teams, the covariates only become relevant if teams over- (or under-)perform in
certain matches. In order to investigate how the team abilities depend on the
single covariates, in Section 5 a second model without team-specific intercepts is
applied to the data.

In order to achieve comparable effects of the different penalty terms on the
parameters of the different covariates, the covariates have to be transformed into
a common scale. For that purpose, all values corresponding to the home effect
and the covariates (across all matches and all teams) are scaled to a variance of
one. Consequently, due to the scaling the magnitude of parameter estimates is
comparable between different covariates.

In general, for regularization techniques a crucial point is the determination
of the optimal tuning parameter. Mostly, two different strategies can be applied,
namely model selection criteria (e.g. AIC or BIC) or cross-validation. While
AIC or BIC use the models complexity in terms of the degrees of freedom of
the models, cross-validation is solely based on out-of-sample prediction. While
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the determination of the degrees of freedom is lively discussed for different mod-
els (and regularization techniques), cross-validation is applicable in almost all
circumstances. Therefore, in this work the optimal tuning parameter λ is deter-
mined by 10-fold cross-validation with respect to the so-called ranked probability
score (RPS). The RPS for ordinal response y P t1, . . . , Ku (Gneiting and Raftery,
2007) can be denoted by

RPSpy, π̂pkqq �
Ķ

k�1

pπ̂pkq � 1py ¤ kqq2,

where πpkq represents the cumulative probability πpkq � P py ¤ kq. In contrast
to other possible error measures (e.g. the deviance), it takes the ordinal structure
of the response into account.

4.3 Results

For easier interpretation of the intercepts, the covariates were centered (per team
around the team-specific means). Centering the covariates only changes the paths
(and interpretation) of the team-specific intercepts. Now, a team-specific inter-
cept represents the ability of a team if all covariates are assumed to be equal to
the team-specific means. The paths and the interpretation of the covariate effects
remain unchanged, representing the effect of a covariate for the team ability when
the respective covariate changes.

Figure 1 shows the coefficient paths for all parameter estimates (except the
threshold parameters θk) along (a transformation of) the tuning parameter λ. All
paths corresponding to one covariate are collected in a separate plot. For a large
tuning parameter λ, the home effects start with one joint cluster of all teams and
(with decreasing λ) end up with separate home effects for all teams. Similarly, all
covariate effects start with an effect of zero and end up with separate effects for all
teams. As the intercept parameters are not penalized, they only vary due to the
changes of the covariate effects. Consequently, for large λ model (1) and for λ � 0
the unpenalized model (2) is obtained, respectively. In general, the clustering
effect of the penalty becomes obvious. For example, for the covariate Distance
a joint cluster of all teams is formed with decreasing tuning parameters. In
contrast, for CompletionRate only single teams like Bayern München and Borussia
Dortmund form clusters of their own. The dashed vertical lines represent the
optimal model according to the 10-fold cross-validation. Compared to the most
complex model possible, the complexity of the final model found by the cross-
validation is clearly reduced. Figure 2 shows the results of the cross-validation
along the tuning parameter λ.

Table 5 shows all final parameter estimates (for the model chosen by cross-
validation) separately per team and per covariate. Distance has the largest effects
among all covariates, it takes the value 1.01 for all teams. Therefore, in general
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Figure 1: Coefficient paths (along sequence of λ) for model (2) separately for
all covariate effects. Dashed vertical lines represent optimal model according to
10-fold cross-validation.

a better (worse) running performance of a team clearly improves (diminishes)
the chances of the team for a good result. The second largest effect corresponds

13



2.0 1.5 1.0 0.5 0.0

18
0

20
0

22
0

24
0

26
0

28
0

log(λ + 1)

R
P

S

Figure 2: Cross-validation error along tuning parameter λ for model (2). Dashed
vertical line represents optimal model according to 10-fold cross-validation.

to the covariate BallPossession. Interestingly, it has a negative effect for all
teams. However, one has to keep in mind that there are correlations between
some covariates. In particular, the variables BallPossession and CompletionRate
are fairly correlated. For Borussia Dortmund and, especially for Bayern München,
the team-specific effects of the CompletionRate are positive and, therefore, act
contrarily to the negative effect of BallPossession. Furthermore, a positive home
effect and a positive effect for the TacklingRate are estimated for all teams. The
covariates ShotsonGoal, FoulsSuffered and Offside are excluded completely from
the final model. While this result might have been expected for the latter two
variables, it may seem somewhat surprising for ShotsonGoal. However, one has
to keep in mind that all covariate effects are additional effects to the general
abilities represented by the (unpenalized) team-specific intercepts.

In order to illustrate the overall importance of the single covariate effects,
Figure 3 displays the paths of the L2-norms

||pαλ1j, . . . , α
λ
18jq||

of the single covariates j along the tuning parameter λ. In contrast to Figure 1,
in Figure 3 it is easier to compare the magnitude of the different covariate effects.
Distance is by far the most influential variable followed by BallPossession.

The covariate effects of model (2) have a very specific interpretation. Every
team has an (unpenalized) intercept that reflects the average ability of the team
over the season. Therefore, the intercepts already cover the mean covariate ef-
fects of all teams. Accordingly, the covariate effects captured in the respective
parameter vectors αr represent effects where covariates can explain deviations
of the performance of a team from its average performance. This fact has to be
kept in mind for the interpretation of the covariate effects from model (2).
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AUG 0.34 -0.71 1.01 -0.75 0.22 0.00 0.00 0.00 0.00
BAY 0.34 3.53 1.01 -0.75 0.22 0.00 1.99 0.00 0.00
BER 0.34 0.14 1.01 -0.75 0.22 0.00 0.00 0.00 0.00
BRE 0.34 -0.81 1.01 -0.75 0.22 0.00 0.00 0.00 0.00
DAR 0.34 -2.21 1.01 -0.75 0.22 0.00 0.00 0.00 0.00
DOR 0.34 2.15 1.01 -0.75 0.22 0.00 0.27 0.00 0.00
FRA 0.34 -1.03 1.01 -0.75 0.22 0.00 0.00 0.00 0.00
HAN 0.34 -1.40 1.01 -0.75 0.22 0.00 0.00 0.00 0.00

HOF 0.34 -0.42 1.01 -0.75 0.22 0.00 0.00 0.00 0.00
HSV 0.34 -0.27 1.01 -0.75 0.22 0.00 0.00 0.00 0.00
ING 0.34 -1.10 1.01 -0.75 0.22 0.00 0.00 0.00 0.00

KOE 0.34 -0.05 1.01 -0.75 0.22 0.00 0.00 0.00 0.00
LEV 0.34 0.15 1.01 -0.75 0.22 0.00 0.00 0.00 0.00
MAI 0.34 0.28 1.01 -0.75 0.22 0.00 0.00 0.00 0.00

MGB 0.34 1.46 1.01 -0.75 0.22 0.00 0.00 0.00 0.00
S04 0.34 0.37 1.01 -0.75 0.22 0.00 0.00 0.00 0.00

STU 0.34 -0.85 1.01 -0.75 0.22 0.00 0.00 0.00 0.00
WOB 0.34 0.75 1.01 -0.75 0.22 0.00 0.00 0.00 0.00

Table 5: Parameter estimates of Model (2) at optimal tuning parameter accord-
ing to 10-fold cross-validation.

5 Alternative Modeling Approach for Covariate

Effects

If one is interested in the total effect of a covariate on the performance of single
teams, a different parameterization seems appropriate. In an alternative ap-
proach, the team-specific intercepts are simply eliminated from the model. In
this parametrization, the specific ability of team ar on matchday i is specified by
γir � zT

irαr instead of γir � βr0 � z
T
irαr as in model (2). Therefore, with this

alternative parameterization the model can be denoted by

P pYipr,sq ¤ kq �
exppδr � θk � γir � γisq

1 � exppδr � θk � γir � γisq

�
exppδr � θk � z

T
irαr � z

T
isαsq

1 � exppδr � θk � zT
irαr � z

T
isαsq

. (5)
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Figure 3: Variable importance with respect to the L2 norms of the variable-
specific parameter vectors for model (2) along tuning parameter λ.

In this alternative approach, the mean abilities of the teams cannot be covered
by the team-specific intercepts and have to be replaced by covariate effects. This
also implies that in this alternative model the average values of the covariates for
each team are relevant and, hence, the covariates are not centered per team and
covariate but only per covariate. Although the team-specific intercepts βr0 are
now eliminated, model (5) can still become highly complex if for each team and
covariate separate effects are estimated. Therefore, again the penalty terms (3)
and (4) are used for estimation.

Figure 4 shows the coefficient paths of model (5) along the tuning parameter λ,
the dashed vertical lines represent the optimal model according to 10-fold cross-
validation. Similar to the effects estimated for model (2), positive effects for
Distance and (mostly) negative effects for BallPossession are found. Now, for
both covariates we see different clusters of teams with equal effects. For example
for Distance, Bayern München and Hannover 96 have slightly smaller effects than
all the other teams. For CompletionRate, again Bayern München and Borussia
Dortmund stand out. Only FoulsSuffered is eliminated completely from the
model, all other covariates have effects for at least some of the teams.

In contrast to model (2), here the covariates were not centered per team in
advance to the analyses, but only globally per covariate. This is due to the fact
that in model (2) team-specific differences would all be captured in the inter-
cepts. In model (5), no intercepts exist and differences between the teams with
respect to the absolute levels of the covariates do matter. In Figure 5, the mean
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Figure 4: Coefficient paths (along relevant sequence of λ) for alternative model
(5), separately for all covariate effects. Dashed vertical lines represent optimal
model according to 10-fold cross-validation.

effect of the respective covariates together with the single parameter estimates
is illustrated. In these so-called effect stars (Tutz and Schauberger, 2013) one
can see the average covariate values (per team, per covariate) multiplied by the
respective parameter estimates. Therefore, these values represent the average
contribution of a covariate to the ability of a single team. More precisely, the
effect stars show the exponentials of the product of average covariate values and
parameter estimates. Per effect star, a circle with radius expp0q � 1 is drawn rep-
resenting the no-effect case. Values within the circle represent negative (average)
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Figure 5: Effect stars for (average) covariate effects for model (5)
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effects for the team ability, values beyond the circle represent positive (average)
effects for the team ability. The effect star for completion rate is displayed on
a different scale for better visibility. It can be seen that (together with its high
mean value of CompletionRate) Bayern München has a huge positive effect of
CompletionRate for the team ability, it is the variable that at most distinguishes
Bayern München from the rest of the league. Also Borussia Dortmund has a big
effect of CompletionRate. Compared to these two effects, all other effects seems
negligible at first sight, but there are some noticeable effects for BallPossession
and especially for Distance.

6 Assessment of Model Performances

Finally, it is desirable to assess the performance of the basic model (1) and the
two proposed models (2) and (5). Beside comparing the models with each other,
it can also be interesting to see if the models can compete with bookmakers’ odds.
Bookmakers’ odds are known before the respective matches and aggregate most
of the information that is known in advance of a match (including information
not available in our data like injuries or presumable team line-ups). The Website
http://www.football-data.co.uk provides odds averaged over different bookmak-
ers. After eliminating the bookmakers margins, these odds are easily transformed
into probabilities. In contrast to the bookmakers’ odds, models (2) and (5) use
covariate data which are only known after the match. Therefore, the bookmak-
ers’ odds can serve as a good benchmark. If the proposed models outperform the
bookmakers’ odds, this is a clear hint that the covariate information is used in a
sensible manner to gain more knowledge. Of course, in practice the models can
not be used for prediction as the respective covariate information is only available
after a match.

The comparison of the different match predictions is performed in the follow-
ing manner. To prevent effects of overfitting, the predictive power of the three
models is assessed using a leave-one-out strategy. Step by step, the models are
fitted (and optimized) on training data consisting of 33 matchdays. One match-
day at a time is left out of the training data and the corresponding nine matches
are used for prediction. To make our predictions (5 categories) compatible to the
bookmakers’ odds (3 categories for victory home team, draw and victory away
team), the predictions are reduced to the respective 3 categories merging cate-
gories 1 and 2 and categories 4 and 5 of the response variables. In total, one
ends up with 3 probabilities for each of the 306 matches of the season, separately
for the three models and the bookmakers’ odds. Per match, the probability of
the true match outcome is stored. Table 6 contains the mean probabilities for a
correct (out-of-sample) prediction for the three approaches and the bookmakers’
odds:

Moreover, Figure 6 illustrates boxplots of the differences of the single pre-
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Model (1) Model (2) Model (5) Bookmakers
42.0% 49.8% 43.3% 41.9%

Table 6: Average (out-of-sample) probabilities for a correct match prediction

dictions of the three models compared to the bookmakers odds. Here, positive
values represent matches with a better prediction compared to the bookmakers’
odds.
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Figure 6: Boxplots of differences comparing out-of-sample predictions for realized
match results with betting odds

As pointed out before, the bookmakers odds and the models use different
information. After all, it can be seen that the predictive performance of model (2)
outperforms all other approaches. Also models (1) and (5) can compete with the
bookmakers’ odds. This is surprising, as model (1) only uses mean abilities over
the whole season (except for the predicted matchday) and, therefore, does not
contain any match-specific information, in contrast to the bookmakers. On the
other hand, the ability estimates of model (5) are solely based on match-specific
covariate information without any component regarding the overall strength of a
team. Also this model competes well with the bookmakers odds.
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7 Concluding Remarks

This work deals with data from the German Bundesliga from the season 2015/16
and considers several match-specific variables in a paired comparison model. The
proposed model is an attempt to make use of the big amount of data that is
collected in modern football and to simultaneously connect the corresponding
variables to the outcome of the matches. Due to the fact that the used covariates
are correlated, a simultaneous modeling approach seems sensible. After all, com-
plex modeling approaches are rather scarce in this area. The model treats the
matches of the respective season of the German Bundesliga as paired compar-
isons between the competing teams, comparing the playing abilities of the teams
using ordinal responses. The variables are, in a linear way, incorporated into the
playing abilities of the teams in specific matches. In future work also non-linear
effects might be worth considering. The model can easily be applied to data from
other leagues or other types of sport.

Overall, the variable Distance turned out to be the most important variable
among all considered variables. This finding endorses the widely spread belief
that a good running performance of a team is the most important premise for
a successful match. The variable TacklingRate also turned out to have the ex-
pected positive effect, although it is much smaller than the effect of Distance. In
contrast, the finding of a negative effect of BallPossession seems to be rather
counter-intuitive. Maybe, this finding reflects a new trend in the German Bun-
desliga (started by Borussia Dortmund and Jürgen Klopp) to focus on fast counter
attacks rather than on long (and rather slow) periods of permanent ball posses-
sion. After all, for Bayern München one might also argue that they have a strong
positive effect of CompletionRate which is quite strongly (positively) correlated
to BallPossession. Therefore, this finding might in fact also represent a positive
effect of BallPossession for Bayern München.

The comparison of the model performance to bookmakers’ odds shows that the
variables actually carry information and clearly improve the model in contrast
to a model without covariate effects and that the model also outperforms the
bookmakers odds. Therefore, the model seems to be a promising approach to
make use of the big amount of data available in football and to better understand
the effect of the single covariates for the success of teams.
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Vogelbein, M., S. Nopp, and A. Hökelmann (2014). Defensive transition in soccer
- are prompt possession regains a measure of success? A quantitative analysis
of German Fußball-Bundesliga 2010/2011. Journal of Sports Sciences 32 (11),
1076–1083. PMID: 24506111.

23


